isl_transitive_closure.c: map_power: use stricter test of valid input
[isl.git] / isl_transitive_closure.c
blob44b76b727d76f0eb1eac6b0f095b66cd04923223
1 /*
2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
8 * 91893 Orsay, France
9 */
11 #include <isl_ctx_private.h>
12 #include <isl_map_private.h>
13 #include <isl/map.h>
14 #include <isl_seq.h>
15 #include <isl_space_private.h>
16 #include <isl_lp_private.h>
17 #include <isl/union_map.h>
18 #include <isl_mat_private.h>
19 #include <isl_vec_private.h>
20 #include <isl_options_private.h>
21 #include <isl_tarjan.h>
23 int isl_map_is_transitively_closed(__isl_keep isl_map *map)
25 isl_map *map2;
26 int closed;
28 map2 = isl_map_apply_range(isl_map_copy(map), isl_map_copy(map));
29 closed = isl_map_is_subset(map2, map);
30 isl_map_free(map2);
32 return closed;
35 int isl_union_map_is_transitively_closed(__isl_keep isl_union_map *umap)
37 isl_union_map *umap2;
38 int closed;
40 umap2 = isl_union_map_apply_range(isl_union_map_copy(umap),
41 isl_union_map_copy(umap));
42 closed = isl_union_map_is_subset(umap2, umap);
43 isl_union_map_free(umap2);
45 return closed;
48 /* Given a map that represents a path with the length of the path
49 * encoded as the difference between the last output coordindate
50 * and the last input coordinate, set this length to either
51 * exactly "length" (if "exactly" is set) or at least "length"
52 * (if "exactly" is not set).
54 static __isl_give isl_map *set_path_length(__isl_take isl_map *map,
55 int exactly, int length)
57 isl_space *space;
58 struct isl_basic_map *bmap;
59 unsigned d;
60 unsigned nparam;
61 int k;
62 isl_int *c;
64 if (!map)
65 return NULL;
67 space = isl_map_get_space(map);
68 d = isl_space_dim(space, isl_dim_in);
69 nparam = isl_space_dim(space, isl_dim_param);
70 bmap = isl_basic_map_alloc_space(space, 0, 1, 1);
71 if (exactly) {
72 k = isl_basic_map_alloc_equality(bmap);
73 if (k < 0)
74 goto error;
75 c = bmap->eq[k];
76 } else {
77 k = isl_basic_map_alloc_inequality(bmap);
78 if (k < 0)
79 goto error;
80 c = bmap->ineq[k];
82 isl_seq_clr(c, 1 + isl_basic_map_total_dim(bmap));
83 isl_int_set_si(c[0], -length);
84 isl_int_set_si(c[1 + nparam + d - 1], -1);
85 isl_int_set_si(c[1 + nparam + d + d - 1], 1);
87 bmap = isl_basic_map_finalize(bmap);
88 map = isl_map_intersect(map, isl_map_from_basic_map(bmap));
90 return map;
91 error:
92 isl_basic_map_free(bmap);
93 isl_map_free(map);
94 return NULL;
97 /* Check whether the overapproximation of the power of "map" is exactly
98 * the power of "map". Let R be "map" and A_k the overapproximation.
99 * The approximation is exact if
101 * A_1 = R
102 * A_k = A_{k-1} \circ R k >= 2
104 * Since A_k is known to be an overapproximation, we only need to check
106 * A_1 \subset R
107 * A_k \subset A_{k-1} \circ R k >= 2
109 * In practice, "app" has an extra input and output coordinate
110 * to encode the length of the path. So, we first need to add
111 * this coordinate to "map" and set the length of the path to
112 * one.
114 static int check_power_exactness(__isl_take isl_map *map,
115 __isl_take isl_map *app)
117 int exact;
118 isl_map *app_1;
119 isl_map *app_2;
121 map = isl_map_add_dims(map, isl_dim_in, 1);
122 map = isl_map_add_dims(map, isl_dim_out, 1);
123 map = set_path_length(map, 1, 1);
125 app_1 = set_path_length(isl_map_copy(app), 1, 1);
127 exact = isl_map_is_subset(app_1, map);
128 isl_map_free(app_1);
130 if (!exact || exact < 0) {
131 isl_map_free(app);
132 isl_map_free(map);
133 return exact;
136 app_1 = set_path_length(isl_map_copy(app), 0, 1);
137 app_2 = set_path_length(app, 0, 2);
138 app_1 = isl_map_apply_range(map, app_1);
140 exact = isl_map_is_subset(app_2, app_1);
142 isl_map_free(app_1);
143 isl_map_free(app_2);
145 return exact;
148 /* Check whether the overapproximation of the power of "map" is exactly
149 * the power of "map", possibly after projecting out the power (if "project"
150 * is set).
152 * If "project" is set and if "steps" can only result in acyclic paths,
153 * then we check
155 * A = R \cup (A \circ R)
157 * where A is the overapproximation with the power projected out, i.e.,
158 * an overapproximation of the transitive closure.
159 * More specifically, since A is known to be an overapproximation, we check
161 * A \subset R \cup (A \circ R)
163 * Otherwise, we check if the power is exact.
165 * Note that "app" has an extra input and output coordinate to encode
166 * the length of the part. If we are only interested in the transitive
167 * closure, then we can simply project out these coordinates first.
169 static int check_exactness(__isl_take isl_map *map, __isl_take isl_map *app,
170 int project)
172 isl_map *test;
173 int exact;
174 unsigned d;
176 if (!project)
177 return check_power_exactness(map, app);
179 d = isl_map_dim(map, isl_dim_in);
180 app = set_path_length(app, 0, 1);
181 app = isl_map_project_out(app, isl_dim_in, d, 1);
182 app = isl_map_project_out(app, isl_dim_out, d, 1);
184 app = isl_map_reset_space(app, isl_map_get_space(map));
186 test = isl_map_apply_range(isl_map_copy(map), isl_map_copy(app));
187 test = isl_map_union(test, isl_map_copy(map));
189 exact = isl_map_is_subset(app, test);
191 isl_map_free(app);
192 isl_map_free(test);
194 isl_map_free(map);
196 return exact;
200 * The transitive closure implementation is based on the paper
201 * "Computing the Transitive Closure of a Union of Affine Integer
202 * Tuple Relations" by Anna Beletska, Denis Barthou, Wlodzimierz Bielecki and
203 * Albert Cohen.
206 /* Given a set of n offsets v_i (the rows of "steps"), construct a relation
207 * of the given dimension specification (Z^{n+1} -> Z^{n+1})
208 * that maps an element x to any element that can be reached
209 * by taking a non-negative number of steps along any of
210 * the extended offsets v'_i = [v_i 1].
211 * That is, construct
213 * { [x] -> [y] : exists k_i >= 0, y = x + \sum_i k_i v'_i }
215 * For any element in this relation, the number of steps taken
216 * is equal to the difference in the final coordinates.
218 static __isl_give isl_map *path_along_steps(__isl_take isl_space *space,
219 __isl_keep isl_mat *steps)
221 int i, j, k;
222 struct isl_basic_map *path = NULL;
223 unsigned d;
224 unsigned n;
225 unsigned nparam;
227 if (!space || !steps)
228 goto error;
230 d = isl_space_dim(space, isl_dim_in);
231 n = steps->n_row;
232 nparam = isl_space_dim(space, isl_dim_param);
234 path = isl_basic_map_alloc_space(isl_space_copy(space), n, d, n);
236 for (i = 0; i < n; ++i) {
237 k = isl_basic_map_alloc_div(path);
238 if (k < 0)
239 goto error;
240 isl_assert(steps->ctx, i == k, goto error);
241 isl_int_set_si(path->div[k][0], 0);
244 for (i = 0; i < d; ++i) {
245 k = isl_basic_map_alloc_equality(path);
246 if (k < 0)
247 goto error;
248 isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path));
249 isl_int_set_si(path->eq[k][1 + nparam + i], 1);
250 isl_int_set_si(path->eq[k][1 + nparam + d + i], -1);
251 if (i == d - 1)
252 for (j = 0; j < n; ++j)
253 isl_int_set_si(path->eq[k][1 + nparam + 2 * d + j], 1);
254 else
255 for (j = 0; j < n; ++j)
256 isl_int_set(path->eq[k][1 + nparam + 2 * d + j],
257 steps->row[j][i]);
260 for (i = 0; i < n; ++i) {
261 k = isl_basic_map_alloc_inequality(path);
262 if (k < 0)
263 goto error;
264 isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path));
265 isl_int_set_si(path->ineq[k][1 + nparam + 2 * d + i], 1);
268 isl_space_free(space);
270 path = isl_basic_map_simplify(path);
271 path = isl_basic_map_finalize(path);
272 return isl_map_from_basic_map(path);
273 error:
274 isl_space_free(space);
275 isl_basic_map_free(path);
276 return NULL;
279 #define IMPURE 0
280 #define PURE_PARAM 1
281 #define PURE_VAR 2
282 #define MIXED 3
284 /* Check whether the parametric constant term of constraint c is never
285 * positive in "bset".
287 static isl_bool parametric_constant_never_positive(
288 __isl_keep isl_basic_set *bset, isl_int *c, int *div_purity)
290 unsigned d;
291 unsigned n_div;
292 unsigned nparam;
293 int i;
294 int k;
295 isl_bool empty;
297 n_div = isl_basic_set_dim(bset, isl_dim_div);
298 d = isl_basic_set_dim(bset, isl_dim_set);
299 nparam = isl_basic_set_dim(bset, isl_dim_param);
301 bset = isl_basic_set_copy(bset);
302 bset = isl_basic_set_cow(bset);
303 bset = isl_basic_set_extend_constraints(bset, 0, 1);
304 k = isl_basic_set_alloc_inequality(bset);
305 if (k < 0)
306 goto error;
307 isl_seq_clr(bset->ineq[k], 1 + isl_basic_set_total_dim(bset));
308 isl_seq_cpy(bset->ineq[k], c, 1 + nparam);
309 for (i = 0; i < n_div; ++i) {
310 if (div_purity[i] != PURE_PARAM)
311 continue;
312 isl_int_set(bset->ineq[k][1 + nparam + d + i],
313 c[1 + nparam + d + i]);
315 isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1);
316 empty = isl_basic_set_is_empty(bset);
317 isl_basic_set_free(bset);
319 return empty;
320 error:
321 isl_basic_set_free(bset);
322 return isl_bool_error;
325 /* Return PURE_PARAM if only the coefficients of the parameters are non-zero.
326 * Return PURE_VAR if only the coefficients of the set variables are non-zero.
327 * Return MIXED if only the coefficients of the parameters and the set
328 * variables are non-zero and if moreover the parametric constant
329 * can never attain positive values.
330 * Return IMPURE otherwise.
332 static int purity(__isl_keep isl_basic_set *bset, isl_int *c, int *div_purity,
333 int eq)
335 unsigned d;
336 unsigned n_div;
337 unsigned nparam;
338 isl_bool empty;
339 int i;
340 int p = 0, v = 0;
342 n_div = isl_basic_set_dim(bset, isl_dim_div);
343 d = isl_basic_set_dim(bset, isl_dim_set);
344 nparam = isl_basic_set_dim(bset, isl_dim_param);
346 for (i = 0; i < n_div; ++i) {
347 if (isl_int_is_zero(c[1 + nparam + d + i]))
348 continue;
349 switch (div_purity[i]) {
350 case PURE_PARAM: p = 1; break;
351 case PURE_VAR: v = 1; break;
352 default: return IMPURE;
355 if (!p && isl_seq_first_non_zero(c + 1, nparam) == -1)
356 return PURE_VAR;
357 if (!v && isl_seq_first_non_zero(c + 1 + nparam, d) == -1)
358 return PURE_PARAM;
360 empty = parametric_constant_never_positive(bset, c, div_purity);
361 if (eq && empty >= 0 && !empty) {
362 isl_seq_neg(c, c, 1 + nparam + d + n_div);
363 empty = parametric_constant_never_positive(bset, c, div_purity);
366 return empty < 0 ? -1 : empty ? MIXED : IMPURE;
369 /* Return an array of integers indicating the type of each div in bset.
370 * If the div is (recursively) defined in terms of only the parameters,
371 * then the type is PURE_PARAM.
372 * If the div is (recursively) defined in terms of only the set variables,
373 * then the type is PURE_VAR.
374 * Otherwise, the type is IMPURE.
376 static __isl_give int *get_div_purity(__isl_keep isl_basic_set *bset)
378 int i, j;
379 int *div_purity;
380 unsigned d;
381 unsigned n_div;
382 unsigned nparam;
384 if (!bset)
385 return NULL;
387 n_div = isl_basic_set_dim(bset, isl_dim_div);
388 d = isl_basic_set_dim(bset, isl_dim_set);
389 nparam = isl_basic_set_dim(bset, isl_dim_param);
391 div_purity = isl_alloc_array(bset->ctx, int, n_div);
392 if (n_div && !div_purity)
393 return NULL;
395 for (i = 0; i < bset->n_div; ++i) {
396 int p = 0, v = 0;
397 if (isl_int_is_zero(bset->div[i][0])) {
398 div_purity[i] = IMPURE;
399 continue;
401 if (isl_seq_first_non_zero(bset->div[i] + 2, nparam) != -1)
402 p = 1;
403 if (isl_seq_first_non_zero(bset->div[i] + 2 + nparam, d) != -1)
404 v = 1;
405 for (j = 0; j < i; ++j) {
406 if (isl_int_is_zero(bset->div[i][2 + nparam + d + j]))
407 continue;
408 switch (div_purity[j]) {
409 case PURE_PARAM: p = 1; break;
410 case PURE_VAR: v = 1; break;
411 default: p = v = 1; break;
414 div_purity[i] = v ? p ? IMPURE : PURE_VAR : PURE_PARAM;
417 return div_purity;
420 /* Given a path with the as yet unconstrained length at position "pos",
421 * check if setting the length to zero results in only the identity
422 * mapping.
424 static isl_bool empty_path_is_identity(__isl_keep isl_basic_map *path,
425 unsigned pos)
427 isl_basic_map *test = NULL;
428 isl_basic_map *id = NULL;
429 int k;
430 isl_bool is_id;
432 test = isl_basic_map_copy(path);
433 test = isl_basic_map_extend_constraints(test, 1, 0);
434 k = isl_basic_map_alloc_equality(test);
435 if (k < 0)
436 goto error;
437 isl_seq_clr(test->eq[k], 1 + isl_basic_map_total_dim(test));
438 isl_int_set_si(test->eq[k][pos], 1);
439 test = isl_basic_map_gauss(test, NULL);
440 id = isl_basic_map_identity(isl_basic_map_get_space(path));
441 is_id = isl_basic_map_is_equal(test, id);
442 isl_basic_map_free(test);
443 isl_basic_map_free(id);
444 return is_id;
445 error:
446 isl_basic_map_free(test);
447 return isl_bool_error;
450 /* If any of the constraints is found to be impure then this function
451 * sets *impurity to 1.
453 * If impurity is NULL then we are dealing with a non-parametric set
454 * and so the constraints are obviously PURE_VAR.
456 static __isl_give isl_basic_map *add_delta_constraints(
457 __isl_take isl_basic_map *path,
458 __isl_keep isl_basic_set *delta, unsigned off, unsigned nparam,
459 unsigned d, int *div_purity, int eq, int *impurity)
461 int i, k;
462 int n = eq ? delta->n_eq : delta->n_ineq;
463 isl_int **delta_c = eq ? delta->eq : delta->ineq;
464 unsigned n_div;
466 n_div = isl_basic_set_dim(delta, isl_dim_div);
468 for (i = 0; i < n; ++i) {
469 isl_int *path_c;
470 int p = PURE_VAR;
471 if (impurity)
472 p = purity(delta, delta_c[i], div_purity, eq);
473 if (p < 0)
474 goto error;
475 if (p != PURE_VAR && p != PURE_PARAM && !*impurity)
476 *impurity = 1;
477 if (p == IMPURE)
478 continue;
479 if (eq && p != MIXED) {
480 k = isl_basic_map_alloc_equality(path);
481 if (k < 0)
482 goto error;
483 path_c = path->eq[k];
484 } else {
485 k = isl_basic_map_alloc_inequality(path);
486 if (k < 0)
487 goto error;
488 path_c = path->ineq[k];
490 isl_seq_clr(path_c, 1 + isl_basic_map_total_dim(path));
491 if (p == PURE_VAR) {
492 isl_seq_cpy(path_c + off,
493 delta_c[i] + 1 + nparam, d);
494 isl_int_set(path_c[off + d], delta_c[i][0]);
495 } else if (p == PURE_PARAM) {
496 isl_seq_cpy(path_c, delta_c[i], 1 + nparam);
497 } else {
498 isl_seq_cpy(path_c + off,
499 delta_c[i] + 1 + nparam, d);
500 isl_seq_cpy(path_c, delta_c[i], 1 + nparam);
502 isl_seq_cpy(path_c + off - n_div,
503 delta_c[i] + 1 + nparam + d, n_div);
506 return path;
507 error:
508 isl_basic_map_free(path);
509 return NULL;
512 /* Given a set of offsets "delta", construct a relation of the
513 * given dimension specification (Z^{n+1} -> Z^{n+1}) that
514 * is an overapproximation of the relations that
515 * maps an element x to any element that can be reached
516 * by taking a non-negative number of steps along any of
517 * the elements in "delta".
518 * That is, construct an approximation of
520 * { [x] -> [y] : exists f \in \delta, k \in Z :
521 * y = x + k [f, 1] and k >= 0 }
523 * For any element in this relation, the number of steps taken
524 * is equal to the difference in the final coordinates.
526 * In particular, let delta be defined as
528 * \delta = [p] -> { [x] : A x + a >= 0 and B p + b >= 0 and
529 * C x + C'p + c >= 0 and
530 * D x + D'p + d >= 0 }
532 * where the constraints C x + C'p + c >= 0 are such that the parametric
533 * constant term of each constraint j, "C_j x + C'_j p + c_j",
534 * can never attain positive values, then the relation is constructed as
536 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
537 * A f + k a >= 0 and B p + b >= 0 and
538 * C f + C'p + c >= 0 and k >= 1 }
539 * union { [x] -> [x] }
541 * If the zero-length paths happen to correspond exactly to the identity
542 * mapping, then we return
544 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
545 * A f + k a >= 0 and B p + b >= 0 and
546 * C f + C'p + c >= 0 and k >= 0 }
548 * instead.
550 * Existentially quantified variables in \delta are handled by
551 * classifying them as independent of the parameters, purely
552 * parameter dependent and others. Constraints containing
553 * any of the other existentially quantified variables are removed.
554 * This is safe, but leads to an additional overapproximation.
556 * If there are any impure constraints, then we also eliminate
557 * the parameters from \delta, resulting in a set
559 * \delta' = { [x] : E x + e >= 0 }
561 * and add the constraints
563 * E f + k e >= 0
565 * to the constructed relation.
567 static __isl_give isl_map *path_along_delta(__isl_take isl_space *space,
568 __isl_take isl_basic_set *delta)
570 isl_basic_map *path = NULL;
571 unsigned d;
572 unsigned n_div;
573 unsigned nparam;
574 unsigned off;
575 int i, k;
576 isl_bool is_id;
577 int *div_purity = NULL;
578 int impurity = 0;
580 if (!delta)
581 goto error;
582 n_div = isl_basic_set_dim(delta, isl_dim_div);
583 d = isl_basic_set_dim(delta, isl_dim_set);
584 nparam = isl_basic_set_dim(delta, isl_dim_param);
585 path = isl_basic_map_alloc_space(isl_space_copy(space), n_div + d + 1,
586 d + 1 + delta->n_eq, delta->n_eq + delta->n_ineq + 1);
587 off = 1 + nparam + 2 * (d + 1) + n_div;
589 for (i = 0; i < n_div + d + 1; ++i) {
590 k = isl_basic_map_alloc_div(path);
591 if (k < 0)
592 goto error;
593 isl_int_set_si(path->div[k][0], 0);
596 for (i = 0; i < d + 1; ++i) {
597 k = isl_basic_map_alloc_equality(path);
598 if (k < 0)
599 goto error;
600 isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path));
601 isl_int_set_si(path->eq[k][1 + nparam + i], 1);
602 isl_int_set_si(path->eq[k][1 + nparam + d + 1 + i], -1);
603 isl_int_set_si(path->eq[k][off + i], 1);
606 div_purity = get_div_purity(delta);
607 if (n_div && !div_purity)
608 goto error;
610 path = add_delta_constraints(path, delta, off, nparam, d,
611 div_purity, 1, &impurity);
612 path = add_delta_constraints(path, delta, off, nparam, d,
613 div_purity, 0, &impurity);
614 if (impurity) {
615 isl_space *space = isl_basic_set_get_space(delta);
616 delta = isl_basic_set_project_out(delta,
617 isl_dim_param, 0, nparam);
618 delta = isl_basic_set_add_dims(delta, isl_dim_param, nparam);
619 delta = isl_basic_set_reset_space(delta, space);
620 if (!delta)
621 goto error;
622 path = isl_basic_map_extend_constraints(path, delta->n_eq,
623 delta->n_ineq + 1);
624 path = add_delta_constraints(path, delta, off, nparam, d,
625 NULL, 1, NULL);
626 path = add_delta_constraints(path, delta, off, nparam, d,
627 NULL, 0, NULL);
628 path = isl_basic_map_gauss(path, NULL);
631 is_id = empty_path_is_identity(path, off + d);
632 if (is_id < 0)
633 goto error;
635 k = isl_basic_map_alloc_inequality(path);
636 if (k < 0)
637 goto error;
638 isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path));
639 if (!is_id)
640 isl_int_set_si(path->ineq[k][0], -1);
641 isl_int_set_si(path->ineq[k][off + d], 1);
643 free(div_purity);
644 isl_basic_set_free(delta);
645 path = isl_basic_map_finalize(path);
646 if (is_id) {
647 isl_space_free(space);
648 return isl_map_from_basic_map(path);
650 return isl_basic_map_union(path, isl_basic_map_identity(space));
651 error:
652 free(div_purity);
653 isl_space_free(space);
654 isl_basic_set_free(delta);
655 isl_basic_map_free(path);
656 return NULL;
659 /* Given a dimension specification Z^{n+1} -> Z^{n+1} and a parameter "param",
660 * construct a map that equates the parameter to the difference
661 * in the final coordinates and imposes that this difference is positive.
662 * That is, construct
664 * { [x,x_s] -> [y,y_s] : k = y_s - x_s > 0 }
666 static __isl_give isl_map *equate_parameter_to_length(
667 __isl_take isl_space *space, unsigned param)
669 struct isl_basic_map *bmap;
670 unsigned d;
671 unsigned nparam;
672 int k;
674 d = isl_space_dim(space, isl_dim_in);
675 nparam = isl_space_dim(space, isl_dim_param);
676 bmap = isl_basic_map_alloc_space(space, 0, 1, 1);
677 k = isl_basic_map_alloc_equality(bmap);
678 if (k < 0)
679 goto error;
680 isl_seq_clr(bmap->eq[k], 1 + isl_basic_map_total_dim(bmap));
681 isl_int_set_si(bmap->eq[k][1 + param], -1);
682 isl_int_set_si(bmap->eq[k][1 + nparam + d - 1], -1);
683 isl_int_set_si(bmap->eq[k][1 + nparam + d + d - 1], 1);
685 k = isl_basic_map_alloc_inequality(bmap);
686 if (k < 0)
687 goto error;
688 isl_seq_clr(bmap->ineq[k], 1 + isl_basic_map_total_dim(bmap));
689 isl_int_set_si(bmap->ineq[k][1 + param], 1);
690 isl_int_set_si(bmap->ineq[k][0], -1);
692 bmap = isl_basic_map_finalize(bmap);
693 return isl_map_from_basic_map(bmap);
694 error:
695 isl_basic_map_free(bmap);
696 return NULL;
699 /* Check whether "path" is acyclic, where the last coordinates of domain
700 * and range of path encode the number of steps taken.
701 * That is, check whether
703 * { d | d = y - x and (x,y) in path }
705 * does not contain any element with positive last coordinate (positive length)
706 * and zero remaining coordinates (cycle).
708 static isl_bool is_acyclic(__isl_take isl_map *path)
710 int i;
711 isl_bool acyclic;
712 unsigned dim;
713 struct isl_set *delta;
715 delta = isl_map_deltas(path);
716 dim = isl_set_dim(delta, isl_dim_set);
717 for (i = 0; i < dim; ++i) {
718 if (i == dim -1)
719 delta = isl_set_lower_bound_si(delta, isl_dim_set, i, 1);
720 else
721 delta = isl_set_fix_si(delta, isl_dim_set, i, 0);
724 acyclic = isl_set_is_empty(delta);
725 isl_set_free(delta);
727 return acyclic;
730 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
731 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
732 * construct a map that is an overapproximation of the map
733 * that takes an element from the space D \times Z to another
734 * element from the same space, such that the first n coordinates of the
735 * difference between them is a sum of differences between images
736 * and pre-images in one of the R_i and such that the last coordinate
737 * is equal to the number of steps taken.
738 * That is, let
740 * \Delta_i = { y - x | (x, y) in R_i }
742 * then the constructed map is an overapproximation of
744 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
745 * d = (\sum_i k_i \delta_i, \sum_i k_i) }
747 * The elements of the singleton \Delta_i's are collected as the
748 * rows of the steps matrix. For all these \Delta_i's together,
749 * a single path is constructed.
750 * For each of the other \Delta_i's, we compute an overapproximation
751 * of the paths along elements of \Delta_i.
752 * Since each of these paths performs an addition, composition is
753 * symmetric and we can simply compose all resulting paths in any order.
755 static __isl_give isl_map *construct_extended_path(__isl_take isl_space *space,
756 __isl_keep isl_map *map, int *project)
758 struct isl_mat *steps = NULL;
759 struct isl_map *path = NULL;
760 unsigned d;
761 int i, j, n;
763 if (!map)
764 goto error;
766 d = isl_map_dim(map, isl_dim_in);
768 path = isl_map_identity(isl_space_copy(space));
770 steps = isl_mat_alloc(map->ctx, map->n, d);
771 if (!steps)
772 goto error;
774 n = 0;
775 for (i = 0; i < map->n; ++i) {
776 struct isl_basic_set *delta;
778 delta = isl_basic_map_deltas(isl_basic_map_copy(map->p[i]));
780 for (j = 0; j < d; ++j) {
781 isl_bool fixed;
783 fixed = isl_basic_set_plain_dim_is_fixed(delta, j,
784 &steps->row[n][j]);
785 if (fixed < 0) {
786 isl_basic_set_free(delta);
787 goto error;
789 if (!fixed)
790 break;
794 if (j < d) {
795 path = isl_map_apply_range(path,
796 path_along_delta(isl_space_copy(space), delta));
797 path = isl_map_coalesce(path);
798 } else {
799 isl_basic_set_free(delta);
800 ++n;
804 if (n > 0) {
805 steps->n_row = n;
806 path = isl_map_apply_range(path,
807 path_along_steps(isl_space_copy(space), steps));
810 if (project && *project) {
811 *project = is_acyclic(isl_map_copy(path));
812 if (*project < 0)
813 goto error;
816 isl_space_free(space);
817 isl_mat_free(steps);
818 return path;
819 error:
820 isl_space_free(space);
821 isl_mat_free(steps);
822 isl_map_free(path);
823 return NULL;
826 static isl_bool isl_set_overlaps(__isl_keep isl_set *set1,
827 __isl_keep isl_set *set2)
829 isl_set *i;
830 isl_bool no_overlap;
832 if (!set1 || !set2)
833 return isl_bool_error;
835 if (!isl_space_tuple_is_equal(set1->dim, isl_dim_set,
836 set2->dim, isl_dim_set))
837 return isl_bool_false;
839 i = isl_set_intersect(isl_set_copy(set1), isl_set_copy(set2));
840 no_overlap = isl_set_is_empty(i);
841 isl_set_free(i);
843 return isl_bool_not(no_overlap);
846 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
847 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
848 * construct a map that is an overapproximation of the map
849 * that takes an element from the dom R \times Z to an
850 * element from ran R \times Z, such that the first n coordinates of the
851 * difference between them is a sum of differences between images
852 * and pre-images in one of the R_i and such that the last coordinate
853 * is equal to the number of steps taken.
854 * That is, let
856 * \Delta_i = { y - x | (x, y) in R_i }
858 * then the constructed map is an overapproximation of
860 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
861 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
862 * x in dom R and x + d in ran R and
863 * \sum_i k_i >= 1 }
865 static __isl_give isl_map *construct_component(__isl_take isl_space *dim,
866 __isl_keep isl_map *map, int *exact, int project)
868 struct isl_set *domain = NULL;
869 struct isl_set *range = NULL;
870 struct isl_map *app = NULL;
871 struct isl_map *path = NULL;
872 isl_bool overlaps;
874 domain = isl_map_domain(isl_map_copy(map));
875 domain = isl_set_coalesce(domain);
876 range = isl_map_range(isl_map_copy(map));
877 range = isl_set_coalesce(range);
878 overlaps = isl_set_overlaps(domain, range);
879 if (overlaps < 0 || !overlaps) {
880 isl_set_free(domain);
881 isl_set_free(range);
882 isl_space_free(dim);
884 if (overlaps < 0)
885 map = NULL;
886 map = isl_map_copy(map);
887 map = isl_map_add_dims(map, isl_dim_in, 1);
888 map = isl_map_add_dims(map, isl_dim_out, 1);
889 map = set_path_length(map, 1, 1);
890 return map;
892 app = isl_map_from_domain_and_range(domain, range);
893 app = isl_map_add_dims(app, isl_dim_in, 1);
894 app = isl_map_add_dims(app, isl_dim_out, 1);
896 path = construct_extended_path(isl_space_copy(dim), map,
897 exact && *exact ? &project : NULL);
898 app = isl_map_intersect(app, path);
900 if (exact && *exact &&
901 (*exact = check_exactness(isl_map_copy(map), isl_map_copy(app),
902 project)) < 0)
903 goto error;
905 isl_space_free(dim);
906 app = set_path_length(app, 0, 1);
907 return app;
908 error:
909 isl_space_free(dim);
910 isl_map_free(app);
911 return NULL;
914 /* Call construct_component and, if "project" is set, project out
915 * the final coordinates.
917 static __isl_give isl_map *construct_projected_component(
918 __isl_take isl_space *space,
919 __isl_keep isl_map *map, int *exact, int project)
921 isl_map *app;
922 unsigned d;
924 if (!space)
925 return NULL;
926 d = isl_space_dim(space, isl_dim_in);
928 app = construct_component(space, map, exact, project);
929 if (project) {
930 app = isl_map_project_out(app, isl_dim_in, d - 1, 1);
931 app = isl_map_project_out(app, isl_dim_out, d - 1, 1);
933 return app;
936 /* Compute an extended version, i.e., with path lengths, of
937 * an overapproximation of the transitive closure of "bmap"
938 * with path lengths greater than or equal to zero and with
939 * domain and range equal to "dom".
941 static __isl_give isl_map *q_closure(__isl_take isl_space *dim,
942 __isl_take isl_set *dom, __isl_keep isl_basic_map *bmap, int *exact)
944 int project = 1;
945 isl_map *path;
946 isl_map *map;
947 isl_map *app;
949 dom = isl_set_add_dims(dom, isl_dim_set, 1);
950 app = isl_map_from_domain_and_range(dom, isl_set_copy(dom));
951 map = isl_map_from_basic_map(isl_basic_map_copy(bmap));
952 path = construct_extended_path(dim, map, &project);
953 app = isl_map_intersect(app, path);
955 if ((*exact = check_exactness(map, isl_map_copy(app), project)) < 0)
956 goto error;
958 return app;
959 error:
960 isl_map_free(app);
961 return NULL;
964 /* Check whether qc has any elements of length at least one
965 * with domain and/or range outside of dom and ran.
967 static isl_bool has_spurious_elements(__isl_keep isl_map *qc,
968 __isl_keep isl_set *dom, __isl_keep isl_set *ran)
970 isl_set *s;
971 isl_bool subset;
972 unsigned d;
974 if (!qc || !dom || !ran)
975 return isl_bool_error;
977 d = isl_map_dim(qc, isl_dim_in);
979 qc = isl_map_copy(qc);
980 qc = set_path_length(qc, 0, 1);
981 qc = isl_map_project_out(qc, isl_dim_in, d - 1, 1);
982 qc = isl_map_project_out(qc, isl_dim_out, d - 1, 1);
984 s = isl_map_domain(isl_map_copy(qc));
985 subset = isl_set_is_subset(s, dom);
986 isl_set_free(s);
987 if (subset < 0)
988 goto error;
989 if (!subset) {
990 isl_map_free(qc);
991 return isl_bool_true;
994 s = isl_map_range(qc);
995 subset = isl_set_is_subset(s, ran);
996 isl_set_free(s);
998 return isl_bool_not(subset);
999 error:
1000 isl_map_free(qc);
1001 return isl_bool_error;
1004 #define LEFT 2
1005 #define RIGHT 1
1007 /* For each basic map in "map", except i, check whether it combines
1008 * with the transitive closure that is reflexive on C combines
1009 * to the left and to the right.
1011 * In particular, if
1013 * dom map_j \subseteq C
1015 * then right[j] is set to 1. Otherwise, if
1017 * ran map_i \cap dom map_j = \emptyset
1019 * then right[j] is set to 0. Otherwise, composing to the right
1020 * is impossible.
1022 * Similar, for composing to the left, we have if
1024 * ran map_j \subseteq C
1026 * then left[j] is set to 1. Otherwise, if
1028 * dom map_i \cap ran map_j = \emptyset
1030 * then left[j] is set to 0. Otherwise, composing to the left
1031 * is impossible.
1033 * The return value is or'd with LEFT if composing to the left
1034 * is possible and with RIGHT if composing to the right is possible.
1036 static int composability(__isl_keep isl_set *C, int i,
1037 isl_set **dom, isl_set **ran, int *left, int *right,
1038 __isl_keep isl_map *map)
1040 int j;
1041 int ok;
1043 ok = LEFT | RIGHT;
1044 for (j = 0; j < map->n && ok; ++j) {
1045 isl_bool overlaps, subset;
1046 if (j == i)
1047 continue;
1049 if (ok & RIGHT) {
1050 if (!dom[j])
1051 dom[j] = isl_set_from_basic_set(
1052 isl_basic_map_domain(
1053 isl_basic_map_copy(map->p[j])));
1054 if (!dom[j])
1055 return -1;
1056 overlaps = isl_set_overlaps(ran[i], dom[j]);
1057 if (overlaps < 0)
1058 return -1;
1059 if (!overlaps)
1060 right[j] = 0;
1061 else {
1062 subset = isl_set_is_subset(dom[j], C);
1063 if (subset < 0)
1064 return -1;
1065 if (subset)
1066 right[j] = 1;
1067 else
1068 ok &= ~RIGHT;
1072 if (ok & LEFT) {
1073 if (!ran[j])
1074 ran[j] = isl_set_from_basic_set(
1075 isl_basic_map_range(
1076 isl_basic_map_copy(map->p[j])));
1077 if (!ran[j])
1078 return -1;
1079 overlaps = isl_set_overlaps(dom[i], ran[j]);
1080 if (overlaps < 0)
1081 return -1;
1082 if (!overlaps)
1083 left[j] = 0;
1084 else {
1085 subset = isl_set_is_subset(ran[j], C);
1086 if (subset < 0)
1087 return -1;
1088 if (subset)
1089 left[j] = 1;
1090 else
1091 ok &= ~LEFT;
1096 return ok;
1099 static __isl_give isl_map *anonymize(__isl_take isl_map *map)
1101 map = isl_map_reset(map, isl_dim_in);
1102 map = isl_map_reset(map, isl_dim_out);
1103 return map;
1106 /* Return a map that is a union of the basic maps in "map", except i,
1107 * composed to left and right with qc based on the entries of "left"
1108 * and "right".
1110 static __isl_give isl_map *compose(__isl_keep isl_map *map, int i,
1111 __isl_take isl_map *qc, int *left, int *right)
1113 int j;
1114 isl_map *comp;
1116 comp = isl_map_empty(isl_map_get_space(map));
1117 for (j = 0; j < map->n; ++j) {
1118 isl_map *map_j;
1120 if (j == i)
1121 continue;
1123 map_j = isl_map_from_basic_map(isl_basic_map_copy(map->p[j]));
1124 map_j = anonymize(map_j);
1125 if (left && left[j])
1126 map_j = isl_map_apply_range(map_j, isl_map_copy(qc));
1127 if (right && right[j])
1128 map_j = isl_map_apply_range(isl_map_copy(qc), map_j);
1129 comp = isl_map_union(comp, map_j);
1132 comp = isl_map_compute_divs(comp);
1133 comp = isl_map_coalesce(comp);
1135 isl_map_free(qc);
1137 return comp;
1140 /* Compute the transitive closure of "map" incrementally by
1141 * computing
1143 * map_i^+ \cup qc^+
1145 * or
1147 * map_i^+ \cup ((id \cup map_i^) \circ qc^+)
1149 * or
1151 * map_i^+ \cup (qc^+ \circ (id \cup map_i^))
1153 * depending on whether left or right are NULL.
1155 static __isl_give isl_map *compute_incremental(
1156 __isl_take isl_space *space, __isl_keep isl_map *map,
1157 int i, __isl_take isl_map *qc, int *left, int *right, int *exact)
1159 isl_map *map_i;
1160 isl_map *tc;
1161 isl_map *rtc = NULL;
1163 if (!map)
1164 goto error;
1165 isl_assert(map->ctx, left || right, goto error);
1167 map_i = isl_map_from_basic_map(isl_basic_map_copy(map->p[i]));
1168 tc = construct_projected_component(isl_space_copy(space), map_i,
1169 exact, 1);
1170 isl_map_free(map_i);
1172 if (*exact)
1173 qc = isl_map_transitive_closure(qc, exact);
1175 if (!*exact) {
1176 isl_space_free(space);
1177 isl_map_free(tc);
1178 isl_map_free(qc);
1179 return isl_map_universe(isl_map_get_space(map));
1182 if (!left || !right)
1183 rtc = isl_map_union(isl_map_copy(tc),
1184 isl_map_identity(isl_map_get_space(tc)));
1185 if (!right)
1186 qc = isl_map_apply_range(rtc, qc);
1187 if (!left)
1188 qc = isl_map_apply_range(qc, rtc);
1189 qc = isl_map_union(tc, qc);
1191 isl_space_free(space);
1193 return qc;
1194 error:
1195 isl_space_free(space);
1196 isl_map_free(qc);
1197 return NULL;
1200 /* Given a map "map", try to find a basic map such that
1201 * map^+ can be computed as
1203 * map^+ = map_i^+ \cup
1204 * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
1206 * with C the simple hull of the domain and range of the input map.
1207 * map_i^ \cup Id_C is computed by allowing the path lengths to be zero
1208 * and by intersecting domain and range with C.
1209 * Of course, we need to check that this is actually equal to map_i^ \cup Id_C.
1210 * Also, we only use the incremental computation if all the transitive
1211 * closures are exact and if the number of basic maps in the union,
1212 * after computing the integer divisions, is smaller than the number
1213 * of basic maps in the input map.
1215 static isl_bool incremental_on_entire_domain(__isl_keep isl_space *space,
1216 __isl_keep isl_map *map,
1217 isl_set **dom, isl_set **ran, int *left, int *right,
1218 __isl_give isl_map **res)
1220 int i;
1221 isl_set *C;
1222 unsigned d;
1224 *res = NULL;
1226 C = isl_set_union(isl_map_domain(isl_map_copy(map)),
1227 isl_map_range(isl_map_copy(map)));
1228 C = isl_set_from_basic_set(isl_set_simple_hull(C));
1229 if (!C)
1230 return isl_bool_error;
1231 if (C->n != 1) {
1232 isl_set_free(C);
1233 return isl_bool_false;
1236 d = isl_map_dim(map, isl_dim_in);
1238 for (i = 0; i < map->n; ++i) {
1239 isl_map *qc;
1240 int exact_i;
1241 isl_bool spurious;
1242 int j;
1243 dom[i] = isl_set_from_basic_set(isl_basic_map_domain(
1244 isl_basic_map_copy(map->p[i])));
1245 ran[i] = isl_set_from_basic_set(isl_basic_map_range(
1246 isl_basic_map_copy(map->p[i])));
1247 qc = q_closure(isl_space_copy(space), isl_set_copy(C),
1248 map->p[i], &exact_i);
1249 if (!qc)
1250 goto error;
1251 if (!exact_i) {
1252 isl_map_free(qc);
1253 continue;
1255 spurious = has_spurious_elements(qc, dom[i], ran[i]);
1256 if (spurious) {
1257 isl_map_free(qc);
1258 if (spurious < 0)
1259 goto error;
1260 continue;
1262 qc = isl_map_project_out(qc, isl_dim_in, d, 1);
1263 qc = isl_map_project_out(qc, isl_dim_out, d, 1);
1264 qc = isl_map_compute_divs(qc);
1265 for (j = 0; j < map->n; ++j)
1266 left[j] = right[j] = 1;
1267 qc = compose(map, i, qc, left, right);
1268 if (!qc)
1269 goto error;
1270 if (qc->n >= map->n) {
1271 isl_map_free(qc);
1272 continue;
1274 *res = compute_incremental(isl_space_copy(space), map, i, qc,
1275 left, right, &exact_i);
1276 if (!*res)
1277 goto error;
1278 if (exact_i)
1279 break;
1280 isl_map_free(*res);
1281 *res = NULL;
1284 isl_set_free(C);
1286 return *res != NULL;
1287 error:
1288 isl_set_free(C);
1289 return isl_bool_error;
1292 /* Try and compute the transitive closure of "map" as
1294 * map^+ = map_i^+ \cup
1295 * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
1297 * with C either the simple hull of the domain and range of the entire
1298 * map or the simple hull of domain and range of map_i.
1300 static __isl_give isl_map *incremental_closure(__isl_take isl_space *space,
1301 __isl_keep isl_map *map, int *exact, int project)
1303 int i;
1304 isl_set **dom = NULL;
1305 isl_set **ran = NULL;
1306 int *left = NULL;
1307 int *right = NULL;
1308 isl_set *C;
1309 unsigned d;
1310 isl_map *res = NULL;
1312 if (!project)
1313 return construct_projected_component(space, map, exact,
1314 project);
1316 if (!map)
1317 goto error;
1318 if (map->n <= 1)
1319 return construct_projected_component(space, map, exact,
1320 project);
1322 d = isl_map_dim(map, isl_dim_in);
1324 dom = isl_calloc_array(map->ctx, isl_set *, map->n);
1325 ran = isl_calloc_array(map->ctx, isl_set *, map->n);
1326 left = isl_calloc_array(map->ctx, int, map->n);
1327 right = isl_calloc_array(map->ctx, int, map->n);
1328 if (!ran || !dom || !left || !right)
1329 goto error;
1331 if (incremental_on_entire_domain(space, map, dom, ran, left, right,
1332 &res) < 0)
1333 goto error;
1335 for (i = 0; !res && i < map->n; ++i) {
1336 isl_map *qc;
1337 int exact_i, comp;
1338 isl_bool spurious;
1339 if (!dom[i])
1340 dom[i] = isl_set_from_basic_set(
1341 isl_basic_map_domain(
1342 isl_basic_map_copy(map->p[i])));
1343 if (!dom[i])
1344 goto error;
1345 if (!ran[i])
1346 ran[i] = isl_set_from_basic_set(
1347 isl_basic_map_range(
1348 isl_basic_map_copy(map->p[i])));
1349 if (!ran[i])
1350 goto error;
1351 C = isl_set_union(isl_set_copy(dom[i]),
1352 isl_set_copy(ran[i]));
1353 C = isl_set_from_basic_set(isl_set_simple_hull(C));
1354 if (!C)
1355 goto error;
1356 if (C->n != 1) {
1357 isl_set_free(C);
1358 continue;
1360 comp = composability(C, i, dom, ran, left, right, map);
1361 if (!comp || comp < 0) {
1362 isl_set_free(C);
1363 if (comp < 0)
1364 goto error;
1365 continue;
1367 qc = q_closure(isl_space_copy(space), C, map->p[i], &exact_i);
1368 if (!qc)
1369 goto error;
1370 if (!exact_i) {
1371 isl_map_free(qc);
1372 continue;
1374 spurious = has_spurious_elements(qc, dom[i], ran[i]);
1375 if (spurious) {
1376 isl_map_free(qc);
1377 if (spurious < 0)
1378 goto error;
1379 continue;
1381 qc = isl_map_project_out(qc, isl_dim_in, d, 1);
1382 qc = isl_map_project_out(qc, isl_dim_out, d, 1);
1383 qc = isl_map_compute_divs(qc);
1384 qc = compose(map, i, qc, (comp & LEFT) ? left : NULL,
1385 (comp & RIGHT) ? right : NULL);
1386 if (!qc)
1387 goto error;
1388 if (qc->n >= map->n) {
1389 isl_map_free(qc);
1390 continue;
1392 res = compute_incremental(isl_space_copy(space), map, i, qc,
1393 (comp & LEFT) ? left : NULL,
1394 (comp & RIGHT) ? right : NULL, &exact_i);
1395 if (!res)
1396 goto error;
1397 if (exact_i)
1398 break;
1399 isl_map_free(res);
1400 res = NULL;
1403 for (i = 0; i < map->n; ++i) {
1404 isl_set_free(dom[i]);
1405 isl_set_free(ran[i]);
1407 free(dom);
1408 free(ran);
1409 free(left);
1410 free(right);
1412 if (res) {
1413 isl_space_free(space);
1414 return res;
1417 return construct_projected_component(space, map, exact, project);
1418 error:
1419 if (dom)
1420 for (i = 0; i < map->n; ++i)
1421 isl_set_free(dom[i]);
1422 free(dom);
1423 if (ran)
1424 for (i = 0; i < map->n; ++i)
1425 isl_set_free(ran[i]);
1426 free(ran);
1427 free(left);
1428 free(right);
1429 isl_space_free(space);
1430 return NULL;
1433 /* Given an array of sets "set", add "dom" at position "pos"
1434 * and search for elements at earlier positions that overlap with "dom".
1435 * If any can be found, then merge all of them, together with "dom", into
1436 * a single set and assign the union to the first in the array,
1437 * which becomes the new group leader for all groups involved in the merge.
1438 * During the search, we only consider group leaders, i.e., those with
1439 * group[i] = i, as the other sets have already been combined
1440 * with one of the group leaders.
1442 static int merge(isl_set **set, int *group, __isl_take isl_set *dom, int pos)
1444 int i;
1446 group[pos] = pos;
1447 set[pos] = isl_set_copy(dom);
1449 for (i = pos - 1; i >= 0; --i) {
1450 isl_bool o;
1452 if (group[i] != i)
1453 continue;
1455 o = isl_set_overlaps(set[i], dom);
1456 if (o < 0)
1457 goto error;
1458 if (!o)
1459 continue;
1461 set[i] = isl_set_union(set[i], set[group[pos]]);
1462 set[group[pos]] = NULL;
1463 if (!set[i])
1464 goto error;
1465 group[group[pos]] = i;
1466 group[pos] = i;
1469 isl_set_free(dom);
1470 return 0;
1471 error:
1472 isl_set_free(dom);
1473 return -1;
1476 /* Replace each entry in the n by n grid of maps by the cross product
1477 * with the relation { [i] -> [i + 1] }.
1479 static isl_stat add_length(__isl_keep isl_map *map, isl_map ***grid, int n)
1481 int i, j, k;
1482 isl_space *space;
1483 isl_basic_map *bstep;
1484 isl_map *step;
1485 unsigned nparam;
1487 if (!map)
1488 return isl_stat_error;
1490 space = isl_map_get_space(map);
1491 nparam = isl_space_dim(space, isl_dim_param);
1492 space = isl_space_drop_dims(space, isl_dim_in, 0,
1493 isl_space_dim(space, isl_dim_in));
1494 space = isl_space_drop_dims(space, isl_dim_out, 0,
1495 isl_space_dim(space, isl_dim_out));
1496 space = isl_space_add_dims(space, isl_dim_in, 1);
1497 space = isl_space_add_dims(space, isl_dim_out, 1);
1498 bstep = isl_basic_map_alloc_space(space, 0, 1, 0);
1499 k = isl_basic_map_alloc_equality(bstep);
1500 if (k < 0) {
1501 isl_basic_map_free(bstep);
1502 return isl_stat_error;
1504 isl_seq_clr(bstep->eq[k], 1 + isl_basic_map_total_dim(bstep));
1505 isl_int_set_si(bstep->eq[k][0], 1);
1506 isl_int_set_si(bstep->eq[k][1 + nparam], 1);
1507 isl_int_set_si(bstep->eq[k][1 + nparam + 1], -1);
1508 bstep = isl_basic_map_finalize(bstep);
1509 step = isl_map_from_basic_map(bstep);
1511 for (i = 0; i < n; ++i)
1512 for (j = 0; j < n; ++j)
1513 grid[i][j] = isl_map_product(grid[i][j],
1514 isl_map_copy(step));
1516 isl_map_free(step);
1518 return isl_stat_ok;
1521 /* The core of the Floyd-Warshall algorithm.
1522 * Updates the given n x x matrix of relations in place.
1524 * The algorithm iterates over all vertices. In each step, the whole
1525 * matrix is updated to include all paths that go to the current vertex,
1526 * possibly stay there a while (including passing through earlier vertices)
1527 * and then come back. At the start of each iteration, the diagonal
1528 * element corresponding to the current vertex is replaced by its
1529 * transitive closure to account for all indirect paths that stay
1530 * in the current vertex.
1532 static void floyd_warshall_iterate(isl_map ***grid, int n, int *exact)
1534 int r, p, q;
1536 for (r = 0; r < n; ++r) {
1537 int r_exact;
1538 grid[r][r] = isl_map_transitive_closure(grid[r][r],
1539 (exact && *exact) ? &r_exact : NULL);
1540 if (exact && *exact && !r_exact)
1541 *exact = 0;
1543 for (p = 0; p < n; ++p)
1544 for (q = 0; q < n; ++q) {
1545 isl_map *loop;
1546 if (p == r && q == r)
1547 continue;
1548 loop = isl_map_apply_range(
1549 isl_map_copy(grid[p][r]),
1550 isl_map_copy(grid[r][q]));
1551 grid[p][q] = isl_map_union(grid[p][q], loop);
1552 loop = isl_map_apply_range(
1553 isl_map_copy(grid[p][r]),
1554 isl_map_apply_range(
1555 isl_map_copy(grid[r][r]),
1556 isl_map_copy(grid[r][q])));
1557 grid[p][q] = isl_map_union(grid[p][q], loop);
1558 grid[p][q] = isl_map_coalesce(grid[p][q]);
1563 /* Given a partition of the domains and ranges of the basic maps in "map",
1564 * apply the Floyd-Warshall algorithm with the elements in the partition
1565 * as vertices.
1567 * In particular, there are "n" elements in the partition and "group" is
1568 * an array of length 2 * map->n with entries in [0,n-1].
1570 * We first construct a matrix of relations based on the partition information,
1571 * apply Floyd-Warshall on this matrix of relations and then take the
1572 * union of all entries in the matrix as the final result.
1574 * If we are actually computing the power instead of the transitive closure,
1575 * i.e., when "project" is not set, then the result should have the
1576 * path lengths encoded as the difference between an extra pair of
1577 * coordinates. We therefore apply the nested transitive closures
1578 * to relations that include these lengths. In particular, we replace
1579 * the input relation by the cross product with the unit length relation
1580 * { [i] -> [i + 1] }.
1582 static __isl_give isl_map *floyd_warshall_with_groups(
1583 __isl_take isl_space *space, __isl_keep isl_map *map,
1584 int *exact, int project, int *group, int n)
1586 int i, j, k;
1587 isl_map ***grid = NULL;
1588 isl_map *app;
1590 if (!map)
1591 goto error;
1593 if (n == 1) {
1594 free(group);
1595 return incremental_closure(space, map, exact, project);
1598 grid = isl_calloc_array(map->ctx, isl_map **, n);
1599 if (!grid)
1600 goto error;
1601 for (i = 0; i < n; ++i) {
1602 grid[i] = isl_calloc_array(map->ctx, isl_map *, n);
1603 if (!grid[i])
1604 goto error;
1605 for (j = 0; j < n; ++j)
1606 grid[i][j] = isl_map_empty(isl_map_get_space(map));
1609 for (k = 0; k < map->n; ++k) {
1610 i = group[2 * k];
1611 j = group[2 * k + 1];
1612 grid[i][j] = isl_map_union(grid[i][j],
1613 isl_map_from_basic_map(
1614 isl_basic_map_copy(map->p[k])));
1617 if (!project && add_length(map, grid, n) < 0)
1618 goto error;
1620 floyd_warshall_iterate(grid, n, exact);
1622 app = isl_map_empty(isl_map_get_space(grid[0][0]));
1624 for (i = 0; i < n; ++i) {
1625 for (j = 0; j < n; ++j)
1626 app = isl_map_union(app, grid[i][j]);
1627 free(grid[i]);
1629 free(grid);
1631 free(group);
1632 isl_space_free(space);
1634 return app;
1635 error:
1636 if (grid)
1637 for (i = 0; i < n; ++i) {
1638 if (!grid[i])
1639 continue;
1640 for (j = 0; j < n; ++j)
1641 isl_map_free(grid[i][j]);
1642 free(grid[i]);
1644 free(grid);
1645 free(group);
1646 isl_space_free(space);
1647 return NULL;
1650 /* Partition the domains and ranges of the n basic relations in list
1651 * into disjoint cells.
1653 * To find the partition, we simply consider all of the domains
1654 * and ranges in turn and combine those that overlap.
1655 * "set" contains the partition elements and "group" indicates
1656 * to which partition element a given domain or range belongs.
1657 * The domain of basic map i corresponds to element 2 * i in these arrays,
1658 * while the domain corresponds to element 2 * i + 1.
1659 * During the construction group[k] is either equal to k,
1660 * in which case set[k] contains the union of all the domains and
1661 * ranges in the corresponding group, or is equal to some l < k,
1662 * with l another domain or range in the same group.
1664 static int *setup_groups(isl_ctx *ctx, __isl_keep isl_basic_map **list, int n,
1665 isl_set ***set, int *n_group)
1667 int i;
1668 int *group = NULL;
1669 int g;
1671 *set = isl_calloc_array(ctx, isl_set *, 2 * n);
1672 group = isl_alloc_array(ctx, int, 2 * n);
1674 if (!*set || !group)
1675 goto error;
1677 for (i = 0; i < n; ++i) {
1678 isl_set *dom;
1679 dom = isl_set_from_basic_set(isl_basic_map_domain(
1680 isl_basic_map_copy(list[i])));
1681 if (merge(*set, group, dom, 2 * i) < 0)
1682 goto error;
1683 dom = isl_set_from_basic_set(isl_basic_map_range(
1684 isl_basic_map_copy(list[i])));
1685 if (merge(*set, group, dom, 2 * i + 1) < 0)
1686 goto error;
1689 g = 0;
1690 for (i = 0; i < 2 * n; ++i)
1691 if (group[i] == i) {
1692 if (g != i) {
1693 (*set)[g] = (*set)[i];
1694 (*set)[i] = NULL;
1696 group[i] = g++;
1697 } else
1698 group[i] = group[group[i]];
1700 *n_group = g;
1702 return group;
1703 error:
1704 if (*set) {
1705 for (i = 0; i < 2 * n; ++i)
1706 isl_set_free((*set)[i]);
1707 free(*set);
1708 *set = NULL;
1710 free(group);
1711 return NULL;
1714 /* Check if the domains and ranges of the basic maps in "map" can
1715 * be partitioned, and if so, apply Floyd-Warshall on the elements
1716 * of the partition. Note that we also apply this algorithm
1717 * if we want to compute the power, i.e., when "project" is not set.
1718 * However, the results are unlikely to be exact since the recursive
1719 * calls inside the Floyd-Warshall algorithm typically result in
1720 * non-linear path lengths quite quickly.
1722 static __isl_give isl_map *floyd_warshall(__isl_take isl_space *space,
1723 __isl_keep isl_map *map, int *exact, int project)
1725 int i;
1726 isl_set **set = NULL;
1727 int *group = NULL;
1728 int n;
1730 if (!map)
1731 goto error;
1732 if (map->n <= 1)
1733 return incremental_closure(space, map, exact, project);
1735 group = setup_groups(map->ctx, map->p, map->n, &set, &n);
1736 if (!group)
1737 goto error;
1739 for (i = 0; i < 2 * map->n; ++i)
1740 isl_set_free(set[i]);
1742 free(set);
1744 return floyd_warshall_with_groups(space, map, exact, project, group, n);
1745 error:
1746 isl_space_free(space);
1747 return NULL;
1750 /* Structure for representing the nodes of the graph of which
1751 * strongly connected components are being computed.
1753 * list contains the actual nodes
1754 * check_closed is set if we may have used the fact that
1755 * a pair of basic maps can be interchanged
1757 struct isl_tc_follows_data {
1758 isl_basic_map **list;
1759 int check_closed;
1762 /* Check whether in the computation of the transitive closure
1763 * "list[i]" (R_1) should follow (or be part of the same component as)
1764 * "list[j]" (R_2).
1766 * That is check whether
1768 * R_1 \circ R_2
1770 * is a subset of
1772 * R_2 \circ R_1
1774 * If so, then there is no reason for R_1 to immediately follow R_2
1775 * in any path.
1777 * *check_closed is set if the subset relation holds while
1778 * R_1 \circ R_2 is not empty.
1780 static isl_bool basic_map_follows(int i, int j, void *user)
1782 struct isl_tc_follows_data *data = user;
1783 struct isl_map *map12 = NULL;
1784 struct isl_map *map21 = NULL;
1785 isl_bool subset;
1787 if (!isl_space_tuple_is_equal(data->list[i]->dim, isl_dim_in,
1788 data->list[j]->dim, isl_dim_out))
1789 return isl_bool_false;
1791 map21 = isl_map_from_basic_map(
1792 isl_basic_map_apply_range(
1793 isl_basic_map_copy(data->list[j]),
1794 isl_basic_map_copy(data->list[i])));
1795 subset = isl_map_is_empty(map21);
1796 if (subset < 0)
1797 goto error;
1798 if (subset) {
1799 isl_map_free(map21);
1800 return isl_bool_false;
1803 if (!isl_space_tuple_is_equal(data->list[i]->dim, isl_dim_in,
1804 data->list[i]->dim, isl_dim_out) ||
1805 !isl_space_tuple_is_equal(data->list[j]->dim, isl_dim_in,
1806 data->list[j]->dim, isl_dim_out)) {
1807 isl_map_free(map21);
1808 return isl_bool_true;
1811 map12 = isl_map_from_basic_map(
1812 isl_basic_map_apply_range(
1813 isl_basic_map_copy(data->list[i]),
1814 isl_basic_map_copy(data->list[j])));
1816 subset = isl_map_is_subset(map21, map12);
1818 isl_map_free(map12);
1819 isl_map_free(map21);
1821 if (subset)
1822 data->check_closed = 1;
1824 return isl_bool_not(subset);
1825 error:
1826 isl_map_free(map21);
1827 return isl_bool_error;
1830 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
1831 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
1832 * construct a map that is an overapproximation of the map
1833 * that takes an element from the dom R \times Z to an
1834 * element from ran R \times Z, such that the first n coordinates of the
1835 * difference between them is a sum of differences between images
1836 * and pre-images in one of the R_i and such that the last coordinate
1837 * is equal to the number of steps taken.
1838 * If "project" is set, then these final coordinates are not included,
1839 * i.e., a relation of type Z^n -> Z^n is returned.
1840 * That is, let
1842 * \Delta_i = { y - x | (x, y) in R_i }
1844 * then the constructed map is an overapproximation of
1846 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1847 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
1848 * x in dom R and x + d in ran R }
1850 * or
1852 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1853 * d = (\sum_i k_i \delta_i) and
1854 * x in dom R and x + d in ran R }
1856 * if "project" is set.
1858 * We first split the map into strongly connected components, perform
1859 * the above on each component and then join the results in the correct
1860 * order, at each join also taking in the union of both arguments
1861 * to allow for paths that do not go through one of the two arguments.
1863 static __isl_give isl_map *construct_power_components(
1864 __isl_take isl_space *space, __isl_keep isl_map *map, int *exact,
1865 int project)
1867 int i, n, c;
1868 struct isl_map *path = NULL;
1869 struct isl_tc_follows_data data;
1870 struct isl_tarjan_graph *g = NULL;
1871 int *orig_exact;
1872 int local_exact;
1874 if (!map)
1875 goto error;
1876 if (map->n <= 1)
1877 return floyd_warshall(space, map, exact, project);
1879 data.list = map->p;
1880 data.check_closed = 0;
1881 g = isl_tarjan_graph_init(map->ctx, map->n, &basic_map_follows, &data);
1882 if (!g)
1883 goto error;
1885 orig_exact = exact;
1886 if (data.check_closed && !exact)
1887 exact = &local_exact;
1889 c = 0;
1890 i = 0;
1891 n = map->n;
1892 if (project)
1893 path = isl_map_empty(isl_map_get_space(map));
1894 else
1895 path = isl_map_empty(isl_space_copy(space));
1896 path = anonymize(path);
1897 while (n) {
1898 struct isl_map *comp;
1899 isl_map *path_comp, *path_comb;
1900 comp = isl_map_alloc_space(isl_map_get_space(map), n, 0);
1901 while (g->order[i] != -1) {
1902 comp = isl_map_add_basic_map(comp,
1903 isl_basic_map_copy(map->p[g->order[i]]));
1904 --n;
1905 ++i;
1907 path_comp = floyd_warshall(isl_space_copy(space),
1908 comp, exact, project);
1909 path_comp = anonymize(path_comp);
1910 path_comb = isl_map_apply_range(isl_map_copy(path),
1911 isl_map_copy(path_comp));
1912 path = isl_map_union(path, path_comp);
1913 path = isl_map_union(path, path_comb);
1914 isl_map_free(comp);
1915 ++i;
1916 ++c;
1919 if (c > 1 && data.check_closed && !*exact) {
1920 int closed;
1922 closed = isl_map_is_transitively_closed(path);
1923 if (closed < 0)
1924 goto error;
1925 if (!closed) {
1926 isl_tarjan_graph_free(g);
1927 isl_map_free(path);
1928 return floyd_warshall(space, map, orig_exact, project);
1932 isl_tarjan_graph_free(g);
1933 isl_space_free(space);
1935 return path;
1936 error:
1937 isl_tarjan_graph_free(g);
1938 isl_space_free(space);
1939 isl_map_free(path);
1940 return NULL;
1943 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D,
1944 * construct a map that is an overapproximation of the map
1945 * that takes an element from the space D to another
1946 * element from the same space, such that the difference between
1947 * them is a strictly positive sum of differences between images
1948 * and pre-images in one of the R_i.
1949 * The number of differences in the sum is equated to parameter "param".
1950 * That is, let
1952 * \Delta_i = { y - x | (x, y) in R_i }
1954 * then the constructed map is an overapproximation of
1956 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1957 * d = \sum_i k_i \delta_i and k = \sum_i k_i > 0 }
1958 * or
1960 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1961 * d = \sum_i k_i \delta_i and \sum_i k_i > 0 }
1963 * if "project" is set.
1965 * If "project" is not set, then
1966 * we construct an extended mapping with an extra coordinate
1967 * that indicates the number of steps taken. In particular,
1968 * the difference in the last coordinate is equal to the number
1969 * of steps taken to move from a domain element to the corresponding
1970 * image element(s).
1972 static __isl_give isl_map *construct_power(__isl_keep isl_map *map,
1973 int *exact, int project)
1975 struct isl_map *app = NULL;
1976 isl_space *space = NULL;
1978 if (!map)
1979 return NULL;
1981 space = isl_map_get_space(map);
1983 space = isl_space_add_dims(space, isl_dim_in, 1);
1984 space = isl_space_add_dims(space, isl_dim_out, 1);
1986 app = construct_power_components(isl_space_copy(space), map,
1987 exact, project);
1989 isl_space_free(space);
1991 return app;
1994 /* Compute the positive powers of "map", or an overapproximation.
1995 * If the result is exact, then *exact is set to 1.
1997 * If project is set, then we are actually interested in the transitive
1998 * closure, so we can use a more relaxed exactness check.
1999 * The lengths of the paths are also projected out instead of being
2000 * encoded as the difference between an extra pair of final coordinates.
2002 static __isl_give isl_map *map_power(__isl_take isl_map *map,
2003 int *exact, int project)
2005 struct isl_map *app = NULL;
2007 if (exact)
2008 *exact = 1;
2010 if (isl_map_check_equal_tuples(map) < 0)
2011 return isl_map_free(map);
2013 app = construct_power(map, exact, project);
2015 isl_map_free(map);
2016 return app;
2019 /* Compute the positive powers of "map", or an overapproximation.
2020 * The result maps the exponent to a nested copy of the corresponding power.
2021 * If the result is exact, then *exact is set to 1.
2022 * map_power constructs an extended relation with the path lengths
2023 * encoded as the difference between the final coordinates.
2024 * In the final step, this difference is equated to an extra parameter
2025 * and made positive. The extra coordinates are subsequently projected out
2026 * and the parameter is turned into the domain of the result.
2028 __isl_give isl_map *isl_map_power(__isl_take isl_map *map, int *exact)
2030 isl_space *target_space;
2031 isl_space *space;
2032 isl_map *diff;
2033 unsigned d;
2034 unsigned param;
2036 if (!map)
2037 return NULL;
2039 d = isl_map_dim(map, isl_dim_in);
2040 param = isl_map_dim(map, isl_dim_param);
2042 map = isl_map_compute_divs(map);
2043 map = isl_map_coalesce(map);
2045 if (isl_map_plain_is_empty(map)) {
2046 map = isl_map_from_range(isl_map_wrap(map));
2047 map = isl_map_add_dims(map, isl_dim_in, 1);
2048 map = isl_map_set_dim_name(map, isl_dim_in, 0, "k");
2049 return map;
2052 target_space = isl_map_get_space(map);
2053 target_space = isl_space_from_range(isl_space_wrap(target_space));
2054 target_space = isl_space_add_dims(target_space, isl_dim_in, 1);
2055 target_space = isl_space_set_dim_name(target_space, isl_dim_in, 0, "k");
2057 map = map_power(map, exact, 0);
2059 map = isl_map_add_dims(map, isl_dim_param, 1);
2060 space = isl_map_get_space(map);
2061 diff = equate_parameter_to_length(space, param);
2062 map = isl_map_intersect(map, diff);
2063 map = isl_map_project_out(map, isl_dim_in, d, 1);
2064 map = isl_map_project_out(map, isl_dim_out, d, 1);
2065 map = isl_map_from_range(isl_map_wrap(map));
2066 map = isl_map_move_dims(map, isl_dim_in, 0, isl_dim_param, param, 1);
2068 map = isl_map_reset_space(map, target_space);
2070 return map;
2073 /* Compute a relation that maps each element in the range of the input
2074 * relation to the lengths of all paths composed of edges in the input
2075 * relation that end up in the given range element.
2076 * The result may be an overapproximation, in which case *exact is set to 0.
2077 * The resulting relation is very similar to the power relation.
2078 * The difference are that the domain has been projected out, the
2079 * range has become the domain and the exponent is the range instead
2080 * of a parameter.
2082 __isl_give isl_map *isl_map_reaching_path_lengths(__isl_take isl_map *map,
2083 int *exact)
2085 isl_space *space;
2086 isl_map *diff;
2087 unsigned d;
2088 unsigned param;
2090 if (!map)
2091 return NULL;
2093 d = isl_map_dim(map, isl_dim_in);
2094 param = isl_map_dim(map, isl_dim_param);
2096 map = isl_map_compute_divs(map);
2097 map = isl_map_coalesce(map);
2099 if (isl_map_plain_is_empty(map)) {
2100 if (exact)
2101 *exact = 1;
2102 map = isl_map_project_out(map, isl_dim_out, 0, d);
2103 map = isl_map_add_dims(map, isl_dim_out, 1);
2104 return map;
2107 map = map_power(map, exact, 0);
2109 map = isl_map_add_dims(map, isl_dim_param, 1);
2110 space = isl_map_get_space(map);
2111 diff = equate_parameter_to_length(space, param);
2112 map = isl_map_intersect(map, diff);
2113 map = isl_map_project_out(map, isl_dim_in, 0, d + 1);
2114 map = isl_map_project_out(map, isl_dim_out, d, 1);
2115 map = isl_map_reverse(map);
2116 map = isl_map_move_dims(map, isl_dim_out, 0, isl_dim_param, param, 1);
2118 return map;
2121 /* Given a map, compute the smallest superset of this map that is of the form
2123 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2125 * (where p ranges over the (non-parametric) dimensions),
2126 * compute the transitive closure of this map, i.e.,
2128 * { i -> j : exists k > 0:
2129 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2131 * and intersect domain and range of this transitive closure with
2132 * the given domain and range.
2134 * If with_id is set, then try to include as much of the identity mapping
2135 * as possible, by computing
2137 * { i -> j : exists k >= 0:
2138 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2140 * instead (i.e., allow k = 0).
2142 * In practice, we compute the difference set
2144 * delta = { j - i | i -> j in map },
2146 * look for stride constraint on the individual dimensions and compute
2147 * (constant) lower and upper bounds for each individual dimension,
2148 * adding a constraint for each bound not equal to infinity.
2150 static __isl_give isl_map *box_closure_on_domain(__isl_take isl_map *map,
2151 __isl_take isl_set *dom, __isl_take isl_set *ran, int with_id)
2153 int i;
2154 int k;
2155 unsigned d;
2156 unsigned nparam;
2157 unsigned total;
2158 isl_space *dim;
2159 isl_set *delta;
2160 isl_map *app = NULL;
2161 isl_basic_set *aff = NULL;
2162 isl_basic_map *bmap = NULL;
2163 isl_vec *obj = NULL;
2164 isl_int opt;
2166 isl_int_init(opt);
2168 delta = isl_map_deltas(isl_map_copy(map));
2170 aff = isl_set_affine_hull(isl_set_copy(delta));
2171 if (!aff)
2172 goto error;
2173 dim = isl_map_get_space(map);
2174 d = isl_space_dim(dim, isl_dim_in);
2175 nparam = isl_space_dim(dim, isl_dim_param);
2176 total = isl_space_dim(dim, isl_dim_all);
2177 bmap = isl_basic_map_alloc_space(dim,
2178 aff->n_div + 1, aff->n_div, 2 * d + 1);
2179 for (i = 0; i < aff->n_div + 1; ++i) {
2180 k = isl_basic_map_alloc_div(bmap);
2181 if (k < 0)
2182 goto error;
2183 isl_int_set_si(bmap->div[k][0], 0);
2185 for (i = 0; i < aff->n_eq; ++i) {
2186 if (!isl_basic_set_eq_is_stride(aff, i))
2187 continue;
2188 k = isl_basic_map_alloc_equality(bmap);
2189 if (k < 0)
2190 goto error;
2191 isl_seq_clr(bmap->eq[k], 1 + nparam);
2192 isl_seq_cpy(bmap->eq[k] + 1 + nparam + d,
2193 aff->eq[i] + 1 + nparam, d);
2194 isl_seq_neg(bmap->eq[k] + 1 + nparam,
2195 aff->eq[i] + 1 + nparam, d);
2196 isl_seq_cpy(bmap->eq[k] + 1 + nparam + 2 * d,
2197 aff->eq[i] + 1 + nparam + d, aff->n_div);
2198 isl_int_set_si(bmap->eq[k][1 + total + aff->n_div], 0);
2200 obj = isl_vec_alloc(map->ctx, 1 + nparam + d);
2201 if (!obj)
2202 goto error;
2203 isl_seq_clr(obj->el, 1 + nparam + d);
2204 for (i = 0; i < d; ++ i) {
2205 enum isl_lp_result res;
2207 isl_int_set_si(obj->el[1 + nparam + i], 1);
2209 res = isl_set_solve_lp(delta, 0, obj->el, map->ctx->one, &opt,
2210 NULL, NULL);
2211 if (res == isl_lp_error)
2212 goto error;
2213 if (res == isl_lp_ok) {
2214 k = isl_basic_map_alloc_inequality(bmap);
2215 if (k < 0)
2216 goto error;
2217 isl_seq_clr(bmap->ineq[k],
2218 1 + nparam + 2 * d + bmap->n_div);
2219 isl_int_set_si(bmap->ineq[k][1 + nparam + i], -1);
2220 isl_int_set_si(bmap->ineq[k][1 + nparam + d + i], 1);
2221 isl_int_neg(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], opt);
2224 res = isl_set_solve_lp(delta, 1, obj->el, map->ctx->one, &opt,
2225 NULL, NULL);
2226 if (res == isl_lp_error)
2227 goto error;
2228 if (res == isl_lp_ok) {
2229 k = isl_basic_map_alloc_inequality(bmap);
2230 if (k < 0)
2231 goto error;
2232 isl_seq_clr(bmap->ineq[k],
2233 1 + nparam + 2 * d + bmap->n_div);
2234 isl_int_set_si(bmap->ineq[k][1 + nparam + i], 1);
2235 isl_int_set_si(bmap->ineq[k][1 + nparam + d + i], -1);
2236 isl_int_set(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], opt);
2239 isl_int_set_si(obj->el[1 + nparam + i], 0);
2241 k = isl_basic_map_alloc_inequality(bmap);
2242 if (k < 0)
2243 goto error;
2244 isl_seq_clr(bmap->ineq[k],
2245 1 + nparam + 2 * d + bmap->n_div);
2246 if (!with_id)
2247 isl_int_set_si(bmap->ineq[k][0], -1);
2248 isl_int_set_si(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], 1);
2250 app = isl_map_from_domain_and_range(dom, ran);
2252 isl_vec_free(obj);
2253 isl_basic_set_free(aff);
2254 isl_map_free(map);
2255 bmap = isl_basic_map_finalize(bmap);
2256 isl_set_free(delta);
2257 isl_int_clear(opt);
2259 map = isl_map_from_basic_map(bmap);
2260 map = isl_map_intersect(map, app);
2262 return map;
2263 error:
2264 isl_vec_free(obj);
2265 isl_basic_map_free(bmap);
2266 isl_basic_set_free(aff);
2267 isl_set_free(dom);
2268 isl_set_free(ran);
2269 isl_map_free(map);
2270 isl_set_free(delta);
2271 isl_int_clear(opt);
2272 return NULL;
2275 /* Given a map, compute the smallest superset of this map that is of the form
2277 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2279 * (where p ranges over the (non-parametric) dimensions),
2280 * compute the transitive closure of this map, i.e.,
2282 * { i -> j : exists k > 0:
2283 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2285 * and intersect domain and range of this transitive closure with
2286 * domain and range of the original map.
2288 static __isl_give isl_map *box_closure(__isl_take isl_map *map)
2290 isl_set *domain;
2291 isl_set *range;
2293 domain = isl_map_domain(isl_map_copy(map));
2294 domain = isl_set_coalesce(domain);
2295 range = isl_map_range(isl_map_copy(map));
2296 range = isl_set_coalesce(range);
2298 return box_closure_on_domain(map, domain, range, 0);
2301 /* Given a map, compute the smallest superset of this map that is of the form
2303 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2305 * (where p ranges over the (non-parametric) dimensions),
2306 * compute the transitive and partially reflexive closure of this map, i.e.,
2308 * { i -> j : exists k >= 0:
2309 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2311 * and intersect domain and range of this transitive closure with
2312 * the given domain.
2314 static __isl_give isl_map *box_closure_with_identity(__isl_take isl_map *map,
2315 __isl_take isl_set *dom)
2317 return box_closure_on_domain(map, dom, isl_set_copy(dom), 1);
2320 /* Check whether app is the transitive closure of map.
2321 * In particular, check that app is acyclic and, if so,
2322 * check that
2324 * app \subset (map \cup (map \circ app))
2326 static isl_bool check_exactness_omega(__isl_keep isl_map *map,
2327 __isl_keep isl_map *app)
2329 isl_set *delta;
2330 int i;
2331 isl_bool is_empty, is_exact;
2332 unsigned d;
2333 isl_map *test;
2335 delta = isl_map_deltas(isl_map_copy(app));
2336 d = isl_set_dim(delta, isl_dim_set);
2337 for (i = 0; i < d; ++i)
2338 delta = isl_set_fix_si(delta, isl_dim_set, i, 0);
2339 is_empty = isl_set_is_empty(delta);
2340 isl_set_free(delta);
2341 if (is_empty < 0 || !is_empty)
2342 return is_empty;
2344 test = isl_map_apply_range(isl_map_copy(app), isl_map_copy(map));
2345 test = isl_map_union(test, isl_map_copy(map));
2346 is_exact = isl_map_is_subset(app, test);
2347 isl_map_free(test);
2349 return is_exact;
2352 /* Check if basic map M_i can be combined with all the other
2353 * basic maps such that
2355 * (\cup_j M_j)^+
2357 * can be computed as
2359 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
2361 * In particular, check if we can compute a compact representation
2362 * of
2364 * M_i^* \circ M_j \circ M_i^*
2366 * for each j != i.
2367 * Let M_i^? be an extension of M_i^+ that allows paths
2368 * of length zero, i.e., the result of box_closure(., 1).
2369 * The criterion, as proposed by Kelly et al., is that
2370 * id = M_i^? - M_i^+ can be represented as a basic map
2371 * and that
2373 * id \circ M_j \circ id = M_j
2375 * for each j != i.
2377 * If this function returns 1, then tc and qc are set to
2378 * M_i^+ and M_i^?, respectively.
2380 static int can_be_split_off(__isl_keep isl_map *map, int i,
2381 __isl_give isl_map **tc, __isl_give isl_map **qc)
2383 isl_map *map_i, *id = NULL;
2384 int j = -1;
2385 isl_set *C;
2387 *tc = NULL;
2388 *qc = NULL;
2390 C = isl_set_union(isl_map_domain(isl_map_copy(map)),
2391 isl_map_range(isl_map_copy(map)));
2392 C = isl_set_from_basic_set(isl_set_simple_hull(C));
2393 if (!C)
2394 goto error;
2396 map_i = isl_map_from_basic_map(isl_basic_map_copy(map->p[i]));
2397 *tc = box_closure(isl_map_copy(map_i));
2398 *qc = box_closure_with_identity(map_i, C);
2399 id = isl_map_subtract(isl_map_copy(*qc), isl_map_copy(*tc));
2401 if (!id || !*qc)
2402 goto error;
2403 if (id->n != 1 || (*qc)->n != 1)
2404 goto done;
2406 for (j = 0; j < map->n; ++j) {
2407 isl_map *map_j, *test;
2408 int is_ok;
2410 if (i == j)
2411 continue;
2412 map_j = isl_map_from_basic_map(
2413 isl_basic_map_copy(map->p[j]));
2414 test = isl_map_apply_range(isl_map_copy(id),
2415 isl_map_copy(map_j));
2416 test = isl_map_apply_range(test, isl_map_copy(id));
2417 is_ok = isl_map_is_equal(test, map_j);
2418 isl_map_free(map_j);
2419 isl_map_free(test);
2420 if (is_ok < 0)
2421 goto error;
2422 if (!is_ok)
2423 break;
2426 done:
2427 isl_map_free(id);
2428 if (j == map->n)
2429 return 1;
2431 isl_map_free(*qc);
2432 isl_map_free(*tc);
2433 *qc = NULL;
2434 *tc = NULL;
2436 return 0;
2437 error:
2438 isl_map_free(id);
2439 isl_map_free(*qc);
2440 isl_map_free(*tc);
2441 *qc = NULL;
2442 *tc = NULL;
2443 return -1;
2446 static __isl_give isl_map *box_closure_with_check(__isl_take isl_map *map,
2447 int *exact)
2449 isl_map *app;
2451 app = box_closure(isl_map_copy(map));
2452 if (exact) {
2453 isl_bool is_exact = check_exactness_omega(map, app);
2455 if (is_exact < 0)
2456 app = isl_map_free(app);
2457 else
2458 *exact = is_exact;
2461 isl_map_free(map);
2462 return app;
2465 /* Compute an overapproximation of the transitive closure of "map"
2466 * using a variation of the algorithm from
2467 * "Transitive Closure of Infinite Graphs and its Applications"
2468 * by Kelly et al.
2470 * We first check whether we can can split of any basic map M_i and
2471 * compute
2473 * (\cup_j M_j)^+
2475 * as
2477 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
2479 * using a recursive call on the remaining map.
2481 * If not, we simply call box_closure on the whole map.
2483 static __isl_give isl_map *transitive_closure_omega(__isl_take isl_map *map,
2484 int *exact)
2486 int i, j;
2487 isl_bool exact_i;
2488 isl_map *app;
2490 if (!map)
2491 return NULL;
2492 if (map->n == 1)
2493 return box_closure_with_check(map, exact);
2495 for (i = 0; i < map->n; ++i) {
2496 int ok;
2497 isl_map *qc, *tc;
2498 ok = can_be_split_off(map, i, &tc, &qc);
2499 if (ok < 0)
2500 goto error;
2501 if (!ok)
2502 continue;
2504 app = isl_map_alloc_space(isl_map_get_space(map), map->n - 1, 0);
2506 for (j = 0; j < map->n; ++j) {
2507 if (j == i)
2508 continue;
2509 app = isl_map_add_basic_map(app,
2510 isl_basic_map_copy(map->p[j]));
2513 app = isl_map_apply_range(isl_map_copy(qc), app);
2514 app = isl_map_apply_range(app, qc);
2516 app = isl_map_union(tc, transitive_closure_omega(app, NULL));
2517 exact_i = check_exactness_omega(map, app);
2518 if (exact_i == isl_bool_true) {
2519 if (exact)
2520 *exact = exact_i;
2521 isl_map_free(map);
2522 return app;
2524 isl_map_free(app);
2525 if (exact_i < 0)
2526 goto error;
2529 return box_closure_with_check(map, exact);
2530 error:
2531 isl_map_free(map);
2532 return NULL;
2535 /* Compute the transitive closure of "map", or an overapproximation.
2536 * If the result is exact, then *exact is set to 1.
2537 * Simply use map_power to compute the powers of map, but tell
2538 * it to project out the lengths of the paths instead of equating
2539 * the length to a parameter.
2541 __isl_give isl_map *isl_map_transitive_closure(__isl_take isl_map *map,
2542 int *exact)
2544 isl_space *target_dim;
2545 int closed;
2547 if (!map)
2548 goto error;
2550 if (map->ctx->opt->closure == ISL_CLOSURE_BOX)
2551 return transitive_closure_omega(map, exact);
2553 map = isl_map_compute_divs(map);
2554 map = isl_map_coalesce(map);
2555 closed = isl_map_is_transitively_closed(map);
2556 if (closed < 0)
2557 goto error;
2558 if (closed) {
2559 if (exact)
2560 *exact = 1;
2561 return map;
2564 target_dim = isl_map_get_space(map);
2565 map = map_power(map, exact, 1);
2566 map = isl_map_reset_space(map, target_dim);
2568 return map;
2569 error:
2570 isl_map_free(map);
2571 return NULL;
2574 static isl_stat inc_count(__isl_take isl_map *map, void *user)
2576 int *n = user;
2578 *n += map->n;
2580 isl_map_free(map);
2582 return isl_stat_ok;
2585 static isl_stat collect_basic_map(__isl_take isl_map *map, void *user)
2587 int i;
2588 isl_basic_map ***next = user;
2590 for (i = 0; i < map->n; ++i) {
2591 **next = isl_basic_map_copy(map->p[i]);
2592 if (!**next)
2593 goto error;
2594 (*next)++;
2597 isl_map_free(map);
2598 return isl_stat_ok;
2599 error:
2600 isl_map_free(map);
2601 return isl_stat_error;
2604 /* Perform Floyd-Warshall on the given list of basic relations.
2605 * The basic relations may live in different dimensions,
2606 * but basic relations that get assigned to the diagonal of the
2607 * grid have domains and ranges of the same dimension and so
2608 * the standard algorithm can be used because the nested transitive
2609 * closures are only applied to diagonal elements and because all
2610 * compositions are peformed on relations with compatible domains and ranges.
2612 static __isl_give isl_union_map *union_floyd_warshall_on_list(isl_ctx *ctx,
2613 __isl_keep isl_basic_map **list, int n, int *exact)
2615 int i, j, k;
2616 int n_group;
2617 int *group = NULL;
2618 isl_set **set = NULL;
2619 isl_map ***grid = NULL;
2620 isl_union_map *app;
2622 group = setup_groups(ctx, list, n, &set, &n_group);
2623 if (!group)
2624 goto error;
2626 grid = isl_calloc_array(ctx, isl_map **, n_group);
2627 if (!grid)
2628 goto error;
2629 for (i = 0; i < n_group; ++i) {
2630 grid[i] = isl_calloc_array(ctx, isl_map *, n_group);
2631 if (!grid[i])
2632 goto error;
2633 for (j = 0; j < n_group; ++j) {
2634 isl_space *space1, *space2, *space;
2635 space1 = isl_space_reverse(isl_set_get_space(set[i]));
2636 space2 = isl_set_get_space(set[j]);
2637 space = isl_space_join(space1, space2);
2638 grid[i][j] = isl_map_empty(space);
2642 for (k = 0; k < n; ++k) {
2643 i = group[2 * k];
2644 j = group[2 * k + 1];
2645 grid[i][j] = isl_map_union(grid[i][j],
2646 isl_map_from_basic_map(
2647 isl_basic_map_copy(list[k])));
2650 floyd_warshall_iterate(grid, n_group, exact);
2652 app = isl_union_map_empty(isl_map_get_space(grid[0][0]));
2654 for (i = 0; i < n_group; ++i) {
2655 for (j = 0; j < n_group; ++j)
2656 app = isl_union_map_add_map(app, grid[i][j]);
2657 free(grid[i]);
2659 free(grid);
2661 for (i = 0; i < 2 * n; ++i)
2662 isl_set_free(set[i]);
2663 free(set);
2665 free(group);
2666 return app;
2667 error:
2668 if (grid)
2669 for (i = 0; i < n_group; ++i) {
2670 if (!grid[i])
2671 continue;
2672 for (j = 0; j < n_group; ++j)
2673 isl_map_free(grid[i][j]);
2674 free(grid[i]);
2676 free(grid);
2677 if (set) {
2678 for (i = 0; i < 2 * n; ++i)
2679 isl_set_free(set[i]);
2680 free(set);
2682 free(group);
2683 return NULL;
2686 /* Perform Floyd-Warshall on the given union relation.
2687 * The implementation is very similar to that for non-unions.
2688 * The main difference is that it is applied unconditionally.
2689 * We first extract a list of basic maps from the union map
2690 * and then perform the algorithm on this list.
2692 static __isl_give isl_union_map *union_floyd_warshall(
2693 __isl_take isl_union_map *umap, int *exact)
2695 int i, n;
2696 isl_ctx *ctx;
2697 isl_basic_map **list = NULL;
2698 isl_basic_map **next;
2699 isl_union_map *res;
2701 n = 0;
2702 if (isl_union_map_foreach_map(umap, inc_count, &n) < 0)
2703 goto error;
2705 ctx = isl_union_map_get_ctx(umap);
2706 list = isl_calloc_array(ctx, isl_basic_map *, n);
2707 if (!list)
2708 goto error;
2710 next = list;
2711 if (isl_union_map_foreach_map(umap, collect_basic_map, &next) < 0)
2712 goto error;
2714 res = union_floyd_warshall_on_list(ctx, list, n, exact);
2716 if (list) {
2717 for (i = 0; i < n; ++i)
2718 isl_basic_map_free(list[i]);
2719 free(list);
2722 isl_union_map_free(umap);
2723 return res;
2724 error:
2725 if (list) {
2726 for (i = 0; i < n; ++i)
2727 isl_basic_map_free(list[i]);
2728 free(list);
2730 isl_union_map_free(umap);
2731 return NULL;
2734 /* Decompose the give union relation into strongly connected components.
2735 * The implementation is essentially the same as that of
2736 * construct_power_components with the major difference that all
2737 * operations are performed on union maps.
2739 static __isl_give isl_union_map *union_components(
2740 __isl_take isl_union_map *umap, int *exact)
2742 int i;
2743 int n;
2744 isl_ctx *ctx;
2745 isl_basic_map **list = NULL;
2746 isl_basic_map **next;
2747 isl_union_map *path = NULL;
2748 struct isl_tc_follows_data data;
2749 struct isl_tarjan_graph *g = NULL;
2750 int c, l;
2751 int recheck = 0;
2753 n = 0;
2754 if (isl_union_map_foreach_map(umap, inc_count, &n) < 0)
2755 goto error;
2757 if (n == 0)
2758 return umap;
2759 if (n <= 1)
2760 return union_floyd_warshall(umap, exact);
2762 ctx = isl_union_map_get_ctx(umap);
2763 list = isl_calloc_array(ctx, isl_basic_map *, n);
2764 if (!list)
2765 goto error;
2767 next = list;
2768 if (isl_union_map_foreach_map(umap, collect_basic_map, &next) < 0)
2769 goto error;
2771 data.list = list;
2772 data.check_closed = 0;
2773 g = isl_tarjan_graph_init(ctx, n, &basic_map_follows, &data);
2774 if (!g)
2775 goto error;
2777 c = 0;
2778 i = 0;
2779 l = n;
2780 path = isl_union_map_empty(isl_union_map_get_space(umap));
2781 while (l) {
2782 isl_union_map *comp;
2783 isl_union_map *path_comp, *path_comb;
2784 comp = isl_union_map_empty(isl_union_map_get_space(umap));
2785 while (g->order[i] != -1) {
2786 comp = isl_union_map_add_map(comp,
2787 isl_map_from_basic_map(
2788 isl_basic_map_copy(list[g->order[i]])));
2789 --l;
2790 ++i;
2792 path_comp = union_floyd_warshall(comp, exact);
2793 path_comb = isl_union_map_apply_range(isl_union_map_copy(path),
2794 isl_union_map_copy(path_comp));
2795 path = isl_union_map_union(path, path_comp);
2796 path = isl_union_map_union(path, path_comb);
2797 ++i;
2798 ++c;
2801 if (c > 1 && data.check_closed && !*exact) {
2802 int closed;
2804 closed = isl_union_map_is_transitively_closed(path);
2805 if (closed < 0)
2806 goto error;
2807 recheck = !closed;
2810 isl_tarjan_graph_free(g);
2812 for (i = 0; i < n; ++i)
2813 isl_basic_map_free(list[i]);
2814 free(list);
2816 if (recheck) {
2817 isl_union_map_free(path);
2818 return union_floyd_warshall(umap, exact);
2821 isl_union_map_free(umap);
2823 return path;
2824 error:
2825 isl_tarjan_graph_free(g);
2826 if (list) {
2827 for (i = 0; i < n; ++i)
2828 isl_basic_map_free(list[i]);
2829 free(list);
2831 isl_union_map_free(umap);
2832 isl_union_map_free(path);
2833 return NULL;
2836 /* Compute the transitive closure of "umap", or an overapproximation.
2837 * If the result is exact, then *exact is set to 1.
2839 __isl_give isl_union_map *isl_union_map_transitive_closure(
2840 __isl_take isl_union_map *umap, int *exact)
2842 int closed;
2844 if (!umap)
2845 return NULL;
2847 if (exact)
2848 *exact = 1;
2850 umap = isl_union_map_compute_divs(umap);
2851 umap = isl_union_map_coalesce(umap);
2852 closed = isl_union_map_is_transitively_closed(umap);
2853 if (closed < 0)
2854 goto error;
2855 if (closed)
2856 return umap;
2857 umap = union_components(umap, exact);
2858 return umap;
2859 error:
2860 isl_union_map_free(umap);
2861 return NULL;
2864 struct isl_union_power {
2865 isl_union_map *pow;
2866 int *exact;
2869 static isl_stat power(__isl_take isl_map *map, void *user)
2871 struct isl_union_power *up = user;
2873 map = isl_map_power(map, up->exact);
2874 up->pow = isl_union_map_from_map(map);
2876 return isl_stat_error;
2879 /* Construct a map [x] -> [x+1], with parameters prescribed by "space".
2881 static __isl_give isl_union_map *increment(__isl_take isl_space *space)
2883 int k;
2884 isl_basic_map *bmap;
2886 space = isl_space_add_dims(space, isl_dim_in, 1);
2887 space = isl_space_add_dims(space, isl_dim_out, 1);
2888 bmap = isl_basic_map_alloc_space(space, 0, 1, 0);
2889 k = isl_basic_map_alloc_equality(bmap);
2890 if (k < 0)
2891 goto error;
2892 isl_seq_clr(bmap->eq[k], 1 + isl_basic_map_total_dim(bmap));
2893 isl_int_set_si(bmap->eq[k][0], 1);
2894 isl_int_set_si(bmap->eq[k][isl_basic_map_offset(bmap, isl_dim_in)], 1);
2895 isl_int_set_si(bmap->eq[k][isl_basic_map_offset(bmap, isl_dim_out)], -1);
2896 return isl_union_map_from_map(isl_map_from_basic_map(bmap));
2897 error:
2898 isl_basic_map_free(bmap);
2899 return NULL;
2902 /* Construct a map [[x]->[y]] -> [y-x], with parameters prescribed by "dim".
2904 static __isl_give isl_union_map *deltas_map(__isl_take isl_space *dim)
2906 isl_basic_map *bmap;
2908 dim = isl_space_add_dims(dim, isl_dim_in, 1);
2909 dim = isl_space_add_dims(dim, isl_dim_out, 1);
2910 bmap = isl_basic_map_universe(dim);
2911 bmap = isl_basic_map_deltas_map(bmap);
2913 return isl_union_map_from_map(isl_map_from_basic_map(bmap));
2916 /* Compute the positive powers of "map", or an overapproximation.
2917 * The result maps the exponent to a nested copy of the corresponding power.
2918 * If the result is exact, then *exact is set to 1.
2920 __isl_give isl_union_map *isl_union_map_power(__isl_take isl_union_map *umap,
2921 int *exact)
2923 int n;
2924 isl_union_map *inc;
2925 isl_union_map *dm;
2927 if (!umap)
2928 return NULL;
2929 n = isl_union_map_n_map(umap);
2930 if (n == 0)
2931 return umap;
2932 if (n == 1) {
2933 struct isl_union_power up = { NULL, exact };
2934 isl_union_map_foreach_map(umap, &power, &up);
2935 isl_union_map_free(umap);
2936 return up.pow;
2938 inc = increment(isl_union_map_get_space(umap));
2939 umap = isl_union_map_product(inc, umap);
2940 umap = isl_union_map_transitive_closure(umap, exact);
2941 umap = isl_union_map_zip(umap);
2942 dm = deltas_map(isl_union_map_get_space(umap));
2943 umap = isl_union_map_apply_domain(umap, dm);
2945 return umap;
2948 #undef TYPE
2949 #define TYPE isl_map
2950 #include "isl_power_templ.c"
2952 #undef TYPE
2953 #define TYPE isl_union_map
2954 #include "isl_power_templ.c"