2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2012-2013 Ecole Normale Superieure
4 * Copyright 2014 INRIA Rocquencourt
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, K.U.Leuven, Departement
9 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
11 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
12 * B.P. 105 - 78153 Le Chesnay, France
16 #include <isl_ctx_private.h>
17 #include <isl_map_private.h>
18 #include "isl_equalities.h"
22 #include <isl_space_private.h>
23 #include <isl_mat_private.h>
24 #include <isl_vec_private.h>
26 static void swap_equality(struct isl_basic_map
*bmap
, int a
, int b
)
28 isl_int
*t
= bmap
->eq
[a
];
29 bmap
->eq
[a
] = bmap
->eq
[b
];
33 static void swap_inequality(struct isl_basic_map
*bmap
, int a
, int b
)
36 isl_int
*t
= bmap
->ineq
[a
];
37 bmap
->ineq
[a
] = bmap
->ineq
[b
];
42 static void constraint_drop_vars(isl_int
*c
, unsigned n
, unsigned rem
)
44 isl_seq_cpy(c
, c
+ n
, rem
);
45 isl_seq_clr(c
+ rem
, n
);
48 /* Drop n dimensions starting at first.
50 * In principle, this frees up some extra variables as the number
51 * of columns remains constant, but we would have to extend
52 * the div array too as the number of rows in this array is assumed
53 * to be equal to extra.
55 struct isl_basic_set
*isl_basic_set_drop_dims(
56 struct isl_basic_set
*bset
, unsigned first
, unsigned n
)
63 isl_assert(bset
->ctx
, first
+ n
<= bset
->dim
->n_out
, goto error
);
65 if (n
== 0 && !isl_space_get_tuple_name(bset
->dim
, isl_dim_set
))
68 bset
= isl_basic_set_cow(bset
);
72 for (i
= 0; i
< bset
->n_eq
; ++i
)
73 constraint_drop_vars(bset
->eq
[i
]+1+bset
->dim
->nparam
+first
, n
,
74 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
76 for (i
= 0; i
< bset
->n_ineq
; ++i
)
77 constraint_drop_vars(bset
->ineq
[i
]+1+bset
->dim
->nparam
+first
, n
,
78 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
80 for (i
= 0; i
< bset
->n_div
; ++i
)
81 constraint_drop_vars(bset
->div
[i
]+1+1+bset
->dim
->nparam
+first
, n
,
82 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
84 bset
->dim
= isl_space_drop_outputs(bset
->dim
, first
, n
);
88 ISL_F_CLR(bset
, ISL_BASIC_SET_NORMALIZED
);
89 bset
= isl_basic_set_simplify(bset
);
90 return isl_basic_set_finalize(bset
);
92 isl_basic_set_free(bset
);
96 struct isl_set
*isl_set_drop_dims(
97 struct isl_set
*set
, unsigned first
, unsigned n
)
104 isl_assert(set
->ctx
, first
+ n
<= set
->dim
->n_out
, goto error
);
106 if (n
== 0 && !isl_space_get_tuple_name(set
->dim
, isl_dim_set
))
108 set
= isl_set_cow(set
);
111 set
->dim
= isl_space_drop_outputs(set
->dim
, first
, n
);
115 for (i
= 0; i
< set
->n
; ++i
) {
116 set
->p
[i
] = isl_basic_set_drop_dims(set
->p
[i
], first
, n
);
121 ISL_F_CLR(set
, ISL_SET_NORMALIZED
);
128 /* Move "n" divs starting at "first" to the end of the list of divs.
130 static struct isl_basic_map
*move_divs_last(struct isl_basic_map
*bmap
,
131 unsigned first
, unsigned n
)
136 if (first
+ n
== bmap
->n_div
)
139 div
= isl_alloc_array(bmap
->ctx
, isl_int
*, n
);
142 for (i
= 0; i
< n
; ++i
)
143 div
[i
] = bmap
->div
[first
+ i
];
144 for (i
= 0; i
< bmap
->n_div
- first
- n
; ++i
)
145 bmap
->div
[first
+ i
] = bmap
->div
[first
+ n
+ i
];
146 for (i
= 0; i
< n
; ++i
)
147 bmap
->div
[bmap
->n_div
- n
+ i
] = div
[i
];
151 isl_basic_map_free(bmap
);
155 /* Drop "n" dimensions of type "type" starting at "first".
157 * In principle, this frees up some extra variables as the number
158 * of columns remains constant, but we would have to extend
159 * the div array too as the number of rows in this array is assumed
160 * to be equal to extra.
162 struct isl_basic_map
*isl_basic_map_drop(struct isl_basic_map
*bmap
,
163 enum isl_dim_type type
, unsigned first
, unsigned n
)
173 dim
= isl_basic_map_dim(bmap
, type
);
174 isl_assert(bmap
->ctx
, first
+ n
<= dim
, goto error
);
176 if (n
== 0 && !isl_space_is_named_or_nested(bmap
->dim
, type
))
179 bmap
= isl_basic_map_cow(bmap
);
183 offset
= isl_basic_map_offset(bmap
, type
) + first
;
184 left
= isl_basic_map_total_dim(bmap
) - (offset
- 1) - n
;
185 for (i
= 0; i
< bmap
->n_eq
; ++i
)
186 constraint_drop_vars(bmap
->eq
[i
]+offset
, n
, left
);
188 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
189 constraint_drop_vars(bmap
->ineq
[i
]+offset
, n
, left
);
191 for (i
= 0; i
< bmap
->n_div
; ++i
)
192 constraint_drop_vars(bmap
->div
[i
]+1+offset
, n
, left
);
194 if (type
== isl_dim_div
) {
195 bmap
= move_divs_last(bmap
, first
, n
);
198 isl_basic_map_free_div(bmap
, n
);
200 bmap
->dim
= isl_space_drop_dims(bmap
->dim
, type
, first
, n
);
204 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
205 bmap
= isl_basic_map_simplify(bmap
);
206 return isl_basic_map_finalize(bmap
);
208 isl_basic_map_free(bmap
);
212 __isl_give isl_basic_set
*isl_basic_set_drop(__isl_take isl_basic_set
*bset
,
213 enum isl_dim_type type
, unsigned first
, unsigned n
)
215 return (isl_basic_set
*)isl_basic_map_drop((isl_basic_map
*)bset
,
219 struct isl_basic_map
*isl_basic_map_drop_inputs(
220 struct isl_basic_map
*bmap
, unsigned first
, unsigned n
)
222 return isl_basic_map_drop(bmap
, isl_dim_in
, first
, n
);
225 struct isl_map
*isl_map_drop(struct isl_map
*map
,
226 enum isl_dim_type type
, unsigned first
, unsigned n
)
233 isl_assert(map
->ctx
, first
+ n
<= isl_map_dim(map
, type
), goto error
);
235 if (n
== 0 && !isl_space_get_tuple_name(map
->dim
, type
))
237 map
= isl_map_cow(map
);
240 map
->dim
= isl_space_drop_dims(map
->dim
, type
, first
, n
);
244 for (i
= 0; i
< map
->n
; ++i
) {
245 map
->p
[i
] = isl_basic_map_drop(map
->p
[i
], type
, first
, n
);
249 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
257 struct isl_set
*isl_set_drop(struct isl_set
*set
,
258 enum isl_dim_type type
, unsigned first
, unsigned n
)
260 return (isl_set
*)isl_map_drop((isl_map
*)set
, type
, first
, n
);
263 struct isl_map
*isl_map_drop_inputs(
264 struct isl_map
*map
, unsigned first
, unsigned n
)
266 return isl_map_drop(map
, isl_dim_in
, first
, n
);
270 * We don't cow, as the div is assumed to be redundant.
272 static struct isl_basic_map
*isl_basic_map_drop_div(
273 struct isl_basic_map
*bmap
, unsigned div
)
281 pos
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
283 isl_assert(bmap
->ctx
, div
< bmap
->n_div
, goto error
);
285 for (i
= 0; i
< bmap
->n_eq
; ++i
)
286 constraint_drop_vars(bmap
->eq
[i
]+pos
, 1, bmap
->extra
-div
-1);
288 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
289 if (!isl_int_is_zero(bmap
->ineq
[i
][pos
])) {
290 isl_basic_map_drop_inequality(bmap
, i
);
294 constraint_drop_vars(bmap
->ineq
[i
]+pos
, 1, bmap
->extra
-div
-1);
297 for (i
= 0; i
< bmap
->n_div
; ++i
)
298 constraint_drop_vars(bmap
->div
[i
]+1+pos
, 1, bmap
->extra
-div
-1);
300 if (div
!= bmap
->n_div
- 1) {
302 isl_int
*t
= bmap
->div
[div
];
304 for (j
= div
; j
< bmap
->n_div
- 1; ++j
)
305 bmap
->div
[j
] = bmap
->div
[j
+1];
307 bmap
->div
[bmap
->n_div
- 1] = t
;
309 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
310 isl_basic_map_free_div(bmap
, 1);
314 isl_basic_map_free(bmap
);
318 struct isl_basic_map
*isl_basic_map_normalize_constraints(
319 struct isl_basic_map
*bmap
)
323 unsigned total
= isl_basic_map_total_dim(bmap
);
329 for (i
= bmap
->n_eq
- 1; i
>= 0; --i
) {
330 isl_seq_gcd(bmap
->eq
[i
]+1, total
, &gcd
);
331 if (isl_int_is_zero(gcd
)) {
332 if (!isl_int_is_zero(bmap
->eq
[i
][0])) {
333 bmap
= isl_basic_map_set_to_empty(bmap
);
336 isl_basic_map_drop_equality(bmap
, i
);
339 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
340 isl_int_gcd(gcd
, gcd
, bmap
->eq
[i
][0]);
341 if (isl_int_is_one(gcd
))
343 if (!isl_int_is_divisible_by(bmap
->eq
[i
][0], gcd
)) {
344 bmap
= isl_basic_map_set_to_empty(bmap
);
347 isl_seq_scale_down(bmap
->eq
[i
], bmap
->eq
[i
], gcd
, 1+total
);
350 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
351 isl_seq_gcd(bmap
->ineq
[i
]+1, total
, &gcd
);
352 if (isl_int_is_zero(gcd
)) {
353 if (isl_int_is_neg(bmap
->ineq
[i
][0])) {
354 bmap
= isl_basic_map_set_to_empty(bmap
);
357 isl_basic_map_drop_inequality(bmap
, i
);
360 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
361 isl_int_gcd(gcd
, gcd
, bmap
->ineq
[i
][0]);
362 if (isl_int_is_one(gcd
))
364 isl_int_fdiv_q(bmap
->ineq
[i
][0], bmap
->ineq
[i
][0], gcd
);
365 isl_seq_scale_down(bmap
->ineq
[i
]+1, bmap
->ineq
[i
]+1, gcd
, total
);
372 struct isl_basic_set
*isl_basic_set_normalize_constraints(
373 struct isl_basic_set
*bset
)
375 return (struct isl_basic_set
*)isl_basic_map_normalize_constraints(
376 (struct isl_basic_map
*)bset
);
379 /* Remove any common factor in numerator and denominator of the div expression,
380 * not taking into account the constant term.
381 * That is, if the div is of the form
383 * floor((a + m f(x))/(m d))
387 * floor((floor(a/m) + f(x))/d)
389 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
390 * and can therefore not influence the result of the floor.
392 static void normalize_div_expression(__isl_keep isl_basic_map
*bmap
, int div
)
394 unsigned total
= isl_basic_map_total_dim(bmap
);
395 isl_ctx
*ctx
= bmap
->ctx
;
397 if (isl_int_is_zero(bmap
->div
[div
][0]))
399 isl_seq_gcd(bmap
->div
[div
] + 2, total
, &ctx
->normalize_gcd
);
400 isl_int_gcd(ctx
->normalize_gcd
, ctx
->normalize_gcd
, bmap
->div
[div
][0]);
401 if (isl_int_is_one(ctx
->normalize_gcd
))
403 isl_int_fdiv_q(bmap
->div
[div
][1], bmap
->div
[div
][1],
405 isl_int_divexact(bmap
->div
[div
][0], bmap
->div
[div
][0],
407 isl_seq_scale_down(bmap
->div
[div
] + 2, bmap
->div
[div
] + 2,
408 ctx
->normalize_gcd
, total
);
411 /* Remove any common factor in numerator and denominator of a div expression,
412 * not taking into account the constant term.
413 * That is, look for any div of the form
415 * floor((a + m f(x))/(m d))
419 * floor((floor(a/m) + f(x))/d)
421 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
422 * and can therefore not influence the result of the floor.
424 static __isl_give isl_basic_map
*normalize_div_expressions(
425 __isl_take isl_basic_map
*bmap
)
431 if (bmap
->n_div
== 0)
434 for (i
= 0; i
< bmap
->n_div
; ++i
)
435 normalize_div_expression(bmap
, i
);
440 /* Assumes divs have been ordered if keep_divs is set.
442 static void eliminate_var_using_equality(struct isl_basic_map
*bmap
,
443 unsigned pos
, isl_int
*eq
, int keep_divs
, int *progress
)
446 unsigned space_total
;
450 total
= isl_basic_map_total_dim(bmap
);
451 space_total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
452 last_div
= isl_seq_last_non_zero(eq
+ 1 + space_total
, bmap
->n_div
);
453 for (k
= 0; k
< bmap
->n_eq
; ++k
) {
454 if (bmap
->eq
[k
] == eq
)
456 if (isl_int_is_zero(bmap
->eq
[k
][1+pos
]))
460 isl_seq_elim(bmap
->eq
[k
], eq
, 1+pos
, 1+total
, NULL
);
461 isl_seq_normalize(bmap
->ctx
, bmap
->eq
[k
], 1 + total
);
464 for (k
= 0; k
< bmap
->n_ineq
; ++k
) {
465 if (isl_int_is_zero(bmap
->ineq
[k
][1+pos
]))
469 isl_seq_elim(bmap
->ineq
[k
], eq
, 1+pos
, 1+total
, NULL
);
470 isl_seq_normalize(bmap
->ctx
, bmap
->ineq
[k
], 1 + total
);
471 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
474 for (k
= 0; k
< bmap
->n_div
; ++k
) {
475 if (isl_int_is_zero(bmap
->div
[k
][0]))
477 if (isl_int_is_zero(bmap
->div
[k
][1+1+pos
]))
481 /* We need to be careful about circular definitions,
482 * so for now we just remove the definition of div k
483 * if the equality contains any divs.
484 * If keep_divs is set, then the divs have been ordered
485 * and we can keep the definition as long as the result
488 if (last_div
== -1 || (keep_divs
&& last_div
< k
)) {
489 isl_seq_elim(bmap
->div
[k
]+1, eq
,
490 1+pos
, 1+total
, &bmap
->div
[k
][0]);
491 normalize_div_expression(bmap
, k
);
493 isl_seq_clr(bmap
->div
[k
], 1 + total
);
494 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
498 /* Assumes divs have been ordered if keep_divs is set.
500 static void eliminate_div(struct isl_basic_map
*bmap
, isl_int
*eq
,
501 unsigned div
, int keep_divs
)
503 unsigned pos
= isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
505 eliminate_var_using_equality(bmap
, pos
, eq
, keep_divs
, NULL
);
507 isl_basic_map_drop_div(bmap
, div
);
510 /* Check if elimination of div "div" using equality "eq" would not
511 * result in a div depending on a later div.
513 static int ok_to_eliminate_div(struct isl_basic_map
*bmap
, isl_int
*eq
,
518 unsigned space_total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
519 unsigned pos
= space_total
+ div
;
521 last_div
= isl_seq_last_non_zero(eq
+ 1 + space_total
, bmap
->n_div
);
522 if (last_div
< 0 || last_div
<= div
)
525 for (k
= 0; k
<= last_div
; ++k
) {
526 if (isl_int_is_zero(bmap
->div
[k
][0]))
528 if (!isl_int_is_zero(bmap
->div
[k
][1 + 1 + pos
]))
535 /* Elimininate divs based on equalities
537 static struct isl_basic_map
*eliminate_divs_eq(
538 struct isl_basic_map
*bmap
, int *progress
)
545 bmap
= isl_basic_map_order_divs(bmap
);
550 off
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
552 for (d
= bmap
->n_div
- 1; d
>= 0 ; --d
) {
553 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
554 if (!isl_int_is_one(bmap
->eq
[i
][off
+ d
]) &&
555 !isl_int_is_negone(bmap
->eq
[i
][off
+ d
]))
557 if (!ok_to_eliminate_div(bmap
, bmap
->eq
[i
], d
))
561 eliminate_div(bmap
, bmap
->eq
[i
], d
, 1);
562 isl_basic_map_drop_equality(bmap
, i
);
567 return eliminate_divs_eq(bmap
, progress
);
571 /* Elimininate divs based on inequalities
573 static struct isl_basic_map
*eliminate_divs_ineq(
574 struct isl_basic_map
*bmap
, int *progress
)
585 off
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
587 for (d
= bmap
->n_div
- 1; d
>= 0 ; --d
) {
588 for (i
= 0; i
< bmap
->n_eq
; ++i
)
589 if (!isl_int_is_zero(bmap
->eq
[i
][off
+ d
]))
593 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
594 if (isl_int_abs_gt(bmap
->ineq
[i
][off
+ d
], ctx
->one
))
596 if (i
< bmap
->n_ineq
)
599 bmap
= isl_basic_map_eliminate_vars(bmap
, (off
-1)+d
, 1);
600 if (!bmap
|| ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
602 bmap
= isl_basic_map_drop_div(bmap
, d
);
609 struct isl_basic_map
*isl_basic_map_gauss(
610 struct isl_basic_map
*bmap
, int *progress
)
618 bmap
= isl_basic_map_order_divs(bmap
);
623 total
= isl_basic_map_total_dim(bmap
);
624 total_var
= total
- bmap
->n_div
;
626 last_var
= total
- 1;
627 for (done
= 0; done
< bmap
->n_eq
; ++done
) {
628 for (; last_var
>= 0; --last_var
) {
629 for (k
= done
; k
< bmap
->n_eq
; ++k
)
630 if (!isl_int_is_zero(bmap
->eq
[k
][1+last_var
]))
638 swap_equality(bmap
, k
, done
);
639 if (isl_int_is_neg(bmap
->eq
[done
][1+last_var
]))
640 isl_seq_neg(bmap
->eq
[done
], bmap
->eq
[done
], 1+total
);
642 eliminate_var_using_equality(bmap
, last_var
, bmap
->eq
[done
], 1,
645 if (last_var
>= total_var
&&
646 isl_int_is_zero(bmap
->div
[last_var
- total_var
][0])) {
647 unsigned div
= last_var
- total_var
;
648 isl_seq_neg(bmap
->div
[div
]+1, bmap
->eq
[done
], 1+total
);
649 isl_int_set_si(bmap
->div
[div
][1+1+last_var
], 0);
650 isl_int_set(bmap
->div
[div
][0],
651 bmap
->eq
[done
][1+last_var
]);
654 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
657 if (done
== bmap
->n_eq
)
659 for (k
= done
; k
< bmap
->n_eq
; ++k
) {
660 if (isl_int_is_zero(bmap
->eq
[k
][0]))
662 return isl_basic_map_set_to_empty(bmap
);
664 isl_basic_map_free_equality(bmap
, bmap
->n_eq
-done
);
668 struct isl_basic_set
*isl_basic_set_gauss(
669 struct isl_basic_set
*bset
, int *progress
)
671 return (struct isl_basic_set
*)isl_basic_map_gauss(
672 (struct isl_basic_map
*)bset
, progress
);
676 static unsigned int round_up(unsigned int v
)
687 static int hash_index(isl_int
***index
, unsigned int size
, int bits
,
688 struct isl_basic_map
*bmap
, int k
)
691 unsigned total
= isl_basic_map_total_dim(bmap
);
692 uint32_t hash
= isl_seq_get_hash_bits(bmap
->ineq
[k
]+1, total
, bits
);
693 for (h
= hash
; index
[h
]; h
= (h
+1) % size
)
694 if (&bmap
->ineq
[k
] != index
[h
] &&
695 isl_seq_eq(bmap
->ineq
[k
]+1, index
[h
][0]+1, total
))
700 static int set_hash_index(isl_int
***index
, unsigned int size
, int bits
,
701 struct isl_basic_set
*bset
, int k
)
703 return hash_index(index
, size
, bits
, (struct isl_basic_map
*)bset
, k
);
706 /* If we can eliminate more than one div, then we need to make
707 * sure we do it from last div to first div, in order not to
708 * change the position of the other divs that still need to
711 static struct isl_basic_map
*remove_duplicate_divs(
712 struct isl_basic_map
*bmap
, int *progress
)
724 bmap
= isl_basic_map_order_divs(bmap
);
725 if (!bmap
|| bmap
->n_div
<= 1)
728 total_var
= isl_space_dim(bmap
->dim
, isl_dim_all
);
729 total
= total_var
+ bmap
->n_div
;
732 for (k
= bmap
->n_div
- 1; k
>= 0; --k
)
733 if (!isl_int_is_zero(bmap
->div
[k
][0]))
738 size
= round_up(4 * bmap
->n_div
/ 3 - 1);
741 elim_for
= isl_calloc_array(ctx
, int, bmap
->n_div
);
742 bits
= ffs(size
) - 1;
743 index
= isl_calloc_array(ctx
, int, size
);
744 if (!elim_for
|| !index
)
746 eq
= isl_blk_alloc(ctx
, 1+total
);
747 if (isl_blk_is_error(eq
))
750 isl_seq_clr(eq
.data
, 1+total
);
751 index
[isl_seq_get_hash_bits(bmap
->div
[k
], 2+total
, bits
)] = k
+ 1;
752 for (--k
; k
>= 0; --k
) {
755 if (isl_int_is_zero(bmap
->div
[k
][0]))
758 hash
= isl_seq_get_hash_bits(bmap
->div
[k
], 2+total
, bits
);
759 for (h
= hash
; index
[h
]; h
= (h
+1) % size
)
760 if (isl_seq_eq(bmap
->div
[k
],
761 bmap
->div
[index
[h
]-1], 2+total
))
770 for (l
= bmap
->n_div
- 1; l
>= 0; --l
) {
774 isl_int_set_si(eq
.data
[1+total_var
+k
], -1);
775 isl_int_set_si(eq
.data
[1+total_var
+l
], 1);
776 eliminate_div(bmap
, eq
.data
, l
, 1);
777 isl_int_set_si(eq
.data
[1+total_var
+k
], 0);
778 isl_int_set_si(eq
.data
[1+total_var
+l
], 0);
781 isl_blk_free(ctx
, eq
);
788 static int n_pure_div_eq(struct isl_basic_map
*bmap
)
793 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
794 for (i
= 0, j
= bmap
->n_div
-1; i
< bmap
->n_eq
; ++i
) {
795 while (j
>= 0 && isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
799 if (isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + total
, j
) != -1)
805 /* Normalize divs that appear in equalities.
807 * In particular, we assume that bmap contains some equalities
812 * and we want to replace the set of e_i by a minimal set and
813 * such that the new e_i have a canonical representation in terms
815 * If any of the equalities involves more than one divs, then
816 * we currently simply bail out.
818 * Let us first additionally assume that all equalities involve
819 * a div. The equalities then express modulo constraints on the
820 * remaining variables and we can use "parameter compression"
821 * to find a minimal set of constraints. The result is a transformation
823 * x = T(x') = x_0 + G x'
825 * with G a lower-triangular matrix with all elements below the diagonal
826 * non-negative and smaller than the diagonal element on the same row.
827 * We first normalize x_0 by making the same property hold in the affine
829 * The rows i of G with a 1 on the diagonal do not impose any modulo
830 * constraint and simply express x_i = x'_i.
831 * For each of the remaining rows i, we introduce a div and a corresponding
832 * equality. In particular
834 * g_ii e_j = x_i - g_i(x')
836 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
837 * corresponding div (if g_kk != 1).
839 * If there are any equalities not involving any div, then we
840 * first apply a variable compression on the variables x:
842 * x = C x'' x'' = C_2 x
844 * and perform the above parameter compression on A C instead of on A.
845 * The resulting compression is then of the form
847 * x'' = T(x') = x_0 + G x'
849 * and in constructing the new divs and the corresponding equalities,
850 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
851 * by the corresponding row from C_2.
853 static struct isl_basic_map
*normalize_divs(
854 struct isl_basic_map
*bmap
, int *progress
)
861 struct isl_mat
*T
= NULL
;
862 struct isl_mat
*C
= NULL
;
863 struct isl_mat
*C2
= NULL
;
871 if (bmap
->n_div
== 0)
877 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_NORMALIZED_DIVS
))
880 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
881 div_eq
= n_pure_div_eq(bmap
);
885 if (div_eq
< bmap
->n_eq
) {
886 B
= isl_mat_sub_alloc6(bmap
->ctx
, bmap
->eq
, div_eq
,
887 bmap
->n_eq
- div_eq
, 0, 1 + total
);
888 C
= isl_mat_variable_compression(B
, &C2
);
892 bmap
= isl_basic_map_set_to_empty(bmap
);
899 d
= isl_vec_alloc(bmap
->ctx
, div_eq
);
902 for (i
= 0, j
= bmap
->n_div
-1; i
< div_eq
; ++i
) {
903 while (j
>= 0 && isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
905 isl_int_set(d
->block
.data
[i
], bmap
->eq
[i
][1 + total
+ j
]);
907 B
= isl_mat_sub_alloc6(bmap
->ctx
, bmap
->eq
, 0, div_eq
, 0, 1 + total
);
910 B
= isl_mat_product(B
, C
);
914 T
= isl_mat_parameter_compression(B
, d
);
918 bmap
= isl_basic_map_set_to_empty(bmap
);
924 for (i
= 0; i
< T
->n_row
- 1; ++i
) {
925 isl_int_fdiv_q(v
, T
->row
[1 + i
][0], T
->row
[1 + i
][1 + i
]);
926 if (isl_int_is_zero(v
))
928 isl_mat_col_submul(T
, 0, v
, 1 + i
);
931 pos
= isl_alloc_array(bmap
->ctx
, int, T
->n_row
);
934 /* We have to be careful because dropping equalities may reorder them */
936 for (j
= bmap
->n_div
- 1; j
>= 0; --j
) {
937 for (i
= 0; i
< bmap
->n_eq
; ++i
)
938 if (!isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
940 if (i
< bmap
->n_eq
) {
941 bmap
= isl_basic_map_drop_div(bmap
, j
);
942 isl_basic_map_drop_equality(bmap
, i
);
948 for (i
= 1; i
< T
->n_row
; ++i
) {
949 if (isl_int_is_one(T
->row
[i
][i
]))
954 if (needed
> dropped
) {
955 bmap
= isl_basic_map_extend_space(bmap
, isl_space_copy(bmap
->dim
),
960 for (i
= 1; i
< T
->n_row
; ++i
) {
961 if (isl_int_is_one(T
->row
[i
][i
]))
963 k
= isl_basic_map_alloc_div(bmap
);
964 pos
[i
] = 1 + total
+ k
;
965 isl_seq_clr(bmap
->div
[k
] + 1, 1 + total
+ bmap
->n_div
);
966 isl_int_set(bmap
->div
[k
][0], T
->row
[i
][i
]);
968 isl_seq_cpy(bmap
->div
[k
] + 1, C2
->row
[i
], 1 + total
);
970 isl_int_set_si(bmap
->div
[k
][1 + i
], 1);
971 for (j
= 0; j
< i
; ++j
) {
972 if (isl_int_is_zero(T
->row
[i
][j
]))
974 if (pos
[j
] < T
->n_row
&& C2
)
975 isl_seq_submul(bmap
->div
[k
] + 1, T
->row
[i
][j
],
976 C2
->row
[pos
[j
]], 1 + total
);
978 isl_int_neg(bmap
->div
[k
][1 + pos
[j
]],
981 j
= isl_basic_map_alloc_equality(bmap
);
982 isl_seq_neg(bmap
->eq
[j
], bmap
->div
[k
]+1, 1+total
+bmap
->n_div
);
983 isl_int_set(bmap
->eq
[j
][pos
[i
]], bmap
->div
[k
][0]);
992 ISL_F_SET(bmap
, ISL_BASIC_MAP_NORMALIZED_DIVS
);
1002 static struct isl_basic_map
*set_div_from_lower_bound(
1003 struct isl_basic_map
*bmap
, int div
, int ineq
)
1005 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1007 isl_seq_neg(bmap
->div
[div
] + 1, bmap
->ineq
[ineq
], total
+ bmap
->n_div
);
1008 isl_int_set(bmap
->div
[div
][0], bmap
->ineq
[ineq
][total
+ div
]);
1009 isl_int_add(bmap
->div
[div
][1], bmap
->div
[div
][1], bmap
->div
[div
][0]);
1010 isl_int_sub_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1011 isl_int_set_si(bmap
->div
[div
][1 + total
+ div
], 0);
1016 /* Check whether it is ok to define a div based on an inequality.
1017 * To avoid the introduction of circular definitions of divs, we
1018 * do not allow such a definition if the resulting expression would refer to
1019 * any other undefined divs or if any known div is defined in
1020 * terms of the unknown div.
1022 static int ok_to_set_div_from_bound(struct isl_basic_map
*bmap
,
1026 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1028 /* Not defined in terms of unknown divs */
1029 for (j
= 0; j
< bmap
->n_div
; ++j
) {
1032 if (isl_int_is_zero(bmap
->ineq
[ineq
][total
+ j
]))
1034 if (isl_int_is_zero(bmap
->div
[j
][0]))
1038 /* No other div defined in terms of this one => avoid loops */
1039 for (j
= 0; j
< bmap
->n_div
; ++j
) {
1042 if (isl_int_is_zero(bmap
->div
[j
][0]))
1044 if (!isl_int_is_zero(bmap
->div
[j
][1 + total
+ div
]))
1051 /* Would an expression for div "div" based on inequality "ineq" of "bmap"
1052 * be a better expression than the current one?
1054 * If we do not have any expression yet, then any expression would be better.
1055 * Otherwise we check if the last variable involved in the inequality
1056 * (disregarding the div that it would define) is in an earlier position
1057 * than the last variable involved in the current div expression.
1059 static int better_div_constraint(__isl_keep isl_basic_map
*bmap
,
1062 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1066 if (isl_int_is_zero(bmap
->div
[div
][0]))
1069 if (isl_seq_last_non_zero(bmap
->ineq
[ineq
] + total
+ div
+ 1,
1070 bmap
->n_div
- (div
+ 1)) >= 0)
1073 last_ineq
= isl_seq_last_non_zero(bmap
->ineq
[ineq
], total
+ div
);
1074 last_div
= isl_seq_last_non_zero(bmap
->div
[div
] + 1,
1075 total
+ bmap
->n_div
);
1077 return last_ineq
< last_div
;
1080 /* Given two constraints "k" and "l" that are opposite to each other,
1081 * except for the constant term, check if we can use them
1082 * to obtain an expression for one of the hitherto unknown divs or
1083 * a "better" expression for a div for which we already have an expression.
1084 * "sum" is the sum of the constant terms of the constraints.
1085 * If this sum is strictly smaller than the coefficient of one
1086 * of the divs, then this pair can be used define the div.
1087 * To avoid the introduction of circular definitions of divs, we
1088 * do not use the pair if the resulting expression would refer to
1089 * any other undefined divs or if any known div is defined in
1090 * terms of the unknown div.
1092 static struct isl_basic_map
*check_for_div_constraints(
1093 struct isl_basic_map
*bmap
, int k
, int l
, isl_int sum
, int *progress
)
1096 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1098 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1099 if (isl_int_is_zero(bmap
->ineq
[k
][total
+ i
]))
1101 if (isl_int_abs_ge(sum
, bmap
->ineq
[k
][total
+ i
]))
1103 if (!better_div_constraint(bmap
, i
, k
))
1105 if (!ok_to_set_div_from_bound(bmap
, i
, k
))
1107 if (isl_int_is_pos(bmap
->ineq
[k
][total
+ i
]))
1108 bmap
= set_div_from_lower_bound(bmap
, i
, k
);
1110 bmap
= set_div_from_lower_bound(bmap
, i
, l
);
1118 __isl_give isl_basic_map
*isl_basic_map_remove_duplicate_constraints(
1119 __isl_take isl_basic_map
*bmap
, int *progress
, int detect_divs
)
1125 unsigned total
= isl_basic_map_total_dim(bmap
);
1129 if (!bmap
|| bmap
->n_ineq
<= 1)
1132 size
= round_up(4 * (bmap
->n_ineq
+1) / 3 - 1);
1135 bits
= ffs(size
) - 1;
1136 ctx
= isl_basic_map_get_ctx(bmap
);
1137 index
= isl_calloc_array(ctx
, isl_int
**, size
);
1141 index
[isl_seq_get_hash_bits(bmap
->ineq
[0]+1, total
, bits
)] = &bmap
->ineq
[0];
1142 for (k
= 1; k
< bmap
->n_ineq
; ++k
) {
1143 h
= hash_index(index
, size
, bits
, bmap
, k
);
1145 index
[h
] = &bmap
->ineq
[k
];
1150 l
= index
[h
] - &bmap
->ineq
[0];
1151 if (isl_int_lt(bmap
->ineq
[k
][0], bmap
->ineq
[l
][0]))
1152 swap_inequality(bmap
, k
, l
);
1153 isl_basic_map_drop_inequality(bmap
, k
);
1157 for (k
= 0; k
< bmap
->n_ineq
-1; ++k
) {
1158 isl_seq_neg(bmap
->ineq
[k
]+1, bmap
->ineq
[k
]+1, total
);
1159 h
= hash_index(index
, size
, bits
, bmap
, k
);
1160 isl_seq_neg(bmap
->ineq
[k
]+1, bmap
->ineq
[k
]+1, total
);
1163 l
= index
[h
] - &bmap
->ineq
[0];
1164 isl_int_add(sum
, bmap
->ineq
[k
][0], bmap
->ineq
[l
][0]);
1165 if (isl_int_is_pos(sum
)) {
1167 bmap
= check_for_div_constraints(bmap
, k
, l
,
1171 if (isl_int_is_zero(sum
)) {
1172 /* We need to break out of the loop after these
1173 * changes since the contents of the hash
1174 * will no longer be valid.
1175 * Plus, we probably we want to regauss first.
1179 isl_basic_map_drop_inequality(bmap
, l
);
1180 isl_basic_map_inequality_to_equality(bmap
, k
);
1182 bmap
= isl_basic_map_set_to_empty(bmap
);
1191 /* Detect all pairs of inequalities that form an equality.
1193 * isl_basic_map_remove_duplicate_constraints detects at most one such pair.
1194 * Call it repeatedly while it is making progress.
1196 __isl_give isl_basic_map
*isl_basic_map_detect_inequality_pairs(
1197 __isl_take isl_basic_map
*bmap
, int *progress
)
1203 bmap
= isl_basic_map_remove_duplicate_constraints(bmap
,
1205 if (progress
&& duplicate
)
1207 } while (duplicate
);
1212 /* Eliminate knowns divs from constraints where they appear with
1213 * a (positive or negative) unit coefficient.
1217 * floor(e/m) + f >= 0
1225 * -floor(e/m) + f >= 0
1229 * -e + m f + m - 1 >= 0
1231 * The first conversion is valid because floor(e/m) >= -f is equivalent
1232 * to e/m >= -f because -f is an integral expression.
1233 * The second conversion follows from the fact that
1235 * -floor(e/m) = ceil(-e/m) = floor((-e + m - 1)/m)
1238 * Note that one of the div constraints may have been eliminated
1239 * due to being redundant with respect to the constraint that is
1240 * being modified by this function. The modified constraint may
1241 * no longer imply this div constraint, so we add it back to make
1242 * sure we do not lose any information.
1244 * We skip integral divs, i.e., those with denominator 1, as we would
1245 * risk eliminating the div from the div constraints. We do not need
1246 * to handle those divs here anyway since the div constraints will turn
1247 * out to form an equality and this equality can then be use to eliminate
1248 * the div from all constraints.
1250 static __isl_give isl_basic_map
*eliminate_unit_divs(
1251 __isl_take isl_basic_map
*bmap
, int *progress
)
1260 ctx
= isl_basic_map_get_ctx(bmap
);
1261 total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1263 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1264 if (isl_int_is_zero(bmap
->div
[i
][0]))
1266 if (isl_int_is_one(bmap
->div
[i
][0]))
1268 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
1271 if (!isl_int_is_one(bmap
->ineq
[j
][total
+ i
]) &&
1272 !isl_int_is_negone(bmap
->ineq
[j
][total
+ i
]))
1277 s
= isl_int_sgn(bmap
->ineq
[j
][total
+ i
]);
1278 isl_int_set_si(bmap
->ineq
[j
][total
+ i
], 0);
1280 isl_seq_combine(bmap
->ineq
[j
],
1281 ctx
->negone
, bmap
->div
[i
] + 1,
1282 bmap
->div
[i
][0], bmap
->ineq
[j
],
1283 total
+ bmap
->n_div
);
1285 isl_seq_combine(bmap
->ineq
[j
],
1286 ctx
->one
, bmap
->div
[i
] + 1,
1287 bmap
->div
[i
][0], bmap
->ineq
[j
],
1288 total
+ bmap
->n_div
);
1290 isl_int_add(bmap
->ineq
[j
][0],
1291 bmap
->ineq
[j
][0], bmap
->div
[i
][0]);
1292 isl_int_sub_ui(bmap
->ineq
[j
][0],
1293 bmap
->ineq
[j
][0], 1);
1296 bmap
= isl_basic_map_extend_constraints(bmap
, 0, 1);
1297 if (isl_basic_map_add_div_constraint(bmap
, i
, s
) < 0)
1298 return isl_basic_map_free(bmap
);
1305 struct isl_basic_map
*isl_basic_map_simplify(struct isl_basic_map
*bmap
)
1314 if (isl_basic_map_plain_is_empty(bmap
))
1316 bmap
= isl_basic_map_normalize_constraints(bmap
);
1317 bmap
= normalize_div_expressions(bmap
);
1318 bmap
= remove_duplicate_divs(bmap
, &progress
);
1319 bmap
= eliminate_unit_divs(bmap
, &progress
);
1320 bmap
= eliminate_divs_eq(bmap
, &progress
);
1321 bmap
= eliminate_divs_ineq(bmap
, &progress
);
1322 bmap
= isl_basic_map_gauss(bmap
, &progress
);
1323 /* requires equalities in normal form */
1324 bmap
= normalize_divs(bmap
, &progress
);
1325 bmap
= isl_basic_map_remove_duplicate_constraints(bmap
,
1327 if (bmap
&& progress
)
1328 ISL_F_CLR(bmap
, ISL_BASIC_MAP_REDUCED_COEFFICIENTS
);
1333 struct isl_basic_set
*isl_basic_set_simplify(struct isl_basic_set
*bset
)
1335 return (struct isl_basic_set
*)
1336 isl_basic_map_simplify((struct isl_basic_map
*)bset
);
1340 int isl_basic_map_is_div_constraint(__isl_keep isl_basic_map
*bmap
,
1341 isl_int
*constraint
, unsigned div
)
1348 pos
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
1350 if (isl_int_eq(constraint
[pos
], bmap
->div
[div
][0])) {
1352 isl_int_sub(bmap
->div
[div
][1],
1353 bmap
->div
[div
][1], bmap
->div
[div
][0]);
1354 isl_int_add_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1355 neg
= isl_seq_is_neg(constraint
, bmap
->div
[div
]+1, pos
);
1356 isl_int_sub_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1357 isl_int_add(bmap
->div
[div
][1],
1358 bmap
->div
[div
][1], bmap
->div
[div
][0]);
1361 if (isl_seq_first_non_zero(constraint
+pos
+1,
1362 bmap
->n_div
-div
-1) != -1)
1364 } else if (isl_int_abs_eq(constraint
[pos
], bmap
->div
[div
][0])) {
1365 if (!isl_seq_eq(constraint
, bmap
->div
[div
]+1, pos
))
1367 if (isl_seq_first_non_zero(constraint
+pos
+1,
1368 bmap
->n_div
-div
-1) != -1)
1376 int isl_basic_set_is_div_constraint(__isl_keep isl_basic_set
*bset
,
1377 isl_int
*constraint
, unsigned div
)
1379 return isl_basic_map_is_div_constraint(bset
, constraint
, div
);
1383 /* If the only constraints a div d=floor(f/m)
1384 * appears in are its two defining constraints
1387 * -(f - (m - 1)) + m d >= 0
1389 * then it can safely be removed.
1391 static int div_is_redundant(struct isl_basic_map
*bmap
, int div
)
1394 unsigned pos
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
1396 for (i
= 0; i
< bmap
->n_eq
; ++i
)
1397 if (!isl_int_is_zero(bmap
->eq
[i
][pos
]))
1400 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
1401 if (isl_int_is_zero(bmap
->ineq
[i
][pos
]))
1403 if (!isl_basic_map_is_div_constraint(bmap
, bmap
->ineq
[i
], div
))
1407 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1408 if (isl_int_is_zero(bmap
->div
[i
][0]))
1410 if (!isl_int_is_zero(bmap
->div
[i
][1+pos
]))
1418 * Remove divs that don't occur in any of the constraints or other divs.
1419 * These can arise when dropping constraints from a basic map or
1420 * when the divs of a basic map have been temporarily aligned
1421 * with the divs of another basic map.
1423 static struct isl_basic_map
*remove_redundant_divs(struct isl_basic_map
*bmap
)
1430 for (i
= bmap
->n_div
-1; i
>= 0; --i
) {
1431 if (!div_is_redundant(bmap
, i
))
1433 bmap
= isl_basic_map_drop_div(bmap
, i
);
1438 struct isl_basic_map
*isl_basic_map_finalize(struct isl_basic_map
*bmap
)
1440 bmap
= remove_redundant_divs(bmap
);
1443 ISL_F_SET(bmap
, ISL_BASIC_SET_FINAL
);
1447 struct isl_basic_set
*isl_basic_set_finalize(struct isl_basic_set
*bset
)
1449 return (struct isl_basic_set
*)
1450 isl_basic_map_finalize((struct isl_basic_map
*)bset
);
1453 struct isl_set
*isl_set_finalize(struct isl_set
*set
)
1459 for (i
= 0; i
< set
->n
; ++i
) {
1460 set
->p
[i
] = isl_basic_set_finalize(set
->p
[i
]);
1470 struct isl_map
*isl_map_finalize(struct isl_map
*map
)
1476 for (i
= 0; i
< map
->n
; ++i
) {
1477 map
->p
[i
] = isl_basic_map_finalize(map
->p
[i
]);
1481 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
1489 /* Remove definition of any div that is defined in terms of the given variable.
1490 * The div itself is not removed. Functions such as
1491 * eliminate_divs_ineq depend on the other divs remaining in place.
1493 static struct isl_basic_map
*remove_dependent_vars(struct isl_basic_map
*bmap
,
1501 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1502 if (isl_int_is_zero(bmap
->div
[i
][0]))
1504 if (isl_int_is_zero(bmap
->div
[i
][1+1+pos
]))
1506 isl_int_set_si(bmap
->div
[i
][0], 0);
1511 /* Eliminate the specified variables from the constraints using
1512 * Fourier-Motzkin. The variables themselves are not removed.
1514 struct isl_basic_map
*isl_basic_map_eliminate_vars(
1515 struct isl_basic_map
*bmap
, unsigned pos
, unsigned n
)
1526 total
= isl_basic_map_total_dim(bmap
);
1528 bmap
= isl_basic_map_cow(bmap
);
1529 for (d
= pos
+ n
- 1; d
>= 0 && d
>= pos
; --d
)
1530 bmap
= remove_dependent_vars(bmap
, d
);
1534 for (d
= pos
+ n
- 1;
1535 d
>= 0 && d
>= total
- bmap
->n_div
&& d
>= pos
; --d
)
1536 isl_seq_clr(bmap
->div
[d
-(total
-bmap
->n_div
)], 2+total
);
1537 for (d
= pos
+ n
- 1; d
>= 0 && d
>= pos
; --d
) {
1538 int n_lower
, n_upper
;
1541 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
1542 if (isl_int_is_zero(bmap
->eq
[i
][1+d
]))
1544 eliminate_var_using_equality(bmap
, d
, bmap
->eq
[i
], 0, NULL
);
1545 isl_basic_map_drop_equality(bmap
, i
);
1553 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
1554 if (isl_int_is_pos(bmap
->ineq
[i
][1+d
]))
1556 else if (isl_int_is_neg(bmap
->ineq
[i
][1+d
]))
1559 bmap
= isl_basic_map_extend_constraints(bmap
,
1560 0, n_lower
* n_upper
);
1563 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
1565 if (isl_int_is_zero(bmap
->ineq
[i
][1+d
]))
1568 for (j
= 0; j
< i
; ++j
) {
1569 if (isl_int_is_zero(bmap
->ineq
[j
][1+d
]))
1572 if (isl_int_sgn(bmap
->ineq
[i
][1+d
]) ==
1573 isl_int_sgn(bmap
->ineq
[j
][1+d
]))
1575 k
= isl_basic_map_alloc_inequality(bmap
);
1578 isl_seq_cpy(bmap
->ineq
[k
], bmap
->ineq
[i
],
1580 isl_seq_elim(bmap
->ineq
[k
], bmap
->ineq
[j
],
1581 1+d
, 1+total
, NULL
);
1583 isl_basic_map_drop_inequality(bmap
, i
);
1586 if (n_lower
> 0 && n_upper
> 0) {
1587 bmap
= isl_basic_map_normalize_constraints(bmap
);
1588 bmap
= isl_basic_map_remove_duplicate_constraints(bmap
,
1590 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1591 bmap
= isl_basic_map_remove_redundancies(bmap
);
1595 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
1599 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
1601 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1604 isl_basic_map_free(bmap
);
1608 struct isl_basic_set
*isl_basic_set_eliminate_vars(
1609 struct isl_basic_set
*bset
, unsigned pos
, unsigned n
)
1611 return (struct isl_basic_set
*)isl_basic_map_eliminate_vars(
1612 (struct isl_basic_map
*)bset
, pos
, n
);
1615 /* Eliminate the specified n dimensions starting at first from the
1616 * constraints, without removing the dimensions from the space.
1617 * If the set is rational, the dimensions are eliminated using Fourier-Motzkin.
1618 * Otherwise, they are projected out and the original space is restored.
1620 __isl_give isl_basic_map
*isl_basic_map_eliminate(
1621 __isl_take isl_basic_map
*bmap
,
1622 enum isl_dim_type type
, unsigned first
, unsigned n
)
1631 if (first
+ n
> isl_basic_map_dim(bmap
, type
) || first
+ n
< first
)
1632 isl_die(bmap
->ctx
, isl_error_invalid
,
1633 "index out of bounds", goto error
);
1635 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
)) {
1636 first
+= isl_basic_map_offset(bmap
, type
) - 1;
1637 bmap
= isl_basic_map_eliminate_vars(bmap
, first
, n
);
1638 return isl_basic_map_finalize(bmap
);
1641 space
= isl_basic_map_get_space(bmap
);
1642 bmap
= isl_basic_map_project_out(bmap
, type
, first
, n
);
1643 bmap
= isl_basic_map_insert_dims(bmap
, type
, first
, n
);
1644 bmap
= isl_basic_map_reset_space(bmap
, space
);
1647 isl_basic_map_free(bmap
);
1651 __isl_give isl_basic_set
*isl_basic_set_eliminate(
1652 __isl_take isl_basic_set
*bset
,
1653 enum isl_dim_type type
, unsigned first
, unsigned n
)
1655 return isl_basic_map_eliminate(bset
, type
, first
, n
);
1658 /* Don't assume equalities are in order, because align_divs
1659 * may have changed the order of the divs.
1661 static void compute_elimination_index(struct isl_basic_map
*bmap
, int *elim
)
1666 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
1667 for (d
= 0; d
< total
; ++d
)
1669 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
1670 for (d
= total
- 1; d
>= 0; --d
) {
1671 if (isl_int_is_zero(bmap
->eq
[i
][1+d
]))
1679 static void set_compute_elimination_index(struct isl_basic_set
*bset
, int *elim
)
1681 compute_elimination_index((struct isl_basic_map
*)bset
, elim
);
1684 static int reduced_using_equalities(isl_int
*dst
, isl_int
*src
,
1685 struct isl_basic_map
*bmap
, int *elim
)
1691 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
1692 for (d
= total
- 1; d
>= 0; --d
) {
1693 if (isl_int_is_zero(src
[1+d
]))
1698 isl_seq_cpy(dst
, src
, 1 + total
);
1701 isl_seq_elim(dst
, bmap
->eq
[elim
[d
]], 1 + d
, 1 + total
, NULL
);
1706 static int set_reduced_using_equalities(isl_int
*dst
, isl_int
*src
,
1707 struct isl_basic_set
*bset
, int *elim
)
1709 return reduced_using_equalities(dst
, src
,
1710 (struct isl_basic_map
*)bset
, elim
);
1713 static struct isl_basic_set
*isl_basic_set_reduce_using_equalities(
1714 struct isl_basic_set
*bset
, struct isl_basic_set
*context
)
1719 if (!bset
|| !context
)
1722 if (context
->n_eq
== 0) {
1723 isl_basic_set_free(context
);
1727 bset
= isl_basic_set_cow(bset
);
1731 elim
= isl_alloc_array(bset
->ctx
, int, isl_basic_set_n_dim(bset
));
1734 set_compute_elimination_index(context
, elim
);
1735 for (i
= 0; i
< bset
->n_eq
; ++i
)
1736 set_reduced_using_equalities(bset
->eq
[i
], bset
->eq
[i
],
1738 for (i
= 0; i
< bset
->n_ineq
; ++i
)
1739 set_reduced_using_equalities(bset
->ineq
[i
], bset
->ineq
[i
],
1741 isl_basic_set_free(context
);
1743 bset
= isl_basic_set_simplify(bset
);
1744 bset
= isl_basic_set_finalize(bset
);
1747 isl_basic_set_free(bset
);
1748 isl_basic_set_free(context
);
1752 static struct isl_basic_set
*remove_shifted_constraints(
1753 struct isl_basic_set
*bset
, struct isl_basic_set
*context
)
1761 if (!bset
|| !context
)
1764 size
= round_up(4 * (context
->n_ineq
+1) / 3 - 1);
1767 bits
= ffs(size
) - 1;
1768 ctx
= isl_basic_set_get_ctx(bset
);
1769 index
= isl_calloc_array(ctx
, isl_int
**, size
);
1773 for (k
= 0; k
< context
->n_ineq
; ++k
) {
1774 h
= set_hash_index(index
, size
, bits
, context
, k
);
1775 index
[h
] = &context
->ineq
[k
];
1777 for (k
= 0; k
< bset
->n_ineq
; ++k
) {
1778 h
= set_hash_index(index
, size
, bits
, bset
, k
);
1781 l
= index
[h
] - &context
->ineq
[0];
1782 if (isl_int_lt(bset
->ineq
[k
][0], context
->ineq
[l
][0]))
1784 bset
= isl_basic_set_cow(bset
);
1787 isl_basic_set_drop_inequality(bset
, k
);
1797 /* Remove constraints from "bmap" that are identical to constraints
1798 * in "context" or that are more relaxed (greater constant term).
1800 * We perform the test for shifted copies on the pure constraints
1801 * in remove_shifted_constraints.
1803 static __isl_give isl_basic_map
*isl_basic_map_remove_shifted_constraints(
1804 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_map
*context
)
1806 isl_basic_set
*bset
, *bset_context
;
1808 if (!bmap
|| !context
)
1811 if (bmap
->n_ineq
== 0 || context
->n_ineq
== 0) {
1812 isl_basic_map_free(context
);
1816 context
= isl_basic_map_align_divs(context
, bmap
);
1817 bmap
= isl_basic_map_align_divs(bmap
, context
);
1819 bset
= isl_basic_map_underlying_set(isl_basic_map_copy(bmap
));
1820 bset_context
= isl_basic_map_underlying_set(context
);
1821 bset
= remove_shifted_constraints(bset
, bset_context
);
1822 isl_basic_set_free(bset_context
);
1824 bmap
= isl_basic_map_overlying_set(bset
, bmap
);
1828 isl_basic_map_free(bmap
);
1829 isl_basic_map_free(context
);
1833 /* Does the (linear part of a) constraint "c" involve any of the "len"
1834 * "relevant" dimensions?
1836 static int is_related(isl_int
*c
, int len
, int *relevant
)
1840 for (i
= 0; i
< len
; ++i
) {
1843 if (!isl_int_is_zero(c
[i
]))
1850 /* Drop constraints from "bset" that do not involve any of
1851 * the dimensions marked "relevant".
1853 static __isl_give isl_basic_set
*drop_unrelated_constraints(
1854 __isl_take isl_basic_set
*bset
, int *relevant
)
1858 dim
= isl_basic_set_dim(bset
, isl_dim_set
);
1859 for (i
= 0; i
< dim
; ++i
)
1865 for (i
= bset
->n_eq
- 1; i
>= 0; --i
)
1866 if (!is_related(bset
->eq
[i
] + 1, dim
, relevant
))
1867 isl_basic_set_drop_equality(bset
, i
);
1869 for (i
= bset
->n_ineq
- 1; i
>= 0; --i
)
1870 if (!is_related(bset
->ineq
[i
] + 1, dim
, relevant
))
1871 isl_basic_set_drop_inequality(bset
, i
);
1876 /* Update the groups in "group" based on the (linear part of a) constraint "c".
1878 * In particular, for any variable involved in the constraint,
1879 * find the actual group id from before and replace the group
1880 * of the corresponding variable by the minimal group of all
1881 * the variables involved in the constraint considered so far
1882 * (if this minimum is smaller) or replace the minimum by this group
1883 * (if the minimum is larger).
1885 * At the end, all the variables in "c" will (indirectly) point
1886 * to the minimal of the groups that they referred to originally.
1888 static void update_groups(int dim
, int *group
, isl_int
*c
)
1893 for (j
= 0; j
< dim
; ++j
) {
1894 if (isl_int_is_zero(c
[j
]))
1896 while (group
[j
] >= 0 && group
[group
[j
]] != group
[j
])
1897 group
[j
] = group
[group
[j
]];
1898 if (group
[j
] == min
)
1900 if (group
[j
] < min
) {
1901 if (min
>= 0 && min
< dim
)
1902 group
[min
] = group
[j
];
1905 group
[group
[j
]] = min
;
1909 /* Drop constraints from "context" that are irrelevant for computing
1910 * the gist of "bset".
1912 * In particular, drop constraints in variables that are not related
1913 * to any of the variables involved in the constraints of "bset"
1914 * in the sense that there is no sequence of constraints that connects them.
1916 * We construct groups of variables that collect variables that
1917 * (indirectly) appear in some common constraint of "context".
1918 * Each group is identified by the first variable in the group,
1919 * except for the special group of variables that appear in "bset"
1920 * (or are related to those variables), which is identified by -1.
1921 * If group[i] is equal to i (or -1), then the group of i is i (or -1),
1922 * otherwise the group of i is the group of group[i].
1924 * We first initialize the -1 group with the variables that appear in "bset".
1925 * Then we initialize groups for the remaining variables.
1926 * Then we iterate over the constraints of "context" and update the
1927 * group of the variables in the constraint by the smallest group.
1928 * Finally, we resolve indirect references to groups by running over
1931 * After computing the groups, we drop constraints that do not involve
1932 * any variables in the -1 group.
1934 static __isl_give isl_basic_set
*drop_irrelevant_constraints(
1935 __isl_take isl_basic_set
*context
, __isl_keep isl_basic_set
*bset
)
1943 if (!context
|| !bset
)
1944 return isl_basic_set_free(context
);
1946 dim
= isl_basic_set_dim(bset
, isl_dim_set
);
1947 ctx
= isl_basic_set_get_ctx(bset
);
1948 group
= isl_calloc_array(ctx
, int, dim
);
1953 for (i
= 0; i
< dim
; ++i
) {
1954 for (j
= 0; j
< bset
->n_eq
; ++j
)
1955 if (!isl_int_is_zero(bset
->eq
[j
][1 + i
]))
1957 if (j
< bset
->n_eq
) {
1961 for (j
= 0; j
< bset
->n_ineq
; ++j
)
1962 if (!isl_int_is_zero(bset
->ineq
[j
][1 + i
]))
1964 if (j
< bset
->n_ineq
)
1969 for (i
= 0; i
< dim
; ++i
)
1971 last
= group
[i
] = i
;
1977 for (i
= 0; i
< context
->n_eq
; ++i
)
1978 update_groups(dim
, group
, context
->eq
[i
] + 1);
1979 for (i
= 0; i
< context
->n_ineq
; ++i
)
1980 update_groups(dim
, group
, context
->ineq
[i
] + 1);
1982 for (i
= 0; i
< dim
; ++i
)
1984 group
[i
] = group
[group
[i
]];
1986 for (i
= 0; i
< dim
; ++i
)
1987 group
[i
] = group
[i
] == -1;
1989 context
= drop_unrelated_constraints(context
, group
);
1995 return isl_basic_set_free(context
);
1998 /* Remove all information from bset that is redundant in the context
1999 * of context. Both bset and context are assumed to be full-dimensional.
2001 * We first remove the inequalities from "bset"
2002 * that are obviously redundant with respect to some inequality in "context".
2003 * Then we remove those constraints from "context" that have become
2004 * irrelevant for computing the gist of "bset".
2005 * Note that this removal of constraints cannot be replaced by
2006 * a factorization because factors in "bset" may still be connected
2007 * to each other through constraints in "context".
2009 * If there are any inequalities left, we construct a tableau for
2010 * the context and then add the inequalities of "bset".
2011 * Before adding these inequalities, we freeze all constraints such that
2012 * they won't be considered redundant in terms of the constraints of "bset".
2013 * Then we detect all redundant constraints (among the
2014 * constraints that weren't frozen), first by checking for redundancy in the
2015 * the tableau and then by checking if replacing a constraint by its negation
2016 * would lead to an empty set. This last step is fairly expensive
2017 * and could be optimized by more reuse of the tableau.
2018 * Finally, we update bset according to the results.
2020 static __isl_give isl_basic_set
*uset_gist_full(__isl_take isl_basic_set
*bset
,
2021 __isl_take isl_basic_set
*context
)
2024 isl_basic_set
*combined
= NULL
;
2025 struct isl_tab
*tab
= NULL
;
2026 unsigned context_ineq
;
2029 if (!bset
|| !context
)
2032 if (isl_basic_set_is_universe(bset
)) {
2033 isl_basic_set_free(context
);
2037 if (isl_basic_set_is_universe(context
)) {
2038 isl_basic_set_free(context
);
2042 bset
= remove_shifted_constraints(bset
, context
);
2045 if (bset
->n_ineq
== 0)
2048 context
= drop_irrelevant_constraints(context
, bset
);
2051 if (isl_basic_set_is_universe(context
)) {
2052 isl_basic_set_free(context
);
2056 context_ineq
= context
->n_ineq
;
2057 combined
= isl_basic_set_cow(isl_basic_set_copy(context
));
2058 combined
= isl_basic_set_extend_constraints(combined
, 0, bset
->n_ineq
);
2059 tab
= isl_tab_from_basic_set(combined
, 0);
2060 for (i
= 0; i
< context_ineq
; ++i
)
2061 if (isl_tab_freeze_constraint(tab
, i
) < 0)
2063 if (isl_tab_extend_cons(tab
, bset
->n_ineq
) < 0)
2065 for (i
= 0; i
< bset
->n_ineq
; ++i
)
2066 if (isl_tab_add_ineq(tab
, bset
->ineq
[i
]) < 0)
2068 bset
= isl_basic_set_add_constraints(combined
, bset
, 0);
2072 if (isl_tab_detect_redundant(tab
) < 0)
2074 total
= isl_basic_set_total_dim(bset
);
2075 for (i
= context_ineq
; i
< bset
->n_ineq
; ++i
) {
2077 if (tab
->con
[i
].is_redundant
)
2079 tab
->con
[i
].is_redundant
= 1;
2080 combined
= isl_basic_set_dup(bset
);
2081 combined
= isl_basic_set_update_from_tab(combined
, tab
);
2082 combined
= isl_basic_set_extend_constraints(combined
, 0, 1);
2083 k
= isl_basic_set_alloc_inequality(combined
);
2086 isl_seq_neg(combined
->ineq
[k
], bset
->ineq
[i
], 1 + total
);
2087 isl_int_sub_ui(combined
->ineq
[k
][0], combined
->ineq
[k
][0], 1);
2088 is_empty
= isl_basic_set_is_empty(combined
);
2091 isl_basic_set_free(combined
);
2094 tab
->con
[i
].is_redundant
= 0;
2096 for (i
= 0; i
< context_ineq
; ++i
)
2097 tab
->con
[i
].is_redundant
= 1;
2098 bset
= isl_basic_set_update_from_tab(bset
, tab
);
2100 ISL_F_SET(bset
, ISL_BASIC_SET_NO_IMPLICIT
);
2101 ISL_F_SET(bset
, ISL_BASIC_SET_NO_REDUNDANT
);
2106 bset
= isl_basic_set_simplify(bset
);
2107 bset
= isl_basic_set_finalize(bset
);
2108 isl_basic_set_free(context
);
2112 isl_basic_set_free(combined
);
2113 isl_basic_set_free(context
);
2114 isl_basic_set_free(bset
);
2118 /* Remove all information from bset that is redundant in the context
2119 * of context. In particular, equalities that are linear combinations
2120 * of those in context are removed. Then the inequalities that are
2121 * redundant in the context of the equalities and inequalities of
2122 * context are removed.
2124 * First of all, we drop those constraints from "context"
2125 * that are irrelevant for computing the gist of "bset".
2126 * Alternatively, we could factorize the intersection of "context" and "bset".
2128 * We first compute the integer affine hull of the intersection,
2129 * compute the gist inside this affine hull and then add back
2130 * those equalities that are not implied by the context.
2132 * If two constraints are mutually redundant, then uset_gist_full
2133 * will remove the second of those constraints. We therefore first
2134 * sort the constraints so that constraints not involving existentially
2135 * quantified variables are given precedence over those that do.
2136 * We have to perform this sorting before the variable compression,
2137 * because that may effect the order of the variables.
2139 static __isl_give isl_basic_set
*uset_gist(__isl_take isl_basic_set
*bset
,
2140 __isl_take isl_basic_set
*context
)
2145 isl_basic_set
*aff_context
;
2148 if (!bset
|| !context
)
2151 context
= drop_irrelevant_constraints(context
, bset
);
2153 aff
= isl_basic_set_copy(bset
);
2154 aff
= isl_basic_set_intersect(aff
, isl_basic_set_copy(context
));
2155 aff
= isl_basic_set_affine_hull(aff
);
2158 if (isl_basic_set_plain_is_empty(aff
)) {
2159 isl_basic_set_free(bset
);
2160 isl_basic_set_free(context
);
2163 bset
= isl_basic_set_sort_constraints(bset
);
2164 if (aff
->n_eq
== 0) {
2165 isl_basic_set_free(aff
);
2166 return uset_gist_full(bset
, context
);
2168 total
= isl_basic_set_total_dim(bset
);
2169 eq
= isl_mat_sub_alloc6(bset
->ctx
, aff
->eq
, 0, aff
->n_eq
, 0, 1 + total
);
2170 eq
= isl_mat_cow(eq
);
2171 T
= isl_mat_variable_compression(eq
, &T2
);
2172 if (T
&& T
->n_col
== 0) {
2175 isl_basic_set_free(context
);
2176 isl_basic_set_free(aff
);
2177 return isl_basic_set_set_to_empty(bset
);
2180 aff_context
= isl_basic_set_affine_hull(isl_basic_set_copy(context
));
2182 bset
= isl_basic_set_preimage(bset
, isl_mat_copy(T
));
2183 context
= isl_basic_set_preimage(context
, T
);
2185 bset
= uset_gist_full(bset
, context
);
2186 bset
= isl_basic_set_preimage(bset
, T2
);
2187 bset
= isl_basic_set_intersect(bset
, aff
);
2188 bset
= isl_basic_set_reduce_using_equalities(bset
, aff_context
);
2191 ISL_F_SET(bset
, ISL_BASIC_SET_NO_IMPLICIT
);
2192 ISL_F_SET(bset
, ISL_BASIC_SET_NO_REDUNDANT
);
2197 isl_basic_set_free(bset
);
2198 isl_basic_set_free(context
);
2202 /* Normalize the divs in "bmap" in the context of the equalities in "context".
2203 * We simply add the equalities in context to bmap and then do a regular
2204 * div normalizations. Better results can be obtained by normalizing
2205 * only the divs in bmap than do not also appear in context.
2206 * We need to be careful to reduce the divs using the equalities
2207 * so that later calls to isl_basic_map_overlying_set wouldn't introduce
2208 * spurious constraints.
2210 static struct isl_basic_map
*normalize_divs_in_context(
2211 struct isl_basic_map
*bmap
, struct isl_basic_map
*context
)
2214 unsigned total_context
;
2217 div_eq
= n_pure_div_eq(bmap
);
2221 bmap
= isl_basic_map_cow(bmap
);
2222 if (context
->n_div
> 0)
2223 bmap
= isl_basic_map_align_divs(bmap
, context
);
2225 total_context
= isl_basic_map_total_dim(context
);
2226 bmap
= isl_basic_map_extend_constraints(bmap
, context
->n_eq
, 0);
2227 for (i
= 0; i
< context
->n_eq
; ++i
) {
2229 k
= isl_basic_map_alloc_equality(bmap
);
2231 return isl_basic_map_free(bmap
);
2232 isl_seq_cpy(bmap
->eq
[k
], context
->eq
[i
], 1 + total_context
);
2233 isl_seq_clr(bmap
->eq
[k
] + 1 + total_context
,
2234 isl_basic_map_total_dim(bmap
) - total_context
);
2236 bmap
= isl_basic_map_gauss(bmap
, NULL
);
2237 bmap
= normalize_divs(bmap
, NULL
);
2238 bmap
= isl_basic_map_gauss(bmap
, NULL
);
2242 /* Return a basic map that has the same intersection with "context" as "bmap"
2243 * and that is as "simple" as possible.
2245 * The core computation is performed on the pure constraints.
2246 * When we add back the meaning of the integer divisions, we need
2247 * to (re)introduce the div constraints. If we happen to have
2248 * discovered that some of these integer divisions are equal to
2249 * some affine combination of other variables, then these div
2250 * constraints may end up getting simplified in terms of the equalities,
2251 * resulting in extra inequalities on the other variables that
2252 * may have been removed already or that may not even have been
2253 * part of the input. We try and remove those constraints of
2254 * this form that are most obviously redundant with respect to
2255 * the context. We also remove those div constraints that are
2256 * redundant with respect to the other constraints in the result.
2258 struct isl_basic_map
*isl_basic_map_gist(struct isl_basic_map
*bmap
,
2259 struct isl_basic_map
*context
)
2261 isl_basic_set
*bset
, *eq
;
2262 isl_basic_map
*eq_bmap
;
2263 unsigned n_div
, n_eq
, n_ineq
;
2265 if (!bmap
|| !context
)
2268 if (isl_basic_map_is_universe(bmap
)) {
2269 isl_basic_map_free(context
);
2272 if (isl_basic_map_plain_is_empty(context
)) {
2273 isl_space
*space
= isl_basic_map_get_space(bmap
);
2274 isl_basic_map_free(bmap
);
2275 isl_basic_map_free(context
);
2276 return isl_basic_map_universe(space
);
2278 if (isl_basic_map_plain_is_empty(bmap
)) {
2279 isl_basic_map_free(context
);
2283 bmap
= isl_basic_map_remove_redundancies(bmap
);
2284 context
= isl_basic_map_remove_redundancies(context
);
2289 bmap
= normalize_divs_in_context(bmap
, context
);
2291 context
= isl_basic_map_align_divs(context
, bmap
);
2292 bmap
= isl_basic_map_align_divs(bmap
, context
);
2293 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
2295 bset
= uset_gist(isl_basic_map_underlying_set(isl_basic_map_copy(bmap
)),
2296 isl_basic_map_underlying_set(isl_basic_map_copy(context
)));
2298 if (!bset
|| bset
->n_eq
== 0 || n_div
== 0 ||
2299 isl_basic_set_plain_is_empty(bset
)) {
2300 isl_basic_map_free(context
);
2301 return isl_basic_map_overlying_set(bset
, bmap
);
2305 n_ineq
= bset
->n_ineq
;
2306 eq
= isl_basic_set_copy(bset
);
2307 eq
= isl_basic_set_cow(eq
);
2308 if (isl_basic_set_free_inequality(eq
, n_ineq
) < 0)
2309 eq
= isl_basic_set_free(eq
);
2310 if (isl_basic_set_free_equality(bset
, n_eq
) < 0)
2311 bset
= isl_basic_set_free(bset
);
2313 eq_bmap
= isl_basic_map_overlying_set(eq
, isl_basic_map_copy(bmap
));
2314 eq_bmap
= isl_basic_map_remove_shifted_constraints(eq_bmap
, context
);
2315 bmap
= isl_basic_map_overlying_set(bset
, bmap
);
2316 bmap
= isl_basic_map_intersect(bmap
, eq_bmap
);
2317 bmap
= isl_basic_map_remove_redundancies(bmap
);
2321 isl_basic_map_free(bmap
);
2322 isl_basic_map_free(context
);
2327 * Assumes context has no implicit divs.
2329 __isl_give isl_map
*isl_map_gist_basic_map(__isl_take isl_map
*map
,
2330 __isl_take isl_basic_map
*context
)
2334 if (!map
|| !context
)
2337 if (isl_basic_map_plain_is_empty(context
)) {
2338 isl_space
*space
= isl_map_get_space(map
);
2340 isl_basic_map_free(context
);
2341 return isl_map_universe(space
);
2344 context
= isl_basic_map_remove_redundancies(context
);
2345 map
= isl_map_cow(map
);
2346 if (!map
|| !context
)
2348 isl_assert(map
->ctx
, isl_space_is_equal(map
->dim
, context
->dim
), goto error
);
2349 map
= isl_map_compute_divs(map
);
2352 for (i
= map
->n
- 1; i
>= 0; --i
) {
2353 map
->p
[i
] = isl_basic_map_gist(map
->p
[i
],
2354 isl_basic_map_copy(context
));
2357 if (isl_basic_map_plain_is_empty(map
->p
[i
])) {
2358 isl_basic_map_free(map
->p
[i
]);
2359 if (i
!= map
->n
- 1)
2360 map
->p
[i
] = map
->p
[map
->n
- 1];
2364 isl_basic_map_free(context
);
2365 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
2369 isl_basic_map_free(context
);
2373 /* Return a map that has the same intersection with "context" as "map"
2374 * and that is as "simple" as possible.
2376 * If "map" is already the universe, then we cannot make it any simpler.
2377 * Similarly, if "context" is the universe, then we cannot exploit it
2379 * If "map" and "context" are identical to each other, then we can
2380 * return the corresponding universe.
2382 * If none of these cases apply, we have to work a bit harder.
2383 * During this computation, we make use of a single disjunct context,
2384 * so if the original context consists of more than one disjunct
2385 * then we need to approximate the context by a single disjunct set.
2386 * Simply taking the simple hull may drop constraints that are
2387 * only implicitly available in each disjunct. We therefore also
2388 * look for constraints among those defining "map" that are valid
2389 * for the context. These can then be used to simplify away
2390 * the corresponding constraints in "map".
2392 static __isl_give isl_map
*map_gist(__isl_take isl_map
*map
,
2393 __isl_take isl_map
*context
)
2397 isl_basic_map
*hull
;
2399 is_universe
= isl_map_plain_is_universe(map
);
2400 if (is_universe
>= 0 && !is_universe
)
2401 is_universe
= isl_map_plain_is_universe(context
);
2402 if (is_universe
< 0)
2405 isl_map_free(context
);
2409 equal
= isl_map_plain_is_equal(map
, context
);
2413 isl_map
*res
= isl_map_universe(isl_map_get_space(map
));
2415 isl_map_free(context
);
2419 context
= isl_map_compute_divs(context
);
2422 if (isl_map_n_basic_map(context
) == 1) {
2423 hull
= isl_map_simple_hull(context
);
2428 ctx
= isl_map_get_ctx(map
);
2429 list
= isl_map_list_alloc(ctx
, 2);
2430 list
= isl_map_list_add(list
, isl_map_copy(context
));
2431 list
= isl_map_list_add(list
, isl_map_copy(map
));
2432 hull
= isl_map_unshifted_simple_hull_from_map_list(context
,
2435 return isl_map_gist_basic_map(map
, hull
);
2438 isl_map_free(context
);
2442 __isl_give isl_map
*isl_map_gist(__isl_take isl_map
*map
,
2443 __isl_take isl_map
*context
)
2445 return isl_map_align_params_map_map_and(map
, context
, &map_gist
);
2448 struct isl_basic_set
*isl_basic_set_gist(struct isl_basic_set
*bset
,
2449 struct isl_basic_set
*context
)
2451 return (struct isl_basic_set
*)isl_basic_map_gist(
2452 (struct isl_basic_map
*)bset
, (struct isl_basic_map
*)context
);
2455 __isl_give isl_set
*isl_set_gist_basic_set(__isl_take isl_set
*set
,
2456 __isl_take isl_basic_set
*context
)
2458 return (struct isl_set
*)isl_map_gist_basic_map((struct isl_map
*)set
,
2459 (struct isl_basic_map
*)context
);
2462 __isl_give isl_set
*isl_set_gist_params_basic_set(__isl_take isl_set
*set
,
2463 __isl_take isl_basic_set
*context
)
2465 isl_space
*space
= isl_set_get_space(set
);
2466 isl_basic_set
*dom_context
= isl_basic_set_universe(space
);
2467 dom_context
= isl_basic_set_intersect_params(dom_context
, context
);
2468 return isl_set_gist_basic_set(set
, dom_context
);
2471 __isl_give isl_set
*isl_set_gist(__isl_take isl_set
*set
,
2472 __isl_take isl_set
*context
)
2474 return (struct isl_set
*)isl_map_gist((struct isl_map
*)set
,
2475 (struct isl_map
*)context
);
2478 /* Compute the gist of "bmap" with respect to the constraints "context"
2481 __isl_give isl_basic_map
*isl_basic_map_gist_domain(
2482 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*context
)
2484 isl_space
*space
= isl_basic_map_get_space(bmap
);
2485 isl_basic_map
*bmap_context
= isl_basic_map_universe(space
);
2487 bmap_context
= isl_basic_map_intersect_domain(bmap_context
, context
);
2488 return isl_basic_map_gist(bmap
, bmap_context
);
2491 __isl_give isl_map
*isl_map_gist_domain(__isl_take isl_map
*map
,
2492 __isl_take isl_set
*context
)
2494 isl_map
*map_context
= isl_map_universe(isl_map_get_space(map
));
2495 map_context
= isl_map_intersect_domain(map_context
, context
);
2496 return isl_map_gist(map
, map_context
);
2499 __isl_give isl_map
*isl_map_gist_range(__isl_take isl_map
*map
,
2500 __isl_take isl_set
*context
)
2502 isl_map
*map_context
= isl_map_universe(isl_map_get_space(map
));
2503 map_context
= isl_map_intersect_range(map_context
, context
);
2504 return isl_map_gist(map
, map_context
);
2507 __isl_give isl_map
*isl_map_gist_params(__isl_take isl_map
*map
,
2508 __isl_take isl_set
*context
)
2510 isl_map
*map_context
= isl_map_universe(isl_map_get_space(map
));
2511 map_context
= isl_map_intersect_params(map_context
, context
);
2512 return isl_map_gist(map
, map_context
);
2515 __isl_give isl_set
*isl_set_gist_params(__isl_take isl_set
*set
,
2516 __isl_take isl_set
*context
)
2518 return isl_map_gist_params(set
, context
);
2521 /* Quick check to see if two basic maps are disjoint.
2522 * In particular, we reduce the equalities and inequalities of
2523 * one basic map in the context of the equalities of the other
2524 * basic map and check if we get a contradiction.
2526 isl_bool
isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map
*bmap1
,
2527 __isl_keep isl_basic_map
*bmap2
)
2529 struct isl_vec
*v
= NULL
;
2534 if (!bmap1
|| !bmap2
)
2535 return isl_bool_error
;
2536 isl_assert(bmap1
->ctx
, isl_space_is_equal(bmap1
->dim
, bmap2
->dim
),
2537 return isl_bool_error
);
2538 if (bmap1
->n_div
|| bmap2
->n_div
)
2539 return isl_bool_false
;
2540 if (!bmap1
->n_eq
&& !bmap2
->n_eq
)
2541 return isl_bool_false
;
2543 total
= isl_space_dim(bmap1
->dim
, isl_dim_all
);
2545 return isl_bool_false
;
2546 v
= isl_vec_alloc(bmap1
->ctx
, 1 + total
);
2549 elim
= isl_alloc_array(bmap1
->ctx
, int, total
);
2552 compute_elimination_index(bmap1
, elim
);
2553 for (i
= 0; i
< bmap2
->n_eq
; ++i
) {
2555 reduced
= reduced_using_equalities(v
->block
.data
, bmap2
->eq
[i
],
2557 if (reduced
&& !isl_int_is_zero(v
->block
.data
[0]) &&
2558 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
2561 for (i
= 0; i
< bmap2
->n_ineq
; ++i
) {
2563 reduced
= reduced_using_equalities(v
->block
.data
,
2564 bmap2
->ineq
[i
], bmap1
, elim
);
2565 if (reduced
&& isl_int_is_neg(v
->block
.data
[0]) &&
2566 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
2569 compute_elimination_index(bmap2
, elim
);
2570 for (i
= 0; i
< bmap1
->n_ineq
; ++i
) {
2572 reduced
= reduced_using_equalities(v
->block
.data
,
2573 bmap1
->ineq
[i
], bmap2
, elim
);
2574 if (reduced
&& isl_int_is_neg(v
->block
.data
[0]) &&
2575 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
2580 return isl_bool_false
;
2584 return isl_bool_true
;
2588 return isl_bool_error
;
2591 int isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set
*bset1
,
2592 __isl_keep isl_basic_set
*bset2
)
2594 return isl_basic_map_plain_is_disjoint((struct isl_basic_map
*)bset1
,
2595 (struct isl_basic_map
*)bset2
);
2598 /* Are "map1" and "map2" obviously disjoint?
2600 * If one of them is empty or if they live in different spaces (ignoring
2601 * parameters), then they are clearly disjoint.
2603 * If they have different parameters, then we skip any further tests.
2605 * If they are obviously equal, but not obviously empty, then we will
2606 * not be able to detect if they are disjoint.
2608 * Otherwise we check if each basic map in "map1" is obviously disjoint
2609 * from each basic map in "map2".
2611 isl_bool
isl_map_plain_is_disjoint(__isl_keep isl_map
*map1
,
2612 __isl_keep isl_map
*map2
)
2620 return isl_bool_error
;
2622 disjoint
= isl_map_plain_is_empty(map1
);
2623 if (disjoint
< 0 || disjoint
)
2626 disjoint
= isl_map_plain_is_empty(map2
);
2627 if (disjoint
< 0 || disjoint
)
2630 match
= isl_space_tuple_is_equal(map1
->dim
, isl_dim_in
,
2631 map2
->dim
, isl_dim_in
);
2632 if (match
< 0 || !match
)
2633 return match
< 0 ? isl_bool_error
: isl_bool_true
;
2635 match
= isl_space_tuple_is_equal(map1
->dim
, isl_dim_out
,
2636 map2
->dim
, isl_dim_out
);
2637 if (match
< 0 || !match
)
2638 return match
< 0 ? isl_bool_error
: isl_bool_true
;
2640 match
= isl_space_match(map1
->dim
, isl_dim_param
,
2641 map2
->dim
, isl_dim_param
);
2642 if (match
< 0 || !match
)
2643 return match
< 0 ? isl_bool_error
: isl_bool_false
;
2645 intersect
= isl_map_plain_is_equal(map1
, map2
);
2646 if (intersect
< 0 || intersect
)
2647 return intersect
< 0 ? isl_bool_error
: isl_bool_false
;
2649 for (i
= 0; i
< map1
->n
; ++i
) {
2650 for (j
= 0; j
< map2
->n
; ++j
) {
2651 isl_bool d
= isl_basic_map_plain_is_disjoint(map1
->p
[i
],
2653 if (d
!= isl_bool_true
)
2657 return isl_bool_true
;
2660 /* Are "map1" and "map2" disjoint?
2662 * They are disjoint if they are "obviously disjoint" or if one of them
2663 * is empty. Otherwise, they are not disjoint if one of them is universal.
2664 * If none of these cases apply, we compute the intersection and see if
2665 * the result is empty.
2667 isl_bool
isl_map_is_disjoint(__isl_keep isl_map
*map1
, __isl_keep isl_map
*map2
)
2673 disjoint
= isl_map_plain_is_disjoint(map1
, map2
);
2674 if (disjoint
< 0 || disjoint
)
2677 disjoint
= isl_map_is_empty(map1
);
2678 if (disjoint
< 0 || disjoint
)
2681 disjoint
= isl_map_is_empty(map2
);
2682 if (disjoint
< 0 || disjoint
)
2685 intersect
= isl_map_plain_is_universe(map1
);
2686 if (intersect
< 0 || intersect
)
2687 return intersect
< 0 ? isl_bool_error
: isl_bool_false
;
2689 intersect
= isl_map_plain_is_universe(map2
);
2690 if (intersect
< 0 || intersect
)
2691 return intersect
< 0 ? isl_bool_error
: isl_bool_false
;
2693 test
= isl_map_intersect(isl_map_copy(map1
), isl_map_copy(map2
));
2694 disjoint
= isl_map_is_empty(test
);
2700 /* Are "bmap1" and "bmap2" disjoint?
2702 * They are disjoint if they are "obviously disjoint" or if one of them
2703 * is empty. Otherwise, they are not disjoint if one of them is universal.
2704 * If none of these cases apply, we compute the intersection and see if
2705 * the result is empty.
2707 isl_bool
isl_basic_map_is_disjoint(__isl_keep isl_basic_map
*bmap1
,
2708 __isl_keep isl_basic_map
*bmap2
)
2712 isl_basic_map
*test
;
2714 disjoint
= isl_basic_map_plain_is_disjoint(bmap1
, bmap2
);
2715 if (disjoint
< 0 || disjoint
)
2718 disjoint
= isl_basic_map_is_empty(bmap1
);
2719 if (disjoint
< 0 || disjoint
)
2722 disjoint
= isl_basic_map_is_empty(bmap2
);
2723 if (disjoint
< 0 || disjoint
)
2726 intersect
= isl_basic_map_is_universe(bmap1
);
2727 if (intersect
< 0 || intersect
)
2728 return intersect
< 0 ? isl_bool_error
: isl_bool_false
;
2730 intersect
= isl_basic_map_is_universe(bmap2
);
2731 if (intersect
< 0 || intersect
)
2732 return intersect
< 0 ? isl_bool_error
: isl_bool_false
;
2734 test
= isl_basic_map_intersect(isl_basic_map_copy(bmap1
),
2735 isl_basic_map_copy(bmap2
));
2736 disjoint
= isl_basic_map_is_empty(test
);
2737 isl_basic_map_free(test
);
2742 /* Are "bset1" and "bset2" disjoint?
2744 isl_bool
isl_basic_set_is_disjoint(__isl_keep isl_basic_set
*bset1
,
2745 __isl_keep isl_basic_set
*bset2
)
2747 return isl_basic_map_is_disjoint(bset1
, bset2
);
2750 isl_bool
isl_set_plain_is_disjoint(__isl_keep isl_set
*set1
,
2751 __isl_keep isl_set
*set2
)
2753 return isl_map_plain_is_disjoint((struct isl_map
*)set1
,
2754 (struct isl_map
*)set2
);
2757 /* Are "set1" and "set2" disjoint?
2759 isl_bool
isl_set_is_disjoint(__isl_keep isl_set
*set1
, __isl_keep isl_set
*set2
)
2761 return isl_map_is_disjoint(set1
, set2
);
2764 /* Check if we can combine a given div with lower bound l and upper
2765 * bound u with some other div and if so return that other div.
2766 * Otherwise return -1.
2768 * We first check that
2769 * - the bounds are opposites of each other (except for the constant
2771 * - the bounds do not reference any other div
2772 * - no div is defined in terms of this div
2774 * Let m be the size of the range allowed on the div by the bounds.
2775 * That is, the bounds are of the form
2777 * e <= a <= e + m - 1
2779 * with e some expression in the other variables.
2780 * We look for another div b such that no third div is defined in terms
2781 * of this second div b and such that in any constraint that contains
2782 * a (except for the given lower and upper bound), also contains b
2783 * with a coefficient that is m times that of b.
2784 * That is, all constraints (execpt for the lower and upper bound)
2787 * e + f (a + m b) >= 0
2789 * If so, we return b so that "a + m b" can be replaced by
2790 * a single div "c = a + m b".
2792 static int div_find_coalesce(struct isl_basic_map
*bmap
, int *pairs
,
2793 unsigned div
, unsigned l
, unsigned u
)
2799 if (bmap
->n_div
<= 1)
2801 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
2802 if (isl_seq_first_non_zero(bmap
->ineq
[l
] + 1 + dim
, div
) != -1)
2804 if (isl_seq_first_non_zero(bmap
->ineq
[l
] + 1 + dim
+ div
+ 1,
2805 bmap
->n_div
- div
- 1) != -1)
2807 if (!isl_seq_is_neg(bmap
->ineq
[l
] + 1, bmap
->ineq
[u
] + 1,
2811 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2812 if (isl_int_is_zero(bmap
->div
[i
][0]))
2814 if (!isl_int_is_zero(bmap
->div
[i
][1 + 1 + dim
+ div
]))
2818 isl_int_add(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
2819 if (isl_int_is_neg(bmap
->ineq
[l
][0])) {
2820 isl_int_sub(bmap
->ineq
[l
][0],
2821 bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
2822 bmap
= isl_basic_map_copy(bmap
);
2823 bmap
= isl_basic_map_set_to_empty(bmap
);
2824 isl_basic_map_free(bmap
);
2827 isl_int_add_ui(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], 1);
2828 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2833 for (j
= 0; j
< bmap
->n_div
; ++j
) {
2834 if (isl_int_is_zero(bmap
->div
[j
][0]))
2836 if (!isl_int_is_zero(bmap
->div
[j
][1 + 1 + dim
+ i
]))
2839 if (j
< bmap
->n_div
)
2841 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
2843 if (j
== l
|| j
== u
)
2845 if (isl_int_is_zero(bmap
->ineq
[j
][1 + dim
+ div
]))
2847 if (isl_int_is_zero(bmap
->ineq
[j
][1 + dim
+ i
]))
2849 isl_int_mul(bmap
->ineq
[j
][1 + dim
+ div
],
2850 bmap
->ineq
[j
][1 + dim
+ div
],
2852 valid
= isl_int_eq(bmap
->ineq
[j
][1 + dim
+ div
],
2853 bmap
->ineq
[j
][1 + dim
+ i
]);
2854 isl_int_divexact(bmap
->ineq
[j
][1 + dim
+ div
],
2855 bmap
->ineq
[j
][1 + dim
+ div
],
2860 if (j
< bmap
->n_ineq
)
2865 isl_int_sub_ui(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], 1);
2866 isl_int_sub(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
2870 /* Given a lower and an upper bound on div i, construct an inequality
2871 * that when nonnegative ensures that this pair of bounds always allows
2872 * for an integer value of the given div.
2873 * The lower bound is inequality l, while the upper bound is inequality u.
2874 * The constructed inequality is stored in ineq.
2875 * g, fl, fu are temporary scalars.
2877 * Let the upper bound be
2881 * and the lower bound
2885 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
2888 * - f_u e_l <= f_u f_l g a <= f_l e_u
2890 * Since all variables are integer valued, this is equivalent to
2892 * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
2894 * If this interval is at least f_u f_l g, then it contains at least
2895 * one integer value for a.
2896 * That is, the test constraint is
2898 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
2900 static void construct_test_ineq(struct isl_basic_map
*bmap
, int i
,
2901 int l
, int u
, isl_int
*ineq
, isl_int g
, isl_int fl
, isl_int fu
)
2904 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
2906 isl_int_gcd(g
, bmap
->ineq
[l
][1 + dim
+ i
], bmap
->ineq
[u
][1 + dim
+ i
]);
2907 isl_int_divexact(fl
, bmap
->ineq
[l
][1 + dim
+ i
], g
);
2908 isl_int_divexact(fu
, bmap
->ineq
[u
][1 + dim
+ i
], g
);
2909 isl_int_neg(fu
, fu
);
2910 isl_seq_combine(ineq
, fl
, bmap
->ineq
[u
], fu
, bmap
->ineq
[l
],
2911 1 + dim
+ bmap
->n_div
);
2912 isl_int_add(ineq
[0], ineq
[0], fl
);
2913 isl_int_add(ineq
[0], ineq
[0], fu
);
2914 isl_int_sub_ui(ineq
[0], ineq
[0], 1);
2915 isl_int_mul(g
, g
, fl
);
2916 isl_int_mul(g
, g
, fu
);
2917 isl_int_sub(ineq
[0], ineq
[0], g
);
2920 /* Remove more kinds of divs that are not strictly needed.
2921 * In particular, if all pairs of lower and upper bounds on a div
2922 * are such that they allow at least one integer value of the div,
2923 * the we can eliminate the div using Fourier-Motzkin without
2924 * introducing any spurious solutions.
2926 static struct isl_basic_map
*drop_more_redundant_divs(
2927 struct isl_basic_map
*bmap
, int *pairs
, int n
)
2929 struct isl_tab
*tab
= NULL
;
2930 struct isl_vec
*vec
= NULL
;
2942 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
2943 vec
= isl_vec_alloc(bmap
->ctx
, 1 + dim
+ bmap
->n_div
);
2947 tab
= isl_tab_from_basic_map(bmap
, 0);
2952 enum isl_lp_result res
;
2954 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2957 if (best
>= 0 && pairs
[best
] <= pairs
[i
])
2963 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
2964 if (!isl_int_is_pos(bmap
->ineq
[l
][1 + dim
+ i
]))
2966 for (u
= 0; u
< bmap
->n_ineq
; ++u
) {
2967 if (!isl_int_is_neg(bmap
->ineq
[u
][1 + dim
+ i
]))
2969 construct_test_ineq(bmap
, i
, l
, u
,
2970 vec
->el
, g
, fl
, fu
);
2971 res
= isl_tab_min(tab
, vec
->el
,
2972 bmap
->ctx
->one
, &g
, NULL
, 0);
2973 if (res
== isl_lp_error
)
2975 if (res
== isl_lp_empty
) {
2976 bmap
= isl_basic_map_set_to_empty(bmap
);
2979 if (res
!= isl_lp_ok
|| isl_int_is_neg(g
))
2982 if (u
< bmap
->n_ineq
)
2985 if (l
== bmap
->n_ineq
) {
3005 bmap
= isl_basic_map_remove_dims(bmap
, isl_dim_div
, remove
, 1);
3006 return isl_basic_map_drop_redundant_divs(bmap
);
3009 isl_basic_map_free(bmap
);
3018 /* Given a pair of divs div1 and div2 such that, expect for the lower bound l
3019 * and the upper bound u, div1 always occurs together with div2 in the form
3020 * (div1 + m div2), where m is the constant range on the variable div1
3021 * allowed by l and u, replace the pair div1 and div2 by a single
3022 * div that is equal to div1 + m div2.
3024 * The new div will appear in the location that contains div2.
3025 * We need to modify all constraints that contain
3026 * div2 = (div - div1) / m
3027 * (If a constraint does not contain div2, it will also not contain div1.)
3028 * If the constraint also contains div1, then we know they appear
3029 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
3030 * i.e., the coefficient of div is f.
3032 * Otherwise, we first need to introduce div1 into the constraint.
3041 * A lower bound on div2
3045 * can be replaced by
3047 * (n * (m div 2 + div1) + m t + n f)/g >= 0
3049 * with g = gcd(m,n).
3054 * can be replaced by
3056 * (-n * (m div2 + div1) + m t + n f')/g >= 0
3058 * These constraint are those that we would obtain from eliminating
3059 * div1 using Fourier-Motzkin.
3061 * After all constraints have been modified, we drop the lower and upper
3062 * bound and then drop div1.
3064 static struct isl_basic_map
*coalesce_divs(struct isl_basic_map
*bmap
,
3065 unsigned div1
, unsigned div2
, unsigned l
, unsigned u
)
3070 unsigned dim
, total
;
3073 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
3074 total
= 1 + dim
+ bmap
->n_div
;
3079 isl_int_add(m
, bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
3080 isl_int_add_ui(m
, m
, 1);
3082 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
3083 if (i
== l
|| i
== u
)
3085 if (isl_int_is_zero(bmap
->ineq
[i
][1 + dim
+ div2
]))
3087 if (isl_int_is_zero(bmap
->ineq
[i
][1 + dim
+ div1
])) {
3088 isl_int_gcd(b
, m
, bmap
->ineq
[i
][1 + dim
+ div2
]);
3089 isl_int_divexact(a
, m
, b
);
3090 isl_int_divexact(b
, bmap
->ineq
[i
][1 + dim
+ div2
], b
);
3091 if (isl_int_is_pos(b
)) {
3092 isl_seq_combine(bmap
->ineq
[i
], a
, bmap
->ineq
[i
],
3093 b
, bmap
->ineq
[l
], total
);
3096 isl_seq_combine(bmap
->ineq
[i
], a
, bmap
->ineq
[i
],
3097 b
, bmap
->ineq
[u
], total
);
3100 isl_int_set(bmap
->ineq
[i
][1 + dim
+ div2
],
3101 bmap
->ineq
[i
][1 + dim
+ div1
]);
3102 isl_int_set_si(bmap
->ineq
[i
][1 + dim
+ div1
], 0);
3109 isl_basic_map_drop_inequality(bmap
, l
);
3110 isl_basic_map_drop_inequality(bmap
, u
);
3112 isl_basic_map_drop_inequality(bmap
, u
);
3113 isl_basic_map_drop_inequality(bmap
, l
);
3115 bmap
= isl_basic_map_drop_div(bmap
, div1
);
3119 /* First check if we can coalesce any pair of divs and
3120 * then continue with dropping more redundant divs.
3122 * We loop over all pairs of lower and upper bounds on a div
3123 * with coefficient 1 and -1, respectively, check if there
3124 * is any other div "c" with which we can coalesce the div
3125 * and if so, perform the coalescing.
3127 static struct isl_basic_map
*coalesce_or_drop_more_redundant_divs(
3128 struct isl_basic_map
*bmap
, int *pairs
, int n
)
3133 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
3135 for (i
= 0; i
< bmap
->n_div
; ++i
) {
3138 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
3139 if (!isl_int_is_one(bmap
->ineq
[l
][1 + dim
+ i
]))
3141 for (u
= 0; u
< bmap
->n_ineq
; ++u
) {
3144 if (!isl_int_is_negone(bmap
->ineq
[u
][1+dim
+i
]))
3146 c
= div_find_coalesce(bmap
, pairs
, i
, l
, u
);
3150 bmap
= coalesce_divs(bmap
, i
, c
, l
, u
);
3151 return isl_basic_map_drop_redundant_divs(bmap
);
3156 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
3159 return drop_more_redundant_divs(bmap
, pairs
, n
);
3162 /* Remove divs that are not strictly needed.
3163 * In particular, if a div only occurs positively (or negatively)
3164 * in constraints, then it can simply be dropped.
3165 * Also, if a div occurs in only two constraints and if moreover
3166 * those two constraints are opposite to each other, except for the constant
3167 * term and if the sum of the constant terms is such that for any value
3168 * of the other values, there is always at least one integer value of the
3169 * div, i.e., if one plus this sum is greater than or equal to
3170 * the (absolute value) of the coefficent of the div in the constraints,
3171 * then we can also simply drop the div.
3173 * We skip divs that appear in equalities or in the definition of other divs.
3174 * Divs that appear in the definition of other divs usually occur in at least
3175 * 4 constraints, but the constraints may have been simplified.
3177 * If any divs are left after these simple checks then we move on
3178 * to more complicated cases in drop_more_redundant_divs.
3180 struct isl_basic_map
*isl_basic_map_drop_redundant_divs(
3181 struct isl_basic_map
*bmap
)
3190 if (bmap
->n_div
== 0)
3193 off
= isl_space_dim(bmap
->dim
, isl_dim_all
);
3194 pairs
= isl_calloc_array(bmap
->ctx
, int, bmap
->n_div
);
3198 for (i
= 0; i
< bmap
->n_div
; ++i
) {
3200 int last_pos
, last_neg
;
3204 defined
= !isl_int_is_zero(bmap
->div
[i
][0]);
3205 for (j
= i
; j
< bmap
->n_div
; ++j
)
3206 if (!isl_int_is_zero(bmap
->div
[j
][1 + 1 + off
+ i
]))
3208 if (j
< bmap
->n_div
)
3210 for (j
= 0; j
< bmap
->n_eq
; ++j
)
3211 if (!isl_int_is_zero(bmap
->eq
[j
][1 + off
+ i
]))
3217 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
3218 if (isl_int_is_pos(bmap
->ineq
[j
][1 + off
+ i
])) {
3222 if (isl_int_is_neg(bmap
->ineq
[j
][1 + off
+ i
])) {
3227 pairs
[i
] = pos
* neg
;
3228 if (pairs
[i
] == 0) {
3229 for (j
= bmap
->n_ineq
- 1; j
>= 0; --j
)
3230 if (!isl_int_is_zero(bmap
->ineq
[j
][1+off
+i
]))
3231 isl_basic_map_drop_inequality(bmap
, j
);
3232 bmap
= isl_basic_map_drop_div(bmap
, i
);
3234 return isl_basic_map_drop_redundant_divs(bmap
);
3238 if (!isl_seq_is_neg(bmap
->ineq
[last_pos
] + 1,
3239 bmap
->ineq
[last_neg
] + 1,
3243 isl_int_add(bmap
->ineq
[last_pos
][0],
3244 bmap
->ineq
[last_pos
][0], bmap
->ineq
[last_neg
][0]);
3245 isl_int_add_ui(bmap
->ineq
[last_pos
][0],
3246 bmap
->ineq
[last_pos
][0], 1);
3247 redundant
= isl_int_ge(bmap
->ineq
[last_pos
][0],
3248 bmap
->ineq
[last_pos
][1+off
+i
]);
3249 isl_int_sub_ui(bmap
->ineq
[last_pos
][0],
3250 bmap
->ineq
[last_pos
][0], 1);
3251 isl_int_sub(bmap
->ineq
[last_pos
][0],
3252 bmap
->ineq
[last_pos
][0], bmap
->ineq
[last_neg
][0]);
3255 !ok_to_set_div_from_bound(bmap
, i
, last_pos
)) {
3260 bmap
= set_div_from_lower_bound(bmap
, i
, last_pos
);
3261 bmap
= isl_basic_map_simplify(bmap
);
3263 return isl_basic_map_drop_redundant_divs(bmap
);
3265 if (last_pos
> last_neg
) {
3266 isl_basic_map_drop_inequality(bmap
, last_pos
);
3267 isl_basic_map_drop_inequality(bmap
, last_neg
);
3269 isl_basic_map_drop_inequality(bmap
, last_neg
);
3270 isl_basic_map_drop_inequality(bmap
, last_pos
);
3272 bmap
= isl_basic_map_drop_div(bmap
, i
);
3274 return isl_basic_map_drop_redundant_divs(bmap
);
3278 return coalesce_or_drop_more_redundant_divs(bmap
, pairs
, n
);
3284 isl_basic_map_free(bmap
);
3288 struct isl_basic_set
*isl_basic_set_drop_redundant_divs(
3289 struct isl_basic_set
*bset
)
3291 return (struct isl_basic_set
*)
3292 isl_basic_map_drop_redundant_divs((struct isl_basic_map
*)bset
);
3295 struct isl_map
*isl_map_drop_redundant_divs(struct isl_map
*map
)
3301 for (i
= 0; i
< map
->n
; ++i
) {
3302 map
->p
[i
] = isl_basic_map_drop_redundant_divs(map
->p
[i
]);
3306 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
3313 struct isl_set
*isl_set_drop_redundant_divs(struct isl_set
*set
)
3315 return (struct isl_set
*)
3316 isl_map_drop_redundant_divs((struct isl_map
*)set
);
3319 /* Does "bmap" satisfy any equality that involves more than 2 variables
3320 * and/or has coefficients different from -1 and 1?
3322 static int has_multiple_var_equality(__isl_keep isl_basic_map
*bmap
)
3327 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
3329 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
3332 j
= isl_seq_first_non_zero(bmap
->eq
[i
] + 1, total
);
3335 if (!isl_int_is_one(bmap
->eq
[i
][1 + j
]) &&
3336 !isl_int_is_negone(bmap
->eq
[i
][1 + j
]))
3340 k
= isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + j
, total
- j
);
3344 if (!isl_int_is_one(bmap
->eq
[i
][1 + j
]) &&
3345 !isl_int_is_negone(bmap
->eq
[i
][1 + j
]))
3349 k
= isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + j
, total
- j
);
3357 /* Remove any common factor g from the constraint coefficients in "v".
3358 * The constant term is stored in the first position and is replaced
3359 * by floor(c/g). If any common factor is removed and if this results
3360 * in a tightening of the constraint, then set *tightened.
3362 static __isl_give isl_vec
*normalize_constraint(__isl_take isl_vec
*v
,
3369 ctx
= isl_vec_get_ctx(v
);
3370 isl_seq_gcd(v
->el
+ 1, v
->size
- 1, &ctx
->normalize_gcd
);
3371 if (isl_int_is_zero(ctx
->normalize_gcd
))
3373 if (isl_int_is_one(ctx
->normalize_gcd
))
3378 if (tightened
&& !isl_int_is_divisible_by(v
->el
[0], ctx
->normalize_gcd
))
3380 isl_int_fdiv_q(v
->el
[0], v
->el
[0], ctx
->normalize_gcd
);
3381 isl_seq_scale_down(v
->el
+ 1, v
->el
+ 1, ctx
->normalize_gcd
,
3386 /* If "bmap" is an integer set that satisfies any equality involving
3387 * more than 2 variables and/or has coefficients different from -1 and 1,
3388 * then use variable compression to reduce the coefficients by removing
3389 * any (hidden) common factor.
3390 * In particular, apply the variable compression to each constraint,
3391 * factor out any common factor in the non-constant coefficients and
3392 * then apply the inverse of the compression.
3393 * At the end, we mark the basic map as having reduced constants.
3394 * If this flag is still set on the next invocation of this function,
3395 * then we skip the computation.
3397 * Removing a common factor may result in a tightening of some of
3398 * the constraints. If this happens, then we may end up with two
3399 * opposite inequalities that can be replaced by an equality.
3400 * We therefore call isl_basic_map_detect_inequality_pairs,
3401 * which checks for such pairs of inequalities as well as eliminate_divs_eq
3402 * and isl_basic_map_gauss if such a pair was found.
3404 __isl_give isl_basic_map
*isl_basic_map_reduce_coefficients(
3405 __isl_take isl_basic_map
*bmap
)
3410 isl_mat
*eq
, *T
, *T2
;
3416 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_REDUCED_COEFFICIENTS
))
3418 if (isl_basic_map_is_rational(bmap
))
3420 if (bmap
->n_eq
== 0)
3422 if (!has_multiple_var_equality(bmap
))
3425 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
3426 ctx
= isl_basic_map_get_ctx(bmap
);
3427 v
= isl_vec_alloc(ctx
, 1 + total
);
3429 return isl_basic_map_free(bmap
);
3431 eq
= isl_mat_sub_alloc6(ctx
, bmap
->eq
, 0, bmap
->n_eq
, 0, 1 + total
);
3432 T
= isl_mat_variable_compression(eq
, &T2
);
3435 if (T
->n_col
== 0) {
3439 return isl_basic_map_set_to_empty(bmap
);
3443 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
3444 isl_seq_cpy(v
->el
, bmap
->ineq
[i
], 1 + total
);
3445 v
= isl_vec_mat_product(v
, isl_mat_copy(T
));
3446 v
= normalize_constraint(v
, &tightened
);
3447 v
= isl_vec_mat_product(v
, isl_mat_copy(T2
));
3450 isl_seq_cpy(bmap
->ineq
[i
], v
->el
, 1 + total
);
3457 ISL_F_SET(bmap
, ISL_BASIC_MAP_REDUCED_COEFFICIENTS
);
3462 bmap
= isl_basic_map_detect_inequality_pairs(bmap
, &progress
);
3464 bmap
= eliminate_divs_eq(bmap
, &progress
);
3465 bmap
= isl_basic_map_gauss(bmap
, NULL
);
3474 return isl_basic_map_free(bmap
);
3477 /* Shift the integer division at position "div" of "bmap" by "shift".
3479 * That is, if the integer division has the form
3483 * then replace it by
3485 * floor((f(x) + shift * d)/d) - shift
3487 __isl_give isl_basic_map
*isl_basic_map_shift_div(
3488 __isl_take isl_basic_map
*bmap
, int div
, isl_int shift
)
3496 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
3497 total
-= isl_basic_map_dim(bmap
, isl_dim_div
);
3499 isl_int_addmul(bmap
->div
[div
][1], shift
, bmap
->div
[div
][0]);
3501 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
3502 if (isl_int_is_zero(bmap
->eq
[i
][1 + total
+ div
]))
3504 isl_int_submul(bmap
->eq
[i
][0],
3505 shift
, bmap
->eq
[i
][1 + total
+ div
]);
3507 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
3508 if (isl_int_is_zero(bmap
->ineq
[i
][1 + total
+ div
]))
3510 isl_int_submul(bmap
->ineq
[i
][0],
3511 shift
, bmap
->ineq
[i
][1 + total
+ div
]);
3513 for (i
= 0; i
< bmap
->n_div
; ++i
) {
3514 if (isl_int_is_zero(bmap
->div
[i
][0]))
3516 if (isl_int_is_zero(bmap
->div
[i
][1 + 1 + total
+ div
]))
3518 isl_int_submul(bmap
->div
[i
][1],
3519 shift
, bmap
->div
[i
][1 + 1 + total
+ div
]);