introduce isl_bool and isl_stat return types
[isl.git] / isl_map_simplify.c
blob023c501c2f5578a41374fcefb7c35cd1b02ed330
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2012-2013 Ecole Normale Superieure
4 * Copyright 2014 INRIA Rocquencourt
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, K.U.Leuven, Departement
9 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
11 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
12 * B.P. 105 - 78153 Le Chesnay, France
15 #include <strings.h>
16 #include <isl_ctx_private.h>
17 #include <isl_map_private.h>
18 #include "isl_equalities.h"
19 #include <isl/map.h>
20 #include <isl_seq.h>
21 #include "isl_tab.h"
22 #include <isl_space_private.h>
23 #include <isl_mat_private.h>
24 #include <isl_vec_private.h>
26 static void swap_equality(struct isl_basic_map *bmap, int a, int b)
28 isl_int *t = bmap->eq[a];
29 bmap->eq[a] = bmap->eq[b];
30 bmap->eq[b] = t;
33 static void swap_inequality(struct isl_basic_map *bmap, int a, int b)
35 if (a != b) {
36 isl_int *t = bmap->ineq[a];
37 bmap->ineq[a] = bmap->ineq[b];
38 bmap->ineq[b] = t;
42 static void constraint_drop_vars(isl_int *c, unsigned n, unsigned rem)
44 isl_seq_cpy(c, c + n, rem);
45 isl_seq_clr(c + rem, n);
48 /* Drop n dimensions starting at first.
50 * In principle, this frees up some extra variables as the number
51 * of columns remains constant, but we would have to extend
52 * the div array too as the number of rows in this array is assumed
53 * to be equal to extra.
55 struct isl_basic_set *isl_basic_set_drop_dims(
56 struct isl_basic_set *bset, unsigned first, unsigned n)
58 int i;
60 if (!bset)
61 goto error;
63 isl_assert(bset->ctx, first + n <= bset->dim->n_out, goto error);
65 if (n == 0 && !isl_space_get_tuple_name(bset->dim, isl_dim_set))
66 return bset;
68 bset = isl_basic_set_cow(bset);
69 if (!bset)
70 return NULL;
72 for (i = 0; i < bset->n_eq; ++i)
73 constraint_drop_vars(bset->eq[i]+1+bset->dim->nparam+first, n,
74 (bset->dim->n_out-first-n)+bset->extra);
76 for (i = 0; i < bset->n_ineq; ++i)
77 constraint_drop_vars(bset->ineq[i]+1+bset->dim->nparam+first, n,
78 (bset->dim->n_out-first-n)+bset->extra);
80 for (i = 0; i < bset->n_div; ++i)
81 constraint_drop_vars(bset->div[i]+1+1+bset->dim->nparam+first, n,
82 (bset->dim->n_out-first-n)+bset->extra);
84 bset->dim = isl_space_drop_outputs(bset->dim, first, n);
85 if (!bset->dim)
86 goto error;
88 ISL_F_CLR(bset, ISL_BASIC_SET_NORMALIZED);
89 bset = isl_basic_set_simplify(bset);
90 return isl_basic_set_finalize(bset);
91 error:
92 isl_basic_set_free(bset);
93 return NULL;
96 struct isl_set *isl_set_drop_dims(
97 struct isl_set *set, unsigned first, unsigned n)
99 int i;
101 if (!set)
102 goto error;
104 isl_assert(set->ctx, first + n <= set->dim->n_out, goto error);
106 if (n == 0 && !isl_space_get_tuple_name(set->dim, isl_dim_set))
107 return set;
108 set = isl_set_cow(set);
109 if (!set)
110 goto error;
111 set->dim = isl_space_drop_outputs(set->dim, first, n);
112 if (!set->dim)
113 goto error;
115 for (i = 0; i < set->n; ++i) {
116 set->p[i] = isl_basic_set_drop_dims(set->p[i], first, n);
117 if (!set->p[i])
118 goto error;
121 ISL_F_CLR(set, ISL_SET_NORMALIZED);
122 return set;
123 error:
124 isl_set_free(set);
125 return NULL;
128 /* Move "n" divs starting at "first" to the end of the list of divs.
130 static struct isl_basic_map *move_divs_last(struct isl_basic_map *bmap,
131 unsigned first, unsigned n)
133 isl_int **div;
134 int i;
136 if (first + n == bmap->n_div)
137 return bmap;
139 div = isl_alloc_array(bmap->ctx, isl_int *, n);
140 if (!div)
141 goto error;
142 for (i = 0; i < n; ++i)
143 div[i] = bmap->div[first + i];
144 for (i = 0; i < bmap->n_div - first - n; ++i)
145 bmap->div[first + i] = bmap->div[first + n + i];
146 for (i = 0; i < n; ++i)
147 bmap->div[bmap->n_div - n + i] = div[i];
148 free(div);
149 return bmap;
150 error:
151 isl_basic_map_free(bmap);
152 return NULL;
155 /* Drop "n" dimensions of type "type" starting at "first".
157 * In principle, this frees up some extra variables as the number
158 * of columns remains constant, but we would have to extend
159 * the div array too as the number of rows in this array is assumed
160 * to be equal to extra.
162 struct isl_basic_map *isl_basic_map_drop(struct isl_basic_map *bmap,
163 enum isl_dim_type type, unsigned first, unsigned n)
165 int i;
166 unsigned dim;
167 unsigned offset;
168 unsigned left;
170 if (!bmap)
171 goto error;
173 dim = isl_basic_map_dim(bmap, type);
174 isl_assert(bmap->ctx, first + n <= dim, goto error);
176 if (n == 0 && !isl_space_is_named_or_nested(bmap->dim, type))
177 return bmap;
179 bmap = isl_basic_map_cow(bmap);
180 if (!bmap)
181 return NULL;
183 offset = isl_basic_map_offset(bmap, type) + first;
184 left = isl_basic_map_total_dim(bmap) - (offset - 1) - n;
185 for (i = 0; i < bmap->n_eq; ++i)
186 constraint_drop_vars(bmap->eq[i]+offset, n, left);
188 for (i = 0; i < bmap->n_ineq; ++i)
189 constraint_drop_vars(bmap->ineq[i]+offset, n, left);
191 for (i = 0; i < bmap->n_div; ++i)
192 constraint_drop_vars(bmap->div[i]+1+offset, n, left);
194 if (type == isl_dim_div) {
195 bmap = move_divs_last(bmap, first, n);
196 if (!bmap)
197 goto error;
198 isl_basic_map_free_div(bmap, n);
199 } else
200 bmap->dim = isl_space_drop_dims(bmap->dim, type, first, n);
201 if (!bmap->dim)
202 goto error;
204 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
205 bmap = isl_basic_map_simplify(bmap);
206 return isl_basic_map_finalize(bmap);
207 error:
208 isl_basic_map_free(bmap);
209 return NULL;
212 __isl_give isl_basic_set *isl_basic_set_drop(__isl_take isl_basic_set *bset,
213 enum isl_dim_type type, unsigned first, unsigned n)
215 return (isl_basic_set *)isl_basic_map_drop((isl_basic_map *)bset,
216 type, first, n);
219 struct isl_basic_map *isl_basic_map_drop_inputs(
220 struct isl_basic_map *bmap, unsigned first, unsigned n)
222 return isl_basic_map_drop(bmap, isl_dim_in, first, n);
225 struct isl_map *isl_map_drop(struct isl_map *map,
226 enum isl_dim_type type, unsigned first, unsigned n)
228 int i;
230 if (!map)
231 goto error;
233 isl_assert(map->ctx, first + n <= isl_map_dim(map, type), goto error);
235 if (n == 0 && !isl_space_get_tuple_name(map->dim, type))
236 return map;
237 map = isl_map_cow(map);
238 if (!map)
239 goto error;
240 map->dim = isl_space_drop_dims(map->dim, type, first, n);
241 if (!map->dim)
242 goto error;
244 for (i = 0; i < map->n; ++i) {
245 map->p[i] = isl_basic_map_drop(map->p[i], type, first, n);
246 if (!map->p[i])
247 goto error;
249 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
251 return map;
252 error:
253 isl_map_free(map);
254 return NULL;
257 struct isl_set *isl_set_drop(struct isl_set *set,
258 enum isl_dim_type type, unsigned first, unsigned n)
260 return (isl_set *)isl_map_drop((isl_map *)set, type, first, n);
263 struct isl_map *isl_map_drop_inputs(
264 struct isl_map *map, unsigned first, unsigned n)
266 return isl_map_drop(map, isl_dim_in, first, n);
270 * We don't cow, as the div is assumed to be redundant.
272 static struct isl_basic_map *isl_basic_map_drop_div(
273 struct isl_basic_map *bmap, unsigned div)
275 int i;
276 unsigned pos;
278 if (!bmap)
279 goto error;
281 pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
283 isl_assert(bmap->ctx, div < bmap->n_div, goto error);
285 for (i = 0; i < bmap->n_eq; ++i)
286 constraint_drop_vars(bmap->eq[i]+pos, 1, bmap->extra-div-1);
288 for (i = 0; i < bmap->n_ineq; ++i) {
289 if (!isl_int_is_zero(bmap->ineq[i][pos])) {
290 isl_basic_map_drop_inequality(bmap, i);
291 --i;
292 continue;
294 constraint_drop_vars(bmap->ineq[i]+pos, 1, bmap->extra-div-1);
297 for (i = 0; i < bmap->n_div; ++i)
298 constraint_drop_vars(bmap->div[i]+1+pos, 1, bmap->extra-div-1);
300 if (div != bmap->n_div - 1) {
301 int j;
302 isl_int *t = bmap->div[div];
304 for (j = div; j < bmap->n_div - 1; ++j)
305 bmap->div[j] = bmap->div[j+1];
307 bmap->div[bmap->n_div - 1] = t;
309 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
310 isl_basic_map_free_div(bmap, 1);
312 return bmap;
313 error:
314 isl_basic_map_free(bmap);
315 return NULL;
318 struct isl_basic_map *isl_basic_map_normalize_constraints(
319 struct isl_basic_map *bmap)
321 int i;
322 isl_int gcd;
323 unsigned total = isl_basic_map_total_dim(bmap);
325 if (!bmap)
326 return NULL;
328 isl_int_init(gcd);
329 for (i = bmap->n_eq - 1; i >= 0; --i) {
330 isl_seq_gcd(bmap->eq[i]+1, total, &gcd);
331 if (isl_int_is_zero(gcd)) {
332 if (!isl_int_is_zero(bmap->eq[i][0])) {
333 bmap = isl_basic_map_set_to_empty(bmap);
334 break;
336 isl_basic_map_drop_equality(bmap, i);
337 continue;
339 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
340 isl_int_gcd(gcd, gcd, bmap->eq[i][0]);
341 if (isl_int_is_one(gcd))
342 continue;
343 if (!isl_int_is_divisible_by(bmap->eq[i][0], gcd)) {
344 bmap = isl_basic_map_set_to_empty(bmap);
345 break;
347 isl_seq_scale_down(bmap->eq[i], bmap->eq[i], gcd, 1+total);
350 for (i = bmap->n_ineq - 1; i >= 0; --i) {
351 isl_seq_gcd(bmap->ineq[i]+1, total, &gcd);
352 if (isl_int_is_zero(gcd)) {
353 if (isl_int_is_neg(bmap->ineq[i][0])) {
354 bmap = isl_basic_map_set_to_empty(bmap);
355 break;
357 isl_basic_map_drop_inequality(bmap, i);
358 continue;
360 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
361 isl_int_gcd(gcd, gcd, bmap->ineq[i][0]);
362 if (isl_int_is_one(gcd))
363 continue;
364 isl_int_fdiv_q(bmap->ineq[i][0], bmap->ineq[i][0], gcd);
365 isl_seq_scale_down(bmap->ineq[i]+1, bmap->ineq[i]+1, gcd, total);
367 isl_int_clear(gcd);
369 return bmap;
372 struct isl_basic_set *isl_basic_set_normalize_constraints(
373 struct isl_basic_set *bset)
375 return (struct isl_basic_set *)isl_basic_map_normalize_constraints(
376 (struct isl_basic_map *)bset);
379 /* Remove any common factor in numerator and denominator of the div expression,
380 * not taking into account the constant term.
381 * That is, if the div is of the form
383 * floor((a + m f(x))/(m d))
385 * then replace it by
387 * floor((floor(a/m) + f(x))/d)
389 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
390 * and can therefore not influence the result of the floor.
392 static void normalize_div_expression(__isl_keep isl_basic_map *bmap, int div)
394 unsigned total = isl_basic_map_total_dim(bmap);
395 isl_ctx *ctx = bmap->ctx;
397 if (isl_int_is_zero(bmap->div[div][0]))
398 return;
399 isl_seq_gcd(bmap->div[div] + 2, total, &ctx->normalize_gcd);
400 isl_int_gcd(ctx->normalize_gcd, ctx->normalize_gcd, bmap->div[div][0]);
401 if (isl_int_is_one(ctx->normalize_gcd))
402 return;
403 isl_int_fdiv_q(bmap->div[div][1], bmap->div[div][1],
404 ctx->normalize_gcd);
405 isl_int_divexact(bmap->div[div][0], bmap->div[div][0],
406 ctx->normalize_gcd);
407 isl_seq_scale_down(bmap->div[div] + 2, bmap->div[div] + 2,
408 ctx->normalize_gcd, total);
411 /* Remove any common factor in numerator and denominator of a div expression,
412 * not taking into account the constant term.
413 * That is, look for any div of the form
415 * floor((a + m f(x))/(m d))
417 * and replace it by
419 * floor((floor(a/m) + f(x))/d)
421 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
422 * and can therefore not influence the result of the floor.
424 static __isl_give isl_basic_map *normalize_div_expressions(
425 __isl_take isl_basic_map *bmap)
427 int i;
429 if (!bmap)
430 return NULL;
431 if (bmap->n_div == 0)
432 return bmap;
434 for (i = 0; i < bmap->n_div; ++i)
435 normalize_div_expression(bmap, i);
437 return bmap;
440 /* Assumes divs have been ordered if keep_divs is set.
442 static void eliminate_var_using_equality(struct isl_basic_map *bmap,
443 unsigned pos, isl_int *eq, int keep_divs, int *progress)
445 unsigned total;
446 unsigned space_total;
447 int k;
448 int last_div;
450 total = isl_basic_map_total_dim(bmap);
451 space_total = isl_space_dim(bmap->dim, isl_dim_all);
452 last_div = isl_seq_last_non_zero(eq + 1 + space_total, bmap->n_div);
453 for (k = 0; k < bmap->n_eq; ++k) {
454 if (bmap->eq[k] == eq)
455 continue;
456 if (isl_int_is_zero(bmap->eq[k][1+pos]))
457 continue;
458 if (progress)
459 *progress = 1;
460 isl_seq_elim(bmap->eq[k], eq, 1+pos, 1+total, NULL);
461 isl_seq_normalize(bmap->ctx, bmap->eq[k], 1 + total);
464 for (k = 0; k < bmap->n_ineq; ++k) {
465 if (isl_int_is_zero(bmap->ineq[k][1+pos]))
466 continue;
467 if (progress)
468 *progress = 1;
469 isl_seq_elim(bmap->ineq[k], eq, 1+pos, 1+total, NULL);
470 isl_seq_normalize(bmap->ctx, bmap->ineq[k], 1 + total);
471 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
474 for (k = 0; k < bmap->n_div; ++k) {
475 if (isl_int_is_zero(bmap->div[k][0]))
476 continue;
477 if (isl_int_is_zero(bmap->div[k][1+1+pos]))
478 continue;
479 if (progress)
480 *progress = 1;
481 /* We need to be careful about circular definitions,
482 * so for now we just remove the definition of div k
483 * if the equality contains any divs.
484 * If keep_divs is set, then the divs have been ordered
485 * and we can keep the definition as long as the result
486 * is still ordered.
488 if (last_div == -1 || (keep_divs && last_div < k)) {
489 isl_seq_elim(bmap->div[k]+1, eq,
490 1+pos, 1+total, &bmap->div[k][0]);
491 normalize_div_expression(bmap, k);
492 } else
493 isl_seq_clr(bmap->div[k], 1 + total);
494 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
498 /* Assumes divs have been ordered if keep_divs is set.
500 static void eliminate_div(struct isl_basic_map *bmap, isl_int *eq,
501 unsigned div, int keep_divs)
503 unsigned pos = isl_space_dim(bmap->dim, isl_dim_all) + div;
505 eliminate_var_using_equality(bmap, pos, eq, keep_divs, NULL);
507 isl_basic_map_drop_div(bmap, div);
510 /* Check if elimination of div "div" using equality "eq" would not
511 * result in a div depending on a later div.
513 static int ok_to_eliminate_div(struct isl_basic_map *bmap, isl_int *eq,
514 unsigned div)
516 int k;
517 int last_div;
518 unsigned space_total = isl_space_dim(bmap->dim, isl_dim_all);
519 unsigned pos = space_total + div;
521 last_div = isl_seq_last_non_zero(eq + 1 + space_total, bmap->n_div);
522 if (last_div < 0 || last_div <= div)
523 return 1;
525 for (k = 0; k <= last_div; ++k) {
526 if (isl_int_is_zero(bmap->div[k][0]))
527 return 1;
528 if (!isl_int_is_zero(bmap->div[k][1 + 1 + pos]))
529 return 0;
532 return 1;
535 /* Elimininate divs based on equalities
537 static struct isl_basic_map *eliminate_divs_eq(
538 struct isl_basic_map *bmap, int *progress)
540 int d;
541 int i;
542 int modified = 0;
543 unsigned off;
545 bmap = isl_basic_map_order_divs(bmap);
547 if (!bmap)
548 return NULL;
550 off = 1 + isl_space_dim(bmap->dim, isl_dim_all);
552 for (d = bmap->n_div - 1; d >= 0 ; --d) {
553 for (i = 0; i < bmap->n_eq; ++i) {
554 if (!isl_int_is_one(bmap->eq[i][off + d]) &&
555 !isl_int_is_negone(bmap->eq[i][off + d]))
556 continue;
557 if (!ok_to_eliminate_div(bmap, bmap->eq[i], d))
558 continue;
559 modified = 1;
560 *progress = 1;
561 eliminate_div(bmap, bmap->eq[i], d, 1);
562 isl_basic_map_drop_equality(bmap, i);
563 break;
566 if (modified)
567 return eliminate_divs_eq(bmap, progress);
568 return bmap;
571 /* Elimininate divs based on inequalities
573 static struct isl_basic_map *eliminate_divs_ineq(
574 struct isl_basic_map *bmap, int *progress)
576 int d;
577 int i;
578 unsigned off;
579 struct isl_ctx *ctx;
581 if (!bmap)
582 return NULL;
584 ctx = bmap->ctx;
585 off = 1 + isl_space_dim(bmap->dim, isl_dim_all);
587 for (d = bmap->n_div - 1; d >= 0 ; --d) {
588 for (i = 0; i < bmap->n_eq; ++i)
589 if (!isl_int_is_zero(bmap->eq[i][off + d]))
590 break;
591 if (i < bmap->n_eq)
592 continue;
593 for (i = 0; i < bmap->n_ineq; ++i)
594 if (isl_int_abs_gt(bmap->ineq[i][off + d], ctx->one))
595 break;
596 if (i < bmap->n_ineq)
597 continue;
598 *progress = 1;
599 bmap = isl_basic_map_eliminate_vars(bmap, (off-1)+d, 1);
600 if (!bmap || ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
601 break;
602 bmap = isl_basic_map_drop_div(bmap, d);
603 if (!bmap)
604 break;
606 return bmap;
609 struct isl_basic_map *isl_basic_map_gauss(
610 struct isl_basic_map *bmap, int *progress)
612 int k;
613 int done;
614 int last_var;
615 unsigned total_var;
616 unsigned total;
618 bmap = isl_basic_map_order_divs(bmap);
620 if (!bmap)
621 return NULL;
623 total = isl_basic_map_total_dim(bmap);
624 total_var = total - bmap->n_div;
626 last_var = total - 1;
627 for (done = 0; done < bmap->n_eq; ++done) {
628 for (; last_var >= 0; --last_var) {
629 for (k = done; k < bmap->n_eq; ++k)
630 if (!isl_int_is_zero(bmap->eq[k][1+last_var]))
631 break;
632 if (k < bmap->n_eq)
633 break;
635 if (last_var < 0)
636 break;
637 if (k != done)
638 swap_equality(bmap, k, done);
639 if (isl_int_is_neg(bmap->eq[done][1+last_var]))
640 isl_seq_neg(bmap->eq[done], bmap->eq[done], 1+total);
642 eliminate_var_using_equality(bmap, last_var, bmap->eq[done], 1,
643 progress);
645 if (last_var >= total_var &&
646 isl_int_is_zero(bmap->div[last_var - total_var][0])) {
647 unsigned div = last_var - total_var;
648 isl_seq_neg(bmap->div[div]+1, bmap->eq[done], 1+total);
649 isl_int_set_si(bmap->div[div][1+1+last_var], 0);
650 isl_int_set(bmap->div[div][0],
651 bmap->eq[done][1+last_var]);
652 if (progress)
653 *progress = 1;
654 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
657 if (done == bmap->n_eq)
658 return bmap;
659 for (k = done; k < bmap->n_eq; ++k) {
660 if (isl_int_is_zero(bmap->eq[k][0]))
661 continue;
662 return isl_basic_map_set_to_empty(bmap);
664 isl_basic_map_free_equality(bmap, bmap->n_eq-done);
665 return bmap;
668 struct isl_basic_set *isl_basic_set_gauss(
669 struct isl_basic_set *bset, int *progress)
671 return (struct isl_basic_set*)isl_basic_map_gauss(
672 (struct isl_basic_map *)bset, progress);
676 static unsigned int round_up(unsigned int v)
678 int old_v = v;
680 while (v) {
681 old_v = v;
682 v ^= v & -v;
684 return old_v << 1;
687 static int hash_index(isl_int ***index, unsigned int size, int bits,
688 struct isl_basic_map *bmap, int k)
690 int h;
691 unsigned total = isl_basic_map_total_dim(bmap);
692 uint32_t hash = isl_seq_get_hash_bits(bmap->ineq[k]+1, total, bits);
693 for (h = hash; index[h]; h = (h+1) % size)
694 if (&bmap->ineq[k] != index[h] &&
695 isl_seq_eq(bmap->ineq[k]+1, index[h][0]+1, total))
696 break;
697 return h;
700 static int set_hash_index(isl_int ***index, unsigned int size, int bits,
701 struct isl_basic_set *bset, int k)
703 return hash_index(index, size, bits, (struct isl_basic_map *)bset, k);
706 /* If we can eliminate more than one div, then we need to make
707 * sure we do it from last div to first div, in order not to
708 * change the position of the other divs that still need to
709 * be removed.
711 static struct isl_basic_map *remove_duplicate_divs(
712 struct isl_basic_map *bmap, int *progress)
714 unsigned int size;
715 int *index;
716 int *elim_for;
717 int k, l, h;
718 int bits;
719 struct isl_blk eq;
720 unsigned total_var;
721 unsigned total;
722 struct isl_ctx *ctx;
724 bmap = isl_basic_map_order_divs(bmap);
725 if (!bmap || bmap->n_div <= 1)
726 return bmap;
728 total_var = isl_space_dim(bmap->dim, isl_dim_all);
729 total = total_var + bmap->n_div;
731 ctx = bmap->ctx;
732 for (k = bmap->n_div - 1; k >= 0; --k)
733 if (!isl_int_is_zero(bmap->div[k][0]))
734 break;
735 if (k <= 0)
736 return bmap;
738 size = round_up(4 * bmap->n_div / 3 - 1);
739 if (size == 0)
740 return bmap;
741 elim_for = isl_calloc_array(ctx, int, bmap->n_div);
742 bits = ffs(size) - 1;
743 index = isl_calloc_array(ctx, int, size);
744 if (!elim_for || !index)
745 goto out;
746 eq = isl_blk_alloc(ctx, 1+total);
747 if (isl_blk_is_error(eq))
748 goto out;
750 isl_seq_clr(eq.data, 1+total);
751 index[isl_seq_get_hash_bits(bmap->div[k], 2+total, bits)] = k + 1;
752 for (--k; k >= 0; --k) {
753 uint32_t hash;
755 if (isl_int_is_zero(bmap->div[k][0]))
756 continue;
758 hash = isl_seq_get_hash_bits(bmap->div[k], 2+total, bits);
759 for (h = hash; index[h]; h = (h+1) % size)
760 if (isl_seq_eq(bmap->div[k],
761 bmap->div[index[h]-1], 2+total))
762 break;
763 if (index[h]) {
764 *progress = 1;
765 l = index[h] - 1;
766 elim_for[l] = k + 1;
768 index[h] = k+1;
770 for (l = bmap->n_div - 1; l >= 0; --l) {
771 if (!elim_for[l])
772 continue;
773 k = elim_for[l] - 1;
774 isl_int_set_si(eq.data[1+total_var+k], -1);
775 isl_int_set_si(eq.data[1+total_var+l], 1);
776 eliminate_div(bmap, eq.data, l, 1);
777 isl_int_set_si(eq.data[1+total_var+k], 0);
778 isl_int_set_si(eq.data[1+total_var+l], 0);
781 isl_blk_free(ctx, eq);
782 out:
783 free(index);
784 free(elim_for);
785 return bmap;
788 static int n_pure_div_eq(struct isl_basic_map *bmap)
790 int i, j;
791 unsigned total;
793 total = isl_space_dim(bmap->dim, isl_dim_all);
794 for (i = 0, j = bmap->n_div-1; i < bmap->n_eq; ++i) {
795 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
796 --j;
797 if (j < 0)
798 break;
799 if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total, j) != -1)
800 return 0;
802 return i;
805 /* Normalize divs that appear in equalities.
807 * In particular, we assume that bmap contains some equalities
808 * of the form
810 * a x = m * e_i
812 * and we want to replace the set of e_i by a minimal set and
813 * such that the new e_i have a canonical representation in terms
814 * of the vector x.
815 * If any of the equalities involves more than one divs, then
816 * we currently simply bail out.
818 * Let us first additionally assume that all equalities involve
819 * a div. The equalities then express modulo constraints on the
820 * remaining variables and we can use "parameter compression"
821 * to find a minimal set of constraints. The result is a transformation
823 * x = T(x') = x_0 + G x'
825 * with G a lower-triangular matrix with all elements below the diagonal
826 * non-negative and smaller than the diagonal element on the same row.
827 * We first normalize x_0 by making the same property hold in the affine
828 * T matrix.
829 * The rows i of G with a 1 on the diagonal do not impose any modulo
830 * constraint and simply express x_i = x'_i.
831 * For each of the remaining rows i, we introduce a div and a corresponding
832 * equality. In particular
834 * g_ii e_j = x_i - g_i(x')
836 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
837 * corresponding div (if g_kk != 1).
839 * If there are any equalities not involving any div, then we
840 * first apply a variable compression on the variables x:
842 * x = C x'' x'' = C_2 x
844 * and perform the above parameter compression on A C instead of on A.
845 * The resulting compression is then of the form
847 * x'' = T(x') = x_0 + G x'
849 * and in constructing the new divs and the corresponding equalities,
850 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
851 * by the corresponding row from C_2.
853 static struct isl_basic_map *normalize_divs(
854 struct isl_basic_map *bmap, int *progress)
856 int i, j, k;
857 int total;
858 int div_eq;
859 struct isl_mat *B;
860 struct isl_vec *d;
861 struct isl_mat *T = NULL;
862 struct isl_mat *C = NULL;
863 struct isl_mat *C2 = NULL;
864 isl_int v;
865 int *pos;
866 int dropped, needed;
868 if (!bmap)
869 return NULL;
871 if (bmap->n_div == 0)
872 return bmap;
874 if (bmap->n_eq == 0)
875 return bmap;
877 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS))
878 return bmap;
880 total = isl_space_dim(bmap->dim, isl_dim_all);
881 div_eq = n_pure_div_eq(bmap);
882 if (div_eq == 0)
883 return bmap;
885 if (div_eq < bmap->n_eq) {
886 B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, div_eq,
887 bmap->n_eq - div_eq, 0, 1 + total);
888 C = isl_mat_variable_compression(B, &C2);
889 if (!C || !C2)
890 goto error;
891 if (C->n_col == 0) {
892 bmap = isl_basic_map_set_to_empty(bmap);
893 isl_mat_free(C);
894 isl_mat_free(C2);
895 goto done;
899 d = isl_vec_alloc(bmap->ctx, div_eq);
900 if (!d)
901 goto error;
902 for (i = 0, j = bmap->n_div-1; i < div_eq; ++i) {
903 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
904 --j;
905 isl_int_set(d->block.data[i], bmap->eq[i][1 + total + j]);
907 B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, 0, div_eq, 0, 1 + total);
909 if (C) {
910 B = isl_mat_product(B, C);
911 C = NULL;
914 T = isl_mat_parameter_compression(B, d);
915 if (!T)
916 goto error;
917 if (T->n_col == 0) {
918 bmap = isl_basic_map_set_to_empty(bmap);
919 isl_mat_free(C2);
920 isl_mat_free(T);
921 goto done;
923 isl_int_init(v);
924 for (i = 0; i < T->n_row - 1; ++i) {
925 isl_int_fdiv_q(v, T->row[1 + i][0], T->row[1 + i][1 + i]);
926 if (isl_int_is_zero(v))
927 continue;
928 isl_mat_col_submul(T, 0, v, 1 + i);
930 isl_int_clear(v);
931 pos = isl_alloc_array(bmap->ctx, int, T->n_row);
932 if (!pos)
933 goto error;
934 /* We have to be careful because dropping equalities may reorder them */
935 dropped = 0;
936 for (j = bmap->n_div - 1; j >= 0; --j) {
937 for (i = 0; i < bmap->n_eq; ++i)
938 if (!isl_int_is_zero(bmap->eq[i][1 + total + j]))
939 break;
940 if (i < bmap->n_eq) {
941 bmap = isl_basic_map_drop_div(bmap, j);
942 isl_basic_map_drop_equality(bmap, i);
943 ++dropped;
946 pos[0] = 0;
947 needed = 0;
948 for (i = 1; i < T->n_row; ++i) {
949 if (isl_int_is_one(T->row[i][i]))
950 pos[i] = i;
951 else
952 needed++;
954 if (needed > dropped) {
955 bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim),
956 needed, needed, 0);
957 if (!bmap)
958 goto error;
960 for (i = 1; i < T->n_row; ++i) {
961 if (isl_int_is_one(T->row[i][i]))
962 continue;
963 k = isl_basic_map_alloc_div(bmap);
964 pos[i] = 1 + total + k;
965 isl_seq_clr(bmap->div[k] + 1, 1 + total + bmap->n_div);
966 isl_int_set(bmap->div[k][0], T->row[i][i]);
967 if (C2)
968 isl_seq_cpy(bmap->div[k] + 1, C2->row[i], 1 + total);
969 else
970 isl_int_set_si(bmap->div[k][1 + i], 1);
971 for (j = 0; j < i; ++j) {
972 if (isl_int_is_zero(T->row[i][j]))
973 continue;
974 if (pos[j] < T->n_row && C2)
975 isl_seq_submul(bmap->div[k] + 1, T->row[i][j],
976 C2->row[pos[j]], 1 + total);
977 else
978 isl_int_neg(bmap->div[k][1 + pos[j]],
979 T->row[i][j]);
981 j = isl_basic_map_alloc_equality(bmap);
982 isl_seq_neg(bmap->eq[j], bmap->div[k]+1, 1+total+bmap->n_div);
983 isl_int_set(bmap->eq[j][pos[i]], bmap->div[k][0]);
985 free(pos);
986 isl_mat_free(C2);
987 isl_mat_free(T);
989 if (progress)
990 *progress = 1;
991 done:
992 ISL_F_SET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS);
994 return bmap;
995 error:
996 isl_mat_free(C);
997 isl_mat_free(C2);
998 isl_mat_free(T);
999 return bmap;
1002 static struct isl_basic_map *set_div_from_lower_bound(
1003 struct isl_basic_map *bmap, int div, int ineq)
1005 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1007 isl_seq_neg(bmap->div[div] + 1, bmap->ineq[ineq], total + bmap->n_div);
1008 isl_int_set(bmap->div[div][0], bmap->ineq[ineq][total + div]);
1009 isl_int_add(bmap->div[div][1], bmap->div[div][1], bmap->div[div][0]);
1010 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1011 isl_int_set_si(bmap->div[div][1 + total + div], 0);
1013 return bmap;
1016 /* Check whether it is ok to define a div based on an inequality.
1017 * To avoid the introduction of circular definitions of divs, we
1018 * do not allow such a definition if the resulting expression would refer to
1019 * any other undefined divs or if any known div is defined in
1020 * terms of the unknown div.
1022 static int ok_to_set_div_from_bound(struct isl_basic_map *bmap,
1023 int div, int ineq)
1025 int j;
1026 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1028 /* Not defined in terms of unknown divs */
1029 for (j = 0; j < bmap->n_div; ++j) {
1030 if (div == j)
1031 continue;
1032 if (isl_int_is_zero(bmap->ineq[ineq][total + j]))
1033 continue;
1034 if (isl_int_is_zero(bmap->div[j][0]))
1035 return 0;
1038 /* No other div defined in terms of this one => avoid loops */
1039 for (j = 0; j < bmap->n_div; ++j) {
1040 if (div == j)
1041 continue;
1042 if (isl_int_is_zero(bmap->div[j][0]))
1043 continue;
1044 if (!isl_int_is_zero(bmap->div[j][1 + total + div]))
1045 return 0;
1048 return 1;
1051 /* Would an expression for div "div" based on inequality "ineq" of "bmap"
1052 * be a better expression than the current one?
1054 * If we do not have any expression yet, then any expression would be better.
1055 * Otherwise we check if the last variable involved in the inequality
1056 * (disregarding the div that it would define) is in an earlier position
1057 * than the last variable involved in the current div expression.
1059 static int better_div_constraint(__isl_keep isl_basic_map *bmap,
1060 int div, int ineq)
1062 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1063 int last_div;
1064 int last_ineq;
1066 if (isl_int_is_zero(bmap->div[div][0]))
1067 return 1;
1069 if (isl_seq_last_non_zero(bmap->ineq[ineq] + total + div + 1,
1070 bmap->n_div - (div + 1)) >= 0)
1071 return 0;
1073 last_ineq = isl_seq_last_non_zero(bmap->ineq[ineq], total + div);
1074 last_div = isl_seq_last_non_zero(bmap->div[div] + 1,
1075 total + bmap->n_div);
1077 return last_ineq < last_div;
1080 /* Given two constraints "k" and "l" that are opposite to each other,
1081 * except for the constant term, check if we can use them
1082 * to obtain an expression for one of the hitherto unknown divs or
1083 * a "better" expression for a div for which we already have an expression.
1084 * "sum" is the sum of the constant terms of the constraints.
1085 * If this sum is strictly smaller than the coefficient of one
1086 * of the divs, then this pair can be used define the div.
1087 * To avoid the introduction of circular definitions of divs, we
1088 * do not use the pair if the resulting expression would refer to
1089 * any other undefined divs or if any known div is defined in
1090 * terms of the unknown div.
1092 static struct isl_basic_map *check_for_div_constraints(
1093 struct isl_basic_map *bmap, int k, int l, isl_int sum, int *progress)
1095 int i;
1096 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1098 for (i = 0; i < bmap->n_div; ++i) {
1099 if (isl_int_is_zero(bmap->ineq[k][total + i]))
1100 continue;
1101 if (isl_int_abs_ge(sum, bmap->ineq[k][total + i]))
1102 continue;
1103 if (!better_div_constraint(bmap, i, k))
1104 continue;
1105 if (!ok_to_set_div_from_bound(bmap, i, k))
1106 break;
1107 if (isl_int_is_pos(bmap->ineq[k][total + i]))
1108 bmap = set_div_from_lower_bound(bmap, i, k);
1109 else
1110 bmap = set_div_from_lower_bound(bmap, i, l);
1111 if (progress)
1112 *progress = 1;
1113 break;
1115 return bmap;
1118 __isl_give isl_basic_map *isl_basic_map_remove_duplicate_constraints(
1119 __isl_take isl_basic_map *bmap, int *progress, int detect_divs)
1121 unsigned int size;
1122 isl_int ***index;
1123 int k, l, h;
1124 int bits;
1125 unsigned total = isl_basic_map_total_dim(bmap);
1126 isl_int sum;
1127 isl_ctx *ctx;
1129 if (!bmap || bmap->n_ineq <= 1)
1130 return bmap;
1132 size = round_up(4 * (bmap->n_ineq+1) / 3 - 1);
1133 if (size == 0)
1134 return bmap;
1135 bits = ffs(size) - 1;
1136 ctx = isl_basic_map_get_ctx(bmap);
1137 index = isl_calloc_array(ctx, isl_int **, size);
1138 if (!index)
1139 return bmap;
1141 index[isl_seq_get_hash_bits(bmap->ineq[0]+1, total, bits)] = &bmap->ineq[0];
1142 for (k = 1; k < bmap->n_ineq; ++k) {
1143 h = hash_index(index, size, bits, bmap, k);
1144 if (!index[h]) {
1145 index[h] = &bmap->ineq[k];
1146 continue;
1148 if (progress)
1149 *progress = 1;
1150 l = index[h] - &bmap->ineq[0];
1151 if (isl_int_lt(bmap->ineq[k][0], bmap->ineq[l][0]))
1152 swap_inequality(bmap, k, l);
1153 isl_basic_map_drop_inequality(bmap, k);
1154 --k;
1156 isl_int_init(sum);
1157 for (k = 0; k < bmap->n_ineq-1; ++k) {
1158 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1159 h = hash_index(index, size, bits, bmap, k);
1160 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1161 if (!index[h])
1162 continue;
1163 l = index[h] - &bmap->ineq[0];
1164 isl_int_add(sum, bmap->ineq[k][0], bmap->ineq[l][0]);
1165 if (isl_int_is_pos(sum)) {
1166 if (detect_divs)
1167 bmap = check_for_div_constraints(bmap, k, l,
1168 sum, progress);
1169 continue;
1171 if (isl_int_is_zero(sum)) {
1172 /* We need to break out of the loop after these
1173 * changes since the contents of the hash
1174 * will no longer be valid.
1175 * Plus, we probably we want to regauss first.
1177 if (progress)
1178 *progress = 1;
1179 isl_basic_map_drop_inequality(bmap, l);
1180 isl_basic_map_inequality_to_equality(bmap, k);
1181 } else
1182 bmap = isl_basic_map_set_to_empty(bmap);
1183 break;
1185 isl_int_clear(sum);
1187 free(index);
1188 return bmap;
1191 /* Detect all pairs of inequalities that form an equality.
1193 * isl_basic_map_remove_duplicate_constraints detects at most one such pair.
1194 * Call it repeatedly while it is making progress.
1196 __isl_give isl_basic_map *isl_basic_map_detect_inequality_pairs(
1197 __isl_take isl_basic_map *bmap, int *progress)
1199 int duplicate;
1201 do {
1202 duplicate = 0;
1203 bmap = isl_basic_map_remove_duplicate_constraints(bmap,
1204 &duplicate, 0);
1205 if (progress && duplicate)
1206 *progress = 1;
1207 } while (duplicate);
1209 return bmap;
1212 /* Eliminate knowns divs from constraints where they appear with
1213 * a (positive or negative) unit coefficient.
1215 * That is, replace
1217 * floor(e/m) + f >= 0
1219 * by
1221 * e + m f >= 0
1223 * and
1225 * -floor(e/m) + f >= 0
1227 * by
1229 * -e + m f + m - 1 >= 0
1231 * The first conversion is valid because floor(e/m) >= -f is equivalent
1232 * to e/m >= -f because -f is an integral expression.
1233 * The second conversion follows from the fact that
1235 * -floor(e/m) = ceil(-e/m) = floor((-e + m - 1)/m)
1238 * Note that one of the div constraints may have been eliminated
1239 * due to being redundant with respect to the constraint that is
1240 * being modified by this function. The modified constraint may
1241 * no longer imply this div constraint, so we add it back to make
1242 * sure we do not lose any information.
1244 * We skip integral divs, i.e., those with denominator 1, as we would
1245 * risk eliminating the div from the div constraints. We do not need
1246 * to handle those divs here anyway since the div constraints will turn
1247 * out to form an equality and this equality can then be use to eliminate
1248 * the div from all constraints.
1250 static __isl_give isl_basic_map *eliminate_unit_divs(
1251 __isl_take isl_basic_map *bmap, int *progress)
1253 int i, j;
1254 isl_ctx *ctx;
1255 unsigned total;
1257 if (!bmap)
1258 return NULL;
1260 ctx = isl_basic_map_get_ctx(bmap);
1261 total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1263 for (i = 0; i < bmap->n_div; ++i) {
1264 if (isl_int_is_zero(bmap->div[i][0]))
1265 continue;
1266 if (isl_int_is_one(bmap->div[i][0]))
1267 continue;
1268 for (j = 0; j < bmap->n_ineq; ++j) {
1269 int s;
1271 if (!isl_int_is_one(bmap->ineq[j][total + i]) &&
1272 !isl_int_is_negone(bmap->ineq[j][total + i]))
1273 continue;
1275 *progress = 1;
1277 s = isl_int_sgn(bmap->ineq[j][total + i]);
1278 isl_int_set_si(bmap->ineq[j][total + i], 0);
1279 if (s < 0)
1280 isl_seq_combine(bmap->ineq[j],
1281 ctx->negone, bmap->div[i] + 1,
1282 bmap->div[i][0], bmap->ineq[j],
1283 total + bmap->n_div);
1284 else
1285 isl_seq_combine(bmap->ineq[j],
1286 ctx->one, bmap->div[i] + 1,
1287 bmap->div[i][0], bmap->ineq[j],
1288 total + bmap->n_div);
1289 if (s < 0) {
1290 isl_int_add(bmap->ineq[j][0],
1291 bmap->ineq[j][0], bmap->div[i][0]);
1292 isl_int_sub_ui(bmap->ineq[j][0],
1293 bmap->ineq[j][0], 1);
1296 bmap = isl_basic_map_extend_constraints(bmap, 0, 1);
1297 if (isl_basic_map_add_div_constraint(bmap, i, s) < 0)
1298 return isl_basic_map_free(bmap);
1302 return bmap;
1305 struct isl_basic_map *isl_basic_map_simplify(struct isl_basic_map *bmap)
1307 int progress = 1;
1308 if (!bmap)
1309 return NULL;
1310 while (progress) {
1311 progress = 0;
1312 if (!bmap)
1313 break;
1314 if (isl_basic_map_plain_is_empty(bmap))
1315 break;
1316 bmap = isl_basic_map_normalize_constraints(bmap);
1317 bmap = normalize_div_expressions(bmap);
1318 bmap = remove_duplicate_divs(bmap, &progress);
1319 bmap = eliminate_unit_divs(bmap, &progress);
1320 bmap = eliminate_divs_eq(bmap, &progress);
1321 bmap = eliminate_divs_ineq(bmap, &progress);
1322 bmap = isl_basic_map_gauss(bmap, &progress);
1323 /* requires equalities in normal form */
1324 bmap = normalize_divs(bmap, &progress);
1325 bmap = isl_basic_map_remove_duplicate_constraints(bmap,
1326 &progress, 1);
1327 if (bmap && progress)
1328 ISL_F_CLR(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS);
1330 return bmap;
1333 struct isl_basic_set *isl_basic_set_simplify(struct isl_basic_set *bset)
1335 return (struct isl_basic_set *)
1336 isl_basic_map_simplify((struct isl_basic_map *)bset);
1340 int isl_basic_map_is_div_constraint(__isl_keep isl_basic_map *bmap,
1341 isl_int *constraint, unsigned div)
1343 unsigned pos;
1345 if (!bmap)
1346 return -1;
1348 pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
1350 if (isl_int_eq(constraint[pos], bmap->div[div][0])) {
1351 int neg;
1352 isl_int_sub(bmap->div[div][1],
1353 bmap->div[div][1], bmap->div[div][0]);
1354 isl_int_add_ui(bmap->div[div][1], bmap->div[div][1], 1);
1355 neg = isl_seq_is_neg(constraint, bmap->div[div]+1, pos);
1356 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1357 isl_int_add(bmap->div[div][1],
1358 bmap->div[div][1], bmap->div[div][0]);
1359 if (!neg)
1360 return 0;
1361 if (isl_seq_first_non_zero(constraint+pos+1,
1362 bmap->n_div-div-1) != -1)
1363 return 0;
1364 } else if (isl_int_abs_eq(constraint[pos], bmap->div[div][0])) {
1365 if (!isl_seq_eq(constraint, bmap->div[div]+1, pos))
1366 return 0;
1367 if (isl_seq_first_non_zero(constraint+pos+1,
1368 bmap->n_div-div-1) != -1)
1369 return 0;
1370 } else
1371 return 0;
1373 return 1;
1376 int isl_basic_set_is_div_constraint(__isl_keep isl_basic_set *bset,
1377 isl_int *constraint, unsigned div)
1379 return isl_basic_map_is_div_constraint(bset, constraint, div);
1383 /* If the only constraints a div d=floor(f/m)
1384 * appears in are its two defining constraints
1386 * f - m d >=0
1387 * -(f - (m - 1)) + m d >= 0
1389 * then it can safely be removed.
1391 static int div_is_redundant(struct isl_basic_map *bmap, int div)
1393 int i;
1394 unsigned pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
1396 for (i = 0; i < bmap->n_eq; ++i)
1397 if (!isl_int_is_zero(bmap->eq[i][pos]))
1398 return 0;
1400 for (i = 0; i < bmap->n_ineq; ++i) {
1401 if (isl_int_is_zero(bmap->ineq[i][pos]))
1402 continue;
1403 if (!isl_basic_map_is_div_constraint(bmap, bmap->ineq[i], div))
1404 return 0;
1407 for (i = 0; i < bmap->n_div; ++i) {
1408 if (isl_int_is_zero(bmap->div[i][0]))
1409 continue;
1410 if (!isl_int_is_zero(bmap->div[i][1+pos]))
1411 return 0;
1414 return 1;
1418 * Remove divs that don't occur in any of the constraints or other divs.
1419 * These can arise when dropping constraints from a basic map or
1420 * when the divs of a basic map have been temporarily aligned
1421 * with the divs of another basic map.
1423 static struct isl_basic_map *remove_redundant_divs(struct isl_basic_map *bmap)
1425 int i;
1427 if (!bmap)
1428 return NULL;
1430 for (i = bmap->n_div-1; i >= 0; --i) {
1431 if (!div_is_redundant(bmap, i))
1432 continue;
1433 bmap = isl_basic_map_drop_div(bmap, i);
1435 return bmap;
1438 struct isl_basic_map *isl_basic_map_finalize(struct isl_basic_map *bmap)
1440 bmap = remove_redundant_divs(bmap);
1441 if (!bmap)
1442 return NULL;
1443 ISL_F_SET(bmap, ISL_BASIC_SET_FINAL);
1444 return bmap;
1447 struct isl_basic_set *isl_basic_set_finalize(struct isl_basic_set *bset)
1449 return (struct isl_basic_set *)
1450 isl_basic_map_finalize((struct isl_basic_map *)bset);
1453 struct isl_set *isl_set_finalize(struct isl_set *set)
1455 int i;
1457 if (!set)
1458 return NULL;
1459 for (i = 0; i < set->n; ++i) {
1460 set->p[i] = isl_basic_set_finalize(set->p[i]);
1461 if (!set->p[i])
1462 goto error;
1464 return set;
1465 error:
1466 isl_set_free(set);
1467 return NULL;
1470 struct isl_map *isl_map_finalize(struct isl_map *map)
1472 int i;
1474 if (!map)
1475 return NULL;
1476 for (i = 0; i < map->n; ++i) {
1477 map->p[i] = isl_basic_map_finalize(map->p[i]);
1478 if (!map->p[i])
1479 goto error;
1481 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
1482 return map;
1483 error:
1484 isl_map_free(map);
1485 return NULL;
1489 /* Remove definition of any div that is defined in terms of the given variable.
1490 * The div itself is not removed. Functions such as
1491 * eliminate_divs_ineq depend on the other divs remaining in place.
1493 static struct isl_basic_map *remove_dependent_vars(struct isl_basic_map *bmap,
1494 int pos)
1496 int i;
1498 if (!bmap)
1499 return NULL;
1501 for (i = 0; i < bmap->n_div; ++i) {
1502 if (isl_int_is_zero(bmap->div[i][0]))
1503 continue;
1504 if (isl_int_is_zero(bmap->div[i][1+1+pos]))
1505 continue;
1506 isl_int_set_si(bmap->div[i][0], 0);
1508 return bmap;
1511 /* Eliminate the specified variables from the constraints using
1512 * Fourier-Motzkin. The variables themselves are not removed.
1514 struct isl_basic_map *isl_basic_map_eliminate_vars(
1515 struct isl_basic_map *bmap, unsigned pos, unsigned n)
1517 int d;
1518 int i, j, k;
1519 unsigned total;
1520 int need_gauss = 0;
1522 if (n == 0)
1523 return bmap;
1524 if (!bmap)
1525 return NULL;
1526 total = isl_basic_map_total_dim(bmap);
1528 bmap = isl_basic_map_cow(bmap);
1529 for (d = pos + n - 1; d >= 0 && d >= pos; --d)
1530 bmap = remove_dependent_vars(bmap, d);
1531 if (!bmap)
1532 return NULL;
1534 for (d = pos + n - 1;
1535 d >= 0 && d >= total - bmap->n_div && d >= pos; --d)
1536 isl_seq_clr(bmap->div[d-(total-bmap->n_div)], 2+total);
1537 for (d = pos + n - 1; d >= 0 && d >= pos; --d) {
1538 int n_lower, n_upper;
1539 if (!bmap)
1540 return NULL;
1541 for (i = 0; i < bmap->n_eq; ++i) {
1542 if (isl_int_is_zero(bmap->eq[i][1+d]))
1543 continue;
1544 eliminate_var_using_equality(bmap, d, bmap->eq[i], 0, NULL);
1545 isl_basic_map_drop_equality(bmap, i);
1546 need_gauss = 1;
1547 break;
1549 if (i < bmap->n_eq)
1550 continue;
1551 n_lower = 0;
1552 n_upper = 0;
1553 for (i = 0; i < bmap->n_ineq; ++i) {
1554 if (isl_int_is_pos(bmap->ineq[i][1+d]))
1555 n_lower++;
1556 else if (isl_int_is_neg(bmap->ineq[i][1+d]))
1557 n_upper++;
1559 bmap = isl_basic_map_extend_constraints(bmap,
1560 0, n_lower * n_upper);
1561 if (!bmap)
1562 goto error;
1563 for (i = bmap->n_ineq - 1; i >= 0; --i) {
1564 int last;
1565 if (isl_int_is_zero(bmap->ineq[i][1+d]))
1566 continue;
1567 last = -1;
1568 for (j = 0; j < i; ++j) {
1569 if (isl_int_is_zero(bmap->ineq[j][1+d]))
1570 continue;
1571 last = j;
1572 if (isl_int_sgn(bmap->ineq[i][1+d]) ==
1573 isl_int_sgn(bmap->ineq[j][1+d]))
1574 continue;
1575 k = isl_basic_map_alloc_inequality(bmap);
1576 if (k < 0)
1577 goto error;
1578 isl_seq_cpy(bmap->ineq[k], bmap->ineq[i],
1579 1+total);
1580 isl_seq_elim(bmap->ineq[k], bmap->ineq[j],
1581 1+d, 1+total, NULL);
1583 isl_basic_map_drop_inequality(bmap, i);
1584 i = last + 1;
1586 if (n_lower > 0 && n_upper > 0) {
1587 bmap = isl_basic_map_normalize_constraints(bmap);
1588 bmap = isl_basic_map_remove_duplicate_constraints(bmap,
1589 NULL, 0);
1590 bmap = isl_basic_map_gauss(bmap, NULL);
1591 bmap = isl_basic_map_remove_redundancies(bmap);
1592 need_gauss = 0;
1593 if (!bmap)
1594 goto error;
1595 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
1596 break;
1599 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
1600 if (need_gauss)
1601 bmap = isl_basic_map_gauss(bmap, NULL);
1602 return bmap;
1603 error:
1604 isl_basic_map_free(bmap);
1605 return NULL;
1608 struct isl_basic_set *isl_basic_set_eliminate_vars(
1609 struct isl_basic_set *bset, unsigned pos, unsigned n)
1611 return (struct isl_basic_set *)isl_basic_map_eliminate_vars(
1612 (struct isl_basic_map *)bset, pos, n);
1615 /* Eliminate the specified n dimensions starting at first from the
1616 * constraints, without removing the dimensions from the space.
1617 * If the set is rational, the dimensions are eliminated using Fourier-Motzkin.
1618 * Otherwise, they are projected out and the original space is restored.
1620 __isl_give isl_basic_map *isl_basic_map_eliminate(
1621 __isl_take isl_basic_map *bmap,
1622 enum isl_dim_type type, unsigned first, unsigned n)
1624 isl_space *space;
1626 if (!bmap)
1627 return NULL;
1628 if (n == 0)
1629 return bmap;
1631 if (first + n > isl_basic_map_dim(bmap, type) || first + n < first)
1632 isl_die(bmap->ctx, isl_error_invalid,
1633 "index out of bounds", goto error);
1635 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) {
1636 first += isl_basic_map_offset(bmap, type) - 1;
1637 bmap = isl_basic_map_eliminate_vars(bmap, first, n);
1638 return isl_basic_map_finalize(bmap);
1641 space = isl_basic_map_get_space(bmap);
1642 bmap = isl_basic_map_project_out(bmap, type, first, n);
1643 bmap = isl_basic_map_insert_dims(bmap, type, first, n);
1644 bmap = isl_basic_map_reset_space(bmap, space);
1645 return bmap;
1646 error:
1647 isl_basic_map_free(bmap);
1648 return NULL;
1651 __isl_give isl_basic_set *isl_basic_set_eliminate(
1652 __isl_take isl_basic_set *bset,
1653 enum isl_dim_type type, unsigned first, unsigned n)
1655 return isl_basic_map_eliminate(bset, type, first, n);
1658 /* Don't assume equalities are in order, because align_divs
1659 * may have changed the order of the divs.
1661 static void compute_elimination_index(struct isl_basic_map *bmap, int *elim)
1663 int d, i;
1664 unsigned total;
1666 total = isl_space_dim(bmap->dim, isl_dim_all);
1667 for (d = 0; d < total; ++d)
1668 elim[d] = -1;
1669 for (i = 0; i < bmap->n_eq; ++i) {
1670 for (d = total - 1; d >= 0; --d) {
1671 if (isl_int_is_zero(bmap->eq[i][1+d]))
1672 continue;
1673 elim[d] = i;
1674 break;
1679 static void set_compute_elimination_index(struct isl_basic_set *bset, int *elim)
1681 compute_elimination_index((struct isl_basic_map *)bset, elim);
1684 static int reduced_using_equalities(isl_int *dst, isl_int *src,
1685 struct isl_basic_map *bmap, int *elim)
1687 int d;
1688 int copied = 0;
1689 unsigned total;
1691 total = isl_space_dim(bmap->dim, isl_dim_all);
1692 for (d = total - 1; d >= 0; --d) {
1693 if (isl_int_is_zero(src[1+d]))
1694 continue;
1695 if (elim[d] == -1)
1696 continue;
1697 if (!copied) {
1698 isl_seq_cpy(dst, src, 1 + total);
1699 copied = 1;
1701 isl_seq_elim(dst, bmap->eq[elim[d]], 1 + d, 1 + total, NULL);
1703 return copied;
1706 static int set_reduced_using_equalities(isl_int *dst, isl_int *src,
1707 struct isl_basic_set *bset, int *elim)
1709 return reduced_using_equalities(dst, src,
1710 (struct isl_basic_map *)bset, elim);
1713 static struct isl_basic_set *isl_basic_set_reduce_using_equalities(
1714 struct isl_basic_set *bset, struct isl_basic_set *context)
1716 int i;
1717 int *elim;
1719 if (!bset || !context)
1720 goto error;
1722 if (context->n_eq == 0) {
1723 isl_basic_set_free(context);
1724 return bset;
1727 bset = isl_basic_set_cow(bset);
1728 if (!bset)
1729 goto error;
1731 elim = isl_alloc_array(bset->ctx, int, isl_basic_set_n_dim(bset));
1732 if (!elim)
1733 goto error;
1734 set_compute_elimination_index(context, elim);
1735 for (i = 0; i < bset->n_eq; ++i)
1736 set_reduced_using_equalities(bset->eq[i], bset->eq[i],
1737 context, elim);
1738 for (i = 0; i < bset->n_ineq; ++i)
1739 set_reduced_using_equalities(bset->ineq[i], bset->ineq[i],
1740 context, elim);
1741 isl_basic_set_free(context);
1742 free(elim);
1743 bset = isl_basic_set_simplify(bset);
1744 bset = isl_basic_set_finalize(bset);
1745 return bset;
1746 error:
1747 isl_basic_set_free(bset);
1748 isl_basic_set_free(context);
1749 return NULL;
1752 static struct isl_basic_set *remove_shifted_constraints(
1753 struct isl_basic_set *bset, struct isl_basic_set *context)
1755 unsigned int size;
1756 isl_int ***index;
1757 int bits;
1758 int k, h, l;
1759 isl_ctx *ctx;
1761 if (!bset || !context)
1762 return bset;
1764 size = round_up(4 * (context->n_ineq+1) / 3 - 1);
1765 if (size == 0)
1766 return bset;
1767 bits = ffs(size) - 1;
1768 ctx = isl_basic_set_get_ctx(bset);
1769 index = isl_calloc_array(ctx, isl_int **, size);
1770 if (!index)
1771 return bset;
1773 for (k = 0; k < context->n_ineq; ++k) {
1774 h = set_hash_index(index, size, bits, context, k);
1775 index[h] = &context->ineq[k];
1777 for (k = 0; k < bset->n_ineq; ++k) {
1778 h = set_hash_index(index, size, bits, bset, k);
1779 if (!index[h])
1780 continue;
1781 l = index[h] - &context->ineq[0];
1782 if (isl_int_lt(bset->ineq[k][0], context->ineq[l][0]))
1783 continue;
1784 bset = isl_basic_set_cow(bset);
1785 if (!bset)
1786 goto error;
1787 isl_basic_set_drop_inequality(bset, k);
1788 --k;
1790 free(index);
1791 return bset;
1792 error:
1793 free(index);
1794 return bset;
1797 /* Remove constraints from "bmap" that are identical to constraints
1798 * in "context" or that are more relaxed (greater constant term).
1800 * We perform the test for shifted copies on the pure constraints
1801 * in remove_shifted_constraints.
1803 static __isl_give isl_basic_map *isl_basic_map_remove_shifted_constraints(
1804 __isl_take isl_basic_map *bmap, __isl_take isl_basic_map *context)
1806 isl_basic_set *bset, *bset_context;
1808 if (!bmap || !context)
1809 goto error;
1811 if (bmap->n_ineq == 0 || context->n_ineq == 0) {
1812 isl_basic_map_free(context);
1813 return bmap;
1816 context = isl_basic_map_align_divs(context, bmap);
1817 bmap = isl_basic_map_align_divs(bmap, context);
1819 bset = isl_basic_map_underlying_set(isl_basic_map_copy(bmap));
1820 bset_context = isl_basic_map_underlying_set(context);
1821 bset = remove_shifted_constraints(bset, bset_context);
1822 isl_basic_set_free(bset_context);
1824 bmap = isl_basic_map_overlying_set(bset, bmap);
1826 return bmap;
1827 error:
1828 isl_basic_map_free(bmap);
1829 isl_basic_map_free(context);
1830 return NULL;
1833 /* Does the (linear part of a) constraint "c" involve any of the "len"
1834 * "relevant" dimensions?
1836 static int is_related(isl_int *c, int len, int *relevant)
1838 int i;
1840 for (i = 0; i < len; ++i) {
1841 if (!relevant[i])
1842 continue;
1843 if (!isl_int_is_zero(c[i]))
1844 return 1;
1847 return 0;
1850 /* Drop constraints from "bset" that do not involve any of
1851 * the dimensions marked "relevant".
1853 static __isl_give isl_basic_set *drop_unrelated_constraints(
1854 __isl_take isl_basic_set *bset, int *relevant)
1856 int i, dim;
1858 dim = isl_basic_set_dim(bset, isl_dim_set);
1859 for (i = 0; i < dim; ++i)
1860 if (!relevant[i])
1861 break;
1862 if (i >= dim)
1863 return bset;
1865 for (i = bset->n_eq - 1; i >= 0; --i)
1866 if (!is_related(bset->eq[i] + 1, dim, relevant))
1867 isl_basic_set_drop_equality(bset, i);
1869 for (i = bset->n_ineq - 1; i >= 0; --i)
1870 if (!is_related(bset->ineq[i] + 1, dim, relevant))
1871 isl_basic_set_drop_inequality(bset, i);
1873 return bset;
1876 /* Update the groups in "group" based on the (linear part of a) constraint "c".
1878 * In particular, for any variable involved in the constraint,
1879 * find the actual group id from before and replace the group
1880 * of the corresponding variable by the minimal group of all
1881 * the variables involved in the constraint considered so far
1882 * (if this minimum is smaller) or replace the minimum by this group
1883 * (if the minimum is larger).
1885 * At the end, all the variables in "c" will (indirectly) point
1886 * to the minimal of the groups that they referred to originally.
1888 static void update_groups(int dim, int *group, isl_int *c)
1890 int j;
1891 int min = dim;
1893 for (j = 0; j < dim; ++j) {
1894 if (isl_int_is_zero(c[j]))
1895 continue;
1896 while (group[j] >= 0 && group[group[j]] != group[j])
1897 group[j] = group[group[j]];
1898 if (group[j] == min)
1899 continue;
1900 if (group[j] < min) {
1901 if (min >= 0 && min < dim)
1902 group[min] = group[j];
1903 min = group[j];
1904 } else
1905 group[group[j]] = min;
1909 /* Drop constraints from "context" that are irrelevant for computing
1910 * the gist of "bset".
1912 * In particular, drop constraints in variables that are not related
1913 * to any of the variables involved in the constraints of "bset"
1914 * in the sense that there is no sequence of constraints that connects them.
1916 * We construct groups of variables that collect variables that
1917 * (indirectly) appear in some common constraint of "context".
1918 * Each group is identified by the first variable in the group,
1919 * except for the special group of variables that appear in "bset"
1920 * (or are related to those variables), which is identified by -1.
1921 * If group[i] is equal to i (or -1), then the group of i is i (or -1),
1922 * otherwise the group of i is the group of group[i].
1924 * We first initialize the -1 group with the variables that appear in "bset".
1925 * Then we initialize groups for the remaining variables.
1926 * Then we iterate over the constraints of "context" and update the
1927 * group of the variables in the constraint by the smallest group.
1928 * Finally, we resolve indirect references to groups by running over
1929 * the variables.
1931 * After computing the groups, we drop constraints that do not involve
1932 * any variables in the -1 group.
1934 static __isl_give isl_basic_set *drop_irrelevant_constraints(
1935 __isl_take isl_basic_set *context, __isl_keep isl_basic_set *bset)
1937 isl_ctx *ctx;
1938 int *group;
1939 int dim;
1940 int i, j;
1941 int last;
1943 if (!context || !bset)
1944 return isl_basic_set_free(context);
1946 dim = isl_basic_set_dim(bset, isl_dim_set);
1947 ctx = isl_basic_set_get_ctx(bset);
1948 group = isl_calloc_array(ctx, int, dim);
1950 if (!group)
1951 goto error;
1953 for (i = 0; i < dim; ++i) {
1954 for (j = 0; j < bset->n_eq; ++j)
1955 if (!isl_int_is_zero(bset->eq[j][1 + i]))
1956 break;
1957 if (j < bset->n_eq) {
1958 group[i] = -1;
1959 continue;
1961 for (j = 0; j < bset->n_ineq; ++j)
1962 if (!isl_int_is_zero(bset->ineq[j][1 + i]))
1963 break;
1964 if (j < bset->n_ineq)
1965 group[i] = -1;
1968 last = -1;
1969 for (i = 0; i < dim; ++i)
1970 if (group[i] >= 0)
1971 last = group[i] = i;
1972 if (last < 0) {
1973 free(group);
1974 return context;
1977 for (i = 0; i < context->n_eq; ++i)
1978 update_groups(dim, group, context->eq[i] + 1);
1979 for (i = 0; i < context->n_ineq; ++i)
1980 update_groups(dim, group, context->ineq[i] + 1);
1982 for (i = 0; i < dim; ++i)
1983 if (group[i] >= 0)
1984 group[i] = group[group[i]];
1986 for (i = 0; i < dim; ++i)
1987 group[i] = group[i] == -1;
1989 context = drop_unrelated_constraints(context, group);
1991 free(group);
1992 return context;
1993 error:
1994 free(group);
1995 return isl_basic_set_free(context);
1998 /* Remove all information from bset that is redundant in the context
1999 * of context. Both bset and context are assumed to be full-dimensional.
2001 * We first remove the inequalities from "bset"
2002 * that are obviously redundant with respect to some inequality in "context".
2003 * Then we remove those constraints from "context" that have become
2004 * irrelevant for computing the gist of "bset".
2005 * Note that this removal of constraints cannot be replaced by
2006 * a factorization because factors in "bset" may still be connected
2007 * to each other through constraints in "context".
2009 * If there are any inequalities left, we construct a tableau for
2010 * the context and then add the inequalities of "bset".
2011 * Before adding these inequalities, we freeze all constraints such that
2012 * they won't be considered redundant in terms of the constraints of "bset".
2013 * Then we detect all redundant constraints (among the
2014 * constraints that weren't frozen), first by checking for redundancy in the
2015 * the tableau and then by checking if replacing a constraint by its negation
2016 * would lead to an empty set. This last step is fairly expensive
2017 * and could be optimized by more reuse of the tableau.
2018 * Finally, we update bset according to the results.
2020 static __isl_give isl_basic_set *uset_gist_full(__isl_take isl_basic_set *bset,
2021 __isl_take isl_basic_set *context)
2023 int i, k;
2024 isl_basic_set *combined = NULL;
2025 struct isl_tab *tab = NULL;
2026 unsigned context_ineq;
2027 unsigned total;
2029 if (!bset || !context)
2030 goto error;
2032 if (isl_basic_set_is_universe(bset)) {
2033 isl_basic_set_free(context);
2034 return bset;
2037 if (isl_basic_set_is_universe(context)) {
2038 isl_basic_set_free(context);
2039 return bset;
2042 bset = remove_shifted_constraints(bset, context);
2043 if (!bset)
2044 goto error;
2045 if (bset->n_ineq == 0)
2046 goto done;
2048 context = drop_irrelevant_constraints(context, bset);
2049 if (!context)
2050 goto error;
2051 if (isl_basic_set_is_universe(context)) {
2052 isl_basic_set_free(context);
2053 return bset;
2056 context_ineq = context->n_ineq;
2057 combined = isl_basic_set_cow(isl_basic_set_copy(context));
2058 combined = isl_basic_set_extend_constraints(combined, 0, bset->n_ineq);
2059 tab = isl_tab_from_basic_set(combined, 0);
2060 for (i = 0; i < context_ineq; ++i)
2061 if (isl_tab_freeze_constraint(tab, i) < 0)
2062 goto error;
2063 if (isl_tab_extend_cons(tab, bset->n_ineq) < 0)
2064 goto error;
2065 for (i = 0; i < bset->n_ineq; ++i)
2066 if (isl_tab_add_ineq(tab, bset->ineq[i]) < 0)
2067 goto error;
2068 bset = isl_basic_set_add_constraints(combined, bset, 0);
2069 combined = NULL;
2070 if (!bset)
2071 goto error;
2072 if (isl_tab_detect_redundant(tab) < 0)
2073 goto error;
2074 total = isl_basic_set_total_dim(bset);
2075 for (i = context_ineq; i < bset->n_ineq; ++i) {
2076 int is_empty;
2077 if (tab->con[i].is_redundant)
2078 continue;
2079 tab->con[i].is_redundant = 1;
2080 combined = isl_basic_set_dup(bset);
2081 combined = isl_basic_set_update_from_tab(combined, tab);
2082 combined = isl_basic_set_extend_constraints(combined, 0, 1);
2083 k = isl_basic_set_alloc_inequality(combined);
2084 if (k < 0)
2085 goto error;
2086 isl_seq_neg(combined->ineq[k], bset->ineq[i], 1 + total);
2087 isl_int_sub_ui(combined->ineq[k][0], combined->ineq[k][0], 1);
2088 is_empty = isl_basic_set_is_empty(combined);
2089 if (is_empty < 0)
2090 goto error;
2091 isl_basic_set_free(combined);
2092 combined = NULL;
2093 if (!is_empty)
2094 tab->con[i].is_redundant = 0;
2096 for (i = 0; i < context_ineq; ++i)
2097 tab->con[i].is_redundant = 1;
2098 bset = isl_basic_set_update_from_tab(bset, tab);
2099 if (bset) {
2100 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
2101 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
2104 isl_tab_free(tab);
2105 done:
2106 bset = isl_basic_set_simplify(bset);
2107 bset = isl_basic_set_finalize(bset);
2108 isl_basic_set_free(context);
2109 return bset;
2110 error:
2111 isl_tab_free(tab);
2112 isl_basic_set_free(combined);
2113 isl_basic_set_free(context);
2114 isl_basic_set_free(bset);
2115 return NULL;
2118 /* Remove all information from bset that is redundant in the context
2119 * of context. In particular, equalities that are linear combinations
2120 * of those in context are removed. Then the inequalities that are
2121 * redundant in the context of the equalities and inequalities of
2122 * context are removed.
2124 * First of all, we drop those constraints from "context"
2125 * that are irrelevant for computing the gist of "bset".
2126 * Alternatively, we could factorize the intersection of "context" and "bset".
2128 * We first compute the integer affine hull of the intersection,
2129 * compute the gist inside this affine hull and then add back
2130 * those equalities that are not implied by the context.
2132 * If two constraints are mutually redundant, then uset_gist_full
2133 * will remove the second of those constraints. We therefore first
2134 * sort the constraints so that constraints not involving existentially
2135 * quantified variables are given precedence over those that do.
2136 * We have to perform this sorting before the variable compression,
2137 * because that may effect the order of the variables.
2139 static __isl_give isl_basic_set *uset_gist(__isl_take isl_basic_set *bset,
2140 __isl_take isl_basic_set *context)
2142 isl_mat *eq;
2143 isl_mat *T, *T2;
2144 isl_basic_set *aff;
2145 isl_basic_set *aff_context;
2146 unsigned total;
2148 if (!bset || !context)
2149 goto error;
2151 context = drop_irrelevant_constraints(context, bset);
2153 aff = isl_basic_set_copy(bset);
2154 aff = isl_basic_set_intersect(aff, isl_basic_set_copy(context));
2155 aff = isl_basic_set_affine_hull(aff);
2156 if (!aff)
2157 goto error;
2158 if (isl_basic_set_plain_is_empty(aff)) {
2159 isl_basic_set_free(bset);
2160 isl_basic_set_free(context);
2161 return aff;
2163 bset = isl_basic_set_sort_constraints(bset);
2164 if (aff->n_eq == 0) {
2165 isl_basic_set_free(aff);
2166 return uset_gist_full(bset, context);
2168 total = isl_basic_set_total_dim(bset);
2169 eq = isl_mat_sub_alloc6(bset->ctx, aff->eq, 0, aff->n_eq, 0, 1 + total);
2170 eq = isl_mat_cow(eq);
2171 T = isl_mat_variable_compression(eq, &T2);
2172 if (T && T->n_col == 0) {
2173 isl_mat_free(T);
2174 isl_mat_free(T2);
2175 isl_basic_set_free(context);
2176 isl_basic_set_free(aff);
2177 return isl_basic_set_set_to_empty(bset);
2180 aff_context = isl_basic_set_affine_hull(isl_basic_set_copy(context));
2182 bset = isl_basic_set_preimage(bset, isl_mat_copy(T));
2183 context = isl_basic_set_preimage(context, T);
2185 bset = uset_gist_full(bset, context);
2186 bset = isl_basic_set_preimage(bset, T2);
2187 bset = isl_basic_set_intersect(bset, aff);
2188 bset = isl_basic_set_reduce_using_equalities(bset, aff_context);
2190 if (bset) {
2191 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
2192 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
2195 return bset;
2196 error:
2197 isl_basic_set_free(bset);
2198 isl_basic_set_free(context);
2199 return NULL;
2202 /* Normalize the divs in "bmap" in the context of the equalities in "context".
2203 * We simply add the equalities in context to bmap and then do a regular
2204 * div normalizations. Better results can be obtained by normalizing
2205 * only the divs in bmap than do not also appear in context.
2206 * We need to be careful to reduce the divs using the equalities
2207 * so that later calls to isl_basic_map_overlying_set wouldn't introduce
2208 * spurious constraints.
2210 static struct isl_basic_map *normalize_divs_in_context(
2211 struct isl_basic_map *bmap, struct isl_basic_map *context)
2213 int i;
2214 unsigned total_context;
2215 int div_eq;
2217 div_eq = n_pure_div_eq(bmap);
2218 if (div_eq == 0)
2219 return bmap;
2221 bmap = isl_basic_map_cow(bmap);
2222 if (context->n_div > 0)
2223 bmap = isl_basic_map_align_divs(bmap, context);
2225 total_context = isl_basic_map_total_dim(context);
2226 bmap = isl_basic_map_extend_constraints(bmap, context->n_eq, 0);
2227 for (i = 0; i < context->n_eq; ++i) {
2228 int k;
2229 k = isl_basic_map_alloc_equality(bmap);
2230 if (k < 0)
2231 return isl_basic_map_free(bmap);
2232 isl_seq_cpy(bmap->eq[k], context->eq[i], 1 + total_context);
2233 isl_seq_clr(bmap->eq[k] + 1 + total_context,
2234 isl_basic_map_total_dim(bmap) - total_context);
2236 bmap = isl_basic_map_gauss(bmap, NULL);
2237 bmap = normalize_divs(bmap, NULL);
2238 bmap = isl_basic_map_gauss(bmap, NULL);
2239 return bmap;
2242 /* Return a basic map that has the same intersection with "context" as "bmap"
2243 * and that is as "simple" as possible.
2245 * The core computation is performed on the pure constraints.
2246 * When we add back the meaning of the integer divisions, we need
2247 * to (re)introduce the div constraints. If we happen to have
2248 * discovered that some of these integer divisions are equal to
2249 * some affine combination of other variables, then these div
2250 * constraints may end up getting simplified in terms of the equalities,
2251 * resulting in extra inequalities on the other variables that
2252 * may have been removed already or that may not even have been
2253 * part of the input. We try and remove those constraints of
2254 * this form that are most obviously redundant with respect to
2255 * the context. We also remove those div constraints that are
2256 * redundant with respect to the other constraints in the result.
2258 struct isl_basic_map *isl_basic_map_gist(struct isl_basic_map *bmap,
2259 struct isl_basic_map *context)
2261 isl_basic_set *bset, *eq;
2262 isl_basic_map *eq_bmap;
2263 unsigned n_div, n_eq, n_ineq;
2265 if (!bmap || !context)
2266 goto error;
2268 if (isl_basic_map_is_universe(bmap)) {
2269 isl_basic_map_free(context);
2270 return bmap;
2272 if (isl_basic_map_plain_is_empty(context)) {
2273 isl_space *space = isl_basic_map_get_space(bmap);
2274 isl_basic_map_free(bmap);
2275 isl_basic_map_free(context);
2276 return isl_basic_map_universe(space);
2278 if (isl_basic_map_plain_is_empty(bmap)) {
2279 isl_basic_map_free(context);
2280 return bmap;
2283 bmap = isl_basic_map_remove_redundancies(bmap);
2284 context = isl_basic_map_remove_redundancies(context);
2285 if (!context)
2286 goto error;
2288 if (context->n_eq)
2289 bmap = normalize_divs_in_context(bmap, context);
2291 context = isl_basic_map_align_divs(context, bmap);
2292 bmap = isl_basic_map_align_divs(bmap, context);
2293 n_div = isl_basic_map_dim(bmap, isl_dim_div);
2295 bset = uset_gist(isl_basic_map_underlying_set(isl_basic_map_copy(bmap)),
2296 isl_basic_map_underlying_set(isl_basic_map_copy(context)));
2298 if (!bset || bset->n_eq == 0 || n_div == 0 ||
2299 isl_basic_set_plain_is_empty(bset)) {
2300 isl_basic_map_free(context);
2301 return isl_basic_map_overlying_set(bset, bmap);
2304 n_eq = bset->n_eq;
2305 n_ineq = bset->n_ineq;
2306 eq = isl_basic_set_copy(bset);
2307 eq = isl_basic_set_cow(eq);
2308 if (isl_basic_set_free_inequality(eq, n_ineq) < 0)
2309 eq = isl_basic_set_free(eq);
2310 if (isl_basic_set_free_equality(bset, n_eq) < 0)
2311 bset = isl_basic_set_free(bset);
2313 eq_bmap = isl_basic_map_overlying_set(eq, isl_basic_map_copy(bmap));
2314 eq_bmap = isl_basic_map_remove_shifted_constraints(eq_bmap, context);
2315 bmap = isl_basic_map_overlying_set(bset, bmap);
2316 bmap = isl_basic_map_intersect(bmap, eq_bmap);
2317 bmap = isl_basic_map_remove_redundancies(bmap);
2319 return bmap;
2320 error:
2321 isl_basic_map_free(bmap);
2322 isl_basic_map_free(context);
2323 return NULL;
2327 * Assumes context has no implicit divs.
2329 __isl_give isl_map *isl_map_gist_basic_map(__isl_take isl_map *map,
2330 __isl_take isl_basic_map *context)
2332 int i;
2334 if (!map || !context)
2335 goto error;
2337 if (isl_basic_map_plain_is_empty(context)) {
2338 isl_space *space = isl_map_get_space(map);
2339 isl_map_free(map);
2340 isl_basic_map_free(context);
2341 return isl_map_universe(space);
2344 context = isl_basic_map_remove_redundancies(context);
2345 map = isl_map_cow(map);
2346 if (!map || !context)
2347 goto error;
2348 isl_assert(map->ctx, isl_space_is_equal(map->dim, context->dim), goto error);
2349 map = isl_map_compute_divs(map);
2350 if (!map)
2351 goto error;
2352 for (i = map->n - 1; i >= 0; --i) {
2353 map->p[i] = isl_basic_map_gist(map->p[i],
2354 isl_basic_map_copy(context));
2355 if (!map->p[i])
2356 goto error;
2357 if (isl_basic_map_plain_is_empty(map->p[i])) {
2358 isl_basic_map_free(map->p[i]);
2359 if (i != map->n - 1)
2360 map->p[i] = map->p[map->n - 1];
2361 map->n--;
2364 isl_basic_map_free(context);
2365 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
2366 return map;
2367 error:
2368 isl_map_free(map);
2369 isl_basic_map_free(context);
2370 return NULL;
2373 /* Return a map that has the same intersection with "context" as "map"
2374 * and that is as "simple" as possible.
2376 * If "map" is already the universe, then we cannot make it any simpler.
2377 * Similarly, if "context" is the universe, then we cannot exploit it
2378 * to simplify "map"
2379 * If "map" and "context" are identical to each other, then we can
2380 * return the corresponding universe.
2382 * If none of these cases apply, we have to work a bit harder.
2383 * During this computation, we make use of a single disjunct context,
2384 * so if the original context consists of more than one disjunct
2385 * then we need to approximate the context by a single disjunct set.
2386 * Simply taking the simple hull may drop constraints that are
2387 * only implicitly available in each disjunct. We therefore also
2388 * look for constraints among those defining "map" that are valid
2389 * for the context. These can then be used to simplify away
2390 * the corresponding constraints in "map".
2392 static __isl_give isl_map *map_gist(__isl_take isl_map *map,
2393 __isl_take isl_map *context)
2395 int equal;
2396 int is_universe;
2397 isl_basic_map *hull;
2399 is_universe = isl_map_plain_is_universe(map);
2400 if (is_universe >= 0 && !is_universe)
2401 is_universe = isl_map_plain_is_universe(context);
2402 if (is_universe < 0)
2403 goto error;
2404 if (is_universe) {
2405 isl_map_free(context);
2406 return map;
2409 equal = isl_map_plain_is_equal(map, context);
2410 if (equal < 0)
2411 goto error;
2412 if (equal) {
2413 isl_map *res = isl_map_universe(isl_map_get_space(map));
2414 isl_map_free(map);
2415 isl_map_free(context);
2416 return res;
2419 context = isl_map_compute_divs(context);
2420 if (!context)
2421 goto error;
2422 if (isl_map_n_basic_map(context) == 1) {
2423 hull = isl_map_simple_hull(context);
2424 } else {
2425 isl_ctx *ctx;
2426 isl_map_list *list;
2428 ctx = isl_map_get_ctx(map);
2429 list = isl_map_list_alloc(ctx, 2);
2430 list = isl_map_list_add(list, isl_map_copy(context));
2431 list = isl_map_list_add(list, isl_map_copy(map));
2432 hull = isl_map_unshifted_simple_hull_from_map_list(context,
2433 list);
2435 return isl_map_gist_basic_map(map, hull);
2436 error:
2437 isl_map_free(map);
2438 isl_map_free(context);
2439 return NULL;
2442 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
2443 __isl_take isl_map *context)
2445 return isl_map_align_params_map_map_and(map, context, &map_gist);
2448 struct isl_basic_set *isl_basic_set_gist(struct isl_basic_set *bset,
2449 struct isl_basic_set *context)
2451 return (struct isl_basic_set *)isl_basic_map_gist(
2452 (struct isl_basic_map *)bset, (struct isl_basic_map *)context);
2455 __isl_give isl_set *isl_set_gist_basic_set(__isl_take isl_set *set,
2456 __isl_take isl_basic_set *context)
2458 return (struct isl_set *)isl_map_gist_basic_map((struct isl_map *)set,
2459 (struct isl_basic_map *)context);
2462 __isl_give isl_set *isl_set_gist_params_basic_set(__isl_take isl_set *set,
2463 __isl_take isl_basic_set *context)
2465 isl_space *space = isl_set_get_space(set);
2466 isl_basic_set *dom_context = isl_basic_set_universe(space);
2467 dom_context = isl_basic_set_intersect_params(dom_context, context);
2468 return isl_set_gist_basic_set(set, dom_context);
2471 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
2472 __isl_take isl_set *context)
2474 return (struct isl_set *)isl_map_gist((struct isl_map *)set,
2475 (struct isl_map *)context);
2478 /* Compute the gist of "bmap" with respect to the constraints "context"
2479 * on the domain.
2481 __isl_give isl_basic_map *isl_basic_map_gist_domain(
2482 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *context)
2484 isl_space *space = isl_basic_map_get_space(bmap);
2485 isl_basic_map *bmap_context = isl_basic_map_universe(space);
2487 bmap_context = isl_basic_map_intersect_domain(bmap_context, context);
2488 return isl_basic_map_gist(bmap, bmap_context);
2491 __isl_give isl_map *isl_map_gist_domain(__isl_take isl_map *map,
2492 __isl_take isl_set *context)
2494 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
2495 map_context = isl_map_intersect_domain(map_context, context);
2496 return isl_map_gist(map, map_context);
2499 __isl_give isl_map *isl_map_gist_range(__isl_take isl_map *map,
2500 __isl_take isl_set *context)
2502 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
2503 map_context = isl_map_intersect_range(map_context, context);
2504 return isl_map_gist(map, map_context);
2507 __isl_give isl_map *isl_map_gist_params(__isl_take isl_map *map,
2508 __isl_take isl_set *context)
2510 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
2511 map_context = isl_map_intersect_params(map_context, context);
2512 return isl_map_gist(map, map_context);
2515 __isl_give isl_set *isl_set_gist_params(__isl_take isl_set *set,
2516 __isl_take isl_set *context)
2518 return isl_map_gist_params(set, context);
2521 /* Quick check to see if two basic maps are disjoint.
2522 * In particular, we reduce the equalities and inequalities of
2523 * one basic map in the context of the equalities of the other
2524 * basic map and check if we get a contradiction.
2526 isl_bool isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map *bmap1,
2527 __isl_keep isl_basic_map *bmap2)
2529 struct isl_vec *v = NULL;
2530 int *elim = NULL;
2531 unsigned total;
2532 int i;
2534 if (!bmap1 || !bmap2)
2535 return isl_bool_error;
2536 isl_assert(bmap1->ctx, isl_space_is_equal(bmap1->dim, bmap2->dim),
2537 return isl_bool_error);
2538 if (bmap1->n_div || bmap2->n_div)
2539 return isl_bool_false;
2540 if (!bmap1->n_eq && !bmap2->n_eq)
2541 return isl_bool_false;
2543 total = isl_space_dim(bmap1->dim, isl_dim_all);
2544 if (total == 0)
2545 return isl_bool_false;
2546 v = isl_vec_alloc(bmap1->ctx, 1 + total);
2547 if (!v)
2548 goto error;
2549 elim = isl_alloc_array(bmap1->ctx, int, total);
2550 if (!elim)
2551 goto error;
2552 compute_elimination_index(bmap1, elim);
2553 for (i = 0; i < bmap2->n_eq; ++i) {
2554 int reduced;
2555 reduced = reduced_using_equalities(v->block.data, bmap2->eq[i],
2556 bmap1, elim);
2557 if (reduced && !isl_int_is_zero(v->block.data[0]) &&
2558 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
2559 goto disjoint;
2561 for (i = 0; i < bmap2->n_ineq; ++i) {
2562 int reduced;
2563 reduced = reduced_using_equalities(v->block.data,
2564 bmap2->ineq[i], bmap1, elim);
2565 if (reduced && isl_int_is_neg(v->block.data[0]) &&
2566 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
2567 goto disjoint;
2569 compute_elimination_index(bmap2, elim);
2570 for (i = 0; i < bmap1->n_ineq; ++i) {
2571 int reduced;
2572 reduced = reduced_using_equalities(v->block.data,
2573 bmap1->ineq[i], bmap2, elim);
2574 if (reduced && isl_int_is_neg(v->block.data[0]) &&
2575 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
2576 goto disjoint;
2578 isl_vec_free(v);
2579 free(elim);
2580 return isl_bool_false;
2581 disjoint:
2582 isl_vec_free(v);
2583 free(elim);
2584 return isl_bool_true;
2585 error:
2586 isl_vec_free(v);
2587 free(elim);
2588 return isl_bool_error;
2591 int isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set *bset1,
2592 __isl_keep isl_basic_set *bset2)
2594 return isl_basic_map_plain_is_disjoint((struct isl_basic_map *)bset1,
2595 (struct isl_basic_map *)bset2);
2598 /* Are "map1" and "map2" obviously disjoint?
2600 * If one of them is empty or if they live in different spaces (ignoring
2601 * parameters), then they are clearly disjoint.
2603 * If they have different parameters, then we skip any further tests.
2605 * If they are obviously equal, but not obviously empty, then we will
2606 * not be able to detect if they are disjoint.
2608 * Otherwise we check if each basic map in "map1" is obviously disjoint
2609 * from each basic map in "map2".
2611 isl_bool isl_map_plain_is_disjoint(__isl_keep isl_map *map1,
2612 __isl_keep isl_map *map2)
2614 int i, j;
2615 isl_bool disjoint;
2616 isl_bool intersect;
2617 isl_bool match;
2619 if (!map1 || !map2)
2620 return isl_bool_error;
2622 disjoint = isl_map_plain_is_empty(map1);
2623 if (disjoint < 0 || disjoint)
2624 return disjoint;
2626 disjoint = isl_map_plain_is_empty(map2);
2627 if (disjoint < 0 || disjoint)
2628 return disjoint;
2630 match = isl_space_tuple_is_equal(map1->dim, isl_dim_in,
2631 map2->dim, isl_dim_in);
2632 if (match < 0 || !match)
2633 return match < 0 ? isl_bool_error : isl_bool_true;
2635 match = isl_space_tuple_is_equal(map1->dim, isl_dim_out,
2636 map2->dim, isl_dim_out);
2637 if (match < 0 || !match)
2638 return match < 0 ? isl_bool_error : isl_bool_true;
2640 match = isl_space_match(map1->dim, isl_dim_param,
2641 map2->dim, isl_dim_param);
2642 if (match < 0 || !match)
2643 return match < 0 ? isl_bool_error : isl_bool_false;
2645 intersect = isl_map_plain_is_equal(map1, map2);
2646 if (intersect < 0 || intersect)
2647 return intersect < 0 ? isl_bool_error : isl_bool_false;
2649 for (i = 0; i < map1->n; ++i) {
2650 for (j = 0; j < map2->n; ++j) {
2651 isl_bool d = isl_basic_map_plain_is_disjoint(map1->p[i],
2652 map2->p[j]);
2653 if (d != isl_bool_true)
2654 return d;
2657 return isl_bool_true;
2660 /* Are "map1" and "map2" disjoint?
2662 * They are disjoint if they are "obviously disjoint" or if one of them
2663 * is empty. Otherwise, they are not disjoint if one of them is universal.
2664 * If none of these cases apply, we compute the intersection and see if
2665 * the result is empty.
2667 isl_bool isl_map_is_disjoint(__isl_keep isl_map *map1, __isl_keep isl_map *map2)
2669 isl_bool disjoint;
2670 isl_bool intersect;
2671 isl_map *test;
2673 disjoint = isl_map_plain_is_disjoint(map1, map2);
2674 if (disjoint < 0 || disjoint)
2675 return disjoint;
2677 disjoint = isl_map_is_empty(map1);
2678 if (disjoint < 0 || disjoint)
2679 return disjoint;
2681 disjoint = isl_map_is_empty(map2);
2682 if (disjoint < 0 || disjoint)
2683 return disjoint;
2685 intersect = isl_map_plain_is_universe(map1);
2686 if (intersect < 0 || intersect)
2687 return intersect < 0 ? isl_bool_error : isl_bool_false;
2689 intersect = isl_map_plain_is_universe(map2);
2690 if (intersect < 0 || intersect)
2691 return intersect < 0 ? isl_bool_error : isl_bool_false;
2693 test = isl_map_intersect(isl_map_copy(map1), isl_map_copy(map2));
2694 disjoint = isl_map_is_empty(test);
2695 isl_map_free(test);
2697 return disjoint;
2700 /* Are "bmap1" and "bmap2" disjoint?
2702 * They are disjoint if they are "obviously disjoint" or if one of them
2703 * is empty. Otherwise, they are not disjoint if one of them is universal.
2704 * If none of these cases apply, we compute the intersection and see if
2705 * the result is empty.
2707 isl_bool isl_basic_map_is_disjoint(__isl_keep isl_basic_map *bmap1,
2708 __isl_keep isl_basic_map *bmap2)
2710 isl_bool disjoint;
2711 isl_bool intersect;
2712 isl_basic_map *test;
2714 disjoint = isl_basic_map_plain_is_disjoint(bmap1, bmap2);
2715 if (disjoint < 0 || disjoint)
2716 return disjoint;
2718 disjoint = isl_basic_map_is_empty(bmap1);
2719 if (disjoint < 0 || disjoint)
2720 return disjoint;
2722 disjoint = isl_basic_map_is_empty(bmap2);
2723 if (disjoint < 0 || disjoint)
2724 return disjoint;
2726 intersect = isl_basic_map_is_universe(bmap1);
2727 if (intersect < 0 || intersect)
2728 return intersect < 0 ? isl_bool_error : isl_bool_false;
2730 intersect = isl_basic_map_is_universe(bmap2);
2731 if (intersect < 0 || intersect)
2732 return intersect < 0 ? isl_bool_error : isl_bool_false;
2734 test = isl_basic_map_intersect(isl_basic_map_copy(bmap1),
2735 isl_basic_map_copy(bmap2));
2736 disjoint = isl_basic_map_is_empty(test);
2737 isl_basic_map_free(test);
2739 return disjoint;
2742 /* Are "bset1" and "bset2" disjoint?
2744 isl_bool isl_basic_set_is_disjoint(__isl_keep isl_basic_set *bset1,
2745 __isl_keep isl_basic_set *bset2)
2747 return isl_basic_map_is_disjoint(bset1, bset2);
2750 isl_bool isl_set_plain_is_disjoint(__isl_keep isl_set *set1,
2751 __isl_keep isl_set *set2)
2753 return isl_map_plain_is_disjoint((struct isl_map *)set1,
2754 (struct isl_map *)set2);
2757 /* Are "set1" and "set2" disjoint?
2759 isl_bool isl_set_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
2761 return isl_map_is_disjoint(set1, set2);
2764 /* Check if we can combine a given div with lower bound l and upper
2765 * bound u with some other div and if so return that other div.
2766 * Otherwise return -1.
2768 * We first check that
2769 * - the bounds are opposites of each other (except for the constant
2770 * term)
2771 * - the bounds do not reference any other div
2772 * - no div is defined in terms of this div
2774 * Let m be the size of the range allowed on the div by the bounds.
2775 * That is, the bounds are of the form
2777 * e <= a <= e + m - 1
2779 * with e some expression in the other variables.
2780 * We look for another div b such that no third div is defined in terms
2781 * of this second div b and such that in any constraint that contains
2782 * a (except for the given lower and upper bound), also contains b
2783 * with a coefficient that is m times that of b.
2784 * That is, all constraints (execpt for the lower and upper bound)
2785 * are of the form
2787 * e + f (a + m b) >= 0
2789 * If so, we return b so that "a + m b" can be replaced by
2790 * a single div "c = a + m b".
2792 static int div_find_coalesce(struct isl_basic_map *bmap, int *pairs,
2793 unsigned div, unsigned l, unsigned u)
2795 int i, j;
2796 unsigned dim;
2797 int coalesce = -1;
2799 if (bmap->n_div <= 1)
2800 return -1;
2801 dim = isl_space_dim(bmap->dim, isl_dim_all);
2802 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim, div) != -1)
2803 return -1;
2804 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim + div + 1,
2805 bmap->n_div - div - 1) != -1)
2806 return -1;
2807 if (!isl_seq_is_neg(bmap->ineq[l] + 1, bmap->ineq[u] + 1,
2808 dim + bmap->n_div))
2809 return -1;
2811 for (i = 0; i < bmap->n_div; ++i) {
2812 if (isl_int_is_zero(bmap->div[i][0]))
2813 continue;
2814 if (!isl_int_is_zero(bmap->div[i][1 + 1 + dim + div]))
2815 return -1;
2818 isl_int_add(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
2819 if (isl_int_is_neg(bmap->ineq[l][0])) {
2820 isl_int_sub(bmap->ineq[l][0],
2821 bmap->ineq[l][0], bmap->ineq[u][0]);
2822 bmap = isl_basic_map_copy(bmap);
2823 bmap = isl_basic_map_set_to_empty(bmap);
2824 isl_basic_map_free(bmap);
2825 return -1;
2827 isl_int_add_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
2828 for (i = 0; i < bmap->n_div; ++i) {
2829 if (i == div)
2830 continue;
2831 if (!pairs[i])
2832 continue;
2833 for (j = 0; j < bmap->n_div; ++j) {
2834 if (isl_int_is_zero(bmap->div[j][0]))
2835 continue;
2836 if (!isl_int_is_zero(bmap->div[j][1 + 1 + dim + i]))
2837 break;
2839 if (j < bmap->n_div)
2840 continue;
2841 for (j = 0; j < bmap->n_ineq; ++j) {
2842 int valid;
2843 if (j == l || j == u)
2844 continue;
2845 if (isl_int_is_zero(bmap->ineq[j][1 + dim + div]))
2846 continue;
2847 if (isl_int_is_zero(bmap->ineq[j][1 + dim + i]))
2848 break;
2849 isl_int_mul(bmap->ineq[j][1 + dim + div],
2850 bmap->ineq[j][1 + dim + div],
2851 bmap->ineq[l][0]);
2852 valid = isl_int_eq(bmap->ineq[j][1 + dim + div],
2853 bmap->ineq[j][1 + dim + i]);
2854 isl_int_divexact(bmap->ineq[j][1 + dim + div],
2855 bmap->ineq[j][1 + dim + div],
2856 bmap->ineq[l][0]);
2857 if (!valid)
2858 break;
2860 if (j < bmap->n_ineq)
2861 continue;
2862 coalesce = i;
2863 break;
2865 isl_int_sub_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
2866 isl_int_sub(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
2867 return coalesce;
2870 /* Given a lower and an upper bound on div i, construct an inequality
2871 * that when nonnegative ensures that this pair of bounds always allows
2872 * for an integer value of the given div.
2873 * The lower bound is inequality l, while the upper bound is inequality u.
2874 * The constructed inequality is stored in ineq.
2875 * g, fl, fu are temporary scalars.
2877 * Let the upper bound be
2879 * -n_u a + e_u >= 0
2881 * and the lower bound
2883 * n_l a + e_l >= 0
2885 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
2886 * We have
2888 * - f_u e_l <= f_u f_l g a <= f_l e_u
2890 * Since all variables are integer valued, this is equivalent to
2892 * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
2894 * If this interval is at least f_u f_l g, then it contains at least
2895 * one integer value for a.
2896 * That is, the test constraint is
2898 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
2900 static void construct_test_ineq(struct isl_basic_map *bmap, int i,
2901 int l, int u, isl_int *ineq, isl_int g, isl_int fl, isl_int fu)
2903 unsigned dim;
2904 dim = isl_space_dim(bmap->dim, isl_dim_all);
2906 isl_int_gcd(g, bmap->ineq[l][1 + dim + i], bmap->ineq[u][1 + dim + i]);
2907 isl_int_divexact(fl, bmap->ineq[l][1 + dim + i], g);
2908 isl_int_divexact(fu, bmap->ineq[u][1 + dim + i], g);
2909 isl_int_neg(fu, fu);
2910 isl_seq_combine(ineq, fl, bmap->ineq[u], fu, bmap->ineq[l],
2911 1 + dim + bmap->n_div);
2912 isl_int_add(ineq[0], ineq[0], fl);
2913 isl_int_add(ineq[0], ineq[0], fu);
2914 isl_int_sub_ui(ineq[0], ineq[0], 1);
2915 isl_int_mul(g, g, fl);
2916 isl_int_mul(g, g, fu);
2917 isl_int_sub(ineq[0], ineq[0], g);
2920 /* Remove more kinds of divs that are not strictly needed.
2921 * In particular, if all pairs of lower and upper bounds on a div
2922 * are such that they allow at least one integer value of the div,
2923 * the we can eliminate the div using Fourier-Motzkin without
2924 * introducing any spurious solutions.
2926 static struct isl_basic_map *drop_more_redundant_divs(
2927 struct isl_basic_map *bmap, int *pairs, int n)
2929 struct isl_tab *tab = NULL;
2930 struct isl_vec *vec = NULL;
2931 unsigned dim;
2932 int remove = -1;
2933 isl_int g, fl, fu;
2935 isl_int_init(g);
2936 isl_int_init(fl);
2937 isl_int_init(fu);
2939 if (!bmap)
2940 goto error;
2942 dim = isl_space_dim(bmap->dim, isl_dim_all);
2943 vec = isl_vec_alloc(bmap->ctx, 1 + dim + bmap->n_div);
2944 if (!vec)
2945 goto error;
2947 tab = isl_tab_from_basic_map(bmap, 0);
2949 while (n > 0) {
2950 int i, l, u;
2951 int best = -1;
2952 enum isl_lp_result res;
2954 for (i = 0; i < bmap->n_div; ++i) {
2955 if (!pairs[i])
2956 continue;
2957 if (best >= 0 && pairs[best] <= pairs[i])
2958 continue;
2959 best = i;
2962 i = best;
2963 for (l = 0; l < bmap->n_ineq; ++l) {
2964 if (!isl_int_is_pos(bmap->ineq[l][1 + dim + i]))
2965 continue;
2966 for (u = 0; u < bmap->n_ineq; ++u) {
2967 if (!isl_int_is_neg(bmap->ineq[u][1 + dim + i]))
2968 continue;
2969 construct_test_ineq(bmap, i, l, u,
2970 vec->el, g, fl, fu);
2971 res = isl_tab_min(tab, vec->el,
2972 bmap->ctx->one, &g, NULL, 0);
2973 if (res == isl_lp_error)
2974 goto error;
2975 if (res == isl_lp_empty) {
2976 bmap = isl_basic_map_set_to_empty(bmap);
2977 break;
2979 if (res != isl_lp_ok || isl_int_is_neg(g))
2980 break;
2982 if (u < bmap->n_ineq)
2983 break;
2985 if (l == bmap->n_ineq) {
2986 remove = i;
2987 break;
2989 pairs[i] = 0;
2990 --n;
2993 isl_tab_free(tab);
2994 isl_vec_free(vec);
2996 isl_int_clear(g);
2997 isl_int_clear(fl);
2998 isl_int_clear(fu);
3000 free(pairs);
3002 if (remove < 0)
3003 return bmap;
3005 bmap = isl_basic_map_remove_dims(bmap, isl_dim_div, remove, 1);
3006 return isl_basic_map_drop_redundant_divs(bmap);
3007 error:
3008 free(pairs);
3009 isl_basic_map_free(bmap);
3010 isl_tab_free(tab);
3011 isl_vec_free(vec);
3012 isl_int_clear(g);
3013 isl_int_clear(fl);
3014 isl_int_clear(fu);
3015 return NULL;
3018 /* Given a pair of divs div1 and div2 such that, expect for the lower bound l
3019 * and the upper bound u, div1 always occurs together with div2 in the form
3020 * (div1 + m div2), where m is the constant range on the variable div1
3021 * allowed by l and u, replace the pair div1 and div2 by a single
3022 * div that is equal to div1 + m div2.
3024 * The new div will appear in the location that contains div2.
3025 * We need to modify all constraints that contain
3026 * div2 = (div - div1) / m
3027 * (If a constraint does not contain div2, it will also not contain div1.)
3028 * If the constraint also contains div1, then we know they appear
3029 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
3030 * i.e., the coefficient of div is f.
3032 * Otherwise, we first need to introduce div1 into the constraint.
3033 * Let the l be
3035 * div1 + f >=0
3037 * and u
3039 * -div1 + f' >= 0
3041 * A lower bound on div2
3043 * n div2 + t >= 0
3045 * can be replaced by
3047 * (n * (m div 2 + div1) + m t + n f)/g >= 0
3049 * with g = gcd(m,n).
3050 * An upper bound
3052 * -n div2 + t >= 0
3054 * can be replaced by
3056 * (-n * (m div2 + div1) + m t + n f')/g >= 0
3058 * These constraint are those that we would obtain from eliminating
3059 * div1 using Fourier-Motzkin.
3061 * After all constraints have been modified, we drop the lower and upper
3062 * bound and then drop div1.
3064 static struct isl_basic_map *coalesce_divs(struct isl_basic_map *bmap,
3065 unsigned div1, unsigned div2, unsigned l, unsigned u)
3067 isl_int a;
3068 isl_int b;
3069 isl_int m;
3070 unsigned dim, total;
3071 int i;
3073 dim = isl_space_dim(bmap->dim, isl_dim_all);
3074 total = 1 + dim + bmap->n_div;
3076 isl_int_init(a);
3077 isl_int_init(b);
3078 isl_int_init(m);
3079 isl_int_add(m, bmap->ineq[l][0], bmap->ineq[u][0]);
3080 isl_int_add_ui(m, m, 1);
3082 for (i = 0; i < bmap->n_ineq; ++i) {
3083 if (i == l || i == u)
3084 continue;
3085 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div2]))
3086 continue;
3087 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div1])) {
3088 isl_int_gcd(b, m, bmap->ineq[i][1 + dim + div2]);
3089 isl_int_divexact(a, m, b);
3090 isl_int_divexact(b, bmap->ineq[i][1 + dim + div2], b);
3091 if (isl_int_is_pos(b)) {
3092 isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
3093 b, bmap->ineq[l], total);
3094 } else {
3095 isl_int_neg(b, b);
3096 isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
3097 b, bmap->ineq[u], total);
3100 isl_int_set(bmap->ineq[i][1 + dim + div2],
3101 bmap->ineq[i][1 + dim + div1]);
3102 isl_int_set_si(bmap->ineq[i][1 + dim + div1], 0);
3105 isl_int_clear(a);
3106 isl_int_clear(b);
3107 isl_int_clear(m);
3108 if (l > u) {
3109 isl_basic_map_drop_inequality(bmap, l);
3110 isl_basic_map_drop_inequality(bmap, u);
3111 } else {
3112 isl_basic_map_drop_inequality(bmap, u);
3113 isl_basic_map_drop_inequality(bmap, l);
3115 bmap = isl_basic_map_drop_div(bmap, div1);
3116 return bmap;
3119 /* First check if we can coalesce any pair of divs and
3120 * then continue with dropping more redundant divs.
3122 * We loop over all pairs of lower and upper bounds on a div
3123 * with coefficient 1 and -1, respectively, check if there
3124 * is any other div "c" with which we can coalesce the div
3125 * and if so, perform the coalescing.
3127 static struct isl_basic_map *coalesce_or_drop_more_redundant_divs(
3128 struct isl_basic_map *bmap, int *pairs, int n)
3130 int i, l, u;
3131 unsigned dim;
3133 dim = isl_space_dim(bmap->dim, isl_dim_all);
3135 for (i = 0; i < bmap->n_div; ++i) {
3136 if (!pairs[i])
3137 continue;
3138 for (l = 0; l < bmap->n_ineq; ++l) {
3139 if (!isl_int_is_one(bmap->ineq[l][1 + dim + i]))
3140 continue;
3141 for (u = 0; u < bmap->n_ineq; ++u) {
3142 int c;
3144 if (!isl_int_is_negone(bmap->ineq[u][1+dim+i]))
3145 continue;
3146 c = div_find_coalesce(bmap, pairs, i, l, u);
3147 if (c < 0)
3148 continue;
3149 free(pairs);
3150 bmap = coalesce_divs(bmap, i, c, l, u);
3151 return isl_basic_map_drop_redundant_divs(bmap);
3156 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
3157 return bmap;
3159 return drop_more_redundant_divs(bmap, pairs, n);
3162 /* Remove divs that are not strictly needed.
3163 * In particular, if a div only occurs positively (or negatively)
3164 * in constraints, then it can simply be dropped.
3165 * Also, if a div occurs in only two constraints and if moreover
3166 * those two constraints are opposite to each other, except for the constant
3167 * term and if the sum of the constant terms is such that for any value
3168 * of the other values, there is always at least one integer value of the
3169 * div, i.e., if one plus this sum is greater than or equal to
3170 * the (absolute value) of the coefficent of the div in the constraints,
3171 * then we can also simply drop the div.
3173 * We skip divs that appear in equalities or in the definition of other divs.
3174 * Divs that appear in the definition of other divs usually occur in at least
3175 * 4 constraints, but the constraints may have been simplified.
3177 * If any divs are left after these simple checks then we move on
3178 * to more complicated cases in drop_more_redundant_divs.
3180 struct isl_basic_map *isl_basic_map_drop_redundant_divs(
3181 struct isl_basic_map *bmap)
3183 int i, j;
3184 unsigned off;
3185 int *pairs = NULL;
3186 int n = 0;
3188 if (!bmap)
3189 goto error;
3190 if (bmap->n_div == 0)
3191 return bmap;
3193 off = isl_space_dim(bmap->dim, isl_dim_all);
3194 pairs = isl_calloc_array(bmap->ctx, int, bmap->n_div);
3195 if (!pairs)
3196 goto error;
3198 for (i = 0; i < bmap->n_div; ++i) {
3199 int pos, neg;
3200 int last_pos, last_neg;
3201 int redundant;
3202 int defined;
3204 defined = !isl_int_is_zero(bmap->div[i][0]);
3205 for (j = i; j < bmap->n_div; ++j)
3206 if (!isl_int_is_zero(bmap->div[j][1 + 1 + off + i]))
3207 break;
3208 if (j < bmap->n_div)
3209 continue;
3210 for (j = 0; j < bmap->n_eq; ++j)
3211 if (!isl_int_is_zero(bmap->eq[j][1 + off + i]))
3212 break;
3213 if (j < bmap->n_eq)
3214 continue;
3215 ++n;
3216 pos = neg = 0;
3217 for (j = 0; j < bmap->n_ineq; ++j) {
3218 if (isl_int_is_pos(bmap->ineq[j][1 + off + i])) {
3219 last_pos = j;
3220 ++pos;
3222 if (isl_int_is_neg(bmap->ineq[j][1 + off + i])) {
3223 last_neg = j;
3224 ++neg;
3227 pairs[i] = pos * neg;
3228 if (pairs[i] == 0) {
3229 for (j = bmap->n_ineq - 1; j >= 0; --j)
3230 if (!isl_int_is_zero(bmap->ineq[j][1+off+i]))
3231 isl_basic_map_drop_inequality(bmap, j);
3232 bmap = isl_basic_map_drop_div(bmap, i);
3233 free(pairs);
3234 return isl_basic_map_drop_redundant_divs(bmap);
3236 if (pairs[i] != 1)
3237 continue;
3238 if (!isl_seq_is_neg(bmap->ineq[last_pos] + 1,
3239 bmap->ineq[last_neg] + 1,
3240 off + bmap->n_div))
3241 continue;
3243 isl_int_add(bmap->ineq[last_pos][0],
3244 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
3245 isl_int_add_ui(bmap->ineq[last_pos][0],
3246 bmap->ineq[last_pos][0], 1);
3247 redundant = isl_int_ge(bmap->ineq[last_pos][0],
3248 bmap->ineq[last_pos][1+off+i]);
3249 isl_int_sub_ui(bmap->ineq[last_pos][0],
3250 bmap->ineq[last_pos][0], 1);
3251 isl_int_sub(bmap->ineq[last_pos][0],
3252 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
3253 if (!redundant) {
3254 if (defined ||
3255 !ok_to_set_div_from_bound(bmap, i, last_pos)) {
3256 pairs[i] = 0;
3257 --n;
3258 continue;
3260 bmap = set_div_from_lower_bound(bmap, i, last_pos);
3261 bmap = isl_basic_map_simplify(bmap);
3262 free(pairs);
3263 return isl_basic_map_drop_redundant_divs(bmap);
3265 if (last_pos > last_neg) {
3266 isl_basic_map_drop_inequality(bmap, last_pos);
3267 isl_basic_map_drop_inequality(bmap, last_neg);
3268 } else {
3269 isl_basic_map_drop_inequality(bmap, last_neg);
3270 isl_basic_map_drop_inequality(bmap, last_pos);
3272 bmap = isl_basic_map_drop_div(bmap, i);
3273 free(pairs);
3274 return isl_basic_map_drop_redundant_divs(bmap);
3277 if (n > 0)
3278 return coalesce_or_drop_more_redundant_divs(bmap, pairs, n);
3280 free(pairs);
3281 return bmap;
3282 error:
3283 free(pairs);
3284 isl_basic_map_free(bmap);
3285 return NULL;
3288 struct isl_basic_set *isl_basic_set_drop_redundant_divs(
3289 struct isl_basic_set *bset)
3291 return (struct isl_basic_set *)
3292 isl_basic_map_drop_redundant_divs((struct isl_basic_map *)bset);
3295 struct isl_map *isl_map_drop_redundant_divs(struct isl_map *map)
3297 int i;
3299 if (!map)
3300 return NULL;
3301 for (i = 0; i < map->n; ++i) {
3302 map->p[i] = isl_basic_map_drop_redundant_divs(map->p[i]);
3303 if (!map->p[i])
3304 goto error;
3306 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
3307 return map;
3308 error:
3309 isl_map_free(map);
3310 return NULL;
3313 struct isl_set *isl_set_drop_redundant_divs(struct isl_set *set)
3315 return (struct isl_set *)
3316 isl_map_drop_redundant_divs((struct isl_map *)set);
3319 /* Does "bmap" satisfy any equality that involves more than 2 variables
3320 * and/or has coefficients different from -1 and 1?
3322 static int has_multiple_var_equality(__isl_keep isl_basic_map *bmap)
3324 int i;
3325 unsigned total;
3327 total = isl_basic_map_dim(bmap, isl_dim_all);
3329 for (i = 0; i < bmap->n_eq; ++i) {
3330 int j, k;
3332 j = isl_seq_first_non_zero(bmap->eq[i] + 1, total);
3333 if (j < 0)
3334 continue;
3335 if (!isl_int_is_one(bmap->eq[i][1 + j]) &&
3336 !isl_int_is_negone(bmap->eq[i][1 + j]))
3337 return 1;
3339 j += 1;
3340 k = isl_seq_first_non_zero(bmap->eq[i] + 1 + j, total - j);
3341 if (k < 0)
3342 continue;
3343 j += k;
3344 if (!isl_int_is_one(bmap->eq[i][1 + j]) &&
3345 !isl_int_is_negone(bmap->eq[i][1 + j]))
3346 return 1;
3348 j += 1;
3349 k = isl_seq_first_non_zero(bmap->eq[i] + 1 + j, total - j);
3350 if (k >= 0)
3351 return 1;
3354 return 0;
3357 /* Remove any common factor g from the constraint coefficients in "v".
3358 * The constant term is stored in the first position and is replaced
3359 * by floor(c/g). If any common factor is removed and if this results
3360 * in a tightening of the constraint, then set *tightened.
3362 static __isl_give isl_vec *normalize_constraint(__isl_take isl_vec *v,
3363 int *tightened)
3365 isl_ctx *ctx;
3367 if (!v)
3368 return NULL;
3369 ctx = isl_vec_get_ctx(v);
3370 isl_seq_gcd(v->el + 1, v->size - 1, &ctx->normalize_gcd);
3371 if (isl_int_is_zero(ctx->normalize_gcd))
3372 return v;
3373 if (isl_int_is_one(ctx->normalize_gcd))
3374 return v;
3375 v = isl_vec_cow(v);
3376 if (!v)
3377 return NULL;
3378 if (tightened && !isl_int_is_divisible_by(v->el[0], ctx->normalize_gcd))
3379 *tightened = 1;
3380 isl_int_fdiv_q(v->el[0], v->el[0], ctx->normalize_gcd);
3381 isl_seq_scale_down(v->el + 1, v->el + 1, ctx->normalize_gcd,
3382 v->size - 1);
3383 return v;
3386 /* If "bmap" is an integer set that satisfies any equality involving
3387 * more than 2 variables and/or has coefficients different from -1 and 1,
3388 * then use variable compression to reduce the coefficients by removing
3389 * any (hidden) common factor.
3390 * In particular, apply the variable compression to each constraint,
3391 * factor out any common factor in the non-constant coefficients and
3392 * then apply the inverse of the compression.
3393 * At the end, we mark the basic map as having reduced constants.
3394 * If this flag is still set on the next invocation of this function,
3395 * then we skip the computation.
3397 * Removing a common factor may result in a tightening of some of
3398 * the constraints. If this happens, then we may end up with two
3399 * opposite inequalities that can be replaced by an equality.
3400 * We therefore call isl_basic_map_detect_inequality_pairs,
3401 * which checks for such pairs of inequalities as well as eliminate_divs_eq
3402 * and isl_basic_map_gauss if such a pair was found.
3404 __isl_give isl_basic_map *isl_basic_map_reduce_coefficients(
3405 __isl_take isl_basic_map *bmap)
3407 unsigned total;
3408 isl_ctx *ctx;
3409 isl_vec *v;
3410 isl_mat *eq, *T, *T2;
3411 int i;
3412 int tightened;
3414 if (!bmap)
3415 return NULL;
3416 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS))
3417 return bmap;
3418 if (isl_basic_map_is_rational(bmap))
3419 return bmap;
3420 if (bmap->n_eq == 0)
3421 return bmap;
3422 if (!has_multiple_var_equality(bmap))
3423 return bmap;
3425 total = isl_basic_map_dim(bmap, isl_dim_all);
3426 ctx = isl_basic_map_get_ctx(bmap);
3427 v = isl_vec_alloc(ctx, 1 + total);
3428 if (!v)
3429 return isl_basic_map_free(bmap);
3431 eq = isl_mat_sub_alloc6(ctx, bmap->eq, 0, bmap->n_eq, 0, 1 + total);
3432 T = isl_mat_variable_compression(eq, &T2);
3433 if (!T || !T2)
3434 goto error;
3435 if (T->n_col == 0) {
3436 isl_mat_free(T);
3437 isl_mat_free(T2);
3438 isl_vec_free(v);
3439 return isl_basic_map_set_to_empty(bmap);
3442 tightened = 0;
3443 for (i = 0; i < bmap->n_ineq; ++i) {
3444 isl_seq_cpy(v->el, bmap->ineq[i], 1 + total);
3445 v = isl_vec_mat_product(v, isl_mat_copy(T));
3446 v = normalize_constraint(v, &tightened);
3447 v = isl_vec_mat_product(v, isl_mat_copy(T2));
3448 if (!v)
3449 goto error;
3450 isl_seq_cpy(bmap->ineq[i], v->el, 1 + total);
3453 isl_mat_free(T);
3454 isl_mat_free(T2);
3455 isl_vec_free(v);
3457 ISL_F_SET(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS);
3459 if (tightened) {
3460 int progress = 0;
3462 bmap = isl_basic_map_detect_inequality_pairs(bmap, &progress);
3463 if (progress) {
3464 bmap = eliminate_divs_eq(bmap, &progress);
3465 bmap = isl_basic_map_gauss(bmap, NULL);
3469 return bmap;
3470 error:
3471 isl_mat_free(T);
3472 isl_mat_free(T2);
3473 isl_vec_free(v);
3474 return isl_basic_map_free(bmap);
3477 /* Shift the integer division at position "div" of "bmap" by "shift".
3479 * That is, if the integer division has the form
3481 * floor(f(x)/d)
3483 * then replace it by
3485 * floor((f(x) + shift * d)/d) - shift
3487 __isl_give isl_basic_map *isl_basic_map_shift_div(
3488 __isl_take isl_basic_map *bmap, int div, isl_int shift)
3490 int i;
3491 unsigned total;
3493 if (!bmap)
3494 return NULL;
3496 total = isl_basic_map_dim(bmap, isl_dim_all);
3497 total -= isl_basic_map_dim(bmap, isl_dim_div);
3499 isl_int_addmul(bmap->div[div][1], shift, bmap->div[div][0]);
3501 for (i = 0; i < bmap->n_eq; ++i) {
3502 if (isl_int_is_zero(bmap->eq[i][1 + total + div]))
3503 continue;
3504 isl_int_submul(bmap->eq[i][0],
3505 shift, bmap->eq[i][1 + total + div]);
3507 for (i = 0; i < bmap->n_ineq; ++i) {
3508 if (isl_int_is_zero(bmap->ineq[i][1 + total + div]))
3509 continue;
3510 isl_int_submul(bmap->ineq[i][0],
3511 shift, bmap->ineq[i][1 + total + div]);
3513 for (i = 0; i < bmap->n_div; ++i) {
3514 if (isl_int_is_zero(bmap->div[i][0]))
3515 continue;
3516 if (isl_int_is_zero(bmap->div[i][1 + 1 + total + div]))
3517 continue;
3518 isl_int_submul(bmap->div[i][1],
3519 shift, bmap->div[i][1 + 1 + total + div]);
3522 return bmap;