2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2013 Ecole Normale Superieure
4 * Copyright 2014 INRIA Rocquencourt
5 * Copyright 2016 Sven Verdoolaege
7 * Use of this software is governed by the MIT license
9 * Written by Sven Verdoolaege, K.U.Leuven, Departement
10 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
11 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
12 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
13 * B.P. 105 - 78153 Le Chesnay, France
16 #include <isl_ctx_private.h>
17 #include <isl_mat_private.h>
18 #include <isl_vec_private.h>
19 #include "isl_map_private.h"
22 #include <isl_config.h>
24 #include <bset_to_bmap.c>
25 #include <bset_from_bmap.c>
28 * The implementation of tableaus in this file was inspired by Section 8
29 * of David Detlefs, Greg Nelson and James B. Saxe, "Simplify: a theorem
30 * prover for program checking".
33 struct isl_tab
*isl_tab_alloc(struct isl_ctx
*ctx
,
34 unsigned n_row
, unsigned n_var
, unsigned M
)
40 tab
= isl_calloc_type(ctx
, struct isl_tab
);
43 tab
->mat
= isl_mat_alloc(ctx
, n_row
, off
+ n_var
);
46 tab
->var
= isl_alloc_array(ctx
, struct isl_tab_var
, n_var
);
47 if (n_var
&& !tab
->var
)
49 tab
->con
= isl_alloc_array(ctx
, struct isl_tab_var
, n_row
);
50 if (n_row
&& !tab
->con
)
52 tab
->col_var
= isl_alloc_array(ctx
, int, n_var
);
53 if (n_var
&& !tab
->col_var
)
55 tab
->row_var
= isl_alloc_array(ctx
, int, n_row
);
56 if (n_row
&& !tab
->row_var
)
58 for (i
= 0; i
< n_var
; ++i
) {
59 tab
->var
[i
].index
= i
;
60 tab
->var
[i
].is_row
= 0;
61 tab
->var
[i
].is_nonneg
= 0;
62 tab
->var
[i
].is_zero
= 0;
63 tab
->var
[i
].is_redundant
= 0;
64 tab
->var
[i
].frozen
= 0;
65 tab
->var
[i
].negated
= 0;
79 tab
->strict_redundant
= 0;
86 tab
->bottom
.type
= isl_tab_undo_bottom
;
87 tab
->bottom
.next
= NULL
;
88 tab
->top
= &tab
->bottom
;
100 isl_ctx
*isl_tab_get_ctx(struct isl_tab
*tab
)
102 return tab
? isl_mat_get_ctx(tab
->mat
) : NULL
;
105 int isl_tab_extend_cons(struct isl_tab
*tab
, unsigned n_new
)
114 if (tab
->max_con
< tab
->n_con
+ n_new
) {
115 struct isl_tab_var
*con
;
117 con
= isl_realloc_array(tab
->mat
->ctx
, tab
->con
,
118 struct isl_tab_var
, tab
->max_con
+ n_new
);
122 tab
->max_con
+= n_new
;
124 if (tab
->mat
->n_row
< tab
->n_row
+ n_new
) {
127 tab
->mat
= isl_mat_extend(tab
->mat
,
128 tab
->n_row
+ n_new
, off
+ tab
->n_col
);
131 row_var
= isl_realloc_array(tab
->mat
->ctx
, tab
->row_var
,
132 int, tab
->mat
->n_row
);
135 tab
->row_var
= row_var
;
137 enum isl_tab_row_sign
*s
;
138 s
= isl_realloc_array(tab
->mat
->ctx
, tab
->row_sign
,
139 enum isl_tab_row_sign
, tab
->mat
->n_row
);
148 /* Make room for at least n_new extra variables.
149 * Return -1 if anything went wrong.
151 int isl_tab_extend_vars(struct isl_tab
*tab
, unsigned n_new
)
153 struct isl_tab_var
*var
;
154 unsigned off
= 2 + tab
->M
;
156 if (tab
->max_var
< tab
->n_var
+ n_new
) {
157 var
= isl_realloc_array(tab
->mat
->ctx
, tab
->var
,
158 struct isl_tab_var
, tab
->n_var
+ n_new
);
162 tab
->max_var
= tab
->n_var
+ n_new
;
165 if (tab
->mat
->n_col
< off
+ tab
->n_col
+ n_new
) {
168 tab
->mat
= isl_mat_extend(tab
->mat
,
169 tab
->mat
->n_row
, off
+ tab
->n_col
+ n_new
);
172 p
= isl_realloc_array(tab
->mat
->ctx
, tab
->col_var
,
173 int, tab
->n_col
+ n_new
);
182 static void free_undo_record(struct isl_tab_undo
*undo
)
184 switch (undo
->type
) {
185 case isl_tab_undo_saved_basis
:
186 free(undo
->u
.col_var
);
193 static void free_undo(struct isl_tab
*tab
)
195 struct isl_tab_undo
*undo
, *next
;
197 for (undo
= tab
->top
; undo
&& undo
!= &tab
->bottom
; undo
= next
) {
199 free_undo_record(undo
);
204 void isl_tab_free(struct isl_tab
*tab
)
209 isl_mat_free(tab
->mat
);
210 isl_vec_free(tab
->dual
);
211 isl_basic_map_free(tab
->bmap
);
217 isl_mat_free(tab
->samples
);
218 free(tab
->sample_index
);
219 isl_mat_free(tab
->basis
);
223 struct isl_tab
*isl_tab_dup(struct isl_tab
*tab
)
233 dup
= isl_calloc_type(tab
->mat
->ctx
, struct isl_tab
);
236 dup
->mat
= isl_mat_dup(tab
->mat
);
239 dup
->var
= isl_alloc_array(tab
->mat
->ctx
, struct isl_tab_var
, tab
->max_var
);
240 if (tab
->max_var
&& !dup
->var
)
242 for (i
= 0; i
< tab
->n_var
; ++i
)
243 dup
->var
[i
] = tab
->var
[i
];
244 dup
->con
= isl_alloc_array(tab
->mat
->ctx
, struct isl_tab_var
, tab
->max_con
);
245 if (tab
->max_con
&& !dup
->con
)
247 for (i
= 0; i
< tab
->n_con
; ++i
)
248 dup
->con
[i
] = tab
->con
[i
];
249 dup
->col_var
= isl_alloc_array(tab
->mat
->ctx
, int, tab
->mat
->n_col
- off
);
250 if ((tab
->mat
->n_col
- off
) && !dup
->col_var
)
252 for (i
= 0; i
< tab
->n_col
; ++i
)
253 dup
->col_var
[i
] = tab
->col_var
[i
];
254 dup
->row_var
= isl_alloc_array(tab
->mat
->ctx
, int, tab
->mat
->n_row
);
255 if (tab
->mat
->n_row
&& !dup
->row_var
)
257 for (i
= 0; i
< tab
->n_row
; ++i
)
258 dup
->row_var
[i
] = tab
->row_var
[i
];
260 dup
->row_sign
= isl_alloc_array(tab
->mat
->ctx
, enum isl_tab_row_sign
,
262 if (tab
->mat
->n_row
&& !dup
->row_sign
)
264 for (i
= 0; i
< tab
->n_row
; ++i
)
265 dup
->row_sign
[i
] = tab
->row_sign
[i
];
268 dup
->samples
= isl_mat_dup(tab
->samples
);
271 dup
->sample_index
= isl_alloc_array(tab
->mat
->ctx
, int,
272 tab
->samples
->n_row
);
273 if (tab
->samples
->n_row
&& !dup
->sample_index
)
275 dup
->n_sample
= tab
->n_sample
;
276 dup
->n_outside
= tab
->n_outside
;
278 dup
->n_row
= tab
->n_row
;
279 dup
->n_con
= tab
->n_con
;
280 dup
->n_eq
= tab
->n_eq
;
281 dup
->max_con
= tab
->max_con
;
282 dup
->n_col
= tab
->n_col
;
283 dup
->n_var
= tab
->n_var
;
284 dup
->max_var
= tab
->max_var
;
285 dup
->n_param
= tab
->n_param
;
286 dup
->n_div
= tab
->n_div
;
287 dup
->n_dead
= tab
->n_dead
;
288 dup
->n_redundant
= tab
->n_redundant
;
289 dup
->rational
= tab
->rational
;
290 dup
->empty
= tab
->empty
;
291 dup
->strict_redundant
= 0;
295 tab
->cone
= tab
->cone
;
296 dup
->bottom
.type
= isl_tab_undo_bottom
;
297 dup
->bottom
.next
= NULL
;
298 dup
->top
= &dup
->bottom
;
300 dup
->n_zero
= tab
->n_zero
;
301 dup
->n_unbounded
= tab
->n_unbounded
;
302 dup
->basis
= isl_mat_dup(tab
->basis
);
310 /* Construct the coefficient matrix of the product tableau
312 * mat{1,2} is the coefficient matrix of tableau {1,2}
313 * row{1,2} is the number of rows in tableau {1,2}
314 * col{1,2} is the number of columns in tableau {1,2}
315 * off is the offset to the coefficient column (skipping the
316 * denominator, the constant term and the big parameter if any)
317 * r{1,2} is the number of redundant rows in tableau {1,2}
318 * d{1,2} is the number of dead columns in tableau {1,2}
320 * The order of the rows and columns in the result is as explained
321 * in isl_tab_product.
323 static struct isl_mat
*tab_mat_product(struct isl_mat
*mat1
,
324 struct isl_mat
*mat2
, unsigned row1
, unsigned row2
,
325 unsigned col1
, unsigned col2
,
326 unsigned off
, unsigned r1
, unsigned r2
, unsigned d1
, unsigned d2
)
329 struct isl_mat
*prod
;
332 prod
= isl_mat_alloc(mat1
->ctx
, mat1
->n_row
+ mat2
->n_row
,
338 for (i
= 0; i
< r1
; ++i
) {
339 isl_seq_cpy(prod
->row
[n
+ i
], mat1
->row
[i
], off
+ d1
);
340 isl_seq_clr(prod
->row
[n
+ i
] + off
+ d1
, d2
);
341 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ d1
+ d2
,
342 mat1
->row
[i
] + off
+ d1
, col1
- d1
);
343 isl_seq_clr(prod
->row
[n
+ i
] + off
+ col1
+ d1
, col2
- d2
);
347 for (i
= 0; i
< r2
; ++i
) {
348 isl_seq_cpy(prod
->row
[n
+ i
], mat2
->row
[i
], off
);
349 isl_seq_clr(prod
->row
[n
+ i
] + off
, d1
);
350 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ d1
,
351 mat2
->row
[i
] + off
, d2
);
352 isl_seq_clr(prod
->row
[n
+ i
] + off
+ d1
+ d2
, col1
- d1
);
353 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ col1
+ d1
,
354 mat2
->row
[i
] + off
+ d2
, col2
- d2
);
358 for (i
= 0; i
< row1
- r1
; ++i
) {
359 isl_seq_cpy(prod
->row
[n
+ i
], mat1
->row
[r1
+ i
], off
+ d1
);
360 isl_seq_clr(prod
->row
[n
+ i
] + off
+ d1
, d2
);
361 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ d1
+ d2
,
362 mat1
->row
[r1
+ i
] + off
+ d1
, col1
- d1
);
363 isl_seq_clr(prod
->row
[n
+ i
] + off
+ col1
+ d1
, col2
- d2
);
367 for (i
= 0; i
< row2
- r2
; ++i
) {
368 isl_seq_cpy(prod
->row
[n
+ i
], mat2
->row
[r2
+ i
], off
);
369 isl_seq_clr(prod
->row
[n
+ i
] + off
, d1
);
370 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ d1
,
371 mat2
->row
[r2
+ i
] + off
, d2
);
372 isl_seq_clr(prod
->row
[n
+ i
] + off
+ d1
+ d2
, col1
- d1
);
373 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ col1
+ d1
,
374 mat2
->row
[r2
+ i
] + off
+ d2
, col2
- d2
);
380 /* Update the row or column index of a variable that corresponds
381 * to a variable in the first input tableau.
383 static void update_index1(struct isl_tab_var
*var
,
384 unsigned r1
, unsigned r2
, unsigned d1
, unsigned d2
)
386 if (var
->index
== -1)
388 if (var
->is_row
&& var
->index
>= r1
)
390 if (!var
->is_row
&& var
->index
>= d1
)
394 /* Update the row or column index of a variable that corresponds
395 * to a variable in the second input tableau.
397 static void update_index2(struct isl_tab_var
*var
,
398 unsigned row1
, unsigned col1
,
399 unsigned r1
, unsigned r2
, unsigned d1
, unsigned d2
)
401 if (var
->index
== -1)
416 /* Create a tableau that represents the Cartesian product of the sets
417 * represented by tableaus tab1 and tab2.
418 * The order of the rows in the product is
419 * - redundant rows of tab1
420 * - redundant rows of tab2
421 * - non-redundant rows of tab1
422 * - non-redundant rows of tab2
423 * The order of the columns is
426 * - coefficient of big parameter, if any
427 * - dead columns of tab1
428 * - dead columns of tab2
429 * - live columns of tab1
430 * - live columns of tab2
431 * The order of the variables and the constraints is a concatenation
432 * of order in the two input tableaus.
434 struct isl_tab
*isl_tab_product(struct isl_tab
*tab1
, struct isl_tab
*tab2
)
437 struct isl_tab
*prod
;
439 unsigned r1
, r2
, d1
, d2
;
444 isl_assert(tab1
->mat
->ctx
, tab1
->M
== tab2
->M
, return NULL
);
445 isl_assert(tab1
->mat
->ctx
, tab1
->rational
== tab2
->rational
, return NULL
);
446 isl_assert(tab1
->mat
->ctx
, tab1
->cone
== tab2
->cone
, return NULL
);
447 isl_assert(tab1
->mat
->ctx
, !tab1
->row_sign
, return NULL
);
448 isl_assert(tab1
->mat
->ctx
, !tab2
->row_sign
, return NULL
);
449 isl_assert(tab1
->mat
->ctx
, tab1
->n_param
== 0, return NULL
);
450 isl_assert(tab1
->mat
->ctx
, tab2
->n_param
== 0, return NULL
);
451 isl_assert(tab1
->mat
->ctx
, tab1
->n_div
== 0, return NULL
);
452 isl_assert(tab1
->mat
->ctx
, tab2
->n_div
== 0, return NULL
);
455 r1
= tab1
->n_redundant
;
456 r2
= tab2
->n_redundant
;
459 prod
= isl_calloc_type(tab1
->mat
->ctx
, struct isl_tab
);
462 prod
->mat
= tab_mat_product(tab1
->mat
, tab2
->mat
,
463 tab1
->n_row
, tab2
->n_row
,
464 tab1
->n_col
, tab2
->n_col
, off
, r1
, r2
, d1
, d2
);
467 prod
->var
= isl_alloc_array(tab1
->mat
->ctx
, struct isl_tab_var
,
468 tab1
->max_var
+ tab2
->max_var
);
469 if ((tab1
->max_var
+ tab2
->max_var
) && !prod
->var
)
471 for (i
= 0; i
< tab1
->n_var
; ++i
) {
472 prod
->var
[i
] = tab1
->var
[i
];
473 update_index1(&prod
->var
[i
], r1
, r2
, d1
, d2
);
475 for (i
= 0; i
< tab2
->n_var
; ++i
) {
476 prod
->var
[tab1
->n_var
+ i
] = tab2
->var
[i
];
477 update_index2(&prod
->var
[tab1
->n_var
+ i
],
478 tab1
->n_row
, tab1
->n_col
,
481 prod
->con
= isl_alloc_array(tab1
->mat
->ctx
, struct isl_tab_var
,
482 tab1
->max_con
+ tab2
->max_con
);
483 if ((tab1
->max_con
+ tab2
->max_con
) && !prod
->con
)
485 for (i
= 0; i
< tab1
->n_con
; ++i
) {
486 prod
->con
[i
] = tab1
->con
[i
];
487 update_index1(&prod
->con
[i
], r1
, r2
, d1
, d2
);
489 for (i
= 0; i
< tab2
->n_con
; ++i
) {
490 prod
->con
[tab1
->n_con
+ i
] = tab2
->con
[i
];
491 update_index2(&prod
->con
[tab1
->n_con
+ i
],
492 tab1
->n_row
, tab1
->n_col
,
495 prod
->col_var
= isl_alloc_array(tab1
->mat
->ctx
, int,
496 tab1
->n_col
+ tab2
->n_col
);
497 if ((tab1
->n_col
+ tab2
->n_col
) && !prod
->col_var
)
499 for (i
= 0; i
< tab1
->n_col
; ++i
) {
500 int pos
= i
< d1
? i
: i
+ d2
;
501 prod
->col_var
[pos
] = tab1
->col_var
[i
];
503 for (i
= 0; i
< tab2
->n_col
; ++i
) {
504 int pos
= i
< d2
? d1
+ i
: tab1
->n_col
+ i
;
505 int t
= tab2
->col_var
[i
];
510 prod
->col_var
[pos
] = t
;
512 prod
->row_var
= isl_alloc_array(tab1
->mat
->ctx
, int,
513 tab1
->mat
->n_row
+ tab2
->mat
->n_row
);
514 if ((tab1
->mat
->n_row
+ tab2
->mat
->n_row
) && !prod
->row_var
)
516 for (i
= 0; i
< tab1
->n_row
; ++i
) {
517 int pos
= i
< r1
? i
: i
+ r2
;
518 prod
->row_var
[pos
] = tab1
->row_var
[i
];
520 for (i
= 0; i
< tab2
->n_row
; ++i
) {
521 int pos
= i
< r2
? r1
+ i
: tab1
->n_row
+ i
;
522 int t
= tab2
->row_var
[i
];
527 prod
->row_var
[pos
] = t
;
529 prod
->samples
= NULL
;
530 prod
->sample_index
= NULL
;
531 prod
->n_row
= tab1
->n_row
+ tab2
->n_row
;
532 prod
->n_con
= tab1
->n_con
+ tab2
->n_con
;
534 prod
->max_con
= tab1
->max_con
+ tab2
->max_con
;
535 prod
->n_col
= tab1
->n_col
+ tab2
->n_col
;
536 prod
->n_var
= tab1
->n_var
+ tab2
->n_var
;
537 prod
->max_var
= tab1
->max_var
+ tab2
->max_var
;
540 prod
->n_dead
= tab1
->n_dead
+ tab2
->n_dead
;
541 prod
->n_redundant
= tab1
->n_redundant
+ tab2
->n_redundant
;
542 prod
->rational
= tab1
->rational
;
543 prod
->empty
= tab1
->empty
|| tab2
->empty
;
544 prod
->strict_redundant
= tab1
->strict_redundant
|| tab2
->strict_redundant
;
548 prod
->cone
= tab1
->cone
;
549 prod
->bottom
.type
= isl_tab_undo_bottom
;
550 prod
->bottom
.next
= NULL
;
551 prod
->top
= &prod
->bottom
;
554 prod
->n_unbounded
= 0;
563 static struct isl_tab_var
*var_from_index(struct isl_tab
*tab
, int i
)
568 return &tab
->con
[~i
];
571 struct isl_tab_var
*isl_tab_var_from_row(struct isl_tab
*tab
, int i
)
573 return var_from_index(tab
, tab
->row_var
[i
]);
576 static struct isl_tab_var
*var_from_col(struct isl_tab
*tab
, int i
)
578 return var_from_index(tab
, tab
->col_var
[i
]);
581 /* Check if there are any upper bounds on column variable "var",
582 * i.e., non-negative rows where var appears with a negative coefficient.
583 * Return 1 if there are no such bounds.
585 static int max_is_manifestly_unbounded(struct isl_tab
*tab
,
586 struct isl_tab_var
*var
)
589 unsigned off
= 2 + tab
->M
;
593 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
594 if (!isl_int_is_neg(tab
->mat
->row
[i
][off
+ var
->index
]))
596 if (isl_tab_var_from_row(tab
, i
)->is_nonneg
)
602 /* Check if there are any lower bounds on column variable "var",
603 * i.e., non-negative rows where var appears with a positive coefficient.
604 * Return 1 if there are no such bounds.
606 static int min_is_manifestly_unbounded(struct isl_tab
*tab
,
607 struct isl_tab_var
*var
)
610 unsigned off
= 2 + tab
->M
;
614 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
615 if (!isl_int_is_pos(tab
->mat
->row
[i
][off
+ var
->index
]))
617 if (isl_tab_var_from_row(tab
, i
)->is_nonneg
)
623 static int row_cmp(struct isl_tab
*tab
, int r1
, int r2
, int c
, isl_int
*t
)
625 unsigned off
= 2 + tab
->M
;
629 isl_int_mul(*t
, tab
->mat
->row
[r1
][2], tab
->mat
->row
[r2
][off
+c
]);
630 isl_int_submul(*t
, tab
->mat
->row
[r2
][2], tab
->mat
->row
[r1
][off
+c
]);
635 isl_int_mul(*t
, tab
->mat
->row
[r1
][1], tab
->mat
->row
[r2
][off
+ c
]);
636 isl_int_submul(*t
, tab
->mat
->row
[r2
][1], tab
->mat
->row
[r1
][off
+ c
]);
637 return isl_int_sgn(*t
);
640 /* Given the index of a column "c", return the index of a row
641 * that can be used to pivot the column in, with either an increase
642 * (sgn > 0) or a decrease (sgn < 0) of the corresponding variable.
643 * If "var" is not NULL, then the row returned will be different from
644 * the one associated with "var".
646 * Each row in the tableau is of the form
648 * x_r = a_r0 + \sum_i a_ri x_i
650 * Only rows with x_r >= 0 and with the sign of a_ri opposite to "sgn"
651 * impose any limit on the increase or decrease in the value of x_c
652 * and this bound is equal to a_r0 / |a_rc|. We are therefore looking
653 * for the row with the smallest (most stringent) such bound.
654 * Note that the common denominator of each row drops out of the fraction.
655 * To check if row j has a smaller bound than row r, i.e.,
656 * a_j0 / |a_jc| < a_r0 / |a_rc| or a_j0 |a_rc| < a_r0 |a_jc|,
657 * we check if -sign(a_jc) (a_j0 a_rc - a_r0 a_jc) < 0,
658 * where -sign(a_jc) is equal to "sgn".
660 static int pivot_row(struct isl_tab
*tab
,
661 struct isl_tab_var
*var
, int sgn
, int c
)
665 unsigned off
= 2 + tab
->M
;
669 for (j
= tab
->n_redundant
; j
< tab
->n_row
; ++j
) {
670 if (var
&& j
== var
->index
)
672 if (!isl_tab_var_from_row(tab
, j
)->is_nonneg
)
674 if (sgn
* isl_int_sgn(tab
->mat
->row
[j
][off
+ c
]) >= 0)
680 tsgn
= sgn
* row_cmp(tab
, r
, j
, c
, &t
);
681 if (tsgn
< 0 || (tsgn
== 0 &&
682 tab
->row_var
[j
] < tab
->row_var
[r
]))
689 /* Find a pivot (row and col) that will increase (sgn > 0) or decrease
690 * (sgn < 0) the value of row variable var.
691 * If not NULL, then skip_var is a row variable that should be ignored
692 * while looking for a pivot row. It is usually equal to var.
694 * As the given row in the tableau is of the form
696 * x_r = a_r0 + \sum_i a_ri x_i
698 * we need to find a column such that the sign of a_ri is equal to "sgn"
699 * (such that an increase in x_i will have the desired effect) or a
700 * column with a variable that may attain negative values.
701 * If a_ri is positive, then we need to move x_i in the same direction
702 * to obtain the desired effect. Otherwise, x_i has to move in the
703 * opposite direction.
705 static void find_pivot(struct isl_tab
*tab
,
706 struct isl_tab_var
*var
, struct isl_tab_var
*skip_var
,
707 int sgn
, int *row
, int *col
)
714 isl_assert(tab
->mat
->ctx
, var
->is_row
, return);
715 tr
= tab
->mat
->row
[var
->index
] + 2 + tab
->M
;
718 for (j
= tab
->n_dead
; j
< tab
->n_col
; ++j
) {
719 if (isl_int_is_zero(tr
[j
]))
721 if (isl_int_sgn(tr
[j
]) != sgn
&&
722 var_from_col(tab
, j
)->is_nonneg
)
724 if (c
< 0 || tab
->col_var
[j
] < tab
->col_var
[c
])
730 sgn
*= isl_int_sgn(tr
[c
]);
731 r
= pivot_row(tab
, skip_var
, sgn
, c
);
732 *row
= r
< 0 ? var
->index
: r
;
736 /* Return 1 if row "row" represents an obviously redundant inequality.
738 * - it represents an inequality or a variable
739 * - that is the sum of a non-negative sample value and a positive
740 * combination of zero or more non-negative constraints.
742 int isl_tab_row_is_redundant(struct isl_tab
*tab
, int row
)
745 unsigned off
= 2 + tab
->M
;
747 if (tab
->row_var
[row
] < 0 && !isl_tab_var_from_row(tab
, row
)->is_nonneg
)
750 if (isl_int_is_neg(tab
->mat
->row
[row
][1]))
752 if (tab
->strict_redundant
&& isl_int_is_zero(tab
->mat
->row
[row
][1]))
754 if (tab
->M
&& isl_int_is_neg(tab
->mat
->row
[row
][2]))
757 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
758 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ i
]))
760 if (tab
->col_var
[i
] >= 0)
762 if (isl_int_is_neg(tab
->mat
->row
[row
][off
+ i
]))
764 if (!var_from_col(tab
, i
)->is_nonneg
)
770 static void swap_rows(struct isl_tab
*tab
, int row1
, int row2
)
773 enum isl_tab_row_sign s
;
775 t
= tab
->row_var
[row1
];
776 tab
->row_var
[row1
] = tab
->row_var
[row2
];
777 tab
->row_var
[row2
] = t
;
778 isl_tab_var_from_row(tab
, row1
)->index
= row1
;
779 isl_tab_var_from_row(tab
, row2
)->index
= row2
;
780 tab
->mat
= isl_mat_swap_rows(tab
->mat
, row1
, row2
);
784 s
= tab
->row_sign
[row1
];
785 tab
->row_sign
[row1
] = tab
->row_sign
[row2
];
786 tab
->row_sign
[row2
] = s
;
789 static int push_union(struct isl_tab
*tab
,
790 enum isl_tab_undo_type type
, union isl_tab_undo_val u
) WARN_UNUSED
;
791 static int push_union(struct isl_tab
*tab
,
792 enum isl_tab_undo_type type
, union isl_tab_undo_val u
)
794 struct isl_tab_undo
*undo
;
801 undo
= isl_alloc_type(tab
->mat
->ctx
, struct isl_tab_undo
);
806 undo
->next
= tab
->top
;
812 int isl_tab_push_var(struct isl_tab
*tab
,
813 enum isl_tab_undo_type type
, struct isl_tab_var
*var
)
815 union isl_tab_undo_val u
;
817 u
.var_index
= tab
->row_var
[var
->index
];
819 u
.var_index
= tab
->col_var
[var
->index
];
820 return push_union(tab
, type
, u
);
823 int isl_tab_push(struct isl_tab
*tab
, enum isl_tab_undo_type type
)
825 union isl_tab_undo_val u
= { 0 };
826 return push_union(tab
, type
, u
);
829 /* Push a record on the undo stack describing the current basic
830 * variables, so that the this state can be restored during rollback.
832 int isl_tab_push_basis(struct isl_tab
*tab
)
835 union isl_tab_undo_val u
;
837 u
.col_var
= isl_alloc_array(tab
->mat
->ctx
, int, tab
->n_col
);
838 if (tab
->n_col
&& !u
.col_var
)
840 for (i
= 0; i
< tab
->n_col
; ++i
)
841 u
.col_var
[i
] = tab
->col_var
[i
];
842 return push_union(tab
, isl_tab_undo_saved_basis
, u
);
845 int isl_tab_push_callback(struct isl_tab
*tab
, struct isl_tab_callback
*callback
)
847 union isl_tab_undo_val u
;
848 u
.callback
= callback
;
849 return push_union(tab
, isl_tab_undo_callback
, u
);
852 struct isl_tab
*isl_tab_init_samples(struct isl_tab
*tab
)
859 tab
->samples
= isl_mat_alloc(tab
->mat
->ctx
, 1, 1 + tab
->n_var
);
862 tab
->sample_index
= isl_alloc_array(tab
->mat
->ctx
, int, 1);
863 if (!tab
->sample_index
)
871 int isl_tab_add_sample(struct isl_tab
*tab
, __isl_take isl_vec
*sample
)
876 if (tab
->n_sample
+ 1 > tab
->samples
->n_row
) {
877 int *t
= isl_realloc_array(tab
->mat
->ctx
,
878 tab
->sample_index
, int, tab
->n_sample
+ 1);
881 tab
->sample_index
= t
;
884 tab
->samples
= isl_mat_extend(tab
->samples
,
885 tab
->n_sample
+ 1, tab
->samples
->n_col
);
889 isl_seq_cpy(tab
->samples
->row
[tab
->n_sample
], sample
->el
, sample
->size
);
890 isl_vec_free(sample
);
891 tab
->sample_index
[tab
->n_sample
] = tab
->n_sample
;
896 isl_vec_free(sample
);
900 struct isl_tab
*isl_tab_drop_sample(struct isl_tab
*tab
, int s
)
902 if (s
!= tab
->n_outside
) {
903 int t
= tab
->sample_index
[tab
->n_outside
];
904 tab
->sample_index
[tab
->n_outside
] = tab
->sample_index
[s
];
905 tab
->sample_index
[s
] = t
;
906 isl_mat_swap_rows(tab
->samples
, tab
->n_outside
, s
);
909 if (isl_tab_push(tab
, isl_tab_undo_drop_sample
) < 0) {
917 /* Record the current number of samples so that we can remove newer
918 * samples during a rollback.
920 int isl_tab_save_samples(struct isl_tab
*tab
)
922 union isl_tab_undo_val u
;
928 return push_union(tab
, isl_tab_undo_saved_samples
, u
);
931 /* Mark row with index "row" as being redundant.
932 * If we may need to undo the operation or if the row represents
933 * a variable of the original problem, the row is kept,
934 * but no longer considered when looking for a pivot row.
935 * Otherwise, the row is simply removed.
937 * The row may be interchanged with some other row. If it
938 * is interchanged with a later row, return 1. Otherwise return 0.
939 * If the rows are checked in order in the calling function,
940 * then a return value of 1 means that the row with the given
941 * row number may now contain a different row that hasn't been checked yet.
943 int isl_tab_mark_redundant(struct isl_tab
*tab
, int row
)
945 struct isl_tab_var
*var
= isl_tab_var_from_row(tab
, row
);
946 var
->is_redundant
= 1;
947 isl_assert(tab
->mat
->ctx
, row
>= tab
->n_redundant
, return -1);
948 if (tab
->preserve
|| tab
->need_undo
|| tab
->row_var
[row
] >= 0) {
949 if (tab
->row_var
[row
] >= 0 && !var
->is_nonneg
) {
951 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, var
) < 0)
954 if (row
!= tab
->n_redundant
)
955 swap_rows(tab
, row
, tab
->n_redundant
);
957 return isl_tab_push_var(tab
, isl_tab_undo_redundant
, var
);
959 if (row
!= tab
->n_row
- 1)
960 swap_rows(tab
, row
, tab
->n_row
- 1);
961 isl_tab_var_from_row(tab
, tab
->n_row
- 1)->index
= -1;
967 /* Mark "tab" as a rational tableau.
968 * If it wasn't marked as a rational tableau already and if we may
969 * need to undo changes, then arrange for the marking to be undone
972 int isl_tab_mark_rational(struct isl_tab
*tab
)
976 if (!tab
->rational
&& tab
->need_undo
)
977 if (isl_tab_push(tab
, isl_tab_undo_rational
) < 0)
983 int isl_tab_mark_empty(struct isl_tab
*tab
)
987 if (!tab
->empty
&& tab
->need_undo
)
988 if (isl_tab_push(tab
, isl_tab_undo_empty
) < 0)
994 int isl_tab_freeze_constraint(struct isl_tab
*tab
, int con
)
996 struct isl_tab_var
*var
;
1001 var
= &tab
->con
[con
];
1009 return isl_tab_push_var(tab
, isl_tab_undo_freeze
, var
);
1014 /* Update the rows signs after a pivot of "row" and "col", with "row_sgn"
1015 * the original sign of the pivot element.
1016 * We only keep track of row signs during PILP solving and in this case
1017 * we only pivot a row with negative sign (meaning the value is always
1018 * non-positive) using a positive pivot element.
1020 * For each row j, the new value of the parametric constant is equal to
1022 * a_j0 - a_jc a_r0/a_rc
1024 * where a_j0 is the original parametric constant, a_rc is the pivot element,
1025 * a_r0 is the parametric constant of the pivot row and a_jc is the
1026 * pivot column entry of the row j.
1027 * Since a_r0 is non-positive and a_rc is positive, the sign of row j
1028 * remains the same if a_jc has the same sign as the row j or if
1029 * a_jc is zero. In all other cases, we reset the sign to "unknown".
1031 static void update_row_sign(struct isl_tab
*tab
, int row
, int col
, int row_sgn
)
1034 struct isl_mat
*mat
= tab
->mat
;
1035 unsigned off
= 2 + tab
->M
;
1040 if (tab
->row_sign
[row
] == 0)
1042 isl_assert(mat
->ctx
, row_sgn
> 0, return);
1043 isl_assert(mat
->ctx
, tab
->row_sign
[row
] == isl_tab_row_neg
, return);
1044 tab
->row_sign
[row
] = isl_tab_row_pos
;
1045 for (i
= 0; i
< tab
->n_row
; ++i
) {
1049 s
= isl_int_sgn(mat
->row
[i
][off
+ col
]);
1052 if (!tab
->row_sign
[i
])
1054 if (s
< 0 && tab
->row_sign
[i
] == isl_tab_row_neg
)
1056 if (s
> 0 && tab
->row_sign
[i
] == isl_tab_row_pos
)
1058 tab
->row_sign
[i
] = isl_tab_row_unknown
;
1062 /* Given a row number "row" and a column number "col", pivot the tableau
1063 * such that the associated variables are interchanged.
1064 * The given row in the tableau expresses
1066 * x_r = a_r0 + \sum_i a_ri x_i
1070 * x_c = 1/a_rc x_r - a_r0/a_rc + sum_{i \ne r} -a_ri/a_rc
1072 * Substituting this equality into the other rows
1074 * x_j = a_j0 + \sum_i a_ji x_i
1076 * with a_jc \ne 0, we obtain
1078 * x_j = a_jc/a_rc x_r + a_j0 - a_jc a_r0/a_rc + sum a_ji - a_jc a_ri/a_rc
1085 * where i is any other column and j is any other row,
1086 * is therefore transformed into
1088 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1089 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1091 * The transformation is performed along the following steps
1093 * d_r/n_rc n_ri/n_rc
1096 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1099 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1100 * n_jc/(|n_rc| d_j) n_ji/(|n_rc| d_j)
1102 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1103 * n_jc/(|n_rc| d_j) (n_ji |n_rc|)/(|n_rc| d_j)
1105 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1106 * n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1108 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1109 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1112 int isl_tab_pivot(struct isl_tab
*tab
, int row
, int col
)
1118 struct isl_mat
*mat
= tab
->mat
;
1119 struct isl_tab_var
*var
;
1120 unsigned off
= 2 + tab
->M
;
1122 ctx
= isl_tab_get_ctx(tab
);
1123 if (isl_ctx_next_operation(ctx
) < 0)
1126 isl_int_swap(mat
->row
[row
][0], mat
->row
[row
][off
+ col
]);
1127 sgn
= isl_int_sgn(mat
->row
[row
][0]);
1129 isl_int_neg(mat
->row
[row
][0], mat
->row
[row
][0]);
1130 isl_int_neg(mat
->row
[row
][off
+ col
], mat
->row
[row
][off
+ col
]);
1132 for (j
= 0; j
< off
- 1 + tab
->n_col
; ++j
) {
1133 if (j
== off
- 1 + col
)
1135 isl_int_neg(mat
->row
[row
][1 + j
], mat
->row
[row
][1 + j
]);
1137 if (!isl_int_is_one(mat
->row
[row
][0]))
1138 isl_seq_normalize(mat
->ctx
, mat
->row
[row
], off
+ tab
->n_col
);
1139 for (i
= 0; i
< tab
->n_row
; ++i
) {
1142 if (isl_int_is_zero(mat
->row
[i
][off
+ col
]))
1144 isl_int_mul(mat
->row
[i
][0], mat
->row
[i
][0], mat
->row
[row
][0]);
1145 for (j
= 0; j
< off
- 1 + tab
->n_col
; ++j
) {
1146 if (j
== off
- 1 + col
)
1148 isl_int_mul(mat
->row
[i
][1 + j
],
1149 mat
->row
[i
][1 + j
], mat
->row
[row
][0]);
1150 isl_int_addmul(mat
->row
[i
][1 + j
],
1151 mat
->row
[i
][off
+ col
], mat
->row
[row
][1 + j
]);
1153 isl_int_mul(mat
->row
[i
][off
+ col
],
1154 mat
->row
[i
][off
+ col
], mat
->row
[row
][off
+ col
]);
1155 if (!isl_int_is_one(mat
->row
[i
][0]))
1156 isl_seq_normalize(mat
->ctx
, mat
->row
[i
], off
+ tab
->n_col
);
1158 t
= tab
->row_var
[row
];
1159 tab
->row_var
[row
] = tab
->col_var
[col
];
1160 tab
->col_var
[col
] = t
;
1161 var
= isl_tab_var_from_row(tab
, row
);
1164 var
= var_from_col(tab
, col
);
1167 update_row_sign(tab
, row
, col
, sgn
);
1170 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
1171 if (isl_int_is_zero(mat
->row
[i
][off
+ col
]))
1173 if (!isl_tab_var_from_row(tab
, i
)->frozen
&&
1174 isl_tab_row_is_redundant(tab
, i
)) {
1175 int redo
= isl_tab_mark_redundant(tab
, i
);
1185 /* If "var" represents a column variable, then pivot is up (sgn > 0)
1186 * or down (sgn < 0) to a row. The variable is assumed not to be
1187 * unbounded in the specified direction.
1188 * If sgn = 0, then the variable is unbounded in both directions,
1189 * and we pivot with any row we can find.
1191 static int to_row(struct isl_tab
*tab
, struct isl_tab_var
*var
, int sign
) WARN_UNUSED
;
1192 static int to_row(struct isl_tab
*tab
, struct isl_tab_var
*var
, int sign
)
1195 unsigned off
= 2 + tab
->M
;
1201 for (r
= tab
->n_redundant
; r
< tab
->n_row
; ++r
)
1202 if (!isl_int_is_zero(tab
->mat
->row
[r
][off
+var
->index
]))
1204 isl_assert(tab
->mat
->ctx
, r
< tab
->n_row
, return -1);
1206 r
= pivot_row(tab
, NULL
, sign
, var
->index
);
1207 isl_assert(tab
->mat
->ctx
, r
>= 0, return -1);
1210 return isl_tab_pivot(tab
, r
, var
->index
);
1213 /* Check whether all variables that are marked as non-negative
1214 * also have a non-negative sample value. This function is not
1215 * called from the current code but is useful during debugging.
1217 static void check_table(struct isl_tab
*tab
) __attribute__ ((unused
));
1218 static void check_table(struct isl_tab
*tab
)
1224 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
1225 struct isl_tab_var
*var
;
1226 var
= isl_tab_var_from_row(tab
, i
);
1227 if (!var
->is_nonneg
)
1230 isl_assert(tab
->mat
->ctx
,
1231 !isl_int_is_neg(tab
->mat
->row
[i
][2]), abort());
1232 if (isl_int_is_pos(tab
->mat
->row
[i
][2]))
1235 isl_assert(tab
->mat
->ctx
, !isl_int_is_neg(tab
->mat
->row
[i
][1]),
1240 /* Return the sign of the maximal value of "var".
1241 * If the sign is not negative, then on return from this function,
1242 * the sample value will also be non-negative.
1244 * If "var" is manifestly unbounded wrt positive values, we are done.
1245 * Otherwise, we pivot the variable up to a row if needed
1246 * Then we continue pivoting down until either
1247 * - no more down pivots can be performed
1248 * - the sample value is positive
1249 * - the variable is pivoted into a manifestly unbounded column
1251 static int sign_of_max(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1255 if (max_is_manifestly_unbounded(tab
, var
))
1257 if (to_row(tab
, var
, 1) < 0)
1259 while (!isl_int_is_pos(tab
->mat
->row
[var
->index
][1])) {
1260 find_pivot(tab
, var
, var
, 1, &row
, &col
);
1262 return isl_int_sgn(tab
->mat
->row
[var
->index
][1]);
1263 if (isl_tab_pivot(tab
, row
, col
) < 0)
1265 if (!var
->is_row
) /* manifestly unbounded */
1271 int isl_tab_sign_of_max(struct isl_tab
*tab
, int con
)
1273 struct isl_tab_var
*var
;
1278 var
= &tab
->con
[con
];
1279 isl_assert(tab
->mat
->ctx
, !var
->is_redundant
, return -2);
1280 isl_assert(tab
->mat
->ctx
, !var
->is_zero
, return -2);
1282 return sign_of_max(tab
, var
);
1285 static int row_is_neg(struct isl_tab
*tab
, int row
)
1288 return isl_int_is_neg(tab
->mat
->row
[row
][1]);
1289 if (isl_int_is_pos(tab
->mat
->row
[row
][2]))
1291 if (isl_int_is_neg(tab
->mat
->row
[row
][2]))
1293 return isl_int_is_neg(tab
->mat
->row
[row
][1]);
1296 static int row_sgn(struct isl_tab
*tab
, int row
)
1299 return isl_int_sgn(tab
->mat
->row
[row
][1]);
1300 if (!isl_int_is_zero(tab
->mat
->row
[row
][2]))
1301 return isl_int_sgn(tab
->mat
->row
[row
][2]);
1303 return isl_int_sgn(tab
->mat
->row
[row
][1]);
1306 /* Perform pivots until the row variable "var" has a non-negative
1307 * sample value or until no more upward pivots can be performed.
1308 * Return the sign of the sample value after the pivots have been
1311 static int restore_row(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1315 while (row_is_neg(tab
, var
->index
)) {
1316 find_pivot(tab
, var
, var
, 1, &row
, &col
);
1319 if (isl_tab_pivot(tab
, row
, col
) < 0)
1321 if (!var
->is_row
) /* manifestly unbounded */
1324 return row_sgn(tab
, var
->index
);
1327 /* Perform pivots until we are sure that the row variable "var"
1328 * can attain non-negative values. After return from this
1329 * function, "var" is still a row variable, but its sample
1330 * value may not be non-negative, even if the function returns 1.
1332 static int at_least_zero(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1336 while (isl_int_is_neg(tab
->mat
->row
[var
->index
][1])) {
1337 find_pivot(tab
, var
, var
, 1, &row
, &col
);
1340 if (row
== var
->index
) /* manifestly unbounded */
1342 if (isl_tab_pivot(tab
, row
, col
) < 0)
1345 return !isl_int_is_neg(tab
->mat
->row
[var
->index
][1]);
1348 /* Return a negative value if "var" can attain negative values.
1349 * Return a non-negative value otherwise.
1351 * If "var" is manifestly unbounded wrt negative values, we are done.
1352 * Otherwise, if var is in a column, we can pivot it down to a row.
1353 * Then we continue pivoting down until either
1354 * - the pivot would result in a manifestly unbounded column
1355 * => we don't perform the pivot, but simply return -1
1356 * - no more down pivots can be performed
1357 * - the sample value is negative
1358 * If the sample value becomes negative and the variable is supposed
1359 * to be nonnegative, then we undo the last pivot.
1360 * However, if the last pivot has made the pivoting variable
1361 * obviously redundant, then it may have moved to another row.
1362 * In that case we look for upward pivots until we reach a non-negative
1365 static int sign_of_min(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1368 struct isl_tab_var
*pivot_var
= NULL
;
1370 if (min_is_manifestly_unbounded(tab
, var
))
1374 row
= pivot_row(tab
, NULL
, -1, col
);
1375 pivot_var
= var_from_col(tab
, col
);
1376 if (isl_tab_pivot(tab
, row
, col
) < 0)
1378 if (var
->is_redundant
)
1380 if (isl_int_is_neg(tab
->mat
->row
[var
->index
][1])) {
1381 if (var
->is_nonneg
) {
1382 if (!pivot_var
->is_redundant
&&
1383 pivot_var
->index
== row
) {
1384 if (isl_tab_pivot(tab
, row
, col
) < 0)
1387 if (restore_row(tab
, var
) < -1)
1393 if (var
->is_redundant
)
1395 while (!isl_int_is_neg(tab
->mat
->row
[var
->index
][1])) {
1396 find_pivot(tab
, var
, var
, -1, &row
, &col
);
1397 if (row
== var
->index
)
1400 return isl_int_sgn(tab
->mat
->row
[var
->index
][1]);
1401 pivot_var
= var_from_col(tab
, col
);
1402 if (isl_tab_pivot(tab
, row
, col
) < 0)
1404 if (var
->is_redundant
)
1407 if (pivot_var
&& var
->is_nonneg
) {
1408 /* pivot back to non-negative value */
1409 if (!pivot_var
->is_redundant
&& pivot_var
->index
== row
) {
1410 if (isl_tab_pivot(tab
, row
, col
) < 0)
1413 if (restore_row(tab
, var
) < -1)
1419 static int row_at_most_neg_one(struct isl_tab
*tab
, int row
)
1422 if (isl_int_is_pos(tab
->mat
->row
[row
][2]))
1424 if (isl_int_is_neg(tab
->mat
->row
[row
][2]))
1427 return isl_int_is_neg(tab
->mat
->row
[row
][1]) &&
1428 isl_int_abs_ge(tab
->mat
->row
[row
][1],
1429 tab
->mat
->row
[row
][0]);
1432 /* Return 1 if "var" can attain values <= -1.
1433 * Return 0 otherwise.
1435 * If the variable "var" is supposed to be non-negative (is_nonneg is set),
1436 * then the sample value of "var" is assumed to be non-negative when the
1437 * the function is called. If 1 is returned then the constraint
1438 * is not redundant and the sample value is made non-negative again before
1439 * the function returns.
1441 int isl_tab_min_at_most_neg_one(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1444 struct isl_tab_var
*pivot_var
;
1446 if (min_is_manifestly_unbounded(tab
, var
))
1450 row
= pivot_row(tab
, NULL
, -1, col
);
1451 pivot_var
= var_from_col(tab
, col
);
1452 if (isl_tab_pivot(tab
, row
, col
) < 0)
1454 if (var
->is_redundant
)
1456 if (row_at_most_neg_one(tab
, var
->index
)) {
1457 if (var
->is_nonneg
) {
1458 if (!pivot_var
->is_redundant
&&
1459 pivot_var
->index
== row
) {
1460 if (isl_tab_pivot(tab
, row
, col
) < 0)
1463 if (restore_row(tab
, var
) < -1)
1469 if (var
->is_redundant
)
1472 find_pivot(tab
, var
, var
, -1, &row
, &col
);
1473 if (row
== var
->index
) {
1474 if (var
->is_nonneg
&& restore_row(tab
, var
) < -1)
1480 pivot_var
= var_from_col(tab
, col
);
1481 if (isl_tab_pivot(tab
, row
, col
) < 0)
1483 if (var
->is_redundant
)
1485 } while (!row_at_most_neg_one(tab
, var
->index
));
1486 if (var
->is_nonneg
) {
1487 /* pivot back to non-negative value */
1488 if (!pivot_var
->is_redundant
&& pivot_var
->index
== row
)
1489 if (isl_tab_pivot(tab
, row
, col
) < 0)
1491 if (restore_row(tab
, var
) < -1)
1497 /* Return 1 if "var" can attain values >= 1.
1498 * Return 0 otherwise.
1500 static int at_least_one(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1505 if (max_is_manifestly_unbounded(tab
, var
))
1507 if (to_row(tab
, var
, 1) < 0)
1509 r
= tab
->mat
->row
[var
->index
];
1510 while (isl_int_lt(r
[1], r
[0])) {
1511 find_pivot(tab
, var
, var
, 1, &row
, &col
);
1513 return isl_int_ge(r
[1], r
[0]);
1514 if (row
== var
->index
) /* manifestly unbounded */
1516 if (isl_tab_pivot(tab
, row
, col
) < 0)
1522 static void swap_cols(struct isl_tab
*tab
, int col1
, int col2
)
1525 unsigned off
= 2 + tab
->M
;
1526 t
= tab
->col_var
[col1
];
1527 tab
->col_var
[col1
] = tab
->col_var
[col2
];
1528 tab
->col_var
[col2
] = t
;
1529 var_from_col(tab
, col1
)->index
= col1
;
1530 var_from_col(tab
, col2
)->index
= col2
;
1531 tab
->mat
= isl_mat_swap_cols(tab
->mat
, off
+ col1
, off
+ col2
);
1534 /* Mark column with index "col" as representing a zero variable.
1535 * If we may need to undo the operation the column is kept,
1536 * but no longer considered.
1537 * Otherwise, the column is simply removed.
1539 * The column may be interchanged with some other column. If it
1540 * is interchanged with a later column, return 1. Otherwise return 0.
1541 * If the columns are checked in order in the calling function,
1542 * then a return value of 1 means that the column with the given
1543 * column number may now contain a different column that
1544 * hasn't been checked yet.
1546 int isl_tab_kill_col(struct isl_tab
*tab
, int col
)
1548 var_from_col(tab
, col
)->is_zero
= 1;
1549 if (tab
->need_undo
) {
1550 if (isl_tab_push_var(tab
, isl_tab_undo_zero
,
1551 var_from_col(tab
, col
)) < 0)
1553 if (col
!= tab
->n_dead
)
1554 swap_cols(tab
, col
, tab
->n_dead
);
1558 if (col
!= tab
->n_col
- 1)
1559 swap_cols(tab
, col
, tab
->n_col
- 1);
1560 var_from_col(tab
, tab
->n_col
- 1)->index
= -1;
1566 static int row_is_manifestly_non_integral(struct isl_tab
*tab
, int row
)
1568 unsigned off
= 2 + tab
->M
;
1570 if (tab
->M
&& !isl_int_eq(tab
->mat
->row
[row
][2],
1571 tab
->mat
->row
[row
][0]))
1573 if (isl_seq_first_non_zero(tab
->mat
->row
[row
] + off
+ tab
->n_dead
,
1574 tab
->n_col
- tab
->n_dead
) != -1)
1577 return !isl_int_is_divisible_by(tab
->mat
->row
[row
][1],
1578 tab
->mat
->row
[row
][0]);
1581 /* For integer tableaus, check if any of the coordinates are stuck
1582 * at a non-integral value.
1584 static int tab_is_manifestly_empty(struct isl_tab
*tab
)
1593 for (i
= 0; i
< tab
->n_var
; ++i
) {
1594 if (!tab
->var
[i
].is_row
)
1596 if (row_is_manifestly_non_integral(tab
, tab
->var
[i
].index
))
1603 /* Row variable "var" is non-negative and cannot attain any values
1604 * larger than zero. This means that the coefficients of the unrestricted
1605 * column variables are zero and that the coefficients of the non-negative
1606 * column variables are zero or negative.
1607 * Each of the non-negative variables with a negative coefficient can
1608 * then also be written as the negative sum of non-negative variables
1609 * and must therefore also be zero.
1611 * If "temp_var" is set, then "var" is a temporary variable that
1612 * will be removed after this function returns and for which
1613 * no information is recorded on the undo stack.
1614 * Do not add any undo records involving this variable in this case
1615 * since the variable will have been removed before any future undo
1616 * operations. Also avoid marking the variable as redundant,
1617 * since that either adds an undo record or needlessly removes the row
1618 * (the caller will take care of removing the row).
1620 static isl_stat
close_row(struct isl_tab
*tab
, struct isl_tab_var
*var
,
1621 int temp_var
) WARN_UNUSED
;
1622 static isl_stat
close_row(struct isl_tab
*tab
, struct isl_tab_var
*var
,
1626 struct isl_mat
*mat
= tab
->mat
;
1627 unsigned off
= 2 + tab
->M
;
1629 if (!var
->is_nonneg
)
1630 isl_die(isl_tab_get_ctx(tab
), isl_error_internal
,
1631 "expecting non-negative variable",
1632 return isl_stat_error
);
1634 if (!temp_var
&& tab
->need_undo
)
1635 if (isl_tab_push_var(tab
, isl_tab_undo_zero
, var
) < 0)
1636 return isl_stat_error
;
1637 for (j
= tab
->n_dead
; j
< tab
->n_col
; ++j
) {
1639 if (isl_int_is_zero(mat
->row
[var
->index
][off
+ j
]))
1641 if (isl_int_is_pos(mat
->row
[var
->index
][off
+ j
]))
1642 isl_die(isl_tab_get_ctx(tab
), isl_error_internal
,
1643 "row cannot have positive coefficients",
1644 return isl_stat_error
);
1645 recheck
= isl_tab_kill_col(tab
, j
);
1647 return isl_stat_error
;
1651 if (!temp_var
&& isl_tab_mark_redundant(tab
, var
->index
) < 0)
1652 return isl_stat_error
;
1653 if (tab_is_manifestly_empty(tab
) && isl_tab_mark_empty(tab
) < 0)
1654 return isl_stat_error
;
1658 /* Add a constraint to the tableau and allocate a row for it.
1659 * Return the index into the constraint array "con".
1661 * This function assumes that at least one more row and at least
1662 * one more element in the constraint array are available in the tableau.
1664 int isl_tab_allocate_con(struct isl_tab
*tab
)
1668 isl_assert(tab
->mat
->ctx
, tab
->n_row
< tab
->mat
->n_row
, return -1);
1669 isl_assert(tab
->mat
->ctx
, tab
->n_con
< tab
->max_con
, return -1);
1672 tab
->con
[r
].index
= tab
->n_row
;
1673 tab
->con
[r
].is_row
= 1;
1674 tab
->con
[r
].is_nonneg
= 0;
1675 tab
->con
[r
].is_zero
= 0;
1676 tab
->con
[r
].is_redundant
= 0;
1677 tab
->con
[r
].frozen
= 0;
1678 tab
->con
[r
].negated
= 0;
1679 tab
->row_var
[tab
->n_row
] = ~r
;
1683 if (isl_tab_push_var(tab
, isl_tab_undo_allocate
, &tab
->con
[r
]) < 0)
1689 /* Move the entries in tab->var up one position, starting at "first",
1690 * creating room for an extra entry at position "first".
1691 * Since some of the entries of tab->row_var and tab->col_var contain
1692 * indices into this array, they have to be updated accordingly.
1694 static int var_insert_entry(struct isl_tab
*tab
, int first
)
1698 if (tab
->n_var
>= tab
->max_var
)
1699 isl_die(isl_tab_get_ctx(tab
), isl_error_internal
,
1700 "not enough room for new variable", return -1);
1701 if (first
> tab
->n_var
)
1702 isl_die(isl_tab_get_ctx(tab
), isl_error_internal
,
1703 "invalid initial position", return -1);
1705 for (i
= tab
->n_var
- 1; i
>= first
; --i
) {
1706 tab
->var
[i
+ 1] = tab
->var
[i
];
1707 if (tab
->var
[i
+ 1].is_row
)
1708 tab
->row_var
[tab
->var
[i
+ 1].index
]++;
1710 tab
->col_var
[tab
->var
[i
+ 1].index
]++;
1718 /* Drop the entry at position "first" in tab->var, moving all
1719 * subsequent entries down.
1720 * Since some of the entries of tab->row_var and tab->col_var contain
1721 * indices into this array, they have to be updated accordingly.
1723 static int var_drop_entry(struct isl_tab
*tab
, int first
)
1727 if (first
>= tab
->n_var
)
1728 isl_die(isl_tab_get_ctx(tab
), isl_error_internal
,
1729 "invalid initial position", return -1);
1733 for (i
= first
; i
< tab
->n_var
; ++i
) {
1734 tab
->var
[i
] = tab
->var
[i
+ 1];
1735 if (tab
->var
[i
+ 1].is_row
)
1736 tab
->row_var
[tab
->var
[i
].index
]--;
1738 tab
->col_var
[tab
->var
[i
].index
]--;
1744 /* Add a variable to the tableau at position "r" and allocate a column for it.
1745 * Return the index into the variable array "var", i.e., "r",
1748 int isl_tab_insert_var(struct isl_tab
*tab
, int r
)
1751 unsigned off
= 2 + tab
->M
;
1753 isl_assert(tab
->mat
->ctx
, tab
->n_col
< tab
->mat
->n_col
, return -1);
1755 if (var_insert_entry(tab
, r
) < 0)
1758 tab
->var
[r
].index
= tab
->n_col
;
1759 tab
->var
[r
].is_row
= 0;
1760 tab
->var
[r
].is_nonneg
= 0;
1761 tab
->var
[r
].is_zero
= 0;
1762 tab
->var
[r
].is_redundant
= 0;
1763 tab
->var
[r
].frozen
= 0;
1764 tab
->var
[r
].negated
= 0;
1765 tab
->col_var
[tab
->n_col
] = r
;
1767 for (i
= 0; i
< tab
->n_row
; ++i
)
1768 isl_int_set_si(tab
->mat
->row
[i
][off
+ tab
->n_col
], 0);
1771 if (isl_tab_push_var(tab
, isl_tab_undo_allocate
, &tab
->var
[r
]) < 0)
1777 /* Add a variable to the tableau and allocate a column for it.
1778 * Return the index into the variable array "var".
1780 int isl_tab_allocate_var(struct isl_tab
*tab
)
1785 return isl_tab_insert_var(tab
, tab
->n_var
);
1788 /* Add a row to the tableau. The row is given as an affine combination
1789 * of the original variables and needs to be expressed in terms of the
1792 * This function assumes that at least one more row and at least
1793 * one more element in the constraint array are available in the tableau.
1795 * We add each term in turn.
1796 * If r = n/d_r is the current sum and we need to add k x, then
1797 * if x is a column variable, we increase the numerator of
1798 * this column by k d_r
1799 * if x = f/d_x is a row variable, then the new representation of r is
1801 * n k f d_x/g n + d_r/g k f m/d_r n + m/d_g k f
1802 * --- + --- = ------------------- = -------------------
1803 * d_r d_r d_r d_x/g m
1805 * with g the gcd of d_r and d_x and m the lcm of d_r and d_x.
1807 * If tab->M is set, then, internally, each variable x is represented
1808 * as x' - M. We then also need no subtract k d_r from the coefficient of M.
1810 int isl_tab_add_row(struct isl_tab
*tab
, isl_int
*line
)
1816 unsigned off
= 2 + tab
->M
;
1818 r
= isl_tab_allocate_con(tab
);
1824 row
= tab
->mat
->row
[tab
->con
[r
].index
];
1825 isl_int_set_si(row
[0], 1);
1826 isl_int_set(row
[1], line
[0]);
1827 isl_seq_clr(row
+ 2, tab
->M
+ tab
->n_col
);
1828 for (i
= 0; i
< tab
->n_var
; ++i
) {
1829 if (tab
->var
[i
].is_zero
)
1831 if (tab
->var
[i
].is_row
) {
1833 row
[0], tab
->mat
->row
[tab
->var
[i
].index
][0]);
1834 isl_int_swap(a
, row
[0]);
1835 isl_int_divexact(a
, row
[0], a
);
1837 row
[0], tab
->mat
->row
[tab
->var
[i
].index
][0]);
1838 isl_int_mul(b
, b
, line
[1 + i
]);
1839 isl_seq_combine(row
+ 1, a
, row
+ 1,
1840 b
, tab
->mat
->row
[tab
->var
[i
].index
] + 1,
1841 1 + tab
->M
+ tab
->n_col
);
1843 isl_int_addmul(row
[off
+ tab
->var
[i
].index
],
1844 line
[1 + i
], row
[0]);
1845 if (tab
->M
&& i
>= tab
->n_param
&& i
< tab
->n_var
- tab
->n_div
)
1846 isl_int_submul(row
[2], line
[1 + i
], row
[0]);
1848 isl_seq_normalize(tab
->mat
->ctx
, row
, off
+ tab
->n_col
);
1853 tab
->row_sign
[tab
->con
[r
].index
] = isl_tab_row_unknown
;
1858 static int drop_row(struct isl_tab
*tab
, int row
)
1860 isl_assert(tab
->mat
->ctx
, ~tab
->row_var
[row
] == tab
->n_con
- 1, return -1);
1861 if (row
!= tab
->n_row
- 1)
1862 swap_rows(tab
, row
, tab
->n_row
- 1);
1868 /* Drop the variable in column "col" along with the column.
1869 * The column is removed first because it may need to be moved
1870 * into the last position and this process requires
1871 * the contents of the col_var array in a state
1872 * before the removal of the variable.
1874 static int drop_col(struct isl_tab
*tab
, int col
)
1878 var
= tab
->col_var
[col
];
1879 if (col
!= tab
->n_col
- 1)
1880 swap_cols(tab
, col
, tab
->n_col
- 1);
1882 if (var_drop_entry(tab
, var
) < 0)
1887 /* Add inequality "ineq" and check if it conflicts with the
1888 * previously added constraints or if it is obviously redundant.
1890 * This function assumes that at least one more row and at least
1891 * one more element in the constraint array are available in the tableau.
1893 int isl_tab_add_ineq(struct isl_tab
*tab
, isl_int
*ineq
)
1902 struct isl_basic_map
*bmap
= tab
->bmap
;
1904 isl_assert(tab
->mat
->ctx
, tab
->n_eq
== bmap
->n_eq
, return -1);
1905 isl_assert(tab
->mat
->ctx
,
1906 tab
->n_con
== bmap
->n_eq
+ bmap
->n_ineq
, return -1);
1907 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, ineq
);
1908 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
1915 isl_int_set_si(cst
, 0);
1916 isl_int_swap(ineq
[0], cst
);
1918 r
= isl_tab_add_row(tab
, ineq
);
1920 isl_int_swap(ineq
[0], cst
);
1925 tab
->con
[r
].is_nonneg
= 1;
1926 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1928 if (isl_tab_row_is_redundant(tab
, tab
->con
[r
].index
)) {
1929 if (isl_tab_mark_redundant(tab
, tab
->con
[r
].index
) < 0)
1934 sgn
= restore_row(tab
, &tab
->con
[r
]);
1938 return isl_tab_mark_empty(tab
);
1939 if (tab
->con
[r
].is_row
&& isl_tab_row_is_redundant(tab
, tab
->con
[r
].index
))
1940 if (isl_tab_mark_redundant(tab
, tab
->con
[r
].index
) < 0)
1945 /* Pivot a non-negative variable down until it reaches the value zero
1946 * and then pivot the variable into a column position.
1948 static int to_col(struct isl_tab
*tab
, struct isl_tab_var
*var
) WARN_UNUSED
;
1949 static int to_col(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1953 unsigned off
= 2 + tab
->M
;
1958 while (isl_int_is_pos(tab
->mat
->row
[var
->index
][1])) {
1959 find_pivot(tab
, var
, NULL
, -1, &row
, &col
);
1960 isl_assert(tab
->mat
->ctx
, row
!= -1, return -1);
1961 if (isl_tab_pivot(tab
, row
, col
) < 0)
1967 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
)
1968 if (!isl_int_is_zero(tab
->mat
->row
[var
->index
][off
+ i
]))
1971 isl_assert(tab
->mat
->ctx
, i
< tab
->n_col
, return -1);
1972 if (isl_tab_pivot(tab
, var
->index
, i
) < 0)
1978 /* We assume Gaussian elimination has been performed on the equalities.
1979 * The equalities can therefore never conflict.
1980 * Adding the equalities is currently only really useful for a later call
1981 * to isl_tab_ineq_type.
1983 * This function assumes that at least one more row and at least
1984 * one more element in the constraint array are available in the tableau.
1986 static struct isl_tab
*add_eq(struct isl_tab
*tab
, isl_int
*eq
)
1993 r
= isl_tab_add_row(tab
, eq
);
1997 r
= tab
->con
[r
].index
;
1998 i
= isl_seq_first_non_zero(tab
->mat
->row
[r
] + 2 + tab
->M
+ tab
->n_dead
,
1999 tab
->n_col
- tab
->n_dead
);
2000 isl_assert(tab
->mat
->ctx
, i
>= 0, goto error
);
2002 if (isl_tab_pivot(tab
, r
, i
) < 0)
2004 if (isl_tab_kill_col(tab
, i
) < 0)
2014 /* Does the sample value of row "row" of "tab" involve the big parameter,
2017 static int row_is_big(struct isl_tab
*tab
, int row
)
2019 return tab
->M
&& !isl_int_is_zero(tab
->mat
->row
[row
][2]);
2022 static int row_is_manifestly_zero(struct isl_tab
*tab
, int row
)
2024 unsigned off
= 2 + tab
->M
;
2026 if (!isl_int_is_zero(tab
->mat
->row
[row
][1]))
2028 if (row_is_big(tab
, row
))
2030 return isl_seq_first_non_zero(tab
->mat
->row
[row
] + off
+ tab
->n_dead
,
2031 tab
->n_col
- tab
->n_dead
) == -1;
2034 /* Add an equality that is known to be valid for the given tableau.
2036 * This function assumes that at least one more row and at least
2037 * one more element in the constraint array are available in the tableau.
2039 int isl_tab_add_valid_eq(struct isl_tab
*tab
, isl_int
*eq
)
2041 struct isl_tab_var
*var
;
2046 r
= isl_tab_add_row(tab
, eq
);
2052 if (row_is_manifestly_zero(tab
, r
)) {
2054 if (isl_tab_mark_redundant(tab
, r
) < 0)
2059 if (isl_int_is_neg(tab
->mat
->row
[r
][1])) {
2060 isl_seq_neg(tab
->mat
->row
[r
] + 1, tab
->mat
->row
[r
] + 1,
2065 if (to_col(tab
, var
) < 0)
2068 if (isl_tab_kill_col(tab
, var
->index
) < 0)
2074 /* Add a zero row to "tab" and return the corresponding index
2075 * in the constraint array.
2077 * This function assumes that at least one more row and at least
2078 * one more element in the constraint array are available in the tableau.
2080 static int add_zero_row(struct isl_tab
*tab
)
2085 r
= isl_tab_allocate_con(tab
);
2089 row
= tab
->mat
->row
[tab
->con
[r
].index
];
2090 isl_seq_clr(row
+ 1, 1 + tab
->M
+ tab
->n_col
);
2091 isl_int_set_si(row
[0], 1);
2096 /* Add equality "eq" and check if it conflicts with the
2097 * previously added constraints or if it is obviously redundant.
2099 * This function assumes that at least one more row and at least
2100 * one more element in the constraint array are available in the tableau.
2101 * If tab->bmap is set, then two rows are needed instead of one.
2103 int isl_tab_add_eq(struct isl_tab
*tab
, isl_int
*eq
)
2105 struct isl_tab_undo
*snap
= NULL
;
2106 struct isl_tab_var
*var
;
2114 isl_assert(tab
->mat
->ctx
, !tab
->M
, return -1);
2117 snap
= isl_tab_snap(tab
);
2121 isl_int_set_si(cst
, 0);
2122 isl_int_swap(eq
[0], cst
);
2124 r
= isl_tab_add_row(tab
, eq
);
2126 isl_int_swap(eq
[0], cst
);
2134 if (row_is_manifestly_zero(tab
, row
)) {
2136 return isl_tab_rollback(tab
, snap
);
2137 return drop_row(tab
, row
);
2141 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, eq
);
2142 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
2144 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
2145 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, eq
);
2146 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
2147 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
2151 if (add_zero_row(tab
) < 0)
2155 sgn
= isl_int_sgn(tab
->mat
->row
[row
][1]);
2158 isl_seq_neg(tab
->mat
->row
[row
] + 1, tab
->mat
->row
[row
] + 1,
2165 sgn
= sign_of_max(tab
, var
);
2169 if (isl_tab_mark_empty(tab
) < 0)
2176 if (to_col(tab
, var
) < 0)
2179 if (isl_tab_kill_col(tab
, var
->index
) < 0)
2185 /* Construct and return an inequality that expresses an upper bound
2187 * In particular, if the div is given by
2191 * then the inequality expresses
2195 static struct isl_vec
*ineq_for_div(struct isl_basic_map
*bmap
, unsigned div
)
2199 struct isl_vec
*ineq
;
2204 total
= isl_basic_map_total_dim(bmap
);
2205 div_pos
= 1 + total
- bmap
->n_div
+ div
;
2207 ineq
= isl_vec_alloc(bmap
->ctx
, 1 + total
);
2211 isl_seq_cpy(ineq
->el
, bmap
->div
[div
] + 1, 1 + total
);
2212 isl_int_neg(ineq
->el
[div_pos
], bmap
->div
[div
][0]);
2216 /* For a div d = floor(f/m), add the constraints
2219 * -(f-(m-1)) + m d >= 0
2221 * Note that the second constraint is the negation of
2225 * If add_ineq is not NULL, then this function is used
2226 * instead of isl_tab_add_ineq to effectively add the inequalities.
2228 * This function assumes that at least two more rows and at least
2229 * two more elements in the constraint array are available in the tableau.
2231 static int add_div_constraints(struct isl_tab
*tab
, unsigned div
,
2232 int (*add_ineq
)(void *user
, isl_int
*), void *user
)
2236 struct isl_vec
*ineq
;
2238 total
= isl_basic_map_total_dim(tab
->bmap
);
2239 div_pos
= 1 + total
- tab
->bmap
->n_div
+ div
;
2241 ineq
= ineq_for_div(tab
->bmap
, div
);
2246 if (add_ineq(user
, ineq
->el
) < 0)
2249 if (isl_tab_add_ineq(tab
, ineq
->el
) < 0)
2253 isl_seq_neg(ineq
->el
, tab
->bmap
->div
[div
] + 1, 1 + total
);
2254 isl_int_set(ineq
->el
[div_pos
], tab
->bmap
->div
[div
][0]);
2255 isl_int_add(ineq
->el
[0], ineq
->el
[0], ineq
->el
[div_pos
]);
2256 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
2259 if (add_ineq(user
, ineq
->el
) < 0)
2262 if (isl_tab_add_ineq(tab
, ineq
->el
) < 0)
2274 /* Check whether the div described by "div" is obviously non-negative.
2275 * If we are using a big parameter, then we will encode the div
2276 * as div' = M + div, which is always non-negative.
2277 * Otherwise, we check whether div is a non-negative affine combination
2278 * of non-negative variables.
2280 static int div_is_nonneg(struct isl_tab
*tab
, __isl_keep isl_vec
*div
)
2287 if (isl_int_is_neg(div
->el
[1]))
2290 for (i
= 0; i
< tab
->n_var
; ++i
) {
2291 if (isl_int_is_neg(div
->el
[2 + i
]))
2293 if (isl_int_is_zero(div
->el
[2 + i
]))
2295 if (!tab
->var
[i
].is_nonneg
)
2302 /* Insert an extra div, prescribed by "div", to the tableau and
2303 * the associated bmap (which is assumed to be non-NULL).
2304 * The extra integer division is inserted at (tableau) position "pos".
2305 * Return "pos" or -1 if an error occurred.
2307 * If add_ineq is not NULL, then this function is used instead
2308 * of isl_tab_add_ineq to add the div constraints.
2309 * This complication is needed because the code in isl_tab_pip
2310 * wants to perform some extra processing when an inequality
2311 * is added to the tableau.
2313 int isl_tab_insert_div(struct isl_tab
*tab
, int pos
, __isl_keep isl_vec
*div
,
2314 int (*add_ineq
)(void *user
, isl_int
*), void *user
)
2323 if (div
->size
!= 1 + 1 + tab
->n_var
)
2324 isl_die(isl_tab_get_ctx(tab
), isl_error_invalid
,
2325 "unexpected size", return -1);
2327 isl_assert(tab
->mat
->ctx
, tab
->bmap
, return -1);
2328 n_div
= isl_basic_map_dim(tab
->bmap
, isl_dim_div
);
2329 o_div
= tab
->n_var
- n_div
;
2330 if (pos
< o_div
|| pos
> tab
->n_var
)
2331 isl_die(isl_tab_get_ctx(tab
), isl_error_invalid
,
2332 "invalid position", return -1);
2334 nonneg
= div_is_nonneg(tab
, div
);
2336 if (isl_tab_extend_cons(tab
, 3) < 0)
2338 if (isl_tab_extend_vars(tab
, 1) < 0)
2340 r
= isl_tab_insert_var(tab
, pos
);
2345 tab
->var
[r
].is_nonneg
= 1;
2347 tab
->bmap
= isl_basic_map_insert_div(tab
->bmap
, pos
- o_div
, div
);
2350 if (isl_tab_push_var(tab
, isl_tab_undo_bmap_div
, &tab
->var
[r
]) < 0)
2353 if (add_div_constraints(tab
, pos
- o_div
, add_ineq
, user
) < 0)
2359 /* Add an extra div, prescribed by "div", to the tableau and
2360 * the associated bmap (which is assumed to be non-NULL).
2362 int isl_tab_add_div(struct isl_tab
*tab
, __isl_keep isl_vec
*div
)
2366 return isl_tab_insert_div(tab
, tab
->n_var
, div
, NULL
, NULL
);
2369 /* If "track" is set, then we want to keep track of all constraints in tab
2370 * in its bmap field. This field is initialized from a copy of "bmap",
2371 * so we need to make sure that all constraints in "bmap" also appear
2372 * in the constructed tab.
2374 __isl_give
struct isl_tab
*isl_tab_from_basic_map(
2375 __isl_keep isl_basic_map
*bmap
, int track
)
2378 struct isl_tab
*tab
;
2382 tab
= isl_tab_alloc(bmap
->ctx
,
2383 isl_basic_map_total_dim(bmap
) + bmap
->n_ineq
+ 1,
2384 isl_basic_map_total_dim(bmap
), 0);
2387 tab
->preserve
= track
;
2388 tab
->rational
= ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
);
2389 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
)) {
2390 if (isl_tab_mark_empty(tab
) < 0)
2394 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
2395 tab
= add_eq(tab
, bmap
->eq
[i
]);
2399 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
2400 if (isl_tab_add_ineq(tab
, bmap
->ineq
[i
]) < 0)
2406 if (track
&& isl_tab_track_bmap(tab
, isl_basic_map_copy(bmap
)) < 0)
2414 __isl_give
struct isl_tab
*isl_tab_from_basic_set(
2415 __isl_keep isl_basic_set
*bset
, int track
)
2417 return isl_tab_from_basic_map(bset
, track
);
2420 /* Construct a tableau corresponding to the recession cone of "bset".
2422 struct isl_tab
*isl_tab_from_recession_cone(__isl_keep isl_basic_set
*bset
,
2427 struct isl_tab
*tab
;
2428 unsigned offset
= 0;
2433 offset
= isl_basic_set_dim(bset
, isl_dim_param
);
2434 tab
= isl_tab_alloc(bset
->ctx
, bset
->n_eq
+ bset
->n_ineq
,
2435 isl_basic_set_total_dim(bset
) - offset
, 0);
2438 tab
->rational
= ISL_F_ISSET(bset
, ISL_BASIC_SET_RATIONAL
);
2442 isl_int_set_si(cst
, 0);
2443 for (i
= 0; i
< bset
->n_eq
; ++i
) {
2444 isl_int_swap(bset
->eq
[i
][offset
], cst
);
2446 if (isl_tab_add_eq(tab
, bset
->eq
[i
] + offset
) < 0)
2449 tab
= add_eq(tab
, bset
->eq
[i
]);
2450 isl_int_swap(bset
->eq
[i
][offset
], cst
);
2454 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
2456 isl_int_swap(bset
->ineq
[i
][offset
], cst
);
2457 r
= isl_tab_add_row(tab
, bset
->ineq
[i
] + offset
);
2458 isl_int_swap(bset
->ineq
[i
][offset
], cst
);
2461 tab
->con
[r
].is_nonneg
= 1;
2462 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
2474 /* Assuming "tab" is the tableau of a cone, check if the cone is
2475 * bounded, i.e., if it is empty or only contains the origin.
2477 int isl_tab_cone_is_bounded(struct isl_tab
*tab
)
2485 if (tab
->n_dead
== tab
->n_col
)
2489 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
2490 struct isl_tab_var
*var
;
2492 var
= isl_tab_var_from_row(tab
, i
);
2493 if (!var
->is_nonneg
)
2495 sgn
= sign_of_max(tab
, var
);
2500 if (close_row(tab
, var
, 0) < 0)
2504 if (tab
->n_dead
== tab
->n_col
)
2506 if (i
== tab
->n_row
)
2511 int isl_tab_sample_is_integer(struct isl_tab
*tab
)
2518 for (i
= 0; i
< tab
->n_var
; ++i
) {
2520 if (!tab
->var
[i
].is_row
)
2522 row
= tab
->var
[i
].index
;
2523 if (!isl_int_is_divisible_by(tab
->mat
->row
[row
][1],
2524 tab
->mat
->row
[row
][0]))
2530 static struct isl_vec
*extract_integer_sample(struct isl_tab
*tab
)
2533 struct isl_vec
*vec
;
2535 vec
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_var
);
2539 isl_int_set_si(vec
->block
.data
[0], 1);
2540 for (i
= 0; i
< tab
->n_var
; ++i
) {
2541 if (!tab
->var
[i
].is_row
)
2542 isl_int_set_si(vec
->block
.data
[1 + i
], 0);
2544 int row
= tab
->var
[i
].index
;
2545 isl_int_divexact(vec
->block
.data
[1 + i
],
2546 tab
->mat
->row
[row
][1], tab
->mat
->row
[row
][0]);
2553 struct isl_vec
*isl_tab_get_sample_value(struct isl_tab
*tab
)
2556 struct isl_vec
*vec
;
2562 vec
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_var
);
2568 isl_int_set_si(vec
->block
.data
[0], 1);
2569 for (i
= 0; i
< tab
->n_var
; ++i
) {
2571 if (!tab
->var
[i
].is_row
) {
2572 isl_int_set_si(vec
->block
.data
[1 + i
], 0);
2575 row
= tab
->var
[i
].index
;
2576 isl_int_gcd(m
, vec
->block
.data
[0], tab
->mat
->row
[row
][0]);
2577 isl_int_divexact(m
, tab
->mat
->row
[row
][0], m
);
2578 isl_seq_scale(vec
->block
.data
, vec
->block
.data
, m
, 1 + i
);
2579 isl_int_divexact(m
, vec
->block
.data
[0], tab
->mat
->row
[row
][0]);
2580 isl_int_mul(vec
->block
.data
[1 + i
], m
, tab
->mat
->row
[row
][1]);
2582 vec
= isl_vec_normalize(vec
);
2588 /* Store the sample value of "var" of "tab" rounded up (if sgn > 0)
2589 * or down (if sgn < 0) to the nearest integer in *v.
2591 static void get_rounded_sample_value(struct isl_tab
*tab
,
2592 struct isl_tab_var
*var
, int sgn
, isl_int
*v
)
2595 isl_int_set_si(*v
, 0);
2597 isl_int_cdiv_q(*v
, tab
->mat
->row
[var
->index
][1],
2598 tab
->mat
->row
[var
->index
][0]);
2600 isl_int_fdiv_q(*v
, tab
->mat
->row
[var
->index
][1],
2601 tab
->mat
->row
[var
->index
][0]);
2604 /* Update "bmap" based on the results of the tableau "tab".
2605 * In particular, implicit equalities are made explicit, redundant constraints
2606 * are removed and if the sample value happens to be integer, it is stored
2607 * in "bmap" (unless "bmap" already had an integer sample).
2609 * The tableau is assumed to have been created from "bmap" using
2610 * isl_tab_from_basic_map.
2612 struct isl_basic_map
*isl_basic_map_update_from_tab(struct isl_basic_map
*bmap
,
2613 struct isl_tab
*tab
)
2625 bmap
= isl_basic_map_set_to_empty(bmap
);
2627 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
2628 if (isl_tab_is_equality(tab
, n_eq
+ i
))
2629 isl_basic_map_inequality_to_equality(bmap
, i
);
2630 else if (isl_tab_is_redundant(tab
, n_eq
+ i
))
2631 isl_basic_map_drop_inequality(bmap
, i
);
2633 if (bmap
->n_eq
!= n_eq
)
2634 bmap
= isl_basic_map_gauss(bmap
, NULL
);
2635 if (!tab
->rational
&&
2636 bmap
&& !bmap
->sample
&& isl_tab_sample_is_integer(tab
))
2637 bmap
->sample
= extract_integer_sample(tab
);
2641 struct isl_basic_set
*isl_basic_set_update_from_tab(struct isl_basic_set
*bset
,
2642 struct isl_tab
*tab
)
2644 return bset_from_bmap(isl_basic_map_update_from_tab(bset_to_bmap(bset
),
2648 /* Drop the last constraint added to "tab" in position "r".
2649 * The constraint is expected to have remained in a row.
2651 static isl_stat
drop_last_con_in_row(struct isl_tab
*tab
, int r
)
2653 if (!tab
->con
[r
].is_row
)
2654 isl_die(isl_tab_get_ctx(tab
), isl_error_internal
,
2655 "row unexpectedly moved to column",
2656 return isl_stat_error
);
2657 if (r
+ 1 != tab
->n_con
)
2658 isl_die(isl_tab_get_ctx(tab
), isl_error_internal
,
2659 "additional constraints added", return isl_stat_error
);
2660 if (drop_row(tab
, tab
->con
[r
].index
) < 0)
2661 return isl_stat_error
;
2666 /* Given a non-negative variable "var", temporarily add a new non-negative
2667 * variable that is the opposite of "var", ensuring that "var" can only attain
2668 * the value zero. The new variable is removed again before this function
2669 * returns. However, the effect of forcing "var" to be zero remains.
2670 * If var = n/d is a row variable, then the new variable = -n/d.
2671 * If var is a column variables, then the new variable = -var.
2672 * If the new variable cannot attain non-negative values, then
2673 * the resulting tableau is empty.
2674 * Otherwise, we know the value will be zero and we close the row.
2676 static isl_stat
cut_to_hyperplane(struct isl_tab
*tab
, struct isl_tab_var
*var
)
2681 unsigned off
= 2 + tab
->M
;
2685 if (var
->is_redundant
|| !var
->is_nonneg
)
2686 isl_die(isl_tab_get_ctx(tab
), isl_error_invalid
,
2687 "expecting non-redundant non-negative variable",
2688 return isl_stat_error
);
2690 if (isl_tab_extend_cons(tab
, 1) < 0)
2691 return isl_stat_error
;
2694 tab
->con
[r
].index
= tab
->n_row
;
2695 tab
->con
[r
].is_row
= 1;
2696 tab
->con
[r
].is_nonneg
= 0;
2697 tab
->con
[r
].is_zero
= 0;
2698 tab
->con
[r
].is_redundant
= 0;
2699 tab
->con
[r
].frozen
= 0;
2700 tab
->con
[r
].negated
= 0;
2701 tab
->row_var
[tab
->n_row
] = ~r
;
2702 row
= tab
->mat
->row
[tab
->n_row
];
2705 isl_int_set(row
[0], tab
->mat
->row
[var
->index
][0]);
2706 isl_seq_neg(row
+ 1,
2707 tab
->mat
->row
[var
->index
] + 1, 1 + tab
->n_col
);
2709 isl_int_set_si(row
[0], 1);
2710 isl_seq_clr(row
+ 1, 1 + tab
->n_col
);
2711 isl_int_set_si(row
[off
+ var
->index
], -1);
2717 sgn
= sign_of_max(tab
, &tab
->con
[r
]);
2719 return isl_stat_error
;
2721 if (drop_last_con_in_row(tab
, r
) < 0)
2722 return isl_stat_error
;
2723 if (isl_tab_mark_empty(tab
) < 0)
2724 return isl_stat_error
;
2727 tab
->con
[r
].is_nonneg
= 1;
2729 if (close_row(tab
, &tab
->con
[r
], 1) < 0)
2730 return isl_stat_error
;
2731 if (drop_last_con_in_row(tab
, r
) < 0)
2732 return isl_stat_error
;
2737 /* Given a tableau "tab" and an inequality constraint "con" of the tableau,
2738 * relax the inequality by one. That is, the inequality r >= 0 is replaced
2739 * by r' = r + 1 >= 0.
2740 * If r is a row variable, we simply increase the constant term by one
2741 * (taking into account the denominator).
2742 * If r is a column variable, then we need to modify each row that
2743 * refers to r = r' - 1 by substituting this equality, effectively
2744 * subtracting the coefficient of the column from the constant.
2745 * We should only do this if the minimum is manifestly unbounded,
2746 * however. Otherwise, we may end up with negative sample values
2747 * for non-negative variables.
2748 * So, if r is a column variable with a minimum that is not
2749 * manifestly unbounded, then we need to move it to a row.
2750 * However, the sample value of this row may be negative,
2751 * even after the relaxation, so we need to restore it.
2752 * We therefore prefer to pivot a column up to a row, if possible.
2754 int isl_tab_relax(struct isl_tab
*tab
, int con
)
2756 struct isl_tab_var
*var
;
2761 var
= &tab
->con
[con
];
2763 if (var
->is_row
&& (var
->index
< 0 || var
->index
< tab
->n_redundant
))
2764 isl_die(tab
->mat
->ctx
, isl_error_invalid
,
2765 "cannot relax redundant constraint", return -1);
2766 if (!var
->is_row
&& (var
->index
< 0 || var
->index
< tab
->n_dead
))
2767 isl_die(tab
->mat
->ctx
, isl_error_invalid
,
2768 "cannot relax dead constraint", return -1);
2770 if (!var
->is_row
&& !max_is_manifestly_unbounded(tab
, var
))
2771 if (to_row(tab
, var
, 1) < 0)
2773 if (!var
->is_row
&& !min_is_manifestly_unbounded(tab
, var
))
2774 if (to_row(tab
, var
, -1) < 0)
2778 isl_int_add(tab
->mat
->row
[var
->index
][1],
2779 tab
->mat
->row
[var
->index
][1], tab
->mat
->row
[var
->index
][0]);
2780 if (restore_row(tab
, var
) < 0)
2784 unsigned off
= 2 + tab
->M
;
2786 for (i
= 0; i
< tab
->n_row
; ++i
) {
2787 if (isl_int_is_zero(tab
->mat
->row
[i
][off
+ var
->index
]))
2789 isl_int_sub(tab
->mat
->row
[i
][1], tab
->mat
->row
[i
][1],
2790 tab
->mat
->row
[i
][off
+ var
->index
]);
2795 if (isl_tab_push_var(tab
, isl_tab_undo_relax
, var
) < 0)
2801 /* Replace the variable v at position "pos" in the tableau "tab"
2802 * by v' = v + shift.
2804 * If the variable is in a column, then we first check if we can
2805 * simply plug in v = v' - shift. The effect on a row with
2806 * coefficient f/d for variable v is that the constant term c/d
2807 * is replaced by (c - f * shift)/d. If shift is positive and
2808 * f is negative for each row that needs to remain non-negative,
2809 * then this is clearly safe. In other words, if the minimum of v
2810 * is manifestly unbounded, then we can keep v in a column position.
2811 * Otherwise, we can pivot it down to a row.
2812 * Similarly, if shift is negative, we need to check if the maximum
2813 * of is manifestly unbounded.
2815 * If the variable is in a row (from the start or after pivoting),
2816 * then the constant term c/d is replaced by (c + d * shift)/d.
2818 int isl_tab_shift_var(struct isl_tab
*tab
, int pos
, isl_int shift
)
2820 struct isl_tab_var
*var
;
2824 if (isl_int_is_zero(shift
))
2827 var
= &tab
->var
[pos
];
2829 if (isl_int_is_neg(shift
)) {
2830 if (!max_is_manifestly_unbounded(tab
, var
))
2831 if (to_row(tab
, var
, 1) < 0)
2834 if (!min_is_manifestly_unbounded(tab
, var
))
2835 if (to_row(tab
, var
, -1) < 0)
2841 isl_int_addmul(tab
->mat
->row
[var
->index
][1],
2842 shift
, tab
->mat
->row
[var
->index
][0]);
2845 unsigned off
= 2 + tab
->M
;
2847 for (i
= 0; i
< tab
->n_row
; ++i
) {
2848 if (isl_int_is_zero(tab
->mat
->row
[i
][off
+ var
->index
]))
2850 isl_int_submul(tab
->mat
->row
[i
][1],
2851 shift
, tab
->mat
->row
[i
][off
+ var
->index
]);
2859 /* Remove the sign constraint from constraint "con".
2861 * If the constraint variable was originally marked non-negative,
2862 * then we make sure we mark it non-negative again during rollback.
2864 int isl_tab_unrestrict(struct isl_tab
*tab
, int con
)
2866 struct isl_tab_var
*var
;
2871 var
= &tab
->con
[con
];
2872 if (!var
->is_nonneg
)
2876 if (isl_tab_push_var(tab
, isl_tab_undo_unrestrict
, var
) < 0)
2882 int isl_tab_select_facet(struct isl_tab
*tab
, int con
)
2887 return cut_to_hyperplane(tab
, &tab
->con
[con
]);
2890 static int may_be_equality(struct isl_tab
*tab
, int row
)
2892 return tab
->rational
? isl_int_is_zero(tab
->mat
->row
[row
][1])
2893 : isl_int_lt(tab
->mat
->row
[row
][1],
2894 tab
->mat
->row
[row
][0]);
2897 /* Check for (near) equalities among the constraints.
2898 * A constraint is an equality if it is non-negative and if
2899 * its maximal value is either
2900 * - zero (in case of rational tableaus), or
2901 * - strictly less than 1 (in case of integer tableaus)
2903 * We first mark all non-redundant and non-dead variables that
2904 * are not frozen and not obviously not an equality.
2905 * Then we iterate over all marked variables if they can attain
2906 * any values larger than zero or at least one.
2907 * If the maximal value is zero, we mark any column variables
2908 * that appear in the row as being zero and mark the row as being redundant.
2909 * Otherwise, if the maximal value is strictly less than one (and the
2910 * tableau is integer), then we restrict the value to being zero
2911 * by adding an opposite non-negative variable.
2913 int isl_tab_detect_implicit_equalities(struct isl_tab
*tab
)
2922 if (tab
->n_dead
== tab
->n_col
)
2926 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
2927 struct isl_tab_var
*var
= isl_tab_var_from_row(tab
, i
);
2928 var
->marked
= !var
->frozen
&& var
->is_nonneg
&&
2929 may_be_equality(tab
, i
);
2933 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
2934 struct isl_tab_var
*var
= var_from_col(tab
, i
);
2935 var
->marked
= !var
->frozen
&& var
->is_nonneg
;
2940 struct isl_tab_var
*var
;
2942 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
2943 var
= isl_tab_var_from_row(tab
, i
);
2947 if (i
== tab
->n_row
) {
2948 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
2949 var
= var_from_col(tab
, i
);
2953 if (i
== tab
->n_col
)
2958 sgn
= sign_of_max(tab
, var
);
2962 if (close_row(tab
, var
, 0) < 0)
2964 } else if (!tab
->rational
&& !at_least_one(tab
, var
)) {
2965 if (cut_to_hyperplane(tab
, var
) < 0)
2967 return isl_tab_detect_implicit_equalities(tab
);
2969 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
2970 var
= isl_tab_var_from_row(tab
, i
);
2973 if (may_be_equality(tab
, i
))
2983 /* Update the element of row_var or col_var that corresponds to
2984 * constraint tab->con[i] to a move from position "old" to position "i".
2986 static int update_con_after_move(struct isl_tab
*tab
, int i
, int old
)
2991 index
= tab
->con
[i
].index
;
2994 p
= tab
->con
[i
].is_row
? tab
->row_var
: tab
->col_var
;
2995 if (p
[index
] != ~old
)
2996 isl_die(tab
->mat
->ctx
, isl_error_internal
,
2997 "broken internal state", return -1);
3003 /* Rotate the "n" constraints starting at "first" to the right,
3004 * putting the last constraint in the position of the first constraint.
3006 static int rotate_constraints(struct isl_tab
*tab
, int first
, int n
)
3009 struct isl_tab_var var
;
3014 last
= first
+ n
- 1;
3015 var
= tab
->con
[last
];
3016 for (i
= last
; i
> first
; --i
) {
3017 tab
->con
[i
] = tab
->con
[i
- 1];
3018 if (update_con_after_move(tab
, i
, i
- 1) < 0)
3021 tab
->con
[first
] = var
;
3022 if (update_con_after_move(tab
, first
, last
) < 0)
3028 /* Make the equalities that are implicit in "bmap" but that have been
3029 * detected in the corresponding "tab" explicit in "bmap" and update
3030 * "tab" to reflect the new order of the constraints.
3032 * In particular, if inequality i is an implicit equality then
3033 * isl_basic_map_inequality_to_equality will move the inequality
3034 * in front of the other equality and it will move the last inequality
3035 * in the position of inequality i.
3036 * In the tableau, the inequalities of "bmap" are stored after the equalities
3037 * and so the original order
3039 * E E E E E A A A I B B B B L
3043 * I E E E E E A A A L B B B B
3045 * where I is the implicit equality, the E are equalities,
3046 * the A inequalities before I, the B inequalities after I and
3047 * L the last inequality.
3048 * We therefore need to rotate to the right two sets of constraints,
3049 * those up to and including I and those after I.
3051 * If "tab" contains any constraints that are not in "bmap" then they
3052 * appear after those in "bmap" and they should be left untouched.
3054 * Note that this function leaves "bmap" in a temporary state
3055 * as it does not call isl_basic_map_gauss. Calling this function
3056 * is the responsibility of the caller.
3058 __isl_give isl_basic_map
*isl_tab_make_equalities_explicit(struct isl_tab
*tab
,
3059 __isl_take isl_basic_map
*bmap
)
3064 return isl_basic_map_free(bmap
);
3068 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
3069 if (!isl_tab_is_equality(tab
, bmap
->n_eq
+ i
))
3071 isl_basic_map_inequality_to_equality(bmap
, i
);
3072 if (rotate_constraints(tab
, 0, tab
->n_eq
+ i
+ 1) < 0)
3073 return isl_basic_map_free(bmap
);
3074 if (rotate_constraints(tab
, tab
->n_eq
+ i
+ 1,
3075 bmap
->n_ineq
- i
) < 0)
3076 return isl_basic_map_free(bmap
);
3083 static int con_is_redundant(struct isl_tab
*tab
, struct isl_tab_var
*var
)
3087 if (tab
->rational
) {
3088 int sgn
= sign_of_min(tab
, var
);
3093 int irred
= isl_tab_min_at_most_neg_one(tab
, var
);
3100 /* Return an isl_tab_var that has been marked or NULL if no such
3101 * variable can be found.
3102 * The marked field has only been set for variables that
3103 * appear in non-redundant rows or non-dead columns.
3105 * Pick the last constraint variable that is marked and
3106 * that appears in either a non-redundant row or a non-dead columns.
3107 * Since the returned variable is tested for being a redundant constraint,
3108 * there is no need to return any tab variable that corresponds to a variable.
3110 static struct isl_tab_var
*select_marked(struct isl_tab
*tab
)
3113 struct isl_tab_var
*var
;
3115 for (i
= tab
->n_con
- 1; i
>= 0; --i
) {
3119 if (var
->is_row
&& var
->index
< tab
->n_redundant
)
3121 if (!var
->is_row
&& var
->index
< tab
->n_dead
)
3130 /* Check for (near) redundant constraints.
3131 * A constraint is redundant if it is non-negative and if
3132 * its minimal value (temporarily ignoring the non-negativity) is either
3133 * - zero (in case of rational tableaus), or
3134 * - strictly larger than -1 (in case of integer tableaus)
3136 * We first mark all non-redundant and non-dead variables that
3137 * are not frozen and not obviously negatively unbounded.
3138 * Then we iterate over all marked variables if they can attain
3139 * any values smaller than zero or at most negative one.
3140 * If not, we mark the row as being redundant (assuming it hasn't
3141 * been detected as being obviously redundant in the mean time).
3143 int isl_tab_detect_redundant(struct isl_tab
*tab
)
3152 if (tab
->n_redundant
== tab
->n_row
)
3156 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
3157 struct isl_tab_var
*var
= isl_tab_var_from_row(tab
, i
);
3158 var
->marked
= !var
->frozen
&& var
->is_nonneg
;
3162 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
3163 struct isl_tab_var
*var
= var_from_col(tab
, i
);
3164 var
->marked
= !var
->frozen
&& var
->is_nonneg
&&
3165 !min_is_manifestly_unbounded(tab
, var
);
3170 struct isl_tab_var
*var
;
3172 var
= select_marked(tab
);
3177 red
= con_is_redundant(tab
, var
);
3180 if (red
&& !var
->is_redundant
)
3181 if (isl_tab_mark_redundant(tab
, var
->index
) < 0)
3183 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
3184 var
= var_from_col(tab
, i
);
3187 if (!min_is_manifestly_unbounded(tab
, var
))
3197 int isl_tab_is_equality(struct isl_tab
*tab
, int con
)
3204 if (tab
->con
[con
].is_zero
)
3206 if (tab
->con
[con
].is_redundant
)
3208 if (!tab
->con
[con
].is_row
)
3209 return tab
->con
[con
].index
< tab
->n_dead
;
3211 row
= tab
->con
[con
].index
;
3214 return isl_int_is_zero(tab
->mat
->row
[row
][1]) &&
3215 !row_is_big(tab
, row
) &&
3216 isl_seq_first_non_zero(tab
->mat
->row
[row
] + off
+ tab
->n_dead
,
3217 tab
->n_col
- tab
->n_dead
) == -1;
3220 /* Return the minimal value of the affine expression "f" with denominator
3221 * "denom" in *opt, *opt_denom, assuming the tableau is not empty and
3222 * the expression cannot attain arbitrarily small values.
3223 * If opt_denom is NULL, then *opt is rounded up to the nearest integer.
3224 * The return value reflects the nature of the result (empty, unbounded,
3225 * minimal value returned in *opt).
3227 * This function assumes that at least one more row and at least
3228 * one more element in the constraint array are available in the tableau.
3230 enum isl_lp_result
isl_tab_min(struct isl_tab
*tab
,
3231 isl_int
*f
, isl_int denom
, isl_int
*opt
, isl_int
*opt_denom
,
3235 enum isl_lp_result res
= isl_lp_ok
;
3236 struct isl_tab_var
*var
;
3237 struct isl_tab_undo
*snap
;
3240 return isl_lp_error
;
3243 return isl_lp_empty
;
3245 snap
= isl_tab_snap(tab
);
3246 r
= isl_tab_add_row(tab
, f
);
3248 return isl_lp_error
;
3252 find_pivot(tab
, var
, var
, -1, &row
, &col
);
3253 if (row
== var
->index
) {
3254 res
= isl_lp_unbounded
;
3259 if (isl_tab_pivot(tab
, row
, col
) < 0)
3260 return isl_lp_error
;
3262 isl_int_mul(tab
->mat
->row
[var
->index
][0],
3263 tab
->mat
->row
[var
->index
][0], denom
);
3264 if (ISL_FL_ISSET(flags
, ISL_TAB_SAVE_DUAL
)) {
3267 isl_vec_free(tab
->dual
);
3268 tab
->dual
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_con
);
3270 return isl_lp_error
;
3271 isl_int_set(tab
->dual
->el
[0], tab
->mat
->row
[var
->index
][0]);
3272 for (i
= 0; i
< tab
->n_con
; ++i
) {
3274 if (tab
->con
[i
].is_row
) {
3275 isl_int_set_si(tab
->dual
->el
[1 + i
], 0);
3278 pos
= 2 + tab
->M
+ tab
->con
[i
].index
;
3279 if (tab
->con
[i
].negated
)
3280 isl_int_neg(tab
->dual
->el
[1 + i
],
3281 tab
->mat
->row
[var
->index
][pos
]);
3283 isl_int_set(tab
->dual
->el
[1 + i
],
3284 tab
->mat
->row
[var
->index
][pos
]);
3287 if (opt
&& res
== isl_lp_ok
) {
3289 isl_int_set(*opt
, tab
->mat
->row
[var
->index
][1]);
3290 isl_int_set(*opt_denom
, tab
->mat
->row
[var
->index
][0]);
3292 get_rounded_sample_value(tab
, var
, 1, opt
);
3294 if (isl_tab_rollback(tab
, snap
) < 0)
3295 return isl_lp_error
;
3299 /* Is the constraint at position "con" marked as being redundant?
3300 * If it is marked as representing an equality, then it is not
3301 * considered to be redundant.
3302 * Note that isl_tab_mark_redundant marks both the isl_tab_var as
3303 * redundant and moves the corresponding row into the first
3304 * tab->n_redundant positions (or removes the row, assigning it index -1),
3305 * so the final test is actually redundant itself.
3307 int isl_tab_is_redundant(struct isl_tab
*tab
, int con
)
3311 if (con
< 0 || con
>= tab
->n_con
)
3312 isl_die(isl_tab_get_ctx(tab
), isl_error_invalid
,
3313 "position out of bounds", return -1);
3314 if (tab
->con
[con
].is_zero
)
3316 if (tab
->con
[con
].is_redundant
)
3318 return tab
->con
[con
].is_row
&& tab
->con
[con
].index
< tab
->n_redundant
;
3321 /* Is variable "var" of "tab" fixed to a constant value by its row
3323 * If so and if "value" is not NULL, then store this constant value
3326 * That is, is it a row variable that only has non-zero coefficients
3329 static isl_bool
is_constant(struct isl_tab
*tab
, struct isl_tab_var
*var
,
3332 unsigned off
= 2 + tab
->M
;
3333 isl_mat
*mat
= tab
->mat
;
3339 return isl_bool_false
;
3341 if (row_is_big(tab
, row
))
3342 return isl_bool_false
;
3343 n
= tab
->n_col
- tab
->n_dead
;
3344 pos
= isl_seq_first_non_zero(mat
->row
[row
] + off
+ tab
->n_dead
, n
);
3346 return isl_bool_false
;
3348 isl_int_divexact(*value
, mat
->row
[row
][1], mat
->row
[row
][0]);
3349 return isl_bool_true
;
3352 /* Has the variable "var' of "tab" reached a value that is greater than
3353 * or equal (if sgn > 0) or smaller than or equal (if sgn < 0) to "target"?
3354 * "tmp" has been initialized by the caller and can be used
3355 * to perform local computations.
3357 * If the sample value involves the big parameter, then any value
3359 * Otherwise check if n/d >= t, i.e., n >= d * t (if sgn > 0)
3360 * or n/d <= t, i.e., n <= d * t (if sgn < 0).
3362 static int reached(struct isl_tab
*tab
, struct isl_tab_var
*var
, int sgn
,
3363 isl_int target
, isl_int
*tmp
)
3365 if (row_is_big(tab
, var
->index
))
3367 isl_int_mul(*tmp
, tab
->mat
->row
[var
->index
][0], target
);
3369 return isl_int_ge(tab
->mat
->row
[var
->index
][1], *tmp
);
3371 return isl_int_le(tab
->mat
->row
[var
->index
][1], *tmp
);
3374 /* Can variable "var" of "tab" attain the value "target" by
3375 * pivoting up (if sgn > 0) or down (if sgn < 0)?
3376 * If not, then pivot up [down] to the greatest [smallest]
3378 * "tmp" has been initialized by the caller and can be used
3379 * to perform local computations.
3381 * If the variable is manifestly unbounded in the desired direction,
3382 * then it can attain any value.
3383 * Otherwise, it can be moved to a row.
3384 * Continue pivoting until the target is reached.
3385 * If no more pivoting can be performed, the maximal [minimal]
3386 * rational value has been reached and the target cannot be reached.
3387 * If the variable would be pivoted into a manifestly unbounded column,
3388 * then the target can be reached.
3390 static isl_bool
var_reaches(struct isl_tab
*tab
, struct isl_tab_var
*var
,
3391 int sgn
, isl_int target
, isl_int
*tmp
)
3395 if (sgn
< 0 && min_is_manifestly_unbounded(tab
, var
))
3396 return isl_bool_true
;
3397 if (sgn
> 0 && max_is_manifestly_unbounded(tab
, var
))
3398 return isl_bool_true
;
3399 if (to_row(tab
, var
, sgn
) < 0)
3400 return isl_bool_error
;
3401 while (!reached(tab
, var
, sgn
, target
, tmp
)) {
3402 find_pivot(tab
, var
, var
, sgn
, &row
, &col
);
3404 return isl_bool_false
;
3405 if (row
== var
->index
)
3406 return isl_bool_true
;
3407 if (isl_tab_pivot(tab
, row
, col
) < 0)
3408 return isl_bool_error
;
3411 return isl_bool_true
;
3414 /* Check if variable "var" of "tab" can only attain a single (integer)
3415 * value, and, if so, add an equality constraint to fix the variable
3416 * to this single value and store the result in "target".
3417 * "target" and "tmp" have been initialized by the caller.
3419 * Given the current sample value, round it down and check
3420 * whether it is possible to attain a strictly smaller integer value.
3421 * If so, the variable is not restricted to a single integer value.
3422 * Otherwise, the search stops at the smallest rational value.
3423 * Round up this value and check whether it is possible to attain
3424 * a strictly greater integer value.
3425 * If so, the variable is not restricted to a single integer value.
3426 * Otherwise, the search stops at the greatest rational value.
3427 * If rounding down this value yields a value that is different
3428 * from rounding up the smallest rational value, then the variable
3429 * cannot attain any integer value. Mark the tableau empty.
3430 * Otherwise, add an equality constraint that fixes the variable
3431 * to the single integer value found.
3433 static isl_bool
detect_constant_with_tmp(struct isl_tab
*tab
,
3434 struct isl_tab_var
*var
, isl_int
*target
, isl_int
*tmp
)
3441 get_rounded_sample_value(tab
, var
, -1, target
);
3442 isl_int_sub_ui(*target
, *target
, 1);
3443 reached
= var_reaches(tab
, var
, -1, *target
, tmp
);
3444 if (reached
< 0 || reached
)
3445 return isl_bool_not(reached
);
3446 get_rounded_sample_value(tab
, var
, 1, target
);
3447 isl_int_add_ui(*target
, *target
, 1);
3448 reached
= var_reaches(tab
, var
, 1, *target
, tmp
);
3449 if (reached
< 0 || reached
)
3450 return isl_bool_not(reached
);
3451 get_rounded_sample_value(tab
, var
, -1, tmp
);
3452 isl_int_sub_ui(*target
, *target
, 1);
3453 if (isl_int_ne(*target
, *tmp
)) {
3454 if (isl_tab_mark_empty(tab
) < 0)
3455 return isl_bool_error
;
3456 return isl_bool_false
;
3459 if (isl_tab_extend_cons(tab
, 1) < 0)
3460 return isl_bool_error
;
3461 eq
= isl_vec_alloc(isl_tab_get_ctx(tab
), 1 + tab
->n_var
);
3463 return isl_bool_error
;
3464 pos
= var
- tab
->var
;
3465 isl_seq_clr(eq
->el
+ 1, tab
->n_var
);
3466 isl_int_set_si(eq
->el
[1 + pos
], -1);
3467 isl_int_set(eq
->el
[0], *target
);
3468 r
= isl_tab_add_eq(tab
, eq
->el
);
3471 return r
< 0 ? isl_bool_error
: isl_bool_true
;
3474 /* Check if variable "var" of "tab" can only attain a single (integer)
3475 * value, and, if so, add an equality constraint to fix the variable
3476 * to this single value and store the result in "value" (if "value"
3479 * If the current sample value involves the big parameter,
3480 * then the variable cannot have a fixed integer value.
3481 * If the variable is already fixed to a single value by its row, then
3482 * there is no need to add another equality constraint.
3484 * Otherwise, allocate some temporary variables and continue
3485 * with detect_constant_with_tmp.
3487 static isl_bool
get_constant(struct isl_tab
*tab
, struct isl_tab_var
*var
,
3490 isl_int target
, tmp
;
3493 if (var
->is_row
&& row_is_big(tab
, var
->index
))
3494 return isl_bool_false
;
3495 is_cst
= is_constant(tab
, var
, value
);
3496 if (is_cst
< 0 || is_cst
)
3500 isl_int_init(target
);
3503 is_cst
= detect_constant_with_tmp(tab
, var
,
3504 value
? value
: &target
, &tmp
);
3508 isl_int_clear(target
);
3513 /* Check if variable "var" of "tab" can only attain a single (integer)
3514 * value, and, if so, add an equality constraint to fix the variable
3515 * to this single value and store the result in "value" (if "value"
3518 * For rational tableaus, nothing needs to be done.
3520 isl_bool
isl_tab_is_constant(struct isl_tab
*tab
, int var
, isl_int
*value
)
3523 return isl_bool_error
;
3524 if (var
< 0 || var
>= tab
->n_var
)
3525 isl_die(isl_tab_get_ctx(tab
), isl_error_invalid
,
3526 "position out of bounds", return isl_bool_error
);
3528 return isl_bool_false
;
3530 return get_constant(tab
, &tab
->var
[var
], value
);
3533 /* Check if any of the variables of "tab" can only attain a single (integer)
3534 * value, and, if so, add equality constraints to fix those variables
3535 * to these single values.
3537 * For rational tableaus, nothing needs to be done.
3539 isl_stat
isl_tab_detect_constants(struct isl_tab
*tab
)
3544 return isl_stat_error
;
3548 for (i
= 0; i
< tab
->n_var
; ++i
) {
3549 if (get_constant(tab
, &tab
->var
[i
], NULL
) < 0)
3550 return isl_stat_error
;
3556 /* Take a snapshot of the tableau that can be restored by a call to
3559 struct isl_tab_undo
*isl_tab_snap(struct isl_tab
*tab
)
3567 /* Does "tab" need to keep track of undo information?
3568 * That is, was a snapshot taken that may need to be restored?
3570 isl_bool
isl_tab_need_undo(struct isl_tab
*tab
)
3573 return isl_bool_error
;
3575 return tab
->need_undo
;
3578 /* Remove all tracking of undo information from "tab", invalidating
3579 * any snapshots that may have been taken of the tableau.
3580 * Since all snapshots have been invalidated, there is also
3581 * no need to start keeping track of undo information again.
3583 void isl_tab_clear_undo(struct isl_tab
*tab
)
3592 /* Undo the operation performed by isl_tab_relax.
3594 static int unrelax(struct isl_tab
*tab
, struct isl_tab_var
*var
) WARN_UNUSED
;
3595 static int unrelax(struct isl_tab
*tab
, struct isl_tab_var
*var
)
3597 unsigned off
= 2 + tab
->M
;
3599 if (!var
->is_row
&& !max_is_manifestly_unbounded(tab
, var
))
3600 if (to_row(tab
, var
, 1) < 0)
3604 isl_int_sub(tab
->mat
->row
[var
->index
][1],
3605 tab
->mat
->row
[var
->index
][1], tab
->mat
->row
[var
->index
][0]);
3606 if (var
->is_nonneg
) {
3607 int sgn
= restore_row(tab
, var
);
3608 isl_assert(tab
->mat
->ctx
, sgn
>= 0, return -1);
3613 for (i
= 0; i
< tab
->n_row
; ++i
) {
3614 if (isl_int_is_zero(tab
->mat
->row
[i
][off
+ var
->index
]))
3616 isl_int_add(tab
->mat
->row
[i
][1], tab
->mat
->row
[i
][1],
3617 tab
->mat
->row
[i
][off
+ var
->index
]);
3625 /* Undo the operation performed by isl_tab_unrestrict.
3627 * In particular, mark the variable as being non-negative and make
3628 * sure the sample value respects this constraint.
3630 static int ununrestrict(struct isl_tab
*tab
, struct isl_tab_var
*var
)
3634 if (var
->is_row
&& restore_row(tab
, var
) < -1)
3640 /* Unmark the last redundant row in "tab" as being redundant.
3641 * This undoes part of the modifications performed by isl_tab_mark_redundant.
3642 * In particular, remove the redundant mark and make
3643 * sure the sample value respects the constraint again.
3644 * A variable that is marked non-negative by isl_tab_mark_redundant
3645 * is covered by a separate undo record.
3647 static isl_stat
restore_last_redundant(struct isl_tab
*tab
)
3649 struct isl_tab_var
*var
;
3651 if (tab
->n_redundant
< 1)
3652 isl_die(isl_tab_get_ctx(tab
), isl_error_internal
,
3653 "no redundant rows", return isl_stat_error
);
3655 var
= isl_tab_var_from_row(tab
, tab
->n_redundant
- 1);
3656 var
->is_redundant
= 0;
3658 restore_row(tab
, var
);
3663 static int perform_undo_var(struct isl_tab
*tab
, struct isl_tab_undo
*undo
) WARN_UNUSED
;
3664 static int perform_undo_var(struct isl_tab
*tab
, struct isl_tab_undo
*undo
)
3666 struct isl_tab_var
*var
= var_from_index(tab
, undo
->u
.var_index
);
3667 switch (undo
->type
) {
3668 case isl_tab_undo_nonneg
:
3671 case isl_tab_undo_redundant
:
3672 if (!var
->is_row
|| var
->index
!= tab
->n_redundant
- 1)
3673 isl_die(isl_tab_get_ctx(tab
), isl_error_internal
,
3674 "not undoing last redundant row", return -1);
3675 return restore_last_redundant(tab
);
3676 case isl_tab_undo_freeze
:
3679 case isl_tab_undo_zero
:
3684 case isl_tab_undo_allocate
:
3685 if (undo
->u
.var_index
>= 0) {
3686 isl_assert(tab
->mat
->ctx
, !var
->is_row
, return -1);
3687 return drop_col(tab
, var
->index
);
3690 if (!max_is_manifestly_unbounded(tab
, var
)) {
3691 if (to_row(tab
, var
, 1) < 0)
3693 } else if (!min_is_manifestly_unbounded(tab
, var
)) {
3694 if (to_row(tab
, var
, -1) < 0)
3697 if (to_row(tab
, var
, 0) < 0)
3700 return drop_row(tab
, var
->index
);
3701 case isl_tab_undo_relax
:
3702 return unrelax(tab
, var
);
3703 case isl_tab_undo_unrestrict
:
3704 return ununrestrict(tab
, var
);
3706 isl_die(tab
->mat
->ctx
, isl_error_internal
,
3707 "perform_undo_var called on invalid undo record",
3714 /* Restore all rows that have been marked redundant by isl_tab_mark_redundant
3715 * and that have been preserved in the tableau.
3716 * Note that isl_tab_mark_redundant may also have marked some variables
3717 * as being non-negative before marking them redundant. These need
3718 * to be removed as well as otherwise some constraints could end up
3719 * getting marked redundant with respect to the variable.
3721 isl_stat
isl_tab_restore_redundant(struct isl_tab
*tab
)
3724 return isl_stat_error
;
3727 isl_die(isl_tab_get_ctx(tab
), isl_error_invalid
,
3728 "manually restoring redundant constraints "
3729 "interferes with undo history",
3730 return isl_stat_error
);
3732 while (tab
->n_redundant
> 0) {
3733 if (tab
->row_var
[tab
->n_redundant
- 1] >= 0) {
3734 struct isl_tab_var
*var
;
3736 var
= isl_tab_var_from_row(tab
, tab
->n_redundant
- 1);
3739 restore_last_redundant(tab
);
3744 /* Undo the addition of an integer division to the basic map representation
3745 * of "tab" in position "pos".
3747 static isl_stat
drop_bmap_div(struct isl_tab
*tab
, int pos
)
3751 off
= tab
->n_var
- isl_basic_map_dim(tab
->bmap
, isl_dim_div
);
3752 if (isl_basic_map_drop_div(tab
->bmap
, pos
- off
) < 0)
3753 return isl_stat_error
;
3755 tab
->samples
= isl_mat_drop_cols(tab
->samples
, 1 + pos
, 1);
3757 return isl_stat_error
;
3763 /* Restore the tableau to the state where the basic variables
3764 * are those in "col_var".
3765 * We first construct a list of variables that are currently in
3766 * the basis, but shouldn't. Then we iterate over all variables
3767 * that should be in the basis and for each one that is currently
3768 * not in the basis, we exchange it with one of the elements of the
3769 * list constructed before.
3770 * We can always find an appropriate variable to pivot with because
3771 * the current basis is mapped to the old basis by a non-singular
3772 * matrix and so we can never end up with a zero row.
3774 static int restore_basis(struct isl_tab
*tab
, int *col_var
)
3778 int *extra
= NULL
; /* current columns that contain bad stuff */
3779 unsigned off
= 2 + tab
->M
;
3781 extra
= isl_alloc_array(tab
->mat
->ctx
, int, tab
->n_col
);
3782 if (tab
->n_col
&& !extra
)
3784 for (i
= 0; i
< tab
->n_col
; ++i
) {
3785 for (j
= 0; j
< tab
->n_col
; ++j
)
3786 if (tab
->col_var
[i
] == col_var
[j
])
3790 extra
[n_extra
++] = i
;
3792 for (i
= 0; i
< tab
->n_col
&& n_extra
> 0; ++i
) {
3793 struct isl_tab_var
*var
;
3796 for (j
= 0; j
< tab
->n_col
; ++j
)
3797 if (col_var
[i
] == tab
->col_var
[j
])
3801 var
= var_from_index(tab
, col_var
[i
]);
3803 for (j
= 0; j
< n_extra
; ++j
)
3804 if (!isl_int_is_zero(tab
->mat
->row
[row
][off
+extra
[j
]]))
3806 isl_assert(tab
->mat
->ctx
, j
< n_extra
, goto error
);
3807 if (isl_tab_pivot(tab
, row
, extra
[j
]) < 0)
3809 extra
[j
] = extra
[--n_extra
];
3819 /* Remove all samples with index n or greater, i.e., those samples
3820 * that were added since we saved this number of samples in
3821 * isl_tab_save_samples.
3823 static void drop_samples_since(struct isl_tab
*tab
, int n
)
3827 for (i
= tab
->n_sample
- 1; i
>= 0 && tab
->n_sample
> n
; --i
) {
3828 if (tab
->sample_index
[i
] < n
)
3831 if (i
!= tab
->n_sample
- 1) {
3832 int t
= tab
->sample_index
[tab
->n_sample
-1];
3833 tab
->sample_index
[tab
->n_sample
-1] = tab
->sample_index
[i
];
3834 tab
->sample_index
[i
] = t
;
3835 isl_mat_swap_rows(tab
->samples
, tab
->n_sample
-1, i
);
3841 static int perform_undo(struct isl_tab
*tab
, struct isl_tab_undo
*undo
) WARN_UNUSED
;
3842 static int perform_undo(struct isl_tab
*tab
, struct isl_tab_undo
*undo
)
3844 switch (undo
->type
) {
3845 case isl_tab_undo_rational
:
3848 case isl_tab_undo_empty
:
3851 case isl_tab_undo_nonneg
:
3852 case isl_tab_undo_redundant
:
3853 case isl_tab_undo_freeze
:
3854 case isl_tab_undo_zero
:
3855 case isl_tab_undo_allocate
:
3856 case isl_tab_undo_relax
:
3857 case isl_tab_undo_unrestrict
:
3858 return perform_undo_var(tab
, undo
);
3859 case isl_tab_undo_bmap_eq
:
3860 return isl_basic_map_free_equality(tab
->bmap
, 1);
3861 case isl_tab_undo_bmap_ineq
:
3862 return isl_basic_map_free_inequality(tab
->bmap
, 1);
3863 case isl_tab_undo_bmap_div
:
3864 return drop_bmap_div(tab
, undo
->u
.var_index
);
3865 case isl_tab_undo_saved_basis
:
3866 if (restore_basis(tab
, undo
->u
.col_var
) < 0)
3869 case isl_tab_undo_drop_sample
:
3872 case isl_tab_undo_saved_samples
:
3873 drop_samples_since(tab
, undo
->u
.n
);
3875 case isl_tab_undo_callback
:
3876 return undo
->u
.callback
->run(undo
->u
.callback
);
3878 isl_assert(tab
->mat
->ctx
, 0, return -1);
3883 /* Return the tableau to the state it was in when the snapshot "snap"
3886 int isl_tab_rollback(struct isl_tab
*tab
, struct isl_tab_undo
*snap
)
3888 struct isl_tab_undo
*undo
, *next
;
3894 for (undo
= tab
->top
; undo
&& undo
!= &tab
->bottom
; undo
= next
) {
3898 if (perform_undo(tab
, undo
) < 0) {
3904 free_undo_record(undo
);
3913 /* The given row "row" represents an inequality violated by all
3914 * points in the tableau. Check for some special cases of such
3915 * separating constraints.
3916 * In particular, if the row has been reduced to the constant -1,
3917 * then we know the inequality is adjacent (but opposite) to
3918 * an equality in the tableau.
3919 * If the row has been reduced to r = c*(-1 -r'), with r' an inequality
3920 * of the tableau and c a positive constant, then the inequality
3921 * is adjacent (but opposite) to the inequality r'.
3923 static enum isl_ineq_type
separation_type(struct isl_tab
*tab
, unsigned row
)
3926 unsigned off
= 2 + tab
->M
;
3929 return isl_ineq_separate
;
3931 if (!isl_int_is_one(tab
->mat
->row
[row
][0]))
3932 return isl_ineq_separate
;
3934 pos
= isl_seq_first_non_zero(tab
->mat
->row
[row
] + off
+ tab
->n_dead
,
3935 tab
->n_col
- tab
->n_dead
);
3937 if (isl_int_is_negone(tab
->mat
->row
[row
][1]))
3938 return isl_ineq_adj_eq
;
3940 return isl_ineq_separate
;
3943 if (!isl_int_eq(tab
->mat
->row
[row
][1],
3944 tab
->mat
->row
[row
][off
+ tab
->n_dead
+ pos
]))
3945 return isl_ineq_separate
;
3947 pos
= isl_seq_first_non_zero(
3948 tab
->mat
->row
[row
] + off
+ tab
->n_dead
+ pos
+ 1,
3949 tab
->n_col
- tab
->n_dead
- pos
- 1);
3951 return pos
== -1 ? isl_ineq_adj_ineq
: isl_ineq_separate
;
3954 /* Check the effect of inequality "ineq" on the tableau "tab".
3956 * isl_ineq_redundant: satisfied by all points in the tableau
3957 * isl_ineq_separate: satisfied by no point in the tableau
3958 * isl_ineq_cut: satisfied by some by not all points
3959 * isl_ineq_adj_eq: adjacent to an equality
3960 * isl_ineq_adj_ineq: adjacent to an inequality.
3962 enum isl_ineq_type
isl_tab_ineq_type(struct isl_tab
*tab
, isl_int
*ineq
)
3964 enum isl_ineq_type type
= isl_ineq_error
;
3965 struct isl_tab_undo
*snap
= NULL
;
3970 return isl_ineq_error
;
3972 if (isl_tab_extend_cons(tab
, 1) < 0)
3973 return isl_ineq_error
;
3975 snap
= isl_tab_snap(tab
);
3977 con
= isl_tab_add_row(tab
, ineq
);
3981 row
= tab
->con
[con
].index
;
3982 if (isl_tab_row_is_redundant(tab
, row
))
3983 type
= isl_ineq_redundant
;
3984 else if (isl_int_is_neg(tab
->mat
->row
[row
][1]) &&
3986 isl_int_abs_ge(tab
->mat
->row
[row
][1],
3987 tab
->mat
->row
[row
][0]))) {
3988 int nonneg
= at_least_zero(tab
, &tab
->con
[con
]);
3992 type
= isl_ineq_cut
;
3994 type
= separation_type(tab
, row
);
3996 int red
= con_is_redundant(tab
, &tab
->con
[con
]);
4000 type
= isl_ineq_cut
;
4002 type
= isl_ineq_redundant
;
4005 if (isl_tab_rollback(tab
, snap
))
4006 return isl_ineq_error
;
4009 return isl_ineq_error
;
4012 int isl_tab_track_bmap(struct isl_tab
*tab
, __isl_take isl_basic_map
*bmap
)
4014 bmap
= isl_basic_map_cow(bmap
);
4019 bmap
= isl_basic_map_set_to_empty(bmap
);
4026 isl_assert(tab
->mat
->ctx
, tab
->n_eq
== bmap
->n_eq
, goto error
);
4027 isl_assert(tab
->mat
->ctx
,
4028 tab
->n_con
== bmap
->n_eq
+ bmap
->n_ineq
, goto error
);
4034 isl_basic_map_free(bmap
);
4038 int isl_tab_track_bset(struct isl_tab
*tab
, __isl_take isl_basic_set
*bset
)
4040 return isl_tab_track_bmap(tab
, bset_to_bmap(bset
));
4043 __isl_keep isl_basic_set
*isl_tab_peek_bset(struct isl_tab
*tab
)
4048 return bset_from_bmap(tab
->bmap
);
4051 static void isl_tab_print_internal(__isl_keep
struct isl_tab
*tab
,
4052 FILE *out
, int indent
)
4058 fprintf(out
, "%*snull tab\n", indent
, "");
4061 fprintf(out
, "%*sn_redundant: %d, n_dead: %d", indent
, "",
4062 tab
->n_redundant
, tab
->n_dead
);
4064 fprintf(out
, ", rational");
4066 fprintf(out
, ", empty");
4068 fprintf(out
, "%*s[", indent
, "");
4069 for (i
= 0; i
< tab
->n_var
; ++i
) {
4071 fprintf(out
, (i
== tab
->n_param
||
4072 i
== tab
->n_var
- tab
->n_div
) ? "; "
4074 fprintf(out
, "%c%d%s", tab
->var
[i
].is_row
? 'r' : 'c',
4076 tab
->var
[i
].is_zero
? " [=0]" :
4077 tab
->var
[i
].is_redundant
? " [R]" : "");
4079 fprintf(out
, "]\n");
4080 fprintf(out
, "%*s[", indent
, "");
4081 for (i
= 0; i
< tab
->n_con
; ++i
) {
4084 fprintf(out
, "%c%d%s", tab
->con
[i
].is_row
? 'r' : 'c',
4086 tab
->con
[i
].is_zero
? " [=0]" :
4087 tab
->con
[i
].is_redundant
? " [R]" : "");
4089 fprintf(out
, "]\n");
4090 fprintf(out
, "%*s[", indent
, "");
4091 for (i
= 0; i
< tab
->n_row
; ++i
) {
4092 const char *sign
= "";
4095 if (tab
->row_sign
) {
4096 if (tab
->row_sign
[i
] == isl_tab_row_unknown
)
4098 else if (tab
->row_sign
[i
] == isl_tab_row_neg
)
4100 else if (tab
->row_sign
[i
] == isl_tab_row_pos
)
4105 fprintf(out
, "r%d: %d%s%s", i
, tab
->row_var
[i
],
4106 isl_tab_var_from_row(tab
, i
)->is_nonneg
? " [>=0]" : "", sign
);
4108 fprintf(out
, "]\n");
4109 fprintf(out
, "%*s[", indent
, "");
4110 for (i
= 0; i
< tab
->n_col
; ++i
) {
4113 fprintf(out
, "c%d: %d%s", i
, tab
->col_var
[i
],
4114 var_from_col(tab
, i
)->is_nonneg
? " [>=0]" : "");
4116 fprintf(out
, "]\n");
4117 r
= tab
->mat
->n_row
;
4118 tab
->mat
->n_row
= tab
->n_row
;
4119 c
= tab
->mat
->n_col
;
4120 tab
->mat
->n_col
= 2 + tab
->M
+ tab
->n_col
;
4121 isl_mat_print_internal(tab
->mat
, out
, indent
);
4122 tab
->mat
->n_row
= r
;
4123 tab
->mat
->n_col
= c
;
4125 isl_basic_map_print_internal(tab
->bmap
, out
, indent
);
4128 void isl_tab_dump(__isl_keep
struct isl_tab
*tab
)
4130 isl_tab_print_internal(tab
, stderr
, 0);