isl_coalesce.c: wrap_in_facets: only wrap around other basic map
[isl.git] / isl_coalesce.c
blob81849e7825d3c6d46d1ed49ba699eb6bab4a3624
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
4 * Copyright 2012-2013 Ecole Normale Superieure
5 * Copyright 2014 INRIA Rocquencourt
7 * Use of this software is governed by the MIT license
9 * Written by Sven Verdoolaege, K.U.Leuven, Departement
10 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
11 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
12 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
13 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
14 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
15 * B.P. 105 - 78153 Le Chesnay, France
18 #include "isl_map_private.h"
19 #include <isl_seq.h>
20 #include <isl/options.h>
21 #include "isl_tab.h"
22 #include <isl_mat_private.h>
23 #include <isl_local_space_private.h>
24 #include <isl_vec_private.h>
26 #define STATUS_ERROR -1
27 #define STATUS_REDUNDANT 1
28 #define STATUS_VALID 2
29 #define STATUS_SEPARATE 3
30 #define STATUS_CUT 4
31 #define STATUS_ADJ_EQ 5
32 #define STATUS_ADJ_INEQ 6
34 static int status_in(isl_int *ineq, struct isl_tab *tab)
36 enum isl_ineq_type type = isl_tab_ineq_type(tab, ineq);
37 switch (type) {
38 default:
39 case isl_ineq_error: return STATUS_ERROR;
40 case isl_ineq_redundant: return STATUS_VALID;
41 case isl_ineq_separate: return STATUS_SEPARATE;
42 case isl_ineq_cut: return STATUS_CUT;
43 case isl_ineq_adj_eq: return STATUS_ADJ_EQ;
44 case isl_ineq_adj_ineq: return STATUS_ADJ_INEQ;
48 /* Compute the position of the equalities of basic map "bmap_i"
49 * with respect to the basic map represented by "tab_j".
50 * The resulting array has twice as many entries as the number
51 * of equalities corresponding to the two inequalties to which
52 * each equality corresponds.
54 static int *eq_status_in(__isl_keep isl_basic_map *bmap_i,
55 struct isl_tab *tab_j)
57 int k, l;
58 int *eq = isl_calloc_array(bmap_i->ctx, int, 2 * bmap_i->n_eq);
59 unsigned dim;
61 if (!eq)
62 return NULL;
64 dim = isl_basic_map_total_dim(bmap_i);
65 for (k = 0; k < bmap_i->n_eq; ++k) {
66 for (l = 0; l < 2; ++l) {
67 isl_seq_neg(bmap_i->eq[k], bmap_i->eq[k], 1+dim);
68 eq[2 * k + l] = status_in(bmap_i->eq[k], tab_j);
69 if (eq[2 * k + l] == STATUS_ERROR)
70 goto error;
72 if (eq[2 * k] == STATUS_SEPARATE ||
73 eq[2 * k + 1] == STATUS_SEPARATE)
74 break;
77 return eq;
78 error:
79 free(eq);
80 return NULL;
83 /* Compute the position of the inequalities of basic map "bmap_i"
84 * (also represented by "tab_i", if not NULL) with respect to the basic map
85 * represented by "tab_j".
87 static int *ineq_status_in(__isl_keep isl_basic_map *bmap_i,
88 struct isl_tab *tab_i, struct isl_tab *tab_j)
90 int k;
91 unsigned n_eq = bmap_i->n_eq;
92 int *ineq = isl_calloc_array(bmap_i->ctx, int, bmap_i->n_ineq);
94 if (!ineq)
95 return NULL;
97 for (k = 0; k < bmap_i->n_ineq; ++k) {
98 if (tab_i && isl_tab_is_redundant(tab_i, n_eq + k)) {
99 ineq[k] = STATUS_REDUNDANT;
100 continue;
102 ineq[k] = status_in(bmap_i->ineq[k], tab_j);
103 if (ineq[k] == STATUS_ERROR)
104 goto error;
105 if (ineq[k] == STATUS_SEPARATE)
106 break;
109 return ineq;
110 error:
111 free(ineq);
112 return NULL;
115 static int any(int *con, unsigned len, int status)
117 int i;
119 for (i = 0; i < len ; ++i)
120 if (con[i] == status)
121 return 1;
122 return 0;
125 static int count(int *con, unsigned len, int status)
127 int i;
128 int c = 0;
130 for (i = 0; i < len ; ++i)
131 if (con[i] == status)
132 c++;
133 return c;
136 static int all(int *con, unsigned len, int status)
138 int i;
140 for (i = 0; i < len ; ++i) {
141 if (con[i] == STATUS_REDUNDANT)
142 continue;
143 if (con[i] != status)
144 return 0;
146 return 1;
149 /* Internal information associated to a basic map in a map
150 * that is to be coalesced by isl_map_coalesce.
152 * "bmap" is the basic map itself (or NULL if "removed" is set)
153 * "tab" is the corresponding tableau (or NULL if "removed" is set)
154 * "removed" is set if this basic map has been removed from the map
156 * "eq" and "ineq" are only set if we are currently trying to coalesce
157 * this basic map with another basic map, in which case they represent
158 * the position of the inequalities of this basic map with respect to
159 * the other basic map. The number of elements in the "eq" array
160 * is twice the number of equalities in the "bmap", corresponding
161 * to the two inequalities that make up each equality.
163 struct isl_coalesce_info {
164 isl_basic_map *bmap;
165 struct isl_tab *tab;
166 int removed;
167 int *eq;
168 int *ineq;
171 /* Free all the allocated memory in an array
172 * of "n" isl_coalesce_info elements.
174 static void clear_coalesce_info(int n, struct isl_coalesce_info *info)
176 int i;
178 if (!info)
179 return;
181 for (i = 0; i < n; ++i) {
182 isl_basic_map_free(info[i].bmap);
183 isl_tab_free(info[i].tab);
186 free(info);
189 /* Drop the basic map represented by "info".
190 * That is, clear the memory associated to the entry and
191 * mark it as having been removed.
193 static void drop(struct isl_coalesce_info *info)
195 info->bmap = isl_basic_map_free(info->bmap);
196 isl_tab_free(info->tab);
197 info->tab = NULL;
198 info->removed = 1;
201 /* Exchange the information in "info1" with that in "info2".
203 static void exchange(struct isl_coalesce_info *info1,
204 struct isl_coalesce_info *info2)
206 struct isl_coalesce_info info;
208 info = *info1;
209 *info1 = *info2;
210 *info2 = info;
213 /* This type represents the kind of change that has been performed
214 * while trying to coalesce two basic maps.
216 * isl_change_none: nothing was changed
217 * isl_change_drop_first: the first basic map was removed
218 * isl_change_drop_second: the second basic map was removed
219 * isl_change_fuse: the two basic maps were replaced by a new basic map.
221 enum isl_change {
222 isl_change_error = -1,
223 isl_change_none = 0,
224 isl_change_drop_first,
225 isl_change_drop_second,
226 isl_change_fuse,
229 /* Add the valid constraints of the basic map represented by "info"
230 * to "bmap". "len" is the size of the constraints.
231 * If only one of the pair of inequalities that make up an equality
232 * is valid, then add that inequality.
234 static __isl_give isl_basic_map *add_valid_constraints(
235 __isl_take isl_basic_map *bmap, struct isl_coalesce_info *info,
236 unsigned len)
238 int k, l;
240 if (!bmap)
241 return NULL;
243 for (k = 0; k < info->bmap->n_eq; ++k) {
244 if (info->eq[2 * k] == STATUS_VALID &&
245 info->eq[2 * k + 1] == STATUS_VALID) {
246 l = isl_basic_map_alloc_equality(bmap);
247 if (l < 0)
248 return isl_basic_map_free(bmap);
249 isl_seq_cpy(bmap->eq[l], info->bmap->eq[k], len);
250 } else if (info->eq[2 * k] == STATUS_VALID) {
251 l = isl_basic_map_alloc_inequality(bmap);
252 if (l < 0)
253 return isl_basic_map_free(bmap);
254 isl_seq_neg(bmap->ineq[l], info->bmap->eq[k], len);
255 } else if (info->eq[2 * k + 1] == STATUS_VALID) {
256 l = isl_basic_map_alloc_inequality(bmap);
257 if (l < 0)
258 return isl_basic_map_free(bmap);
259 isl_seq_cpy(bmap->ineq[l], info->bmap->eq[k], len);
263 for (k = 0; k < info->bmap->n_ineq; ++k) {
264 if (info->ineq[k] != STATUS_VALID)
265 continue;
266 l = isl_basic_map_alloc_inequality(bmap);
267 if (l < 0)
268 return isl_basic_map_free(bmap);
269 isl_seq_cpy(bmap->ineq[l], info->bmap->ineq[k], len);
272 return bmap;
275 /* Replace the pair of basic maps i and j by the basic map bounded
276 * by the valid constraints in both basic maps and the constraints
277 * in extra (if not NULL).
278 * Place the fused basic map in the position that is the smallest of i and j.
280 * If "detect_equalities" is set, then look for equalities encoded
281 * as pairs of inequalities.
283 static enum isl_change fuse(int i, int j, struct isl_coalesce_info *info,
284 __isl_keep isl_mat *extra, int detect_equalities)
286 int k, l;
287 struct isl_basic_map *fused = NULL;
288 struct isl_tab *fused_tab = NULL;
289 unsigned total = isl_basic_map_total_dim(info[i].bmap);
290 unsigned extra_rows = extra ? extra->n_row : 0;
291 unsigned n_eq, n_ineq;
293 if (j < i)
294 return fuse(j, i, info, extra, detect_equalities);
296 n_eq = info[i].bmap->n_eq + info[j].bmap->n_eq;
297 n_ineq = info[i].bmap->n_ineq + info[j].bmap->n_ineq;
298 fused = isl_basic_map_alloc_space(isl_space_copy(info[i].bmap->dim),
299 info[i].bmap->n_div, n_eq, n_eq + n_ineq + extra_rows);
300 fused = add_valid_constraints(fused, &info[i], 1 + total);
301 fused = add_valid_constraints(fused, &info[j], 1 + total);
302 if (!fused)
303 goto error;
305 for (k = 0; k < info[i].bmap->n_div; ++k) {
306 int l = isl_basic_map_alloc_div(fused);
307 if (l < 0)
308 goto error;
309 isl_seq_cpy(fused->div[l], info[i].bmap->div[k], 1 + 1 + total);
312 for (k = 0; k < extra_rows; ++k) {
313 l = isl_basic_map_alloc_inequality(fused);
314 if (l < 0)
315 goto error;
316 isl_seq_cpy(fused->ineq[l], extra->row[k], 1 + total);
319 if (detect_equalities)
320 fused = isl_basic_map_detect_inequality_pairs(fused, NULL);
321 fused = isl_basic_map_gauss(fused, NULL);
322 ISL_F_SET(fused, ISL_BASIC_MAP_FINAL);
323 if (ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_RATIONAL) &&
324 ISL_F_ISSET(info[j].bmap, ISL_BASIC_MAP_RATIONAL))
325 ISL_F_SET(fused, ISL_BASIC_MAP_RATIONAL);
327 fused_tab = isl_tab_from_basic_map(fused, 0);
328 if (isl_tab_detect_redundant(fused_tab) < 0)
329 goto error;
331 isl_basic_map_free(info[i].bmap);
332 info[i].bmap = fused;
333 isl_tab_free(info[i].tab);
334 info[i].tab = fused_tab;
335 drop(&info[j]);
337 return isl_change_fuse;
338 error:
339 isl_tab_free(fused_tab);
340 isl_basic_map_free(fused);
341 return isl_change_error;
344 /* Given a pair of basic maps i and j such that all constraints are either
345 * "valid" or "cut", check if the facets corresponding to the "cut"
346 * constraints of i lie entirely within basic map j.
347 * If so, replace the pair by the basic map consisting of the valid
348 * constraints in both basic maps.
349 * Checking whether the facet lies entirely within basic map j
350 * is performed by checking whether the constraints of basic map j
351 * are valid for the facet. These tests are performed on a rational
352 * tableau to avoid the theoretical possibility that a constraint
353 * that was considered to be a cut constraint for the entire basic map i
354 * happens to be considered to be a valid constraint for the facet,
355 * even though it cuts off the same rational points.
357 * To see that we are not introducing any extra points, call the
358 * two basic maps A and B and the resulting map U and let x
359 * be an element of U \setminus ( A \cup B ).
360 * A line connecting x with an element of A \cup B meets a facet F
361 * of either A or B. Assume it is a facet of B and let c_1 be
362 * the corresponding facet constraint. We have c_1(x) < 0 and
363 * so c_1 is a cut constraint. This implies that there is some
364 * (possibly rational) point x' satisfying the constraints of A
365 * and the opposite of c_1 as otherwise c_1 would have been marked
366 * valid for A. The line connecting x and x' meets a facet of A
367 * in a (possibly rational) point that also violates c_1, but this
368 * is impossible since all cut constraints of B are valid for all
369 * cut facets of A.
370 * In case F is a facet of A rather than B, then we can apply the
371 * above reasoning to find a facet of B separating x from A \cup B first.
373 static enum isl_change check_facets(int i, int j,
374 struct isl_coalesce_info *info)
376 int k, l;
377 struct isl_tab_undo *snap, *snap2;
378 unsigned n_eq = info[i].bmap->n_eq;
380 snap = isl_tab_snap(info[i].tab);
381 if (isl_tab_mark_rational(info[i].tab) < 0)
382 return isl_change_error;
383 snap2 = isl_tab_snap(info[i].tab);
385 for (k = 0; k < info[i].bmap->n_ineq; ++k) {
386 if (info[i].ineq[k] != STATUS_CUT)
387 continue;
388 if (isl_tab_select_facet(info[i].tab, n_eq + k) < 0)
389 return isl_change_error;
390 for (l = 0; l < info[j].bmap->n_ineq; ++l) {
391 int stat;
392 if (info[j].ineq[l] != STATUS_CUT)
393 continue;
394 stat = status_in(info[j].bmap->ineq[l], info[i].tab);
395 if (stat != STATUS_VALID)
396 break;
398 if (isl_tab_rollback(info[i].tab, snap2) < 0)
399 return isl_change_error;
400 if (l < info[j].bmap->n_ineq)
401 break;
404 if (k < info[i].bmap->n_ineq) {
405 if (isl_tab_rollback(info[i].tab, snap) < 0)
406 return isl_change_error;
407 return isl_change_none;
409 return fuse(i, j, info, NULL, 0);
412 /* Check if info->bmap contains the basic map represented
413 * by the tableau "tab".
414 * For each equality, we check both the constraint itself
415 * (as an inequality) and its negation. Make sure the
416 * equality is returned to its original state before returning.
418 static int contains(struct isl_coalesce_info *info, struct isl_tab *tab)
420 int k;
421 unsigned dim;
422 isl_basic_map *bmap = info->bmap;
424 dim = isl_basic_map_total_dim(bmap);
425 for (k = 0; k < bmap->n_eq; ++k) {
426 int stat;
427 isl_seq_neg(bmap->eq[k], bmap->eq[k], 1 + dim);
428 stat = status_in(bmap->eq[k], tab);
429 isl_seq_neg(bmap->eq[k], bmap->eq[k], 1 + dim);
430 if (stat != STATUS_VALID)
431 return 0;
432 stat = status_in(bmap->eq[k], tab);
433 if (stat != STATUS_VALID)
434 return 0;
437 for (k = 0; k < bmap->n_ineq; ++k) {
438 int stat;
439 if (info->ineq[k] == STATUS_REDUNDANT)
440 continue;
441 stat = status_in(bmap->ineq[k], tab);
442 if (stat != STATUS_VALID)
443 return 0;
445 return 1;
448 /* Basic map "i" has an inequality (say "k") that is adjacent
449 * to some inequality of basic map "j". All the other inequalities
450 * are valid for "j".
451 * Check if basic map "j" forms an extension of basic map "i".
453 * Note that this function is only called if some of the equalities or
454 * inequalities of basic map "j" do cut basic map "i". The function is
455 * correct even if there are no such cut constraints, but in that case
456 * the additional checks performed by this function are overkill.
458 * In particular, we replace constraint k, say f >= 0, by constraint
459 * f <= -1, add the inequalities of "j" that are valid for "i"
460 * and check if the result is a subset of basic map "j".
461 * If so, then we know that this result is exactly equal to basic map "j"
462 * since all its constraints are valid for basic map "j".
463 * By combining the valid constraints of "i" (all equalities and all
464 * inequalities except "k") and the valid constraints of "j" we therefore
465 * obtain a basic map that is equal to their union.
466 * In this case, there is no need to perform a rollback of the tableau
467 * since it is going to be destroyed in fuse().
470 * |\__ |\__
471 * | \__ | \__
472 * | \_ => | \__
473 * |_______| _ |_________\
476 * |\ |\
477 * | \ | \
478 * | \ | \
479 * | | | \
480 * | ||\ => | \
481 * | || \ | \
482 * | || | | |
483 * |__||_/ |_____/
485 static enum isl_change is_adj_ineq_extension(int i, int j,
486 struct isl_coalesce_info *info)
488 int k;
489 struct isl_tab_undo *snap;
490 unsigned n_eq = info[i].bmap->n_eq;
491 unsigned total = isl_basic_map_total_dim(info[i].bmap);
492 int r;
494 if (isl_tab_extend_cons(info[i].tab, 1 + info[j].bmap->n_ineq) < 0)
495 return isl_change_error;
497 for (k = 0; k < info[i].bmap->n_ineq; ++k)
498 if (info[i].ineq[k] == STATUS_ADJ_INEQ)
499 break;
500 if (k >= info[i].bmap->n_ineq)
501 isl_die(isl_basic_map_get_ctx(info[i].bmap), isl_error_internal,
502 "info[i].ineq should have exactly one STATUS_ADJ_INEQ",
503 return isl_change_error);
505 snap = isl_tab_snap(info[i].tab);
507 if (isl_tab_unrestrict(info[i].tab, n_eq + k) < 0)
508 return isl_change_error;
510 isl_seq_neg(info[i].bmap->ineq[k], info[i].bmap->ineq[k], 1 + total);
511 isl_int_sub_ui(info[i].bmap->ineq[k][0], info[i].bmap->ineq[k][0], 1);
512 r = isl_tab_add_ineq(info[i].tab, info[i].bmap->ineq[k]);
513 isl_seq_neg(info[i].bmap->ineq[k], info[i].bmap->ineq[k], 1 + total);
514 isl_int_sub_ui(info[i].bmap->ineq[k][0], info[i].bmap->ineq[k][0], 1);
515 if (r < 0)
516 return isl_change_error;
518 for (k = 0; k < info[j].bmap->n_ineq; ++k) {
519 if (info[j].ineq[k] != STATUS_VALID)
520 continue;
521 if (isl_tab_add_ineq(info[i].tab, info[j].bmap->ineq[k]) < 0)
522 return isl_change_error;
525 if (contains(&info[j], info[i].tab))
526 return fuse(i, j, info, NULL, 0);
528 if (isl_tab_rollback(info[i].tab, snap) < 0)
529 return isl_change_error;
531 return isl_change_none;
535 /* Both basic maps have at least one inequality with and adjacent
536 * (but opposite) inequality in the other basic map.
537 * Check that there are no cut constraints and that there is only
538 * a single pair of adjacent inequalities.
539 * If so, we can replace the pair by a single basic map described
540 * by all but the pair of adjacent inequalities.
541 * Any additional points introduced lie strictly between the two
542 * adjacent hyperplanes and can therefore be integral.
544 * ____ _____
545 * / ||\ / \
546 * / || \ / \
547 * \ || \ => \ \
548 * \ || / \ /
549 * \___||_/ \_____/
551 * The test for a single pair of adjancent inequalities is important
552 * for avoiding the combination of two basic maps like the following
554 * /|
555 * / |
556 * /__|
557 * _____
558 * | |
559 * | |
560 * |___|
562 * If there are some cut constraints on one side, then we may
563 * still be able to fuse the two basic maps, but we need to perform
564 * some additional checks in is_adj_ineq_extension.
566 static enum isl_change check_adj_ineq(int i, int j,
567 struct isl_coalesce_info *info)
569 int count_i, count_j;
570 int cut_i, cut_j;
572 count_i = count(info[i].ineq, info[i].bmap->n_ineq, STATUS_ADJ_INEQ);
573 count_j = count(info[j].ineq, info[j].bmap->n_ineq, STATUS_ADJ_INEQ);
575 if (count_i != 1 && count_j != 1)
576 return isl_change_none;
578 cut_i = any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_CUT) ||
579 any(info[i].ineq, info[i].bmap->n_ineq, STATUS_CUT);
580 cut_j = any(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_CUT) ||
581 any(info[j].ineq, info[j].bmap->n_ineq, STATUS_CUT);
583 if (!cut_i && !cut_j && count_i == 1 && count_j == 1)
584 return fuse(i, j, info, NULL, 0);
586 if (count_i == 1 && !cut_i)
587 return is_adj_ineq_extension(i, j, info);
589 if (count_j == 1 && !cut_j)
590 return is_adj_ineq_extension(j, i, info);
592 return isl_change_none;
595 /* Basic map "i" has an inequality "k" that is adjacent to some equality
596 * of basic map "j". All the other inequalities are valid for "j".
597 * Check if basic map "j" forms an extension of basic map "i".
599 * In particular, we relax constraint "k", compute the corresponding
600 * facet and check whether it is included in the other basic map.
601 * If so, we know that relaxing the constraint extends the basic
602 * map with exactly the other basic map (we already know that this
603 * other basic map is included in the extension, because there
604 * were no "cut" inequalities in "i") and we can replace the
605 * two basic maps by this extension.
606 * Place this extension in the position that is the smallest of i and j.
607 * ____ _____
608 * / || / |
609 * / || / |
610 * \ || => \ |
611 * \ || \ |
612 * \___|| \____|
614 static enum isl_change is_adj_eq_extension(int i, int j, int k,
615 struct isl_coalesce_info *info)
617 int change = isl_change_none;
618 int super;
619 struct isl_tab_undo *snap, *snap2;
620 unsigned n_eq = info[i].bmap->n_eq;
622 if (isl_tab_is_equality(info[i].tab, n_eq + k))
623 return isl_change_none;
625 snap = isl_tab_snap(info[i].tab);
626 if (isl_tab_relax(info[i].tab, n_eq + k) < 0)
627 return isl_change_error;
628 snap2 = isl_tab_snap(info[i].tab);
629 if (isl_tab_select_facet(info[i].tab, n_eq + k) < 0)
630 return isl_change_error;
631 super = contains(&info[j], info[i].tab);
632 if (super) {
633 if (isl_tab_rollback(info[i].tab, snap2) < 0)
634 return isl_change_error;
635 info[i].bmap = isl_basic_map_cow(info[i].bmap);
636 if (!info[i].bmap)
637 return isl_change_error;
638 isl_int_add_ui(info[i].bmap->ineq[k][0],
639 info[i].bmap->ineq[k][0], 1);
640 ISL_F_SET(info[i].bmap, ISL_BASIC_MAP_FINAL);
641 drop(&info[j]);
642 if (j < i)
643 exchange(&info[i], &info[j]);
644 change = isl_change_fuse;
645 } else
646 if (isl_tab_rollback(info[i].tab, snap) < 0)
647 return isl_change_error;
649 return change;
652 /* Data structure that keeps track of the wrapping constraints
653 * and of information to bound the coefficients of those constraints.
655 * bound is set if we want to apply a bound on the coefficients
656 * mat contains the wrapping constraints
657 * max is the bound on the coefficients (if bound is set)
659 struct isl_wraps {
660 int bound;
661 isl_mat *mat;
662 isl_int max;
665 /* Update wraps->max to be greater than or equal to the coefficients
666 * in the equalities and inequalities of info->bmap that can be removed
667 * if we end up applying wrapping.
669 static void wraps_update_max(struct isl_wraps *wraps,
670 struct isl_coalesce_info *info)
672 int k;
673 isl_int max_k;
674 unsigned total = isl_basic_map_total_dim(info->bmap);
676 isl_int_init(max_k);
678 for (k = 0; k < info->bmap->n_eq; ++k) {
679 if (info->eq[2 * k] == STATUS_VALID &&
680 info->eq[2 * k + 1] == STATUS_VALID)
681 continue;
682 isl_seq_abs_max(info->bmap->eq[k] + 1, total, &max_k);
683 if (isl_int_abs_gt(max_k, wraps->max))
684 isl_int_set(wraps->max, max_k);
687 for (k = 0; k < info->bmap->n_ineq; ++k) {
688 if (info->ineq[k] == STATUS_VALID ||
689 info->ineq[k] == STATUS_REDUNDANT)
690 continue;
691 isl_seq_abs_max(info->bmap->ineq[k] + 1, total, &max_k);
692 if (isl_int_abs_gt(max_k, wraps->max))
693 isl_int_set(wraps->max, max_k);
696 isl_int_clear(max_k);
699 /* Initialize the isl_wraps data structure.
700 * If we want to bound the coefficients of the wrapping constraints,
701 * we set wraps->max to the largest coefficient
702 * in the equalities and inequalities that can be removed if we end up
703 * applying wrapping.
705 static void wraps_init(struct isl_wraps *wraps, __isl_take isl_mat *mat,
706 struct isl_coalesce_info *info, int i, int j)
708 isl_ctx *ctx;
710 wraps->bound = 0;
711 wraps->mat = mat;
712 if (!mat)
713 return;
714 ctx = isl_mat_get_ctx(mat);
715 wraps->bound = isl_options_get_coalesce_bounded_wrapping(ctx);
716 if (!wraps->bound)
717 return;
718 isl_int_init(wraps->max);
719 isl_int_set_si(wraps->max, 0);
720 wraps_update_max(wraps, &info[i]);
721 wraps_update_max(wraps, &info[j]);
724 /* Free the contents of the isl_wraps data structure.
726 static void wraps_free(struct isl_wraps *wraps)
728 isl_mat_free(wraps->mat);
729 if (wraps->bound)
730 isl_int_clear(wraps->max);
733 /* Is the wrapping constraint in row "row" allowed?
735 * If wraps->bound is set, we check that none of the coefficients
736 * is greater than wraps->max.
738 static int allow_wrap(struct isl_wraps *wraps, int row)
740 int i;
742 if (!wraps->bound)
743 return 1;
745 for (i = 1; i < wraps->mat->n_col; ++i)
746 if (isl_int_abs_gt(wraps->mat->row[row][i], wraps->max))
747 return 0;
749 return 1;
752 /* Wrap "ineq" (or its opposite if "negate" is set) around "bound"
753 * to include "set" and add the result in position "w" of "wraps".
754 * "len" is the total number of coefficients in "bound" and "ineq".
755 * Return 1 on success, 0 on failure and -1 on error.
756 * Wrapping can fail if the result of wrapping is equal to "bound"
757 * or if we want to bound the sizes of the coefficients and
758 * the wrapped constraint does not satisfy this bound.
760 static int add_wrap(struct isl_wraps *wraps, int w, isl_int *bound,
761 isl_int *ineq, unsigned len, __isl_keep isl_set *set, int negate)
763 isl_seq_cpy(wraps->mat->row[w], bound, len);
764 if (negate) {
765 isl_seq_neg(wraps->mat->row[w + 1], ineq, len);
766 ineq = wraps->mat->row[w + 1];
768 if (!isl_set_wrap_facet(set, wraps->mat->row[w], ineq))
769 return -1;
770 if (isl_seq_eq(wraps->mat->row[w], bound, len))
771 return 0;
772 if (!allow_wrap(wraps, w))
773 return 0;
774 return 1;
777 /* For each constraint in info->bmap that is not redundant (as determined
778 * by info->tab) and that is not a valid constraint for the other basic map,
779 * wrap the constraint around "bound" such that it includes the whole
780 * set "set" and append the resulting constraint to "wraps".
781 * Note that the constraints that are valid for the other basic map
782 * will be added to the combined basic map by default, so there is
783 * no need to wrap them.
784 * The caller wrap_in_facets even relies on this function not wrapping
785 * any constraints that are already valid.
786 * "wraps" is assumed to have been pre-allocated to the appropriate size.
787 * wraps->n_row is the number of actual wrapped constraints that have
788 * been added.
789 * If any of the wrapping problems results in a constraint that is
790 * identical to "bound", then this means that "set" is unbounded in such
791 * way that no wrapping is possible. If this happens then wraps->n_row
792 * is reset to zero.
793 * Similarly, if we want to bound the coefficients of the wrapping
794 * constraints and a newly added wrapping constraint does not
795 * satisfy the bound, then wraps->n_row is also reset to zero.
797 static int add_wraps(struct isl_wraps *wraps, struct isl_coalesce_info *info,
798 isl_int *bound, __isl_keep isl_set *set)
800 int l, m;
801 int w;
802 int added;
803 isl_basic_map *bmap = info->bmap;
804 unsigned len = 1 + isl_basic_map_total_dim(bmap);
806 w = wraps->mat->n_row;
808 for (l = 0; l < bmap->n_ineq; ++l) {
809 if (info->ineq[l] == STATUS_VALID ||
810 info->ineq[l] == STATUS_REDUNDANT)
811 continue;
812 if (isl_seq_is_neg(bound, bmap->ineq[l], len))
813 continue;
814 if (isl_seq_eq(bound, bmap->ineq[l], len))
815 continue;
816 if (isl_tab_is_redundant(info->tab, bmap->n_eq + l))
817 continue;
819 added = add_wrap(wraps, w, bound, bmap->ineq[l], len, set, 0);
820 if (added < 0)
821 return -1;
822 if (!added)
823 goto unbounded;
824 ++w;
826 for (l = 0; l < bmap->n_eq; ++l) {
827 if (isl_seq_is_neg(bound, bmap->eq[l], len))
828 continue;
829 if (isl_seq_eq(bound, bmap->eq[l], len))
830 continue;
832 for (m = 0; m < 2; ++m) {
833 if (info->eq[2 * l + m] == STATUS_VALID)
834 continue;
835 added = add_wrap(wraps, w, bound, bmap->eq[l], len,
836 set, !m);
837 if (added < 0)
838 return -1;
839 if (!added)
840 goto unbounded;
841 ++w;
845 wraps->mat->n_row = w;
846 return 0;
847 unbounded:
848 wraps->mat->n_row = 0;
849 return 0;
852 /* Check if the constraints in "wraps" from "first" until the last
853 * are all valid for the basic set represented by "tab".
854 * If not, wraps->n_row is set to zero.
856 static int check_wraps(__isl_keep isl_mat *wraps, int first,
857 struct isl_tab *tab)
859 int i;
861 for (i = first; i < wraps->n_row; ++i) {
862 enum isl_ineq_type type;
863 type = isl_tab_ineq_type(tab, wraps->row[i]);
864 if (type == isl_ineq_error)
865 return -1;
866 if (type == isl_ineq_redundant)
867 continue;
868 wraps->n_row = 0;
869 return 0;
872 return 0;
875 /* Return a set that corresponds to the non-redundant constraints
876 * (as recorded in tab) of bmap.
878 * It's important to remove the redundant constraints as some
879 * of the other constraints may have been modified after the
880 * constraints were marked redundant.
881 * In particular, a constraint may have been relaxed.
882 * Redundant constraints are ignored when a constraint is relaxed
883 * and should therefore continue to be ignored ever after.
884 * Otherwise, the relaxation might be thwarted by some of
885 * these constraints.
887 * Update the underlying set to ensure that the dimension doesn't change.
888 * Otherwise the integer divisions could get dropped if the tab
889 * turns out to be empty.
891 static __isl_give isl_set *set_from_updated_bmap(__isl_keep isl_basic_map *bmap,
892 struct isl_tab *tab)
894 isl_basic_set *bset;
896 bmap = isl_basic_map_copy(bmap);
897 bset = isl_basic_map_underlying_set(bmap);
898 bset = isl_basic_set_cow(bset);
899 bset = isl_basic_set_update_from_tab(bset, tab);
900 return isl_set_from_basic_set(bset);
903 /* Given a basic set i with a constraint k that is adjacent to
904 * basic set j, check if we can wrap
905 * both the facet corresponding to k and basic map j
906 * around their ridges to include the other set.
907 * If so, replace the pair of basic sets by their union.
909 * All constraints of i (except k) are assumed to be valid for j.
910 * This means that there is no real need to wrap the ridges of
911 * the faces of basic map i around basic map j but since we do,
912 * we have to check that the resulting wrapping constraints are valid for i.
913 * ____ _____
914 * / | / \
915 * / || / |
916 * \ || => \ |
917 * \ || \ |
918 * \___|| \____|
921 static enum isl_change can_wrap_in_facet(int i, int j, int k,
922 struct isl_coalesce_info *info)
924 enum isl_change change = isl_change_none;
925 struct isl_wraps wraps;
926 isl_ctx *ctx;
927 isl_mat *mat;
928 struct isl_set *set_i = NULL;
929 struct isl_set *set_j = NULL;
930 struct isl_vec *bound = NULL;
931 unsigned total = isl_basic_map_total_dim(info[i].bmap);
932 struct isl_tab_undo *snap;
933 int n;
935 set_i = set_from_updated_bmap(info[i].bmap, info[i].tab);
936 set_j = set_from_updated_bmap(info[j].bmap, info[j].tab);
937 ctx = isl_basic_map_get_ctx(info[i].bmap);
938 mat = isl_mat_alloc(ctx, 2 * (info[i].bmap->n_eq + info[j].bmap->n_eq) +
939 info[i].bmap->n_ineq + info[j].bmap->n_ineq,
940 1 + total);
941 wraps_init(&wraps, mat, info, i, j);
942 bound = isl_vec_alloc(ctx, 1 + total);
943 if (!set_i || !set_j || !wraps.mat || !bound)
944 goto error;
946 isl_seq_cpy(bound->el, info[i].bmap->ineq[k], 1 + total);
947 isl_int_add_ui(bound->el[0], bound->el[0], 1);
949 isl_seq_cpy(wraps.mat->row[0], bound->el, 1 + total);
950 wraps.mat->n_row = 1;
952 if (add_wraps(&wraps, &info[j], bound->el, set_i) < 0)
953 goto error;
954 if (!wraps.mat->n_row)
955 goto unbounded;
957 snap = isl_tab_snap(info[i].tab);
959 if (isl_tab_select_facet(info[i].tab, info[i].bmap->n_eq + k) < 0)
960 goto error;
961 if (isl_tab_detect_redundant(info[i].tab) < 0)
962 goto error;
964 isl_seq_neg(bound->el, info[i].bmap->ineq[k], 1 + total);
966 n = wraps.mat->n_row;
967 if (add_wraps(&wraps, &info[i], bound->el, set_j) < 0)
968 goto error;
970 if (isl_tab_rollback(info[i].tab, snap) < 0)
971 goto error;
972 if (check_wraps(wraps.mat, n, info[i].tab) < 0)
973 goto error;
974 if (!wraps.mat->n_row)
975 goto unbounded;
977 change = fuse(i, j, info, wraps.mat, 0);
979 unbounded:
980 wraps_free(&wraps);
982 isl_set_free(set_i);
983 isl_set_free(set_j);
985 isl_vec_free(bound);
987 return change;
988 error:
989 wraps_free(&wraps);
990 isl_vec_free(bound);
991 isl_set_free(set_i);
992 isl_set_free(set_j);
993 return isl_change_error;
996 /* Given a pair of basic maps i and j such that j sticks out
997 * of i at n cut constraints, each time by at most one,
998 * try to compute wrapping constraints and replace the two
999 * basic maps by a single basic map.
1000 * The other constraints of i are assumed to be valid for j.
1002 * For each cut constraint t(x) >= 0 of i, we add the relaxed version
1003 * t(x) + 1 >= 0, along with wrapping constraints for all constraints
1004 * of basic map j that bound the part of basic map j that sticks out
1005 * of the cut constraint.
1006 * In particular, we first intersect basic map j with t(x) + 1 = 0.
1007 * If the result is empty, then t(x) >= 0 was actually a valid constraint
1008 * (with respect to the integer points), so we add t(x) >= 0 instead.
1009 * Otherwise, we wrap the constraints of basic map j that are not
1010 * redundant in this intersection and that are not already valid
1011 * for basic map i over basic map i.
1012 * Note that it is sufficient to wrap the constraints to include
1013 * basic map i, because we will only wrap the constraints that do
1014 * not include basic map i already. The wrapped constraint will
1015 * therefore be more relaxed compared to the original constraint.
1016 * Since the original constraint is valid for basic map j, so is
1017 * the wrapped constraint.
1019 * If any wrapping fails, i.e., if we cannot wrap to touch
1020 * the union, then we give up.
1021 * Otherwise, the pair of basic maps is replaced by their union.
1023 static enum isl_change wrap_in_facets(int i, int j, int *cuts, int n,
1024 struct isl_coalesce_info *info)
1026 enum isl_change change = isl_change_none;
1027 struct isl_wraps wraps;
1028 isl_ctx *ctx;
1029 isl_mat *mat;
1030 isl_set *set_i = NULL;
1031 unsigned total = isl_basic_map_total_dim(info[i].bmap);
1032 int max_wrap;
1033 int k, w;
1034 struct isl_tab_undo *snap;
1036 if (isl_tab_extend_cons(info[j].tab, 1) < 0)
1037 goto error;
1039 max_wrap = 1 + 2 * info[j].bmap->n_eq + info[j].bmap->n_ineq;
1040 max_wrap *= n;
1042 set_i = set_from_updated_bmap(info[i].bmap, info[i].tab);
1043 ctx = isl_basic_map_get_ctx(info[i].bmap);
1044 mat = isl_mat_alloc(ctx, max_wrap, 1 + total);
1045 wraps_init(&wraps, mat, info, i, j);
1046 if (!set_i || !wraps.mat)
1047 goto error;
1049 snap = isl_tab_snap(info[j].tab);
1051 wraps.mat->n_row = 0;
1053 for (k = 0; k < n; ++k) {
1054 w = wraps.mat->n_row++;
1055 isl_seq_cpy(wraps.mat->row[w],
1056 info[i].bmap->ineq[cuts[k]], 1 + total);
1057 isl_int_add_ui(wraps.mat->row[w][0], wraps.mat->row[w][0], 1);
1058 if (isl_tab_add_eq(info[j].tab, wraps.mat->row[w]) < 0)
1059 goto error;
1060 if (isl_tab_detect_redundant(info[j].tab) < 0)
1061 goto error;
1063 if (info[j].tab->empty)
1064 isl_int_sub_ui(wraps.mat->row[w][0],
1065 wraps.mat->row[w][0], 1);
1066 else if (add_wraps(&wraps, &info[j],
1067 wraps.mat->row[w], set_i) < 0)
1068 goto error;
1070 if (isl_tab_rollback(info[j].tab, snap) < 0)
1071 goto error;
1073 if (!wraps.mat->n_row)
1074 break;
1077 if (k == n)
1078 change = fuse(i, j, info, wraps.mat, 0);
1080 wraps_free(&wraps);
1081 isl_set_free(set_i);
1083 return change;
1084 error:
1085 wraps_free(&wraps);
1086 isl_set_free(set_i);
1087 return isl_change_error;
1090 /* Given two basic sets i and j such that i has no cut equalities,
1091 * check if relaxing all the cut inequalities of i by one turns
1092 * them into valid constraint for j and check if we can wrap in
1093 * the bits that are sticking out.
1094 * If so, replace the pair by their union.
1096 * We first check if all relaxed cut inequalities of i are valid for j
1097 * and then try to wrap in the intersections of the relaxed cut inequalities
1098 * with j.
1100 * During this wrapping, we consider the points of j that lie at a distance
1101 * of exactly 1 from i. In particular, we ignore the points that lie in
1102 * between this lower-dimensional space and the basic map i.
1103 * We can therefore only apply this to integer maps.
1104 * ____ _____
1105 * / ___|_ / \
1106 * / | | / |
1107 * \ | | => \ |
1108 * \|____| \ |
1109 * \___| \____/
1111 * _____ ______
1112 * | ____|_ | \
1113 * | | | | |
1114 * | | | => | |
1115 * |_| | | |
1116 * |_____| \______|
1118 * _______
1119 * | |
1120 * | |\ |
1121 * | | \ |
1122 * | | \ |
1123 * | | \|
1124 * | | \
1125 * | |_____\
1126 * | |
1127 * |_______|
1129 * Wrapping can fail if the result of wrapping one of the facets
1130 * around its edges does not produce any new facet constraint.
1131 * In particular, this happens when we try to wrap in unbounded sets.
1133 * _______________________________________________________________________
1135 * | ___
1136 * | | |
1137 * |_| |_________________________________________________________________
1138 * |___|
1140 * The following is not an acceptable result of coalescing the above two
1141 * sets as it includes extra integer points.
1142 * _______________________________________________________________________
1144 * |
1145 * |
1147 * \______________________________________________________________________
1149 static enum isl_change can_wrap_in_set(int i, int j,
1150 struct isl_coalesce_info *info)
1152 enum isl_change change = isl_change_none;
1153 int k, m;
1154 int n;
1155 int *cuts = NULL;
1156 isl_ctx *ctx;
1158 if (ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_RATIONAL) ||
1159 ISL_F_ISSET(info[j].bmap, ISL_BASIC_MAP_RATIONAL))
1160 return isl_change_none;
1162 n = count(info[i].ineq, info[i].bmap->n_ineq, STATUS_CUT);
1163 if (n == 0)
1164 return isl_change_none;
1166 ctx = isl_basic_map_get_ctx(info[i].bmap);
1167 cuts = isl_alloc_array(ctx, int, n);
1168 if (!cuts)
1169 return isl_change_error;
1171 for (k = 0, m = 0; m < n; ++k) {
1172 enum isl_ineq_type type;
1174 if (info[i].ineq[k] != STATUS_CUT)
1175 continue;
1177 isl_int_add_ui(info[i].bmap->ineq[k][0],
1178 info[i].bmap->ineq[k][0], 1);
1179 type = isl_tab_ineq_type(info[j].tab, info[i].bmap->ineq[k]);
1180 isl_int_sub_ui(info[i].bmap->ineq[k][0],
1181 info[i].bmap->ineq[k][0], 1);
1182 if (type == isl_ineq_error)
1183 goto error;
1184 if (type != isl_ineq_redundant)
1185 break;
1186 cuts[m] = k;
1187 ++m;
1190 if (m == n)
1191 change = wrap_in_facets(i, j, cuts, n, info);
1193 free(cuts);
1195 return change;
1196 error:
1197 free(cuts);
1198 return isl_change_error;
1201 /* Check if either i or j has only cut inequalities that can
1202 * be used to wrap in (a facet of) the other basic set.
1203 * if so, replace the pair by their union.
1205 static enum isl_change check_wrap(int i, int j, struct isl_coalesce_info *info)
1207 enum isl_change change = isl_change_none;
1209 if (!any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_CUT))
1210 change = can_wrap_in_set(i, j, info);
1211 if (change != isl_change_none)
1212 return change;
1214 if (!any(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_CUT))
1215 change = can_wrap_in_set(j, i, info);
1216 return change;
1219 /* At least one of the basic maps has an equality that is adjacent
1220 * to inequality. Make sure that only one of the basic maps has
1221 * such an equality and that the other basic map has exactly one
1222 * inequality adjacent to an equality.
1223 * We call the basic map that has the inequality "i" and the basic
1224 * map that has the equality "j".
1225 * If "i" has any "cut" (in)equality, then relaxing the inequality
1226 * by one would not result in a basic map that contains the other
1227 * basic map.
1229 static enum isl_change check_adj_eq(int i, int j,
1230 struct isl_coalesce_info *info)
1232 enum isl_change change = isl_change_none;
1233 int k;
1235 if (any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_ADJ_INEQ) &&
1236 any(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_ADJ_INEQ))
1237 /* ADJ EQ TOO MANY */
1238 return isl_change_none;
1240 if (any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_ADJ_INEQ))
1241 return check_adj_eq(j, i, info);
1243 /* j has an equality adjacent to an inequality in i */
1245 if (any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_CUT))
1246 return isl_change_none;
1247 if (any(info[i].ineq, info[i].bmap->n_ineq, STATUS_CUT))
1248 /* ADJ EQ CUT */
1249 return isl_change_none;
1250 if (count(info[i].ineq, info[i].bmap->n_ineq, STATUS_ADJ_EQ) != 1 ||
1251 any(info[j].ineq, info[j].bmap->n_ineq, STATUS_ADJ_EQ) ||
1252 any(info[i].ineq, info[i].bmap->n_ineq, STATUS_ADJ_INEQ) ||
1253 any(info[j].ineq, info[j].bmap->n_ineq, STATUS_ADJ_INEQ))
1254 /* ADJ EQ TOO MANY */
1255 return isl_change_none;
1257 for (k = 0; k < info[i].bmap->n_ineq; ++k)
1258 if (info[i].ineq[k] == STATUS_ADJ_EQ)
1259 break;
1261 change = is_adj_eq_extension(i, j, k, info);
1262 if (change != isl_change_none)
1263 return change;
1265 if (count(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_ADJ_INEQ) != 1)
1266 return isl_change_none;
1268 change = can_wrap_in_facet(i, j, k, info);
1270 return change;
1273 /* The two basic maps lie on adjacent hyperplanes. In particular,
1274 * basic map "i" has an equality that lies parallel to basic map "j".
1275 * Check if we can wrap the facets around the parallel hyperplanes
1276 * to include the other set.
1278 * We perform basically the same operations as can_wrap_in_facet,
1279 * except that we don't need to select a facet of one of the sets.
1281 * \\ \\
1282 * \\ => \\
1283 * \ \|
1285 * If there is more than one equality of "i" adjacent to an equality of "j",
1286 * then the result will satisfy one or more equalities that are a linear
1287 * combination of these equalities. These will be encoded as pairs
1288 * of inequalities in the wrapping constraints and need to be made
1289 * explicit.
1291 static enum isl_change check_eq_adj_eq(int i, int j,
1292 struct isl_coalesce_info *info)
1294 int k;
1295 enum isl_change change = isl_change_none;
1296 int detect_equalities = 0;
1297 struct isl_wraps wraps;
1298 isl_ctx *ctx;
1299 isl_mat *mat;
1300 struct isl_set *set_i = NULL;
1301 struct isl_set *set_j = NULL;
1302 struct isl_vec *bound = NULL;
1303 unsigned total = isl_basic_map_total_dim(info[i].bmap);
1305 if (count(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_ADJ_EQ) != 1)
1306 detect_equalities = 1;
1308 for (k = 0; k < 2 * info[i].bmap->n_eq ; ++k)
1309 if (info[i].eq[k] == STATUS_ADJ_EQ)
1310 break;
1312 set_i = set_from_updated_bmap(info[i].bmap, info[i].tab);
1313 set_j = set_from_updated_bmap(info[j].bmap, info[j].tab);
1314 ctx = isl_basic_map_get_ctx(info[i].bmap);
1315 mat = isl_mat_alloc(ctx, 2 * (info[i].bmap->n_eq + info[j].bmap->n_eq) +
1316 info[i].bmap->n_ineq + info[j].bmap->n_ineq,
1317 1 + total);
1318 wraps_init(&wraps, mat, info, i, j);
1319 bound = isl_vec_alloc(ctx, 1 + total);
1320 if (!set_i || !set_j || !wraps.mat || !bound)
1321 goto error;
1323 if (k % 2 == 0)
1324 isl_seq_neg(bound->el, info[i].bmap->eq[k / 2], 1 + total);
1325 else
1326 isl_seq_cpy(bound->el, info[i].bmap->eq[k / 2], 1 + total);
1327 isl_int_add_ui(bound->el[0], bound->el[0], 1);
1329 isl_seq_cpy(wraps.mat->row[0], bound->el, 1 + total);
1330 wraps.mat->n_row = 1;
1332 if (add_wraps(&wraps, &info[j], bound->el, set_i) < 0)
1333 goto error;
1334 if (!wraps.mat->n_row)
1335 goto unbounded;
1337 isl_int_sub_ui(bound->el[0], bound->el[0], 1);
1338 isl_seq_neg(bound->el, bound->el, 1 + total);
1340 isl_seq_cpy(wraps.mat->row[wraps.mat->n_row], bound->el, 1 + total);
1341 wraps.mat->n_row++;
1343 if (add_wraps(&wraps, &info[i], bound->el, set_j) < 0)
1344 goto error;
1345 if (!wraps.mat->n_row)
1346 goto unbounded;
1348 change = fuse(i, j, info, wraps.mat, detect_equalities);
1350 if (0) {
1351 error: change = isl_change_error;
1353 unbounded:
1355 wraps_free(&wraps);
1356 isl_set_free(set_i);
1357 isl_set_free(set_j);
1358 isl_vec_free(bound);
1360 return change;
1363 /* Check if the union of the given pair of basic maps
1364 * can be represented by a single basic map.
1365 * If so, replace the pair by the single basic map and return
1366 * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
1367 * Otherwise, return isl_change_none.
1368 * The two basic maps are assumed to live in the same local space.
1370 * We first check the effect of each constraint of one basic map
1371 * on the other basic map.
1372 * The constraint may be
1373 * redundant the constraint is redundant in its own
1374 * basic map and should be ignore and removed
1375 * in the end
1376 * valid all (integer) points of the other basic map
1377 * satisfy the constraint
1378 * separate no (integer) point of the other basic map
1379 * satisfies the constraint
1380 * cut some but not all points of the other basic map
1381 * satisfy the constraint
1382 * adj_eq the given constraint is adjacent (on the outside)
1383 * to an equality of the other basic map
1384 * adj_ineq the given constraint is adjacent (on the outside)
1385 * to an inequality of the other basic map
1387 * We consider seven cases in which we can replace the pair by a single
1388 * basic map. We ignore all "redundant" constraints.
1390 * 1. all constraints of one basic map are valid
1391 * => the other basic map is a subset and can be removed
1393 * 2. all constraints of both basic maps are either "valid" or "cut"
1394 * and the facets corresponding to the "cut" constraints
1395 * of one of the basic maps lies entirely inside the other basic map
1396 * => the pair can be replaced by a basic map consisting
1397 * of the valid constraints in both basic maps
1399 * 3. there is a single pair of adjacent inequalities
1400 * (all other constraints are "valid")
1401 * => the pair can be replaced by a basic map consisting
1402 * of the valid constraints in both basic maps
1404 * 4. one basic map has a single adjacent inequality, while the other
1405 * constraints are "valid". The other basic map has some
1406 * "cut" constraints, but replacing the adjacent inequality by
1407 * its opposite and adding the valid constraints of the other
1408 * basic map results in a subset of the other basic map
1409 * => the pair can be replaced by a basic map consisting
1410 * of the valid constraints in both basic maps
1412 * 5. there is a single adjacent pair of an inequality and an equality,
1413 * the other constraints of the basic map containing the inequality are
1414 * "valid". Moreover, if the inequality the basic map is relaxed
1415 * and then turned into an equality, then resulting facet lies
1416 * entirely inside the other basic map
1417 * => the pair can be replaced by the basic map containing
1418 * the inequality, with the inequality relaxed.
1420 * 6. there is a single adjacent pair of an inequality and an equality,
1421 * the other constraints of the basic map containing the inequality are
1422 * "valid". Moreover, the facets corresponding to both
1423 * the inequality and the equality can be wrapped around their
1424 * ridges to include the other basic map
1425 * => the pair can be replaced by a basic map consisting
1426 * of the valid constraints in both basic maps together
1427 * with all wrapping constraints
1429 * 7. one of the basic maps extends beyond the other by at most one.
1430 * Moreover, the facets corresponding to the cut constraints and
1431 * the pieces of the other basic map at offset one from these cut
1432 * constraints can be wrapped around their ridges to include
1433 * the union of the two basic maps
1434 * => the pair can be replaced by a basic map consisting
1435 * of the valid constraints in both basic maps together
1436 * with all wrapping constraints
1438 * 8. the two basic maps live in adjacent hyperplanes. In principle
1439 * such sets can always be combined through wrapping, but we impose
1440 * that there is only one such pair, to avoid overeager coalescing.
1442 * Throughout the computation, we maintain a collection of tableaus
1443 * corresponding to the basic maps. When the basic maps are dropped
1444 * or combined, the tableaus are modified accordingly.
1446 static enum isl_change coalesce_local_pair(int i, int j,
1447 struct isl_coalesce_info *info)
1449 enum isl_change change = isl_change_none;
1451 info[i].eq = info[i].ineq = NULL;
1452 info[j].eq = info[j].ineq = NULL;
1454 info[i].eq = eq_status_in(info[i].bmap, info[j].tab);
1455 if (info[i].bmap->n_eq && !info[i].eq)
1456 goto error;
1457 if (any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_ERROR))
1458 goto error;
1459 if (any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_SEPARATE))
1460 goto done;
1462 info[j].eq = eq_status_in(info[j].bmap, info[i].tab);
1463 if (info[j].bmap->n_eq && !info[j].eq)
1464 goto error;
1465 if (any(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_ERROR))
1466 goto error;
1467 if (any(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_SEPARATE))
1468 goto done;
1470 info[i].ineq = ineq_status_in(info[i].bmap, info[i].tab, info[j].tab);
1471 if (info[i].bmap->n_ineq && !info[i].ineq)
1472 goto error;
1473 if (any(info[i].ineq, info[i].bmap->n_ineq, STATUS_ERROR))
1474 goto error;
1475 if (any(info[i].ineq, info[i].bmap->n_ineq, STATUS_SEPARATE))
1476 goto done;
1478 info[j].ineq = ineq_status_in(info[j].bmap, info[j].tab, info[i].tab);
1479 if (info[j].bmap->n_ineq && !info[j].ineq)
1480 goto error;
1481 if (any(info[j].ineq, info[j].bmap->n_ineq, STATUS_ERROR))
1482 goto error;
1483 if (any(info[j].ineq, info[j].bmap->n_ineq, STATUS_SEPARATE))
1484 goto done;
1486 if (all(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_VALID) &&
1487 all(info[i].ineq, info[i].bmap->n_ineq, STATUS_VALID)) {
1488 drop(&info[j]);
1489 change = isl_change_drop_second;
1490 } else if (all(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_VALID) &&
1491 all(info[j].ineq, info[j].bmap->n_ineq, STATUS_VALID)) {
1492 drop(&info[i]);
1493 change = isl_change_drop_first;
1494 } else if (any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_ADJ_EQ)) {
1495 change = check_eq_adj_eq(i, j, info);
1496 } else if (any(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_ADJ_EQ)) {
1497 change = check_eq_adj_eq(j, i, info);
1498 } else if (any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_ADJ_INEQ) ||
1499 any(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_ADJ_INEQ)) {
1500 change = check_adj_eq(i, j, info);
1501 } else if (any(info[i].ineq, info[i].bmap->n_ineq, STATUS_ADJ_EQ) ||
1502 any(info[j].ineq, info[j].bmap->n_ineq, STATUS_ADJ_EQ)) {
1503 /* Can't happen */
1504 /* BAD ADJ INEQ */
1505 } else if (any(info[i].ineq, info[i].bmap->n_ineq, STATUS_ADJ_INEQ) ||
1506 any(info[j].ineq, info[j].bmap->n_ineq, STATUS_ADJ_INEQ)) {
1507 change = check_adj_ineq(i, j, info);
1508 } else {
1509 if (!any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_CUT) &&
1510 !any(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_CUT))
1511 change = check_facets(i, j, info);
1512 if (change == isl_change_none)
1513 change = check_wrap(i, j, info);
1516 done:
1517 free(info[i].eq);
1518 free(info[j].eq);
1519 free(info[i].ineq);
1520 free(info[j].ineq);
1521 return change;
1522 error:
1523 free(info[i].eq);
1524 free(info[j].eq);
1525 free(info[i].ineq);
1526 free(info[j].ineq);
1527 return isl_change_error;
1530 /* Do the two basic maps live in the same local space, i.e.,
1531 * do they have the same (known) divs?
1532 * If either basic map has any unknown divs, then we can only assume
1533 * that they do not live in the same local space.
1535 static int same_divs(__isl_keep isl_basic_map *bmap1,
1536 __isl_keep isl_basic_map *bmap2)
1538 int i;
1539 int known;
1540 int total;
1542 if (!bmap1 || !bmap2)
1543 return -1;
1544 if (bmap1->n_div != bmap2->n_div)
1545 return 0;
1547 if (bmap1->n_div == 0)
1548 return 1;
1550 known = isl_basic_map_divs_known(bmap1);
1551 if (known < 0 || !known)
1552 return known;
1553 known = isl_basic_map_divs_known(bmap2);
1554 if (known < 0 || !known)
1555 return known;
1557 total = isl_basic_map_total_dim(bmap1);
1558 for (i = 0; i < bmap1->n_div; ++i)
1559 if (!isl_seq_eq(bmap1->div[i], bmap2->div[i], 2 + total))
1560 return 0;
1562 return 1;
1565 /* Does "bmap" contain the basic map represented by the tableau "tab"
1566 * after expanding the divs of "bmap" to match those of "tab"?
1567 * The expansion is performed using the divs "div" and expansion "exp"
1568 * computed by the caller.
1569 * Then we check if all constraints of the expanded "bmap" are valid for "tab".
1571 static int contains_with_expanded_divs(__isl_keep isl_basic_map *bmap,
1572 struct isl_tab *tab, __isl_keep isl_mat *div, int *exp)
1574 int superset = 0;
1575 int *eq_i = NULL;
1576 int *ineq_i = NULL;
1578 bmap = isl_basic_map_copy(bmap);
1579 bmap = isl_basic_set_expand_divs(bmap, isl_mat_copy(div), exp);
1581 if (!bmap)
1582 goto error;
1584 eq_i = eq_status_in(bmap, tab);
1585 if (bmap->n_eq && !eq_i)
1586 goto error;
1587 if (any(eq_i, 2 * bmap->n_eq, STATUS_ERROR))
1588 goto error;
1589 if (any(eq_i, 2 * bmap->n_eq, STATUS_SEPARATE))
1590 goto done;
1592 ineq_i = ineq_status_in(bmap, NULL, tab);
1593 if (bmap->n_ineq && !ineq_i)
1594 goto error;
1595 if (any(ineq_i, bmap->n_ineq, STATUS_ERROR))
1596 goto error;
1597 if (any(ineq_i, bmap->n_ineq, STATUS_SEPARATE))
1598 goto done;
1600 if (all(eq_i, 2 * bmap->n_eq, STATUS_VALID) &&
1601 all(ineq_i, bmap->n_ineq, STATUS_VALID))
1602 superset = 1;
1604 done:
1605 isl_basic_map_free(bmap);
1606 free(eq_i);
1607 free(ineq_i);
1608 return superset;
1609 error:
1610 isl_basic_map_free(bmap);
1611 free(eq_i);
1612 free(ineq_i);
1613 return -1;
1616 /* Does "bmap_i" contain the basic map represented by "info_j"
1617 * after aligning the divs of "bmap_i" to those of "info_j".
1618 * Note that this can only succeed if the number of divs of "bmap_i"
1619 * is smaller than (or equal to) the number of divs of "info_j".
1621 * We first check if the divs of "bmap_i" are all known and form a subset
1622 * of those of "bmap_j". If so, we pass control over to
1623 * contains_with_expanded_divs.
1625 static int contains_after_aligning_divs(__isl_keep isl_basic_map *bmap_i,
1626 struct isl_coalesce_info *info_j)
1628 int known;
1629 isl_mat *div_i, *div_j, *div;
1630 int *exp1 = NULL;
1631 int *exp2 = NULL;
1632 isl_ctx *ctx;
1633 int subset;
1635 known = isl_basic_map_divs_known(bmap_i);
1636 if (known < 0 || !known)
1637 return known;
1639 ctx = isl_basic_map_get_ctx(bmap_i);
1641 div_i = isl_basic_map_get_divs(bmap_i);
1642 div_j = isl_basic_map_get_divs(info_j->bmap);
1644 if (!div_i || !div_j)
1645 goto error;
1647 exp1 = isl_alloc_array(ctx, int, div_i->n_row);
1648 exp2 = isl_alloc_array(ctx, int, div_j->n_row);
1649 if ((div_i->n_row && !exp1) || (div_j->n_row && !exp2))
1650 goto error;
1652 div = isl_merge_divs(div_i, div_j, exp1, exp2);
1653 if (!div)
1654 goto error;
1656 if (div->n_row == div_j->n_row)
1657 subset = contains_with_expanded_divs(bmap_i,
1658 info_j->tab, div, exp1);
1659 else
1660 subset = 0;
1662 isl_mat_free(div);
1664 isl_mat_free(div_i);
1665 isl_mat_free(div_j);
1667 free(exp2);
1668 free(exp1);
1670 return subset;
1671 error:
1672 isl_mat_free(div_i);
1673 isl_mat_free(div_j);
1674 free(exp1);
1675 free(exp2);
1676 return -1;
1679 /* Check if the basic map "j" is a subset of basic map "i",
1680 * if "i" has fewer divs that "j".
1681 * If so, remove basic map "j".
1683 * If the two basic maps have the same number of divs, then
1684 * they must necessarily be different. Otherwise, we would have
1685 * called coalesce_local_pair. We therefore don't try anything
1686 * in this case.
1688 static int coalesced_subset(int i, int j, struct isl_coalesce_info *info)
1690 int superset;
1692 if (info[i].bmap->n_div >= info[j].bmap->n_div)
1693 return 0;
1695 superset = contains_after_aligning_divs(info[i].bmap, &info[j]);
1696 if (superset < 0)
1697 return -1;
1698 if (superset)
1699 drop(&info[j]);
1701 return superset;
1704 /* Check if one of the basic maps is a subset of the other and, if so,
1705 * drop the subset.
1706 * Note that we only perform any test if the number of divs is different
1707 * in the two basic maps. In case the number of divs is the same,
1708 * we have already established that the divs are different
1709 * in the two basic maps.
1710 * In particular, if the number of divs of basic map i is smaller than
1711 * the number of divs of basic map j, then we check if j is a subset of i
1712 * and vice versa.
1714 static enum isl_change check_coalesce_subset(int i, int j,
1715 struct isl_coalesce_info *info)
1717 int changed;
1719 changed = coalesced_subset(i, j, info);
1720 if (changed < 0 || changed)
1721 return changed < 0 ? isl_change_error : isl_change_drop_second;
1723 changed = coalesced_subset(j, i, info);
1724 if (changed < 0 || changed)
1725 return changed < 0 ? isl_change_error : isl_change_drop_first;
1727 return isl_change_none;
1730 /* Check if the union of the given pair of basic maps
1731 * can be represented by a single basic map.
1732 * If so, replace the pair by the single basic map and return
1733 * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
1734 * Otherwise, return isl_change_none.
1736 * We first check if the two basic maps live in the same local space.
1737 * If so, we do the complete check. Otherwise, we check if one is
1738 * an obvious subset of the other.
1740 static enum isl_change coalesce_pair(int i, int j,
1741 struct isl_coalesce_info *info)
1743 int same;
1745 same = same_divs(info[i].bmap, info[j].bmap);
1746 if (same < 0)
1747 return isl_change_error;
1748 if (same)
1749 return coalesce_local_pair(i, j, info);
1751 return check_coalesce_subset(i, j, info);
1754 /* Pairwise coalesce the basic maps described by the "n" elements of "info",
1755 * skipping basic maps that have been removed (either before or within
1756 * this function).
1758 * For each basic map i, we check if it can be coalesced with respect
1759 * to any previously considered basic map j.
1760 * If i gets dropped (because it was a subset of some j), then
1761 * we can move on to the next basic map.
1762 * If j gets dropped, we need to continue checking against the other
1763 * previously considered basic maps.
1764 * If the two basic maps got fused, then we recheck the fused basic map
1765 * against the previously considered basic maps.
1767 static int coalesce(isl_ctx *ctx, int n, struct isl_coalesce_info *info)
1769 int i, j;
1771 for (i = n - 2; i >= 0; --i) {
1772 if (info[i].removed)
1773 continue;
1774 for (j = i + 1; j < n; ++j) {
1775 enum isl_change changed;
1777 if (info[j].removed)
1778 continue;
1779 if (info[i].removed)
1780 isl_die(ctx, isl_error_internal,
1781 "basic map unexpectedly removed",
1782 return -1);
1783 changed = coalesce_pair(i, j, info);
1784 switch (changed) {
1785 case isl_change_error:
1786 return -1;
1787 case isl_change_none:
1788 case isl_change_drop_second:
1789 continue;
1790 case isl_change_drop_first:
1791 j = n;
1792 break;
1793 case isl_change_fuse:
1794 j = i;
1795 break;
1800 return 0;
1803 /* Update the basic maps in "map" based on the information in "info".
1804 * In particular, remove the basic maps that have been marked removed and
1805 * update the others based on the information in the corresponding tableau.
1806 * Since we detected implicit equalities without calling
1807 * isl_basic_map_gauss, we need to do it now.
1809 static __isl_give isl_map *update_basic_maps(__isl_take isl_map *map,
1810 int n, struct isl_coalesce_info *info)
1812 int i;
1814 if (!map)
1815 return NULL;
1817 for (i = n - 1; i >= 0; --i) {
1818 if (info[i].removed) {
1819 isl_basic_map_free(map->p[i]);
1820 if (i != map->n - 1)
1821 map->p[i] = map->p[map->n - 1];
1822 map->n--;
1823 continue;
1826 info[i].bmap = isl_basic_map_update_from_tab(info[i].bmap,
1827 info[i].tab);
1828 info[i].bmap = isl_basic_map_gauss(info[i].bmap, NULL);
1829 info[i].bmap = isl_basic_map_finalize(info[i].bmap);
1830 if (!info[i].bmap)
1831 return isl_map_free(map);
1832 ISL_F_SET(info[i].bmap, ISL_BASIC_MAP_NO_IMPLICIT);
1833 ISL_F_SET(info[i].bmap, ISL_BASIC_MAP_NO_REDUNDANT);
1834 isl_basic_map_free(map->p[i]);
1835 map->p[i] = info[i].bmap;
1836 info[i].bmap = NULL;
1839 return map;
1842 /* For each pair of basic maps in the map, check if the union of the two
1843 * can be represented by a single basic map.
1844 * If so, replace the pair by the single basic map and start over.
1846 * Since we are constructing the tableaus of the basic maps anyway,
1847 * we exploit them to detect implicit equalities and redundant constraints.
1848 * This also helps the coalescing as it can ignore the redundant constraints.
1849 * In order to avoid confusion, we make all implicit equalities explicit
1850 * in the basic maps. We don't call isl_basic_map_gauss, though,
1851 * as that may affect the number of constraints.
1852 * This means that we have to call isl_basic_map_gauss at the end
1853 * of the computation (in update_basic_maps) to ensure that
1854 * the basic maps are not left in an unexpected state.
1856 struct isl_map *isl_map_coalesce(struct isl_map *map)
1858 int i;
1859 unsigned n;
1860 isl_ctx *ctx;
1861 struct isl_coalesce_info *info = NULL;
1863 map = isl_map_remove_empty_parts(map);
1864 if (!map)
1865 return NULL;
1867 if (map->n <= 1)
1868 return map;
1870 ctx = isl_map_get_ctx(map);
1871 map = isl_map_sort_divs(map);
1872 map = isl_map_cow(map);
1874 if (!map)
1875 return NULL;
1877 n = map->n;
1879 info = isl_calloc_array(map->ctx, struct isl_coalesce_info, n);
1880 if (!info)
1881 goto error;
1883 for (i = 0; i < map->n; ++i) {
1884 info[i].bmap = isl_basic_map_copy(map->p[i]);
1885 info[i].tab = isl_tab_from_basic_map(info[i].bmap, 0);
1886 if (!info[i].tab)
1887 goto error;
1888 if (!ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_NO_IMPLICIT))
1889 if (isl_tab_detect_implicit_equalities(info[i].tab) < 0)
1890 goto error;
1891 info[i].bmap = isl_tab_make_equalities_explicit(info[i].tab,
1892 info[i].bmap);
1893 if (!info[i].bmap)
1894 goto error;
1895 if (!ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_NO_REDUNDANT))
1896 if (isl_tab_detect_redundant(info[i].tab) < 0)
1897 goto error;
1899 for (i = map->n - 1; i >= 0; --i)
1900 if (info[i].tab->empty)
1901 drop(&info[i]);
1903 if (coalesce(ctx, n, info) < 0)
1904 goto error;
1906 map = update_basic_maps(map, n, info);
1908 clear_coalesce_info(n, info);
1910 return map;
1911 error:
1912 clear_coalesce_info(n, info);
1913 isl_map_free(map);
1914 return NULL;
1917 /* For each pair of basic sets in the set, check if the union of the two
1918 * can be represented by a single basic set.
1919 * If so, replace the pair by the single basic set and start over.
1921 struct isl_set *isl_set_coalesce(struct isl_set *set)
1923 return (struct isl_set *)isl_map_coalesce((struct isl_map *)set);