isl_ast_build_expr.c: extract_term_and_mod: return isl_stat
[isl.git] / isl_ast_codegen.c
blobb3c2541f1a7b9963595d07ae6a94c6215eab551d
1 /*
2 * Copyright 2012-2014 Ecole Normale Superieure
3 * Copyright 2014 INRIA Rocquencourt
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege,
8 * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
9 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
10 * B.P. 105 - 78153 Le Chesnay, France
13 #include <limits.h>
14 #include <isl/id.h>
15 #include <isl/val.h>
16 #include <isl/space.h>
17 #include <isl/aff.h>
18 #include <isl/constraint.h>
19 #include <isl/set.h>
20 #include <isl/ilp.h>
21 #include <isl/union_set.h>
22 #include <isl/union_map.h>
23 #include <isl/schedule_node.h>
24 #include <isl/options.h>
25 #include <isl_sort.h>
26 #include <isl_tarjan.h>
27 #include <isl_ast_private.h>
28 #include <isl_ast_build_expr.h>
29 #include <isl_ast_build_private.h>
30 #include <isl_ast_graft_private.h>
32 /* Try and reduce the number of disjuncts in the representation of "set",
33 * without dropping explicit representations of local variables.
35 static __isl_give isl_set *isl_set_coalesce_preserve(__isl_take isl_set *set)
37 isl_ctx *ctx;
38 int save_preserve;
40 if (!set)
41 return NULL;
43 ctx = isl_set_get_ctx(set);
44 save_preserve = isl_options_get_coalesce_preserve_locals(ctx);
45 isl_options_set_coalesce_preserve_locals(ctx, 1);
46 set = isl_set_coalesce(set);
47 isl_options_set_coalesce_preserve_locals(ctx, save_preserve);
48 return set;
51 /* Data used in generate_domain.
53 * "build" is the input build.
54 * "list" collects the results.
56 struct isl_generate_domain_data {
57 isl_ast_build *build;
59 isl_ast_graft_list *list;
62 static __isl_give isl_ast_graft_list *generate_next_level(
63 __isl_take isl_union_map *executed,
64 __isl_take isl_ast_build *build);
65 static __isl_give isl_ast_graft_list *generate_code(
66 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build,
67 int internal);
69 /* Generate an AST for a single domain based on
70 * the (non single valued) inverse schedule "executed".
72 * We extend the schedule with the iteration domain
73 * and continue generating through a call to generate_code.
75 * In particular, if executed has the form
77 * S -> D
79 * then we continue generating code on
81 * [S -> D] -> D
83 * The extended inverse schedule is clearly single valued
84 * ensuring that the nested generate_code will not reach this function,
85 * but will instead create calls to all elements of D that need
86 * to be executed from the current schedule domain.
88 static isl_stat generate_non_single_valued(__isl_take isl_map *executed,
89 struct isl_generate_domain_data *data)
91 isl_map *identity;
92 isl_ast_build *build;
93 isl_ast_graft_list *list;
95 build = isl_ast_build_copy(data->build);
97 identity = isl_set_identity(isl_map_range(isl_map_copy(executed)));
98 executed = isl_map_domain_product(executed, identity);
99 build = isl_ast_build_set_single_valued(build, 1);
101 list = generate_code(isl_union_map_from_map(executed), build, 1);
103 data->list = isl_ast_graft_list_concat(data->list, list);
105 return isl_stat_ok;
108 /* Call the at_each_domain callback, if requested by the user,
109 * after recording the current inverse schedule in the build.
111 static __isl_give isl_ast_graft *at_each_domain(__isl_take isl_ast_graft *graft,
112 __isl_keep isl_map *executed, __isl_keep isl_ast_build *build)
114 if (!graft || !build)
115 return isl_ast_graft_free(graft);
116 if (!build->at_each_domain)
117 return graft;
119 build = isl_ast_build_copy(build);
120 build = isl_ast_build_set_executed(build,
121 isl_union_map_from_map(isl_map_copy(executed)));
122 if (!build)
123 return isl_ast_graft_free(graft);
125 graft->node = build->at_each_domain(graft->node,
126 build, build->at_each_domain_user);
127 isl_ast_build_free(build);
129 if (!graft->node)
130 graft = isl_ast_graft_free(graft);
132 return graft;
135 /* Generate a call expression for the single executed
136 * domain element "map" and put a guard around it based its (simplified)
137 * domain. "executed" is the original inverse schedule from which "map"
138 * has been derived. In particular, "map" is either identical to "executed"
139 * or it is the result of gisting "executed" with respect to the build domain.
140 * "executed" is only used if there is an at_each_domain callback.
142 * At this stage, any pending constraints in the build can no longer
143 * be simplified with respect to any enforced constraints since
144 * the call node does not have any enforced constraints.
145 * Since all pending constraints not covered by any enforced constraints
146 * will be added as a guard to the graft in create_node_scaled,
147 * even in the eliminated case, the pending constraints
148 * can be considered to have been generated by outer constructs.
150 * If the user has set an at_each_domain callback, it is called
151 * on the constructed call expression node.
153 static isl_stat add_domain(__isl_take isl_map *executed,
154 __isl_take isl_map *map, struct isl_generate_domain_data *data)
156 isl_ast_build *build;
157 isl_ast_graft *graft;
158 isl_ast_graft_list *list;
159 isl_set *guard, *pending;
161 build = isl_ast_build_copy(data->build);
162 pending = isl_ast_build_get_pending(build);
163 build = isl_ast_build_replace_pending_by_guard(build, pending);
165 guard = isl_map_domain(isl_map_copy(map));
166 guard = isl_set_compute_divs(guard);
167 guard = isl_set_coalesce_preserve(guard);
168 guard = isl_set_gist(guard, isl_ast_build_get_generated(build));
169 guard = isl_ast_build_specialize(build, guard);
171 graft = isl_ast_graft_alloc_domain(map, build);
172 graft = at_each_domain(graft, executed, build);
173 isl_ast_build_free(build);
174 isl_map_free(executed);
175 graft = isl_ast_graft_add_guard(graft, guard, data->build);
177 list = isl_ast_graft_list_from_ast_graft(graft);
178 data->list = isl_ast_graft_list_concat(data->list, list);
180 return isl_stat_ok;
183 /* Generate an AST for a single domain based on
184 * the inverse schedule "executed" and add it to data->list.
186 * If there is more than one domain element associated to the current
187 * schedule "time", then we need to continue the generation process
188 * in generate_non_single_valued.
189 * Note that the inverse schedule being single-valued may depend
190 * on constraints that are only available in the original context
191 * domain specified by the user. We therefore first introduce
192 * some of the constraints of data->build->domain. In particular,
193 * we intersect with a single-disjunct approximation of this set.
194 * We perform this approximation to avoid further splitting up
195 * the executed relation, possibly introducing a disjunctive guard
196 * on the statement.
198 * On the other hand, we only perform the test after having taken the gist
199 * of the domain as the resulting map is the one from which the call
200 * expression is constructed. Using this map to construct the call
201 * expression usually yields simpler results in cases where the original
202 * map is not obviously single-valued.
203 * If the original map is obviously single-valued, then the gist
204 * operation is skipped.
206 * Because we perform the single-valuedness test on the gisted map,
207 * we may in rare cases fail to recognize that the inverse schedule
208 * is single-valued. This becomes problematic if this happens
209 * from the recursive call through generate_non_single_valued
210 * as we would then end up in an infinite recursion.
211 * We therefore check if we are inside a call to generate_non_single_valued
212 * and revert to the ungisted map if the gisted map turns out not to be
213 * single-valued.
215 * Otherwise, call add_domain to generate a call expression (with guard) and
216 * to call the at_each_domain callback, if any.
218 static isl_stat generate_domain(__isl_take isl_map *executed, void *user)
220 struct isl_generate_domain_data *data = user;
221 isl_set *domain;
222 isl_map *map = NULL;
223 int empty, sv;
225 domain = isl_ast_build_get_domain(data->build);
226 domain = isl_set_from_basic_set(isl_set_simple_hull(domain));
227 executed = isl_map_intersect_domain(executed, domain);
228 empty = isl_map_is_empty(executed);
229 if (empty < 0)
230 goto error;
231 if (empty) {
232 isl_map_free(executed);
233 return isl_stat_ok;
236 sv = isl_map_plain_is_single_valued(executed);
237 if (sv < 0)
238 goto error;
239 if (sv)
240 return add_domain(executed, isl_map_copy(executed), data);
242 executed = isl_map_coalesce(executed);
243 map = isl_map_copy(executed);
244 map = isl_ast_build_compute_gist_map_domain(data->build, map);
245 sv = isl_map_is_single_valued(map);
246 if (sv < 0)
247 goto error;
248 if (!sv) {
249 isl_map_free(map);
250 if (data->build->single_valued)
251 map = isl_map_copy(executed);
252 else
253 return generate_non_single_valued(executed, data);
256 return add_domain(executed, map, data);
257 error:
258 isl_map_free(map);
259 isl_map_free(executed);
260 return isl_stat_error;
263 /* Call build->create_leaf to a create "leaf" node in the AST,
264 * encapsulate the result in an isl_ast_graft and return the result
265 * as a 1-element list.
267 * Note that the node returned by the user may be an entire tree.
269 * Since the node itself cannot enforce any constraints, we turn
270 * all pending constraints into guards and add them to the resulting
271 * graft to ensure that they will be generated.
273 * Before we pass control to the user, we first clear some information
274 * from the build that is (presumbably) only meaningful
275 * for the current code generation.
276 * This includes the create_leaf callback itself, so we make a copy
277 * of the build first.
279 static __isl_give isl_ast_graft_list *call_create_leaf(
280 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
282 isl_set *guard;
283 isl_ast_node *node;
284 isl_ast_graft *graft;
285 isl_ast_build *user_build;
287 guard = isl_ast_build_get_pending(build);
288 user_build = isl_ast_build_copy(build);
289 user_build = isl_ast_build_replace_pending_by_guard(user_build,
290 isl_set_copy(guard));
291 user_build = isl_ast_build_set_executed(user_build, executed);
292 user_build = isl_ast_build_clear_local_info(user_build);
293 if (!user_build)
294 node = NULL;
295 else
296 node = build->create_leaf(user_build, build->create_leaf_user);
297 graft = isl_ast_graft_alloc(node, build);
298 graft = isl_ast_graft_add_guard(graft, guard, build);
299 isl_ast_build_free(build);
300 return isl_ast_graft_list_from_ast_graft(graft);
303 static __isl_give isl_ast_graft_list *build_ast_from_child(
304 __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
305 __isl_take isl_union_map *executed);
307 /* Generate an AST after having handled the complete schedule
308 * of this call to the code generator or the complete band
309 * if we are generating an AST from a schedule tree.
311 * If we are inside a band node, then move on to the child of the band.
313 * If the user has specified a create_leaf callback, control
314 * is passed to the user in call_create_leaf.
316 * Otherwise, we generate one or more calls for each individual
317 * domain in generate_domain.
319 static __isl_give isl_ast_graft_list *generate_inner_level(
320 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
322 isl_ctx *ctx;
323 struct isl_generate_domain_data data = { build };
325 if (!build || !executed)
326 goto error;
328 if (isl_ast_build_has_schedule_node(build)) {
329 isl_schedule_node *node;
330 node = isl_ast_build_get_schedule_node(build);
331 build = isl_ast_build_reset_schedule_node(build);
332 return build_ast_from_child(build, node, executed);
335 if (build->create_leaf)
336 return call_create_leaf(executed, build);
338 ctx = isl_union_map_get_ctx(executed);
339 data.list = isl_ast_graft_list_alloc(ctx, 0);
340 if (isl_union_map_foreach_map(executed, &generate_domain, &data) < 0)
341 data.list = isl_ast_graft_list_free(data.list);
343 if (0)
344 error: data.list = NULL;
345 isl_ast_build_free(build);
346 isl_union_map_free(executed);
347 return data.list;
350 /* Call the before_each_for callback, if requested by the user.
352 static __isl_give isl_ast_node *before_each_for(__isl_take isl_ast_node *node,
353 __isl_keep isl_ast_build *build)
355 isl_id *id;
357 if (!node || !build)
358 return isl_ast_node_free(node);
359 if (!build->before_each_for)
360 return node;
361 id = build->before_each_for(build, build->before_each_for_user);
362 node = isl_ast_node_set_annotation(node, id);
363 return node;
366 /* Call the after_each_for callback, if requested by the user.
368 static __isl_give isl_ast_graft *after_each_for(__isl_take isl_ast_graft *graft,
369 __isl_keep isl_ast_build *build)
371 if (!graft || !build)
372 return isl_ast_graft_free(graft);
373 if (!build->after_each_for)
374 return graft;
375 graft->node = build->after_each_for(graft->node, build,
376 build->after_each_for_user);
377 if (!graft->node)
378 return isl_ast_graft_free(graft);
379 return graft;
382 /* Plug in all the know values of the current and outer dimensions
383 * in the domain of "executed". In principle, we only need to plug
384 * in the known value of the current dimension since the values of
385 * outer dimensions have been plugged in already.
386 * However, it turns out to be easier to just plug in all known values.
388 static __isl_give isl_union_map *plug_in_values(
389 __isl_take isl_union_map *executed, __isl_keep isl_ast_build *build)
391 return isl_ast_build_substitute_values_union_map_domain(build,
392 executed);
395 /* Check if the constraint "c" is a lower bound on dimension "pos",
396 * an upper bound, or independent of dimension "pos".
398 static int constraint_type(isl_constraint *c, int pos)
400 if (isl_constraint_is_lower_bound(c, isl_dim_set, pos))
401 return 1;
402 if (isl_constraint_is_upper_bound(c, isl_dim_set, pos))
403 return 2;
404 return 0;
407 /* Compare the types of the constraints "a" and "b",
408 * resulting in constraints that are independent of "depth"
409 * to be sorted before the lower bounds on "depth", which in
410 * turn are sorted before the upper bounds on "depth".
412 static int cmp_constraint(__isl_keep isl_constraint *a,
413 __isl_keep isl_constraint *b, void *user)
415 int *depth = user;
416 int t1 = constraint_type(a, *depth);
417 int t2 = constraint_type(b, *depth);
419 return t1 - t2;
422 /* Extract a lower bound on dimension "pos" from constraint "c".
424 * If the constraint is of the form
426 * a x + f(...) >= 0
428 * then we essentially return
430 * l = ceil(-f(...)/a)
432 * However, if the current dimension is strided, then we need to make
433 * sure that the lower bound we construct is of the form
435 * f + s a
437 * with f the offset and s the stride.
438 * We therefore compute
440 * f + s * ceil((l - f)/s)
442 static __isl_give isl_aff *lower_bound(__isl_keep isl_constraint *c,
443 int pos, __isl_keep isl_ast_build *build)
445 isl_aff *aff;
447 aff = isl_constraint_get_bound(c, isl_dim_set, pos);
448 aff = isl_aff_ceil(aff);
450 if (isl_ast_build_has_stride(build, pos)) {
451 isl_aff *offset;
452 isl_val *stride;
454 offset = isl_ast_build_get_offset(build, pos);
455 stride = isl_ast_build_get_stride(build, pos);
457 aff = isl_aff_sub(aff, isl_aff_copy(offset));
458 aff = isl_aff_scale_down_val(aff, isl_val_copy(stride));
459 aff = isl_aff_ceil(aff);
460 aff = isl_aff_scale_val(aff, stride);
461 aff = isl_aff_add(aff, offset);
464 aff = isl_ast_build_compute_gist_aff(build, aff);
466 return aff;
469 /* Return the exact lower bound (or upper bound if "upper" is set)
470 * of "domain" as a piecewise affine expression.
472 * If we are computing a lower bound (of a strided dimension), then
473 * we need to make sure it is of the form
475 * f + s a
477 * where f is the offset and s is the stride.
478 * We therefore need to include the stride constraint before computing
479 * the minimum.
481 static __isl_give isl_pw_aff *exact_bound(__isl_keep isl_set *domain,
482 __isl_keep isl_ast_build *build, int upper)
484 isl_set *stride;
485 isl_map *it_map;
486 isl_pw_aff *pa;
487 isl_pw_multi_aff *pma;
489 domain = isl_set_copy(domain);
490 if (!upper) {
491 stride = isl_ast_build_get_stride_constraint(build);
492 domain = isl_set_intersect(domain, stride);
494 it_map = isl_ast_build_map_to_iterator(build, domain);
495 if (upper)
496 pma = isl_map_lexmax_pw_multi_aff(it_map);
497 else
498 pma = isl_map_lexmin_pw_multi_aff(it_map);
499 pa = isl_pw_multi_aff_get_pw_aff(pma, 0);
500 isl_pw_multi_aff_free(pma);
501 pa = isl_ast_build_compute_gist_pw_aff(build, pa);
502 pa = isl_pw_aff_coalesce(pa);
504 return pa;
507 /* Callback for sorting the isl_pw_aff_list passed to reduce_list and
508 * remove_redundant_lower_bounds.
510 static int reduce_list_cmp(__isl_keep isl_pw_aff *a, __isl_keep isl_pw_aff *b,
511 void *user)
513 return isl_pw_aff_plain_cmp(a, b);
516 /* Given a list of lower bounds "list", remove those that are redundant
517 * with respect to the other bounds in "list" and the domain of "build".
519 * We first sort the bounds in the same way as they would be sorted
520 * by set_for_node_expressions so that we can try and remove the last
521 * bounds first.
523 * For a lower bound to be effective, there needs to be at least
524 * one domain element for which it is larger than all other lower bounds.
525 * For each lower bound we therefore intersect the domain with
526 * the conditions that it is larger than all other bounds and
527 * check whether the result is empty. If so, the bound can be removed.
529 static __isl_give isl_pw_aff_list *remove_redundant_lower_bounds(
530 __isl_take isl_pw_aff_list *list, __isl_keep isl_ast_build *build)
532 int i, j;
533 isl_size n;
534 isl_set *domain;
536 list = isl_pw_aff_list_sort(list, &reduce_list_cmp, NULL);
538 n = isl_pw_aff_list_n_pw_aff(list);
539 if (n < 0)
540 return isl_pw_aff_list_free(list);
541 if (n <= 1)
542 return list;
544 domain = isl_ast_build_get_domain(build);
546 for (i = n - 1; i >= 0; --i) {
547 isl_pw_aff *pa_i;
548 isl_set *domain_i;
549 int empty;
551 domain_i = isl_set_copy(domain);
552 pa_i = isl_pw_aff_list_get_pw_aff(list, i);
554 for (j = 0; j < n; ++j) {
555 isl_pw_aff *pa_j;
556 isl_set *better;
558 if (j == i)
559 continue;
561 pa_j = isl_pw_aff_list_get_pw_aff(list, j);
562 better = isl_pw_aff_gt_set(isl_pw_aff_copy(pa_i), pa_j);
563 domain_i = isl_set_intersect(domain_i, better);
566 empty = isl_set_is_empty(domain_i);
568 isl_set_free(domain_i);
569 isl_pw_aff_free(pa_i);
571 if (empty < 0)
572 goto error;
573 if (!empty)
574 continue;
575 list = isl_pw_aff_list_drop(list, i, 1);
576 n--;
579 isl_set_free(domain);
581 return list;
582 error:
583 isl_set_free(domain);
584 return isl_pw_aff_list_free(list);
587 /* Extract a lower bound on dimension "pos" from each constraint
588 * in "constraints" and return the list of lower bounds.
589 * If "constraints" has zero elements, then we extract a lower bound
590 * from "domain" instead.
592 * If the current dimension is strided, then the lower bound
593 * is adjusted by lower_bound to match the stride information.
594 * This modification may make one or more lower bounds redundant
595 * with respect to the other lower bounds. We therefore check
596 * for this condition and remove the redundant lower bounds.
598 static __isl_give isl_pw_aff_list *lower_bounds(
599 __isl_keep isl_constraint_list *constraints, int pos,
600 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
602 isl_ctx *ctx;
603 isl_pw_aff_list *list;
604 int i;
605 isl_size n;
607 if (!build)
608 return NULL;
610 n = isl_constraint_list_n_constraint(constraints);
611 if (n < 0)
612 return NULL;
613 if (n == 0) {
614 isl_pw_aff *pa;
615 pa = exact_bound(domain, build, 0);
616 return isl_pw_aff_list_from_pw_aff(pa);
619 ctx = isl_ast_build_get_ctx(build);
620 list = isl_pw_aff_list_alloc(ctx,n);
622 for (i = 0; i < n; ++i) {
623 isl_aff *aff;
624 isl_constraint *c;
626 c = isl_constraint_list_get_constraint(constraints, i);
627 aff = lower_bound(c, pos, build);
628 isl_constraint_free(c);
629 list = isl_pw_aff_list_add(list, isl_pw_aff_from_aff(aff));
632 if (isl_ast_build_has_stride(build, pos))
633 list = remove_redundant_lower_bounds(list, build);
635 return list;
638 /* Extract an upper bound on dimension "pos" from each constraint
639 * in "constraints" and return the list of upper bounds.
640 * If "constraints" has zero elements, then we extract an upper bound
641 * from "domain" instead.
643 static __isl_give isl_pw_aff_list *upper_bounds(
644 __isl_keep isl_constraint_list *constraints, int pos,
645 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
647 isl_ctx *ctx;
648 isl_pw_aff_list *list;
649 int i;
650 isl_size n;
652 n = isl_constraint_list_n_constraint(constraints);
653 if (n < 0)
654 return NULL;
655 if (n == 0) {
656 isl_pw_aff *pa;
657 pa = exact_bound(domain, build, 1);
658 return isl_pw_aff_list_from_pw_aff(pa);
661 ctx = isl_ast_build_get_ctx(build);
662 list = isl_pw_aff_list_alloc(ctx,n);
664 for (i = 0; i < n; ++i) {
665 isl_aff *aff;
666 isl_constraint *c;
668 c = isl_constraint_list_get_constraint(constraints, i);
669 aff = isl_constraint_get_bound(c, isl_dim_set, pos);
670 isl_constraint_free(c);
671 aff = isl_aff_floor(aff);
672 list = isl_pw_aff_list_add(list, isl_pw_aff_from_aff(aff));
675 return list;
678 /* Return an isl_ast_expr that performs the reduction of type "type"
679 * on AST expressions corresponding to the elements in "list".
681 * The list is assumed to contain at least one element.
682 * If the list contains exactly one element, then the returned isl_ast_expr
683 * simply computes that affine expression.
684 * If the list contains more than one element, then we sort it
685 * using a fairly arbitrary but hopefully reasonably stable order.
687 static __isl_give isl_ast_expr *reduce_list(enum isl_ast_expr_op_type type,
688 __isl_keep isl_pw_aff_list *list, __isl_keep isl_ast_build *build)
690 int i;
691 isl_size n;
692 isl_ctx *ctx;
693 isl_ast_expr *expr;
695 n = isl_pw_aff_list_n_pw_aff(list);
696 if (n < 0)
697 return NULL;
699 if (n == 1)
700 return isl_ast_build_expr_from_pw_aff_internal(build,
701 isl_pw_aff_list_get_pw_aff(list, 0));
703 ctx = isl_pw_aff_list_get_ctx(list);
704 expr = isl_ast_expr_alloc_op(ctx, type, n);
705 if (!expr)
706 return NULL;
708 list = isl_pw_aff_list_copy(list);
709 list = isl_pw_aff_list_sort(list, &reduce_list_cmp, NULL);
710 if (!list)
711 return isl_ast_expr_free(expr);
713 for (i = 0; i < n; ++i) {
714 isl_ast_expr *expr_i;
716 expr_i = isl_ast_build_expr_from_pw_aff_internal(build,
717 isl_pw_aff_list_get_pw_aff(list, i));
718 if (!expr_i)
719 goto error;
720 expr->u.op.args[i] = expr_i;
723 isl_pw_aff_list_free(list);
724 return expr;
725 error:
726 isl_pw_aff_list_free(list);
727 isl_ast_expr_free(expr);
728 return NULL;
731 /* Add guards implied by the "generated constraints",
732 * but not (necessarily) enforced by the generated AST to "guard".
733 * In particular, if there is any stride constraints,
734 * then add the guard implied by those constraints.
735 * If we have generated a degenerate loop, then add the guard
736 * implied by "bounds" on the outer dimensions, i.e., the guard
737 * that ensures that the single value actually exists.
738 * Since there may also be guards implied by a combination
739 * of these constraints, we first combine them before
740 * deriving the implied constraints.
742 static __isl_give isl_set *add_implied_guards(__isl_take isl_set *guard,
743 int degenerate, __isl_keep isl_basic_set *bounds,
744 __isl_keep isl_ast_build *build)
746 isl_size depth;
747 isl_bool has_stride;
748 isl_space *space;
749 isl_set *dom, *set;
751 depth = isl_ast_build_get_depth(build);
752 has_stride = isl_ast_build_has_stride(build, depth);
753 if (depth < 0 || has_stride < 0)
754 return isl_set_free(guard);
755 if (!has_stride && !degenerate)
756 return guard;
758 space = isl_basic_set_get_space(bounds);
759 dom = isl_set_universe(space);
761 if (degenerate) {
762 bounds = isl_basic_set_copy(bounds);
763 bounds = isl_basic_set_drop_constraints_not_involving_dims(
764 bounds, isl_dim_set, depth, 1);
765 set = isl_set_from_basic_set(bounds);
766 dom = isl_set_intersect(dom, set);
769 if (has_stride) {
770 set = isl_ast_build_get_stride_constraint(build);
771 dom = isl_set_intersect(dom, set);
774 dom = isl_set_eliminate(dom, isl_dim_set, depth, 1);
775 dom = isl_ast_build_compute_gist(build, dom);
776 guard = isl_set_intersect(guard, dom);
778 return guard;
781 /* Update "graft" based on "sub_build" for the degenerate case.
783 * "build" is the build in which graft->node was created
784 * "sub_build" contains information about the current level itself,
785 * including the single value attained.
787 * We set the initialization part of the for loop to the single
788 * value attained by the current dimension.
789 * The increment and condition are not strictly needed as they are known
790 * to be "1" and "iterator <= value" respectively.
792 static __isl_give isl_ast_graft *refine_degenerate(
793 __isl_take isl_ast_graft *graft, __isl_keep isl_ast_build *build,
794 __isl_keep isl_ast_build *sub_build)
796 isl_pw_aff *value;
798 if (!graft || !sub_build)
799 return isl_ast_graft_free(graft);
801 value = isl_pw_aff_copy(sub_build->value);
803 graft->node->u.f.init = isl_ast_build_expr_from_pw_aff_internal(build,
804 value);
805 if (!graft->node->u.f.init)
806 return isl_ast_graft_free(graft);
808 return graft;
811 /* Return the intersection of constraints in "list" as a set.
813 static __isl_give isl_set *intersect_constraints(
814 __isl_keep isl_constraint_list *list)
816 int i;
817 isl_size n;
818 isl_basic_set *bset;
820 n = isl_constraint_list_n_constraint(list);
821 if (n < 0)
822 return NULL;
823 if (n < 1)
824 isl_die(isl_constraint_list_get_ctx(list), isl_error_internal,
825 "expecting at least one constraint", return NULL);
827 bset = isl_basic_set_from_constraint(
828 isl_constraint_list_get_constraint(list, 0));
829 for (i = 1; i < n; ++i) {
830 isl_basic_set *bset_i;
832 bset_i = isl_basic_set_from_constraint(
833 isl_constraint_list_get_constraint(list, i));
834 bset = isl_basic_set_intersect(bset, bset_i);
837 return isl_set_from_basic_set(bset);
840 /* Compute the constraints on the outer dimensions enforced by
841 * graft->node and add those constraints to graft->enforced,
842 * in case the upper bound is expressed as a set "upper".
844 * In particular, if l(...) is a lower bound in "lower", and
846 * -a i + f(...) >= 0 or a i <= f(...)
848 * is an upper bound ocnstraint on the current dimension i,
849 * then the for loop enforces the constraint
851 * -a l(...) + f(...) >= 0 or a l(...) <= f(...)
853 * We therefore simply take each lower bound in turn, plug it into
854 * the upper bounds and compute the intersection over all lower bounds.
856 * If a lower bound is a rational expression, then
857 * isl_basic_set_preimage_multi_aff will force this rational
858 * expression to have only integer values. However, the loop
859 * itself does not enforce this integrality constraint. We therefore
860 * use the ceil of the lower bounds instead of the lower bounds themselves.
861 * Other constraints will make sure that the for loop is only executed
862 * when each of the lower bounds attains an integral value.
863 * In particular, potentially rational values only occur in
864 * lower_bound if the offset is a (seemingly) rational expression,
865 * but then outer conditions will make sure that this rational expression
866 * only attains integer values.
868 static __isl_give isl_ast_graft *set_enforced_from_set(
869 __isl_take isl_ast_graft *graft,
870 __isl_keep isl_pw_aff_list *lower, int pos, __isl_keep isl_set *upper)
872 isl_space *space;
873 isl_basic_set *enforced;
874 isl_pw_multi_aff *pma;
875 int i;
876 isl_size n;
878 n = isl_pw_aff_list_n_pw_aff(lower);
879 if (!graft || n < 0)
880 return isl_ast_graft_free(graft);
882 space = isl_set_get_space(upper);
883 enforced = isl_basic_set_universe(isl_space_copy(space));
885 space = isl_space_map_from_set(space);
886 pma = isl_pw_multi_aff_identity(space);
888 for (i = 0; i < n; ++i) {
889 isl_pw_aff *pa;
890 isl_set *enforced_i;
891 isl_basic_set *hull;
892 isl_pw_multi_aff *pma_i;
894 pa = isl_pw_aff_list_get_pw_aff(lower, i);
895 pa = isl_pw_aff_ceil(pa);
896 pma_i = isl_pw_multi_aff_copy(pma);
897 pma_i = isl_pw_multi_aff_set_pw_aff(pma_i, pos, pa);
898 enforced_i = isl_set_copy(upper);
899 enforced_i = isl_set_preimage_pw_multi_aff(enforced_i, pma_i);
900 hull = isl_set_simple_hull(enforced_i);
901 enforced = isl_basic_set_intersect(enforced, hull);
904 isl_pw_multi_aff_free(pma);
906 graft = isl_ast_graft_enforce(graft, enforced);
908 return graft;
911 /* Compute the constraints on the outer dimensions enforced by
912 * graft->node and add those constraints to graft->enforced,
913 * in case the upper bound is expressed as
914 * a list of affine expressions "upper".
916 * The enforced condition is that each lower bound expression is less
917 * than or equal to each upper bound expression.
919 static __isl_give isl_ast_graft *set_enforced_from_list(
920 __isl_take isl_ast_graft *graft,
921 __isl_keep isl_pw_aff_list *lower, __isl_keep isl_pw_aff_list *upper)
923 isl_set *cond;
924 isl_basic_set *enforced;
926 lower = isl_pw_aff_list_copy(lower);
927 upper = isl_pw_aff_list_copy(upper);
928 cond = isl_pw_aff_list_le_set(lower, upper);
929 enforced = isl_set_simple_hull(cond);
930 graft = isl_ast_graft_enforce(graft, enforced);
932 return graft;
935 /* Does "aff" have a negative constant term?
937 static isl_bool aff_constant_is_negative(__isl_keep isl_set *set,
938 __isl_keep isl_aff *aff, void *user)
940 isl_bool is_neg;
941 isl_val *v;
943 v = isl_aff_get_constant_val(aff);
944 is_neg = isl_val_is_neg(v);
945 isl_val_free(v);
947 return is_neg;
950 /* Does "pa" have a negative constant term over its entire domain?
952 static isl_bool pw_aff_constant_is_negative(__isl_keep isl_pw_aff *pa,
953 void *user)
955 return isl_pw_aff_every_piece(pa, &aff_constant_is_negative, NULL);
958 /* Does each element in "list" have a negative constant term?
960 static int list_constant_is_negative(__isl_keep isl_pw_aff_list *list)
962 return isl_pw_aff_list_every(list, &pw_aff_constant_is_negative, NULL);
965 /* Add 1 to each of the elements in "list", where each of these elements
966 * is defined over the internal schedule space of "build".
968 static __isl_give isl_pw_aff_list *list_add_one(
969 __isl_take isl_pw_aff_list *list, __isl_keep isl_ast_build *build)
971 int i;
972 isl_size n;
973 isl_space *space;
974 isl_aff *aff;
975 isl_pw_aff *one;
977 n = isl_pw_aff_list_n_pw_aff(list);
978 if (n < 0)
979 return isl_pw_aff_list_free(list);
981 space = isl_ast_build_get_space(build, 1);
982 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
983 aff = isl_aff_add_constant_si(aff, 1);
984 one = isl_pw_aff_from_aff(aff);
986 for (i = 0; i < n; ++i) {
987 isl_pw_aff *pa;
988 pa = isl_pw_aff_list_get_pw_aff(list, i);
989 pa = isl_pw_aff_add(pa, isl_pw_aff_copy(one));
990 list = isl_pw_aff_list_set_pw_aff(list, i, pa);
993 isl_pw_aff_free(one);
995 return list;
998 /* Set the condition part of the for node graft->node in case
999 * the upper bound is represented as a list of piecewise affine expressions.
1001 * In particular, set the condition to
1003 * iterator <= min(list of upper bounds)
1005 * If each of the upper bounds has a negative constant term, then
1006 * set the condition to
1008 * iterator < min(list of (upper bound + 1)s)
1011 static __isl_give isl_ast_graft *set_for_cond_from_list(
1012 __isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *list,
1013 __isl_keep isl_ast_build *build)
1015 int neg;
1016 isl_ast_expr *bound, *iterator, *cond;
1017 enum isl_ast_expr_op_type type = isl_ast_expr_op_le;
1019 if (!graft || !list)
1020 return isl_ast_graft_free(graft);
1022 neg = list_constant_is_negative(list);
1023 if (neg < 0)
1024 return isl_ast_graft_free(graft);
1025 list = isl_pw_aff_list_copy(list);
1026 if (neg) {
1027 list = list_add_one(list, build);
1028 type = isl_ast_expr_op_lt;
1031 bound = reduce_list(isl_ast_expr_op_min, list, build);
1032 iterator = isl_ast_expr_copy(graft->node->u.f.iterator);
1033 cond = isl_ast_expr_alloc_binary(type, iterator, bound);
1034 graft->node->u.f.cond = cond;
1036 isl_pw_aff_list_free(list);
1037 if (!graft->node->u.f.cond)
1038 return isl_ast_graft_free(graft);
1039 return graft;
1042 /* Set the condition part of the for node graft->node in case
1043 * the upper bound is represented as a set.
1045 static __isl_give isl_ast_graft *set_for_cond_from_set(
1046 __isl_take isl_ast_graft *graft, __isl_keep isl_set *set,
1047 __isl_keep isl_ast_build *build)
1049 isl_ast_expr *cond;
1051 if (!graft)
1052 return NULL;
1054 cond = isl_ast_build_expr_from_set_internal(build, isl_set_copy(set));
1055 graft->node->u.f.cond = cond;
1056 if (!graft->node->u.f.cond)
1057 return isl_ast_graft_free(graft);
1058 return graft;
1061 /* Construct an isl_ast_expr for the increment (i.e., stride) of
1062 * the current dimension.
1064 static __isl_give isl_ast_expr *for_inc(__isl_keep isl_ast_build *build)
1066 isl_size depth;
1067 isl_val *v;
1068 isl_ctx *ctx;
1070 depth = isl_ast_build_get_depth(build);
1071 if (depth < 0)
1072 return NULL;
1073 ctx = isl_ast_build_get_ctx(build);
1075 if (!isl_ast_build_has_stride(build, depth))
1076 return isl_ast_expr_alloc_int_si(ctx, 1);
1078 v = isl_ast_build_get_stride(build, depth);
1079 return isl_ast_expr_from_val(v);
1082 /* Should we express the loop condition as
1084 * iterator <= min(list of upper bounds)
1086 * or as a conjunction of constraints?
1088 * The first is constructed from a list of upper bounds.
1089 * The second is constructed from a set.
1091 * If there are no upper bounds in "constraints", then this could mean
1092 * that "domain" simply doesn't have an upper bound or that we didn't
1093 * pick any upper bound. In the first case, we want to generate the
1094 * loop condition as a(n empty) conjunction of constraints
1095 * In the second case, we will compute
1096 * a single upper bound from "domain" and so we use the list form.
1098 * If there are upper bounds in "constraints",
1099 * then we use the list form iff the atomic_upper_bound option is set.
1101 static int use_upper_bound_list(isl_ctx *ctx, int n_upper,
1102 __isl_keep isl_set *domain, int depth)
1104 if (n_upper > 0)
1105 return isl_options_get_ast_build_atomic_upper_bound(ctx);
1106 else
1107 return isl_set_dim_has_upper_bound(domain, isl_dim_set, depth);
1110 /* Fill in the expressions of the for node in graft->node.
1112 * In particular,
1113 * - set the initialization part of the loop to the maximum of the lower bounds
1114 * - extract the increment from the stride of the current dimension
1115 * - construct the for condition either based on a list of upper bounds
1116 * or on a set of upper bound constraints.
1118 static __isl_give isl_ast_graft *set_for_node_expressions(
1119 __isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *lower,
1120 int use_list, __isl_keep isl_pw_aff_list *upper_list,
1121 __isl_keep isl_set *upper_set, __isl_keep isl_ast_build *build)
1123 isl_ast_node *node;
1125 if (!graft)
1126 return NULL;
1128 node = graft->node;
1129 node->u.f.init = reduce_list(isl_ast_expr_op_max, lower, build);
1130 node->u.f.inc = for_inc(build);
1132 if (!node->u.f.init || !node->u.f.inc)
1133 graft = isl_ast_graft_free(graft);
1135 if (use_list)
1136 graft = set_for_cond_from_list(graft, upper_list, build);
1137 else
1138 graft = set_for_cond_from_set(graft, upper_set, build);
1140 return graft;
1143 /* Update "graft" based on "bounds" and "domain" for the generic,
1144 * non-degenerate, case.
1146 * "c_lower" and "c_upper" contain the lower and upper bounds
1147 * that the loop node should express.
1148 * "domain" is the subset of the intersection of the constraints
1149 * for which some code is executed.
1151 * There may be zero lower bounds or zero upper bounds in "constraints"
1152 * in case the list of constraints was created
1153 * based on the atomic option or based on separation with explicit bounds.
1154 * In that case, we use "domain" to derive lower and/or upper bounds.
1156 * We first compute a list of one or more lower bounds.
1158 * Then we decide if we want to express the condition as
1160 * iterator <= min(list of upper bounds)
1162 * or as a conjunction of constraints.
1164 * The set of enforced constraints is then computed either based on
1165 * a list of upper bounds or on a set of upper bound constraints.
1166 * We do not compute any enforced constraints if we were forced
1167 * to compute a lower or upper bound using exact_bound. The domains
1168 * of the resulting expressions may imply some bounds on outer dimensions
1169 * that we do not want to appear in the enforced constraints since
1170 * they are not actually enforced by the corresponding code.
1172 * Finally, we fill in the expressions of the for node.
1174 static __isl_give isl_ast_graft *refine_generic_bounds(
1175 __isl_take isl_ast_graft *graft,
1176 __isl_take isl_constraint_list *c_lower,
1177 __isl_take isl_constraint_list *c_upper,
1178 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
1180 isl_size depth;
1181 isl_ctx *ctx;
1182 isl_pw_aff_list *lower;
1183 int use_list;
1184 isl_set *upper_set = NULL;
1185 isl_pw_aff_list *upper_list = NULL;
1186 isl_size n_lower, n_upper;
1188 depth = isl_ast_build_get_depth(build);
1189 if (!graft || !c_lower || !c_upper || depth < 0)
1190 goto error;
1192 ctx = isl_ast_graft_get_ctx(graft);
1194 n_lower = isl_constraint_list_n_constraint(c_lower);
1195 n_upper = isl_constraint_list_n_constraint(c_upper);
1196 if (n_lower < 0 || n_upper < 0)
1197 goto error;
1199 use_list = use_upper_bound_list(ctx, n_upper, domain, depth);
1201 lower = lower_bounds(c_lower, depth, domain, build);
1203 if (use_list)
1204 upper_list = upper_bounds(c_upper, depth, domain, build);
1205 else if (n_upper > 0)
1206 upper_set = intersect_constraints(c_upper);
1207 else
1208 upper_set = isl_set_universe(isl_set_get_space(domain));
1210 if (n_lower == 0 || n_upper == 0)
1212 else if (use_list)
1213 graft = set_enforced_from_list(graft, lower, upper_list);
1214 else
1215 graft = set_enforced_from_set(graft, lower, depth, upper_set);
1217 graft = set_for_node_expressions(graft, lower, use_list, upper_list,
1218 upper_set, build);
1220 isl_pw_aff_list_free(lower);
1221 isl_pw_aff_list_free(upper_list);
1222 isl_set_free(upper_set);
1223 isl_constraint_list_free(c_lower);
1224 isl_constraint_list_free(c_upper);
1226 return graft;
1227 error:
1228 isl_constraint_list_free(c_lower);
1229 isl_constraint_list_free(c_upper);
1230 return isl_ast_graft_free(graft);
1233 /* Internal data structure used inside count_constraints to keep
1234 * track of the number of constraints that are independent of dimension "pos",
1235 * the lower bounds in "pos" and the upper bounds in "pos".
1237 struct isl_ast_count_constraints_data {
1238 int pos;
1240 int n_indep;
1241 int n_lower;
1242 int n_upper;
1245 /* Increment data->n_indep, data->lower or data->upper depending
1246 * on whether "c" is independent of dimensions data->pos,
1247 * a lower bound or an upper bound.
1249 static isl_stat count_constraints(__isl_take isl_constraint *c, void *user)
1251 struct isl_ast_count_constraints_data *data = user;
1253 if (isl_constraint_is_lower_bound(c, isl_dim_set, data->pos))
1254 data->n_lower++;
1255 else if (isl_constraint_is_upper_bound(c, isl_dim_set, data->pos))
1256 data->n_upper++;
1257 else
1258 data->n_indep++;
1260 isl_constraint_free(c);
1262 return isl_stat_ok;
1265 /* Update "graft" based on "bounds" and "domain" for the generic,
1266 * non-degenerate, case.
1268 * "list" respresent the list of bounds that need to be encoded by
1269 * the for loop. Only the constraints that involve the iterator
1270 * are relevant here. The other constraints are taken care of by
1271 * the caller and are included in the generated constraints of "build".
1272 * "domain" is the subset of the intersection of the constraints
1273 * for which some code is executed.
1274 * "build" is the build in which graft->node was created.
1276 * We separate lower bounds, upper bounds and constraints that
1277 * are independent of the loop iterator.
1279 * The actual for loop bounds are generated in refine_generic_bounds.
1281 static __isl_give isl_ast_graft *refine_generic_split(
1282 __isl_take isl_ast_graft *graft, __isl_take isl_constraint_list *list,
1283 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
1285 struct isl_ast_count_constraints_data data;
1286 isl_size depth;
1287 isl_constraint_list *lower;
1288 isl_constraint_list *upper;
1290 depth = isl_ast_build_get_depth(build);
1291 if (depth < 0)
1292 list = isl_constraint_list_free(list);
1293 if (!list)
1294 return isl_ast_graft_free(graft);
1296 data.pos = depth;
1298 list = isl_constraint_list_sort(list, &cmp_constraint, &data.pos);
1299 if (!list)
1300 return isl_ast_graft_free(graft);
1302 data.n_indep = data.n_lower = data.n_upper = 0;
1303 if (isl_constraint_list_foreach(list, &count_constraints, &data) < 0) {
1304 isl_constraint_list_free(list);
1305 return isl_ast_graft_free(graft);
1308 lower = isl_constraint_list_drop(list, 0, data.n_indep);
1309 upper = isl_constraint_list_copy(lower);
1310 lower = isl_constraint_list_drop(lower, data.n_lower, data.n_upper);
1311 upper = isl_constraint_list_drop(upper, 0, data.n_lower);
1313 return refine_generic_bounds(graft, lower, upper, domain, build);
1316 /* Update "graft" based on "bounds" and "domain" for the generic,
1317 * non-degenerate, case.
1319 * "bounds" respresent the bounds that need to be encoded by
1320 * the for loop (or a guard around the for loop).
1321 * "domain" is the subset of "bounds" for which some code is executed.
1322 * "build" is the build in which graft->node was created.
1324 * We break up "bounds" into a list of constraints and continue with
1325 * refine_generic_split.
1327 static __isl_give isl_ast_graft *refine_generic(
1328 __isl_take isl_ast_graft *graft,
1329 __isl_keep isl_basic_set *bounds, __isl_keep isl_set *domain,
1330 __isl_keep isl_ast_build *build)
1332 isl_constraint_list *list;
1334 if (!build || !graft)
1335 return isl_ast_graft_free(graft);
1337 list = isl_basic_set_get_constraint_list(bounds);
1339 graft = refine_generic_split(graft, list, domain, build);
1341 return graft;
1344 /* Create a for node for the current level.
1346 * Mark the for node degenerate if "degenerate" is set.
1348 static __isl_give isl_ast_node *create_for(__isl_keep isl_ast_build *build,
1349 int degenerate)
1351 isl_size depth;
1352 isl_id *id;
1353 isl_ast_node *node;
1355 depth = isl_ast_build_get_depth(build);
1356 if (depth < 0)
1357 return NULL;
1359 id = isl_ast_build_get_iterator_id(build, depth);
1360 node = isl_ast_node_alloc_for(id);
1361 if (degenerate)
1362 node = isl_ast_node_for_mark_degenerate(node);
1364 return node;
1367 /* If the ast_build_exploit_nested_bounds option is set, then return
1368 * the constraints enforced by all elements in "list".
1369 * Otherwise, return the universe.
1371 static __isl_give isl_basic_set *extract_shared_enforced(
1372 __isl_keep isl_ast_graft_list *list, __isl_keep isl_ast_build *build)
1374 isl_ctx *ctx;
1375 isl_space *space;
1377 if (!list)
1378 return NULL;
1380 ctx = isl_ast_graft_list_get_ctx(list);
1381 if (isl_options_get_ast_build_exploit_nested_bounds(ctx))
1382 return isl_ast_graft_list_extract_shared_enforced(list, build);
1384 space = isl_ast_build_get_space(build, 1);
1385 return isl_basic_set_universe(space);
1388 /* Return the pending constraints of "build" that are not already taken
1389 * care of (by a combination of "enforced" and the generated constraints
1390 * of "build").
1392 static __isl_give isl_set *extract_pending(__isl_keep isl_ast_build *build,
1393 __isl_keep isl_basic_set *enforced)
1395 isl_set *guard, *context;
1397 guard = isl_ast_build_get_pending(build);
1398 context = isl_set_from_basic_set(isl_basic_set_copy(enforced));
1399 context = isl_set_intersect(context,
1400 isl_ast_build_get_generated(build));
1401 return isl_set_gist(guard, context);
1404 /* Create an AST node for the current dimension based on
1405 * the schedule domain "bounds" and return the node encapsulated
1406 * in an isl_ast_graft.
1408 * "executed" is the current inverse schedule, taking into account
1409 * the bounds in "bounds"
1410 * "domain" is the domain of "executed", with inner dimensions projected out.
1411 * It may be a strict subset of "bounds" in case "bounds" was created
1412 * based on the atomic option or based on separation with explicit bounds.
1414 * "domain" may satisfy additional equalities that result
1415 * from intersecting "executed" with "bounds" in add_node.
1416 * It may also satisfy some global constraints that were dropped out because
1417 * we performed separation with explicit bounds.
1418 * The very first step is then to copy these constraints to "bounds".
1420 * Since we may be calling before_each_for and after_each_for
1421 * callbacks, we record the current inverse schedule in the build.
1423 * We consider three builds,
1424 * "build" is the one in which the current level is created,
1425 * "body_build" is the build in which the next level is created,
1426 * "sub_build" is essentially the same as "body_build", except that
1427 * the depth has not been increased yet.
1429 * "build" already contains information (in strides and offsets)
1430 * about the strides at the current level, but this information is not
1431 * reflected in the build->domain.
1432 * We first add this information and the "bounds" to the sub_build->domain.
1433 * isl_ast_build_set_loop_bounds adds the stride information and
1434 * checks whether the current dimension attains
1435 * only a single value and whether this single value can be represented using
1436 * a single affine expression.
1437 * In the first case, the current level is considered "degenerate".
1438 * In the second, sub-case, the current level is considered "eliminated".
1439 * Eliminated levels don't need to be reflected in the AST since we can
1440 * simply plug in the affine expression. For degenerate, but non-eliminated,
1441 * levels, we do introduce a for node, but mark is as degenerate so that
1442 * it can be printed as an assignment of the single value to the loop
1443 * "iterator".
1445 * If the current level is eliminated, we explicitly plug in the value
1446 * for the current level found by isl_ast_build_set_loop_bounds in the
1447 * inverse schedule. This ensures that if we are working on a slice
1448 * of the domain based on information available in the inverse schedule
1449 * and the build domain, that then this information is also reflected
1450 * in the inverse schedule. This operation also eliminates the current
1451 * dimension from the inverse schedule making sure no inner dimensions depend
1452 * on the current dimension. Otherwise, we create a for node, marking
1453 * it degenerate if appropriate. The initial for node is still incomplete
1454 * and will be completed in either refine_degenerate or refine_generic.
1456 * We then generate a sequence of grafts for the next level,
1457 * create a surrounding graft for the current level and insert
1458 * the for node we created (if the current level is not eliminated).
1459 * Before creating a graft for the current level, we first extract
1460 * hoistable constraints from the child guards and combine them
1461 * with the pending constraints in the build. These constraints
1462 * are used to simplify the child guards and then added to the guard
1463 * of the current graft to ensure that they will be generated.
1464 * If the hoisted guard is a disjunction, then we use it directly
1465 * to gist the guards on the children before intersect it with the
1466 * pending constraints. We do so because this disjunction is typically
1467 * identical to the guards on the children such that these guards
1468 * can be effectively removed completely. After the intersection,
1469 * the gist operation would have a harder time figuring this out.
1471 * Finally, we set the bounds of the for loop in either
1472 * refine_degenerate or refine_generic.
1473 * We do so in a context where the pending constraints of the build
1474 * have been replaced by the guard of the current graft.
1476 static __isl_give isl_ast_graft *create_node_scaled(
1477 __isl_take isl_union_map *executed,
1478 __isl_take isl_basic_set *bounds, __isl_take isl_set *domain,
1479 __isl_take isl_ast_build *build)
1481 isl_size depth;
1482 int degenerate;
1483 isl_bool eliminated;
1484 isl_size n;
1485 isl_basic_set *hull;
1486 isl_basic_set *enforced;
1487 isl_set *guard, *hoisted;
1488 isl_ast_node *node = NULL;
1489 isl_ast_graft *graft;
1490 isl_ast_graft_list *children;
1491 isl_ast_build *sub_build;
1492 isl_ast_build *body_build;
1494 domain = isl_ast_build_eliminate_divs(build, domain);
1495 domain = isl_set_detect_equalities(domain);
1496 hull = isl_set_unshifted_simple_hull(isl_set_copy(domain));
1497 bounds = isl_basic_set_intersect(bounds, hull);
1498 build = isl_ast_build_set_executed(build, isl_union_map_copy(executed));
1500 depth = isl_ast_build_get_depth(build);
1501 if (depth < 0)
1502 build = isl_ast_build_free(build);
1503 sub_build = isl_ast_build_copy(build);
1504 bounds = isl_basic_set_remove_redundancies(bounds);
1505 bounds = isl_ast_build_specialize_basic_set(sub_build, bounds);
1506 sub_build = isl_ast_build_set_loop_bounds(sub_build,
1507 isl_basic_set_copy(bounds));
1508 degenerate = isl_ast_build_has_value(sub_build);
1509 eliminated = isl_ast_build_has_affine_value(sub_build, depth);
1510 if (degenerate < 0 || eliminated < 0)
1511 executed = isl_union_map_free(executed);
1512 if (!degenerate)
1513 bounds = isl_ast_build_compute_gist_basic_set(build, bounds);
1514 sub_build = isl_ast_build_set_pending_generated(sub_build,
1515 isl_basic_set_copy(bounds));
1516 if (eliminated)
1517 executed = plug_in_values(executed, sub_build);
1518 else
1519 node = create_for(build, degenerate);
1521 body_build = isl_ast_build_copy(sub_build);
1522 body_build = isl_ast_build_increase_depth(body_build);
1523 if (!eliminated)
1524 node = before_each_for(node, body_build);
1525 children = generate_next_level(executed,
1526 isl_ast_build_copy(body_build));
1528 enforced = extract_shared_enforced(children, build);
1529 guard = extract_pending(sub_build, enforced);
1530 hoisted = isl_ast_graft_list_extract_hoistable_guard(children, build);
1531 n = isl_set_n_basic_set(hoisted);
1532 if (n < 0)
1533 children = isl_ast_graft_list_free(children);
1534 if (n > 1)
1535 children = isl_ast_graft_list_gist_guards(children,
1536 isl_set_copy(hoisted));
1537 guard = isl_set_intersect(guard, hoisted);
1538 if (!eliminated)
1539 guard = add_implied_guards(guard, degenerate, bounds, build);
1541 graft = isl_ast_graft_alloc_from_children(children,
1542 isl_set_copy(guard), enforced, build, sub_build);
1544 if (!eliminated) {
1545 isl_ast_build *for_build;
1547 graft = isl_ast_graft_insert_for(graft, node);
1548 for_build = isl_ast_build_copy(build);
1549 for_build = isl_ast_build_replace_pending_by_guard(for_build,
1550 isl_set_copy(guard));
1551 if (degenerate)
1552 graft = refine_degenerate(graft, for_build, sub_build);
1553 else
1554 graft = refine_generic(graft, bounds,
1555 domain, for_build);
1556 isl_ast_build_free(for_build);
1558 isl_set_free(guard);
1559 if (!eliminated)
1560 graft = after_each_for(graft, body_build);
1562 isl_ast_build_free(body_build);
1563 isl_ast_build_free(sub_build);
1564 isl_ast_build_free(build);
1565 isl_basic_set_free(bounds);
1566 isl_set_free(domain);
1568 return graft;
1571 /* Internal data structure for checking if all constraints involving
1572 * the input dimension "depth" are such that the other coefficients
1573 * are multiples of "m", reducing "m" if they are not.
1574 * If "m" is reduced all the way down to "1", then the check has failed
1575 * and we break out of the iteration.
1577 struct isl_check_scaled_data {
1578 int depth;
1579 isl_val *m;
1582 /* If constraint "c" involves the input dimension data->depth,
1583 * then make sure that all the other coefficients are multiples of data->m,
1584 * reducing data->m if needed.
1585 * Break out of the iteration if data->m has become equal to "1".
1587 static isl_stat constraint_check_scaled(__isl_take isl_constraint *c,
1588 void *user)
1590 struct isl_check_scaled_data *data = user;
1591 int i, j;
1592 isl_size n;
1593 enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_out,
1594 isl_dim_div };
1596 if (!isl_constraint_involves_dims(c, isl_dim_in, data->depth, 1)) {
1597 isl_constraint_free(c);
1598 return isl_stat_ok;
1601 for (i = 0; i < 4; ++i) {
1602 n = isl_constraint_dim(c, t[i]);
1603 if (n < 0)
1604 break;
1605 for (j = 0; j < n; ++j) {
1606 isl_val *d;
1608 if (t[i] == isl_dim_in && j == data->depth)
1609 continue;
1610 if (!isl_constraint_involves_dims(c, t[i], j, 1))
1611 continue;
1612 d = isl_constraint_get_coefficient_val(c, t[i], j);
1613 data->m = isl_val_gcd(data->m, d);
1614 if (isl_val_is_one(data->m))
1615 break;
1617 if (j < n)
1618 break;
1621 isl_constraint_free(c);
1623 return i < 4 ? isl_stat_error : isl_stat_ok;
1626 /* For each constraint of "bmap" that involves the input dimension data->depth,
1627 * make sure that all the other coefficients are multiples of data->m,
1628 * reducing data->m if needed.
1629 * Break out of the iteration if data->m has become equal to "1".
1631 static isl_stat basic_map_check_scaled(__isl_take isl_basic_map *bmap,
1632 void *user)
1634 isl_stat r;
1636 r = isl_basic_map_foreach_constraint(bmap,
1637 &constraint_check_scaled, user);
1638 isl_basic_map_free(bmap);
1640 return r;
1643 /* For each constraint of "map" that involves the input dimension data->depth,
1644 * make sure that all the other coefficients are multiples of data->m,
1645 * reducing data->m if needed.
1646 * Break out of the iteration if data->m has become equal to "1".
1648 static isl_stat map_check_scaled(__isl_take isl_map *map, void *user)
1650 isl_stat r;
1652 r = isl_map_foreach_basic_map(map, &basic_map_check_scaled, user);
1653 isl_map_free(map);
1655 return r;
1658 /* Create an AST node for the current dimension based on
1659 * the schedule domain "bounds" and return the node encapsulated
1660 * in an isl_ast_graft.
1662 * "executed" is the current inverse schedule, taking into account
1663 * the bounds in "bounds"
1664 * "domain" is the domain of "executed", with inner dimensions projected out.
1667 * Before moving on to the actual AST node construction in create_node_scaled,
1668 * we first check if the current dimension is strided and if we can scale
1669 * down this stride. Note that we only do this if the ast_build_scale_strides
1670 * option is set.
1672 * In particular, let the current dimension take on values
1674 * f + s a
1676 * with a an integer. We check if we can find an integer m that (obviously)
1677 * divides both f and s.
1679 * If so, we check if the current dimension only appears in constraints
1680 * where the coefficients of the other variables are multiples of m.
1681 * We perform this extra check to avoid the risk of introducing
1682 * divisions by scaling down the current dimension.
1684 * If so, we scale the current dimension down by a factor of m.
1685 * That is, we plug in
1687 * i = m i' (1)
1689 * Note that in principle we could always scale down strided loops
1690 * by plugging in
1692 * i = f + s i'
1694 * but this may result in i' taking on larger values than the original i,
1695 * due to the shift by "f".
1696 * By constrast, the scaling in (1) can only reduce the (absolute) value "i".
1698 static __isl_give isl_ast_graft *create_node(__isl_take isl_union_map *executed,
1699 __isl_take isl_basic_set *bounds, __isl_take isl_set *domain,
1700 __isl_take isl_ast_build *build)
1702 struct isl_check_scaled_data data;
1703 isl_size depth;
1704 isl_ctx *ctx;
1705 isl_aff *offset;
1706 isl_val *d;
1708 ctx = isl_ast_build_get_ctx(build);
1709 if (!isl_options_get_ast_build_scale_strides(ctx))
1710 return create_node_scaled(executed, bounds, domain, build);
1712 depth = isl_ast_build_get_depth(build);
1713 if (depth < 0)
1714 build = isl_ast_build_free(build);
1715 data.depth = depth;
1716 if (!isl_ast_build_has_stride(build, data.depth))
1717 return create_node_scaled(executed, bounds, domain, build);
1719 offset = isl_ast_build_get_offset(build, data.depth);
1720 data.m = isl_ast_build_get_stride(build, data.depth);
1721 if (!data.m)
1722 offset = isl_aff_free(offset);
1723 offset = isl_aff_scale_down_val(offset, isl_val_copy(data.m));
1724 d = isl_aff_get_denominator_val(offset);
1725 if (!d)
1726 executed = isl_union_map_free(executed);
1728 if (executed && isl_val_is_divisible_by(data.m, d))
1729 data.m = isl_val_div(data.m, d);
1730 else {
1731 data.m = isl_val_set_si(data.m, 1);
1732 isl_val_free(d);
1735 if (!isl_val_is_one(data.m)) {
1736 if (isl_union_map_foreach_map(executed, &map_check_scaled,
1737 &data) < 0 &&
1738 !isl_val_is_one(data.m))
1739 executed = isl_union_map_free(executed);
1742 if (!isl_val_is_one(data.m)) {
1743 isl_space *space;
1744 isl_multi_aff *ma;
1745 isl_aff *aff;
1746 isl_map *map;
1747 isl_union_map *umap;
1749 space = isl_ast_build_get_space(build, 1);
1750 space = isl_space_map_from_set(space);
1751 ma = isl_multi_aff_identity(space);
1752 aff = isl_multi_aff_get_aff(ma, data.depth);
1753 aff = isl_aff_scale_val(aff, isl_val_copy(data.m));
1754 ma = isl_multi_aff_set_aff(ma, data.depth, aff);
1756 bounds = isl_basic_set_preimage_multi_aff(bounds,
1757 isl_multi_aff_copy(ma));
1758 domain = isl_set_preimage_multi_aff(domain,
1759 isl_multi_aff_copy(ma));
1760 map = isl_map_reverse(isl_map_from_multi_aff(ma));
1761 umap = isl_union_map_from_map(map);
1762 executed = isl_union_map_apply_domain(executed,
1763 isl_union_map_copy(umap));
1764 build = isl_ast_build_scale_down(build, isl_val_copy(data.m),
1765 umap);
1767 isl_aff_free(offset);
1768 isl_val_free(data.m);
1770 return create_node_scaled(executed, bounds, domain, build);
1773 /* Add the basic set to the list that "user" points to.
1775 static isl_stat collect_basic_set(__isl_take isl_basic_set *bset, void *user)
1777 isl_basic_set_list **list = user;
1779 *list = isl_basic_set_list_add(*list, bset);
1781 return isl_stat_ok;
1784 /* Extract the basic sets of "set" and collect them in an isl_basic_set_list.
1786 static __isl_give isl_basic_set_list *isl_basic_set_list_from_set(
1787 __isl_take isl_set *set)
1789 isl_size n;
1790 isl_ctx *ctx;
1791 isl_basic_set_list *list;
1793 n = isl_set_n_basic_set(set);
1794 if (n < 0)
1795 set = isl_set_free(set);
1796 if (!set)
1797 return NULL;
1799 ctx = isl_set_get_ctx(set);
1801 list = isl_basic_set_list_alloc(ctx, n);
1802 if (isl_set_foreach_basic_set(set, &collect_basic_set, &list) < 0)
1803 list = isl_basic_set_list_free(list);
1805 isl_set_free(set);
1806 return list;
1809 /* Generate code for the schedule domain "bounds"
1810 * and add the result to "list".
1812 * We mainly detect strides here and check if the bounds do not
1813 * conflict with the current build domain
1814 * and then pass over control to create_node.
1816 * "bounds" reflects the bounds on the current dimension and possibly
1817 * some extra conditions on outer dimensions.
1818 * It does not, however, include any divs involving the current dimension,
1819 * so it does not capture any stride constraints.
1820 * We therefore need to compute that part of the schedule domain that
1821 * intersects with "bounds" and derive the strides from the result.
1823 static __isl_give isl_ast_graft_list *add_node(
1824 __isl_take isl_ast_graft_list *list, __isl_take isl_union_map *executed,
1825 __isl_take isl_basic_set *bounds, __isl_take isl_ast_build *build)
1827 isl_ast_graft *graft;
1828 isl_set *domain = NULL;
1829 isl_union_set *uset;
1830 int empty, disjoint;
1832 uset = isl_union_set_from_basic_set(isl_basic_set_copy(bounds));
1833 executed = isl_union_map_intersect_domain(executed, uset);
1834 empty = isl_union_map_is_empty(executed);
1835 if (empty < 0)
1836 goto error;
1837 if (empty)
1838 goto done;
1840 uset = isl_union_map_domain(isl_union_map_copy(executed));
1841 domain = isl_set_from_union_set(uset);
1842 domain = isl_ast_build_specialize(build, domain);
1844 domain = isl_set_compute_divs(domain);
1845 domain = isl_ast_build_eliminate_inner(build, domain);
1846 disjoint = isl_set_is_disjoint(domain, build->domain);
1847 if (disjoint < 0)
1848 goto error;
1849 if (disjoint)
1850 goto done;
1852 build = isl_ast_build_detect_strides(build, isl_set_copy(domain));
1854 graft = create_node(executed, bounds, domain,
1855 isl_ast_build_copy(build));
1856 list = isl_ast_graft_list_add(list, graft);
1857 isl_ast_build_free(build);
1858 return list;
1859 error:
1860 list = isl_ast_graft_list_free(list);
1861 done:
1862 isl_set_free(domain);
1863 isl_basic_set_free(bounds);
1864 isl_union_map_free(executed);
1865 isl_ast_build_free(build);
1866 return list;
1869 /* Does any element of i follow or coincide with any element of j
1870 * at the current depth for equal values of the outer dimensions?
1872 static isl_bool domain_follows_at_depth(__isl_keep isl_basic_set *i,
1873 __isl_keep isl_basic_set *j, void *user)
1875 int depth = *(int *) user;
1876 isl_basic_map *test;
1877 isl_bool empty;
1878 int l;
1880 test = isl_basic_map_from_domain_and_range(isl_basic_set_copy(i),
1881 isl_basic_set_copy(j));
1882 for (l = 0; l < depth; ++l)
1883 test = isl_basic_map_equate(test, isl_dim_in, l,
1884 isl_dim_out, l);
1885 test = isl_basic_map_order_ge(test, isl_dim_in, depth,
1886 isl_dim_out, depth);
1887 empty = isl_basic_map_is_empty(test);
1888 isl_basic_map_free(test);
1890 return isl_bool_not(empty);
1893 /* Split up each element of "list" into a part that is related to "bset"
1894 * according to "gt" and a part that is not.
1895 * Return a list that consist of "bset" and all the pieces.
1897 static __isl_give isl_basic_set_list *add_split_on(
1898 __isl_take isl_basic_set_list *list, __isl_take isl_basic_set *bset,
1899 __isl_keep isl_basic_map *gt)
1901 int i;
1902 isl_size n;
1903 isl_basic_set_list *res;
1905 n = isl_basic_set_list_n_basic_set(list);
1906 if (n < 0)
1907 bset = isl_basic_set_free(bset);
1909 gt = isl_basic_map_copy(gt);
1910 gt = isl_basic_map_intersect_domain(gt, isl_basic_set_copy(bset));
1911 res = isl_basic_set_list_from_basic_set(bset);
1912 for (i = 0; res && i < n; ++i) {
1913 isl_basic_set *bset;
1914 isl_set *set1, *set2;
1915 isl_basic_map *bmap;
1916 int empty;
1918 bset = isl_basic_set_list_get_basic_set(list, i);
1919 bmap = isl_basic_map_copy(gt);
1920 bmap = isl_basic_map_intersect_range(bmap, bset);
1921 bset = isl_basic_map_range(bmap);
1922 empty = isl_basic_set_is_empty(bset);
1923 if (empty < 0)
1924 res = isl_basic_set_list_free(res);
1925 if (empty) {
1926 isl_basic_set_free(bset);
1927 bset = isl_basic_set_list_get_basic_set(list, i);
1928 res = isl_basic_set_list_add(res, bset);
1929 continue;
1932 res = isl_basic_set_list_add(res, isl_basic_set_copy(bset));
1933 set1 = isl_set_from_basic_set(bset);
1934 bset = isl_basic_set_list_get_basic_set(list, i);
1935 set2 = isl_set_from_basic_set(bset);
1936 set1 = isl_set_subtract(set2, set1);
1937 set1 = isl_set_make_disjoint(set1);
1939 res = isl_basic_set_list_concat(res,
1940 isl_basic_set_list_from_set(set1));
1942 isl_basic_map_free(gt);
1943 isl_basic_set_list_free(list);
1944 return res;
1947 static __isl_give isl_ast_graft_list *generate_sorted_domains(
1948 __isl_keep isl_basic_set_list *domain_list,
1949 __isl_keep isl_union_map *executed,
1950 __isl_keep isl_ast_build *build);
1952 /* Internal data structure for add_nodes.
1954 * "executed" and "build" are extra arguments to be passed to add_node.
1955 * "list" collects the results.
1957 struct isl_add_nodes_data {
1958 isl_union_map *executed;
1959 isl_ast_build *build;
1961 isl_ast_graft_list *list;
1964 /* Generate code for the schedule domains in "scc"
1965 * and add the results to "list".
1967 * The domains in "scc" form a strongly connected component in the ordering.
1968 * If the number of domains in "scc" is larger than 1, then this means
1969 * that we cannot determine a valid ordering for the domains in the component.
1970 * This should be fairly rare because the individual domains
1971 * have been made disjoint first.
1972 * The problem is that the domains may be integrally disjoint but not
1973 * rationally disjoint. For example, we may have domains
1975 * { [i,i] : 0 <= i <= 1 } and { [i,1-i] : 0 <= i <= 1 }
1977 * These two domains have an empty intersection, but their rational
1978 * relaxations do intersect. It is impossible to order these domains
1979 * in the second dimension because the first should be ordered before
1980 * the second for outer dimension equal to 0, while it should be ordered
1981 * after for outer dimension equal to 1.
1983 * This may happen in particular in case of unrolling since the domain
1984 * of each slice is replaced by its simple hull.
1986 * For each basic set i in "scc" and for each of the following basic sets j,
1987 * we split off that part of the basic set i that shares the outer dimensions
1988 * with j and lies before j in the current dimension.
1989 * We collect all the pieces in a new list that replaces "scc".
1991 * While the elements in "scc" should be disjoint, we double-check
1992 * this property to avoid running into an infinite recursion in case
1993 * they intersect due to some internal error.
1995 static isl_stat add_nodes(__isl_take isl_basic_set_list *scc, void *user)
1997 struct isl_add_nodes_data *data = user;
1998 int i;
1999 isl_size depth;
2000 isl_size n;
2001 isl_basic_set *bset, *first;
2002 isl_basic_set_list *list;
2003 isl_space *space;
2004 isl_basic_map *gt;
2006 n = isl_basic_set_list_n_basic_set(scc);
2007 if (n < 0)
2008 goto error;
2009 bset = isl_basic_set_list_get_basic_set(scc, 0);
2010 if (n == 1) {
2011 isl_basic_set_list_free(scc);
2012 data->list = add_node(data->list,
2013 isl_union_map_copy(data->executed), bset,
2014 isl_ast_build_copy(data->build));
2015 return data->list ? isl_stat_ok : isl_stat_error;
2018 depth = isl_ast_build_get_depth(data->build);
2019 if (depth < 0)
2020 bset = isl_basic_set_free(bset);
2021 space = isl_basic_set_get_space(bset);
2022 space = isl_space_map_from_set(space);
2023 gt = isl_basic_map_universe(space);
2024 for (i = 0; i < depth; ++i)
2025 gt = isl_basic_map_equate(gt, isl_dim_in, i, isl_dim_out, i);
2026 gt = isl_basic_map_order_gt(gt, isl_dim_in, depth, isl_dim_out, depth);
2028 first = isl_basic_set_copy(bset);
2029 list = isl_basic_set_list_from_basic_set(bset);
2030 for (i = 1; i < n; ++i) {
2031 int disjoint;
2033 bset = isl_basic_set_list_get_basic_set(scc, i);
2035 disjoint = isl_basic_set_is_disjoint(bset, first);
2036 if (disjoint < 0)
2037 list = isl_basic_set_list_free(list);
2038 else if (!disjoint)
2039 isl_die(isl_basic_set_list_get_ctx(scc),
2040 isl_error_internal,
2041 "basic sets in scc are assumed to be disjoint",
2042 list = isl_basic_set_list_free(list));
2044 list = add_split_on(list, bset, gt);
2046 isl_basic_set_free(first);
2047 isl_basic_map_free(gt);
2048 isl_basic_set_list_free(scc);
2049 scc = list;
2050 data->list = isl_ast_graft_list_concat(data->list,
2051 generate_sorted_domains(scc, data->executed, data->build));
2052 isl_basic_set_list_free(scc);
2054 return data->list ? isl_stat_ok : isl_stat_error;
2055 error:
2056 isl_basic_set_list_free(scc);
2057 return isl_stat_error;
2060 /* Sort the domains in "domain_list" according to the execution order
2061 * at the current depth (for equal values of the outer dimensions),
2062 * generate code for each of them, collecting the results in a list.
2063 * If no code is generated (because the intersection of the inverse schedule
2064 * with the domains turns out to be empty), then an empty list is returned.
2066 * The caller is responsible for ensuring that the basic sets in "domain_list"
2067 * are pair-wise disjoint. It can, however, in principle happen that
2068 * two basic sets should be ordered one way for one value of the outer
2069 * dimensions and the other way for some other value of the outer dimensions.
2070 * We therefore play safe and look for strongly connected components.
2071 * The function add_nodes takes care of handling non-trivial components.
2073 static __isl_give isl_ast_graft_list *generate_sorted_domains(
2074 __isl_keep isl_basic_set_list *domain_list,
2075 __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
2077 isl_ctx *ctx;
2078 struct isl_add_nodes_data data;
2079 isl_size depth;
2080 isl_size n;
2082 n = isl_basic_set_list_n_basic_set(domain_list);
2083 if (n < 0)
2084 return NULL;
2086 ctx = isl_basic_set_list_get_ctx(domain_list);
2087 data.list = isl_ast_graft_list_alloc(ctx, n);
2088 if (n == 0)
2089 return data.list;
2090 if (n == 1)
2091 return add_node(data.list, isl_union_map_copy(executed),
2092 isl_basic_set_list_get_basic_set(domain_list, 0),
2093 isl_ast_build_copy(build));
2095 depth = isl_ast_build_get_depth(build);
2096 data.executed = executed;
2097 data.build = build;
2098 if (depth < 0 || isl_basic_set_list_foreach_scc(domain_list,
2099 &domain_follows_at_depth, &depth,
2100 &add_nodes, &data) < 0)
2101 data.list = isl_ast_graft_list_free(data.list);
2103 return data.list;
2106 /* Do i and j share any values for the outer dimensions?
2108 static isl_bool shared_outer(__isl_keep isl_basic_set *i,
2109 __isl_keep isl_basic_set *j, void *user)
2111 int depth = *(int *) user;
2112 isl_basic_map *test;
2113 isl_bool empty;
2114 int l;
2116 test = isl_basic_map_from_domain_and_range(isl_basic_set_copy(i),
2117 isl_basic_set_copy(j));
2118 for (l = 0; l < depth; ++l)
2119 test = isl_basic_map_equate(test, isl_dim_in, l,
2120 isl_dim_out, l);
2121 empty = isl_basic_map_is_empty(test);
2122 isl_basic_map_free(test);
2124 return isl_bool_not(empty);
2127 /* Internal data structure for generate_sorted_domains_wrap.
2129 * "n" is the total number of basic sets
2130 * "executed" and "build" are extra arguments to be passed
2131 * to generate_sorted_domains.
2133 * "single" is set to 1 by generate_sorted_domains_wrap if there
2134 * is only a single component.
2135 * "list" collects the results.
2137 struct isl_ast_generate_parallel_domains_data {
2138 isl_size n;
2139 isl_union_map *executed;
2140 isl_ast_build *build;
2142 int single;
2143 isl_ast_graft_list *list;
2146 /* Call generate_sorted_domains on "scc", fuse the result into a list
2147 * with either zero or one graft and collect the these single element
2148 * lists into data->list.
2150 * If there is only one component, i.e., if the number of basic sets
2151 * in the current component is equal to the total number of basic sets,
2152 * then data->single is set to 1 and the result of generate_sorted_domains
2153 * is not fused.
2155 static isl_stat generate_sorted_domains_wrap(__isl_take isl_basic_set_list *scc,
2156 void *user)
2158 struct isl_ast_generate_parallel_domains_data *data = user;
2159 isl_ast_graft_list *list;
2160 isl_size n;
2162 n = isl_basic_set_list_n_basic_set(scc);
2163 if (n < 0)
2164 scc = isl_basic_set_list_free(scc);
2165 list = generate_sorted_domains(scc, data->executed, data->build);
2166 data->single = n == data->n;
2167 if (!data->single)
2168 list = isl_ast_graft_list_fuse(list, data->build);
2169 if (!data->list)
2170 data->list = list;
2171 else
2172 data->list = isl_ast_graft_list_concat(data->list, list);
2174 isl_basic_set_list_free(scc);
2175 if (!data->list)
2176 return isl_stat_error;
2178 return isl_stat_ok;
2181 /* Look for any (weakly connected) components in the "domain_list"
2182 * of domains that share some values of the outer dimensions.
2183 * That is, domains in different components do not share any values
2184 * of the outer dimensions. This means that these components
2185 * can be freely reordered.
2186 * Within each of the components, we sort the domains according
2187 * to the execution order at the current depth.
2189 * If there is more than one component, then generate_sorted_domains_wrap
2190 * fuses the result of each call to generate_sorted_domains
2191 * into a list with either zero or one graft and collects these (at most)
2192 * single element lists into a bigger list. This means that the elements of the
2193 * final list can be freely reordered. In particular, we sort them
2194 * according to an arbitrary but fixed ordering to ease merging of
2195 * graft lists from different components.
2197 static __isl_give isl_ast_graft_list *generate_parallel_domains(
2198 __isl_keep isl_basic_set_list *domain_list,
2199 __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
2201 isl_size depth;
2202 struct isl_ast_generate_parallel_domains_data data;
2204 data.n = isl_basic_set_list_n_basic_set(domain_list);
2205 if (data.n < 0)
2206 return NULL;
2208 if (data.n <= 1)
2209 return generate_sorted_domains(domain_list, executed, build);
2211 depth = isl_ast_build_get_depth(build);
2212 if (depth < 0)
2213 return NULL;
2214 data.list = NULL;
2215 data.executed = executed;
2216 data.build = build;
2217 data.single = 0;
2218 if (isl_basic_set_list_foreach_scc(domain_list, &shared_outer, &depth,
2219 &generate_sorted_domains_wrap,
2220 &data) < 0)
2221 data.list = isl_ast_graft_list_free(data.list);
2223 if (!data.single)
2224 data.list = isl_ast_graft_list_sort_guard(data.list);
2226 return data.list;
2229 /* Internal data for separate_domain.
2231 * "explicit" is set if we only want to use explicit bounds.
2233 * "domain" collects the separated domains.
2235 struct isl_separate_domain_data {
2236 isl_ast_build *build;
2237 int explicit;
2238 isl_set *domain;
2241 /* Extract implicit bounds on the current dimension for the executed "map".
2243 * The domain of "map" may involve inner dimensions, so we
2244 * need to eliminate them.
2246 static __isl_give isl_set *implicit_bounds(__isl_take isl_map *map,
2247 __isl_keep isl_ast_build *build)
2249 isl_set *domain;
2251 domain = isl_map_domain(map);
2252 domain = isl_ast_build_eliminate(build, domain);
2254 return domain;
2257 /* Extract explicit bounds on the current dimension for the executed "map".
2259 * Rather than eliminating the inner dimensions as in implicit_bounds,
2260 * we simply drop any constraints involving those inner dimensions.
2261 * The idea is that most bounds that are implied by constraints on the
2262 * inner dimensions will be enforced by for loops and not by explicit guards.
2263 * There is then no need to separate along those bounds.
2265 static __isl_give isl_set *explicit_bounds(__isl_take isl_map *map,
2266 __isl_keep isl_ast_build *build)
2268 isl_set *domain;
2269 isl_size depth;
2270 isl_size dim;
2272 depth = isl_ast_build_get_depth(build);
2273 dim = isl_map_dim(map, isl_dim_out);
2274 if (depth < 0 || dim < 0)
2275 return isl_map_domain(isl_map_free(map));
2276 map = isl_map_drop_constraints_involving_dims(map, isl_dim_out, 0, dim);
2278 domain = isl_map_domain(map);
2279 dim = isl_set_dim(domain, isl_dim_set);
2280 domain = isl_set_detect_equalities(domain);
2281 domain = isl_set_drop_constraints_involving_dims(domain,
2282 isl_dim_set, depth + 1, dim - (depth + 1));
2283 domain = isl_set_remove_divs_involving_dims(domain,
2284 isl_dim_set, depth, 1);
2285 domain = isl_set_remove_unknown_divs(domain);
2287 return domain;
2290 /* Split data->domain into pieces that intersect with the range of "map"
2291 * and pieces that do not intersect with the range of "map"
2292 * and then add that part of the range of "map" that does not intersect
2293 * with data->domain.
2295 static isl_stat separate_domain(__isl_take isl_map *map, void *user)
2297 struct isl_separate_domain_data *data = user;
2298 isl_set *domain;
2299 isl_set *d1, *d2;
2301 if (data->explicit)
2302 domain = explicit_bounds(map, data->build);
2303 else
2304 domain = implicit_bounds(map, data->build);
2306 domain = isl_set_coalesce(domain);
2307 domain = isl_set_make_disjoint(domain);
2308 d1 = isl_set_subtract(isl_set_copy(domain), isl_set_copy(data->domain));
2309 d2 = isl_set_subtract(isl_set_copy(data->domain), isl_set_copy(domain));
2310 data->domain = isl_set_intersect(data->domain, domain);
2311 data->domain = isl_set_union(data->domain, d1);
2312 data->domain = isl_set_union(data->domain, d2);
2314 return isl_stat_ok;
2317 /* Separate the schedule domains of "executed".
2319 * That is, break up the domain of "executed" into basic sets,
2320 * such that for each basic set S, every element in S is associated with
2321 * the same domain spaces.
2323 * "space" is the (single) domain space of "executed".
2325 static __isl_give isl_set *separate_schedule_domains(
2326 __isl_take isl_space *space, __isl_take isl_union_map *executed,
2327 __isl_keep isl_ast_build *build)
2329 struct isl_separate_domain_data data = { build };
2330 isl_ctx *ctx;
2332 ctx = isl_ast_build_get_ctx(build);
2333 data.explicit = isl_options_get_ast_build_separation_bounds(ctx) ==
2334 ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT;
2335 data.domain = isl_set_empty(space);
2336 if (isl_union_map_foreach_map(executed, &separate_domain, &data) < 0)
2337 data.domain = isl_set_free(data.domain);
2339 isl_union_map_free(executed);
2340 return data.domain;
2343 /* Temporary data used during the search for a lower bound for unrolling.
2345 * "build" is the build in which the unrolling will be performed
2346 * "domain" is the original set for which to find a lower bound
2347 * "depth" is the dimension for which to find a lower boudn
2348 * "expansion" is the expansion that needs to be applied to "domain"
2349 * in the unrolling that will be performed
2351 * "lower" is the best lower bound found so far. It is NULL if we have not
2352 * found any yet.
2353 * "n" is the corresponding size. If lower is NULL, then the value of n
2354 * is undefined.
2355 * "n_div" is the maximal number of integer divisions in the first
2356 * unrolled iteration (after expansion). It is set to -1 if it hasn't
2357 * been computed yet.
2359 struct isl_find_unroll_data {
2360 isl_ast_build *build;
2361 isl_set *domain;
2362 int depth;
2363 isl_basic_map *expansion;
2365 isl_aff *lower;
2366 int *n;
2367 int n_div;
2370 /* Return the constraint
2372 * i_"depth" = aff + offset
2374 static __isl_give isl_constraint *at_offset(int depth, __isl_keep isl_aff *aff,
2375 int offset)
2377 aff = isl_aff_copy(aff);
2378 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, depth, -1);
2379 aff = isl_aff_add_constant_si(aff, offset);
2380 return isl_equality_from_aff(aff);
2383 /* Update *user to the number of integer divisions in the first element
2384 * of "ma", if it is larger than the current value.
2386 static isl_stat update_n_div(__isl_take isl_set *set,
2387 __isl_take isl_multi_aff *ma, void *user)
2389 isl_aff *aff;
2390 int *n = user;
2391 isl_size n_div;
2393 aff = isl_multi_aff_get_aff(ma, 0);
2394 n_div = isl_aff_dim(aff, isl_dim_div);
2395 isl_aff_free(aff);
2396 isl_multi_aff_free(ma);
2397 isl_set_free(set);
2399 if (n_div > *n)
2400 *n = n_div;
2402 return n_div >= 0 ? isl_stat_ok : isl_stat_error;
2405 /* Get the number of integer divisions in the expression for the iterator
2406 * value at the first slice in the unrolling based on lower bound "lower",
2407 * taking into account the expansion that needs to be performed on this slice.
2409 static int get_expanded_n_div(struct isl_find_unroll_data *data,
2410 __isl_keep isl_aff *lower)
2412 isl_constraint *c;
2413 isl_set *set;
2414 isl_map *it_map, *expansion;
2415 isl_pw_multi_aff *pma;
2416 int n;
2418 c = at_offset(data->depth, lower, 0);
2419 set = isl_set_copy(data->domain);
2420 set = isl_set_add_constraint(set, c);
2421 expansion = isl_map_from_basic_map(isl_basic_map_copy(data->expansion));
2422 set = isl_set_apply(set, expansion);
2423 it_map = isl_ast_build_map_to_iterator(data->build, set);
2424 pma = isl_pw_multi_aff_from_map(it_map);
2425 n = 0;
2426 if (isl_pw_multi_aff_foreach_piece(pma, &update_n_div, &n) < 0)
2427 n = -1;
2428 isl_pw_multi_aff_free(pma);
2430 return n;
2433 /* Is the lower bound "lower" with corresponding iteration count "n"
2434 * better than the one stored in "data"?
2435 * If there is no upper bound on the iteration count ("n" is infinity) or
2436 * if the count is too large, then we cannot use this lower bound.
2437 * Otherwise, if there was no previous lower bound or
2438 * if the iteration count of the new lower bound is smaller than
2439 * the iteration count of the previous lower bound, then we consider
2440 * the new lower bound to be better.
2441 * If the iteration count is the same, then compare the number
2442 * of integer divisions that would be needed to express
2443 * the iterator value at the first slice in the unrolling
2444 * according to the lower bound. If we end up computing this
2445 * number, then store the lowest value in data->n_div.
2447 static int is_better_lower_bound(struct isl_find_unroll_data *data,
2448 __isl_keep isl_aff *lower, __isl_keep isl_val *n)
2450 int cmp;
2451 int n_div;
2453 if (!n)
2454 return -1;
2455 if (isl_val_is_infty(n))
2456 return 0;
2457 if (isl_val_cmp_si(n, INT_MAX) > 0)
2458 return 0;
2459 if (!data->lower)
2460 return 1;
2461 cmp = isl_val_cmp_si(n, *data->n);
2462 if (cmp < 0)
2463 return 1;
2464 if (cmp > 0)
2465 return 0;
2466 if (data->n_div < 0)
2467 data->n_div = get_expanded_n_div(data, data->lower);
2468 if (data->n_div < 0)
2469 return -1;
2470 if (data->n_div == 0)
2471 return 0;
2472 n_div = get_expanded_n_div(data, lower);
2473 if (n_div < 0)
2474 return -1;
2475 if (n_div >= data->n_div)
2476 return 0;
2477 data->n_div = n_div;
2479 return 1;
2482 /* Check if we can use "c" as a lower bound and if it is better than
2483 * any previously found lower bound.
2485 * If "c" does not involve the dimension at the current depth,
2486 * then we cannot use it.
2487 * Otherwise, let "c" be of the form
2489 * i >= f(j)/a
2491 * We compute the maximal value of
2493 * -ceil(f(j)/a)) + i + 1
2495 * over the domain. If there is such a value "n", then we know
2497 * -ceil(f(j)/a)) + i + 1 <= n
2499 * or
2501 * i < ceil(f(j)/a)) + n
2503 * meaning that we can use ceil(f(j)/a)) as a lower bound for unrolling.
2504 * We just need to check if we have found any lower bound before and
2505 * if the new lower bound is better (smaller n or fewer integer divisions)
2506 * than the previously found lower bounds.
2508 static isl_stat update_unrolling_lower_bound(struct isl_find_unroll_data *data,
2509 __isl_keep isl_constraint *c)
2511 isl_aff *aff, *lower;
2512 isl_val *max;
2513 int better;
2515 if (!isl_constraint_is_lower_bound(c, isl_dim_set, data->depth))
2516 return isl_stat_ok;
2518 lower = isl_constraint_get_bound(c, isl_dim_set, data->depth);
2519 lower = isl_aff_ceil(lower);
2520 aff = isl_aff_copy(lower);
2521 aff = isl_aff_neg(aff);
2522 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, data->depth, 1);
2523 aff = isl_aff_add_constant_si(aff, 1);
2524 max = isl_set_max_val(data->domain, aff);
2525 isl_aff_free(aff);
2527 better = is_better_lower_bound(data, lower, max);
2528 if (better < 0 || !better) {
2529 isl_val_free(max);
2530 isl_aff_free(lower);
2531 return better < 0 ? isl_stat_error : isl_stat_ok;
2534 isl_aff_free(data->lower);
2535 data->lower = lower;
2536 *data->n = isl_val_get_num_si(max);
2537 isl_val_free(max);
2539 return isl_stat_ok;
2542 /* Check if we can use "c" as a lower bound and if it is better than
2543 * any previously found lower bound.
2545 static isl_stat constraint_find_unroll(__isl_take isl_constraint *c, void *user)
2547 struct isl_find_unroll_data *data;
2548 isl_stat r;
2550 data = (struct isl_find_unroll_data *) user;
2551 r = update_unrolling_lower_bound(data, c);
2552 isl_constraint_free(c);
2554 return r;
2557 /* Look for a lower bound l(i) on the dimension at "depth"
2558 * and a size n such that "domain" is a subset of
2560 * { [i] : l(i) <= i_d < l(i) + n }
2562 * where d is "depth" and l(i) depends only on earlier dimensions.
2563 * Furthermore, try and find a lower bound such that n is as small as possible.
2564 * In particular, "n" needs to be finite.
2565 * "build" is the build in which the unrolling will be performed.
2566 * "expansion" is the expansion that needs to be applied to "domain"
2567 * in the unrolling that will be performed.
2569 * Inner dimensions have been eliminated from "domain" by the caller.
2571 * We first construct a collection of lower bounds on the input set
2572 * by computing its simple hull. We then iterate through them,
2573 * discarding those that we cannot use (either because they do not
2574 * involve the dimension at "depth" or because they have no corresponding
2575 * upper bound, meaning that "n" would be unbounded) and pick out the
2576 * best from the remaining ones.
2578 * If we cannot find a suitable lower bound, then we consider that
2579 * to be an error.
2581 static __isl_give isl_aff *find_unroll_lower_bound(
2582 __isl_keep isl_ast_build *build, __isl_keep isl_set *domain,
2583 int depth, __isl_keep isl_basic_map *expansion, int *n)
2585 struct isl_find_unroll_data data =
2586 { build, domain, depth, expansion, NULL, n, -1 };
2587 isl_basic_set *hull;
2589 hull = isl_set_simple_hull(isl_set_copy(domain));
2591 if (isl_basic_set_foreach_constraint(hull,
2592 &constraint_find_unroll, &data) < 0)
2593 goto error;
2595 isl_basic_set_free(hull);
2597 if (!data.lower)
2598 isl_die(isl_set_get_ctx(domain), isl_error_invalid,
2599 "cannot find lower bound for unrolling", return NULL);
2601 return data.lower;
2602 error:
2603 isl_basic_set_free(hull);
2604 return isl_aff_free(data.lower);
2607 /* Call "fn" on each iteration of the current dimension of "domain".
2608 * If "init" is not NULL, then it is called with the number of
2609 * iterations before any call to "fn".
2610 * Return -1 on failure.
2612 * Since we are going to be iterating over the individual values,
2613 * we first check if there are any strides on the current dimension.
2614 * If there is, we rewrite the current dimension i as
2616 * i = stride i' + offset
2618 * and then iterate over individual values of i' instead.
2620 * We then look for a lower bound on i' and a size such that the domain
2621 * is a subset of
2623 * { [j,i'] : l(j) <= i' < l(j) + n }
2625 * and then take slices of the domain at values of i'
2626 * between l(j) and l(j) + n - 1.
2628 * We compute the unshifted simple hull of each slice to ensure that
2629 * we have a single basic set per offset. The slicing constraint
2630 * may get simplified away before the unshifted simple hull is taken
2631 * and may therefore in some rare cases disappear from the result.
2632 * We therefore explicitly add the constraint back after computing
2633 * the unshifted simple hull to ensure that the basic sets
2634 * remain disjoint. The constraints that are dropped by taking the hull
2635 * will be taken into account at the next level, as in the case of the
2636 * atomic option.
2638 * Finally, we map i' back to i and call "fn".
2640 static int foreach_iteration(__isl_take isl_set *domain,
2641 __isl_keep isl_ast_build *build, int (*init)(int n, void *user),
2642 int (*fn)(__isl_take isl_basic_set *bset, void *user), void *user)
2644 int i, n;
2645 isl_bool empty;
2646 isl_size depth;
2647 isl_multi_aff *expansion;
2648 isl_basic_map *bmap;
2649 isl_aff *lower = NULL;
2650 isl_ast_build *stride_build;
2652 depth = isl_ast_build_get_depth(build);
2653 if (depth < 0)
2654 domain = isl_set_free(domain);
2656 domain = isl_ast_build_eliminate_inner(build, domain);
2657 domain = isl_set_intersect(domain, isl_ast_build_get_domain(build));
2658 stride_build = isl_ast_build_copy(build);
2659 stride_build = isl_ast_build_detect_strides(stride_build,
2660 isl_set_copy(domain));
2661 expansion = isl_ast_build_get_stride_expansion(stride_build);
2663 domain = isl_set_preimage_multi_aff(domain,
2664 isl_multi_aff_copy(expansion));
2665 domain = isl_ast_build_eliminate_divs(stride_build, domain);
2666 isl_ast_build_free(stride_build);
2668 bmap = isl_basic_map_from_multi_aff(expansion);
2670 empty = isl_set_is_empty(domain);
2671 if (empty < 0) {
2672 n = -1;
2673 } else if (empty) {
2674 n = 0;
2675 } else {
2676 lower = find_unroll_lower_bound(build, domain, depth, bmap, &n);
2677 if (!lower)
2678 n = -1;
2680 if (n >= 0 && init && init(n, user) < 0)
2681 n = -1;
2682 for (i = 0; i < n; ++i) {
2683 isl_set *set;
2684 isl_basic_set *bset;
2685 isl_constraint *slice;
2687 slice = at_offset(depth, lower, i);
2688 set = isl_set_copy(domain);
2689 set = isl_set_add_constraint(set, isl_constraint_copy(slice));
2690 bset = isl_set_unshifted_simple_hull(set);
2691 bset = isl_basic_set_add_constraint(bset, slice);
2692 bset = isl_basic_set_apply(bset, isl_basic_map_copy(bmap));
2694 if (fn(bset, user) < 0)
2695 break;
2698 isl_aff_free(lower);
2699 isl_set_free(domain);
2700 isl_basic_map_free(bmap);
2702 return n < 0 || i < n ? -1 : 0;
2705 /* Data structure for storing the results and the intermediate objects
2706 * of compute_domains.
2708 * "list" is the main result of the function and contains a list
2709 * of disjoint basic sets for which code should be generated.
2711 * "executed" and "build" are inputs to compute_domains.
2712 * "schedule_domain" is the domain of "executed".
2714 * "option" contains the domains at the current depth that should by
2715 * atomic, separated or unrolled. These domains are as specified by
2716 * the user, except that inner dimensions have been eliminated and
2717 * that they have been made pair-wise disjoint.
2719 * "sep_class" contains the user-specified split into separation classes
2720 * specialized to the current depth.
2721 * "done" contains the union of the separation domains that have already
2722 * been handled.
2724 struct isl_codegen_domains {
2725 isl_basic_set_list *list;
2727 isl_union_map *executed;
2728 isl_ast_build *build;
2729 isl_set *schedule_domain;
2731 isl_set *option[4];
2733 isl_map *sep_class;
2734 isl_set *done;
2737 /* Internal data structure for do_unroll.
2739 * "domains" stores the results of compute_domains.
2740 * "class_domain" is the original class domain passed to do_unroll.
2741 * "unroll_domain" collects the unrolled iterations.
2743 struct isl_ast_unroll_data {
2744 struct isl_codegen_domains *domains;
2745 isl_set *class_domain;
2746 isl_set *unroll_domain;
2749 /* Given an iteration of an unrolled domain represented by "bset",
2750 * add it to data->domains->list.
2751 * Since we may have dropped some constraints, we intersect with
2752 * the class domain again to ensure that each element in the list
2753 * is disjoint from the other class domains.
2755 static int do_unroll_iteration(__isl_take isl_basic_set *bset, void *user)
2757 struct isl_ast_unroll_data *data = user;
2758 isl_set *set;
2759 isl_basic_set_list *list;
2761 set = isl_set_from_basic_set(bset);
2762 data->unroll_domain = isl_set_union(data->unroll_domain,
2763 isl_set_copy(set));
2764 set = isl_set_intersect(set, isl_set_copy(data->class_domain));
2765 set = isl_set_make_disjoint(set);
2766 list = isl_basic_set_list_from_set(set);
2767 data->domains->list = isl_basic_set_list_concat(data->domains->list,
2768 list);
2770 return 0;
2773 /* Extend domains->list with a list of basic sets, one for each value
2774 * of the current dimension in "domain" and remove the corresponding
2775 * sets from the class domain. Return the updated class domain.
2776 * The divs that involve the current dimension have not been projected out
2777 * from this domain.
2779 * We call foreach_iteration to iterate over the individual values and
2780 * in do_unroll_iteration we collect the individual basic sets in
2781 * domains->list and their union in data->unroll_domain, which is then
2782 * used to update the class domain.
2784 static __isl_give isl_set *do_unroll(struct isl_codegen_domains *domains,
2785 __isl_take isl_set *domain, __isl_take isl_set *class_domain)
2787 struct isl_ast_unroll_data data;
2789 if (!domain)
2790 return isl_set_free(class_domain);
2791 if (!class_domain)
2792 return isl_set_free(domain);
2794 data.domains = domains;
2795 data.class_domain = class_domain;
2796 data.unroll_domain = isl_set_empty(isl_set_get_space(domain));
2798 if (foreach_iteration(domain, domains->build, NULL,
2799 &do_unroll_iteration, &data) < 0)
2800 data.unroll_domain = isl_set_free(data.unroll_domain);
2802 class_domain = isl_set_subtract(class_domain, data.unroll_domain);
2804 return class_domain;
2807 /* Add domains to domains->list for each individual value of the current
2808 * dimension, for that part of the schedule domain that lies in the
2809 * intersection of the option domain and the class domain.
2810 * Remove the corresponding sets from the class domain and
2811 * return the updated class domain.
2813 * We first break up the unroll option domain into individual pieces
2814 * and then handle each of them separately. The unroll option domain
2815 * has been made disjoint in compute_domains_init_options,
2817 * Note that we actively want to combine different pieces of the
2818 * schedule domain that have the same value at the current dimension.
2819 * We therefore need to break up the unroll option domain before
2820 * intersecting with class and schedule domain, hoping that the
2821 * unroll option domain specified by the user is relatively simple.
2823 static __isl_give isl_set *compute_unroll_domains(
2824 struct isl_codegen_domains *domains, __isl_take isl_set *class_domain)
2826 isl_set *unroll_domain;
2827 isl_basic_set_list *unroll_list;
2828 int i;
2829 isl_size n;
2830 isl_bool empty;
2832 empty = isl_set_is_empty(domains->option[isl_ast_loop_unroll]);
2833 if (empty < 0)
2834 return isl_set_free(class_domain);
2835 if (empty)
2836 return class_domain;
2838 unroll_domain = isl_set_copy(domains->option[isl_ast_loop_unroll]);
2839 unroll_list = isl_basic_set_list_from_set(unroll_domain);
2841 n = isl_basic_set_list_n_basic_set(unroll_list);
2842 if (n < 0)
2843 class_domain = isl_set_free(class_domain);
2844 for (i = 0; i < n; ++i) {
2845 isl_basic_set *bset;
2847 bset = isl_basic_set_list_get_basic_set(unroll_list, i);
2848 unroll_domain = isl_set_from_basic_set(bset);
2849 unroll_domain = isl_set_intersect(unroll_domain,
2850 isl_set_copy(class_domain));
2851 unroll_domain = isl_set_intersect(unroll_domain,
2852 isl_set_copy(domains->schedule_domain));
2854 empty = isl_set_is_empty(unroll_domain);
2855 if (empty >= 0 && empty) {
2856 isl_set_free(unroll_domain);
2857 continue;
2860 class_domain = do_unroll(domains, unroll_domain, class_domain);
2863 isl_basic_set_list_free(unroll_list);
2865 return class_domain;
2868 /* Try and construct a single basic set that includes the intersection of
2869 * the schedule domain, the atomic option domain and the class domain.
2870 * Add the resulting basic set(s) to domains->list and remove them
2871 * from class_domain. Return the updated class domain.
2873 * We construct a single domain rather than trying to combine
2874 * the schedule domains of individual domains because we are working
2875 * within a single component so that non-overlapping schedule domains
2876 * should already have been separated.
2877 * We do however need to make sure that this single domains is a subset
2878 * of the class domain so that it would not intersect with any other
2879 * class domains. This means that we may end up splitting up the atomic
2880 * domain in case separation classes are being used.
2882 * "domain" is the intersection of the schedule domain and the class domain,
2883 * with inner dimensions projected out.
2885 static __isl_give isl_set *compute_atomic_domain(
2886 struct isl_codegen_domains *domains, __isl_take isl_set *class_domain)
2888 isl_basic_set *bset;
2889 isl_basic_set_list *list;
2890 isl_set *domain, *atomic_domain;
2891 int empty;
2893 domain = isl_set_copy(domains->option[isl_ast_loop_atomic]);
2894 domain = isl_set_intersect(domain, isl_set_copy(class_domain));
2895 domain = isl_set_intersect(domain,
2896 isl_set_copy(domains->schedule_domain));
2897 empty = isl_set_is_empty(domain);
2898 if (empty < 0)
2899 class_domain = isl_set_free(class_domain);
2900 if (empty) {
2901 isl_set_free(domain);
2902 return class_domain;
2905 domain = isl_ast_build_eliminate(domains->build, domain);
2906 domain = isl_set_coalesce_preserve(domain);
2907 bset = isl_set_unshifted_simple_hull(domain);
2908 domain = isl_set_from_basic_set(bset);
2909 atomic_domain = isl_set_copy(domain);
2910 domain = isl_set_intersect(domain, isl_set_copy(class_domain));
2911 class_domain = isl_set_subtract(class_domain, atomic_domain);
2912 domain = isl_set_make_disjoint(domain);
2913 list = isl_basic_set_list_from_set(domain);
2914 domains->list = isl_basic_set_list_concat(domains->list, list);
2916 return class_domain;
2919 /* Split up the schedule domain into uniform basic sets,
2920 * in the sense that each element in a basic set is associated to
2921 * elements of the same domains, and add the result to domains->list.
2922 * Do this for that part of the schedule domain that lies in the
2923 * intersection of "class_domain" and the separate option domain.
2925 * "class_domain" may or may not include the constraints
2926 * of the schedule domain, but this does not make a difference
2927 * since we are going to intersect it with the domain of the inverse schedule.
2928 * If it includes schedule domain constraints, then they may involve
2929 * inner dimensions, but we will eliminate them in separation_domain.
2931 static int compute_separate_domain(struct isl_codegen_domains *domains,
2932 __isl_keep isl_set *class_domain)
2934 isl_space *space;
2935 isl_set *domain;
2936 isl_union_map *executed;
2937 isl_basic_set_list *list;
2938 int empty;
2940 domain = isl_set_copy(domains->option[isl_ast_loop_separate]);
2941 domain = isl_set_intersect(domain, isl_set_copy(class_domain));
2942 executed = isl_union_map_copy(domains->executed);
2943 executed = isl_union_map_intersect_domain(executed,
2944 isl_union_set_from_set(domain));
2945 empty = isl_union_map_is_empty(executed);
2946 if (empty < 0 || empty) {
2947 isl_union_map_free(executed);
2948 return empty < 0 ? -1 : 0;
2951 space = isl_set_get_space(class_domain);
2952 domain = separate_schedule_domains(space, executed, domains->build);
2954 list = isl_basic_set_list_from_set(domain);
2955 domains->list = isl_basic_set_list_concat(domains->list, list);
2957 return 0;
2960 /* Split up the domain at the current depth into disjoint
2961 * basic sets for which code should be generated separately
2962 * for the given separation class domain.
2964 * If any separation classes have been defined, then "class_domain"
2965 * is the domain of the current class and does not refer to inner dimensions.
2966 * Otherwise, "class_domain" is the universe domain.
2968 * We first make sure that the class domain is disjoint from
2969 * previously considered class domains.
2971 * The separate domains can be computed directly from the "class_domain".
2973 * The unroll, atomic and remainder domains need the constraints
2974 * from the schedule domain.
2976 * For unrolling, the actual schedule domain is needed (with divs that
2977 * may refer to the current dimension) so that stride detection can be
2978 * performed.
2980 * For atomic and remainder domains, inner dimensions and divs involving
2981 * the current dimensions should be eliminated.
2982 * In case we are working within a separation class, we need to intersect
2983 * the result with the current "class_domain" to ensure that the domains
2984 * are disjoint from those generated from other class domains.
2986 * The domain that has been made atomic may be larger than specified
2987 * by the user since it needs to be representable as a single basic set.
2988 * This possibly larger domain is removed from class_domain by
2989 * compute_atomic_domain. It is computed first so that the extended domain
2990 * would not overlap with any domains computed before.
2991 * Similary, the unrolled domains may have some constraints removed and
2992 * may therefore also be larger than specified by the user.
2994 * If anything is left after handling separate, unroll and atomic,
2995 * we split it up into basic sets and append the basic sets to domains->list.
2997 static isl_stat compute_partial_domains(struct isl_codegen_domains *domains,
2998 __isl_take isl_set *class_domain)
3000 isl_basic_set_list *list;
3001 isl_set *domain;
3003 class_domain = isl_set_subtract(class_domain,
3004 isl_set_copy(domains->done));
3005 domains->done = isl_set_union(domains->done,
3006 isl_set_copy(class_domain));
3008 class_domain = compute_atomic_domain(domains, class_domain);
3009 class_domain = compute_unroll_domains(domains, class_domain);
3011 domain = isl_set_copy(class_domain);
3013 if (compute_separate_domain(domains, domain) < 0)
3014 goto error;
3015 domain = isl_set_subtract(domain,
3016 isl_set_copy(domains->option[isl_ast_loop_separate]));
3018 domain = isl_set_intersect(domain,
3019 isl_set_copy(domains->schedule_domain));
3021 domain = isl_ast_build_eliminate(domains->build, domain);
3022 domain = isl_set_intersect(domain, isl_set_copy(class_domain));
3024 domain = isl_set_coalesce_preserve(domain);
3025 domain = isl_set_make_disjoint(domain);
3027 list = isl_basic_set_list_from_set(domain);
3028 domains->list = isl_basic_set_list_concat(domains->list, list);
3030 isl_set_free(class_domain);
3032 return isl_stat_ok;
3033 error:
3034 isl_set_free(domain);
3035 isl_set_free(class_domain);
3036 return isl_stat_error;
3039 /* Split up the domain at the current depth into disjoint
3040 * basic sets for which code should be generated separately
3041 * for the separation class identified by "pnt".
3043 * We extract the corresponding class domain from domains->sep_class,
3044 * eliminate inner dimensions and pass control to compute_partial_domains.
3046 static isl_stat compute_class_domains(__isl_take isl_point *pnt, void *user)
3048 struct isl_codegen_domains *domains = user;
3049 isl_set *class_set;
3050 isl_set *domain;
3051 int disjoint;
3053 class_set = isl_set_from_point(pnt);
3054 domain = isl_map_domain(isl_map_intersect_range(
3055 isl_map_copy(domains->sep_class), class_set));
3056 domain = isl_ast_build_compute_gist(domains->build, domain);
3057 domain = isl_ast_build_eliminate(domains->build, domain);
3059 disjoint = isl_set_plain_is_disjoint(domain, domains->schedule_domain);
3060 if (disjoint < 0)
3061 return isl_stat_error;
3062 if (disjoint) {
3063 isl_set_free(domain);
3064 return isl_stat_ok;
3067 return compute_partial_domains(domains, domain);
3070 /* Extract the domains at the current depth that should be atomic,
3071 * separated or unrolled and store them in option.
3073 * The domains specified by the user might overlap, so we make
3074 * them disjoint by subtracting earlier domains from later domains.
3076 static void compute_domains_init_options(isl_set *option[4],
3077 __isl_keep isl_ast_build *build)
3079 enum isl_ast_loop_type type, type2;
3080 isl_set *unroll;
3082 for (type = isl_ast_loop_atomic;
3083 type <= isl_ast_loop_separate; ++type) {
3084 option[type] = isl_ast_build_get_option_domain(build, type);
3085 for (type2 = isl_ast_loop_atomic; type2 < type; ++type2)
3086 option[type] = isl_set_subtract(option[type],
3087 isl_set_copy(option[type2]));
3090 unroll = option[isl_ast_loop_unroll];
3091 unroll = isl_set_coalesce(unroll);
3092 unroll = isl_set_make_disjoint(unroll);
3093 option[isl_ast_loop_unroll] = unroll;
3096 /* Split up the domain at the current depth into disjoint
3097 * basic sets for which code should be generated separately,
3098 * based on the user-specified options.
3099 * Return the list of disjoint basic sets.
3101 * There are three kinds of domains that we need to keep track of.
3102 * - the "schedule domain" is the domain of "executed"
3103 * - the "class domain" is the domain corresponding to the currrent
3104 * separation class
3105 * - the "option domain" is the domain corresponding to one of the options
3106 * atomic, unroll or separate
3108 * We first consider the individial values of the separation classes
3109 * and split up the domain for each of them separately.
3110 * Finally, we consider the remainder. If no separation classes were
3111 * specified, then we call compute_partial_domains with the universe
3112 * "class_domain". Otherwise, we take the "schedule_domain" as "class_domain",
3113 * with inner dimensions removed. We do this because we want to
3114 * avoid computing the complement of the class domains (i.e., the difference
3115 * between the universe and domains->done).
3117 static __isl_give isl_basic_set_list *compute_domains(
3118 __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
3120 struct isl_codegen_domains domains;
3121 isl_ctx *ctx;
3122 isl_set *domain;
3123 isl_union_set *schedule_domain;
3124 isl_set *classes;
3125 isl_space *space;
3126 int n_param;
3127 enum isl_ast_loop_type type;
3128 isl_bool empty;
3130 if (!executed)
3131 return NULL;
3133 ctx = isl_union_map_get_ctx(executed);
3134 domains.list = isl_basic_set_list_alloc(ctx, 0);
3136 schedule_domain = isl_union_map_domain(isl_union_map_copy(executed));
3137 domain = isl_set_from_union_set(schedule_domain);
3139 compute_domains_init_options(domains.option, build);
3141 domains.sep_class = isl_ast_build_get_separation_class(build);
3142 classes = isl_map_range(isl_map_copy(domains.sep_class));
3143 n_param = isl_set_dim(classes, isl_dim_param);
3144 if (n_param < 0)
3145 classes = isl_set_free(classes);
3146 classes = isl_set_project_out(classes, isl_dim_param, 0, n_param);
3148 space = isl_set_get_space(domain);
3149 domains.build = build;
3150 domains.schedule_domain = isl_set_copy(domain);
3151 domains.executed = executed;
3152 domains.done = isl_set_empty(space);
3154 if (isl_set_foreach_point(classes, &compute_class_domains, &domains) < 0)
3155 domains.list = isl_basic_set_list_free(domains.list);
3156 isl_set_free(classes);
3158 empty = isl_set_is_empty(domains.done);
3159 if (empty < 0) {
3160 domains.list = isl_basic_set_list_free(domains.list);
3161 domain = isl_set_free(domain);
3162 } else if (empty) {
3163 isl_set_free(domain);
3164 domain = isl_set_universe(isl_set_get_space(domains.done));
3165 } else {
3166 domain = isl_ast_build_eliminate(build, domain);
3168 if (compute_partial_domains(&domains, domain) < 0)
3169 domains.list = isl_basic_set_list_free(domains.list);
3171 isl_set_free(domains.schedule_domain);
3172 isl_set_free(domains.done);
3173 isl_map_free(domains.sep_class);
3174 for (type = isl_ast_loop_atomic; type <= isl_ast_loop_separate; ++type)
3175 isl_set_free(domains.option[type]);
3177 return domains.list;
3180 /* Generate code for a single component, after shifting (if any)
3181 * has been applied, in case the schedule was specified as a union map.
3183 * We first split up the domain at the current depth into disjoint
3184 * basic sets based on the user-specified options.
3185 * Then we generated code for each of them and concatenate the results.
3187 static __isl_give isl_ast_graft_list *generate_shifted_component_flat(
3188 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
3190 isl_basic_set_list *domain_list;
3191 isl_ast_graft_list *list = NULL;
3193 domain_list = compute_domains(executed, build);
3194 list = generate_parallel_domains(domain_list, executed, build);
3196 isl_basic_set_list_free(domain_list);
3197 isl_union_map_free(executed);
3198 isl_ast_build_free(build);
3200 return list;
3203 /* Generate code for a single component, after shifting (if any)
3204 * has been applied, in case the schedule was specified as a schedule tree
3205 * and the separate option was specified.
3207 * We perform separation on the domain of "executed" and then generate
3208 * an AST for each of the resulting disjoint basic sets.
3210 static __isl_give isl_ast_graft_list *generate_shifted_component_tree_separate(
3211 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
3213 isl_space *space;
3214 isl_set *domain;
3215 isl_basic_set_list *domain_list;
3216 isl_ast_graft_list *list;
3218 space = isl_ast_build_get_space(build, 1);
3219 domain = separate_schedule_domains(space,
3220 isl_union_map_copy(executed), build);
3221 domain_list = isl_basic_set_list_from_set(domain);
3223 list = generate_parallel_domains(domain_list, executed, build);
3225 isl_basic_set_list_free(domain_list);
3226 isl_union_map_free(executed);
3227 isl_ast_build_free(build);
3229 return list;
3232 /* Internal data structure for generate_shifted_component_tree_unroll.
3234 * "executed" and "build" are inputs to generate_shifted_component_tree_unroll.
3235 * "list" collects the constructs grafts.
3237 struct isl_ast_unroll_tree_data {
3238 isl_union_map *executed;
3239 isl_ast_build *build;
3240 isl_ast_graft_list *list;
3243 /* Initialize data->list to a list of "n" elements.
3245 static int init_unroll_tree(int n, void *user)
3247 struct isl_ast_unroll_tree_data *data = user;
3248 isl_ctx *ctx;
3250 ctx = isl_ast_build_get_ctx(data->build);
3251 data->list = isl_ast_graft_list_alloc(ctx, n);
3253 return 0;
3256 /* Given an iteration of an unrolled domain represented by "bset",
3257 * generate the corresponding AST and add the result to data->list.
3259 static int do_unroll_tree_iteration(__isl_take isl_basic_set *bset, void *user)
3261 struct isl_ast_unroll_tree_data *data = user;
3263 data->list = add_node(data->list, isl_union_map_copy(data->executed),
3264 bset, isl_ast_build_copy(data->build));
3266 return 0;
3269 /* Generate code for a single component, after shifting (if any)
3270 * has been applied, in case the schedule was specified as a schedule tree
3271 * and the unroll option was specified.
3273 * We call foreach_iteration to iterate over the individual values and
3274 * construct and collect the corresponding grafts in do_unroll_tree_iteration.
3276 static __isl_give isl_ast_graft_list *generate_shifted_component_tree_unroll(
3277 __isl_take isl_union_map *executed, __isl_take isl_set *domain,
3278 __isl_take isl_ast_build *build)
3280 struct isl_ast_unroll_tree_data data = { executed, build, NULL };
3282 if (foreach_iteration(domain, build, &init_unroll_tree,
3283 &do_unroll_tree_iteration, &data) < 0)
3284 data.list = isl_ast_graft_list_free(data.list);
3286 isl_union_map_free(executed);
3287 isl_ast_build_free(build);
3289 return data.list;
3292 /* Does "domain" involve a disjunction that is purely based on
3293 * constraints involving only outer dimension?
3295 * In particular, is there a disjunction such that the constraints
3296 * involving the current and later dimensions are the same over
3297 * all the disjuncts?
3299 static isl_bool has_pure_outer_disjunction(__isl_keep isl_set *domain,
3300 __isl_keep isl_ast_build *build)
3302 isl_basic_set *hull;
3303 isl_set *shared, *inner;
3304 isl_bool equal;
3305 isl_size depth;
3306 isl_size n;
3307 isl_size dim;
3309 n = isl_set_n_basic_set(domain);
3310 if (n < 0)
3311 return isl_bool_error;
3312 if (n <= 1)
3313 return isl_bool_false;
3314 dim = isl_set_dim(domain, isl_dim_set);
3315 depth = isl_ast_build_get_depth(build);
3316 if (dim < 0 || depth < 0)
3317 return isl_bool_error;
3319 inner = isl_set_copy(domain);
3320 inner = isl_set_drop_constraints_not_involving_dims(inner,
3321 isl_dim_set, depth, dim - depth);
3322 hull = isl_set_plain_unshifted_simple_hull(isl_set_copy(inner));
3323 shared = isl_set_from_basic_set(hull);
3324 equal = isl_set_plain_is_equal(inner, shared);
3325 isl_set_free(inner);
3326 isl_set_free(shared);
3328 return equal;
3331 /* Generate code for a single component, after shifting (if any)
3332 * has been applied, in case the schedule was specified as a schedule tree.
3333 * In particular, handle the base case where there is either no isolated
3334 * set or we are within the isolated set (in which case "isolated" is set)
3335 * or the iterations that precede or follow the isolated set.
3337 * The schedule domain is broken up or combined into basic sets
3338 * according to the AST generation option specified in the current
3339 * schedule node, which may be either atomic, separate, unroll or
3340 * unspecified. If the option is unspecified, then we currently simply
3341 * split the schedule domain into disjoint basic sets.
3343 * In case the separate option is specified, the AST generation is
3344 * handled by generate_shifted_component_tree_separate.
3345 * In the other cases, we need the global schedule domain.
3346 * In the unroll case, the AST generation is then handled by
3347 * generate_shifted_component_tree_unroll which needs the actual
3348 * schedule domain (with divs that may refer to the current dimension)
3349 * so that stride detection can be performed.
3350 * In the atomic or unspecified case, inner dimensions and divs involving
3351 * the current dimensions should be eliminated.
3352 * The result is then either combined into a single basic set or
3353 * split up into disjoint basic sets.
3354 * Finally an AST is generated for each basic set and the results are
3355 * concatenated.
3357 * If the schedule domain involves a disjunction that is purely based on
3358 * constraints involving only outer dimension, then it is treated as
3359 * if atomic was specified. This ensures that only a single loop
3360 * is generated instead of a sequence of identical loops with
3361 * different guards.
3363 static __isl_give isl_ast_graft_list *generate_shifted_component_tree_base(
3364 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build,
3365 int isolated)
3367 isl_bool outer_disjunction;
3368 isl_union_set *schedule_domain;
3369 isl_set *domain;
3370 isl_basic_set_list *domain_list;
3371 isl_ast_graft_list *list;
3372 enum isl_ast_loop_type type;
3374 type = isl_ast_build_get_loop_type(build, isolated);
3375 if (type < 0)
3376 goto error;
3378 if (type == isl_ast_loop_separate)
3379 return generate_shifted_component_tree_separate(executed,
3380 build);
3382 schedule_domain = isl_union_map_domain(isl_union_map_copy(executed));
3383 domain = isl_set_from_union_set(schedule_domain);
3385 if (type == isl_ast_loop_unroll)
3386 return generate_shifted_component_tree_unroll(executed, domain,
3387 build);
3389 domain = isl_ast_build_eliminate(build, domain);
3390 domain = isl_set_coalesce_preserve(domain);
3392 outer_disjunction = has_pure_outer_disjunction(domain, build);
3393 if (outer_disjunction < 0)
3394 domain = isl_set_free(domain);
3396 if (outer_disjunction || type == isl_ast_loop_atomic) {
3397 isl_basic_set *hull;
3398 hull = isl_set_unshifted_simple_hull(domain);
3399 domain_list = isl_basic_set_list_from_basic_set(hull);
3400 } else {
3401 domain = isl_set_make_disjoint(domain);
3402 domain_list = isl_basic_set_list_from_set(domain);
3405 list = generate_parallel_domains(domain_list, executed, build);
3407 isl_basic_set_list_free(domain_list);
3408 isl_union_map_free(executed);
3409 isl_ast_build_free(build);
3411 return list;
3412 error:
3413 isl_union_map_free(executed);
3414 isl_ast_build_free(build);
3415 return NULL;
3418 /* Extract out the disjunction imposed by "domain" on the outer
3419 * schedule dimensions.
3421 * In particular, remove all inner dimensions from "domain" (including
3422 * the current dimension) and then remove the constraints that are shared
3423 * by all disjuncts in the result.
3425 static __isl_give isl_set *extract_disjunction(__isl_take isl_set *domain,
3426 __isl_keep isl_ast_build *build)
3428 isl_set *hull;
3429 isl_size depth;
3430 isl_size dim;
3432 domain = isl_ast_build_specialize(build, domain);
3433 depth = isl_ast_build_get_depth(build);
3434 dim = isl_set_dim(domain, isl_dim_set);
3435 if (depth < 0 || dim < 0)
3436 return isl_set_free(domain);
3437 domain = isl_set_eliminate(domain, isl_dim_set, depth, dim - depth);
3438 domain = isl_set_remove_unknown_divs(domain);
3439 hull = isl_set_copy(domain);
3440 hull = isl_set_from_basic_set(isl_set_unshifted_simple_hull(hull));
3441 domain = isl_set_gist(domain, hull);
3443 return domain;
3446 /* Add "guard" to the grafts in "list".
3447 * "build" is the outer AST build, while "sub_build" includes "guard"
3448 * in its generated domain.
3450 * First combine the grafts into a single graft and then add the guard.
3451 * If the list is empty, or if some error occurred, then simply return
3452 * the list.
3454 static __isl_give isl_ast_graft_list *list_add_guard(
3455 __isl_take isl_ast_graft_list *list, __isl_keep isl_set *guard,
3456 __isl_keep isl_ast_build *build, __isl_keep isl_ast_build *sub_build)
3458 isl_ast_graft *graft;
3459 isl_size n;
3461 list = isl_ast_graft_list_fuse(list, sub_build);
3463 n = isl_ast_graft_list_n_ast_graft(list);
3464 if (n < 0)
3465 return isl_ast_graft_list_free(list);
3466 if (n != 1)
3467 return list;
3469 graft = isl_ast_graft_list_get_ast_graft(list, 0);
3470 graft = isl_ast_graft_add_guard(graft, isl_set_copy(guard), build);
3471 list = isl_ast_graft_list_set_ast_graft(list, 0, graft);
3473 return list;
3476 /* Generate code for a single component, after shifting (if any)
3477 * has been applied, in case the schedule was specified as a schedule tree.
3478 * In particular, do so for the specified subset of the schedule domain.
3480 * If we are outside of the isolated part, then "domain" may include
3481 * a disjunction. Explicitly generate this disjunction at this point
3482 * instead of relying on the disjunction getting hoisted back up
3483 * to this level.
3485 static __isl_give isl_ast_graft_list *generate_shifted_component_tree_part(
3486 __isl_keep isl_union_map *executed, __isl_take isl_set *domain,
3487 __isl_keep isl_ast_build *build, int isolated)
3489 isl_union_set *uset;
3490 isl_ast_graft_list *list;
3491 isl_ast_build *sub_build;
3492 int empty;
3494 uset = isl_union_set_from_set(isl_set_copy(domain));
3495 executed = isl_union_map_copy(executed);
3496 executed = isl_union_map_intersect_domain(executed, uset);
3497 empty = isl_union_map_is_empty(executed);
3498 if (empty < 0)
3499 goto error;
3500 if (empty) {
3501 isl_ctx *ctx;
3502 isl_union_map_free(executed);
3503 isl_set_free(domain);
3504 ctx = isl_ast_build_get_ctx(build);
3505 return isl_ast_graft_list_alloc(ctx, 0);
3508 sub_build = isl_ast_build_copy(build);
3509 if (!isolated) {
3510 domain = extract_disjunction(domain, build);
3511 sub_build = isl_ast_build_restrict_generated(sub_build,
3512 isl_set_copy(domain));
3514 list = generate_shifted_component_tree_base(executed,
3515 isl_ast_build_copy(sub_build), isolated);
3516 if (!isolated)
3517 list = list_add_guard(list, domain, build, sub_build);
3518 isl_ast_build_free(sub_build);
3519 isl_set_free(domain);
3520 return list;
3521 error:
3522 isl_union_map_free(executed);
3523 isl_set_free(domain);
3524 return NULL;
3527 /* Generate code for a single component, after shifting (if any)
3528 * has been applied, in case the schedule was specified as a schedule tree.
3529 * In particular, do so for the specified sequence of subsets
3530 * of the schedule domain, "before", "isolated", "after" and "other",
3531 * where only the "isolated" part is considered to be isolated.
3533 static __isl_give isl_ast_graft_list *generate_shifted_component_parts(
3534 __isl_take isl_union_map *executed, __isl_take isl_set *before,
3535 __isl_take isl_set *isolated, __isl_take isl_set *after,
3536 __isl_take isl_set *other, __isl_take isl_ast_build *build)
3538 isl_ast_graft_list *list, *res;
3540 res = generate_shifted_component_tree_part(executed, before, build, 0);
3541 list = generate_shifted_component_tree_part(executed, isolated,
3542 build, 1);
3543 res = isl_ast_graft_list_concat(res, list);
3544 list = generate_shifted_component_tree_part(executed, after, build, 0);
3545 res = isl_ast_graft_list_concat(res, list);
3546 list = generate_shifted_component_tree_part(executed, other, build, 0);
3547 res = isl_ast_graft_list_concat(res, list);
3549 isl_union_map_free(executed);
3550 isl_ast_build_free(build);
3552 return res;
3555 /* Does "set" intersect "first", but not "second"?
3557 static isl_bool only_intersects_first(__isl_keep isl_set *set,
3558 __isl_keep isl_set *first, __isl_keep isl_set *second)
3560 isl_bool disjoint;
3562 disjoint = isl_set_is_disjoint(set, first);
3563 if (disjoint < 0)
3564 return isl_bool_error;
3565 if (disjoint)
3566 return isl_bool_false;
3568 return isl_set_is_disjoint(set, second);
3571 /* Generate code for a single component, after shifting (if any)
3572 * has been applied, in case the schedule was specified as a schedule tree.
3573 * In particular, do so in case of isolation where there is
3574 * only an "isolated" part and an "after" part.
3575 * "dead1" and "dead2" are freed by this function in order to simplify
3576 * the caller.
3578 * The "before" and "other" parts are set to empty sets.
3580 static __isl_give isl_ast_graft_list *generate_shifted_component_only_after(
3581 __isl_take isl_union_map *executed, __isl_take isl_set *isolated,
3582 __isl_take isl_set *after, __isl_take isl_ast_build *build,
3583 __isl_take isl_set *dead1, __isl_take isl_set *dead2)
3585 isl_set *empty;
3587 empty = isl_set_empty(isl_set_get_space(after));
3588 isl_set_free(dead1);
3589 isl_set_free(dead2);
3590 return generate_shifted_component_parts(executed, isl_set_copy(empty),
3591 isolated, after, empty, build);
3594 /* Generate code for a single component, after shifting (if any)
3595 * has been applied, in case the schedule was specified as a schedule tree.
3597 * We first check if the user has specified an isolated schedule domain
3598 * and that we are not already outside of this isolated schedule domain.
3599 * If so, we break up the schedule domain into iterations that
3600 * precede the isolated domain, the isolated domain itself,
3601 * the iterations that follow the isolated domain and
3602 * the remaining iterations (those that are incomparable
3603 * to the isolated domain).
3604 * We generate an AST for each piece and concatenate the results.
3606 * If the isolated domain is not convex, then it is replaced
3607 * by a convex superset to ensure that the sets of preceding and
3608 * following iterations are properly defined and, in particular,
3609 * that there are no intermediate iterations that do not belong
3610 * to the isolated domain.
3612 * In the special case where at least one element of the schedule
3613 * domain that does not belong to the isolated domain needs
3614 * to be scheduled after this isolated domain, but none of those
3615 * elements need to be scheduled before, break up the schedule domain
3616 * in only two parts, the isolated domain, and a part that will be
3617 * scheduled after the isolated domain.
3619 * If no isolated set has been specified, then we generate an
3620 * AST for the entire inverse schedule.
3622 static __isl_give isl_ast_graft_list *generate_shifted_component_tree(
3623 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
3625 int i;
3626 isl_size depth;
3627 int empty, has_isolate;
3628 isl_space *space;
3629 isl_union_set *schedule_domain;
3630 isl_set *domain;
3631 isl_basic_set *hull;
3632 isl_set *isolated, *before, *after, *test;
3633 isl_map *gt, *lt;
3634 isl_bool pure;
3636 build = isl_ast_build_extract_isolated(build);
3637 has_isolate = isl_ast_build_has_isolated(build);
3638 if (has_isolate < 0)
3639 executed = isl_union_map_free(executed);
3640 else if (!has_isolate)
3641 return generate_shifted_component_tree_base(executed, build, 0);
3643 schedule_domain = isl_union_map_domain(isl_union_map_copy(executed));
3644 domain = isl_set_from_union_set(schedule_domain);
3646 isolated = isl_ast_build_get_isolated(build);
3647 isolated = isl_set_intersect(isolated, isl_set_copy(domain));
3648 test = isl_ast_build_specialize(build, isl_set_copy(isolated));
3649 empty = isl_set_is_empty(test);
3650 isl_set_free(test);
3651 if (empty < 0)
3652 goto error;
3653 if (empty) {
3654 isl_set_free(isolated);
3655 isl_set_free(domain);
3656 return generate_shifted_component_tree_base(executed, build, 0);
3658 depth = isl_ast_build_get_depth(build);
3659 if (depth < 0)
3660 goto error;
3662 isolated = isl_ast_build_eliminate(build, isolated);
3663 hull = isl_set_unshifted_simple_hull(isolated);
3664 isolated = isl_set_from_basic_set(hull);
3666 space = isl_space_map_from_set(isl_set_get_space(isolated));
3667 gt = isl_map_universe(space);
3668 for (i = 0; i < depth; ++i)
3669 gt = isl_map_equate(gt, isl_dim_in, i, isl_dim_out, i);
3670 gt = isl_map_order_gt(gt, isl_dim_in, depth, isl_dim_out, depth);
3671 lt = isl_map_reverse(isl_map_copy(gt));
3672 before = isl_set_apply(isl_set_copy(isolated), gt);
3673 after = isl_set_apply(isl_set_copy(isolated), lt);
3675 domain = isl_set_subtract(domain, isl_set_copy(isolated));
3676 pure = only_intersects_first(domain, after, before);
3677 if (pure < 0)
3678 executed = isl_union_map_free(executed);
3679 else if (pure)
3680 return generate_shifted_component_only_after(executed, isolated,
3681 domain, build, before, after);
3682 domain = isl_set_subtract(domain, isl_set_copy(before));
3683 domain = isl_set_subtract(domain, isl_set_copy(after));
3684 after = isl_set_subtract(after, isl_set_copy(isolated));
3685 after = isl_set_subtract(after, isl_set_copy(before));
3686 before = isl_set_subtract(before, isl_set_copy(isolated));
3688 return generate_shifted_component_parts(executed, before, isolated,
3689 after, domain, build);
3690 error:
3691 isl_set_free(domain);
3692 isl_set_free(isolated);
3693 isl_union_map_free(executed);
3694 isl_ast_build_free(build);
3695 return NULL;
3698 /* Generate code for a single component, after shifting (if any)
3699 * has been applied.
3701 * Call generate_shifted_component_tree or generate_shifted_component_flat
3702 * depending on whether the schedule was specified as a schedule tree.
3704 static __isl_give isl_ast_graft_list *generate_shifted_component(
3705 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
3707 if (isl_ast_build_has_schedule_node(build))
3708 return generate_shifted_component_tree(executed, build);
3709 else
3710 return generate_shifted_component_flat(executed, build);
3713 struct isl_set_map_pair {
3714 isl_set *set;
3715 isl_map *map;
3718 /* Given an array "domain" of isl_set_map_pairs and an array "order"
3719 * of indices into the "domain" array,
3720 * return the union of the "map" fields of the elements
3721 * indexed by the first "n" elements of "order".
3723 static __isl_give isl_union_map *construct_component_executed(
3724 struct isl_set_map_pair *domain, int *order, int n)
3726 int i;
3727 isl_map *map;
3728 isl_union_map *executed;
3730 map = isl_map_copy(domain[order[0]].map);
3731 executed = isl_union_map_from_map(map);
3732 for (i = 1; i < n; ++i) {
3733 map = isl_map_copy(domain[order[i]].map);
3734 executed = isl_union_map_add_map(executed, map);
3737 return executed;
3740 /* Generate code for a single component, after shifting (if any)
3741 * has been applied.
3743 * The component inverse schedule is specified as the "map" fields
3744 * of the elements of "domain" indexed by the first "n" elements of "order".
3746 static __isl_give isl_ast_graft_list *generate_shifted_component_from_list(
3747 struct isl_set_map_pair *domain, int *order, int n,
3748 __isl_take isl_ast_build *build)
3750 isl_union_map *executed;
3752 executed = construct_component_executed(domain, order, n);
3753 return generate_shifted_component(executed, build);
3756 /* Does set dimension "pos" of "set" have an obviously fixed value?
3758 static int dim_is_fixed(__isl_keep isl_set *set, int pos)
3760 int fixed;
3761 isl_val *v;
3763 v = isl_set_plain_get_val_if_fixed(set, isl_dim_set, pos);
3764 if (!v)
3765 return -1;
3766 fixed = !isl_val_is_nan(v);
3767 isl_val_free(v);
3769 return fixed;
3772 /* Given an array "domain" of isl_set_map_pairs and an array "order"
3773 * of indices into the "domain" array,
3774 * do all (except for at most one) of the "set" field of the elements
3775 * indexed by the first "n" elements of "order" have a fixed value
3776 * at position "depth"?
3778 static int at_most_one_non_fixed(struct isl_set_map_pair *domain,
3779 int *order, int n, int depth)
3781 int i;
3782 int non_fixed = -1;
3784 for (i = 0; i < n; ++i) {
3785 int f;
3787 f = dim_is_fixed(domain[order[i]].set, depth);
3788 if (f < 0)
3789 return -1;
3790 if (f)
3791 continue;
3792 if (non_fixed >= 0)
3793 return 0;
3794 non_fixed = i;
3797 return 1;
3800 /* Given an array "domain" of isl_set_map_pairs and an array "order"
3801 * of indices into the "domain" array,
3802 * eliminate the inner dimensions from the "set" field of the elements
3803 * indexed by the first "n" elements of "order", provided the current
3804 * dimension does not have a fixed value.
3806 * Return the index of the first element in "order" with a corresponding
3807 * "set" field that does not have an (obviously) fixed value.
3809 static int eliminate_non_fixed(struct isl_set_map_pair *domain,
3810 int *order, int n, int depth, __isl_keep isl_ast_build *build)
3812 int i;
3813 int base = -1;
3815 for (i = n - 1; i >= 0; --i) {
3816 int f;
3817 f = dim_is_fixed(domain[order[i]].set, depth);
3818 if (f < 0)
3819 return -1;
3820 if (f)
3821 continue;
3822 domain[order[i]].set = isl_ast_build_eliminate_inner(build,
3823 domain[order[i]].set);
3824 base = i;
3827 return base;
3830 /* Given an array "domain" of isl_set_map_pairs and an array "order"
3831 * of indices into the "domain" array,
3832 * find the element of "domain" (amongst those indexed by the first "n"
3833 * elements of "order") with the "set" field that has the smallest
3834 * value for the current iterator.
3836 * Note that the domain with the smallest value may depend on the parameters
3837 * and/or outer loop dimension. Since the result of this function is only
3838 * used as heuristic, we only make a reasonable attempt at finding the best
3839 * domain, one that should work in case a single domain provides the smallest
3840 * value for the current dimension over all values of the parameters
3841 * and outer dimensions.
3843 * In particular, we compute the smallest value of the first domain
3844 * and replace it by that of any later domain if that later domain
3845 * has a smallest value that is smaller for at least some value
3846 * of the parameters and outer dimensions.
3848 static int first_offset(struct isl_set_map_pair *domain, int *order, int n,
3849 __isl_keep isl_ast_build *build)
3851 int i;
3852 isl_map *min_first;
3853 int first = 0;
3855 min_first = isl_ast_build_map_to_iterator(build,
3856 isl_set_copy(domain[order[0]].set));
3857 min_first = isl_map_lexmin(min_first);
3859 for (i = 1; i < n; ++i) {
3860 isl_map *min, *test;
3861 int empty;
3863 min = isl_ast_build_map_to_iterator(build,
3864 isl_set_copy(domain[order[i]].set));
3865 min = isl_map_lexmin(min);
3866 test = isl_map_copy(min);
3867 test = isl_map_apply_domain(isl_map_copy(min_first), test);
3868 test = isl_map_order_lt(test, isl_dim_in, 0, isl_dim_out, 0);
3869 empty = isl_map_is_empty(test);
3870 isl_map_free(test);
3871 if (empty >= 0 && !empty) {
3872 isl_map_free(min_first);
3873 first = i;
3874 min_first = min;
3875 } else
3876 isl_map_free(min);
3878 if (empty < 0)
3879 break;
3882 isl_map_free(min_first);
3884 return i < n ? -1 : first;
3887 /* Construct a shifted inverse schedule based on the original inverse schedule,
3888 * the stride and the offset.
3890 * The original inverse schedule is specified as the "map" fields
3891 * of the elements of "domain" indexed by the first "n" elements of "order".
3893 * "stride" and "offset" are such that the difference
3894 * between the values of the current dimension of domain "i"
3895 * and the values of the current dimension for some reference domain are
3896 * equal to
3898 * stride * integer + offset[i]
3900 * Moreover, 0 <= offset[i] < stride.
3902 * For each domain, we create a map
3904 * { [..., j, ...] -> [..., j - offset[i], offset[i], ....] }
3906 * where j refers to the current dimension and the other dimensions are
3907 * unchanged, and apply this map to the original schedule domain.
3909 * For example, for the original schedule
3911 * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
3913 * and assuming the offset is 0 for the A domain and 1 for the B domain,
3914 * we apply the mapping
3916 * { [j] -> [j, 0] }
3918 * to the schedule of the "A" domain and the mapping
3920 * { [j - 1] -> [j, 1] }
3922 * to the schedule of the "B" domain.
3925 * Note that after the transformation, the differences between pairs
3926 * of values of the current dimension over all domains are multiples
3927 * of stride and that we have therefore exposed the stride.
3930 * To see that the mapping preserves the lexicographic order,
3931 * first note that each of the individual maps above preserves the order.
3932 * If the value of the current iterator is j1 in one domain and j2 in another,
3933 * then if j1 = j2, we know that the same map is applied to both domains
3934 * and the order is preserved.
3935 * Otherwise, let us assume, without loss of generality, that j1 < j2.
3936 * If c1 >= c2 (with c1 and c2 the corresponding offsets), then
3938 * j1 - c1 < j2 - c2
3940 * and the order is preserved.
3941 * If c1 < c2, then we know
3943 * 0 <= c2 - c1 < s
3945 * We also have
3947 * j2 - j1 = n * s + r
3949 * with n >= 0 and 0 <= r < s.
3950 * In other words, r = c2 - c1.
3951 * If n > 0, then
3953 * j1 - c1 < j2 - c2
3955 * If n = 0, then
3957 * j1 - c1 = j2 - c2
3959 * and so
3961 * (j1 - c1, c1) << (j2 - c2, c2)
3963 * with "<<" the lexicographic order, proving that the order is preserved
3964 * in all cases.
3966 static __isl_give isl_union_map *construct_shifted_executed(
3967 struct isl_set_map_pair *domain, int *order, int n,
3968 __isl_keep isl_val *stride, __isl_keep isl_multi_val *offset,
3969 __isl_keep isl_ast_build *build)
3971 int i;
3972 isl_union_map *executed;
3973 isl_space *space;
3974 isl_map *map;
3975 isl_size depth;
3976 isl_constraint *c;
3978 depth = isl_ast_build_get_depth(build);
3979 if (depth < 0)
3980 return NULL;
3981 space = isl_ast_build_get_space(build, 1);
3982 executed = isl_union_map_empty(isl_space_copy(space));
3983 space = isl_space_map_from_set(space);
3984 map = isl_map_identity(isl_space_copy(space));
3985 map = isl_map_eliminate(map, isl_dim_out, depth, 1);
3986 map = isl_map_insert_dims(map, isl_dim_out, depth + 1, 1);
3987 space = isl_space_insert_dims(space, isl_dim_out, depth + 1, 1);
3989 c = isl_constraint_alloc_equality(isl_local_space_from_space(space));
3990 c = isl_constraint_set_coefficient_si(c, isl_dim_in, depth, 1);
3991 c = isl_constraint_set_coefficient_si(c, isl_dim_out, depth, -1);
3993 for (i = 0; i < n; ++i) {
3994 isl_map *map_i;
3995 isl_val *v;
3997 v = isl_multi_val_get_val(offset, i);
3998 if (!v)
3999 break;
4000 map_i = isl_map_copy(map);
4001 map_i = isl_map_fix_val(map_i, isl_dim_out, depth + 1,
4002 isl_val_copy(v));
4003 v = isl_val_neg(v);
4004 c = isl_constraint_set_constant_val(c, v);
4005 map_i = isl_map_add_constraint(map_i, isl_constraint_copy(c));
4007 map_i = isl_map_apply_domain(isl_map_copy(domain[order[i]].map),
4008 map_i);
4009 executed = isl_union_map_add_map(executed, map_i);
4012 isl_constraint_free(c);
4013 isl_map_free(map);
4015 if (i < n)
4016 executed = isl_union_map_free(executed);
4018 return executed;
4021 /* Generate code for a single component, after exposing the stride,
4022 * given that the schedule domain is "shifted strided".
4024 * The component inverse schedule is specified as the "map" fields
4025 * of the elements of "domain" indexed by the first "n" elements of "order".
4027 * The schedule domain being "shifted strided" means that the differences
4028 * between the values of the current dimension of domain "i"
4029 * and the values of the current dimension for some reference domain are
4030 * equal to
4032 * stride * integer + offset[i]
4034 * We first look for the domain with the "smallest" value for the current
4035 * dimension and adjust the offsets such that the offset of the "smallest"
4036 * domain is equal to zero. The other offsets are reduced modulo stride.
4038 * Based on this information, we construct a new inverse schedule in
4039 * construct_shifted_executed that exposes the stride.
4040 * Since this involves the introduction of a new schedule dimension,
4041 * the build needs to be changed accordingly.
4042 * After computing the AST, the newly introduced dimension needs
4043 * to be removed again from the list of grafts. We do this by plugging
4044 * in a mapping that represents the new schedule domain in terms of the
4045 * old schedule domain.
4047 static __isl_give isl_ast_graft_list *generate_shift_component(
4048 struct isl_set_map_pair *domain, int *order, int n,
4049 __isl_keep isl_val *stride, __isl_keep isl_multi_val *offset,
4050 __isl_take isl_ast_build *build)
4052 isl_ast_graft_list *list;
4053 int first;
4054 isl_size depth;
4055 isl_val *val;
4056 isl_multi_val *mv;
4057 isl_space *space;
4058 isl_multi_aff *ma, *zero;
4059 isl_union_map *executed;
4061 depth = isl_ast_build_get_depth(build);
4063 first = first_offset(domain, order, n, build);
4064 if (depth < 0 || first < 0)
4065 goto error;
4067 mv = isl_multi_val_copy(offset);
4068 val = isl_multi_val_get_val(offset, first);
4069 val = isl_val_neg(val);
4070 mv = isl_multi_val_add_val(mv, val);
4071 mv = isl_multi_val_mod_val(mv, isl_val_copy(stride));
4073 executed = construct_shifted_executed(domain, order, n, stride, mv,
4074 build);
4075 space = isl_ast_build_get_space(build, 1);
4076 space = isl_space_map_from_set(space);
4077 ma = isl_multi_aff_identity(isl_space_copy(space));
4078 space = isl_space_from_domain(isl_space_domain(space));
4079 space = isl_space_add_dims(space, isl_dim_out, 1);
4080 zero = isl_multi_aff_zero(space);
4081 ma = isl_multi_aff_range_splice(ma, depth + 1, zero);
4082 build = isl_ast_build_insert_dim(build, depth + 1);
4083 list = generate_shifted_component(executed, build);
4085 list = isl_ast_graft_list_preimage_multi_aff(list, ma);
4087 isl_multi_val_free(mv);
4089 return list;
4090 error:
4091 isl_ast_build_free(build);
4092 return NULL;
4095 /* Does any node in the schedule tree rooted at the current schedule node
4096 * of "build" depend on outer schedule nodes?
4098 static int has_anchored_subtree(__isl_keep isl_ast_build *build)
4100 isl_schedule_node *node;
4101 int dependent = 0;
4103 node = isl_ast_build_get_schedule_node(build);
4104 dependent = isl_schedule_node_is_subtree_anchored(node);
4105 isl_schedule_node_free(node);
4107 return dependent;
4110 /* Generate code for a single component.
4112 * The component inverse schedule is specified as the "map" fields
4113 * of the elements of "domain" indexed by the first "n" elements of "order".
4115 * This function may modify the "set" fields of "domain".
4117 * Before proceeding with the actual code generation for the component,
4118 * we first check if there are any "shifted" strides, meaning that
4119 * the schedule domains of the individual domains are all strided,
4120 * but that they have different offsets, resulting in the union
4121 * of schedule domains not being strided anymore.
4123 * The simplest example is the schedule
4125 * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
4127 * Both schedule domains are strided, but their union is not.
4128 * This function detects such cases and then rewrites the schedule to
4130 * { A[i] -> [2i, 0]: 0 <= i < 10; B[i] -> [2i, 1] : 0 <= i < 10 }
4132 * In the new schedule, the schedule domains have the same offset (modulo
4133 * the stride), ensuring that the union of schedule domains is also strided.
4136 * If there is only a single domain in the component, then there is
4137 * nothing to do. Similarly, if the current schedule dimension has
4138 * a fixed value for almost all domains then there is nothing to be done.
4139 * In particular, we need at least two domains where the current schedule
4140 * dimension does not have a fixed value.
4141 * Finally, in case of a schedule map input,
4142 * if any of the options refer to the current schedule dimension,
4143 * then we bail out as well. It would be possible to reformulate the options
4144 * in terms of the new schedule domain, but that would introduce constraints
4145 * that separate the domains in the options and that is something we would
4146 * like to avoid.
4147 * In the case of a schedule tree input, we bail out if any of
4148 * the descendants of the current schedule node refer to outer
4149 * schedule nodes in any way.
4152 * To see if there is any shifted stride, we look at the differences
4153 * between the values of the current dimension in pairs of domains
4154 * for equal values of outer dimensions. These differences should be
4155 * of the form
4157 * m x + r
4159 * with "m" the stride and "r" a constant. Note that we cannot perform
4160 * this analysis on individual domains as the lower bound in each domain
4161 * may depend on parameters or outer dimensions and so the current dimension
4162 * itself may not have a fixed remainder on division by the stride.
4164 * In particular, we compare the first domain that does not have an
4165 * obviously fixed value for the current dimension to itself and all
4166 * other domains and collect the offsets and the gcd of the strides.
4167 * If the gcd becomes one, then we failed to find shifted strides.
4168 * If the gcd is zero, then the differences were all fixed, meaning
4169 * that some domains had non-obviously fixed values for the current dimension.
4170 * If all the offsets are the same (for those domains that do not have
4171 * an obviously fixed value for the current dimension), then we do not
4172 * apply the transformation.
4173 * If none of the domains were skipped, then there is nothing to do.
4174 * If some of them were skipped, then if we apply separation, the schedule
4175 * domain should get split in pieces with a (non-shifted) stride.
4177 * Otherwise, we apply a shift to expose the stride in
4178 * generate_shift_component.
4180 static __isl_give isl_ast_graft_list *generate_component(
4181 struct isl_set_map_pair *domain, int *order, int n,
4182 __isl_take isl_ast_build *build)
4184 int i, d;
4185 isl_size depth;
4186 isl_ctx *ctx;
4187 isl_map *map;
4188 isl_set *deltas;
4189 isl_val *gcd = NULL;
4190 isl_multi_val *mv;
4191 int fixed, skip;
4192 int base;
4193 isl_ast_graft_list *list;
4194 int res = 0;
4196 depth = isl_ast_build_get_depth(build);
4197 if (depth < 0)
4198 goto error;
4200 skip = n == 1;
4201 if (skip >= 0 && !skip)
4202 skip = at_most_one_non_fixed(domain, order, n, depth);
4203 if (skip >= 0 && !skip) {
4204 if (isl_ast_build_has_schedule_node(build))
4205 skip = has_anchored_subtree(build);
4206 else
4207 skip = isl_ast_build_options_involve_depth(build);
4209 if (skip < 0)
4210 goto error;
4211 if (skip)
4212 return generate_shifted_component_from_list(domain,
4213 order, n, build);
4215 base = eliminate_non_fixed(domain, order, n, depth, build);
4216 if (base < 0)
4217 goto error;
4219 ctx = isl_ast_build_get_ctx(build);
4221 mv = isl_multi_val_zero(isl_space_set_alloc(ctx, 0, n));
4223 fixed = 1;
4224 for (i = 0; i < n; ++i) {
4225 isl_val *r, *m;
4227 map = isl_map_from_domain_and_range(
4228 isl_set_copy(domain[order[base]].set),
4229 isl_set_copy(domain[order[i]].set));
4230 for (d = 0; d < depth; ++d)
4231 map = isl_map_equate(map, isl_dim_in, d,
4232 isl_dim_out, d);
4233 deltas = isl_map_deltas(map);
4234 res = isl_set_dim_residue_class_val(deltas, depth, &m, &r);
4235 isl_set_free(deltas);
4236 if (res < 0)
4237 break;
4239 if (i == 0)
4240 gcd = m;
4241 else
4242 gcd = isl_val_gcd(gcd, m);
4243 if (isl_val_is_one(gcd)) {
4244 isl_val_free(r);
4245 break;
4247 mv = isl_multi_val_set_val(mv, i, r);
4249 res = dim_is_fixed(domain[order[i]].set, depth);
4250 if (res < 0)
4251 break;
4252 if (res)
4253 continue;
4255 if (fixed && i > base) {
4256 isl_val *a, *b;
4257 a = isl_multi_val_get_val(mv, i);
4258 b = isl_multi_val_get_val(mv, base);
4259 if (isl_val_ne(a, b))
4260 fixed = 0;
4261 isl_val_free(a);
4262 isl_val_free(b);
4266 if (res < 0 || !gcd) {
4267 isl_ast_build_free(build);
4268 list = NULL;
4269 } else if (i < n || fixed || isl_val_is_zero(gcd)) {
4270 list = generate_shifted_component_from_list(domain,
4271 order, n, build);
4272 } else {
4273 list = generate_shift_component(domain, order, n, gcd, mv,
4274 build);
4277 isl_val_free(gcd);
4278 isl_multi_val_free(mv);
4280 return list;
4281 error:
4282 isl_ast_build_free(build);
4283 return NULL;
4286 /* Store both "map" itself and its domain in the
4287 * structure pointed to by *next and advance to the next array element.
4289 static isl_stat extract_domain(__isl_take isl_map *map, void *user)
4291 struct isl_set_map_pair **next = user;
4293 (*next)->map = isl_map_copy(map);
4294 (*next)->set = isl_map_domain(map);
4295 (*next)++;
4297 return isl_stat_ok;
4300 static isl_bool after_in_tree(__isl_keep isl_union_map *umap,
4301 __isl_keep isl_schedule_node *node);
4303 /* Is any domain element of "umap" scheduled after any of
4304 * the corresponding image elements by the tree rooted at
4305 * the child of "node"?
4307 static isl_bool after_in_child(__isl_keep isl_union_map *umap,
4308 __isl_keep isl_schedule_node *node)
4310 isl_schedule_node *child;
4311 isl_bool after;
4313 child = isl_schedule_node_get_child(node, 0);
4314 after = after_in_tree(umap, child);
4315 isl_schedule_node_free(child);
4317 return after;
4320 /* Is any domain element of "umap" scheduled after any of
4321 * the corresponding image elements by the tree rooted at
4322 * the band node "node"?
4324 * We first check if any domain element is scheduled after any
4325 * of the corresponding image elements by the band node itself.
4326 * If not, we restrict "map" to those pairs of element that
4327 * are scheduled together by the band node and continue with
4328 * the child of the band node.
4329 * If there are no such pairs then the map passed to after_in_child
4330 * will be empty causing it to return 0.
4332 static isl_bool after_in_band(__isl_keep isl_union_map *umap,
4333 __isl_keep isl_schedule_node *node)
4335 isl_multi_union_pw_aff *mupa;
4336 isl_union_map *partial, *test, *gt, *universe, *umap1, *umap2;
4337 isl_union_set *domain, *range;
4338 isl_space *space;
4339 isl_bool empty;
4340 isl_bool after;
4341 isl_size n;
4343 n = isl_schedule_node_band_n_member(node);
4344 if (n < 0)
4345 return isl_bool_error;
4346 if (n == 0)
4347 return after_in_child(umap, node);
4349 mupa = isl_schedule_node_band_get_partial_schedule(node);
4350 space = isl_multi_union_pw_aff_get_space(mupa);
4351 partial = isl_union_map_from_multi_union_pw_aff(mupa);
4352 test = isl_union_map_copy(umap);
4353 test = isl_union_map_apply_domain(test, isl_union_map_copy(partial));
4354 test = isl_union_map_apply_range(test, isl_union_map_copy(partial));
4355 gt = isl_union_map_from_map(isl_map_lex_gt(space));
4356 test = isl_union_map_intersect(test, gt);
4357 empty = isl_union_map_is_empty(test);
4358 isl_union_map_free(test);
4360 if (empty < 0 || !empty) {
4361 isl_union_map_free(partial);
4362 return isl_bool_not(empty);
4365 universe = isl_union_map_universe(isl_union_map_copy(umap));
4366 domain = isl_union_map_domain(isl_union_map_copy(universe));
4367 range = isl_union_map_range(universe);
4368 umap1 = isl_union_map_copy(partial);
4369 umap1 = isl_union_map_intersect_domain(umap1, domain);
4370 umap2 = isl_union_map_intersect_domain(partial, range);
4371 test = isl_union_map_apply_range(umap1, isl_union_map_reverse(umap2));
4372 test = isl_union_map_intersect(test, isl_union_map_copy(umap));
4373 after = after_in_child(test, node);
4374 isl_union_map_free(test);
4375 return after;
4378 /* Is any domain element of "umap" scheduled after any of
4379 * the corresponding image elements by the tree rooted at
4380 * the context node "node"?
4382 * The context constraints apply to the schedule domain,
4383 * so we cannot apply them directly to "umap", which contains
4384 * pairs of statement instances. Instead, we add them
4385 * to the range of the prefix schedule for both domain and
4386 * range of "umap".
4388 static isl_bool after_in_context(__isl_keep isl_union_map *umap,
4389 __isl_keep isl_schedule_node *node)
4391 isl_union_map *prefix, *universe, *umap1, *umap2;
4392 isl_union_set *domain, *range;
4393 isl_set *context;
4394 isl_bool after;
4396 umap = isl_union_map_copy(umap);
4397 context = isl_schedule_node_context_get_context(node);
4398 prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
4399 universe = isl_union_map_universe(isl_union_map_copy(umap));
4400 domain = isl_union_map_domain(isl_union_map_copy(universe));
4401 range = isl_union_map_range(universe);
4402 umap1 = isl_union_map_copy(prefix);
4403 umap1 = isl_union_map_intersect_domain(umap1, domain);
4404 umap2 = isl_union_map_intersect_domain(prefix, range);
4405 umap1 = isl_union_map_intersect_range(umap1,
4406 isl_union_set_from_set(context));
4407 umap1 = isl_union_map_apply_range(umap1, isl_union_map_reverse(umap2));
4408 umap = isl_union_map_intersect(umap, umap1);
4410 after = after_in_child(umap, node);
4412 isl_union_map_free(umap);
4414 return after;
4417 /* Is any domain element of "umap" scheduled after any of
4418 * the corresponding image elements by the tree rooted at
4419 * the expansion node "node"?
4421 * We apply the expansion to domain and range of "umap" and
4422 * continue with its child.
4424 static isl_bool after_in_expansion(__isl_keep isl_union_map *umap,
4425 __isl_keep isl_schedule_node *node)
4427 isl_union_map *expansion;
4428 isl_bool after;
4430 expansion = isl_schedule_node_expansion_get_expansion(node);
4431 umap = isl_union_map_copy(umap);
4432 umap = isl_union_map_apply_domain(umap, isl_union_map_copy(expansion));
4433 umap = isl_union_map_apply_range(umap, expansion);
4435 after = after_in_child(umap, node);
4437 isl_union_map_free(umap);
4439 return after;
4442 /* Is any domain element of "umap" scheduled after any of
4443 * the corresponding image elements by the tree rooted at
4444 * the extension node "node"?
4446 * Since the extension node may add statement instances before or
4447 * after the pairs of statement instances in "umap", we return isl_bool_true
4448 * to ensure that these pairs are not broken up.
4450 static isl_bool after_in_extension(__isl_keep isl_union_map *umap,
4451 __isl_keep isl_schedule_node *node)
4453 return isl_bool_true;
4456 /* Is any domain element of "umap" scheduled after any of
4457 * the corresponding image elements by the tree rooted at
4458 * the filter node "node"?
4460 * We intersect domain and range of "umap" with the filter and
4461 * continue with its child.
4463 static isl_bool after_in_filter(__isl_keep isl_union_map *umap,
4464 __isl_keep isl_schedule_node *node)
4466 isl_union_set *filter;
4467 isl_bool after;
4469 umap = isl_union_map_copy(umap);
4470 filter = isl_schedule_node_filter_get_filter(node);
4471 umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(filter));
4472 umap = isl_union_map_intersect_range(umap, filter);
4474 after = after_in_child(umap, node);
4476 isl_union_map_free(umap);
4478 return after;
4481 /* Is any domain element of "umap" scheduled after any of
4482 * the corresponding image elements by the tree rooted at
4483 * the set node "node"?
4485 * This is only the case if this condition holds in any
4486 * of the (filter) children of the set node.
4487 * In particular, if the domain and the range of "umap"
4488 * are contained in different children, then the condition
4489 * does not hold.
4491 static isl_bool after_in_set(__isl_keep isl_union_map *umap,
4492 __isl_keep isl_schedule_node *node)
4494 int i;
4495 isl_size n;
4497 n = isl_schedule_node_n_children(node);
4498 if (n < 0)
4499 return isl_bool_error;
4500 for (i = 0; i < n; ++i) {
4501 isl_schedule_node *child;
4502 isl_bool after;
4504 child = isl_schedule_node_get_child(node, i);
4505 after = after_in_tree(umap, child);
4506 isl_schedule_node_free(child);
4508 if (after < 0 || after)
4509 return after;
4512 return isl_bool_false;
4515 /* Return the filter of child "i" of "node".
4517 static __isl_give isl_union_set *child_filter(
4518 __isl_keep isl_schedule_node *node, int i)
4520 isl_schedule_node *child;
4521 isl_union_set *filter;
4523 child = isl_schedule_node_get_child(node, i);
4524 filter = isl_schedule_node_filter_get_filter(child);
4525 isl_schedule_node_free(child);
4527 return filter;
4530 /* Is any domain element of "umap" scheduled after any of
4531 * the corresponding image elements by the tree rooted at
4532 * the sequence node "node"?
4534 * This happens in particular if any domain element is
4535 * contained in a later child than one containing a range element or
4536 * if the condition holds within a given child in the sequence.
4537 * The later part of the condition is checked by after_in_set.
4539 static isl_bool after_in_sequence(__isl_keep isl_union_map *umap,
4540 __isl_keep isl_schedule_node *node)
4542 int i, j;
4543 isl_size n;
4544 isl_union_map *umap_i;
4545 isl_bool empty;
4546 isl_bool after = isl_bool_false;
4548 n = isl_schedule_node_n_children(node);
4549 if (n < 0)
4550 return isl_bool_error;
4551 for (i = 1; i < n; ++i) {
4552 isl_union_set *filter_i;
4554 umap_i = isl_union_map_copy(umap);
4555 filter_i = child_filter(node, i);
4556 umap_i = isl_union_map_intersect_domain(umap_i, filter_i);
4557 empty = isl_union_map_is_empty(umap_i);
4558 if (empty < 0)
4559 goto error;
4560 if (empty) {
4561 isl_union_map_free(umap_i);
4562 continue;
4565 for (j = 0; j < i; ++j) {
4566 isl_union_set *filter_j;
4567 isl_union_map *umap_ij;
4569 umap_ij = isl_union_map_copy(umap_i);
4570 filter_j = child_filter(node, j);
4571 umap_ij = isl_union_map_intersect_range(umap_ij,
4572 filter_j);
4573 empty = isl_union_map_is_empty(umap_ij);
4574 isl_union_map_free(umap_ij);
4576 if (empty < 0)
4577 goto error;
4578 if (!empty)
4579 after = isl_bool_true;
4580 if (after)
4581 break;
4584 isl_union_map_free(umap_i);
4585 if (after)
4586 break;
4589 if (after < 0 || after)
4590 return after;
4592 return after_in_set(umap, node);
4593 error:
4594 isl_union_map_free(umap_i);
4595 return isl_bool_error;
4598 /* Is any domain element of "umap" scheduled after any of
4599 * the corresponding image elements by the tree rooted at "node"?
4601 * If "umap" is empty, then clearly there is no such element.
4602 * Otherwise, consider the different types of nodes separately.
4604 static isl_bool after_in_tree(__isl_keep isl_union_map *umap,
4605 __isl_keep isl_schedule_node *node)
4607 isl_bool empty;
4608 enum isl_schedule_node_type type;
4610 empty = isl_union_map_is_empty(umap);
4611 if (empty < 0)
4612 return isl_bool_error;
4613 if (empty)
4614 return isl_bool_false;
4615 if (!node)
4616 return isl_bool_error;
4618 type = isl_schedule_node_get_type(node);
4619 switch (type) {
4620 case isl_schedule_node_error:
4621 return isl_bool_error;
4622 case isl_schedule_node_leaf:
4623 return isl_bool_false;
4624 case isl_schedule_node_band:
4625 return after_in_band(umap, node);
4626 case isl_schedule_node_domain:
4627 isl_die(isl_schedule_node_get_ctx(node), isl_error_internal,
4628 "unexpected internal domain node",
4629 return isl_bool_error);
4630 case isl_schedule_node_context:
4631 return after_in_context(umap, node);
4632 case isl_schedule_node_expansion:
4633 return after_in_expansion(umap, node);
4634 case isl_schedule_node_extension:
4635 return after_in_extension(umap, node);
4636 case isl_schedule_node_filter:
4637 return after_in_filter(umap, node);
4638 case isl_schedule_node_guard:
4639 case isl_schedule_node_mark:
4640 return after_in_child(umap, node);
4641 case isl_schedule_node_set:
4642 return after_in_set(umap, node);
4643 case isl_schedule_node_sequence:
4644 return after_in_sequence(umap, node);
4647 return isl_bool_true;
4650 /* Is any domain element of "map1" scheduled after any domain
4651 * element of "map2" by the subtree underneath the current band node,
4652 * while at the same time being scheduled together by the current
4653 * band node, i.e., by "map1" and "map2?
4655 * If the child of the current band node is a leaf, then
4656 * no element can be scheduled after any other element.
4658 * Otherwise, we construct a relation between domain elements
4659 * of "map1" and domain elements of "map2" that are scheduled
4660 * together and then check if the subtree underneath the current
4661 * band node determines their relative order.
4663 static isl_bool after_in_subtree(__isl_keep isl_ast_build *build,
4664 __isl_keep isl_map *map1, __isl_keep isl_map *map2)
4666 isl_schedule_node *node;
4667 isl_map *map;
4668 isl_union_map *umap;
4669 isl_bool after;
4671 node = isl_ast_build_get_schedule_node(build);
4672 if (!node)
4673 return isl_bool_error;
4674 node = isl_schedule_node_child(node, 0);
4675 if (isl_schedule_node_get_type(node) == isl_schedule_node_leaf) {
4676 isl_schedule_node_free(node);
4677 return isl_bool_false;
4679 map = isl_map_copy(map2);
4680 map = isl_map_apply_domain(map, isl_map_copy(map1));
4681 umap = isl_union_map_from_map(map);
4682 after = after_in_tree(umap, node);
4683 isl_union_map_free(umap);
4684 isl_schedule_node_free(node);
4685 return after;
4688 /* Internal data for any_scheduled_after.
4690 * "build" is the build in which the AST is constructed.
4691 * "depth" is the number of loops that have already been generated
4692 * "group_coscheduled" is a local copy of options->ast_build_group_coscheduled
4693 * "domain" is an array of set-map pairs corresponding to the different
4694 * iteration domains. The set is the schedule domain, i.e., the domain
4695 * of the inverse schedule, while the map is the inverse schedule itself.
4697 struct isl_any_scheduled_after_data {
4698 isl_ast_build *build;
4699 int depth;
4700 int group_coscheduled;
4701 struct isl_set_map_pair *domain;
4704 /* Is any element of domain "i" scheduled after any element of domain "j"
4705 * (for a common iteration of the first data->depth loops)?
4707 * data->domain[i].set contains the domain of the inverse schedule
4708 * for domain "i", i.e., elements in the schedule domain.
4710 * If we are inside a band of a schedule tree and there is a pair
4711 * of elements in the two domains that is schedule together by
4712 * the current band, then we check if any element of "i" may be schedule
4713 * after element of "j" by the descendants of the band node.
4715 * If data->group_coscheduled is set, then we also return 1 if there
4716 * is any pair of elements in the two domains that are scheduled together.
4718 static isl_bool any_scheduled_after(int i, int j, void *user)
4720 struct isl_any_scheduled_after_data *data = user;
4721 isl_size dim = isl_set_dim(data->domain[i].set, isl_dim_set);
4722 int pos;
4724 if (dim < 0)
4725 return isl_bool_error;
4727 for (pos = data->depth; pos < dim; ++pos) {
4728 int follows;
4730 follows = isl_set_follows_at(data->domain[i].set,
4731 data->domain[j].set, pos);
4733 if (follows < -1)
4734 return isl_bool_error;
4735 if (follows > 0)
4736 return isl_bool_true;
4737 if (follows < 0)
4738 return isl_bool_false;
4741 if (isl_ast_build_has_schedule_node(data->build)) {
4742 isl_bool after;
4744 after = after_in_subtree(data->build, data->domain[i].map,
4745 data->domain[j].map);
4746 if (after < 0 || after)
4747 return after;
4750 return isl_bool_ok(data->group_coscheduled);
4753 /* Look for independent components at the current depth and generate code
4754 * for each component separately. The resulting lists of grafts are
4755 * merged in an attempt to combine grafts with identical guards.
4757 * Code for two domains can be generated separately if all the elements
4758 * of one domain are scheduled before (or together with) all the elements
4759 * of the other domain. We therefore consider the graph with as nodes
4760 * the domains and an edge between two nodes if any element of the first
4761 * node is scheduled after any element of the second node.
4762 * If the ast_build_group_coscheduled is set, then we also add an edge if
4763 * there is any pair of elements in the two domains that are scheduled
4764 * together.
4765 * Code is then generated (by generate_component)
4766 * for each of the strongly connected components in this graph
4767 * in their topological order.
4769 * Since the test is performed on the domain of the inverse schedules of
4770 * the different domains, we precompute these domains and store
4771 * them in data.domain.
4773 static __isl_give isl_ast_graft_list *generate_components(
4774 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
4776 int i;
4777 isl_ctx *ctx = isl_ast_build_get_ctx(build);
4778 isl_size n = isl_union_map_n_map(executed);
4779 isl_size depth;
4780 struct isl_any_scheduled_after_data data;
4781 struct isl_set_map_pair *next;
4782 struct isl_tarjan_graph *g = NULL;
4783 isl_ast_graft_list *list = NULL;
4784 int n_domain = 0;
4786 data.domain = NULL;
4787 if (n < 0)
4788 goto error;
4789 data.domain = isl_calloc_array(ctx, struct isl_set_map_pair, n);
4790 if (!data.domain)
4791 goto error;
4792 n_domain = n;
4794 next = data.domain;
4795 if (isl_union_map_foreach_map(executed, &extract_domain, &next) < 0)
4796 goto error;
4798 depth = isl_ast_build_get_depth(build);
4799 if (depth < 0)
4800 goto error;
4801 data.build = build;
4802 data.depth = depth;
4803 data.group_coscheduled = isl_options_get_ast_build_group_coscheduled(ctx);
4804 g = isl_tarjan_graph_init(ctx, n, &any_scheduled_after, &data);
4805 if (!g)
4806 goto error;
4808 list = isl_ast_graft_list_alloc(ctx, 0);
4810 i = 0;
4811 while (list && n) {
4812 isl_ast_graft_list *list_c;
4813 int first = i;
4815 if (g->order[i] == -1)
4816 isl_die(ctx, isl_error_internal, "cannot happen",
4817 goto error);
4818 ++i; --n;
4819 while (g->order[i] != -1) {
4820 ++i; --n;
4823 list_c = generate_component(data.domain,
4824 g->order + first, i - first,
4825 isl_ast_build_copy(build));
4826 list = isl_ast_graft_list_merge(list, list_c, build);
4828 ++i;
4831 if (0)
4832 error: list = isl_ast_graft_list_free(list);
4833 isl_tarjan_graph_free(g);
4834 for (i = 0; i < n_domain; ++i) {
4835 isl_map_free(data.domain[i].map);
4836 isl_set_free(data.domain[i].set);
4838 free(data.domain);
4839 isl_union_map_free(executed);
4840 isl_ast_build_free(build);
4842 return list;
4845 /* Generate code for the next level (and all inner levels).
4847 * If "executed" is empty, i.e., no code needs to be generated,
4848 * then we return an empty list.
4850 * If we have already generated code for all loop levels, then we pass
4851 * control to generate_inner_level.
4853 * If "executed" lives in a single space, i.e., if code needs to be
4854 * generated for a single domain, then there can only be a single
4855 * component and we go directly to generate_shifted_component.
4856 * Otherwise, we call generate_components to detect the components
4857 * and to call generate_component on each of them separately.
4859 static __isl_give isl_ast_graft_list *generate_next_level(
4860 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
4862 isl_size depth;
4863 isl_size dim;
4864 isl_size n;
4866 if (!build || !executed)
4867 goto error;
4869 if (isl_union_map_is_empty(executed)) {
4870 isl_ctx *ctx = isl_ast_build_get_ctx(build);
4871 isl_union_map_free(executed);
4872 isl_ast_build_free(build);
4873 return isl_ast_graft_list_alloc(ctx, 0);
4876 depth = isl_ast_build_get_depth(build);
4877 dim = isl_ast_build_dim(build, isl_dim_set);
4878 if (depth < 0 || dim < 0)
4879 goto error;
4880 if (depth >= dim)
4881 return generate_inner_level(executed, build);
4883 n = isl_union_map_n_map(executed);
4884 if (n < 0)
4885 goto error;
4886 if (n == 1)
4887 return generate_shifted_component(executed, build);
4889 return generate_components(executed, build);
4890 error:
4891 isl_union_map_free(executed);
4892 isl_ast_build_free(build);
4893 return NULL;
4896 /* Internal data structure used by isl_ast_build_node_from_schedule_map.
4897 * internal, executed and build are the inputs to generate_code.
4898 * list collects the output.
4900 struct isl_generate_code_data {
4901 int internal;
4902 isl_union_map *executed;
4903 isl_ast_build *build;
4905 isl_ast_graft_list *list;
4908 /* Given an inverse schedule in terms of the external build schedule, i.e.,
4910 * [E -> S] -> D
4912 * with E the external build schedule and S the additional schedule "space",
4913 * reformulate the inverse schedule in terms of the internal schedule domain,
4914 * i.e., return
4916 * [I -> S] -> D
4918 * We first obtain a mapping
4920 * I -> E
4922 * take the inverse and the product with S -> S, resulting in
4924 * [I -> S] -> [E -> S]
4926 * Applying the map to the input produces the desired result.
4928 static __isl_give isl_union_map *internal_executed(
4929 __isl_take isl_union_map *executed, __isl_keep isl_space *space,
4930 __isl_keep isl_ast_build *build)
4932 isl_map *id, *proj;
4934 proj = isl_ast_build_get_schedule_map(build);
4935 proj = isl_map_reverse(proj);
4936 space = isl_space_map_from_set(isl_space_copy(space));
4937 id = isl_map_identity(space);
4938 proj = isl_map_product(proj, id);
4939 executed = isl_union_map_apply_domain(executed,
4940 isl_union_map_from_map(proj));
4941 return executed;
4944 /* Generate an AST that visits the elements in the range of data->executed
4945 * in the relative order specified by the corresponding domain element(s)
4946 * for those domain elements that belong to "set".
4947 * Add the result to data->list.
4949 * The caller ensures that "set" is a universe domain.
4950 * "space" is the space of the additional part of the schedule.
4951 * It is equal to the space of "set" if build->domain is parametric.
4952 * Otherwise, it is equal to the range of the wrapped space of "set".
4954 * If the build space is not parametric and
4955 * if isl_ast_build_node_from_schedule_map
4956 * was called from an outside user (data->internal not set), then
4957 * the (inverse) schedule refers to the external build domain and needs to
4958 * be transformed to refer to the internal build domain.
4960 * If the build space is parametric, then we add some of the parameter
4961 * constraints to the executed relation. Adding these constraints
4962 * allows for an earlier detection of conflicts in some cases.
4963 * However, we do not want to divide the executed relation into
4964 * more disjuncts than necessary. We therefore approximate
4965 * the constraints on the parameters by a single disjunct set.
4967 * The build is extended to include the additional part of the schedule.
4968 * If the original build space was not parametric, then the options
4969 * in data->build refer only to the additional part of the schedule
4970 * and they need to be adjusted to refer to the complete AST build
4971 * domain.
4973 * After having adjusted inverse schedule and build, we start generating
4974 * code with the outer loop of the current code generation
4975 * in generate_next_level.
4977 * If the original build space was not parametric, we undo the embedding
4978 * on the resulting isl_ast_node_list so that it can be used within
4979 * the outer AST build.
4981 static isl_stat generate_code_in_space(struct isl_generate_code_data *data,
4982 __isl_take isl_set *set, __isl_take isl_space *space)
4984 isl_union_map *executed;
4985 isl_ast_build *build;
4986 isl_ast_graft_list *list;
4987 int embed;
4989 executed = isl_union_map_copy(data->executed);
4990 executed = isl_union_map_intersect_domain(executed,
4991 isl_union_set_from_set(set));
4993 embed = !isl_set_is_params(data->build->domain);
4994 if (embed && !data->internal)
4995 executed = internal_executed(executed, space, data->build);
4996 if (!embed) {
4997 isl_set *domain;
4998 domain = isl_ast_build_get_domain(data->build);
4999 domain = isl_set_from_basic_set(isl_set_simple_hull(domain));
5000 executed = isl_union_map_intersect_params(executed, domain);
5003 build = isl_ast_build_copy(data->build);
5004 build = isl_ast_build_product(build, space);
5006 list = generate_next_level(executed, build);
5008 list = isl_ast_graft_list_unembed(list, embed);
5010 data->list = isl_ast_graft_list_concat(data->list, list);
5012 return isl_stat_ok;
5015 /* Generate an AST that visits the elements in the range of data->executed
5016 * in the relative order specified by the corresponding domain element(s)
5017 * for those domain elements that belong to "set".
5018 * Add the result to data->list.
5020 * The caller ensures that "set" is a universe domain.
5022 * If the build space S is not parametric, then the space of "set"
5023 * need to be a wrapped relation with S as domain. That is, it needs
5024 * to be of the form
5026 * [S -> T]
5028 * Check this property and pass control to generate_code_in_space
5029 * passing along T.
5030 * If the build space is not parametric, then T is the space of "set".
5032 static isl_stat generate_code_set(__isl_take isl_set *set, void *user)
5034 struct isl_generate_code_data *data = user;
5035 isl_space *space, *build_space;
5036 int is_domain;
5038 space = isl_set_get_space(set);
5040 if (isl_set_is_params(data->build->domain))
5041 return generate_code_in_space(data, set, space);
5043 build_space = isl_ast_build_get_space(data->build, data->internal);
5044 space = isl_space_unwrap(space);
5045 is_domain = isl_space_is_domain(build_space, space);
5046 isl_space_free(build_space);
5047 space = isl_space_range(space);
5049 if (is_domain < 0)
5050 goto error;
5051 if (!is_domain)
5052 isl_die(isl_set_get_ctx(set), isl_error_invalid,
5053 "invalid nested schedule space", goto error);
5055 return generate_code_in_space(data, set, space);
5056 error:
5057 isl_set_free(set);
5058 isl_space_free(space);
5059 return isl_stat_error;
5062 /* Generate an AST that visits the elements in the range of "executed"
5063 * in the relative order specified by the corresponding domain element(s).
5065 * "build" is an isl_ast_build that has either been constructed by
5066 * isl_ast_build_from_context or passed to a callback set by
5067 * isl_ast_build_set_create_leaf.
5068 * In the first case, the space of the isl_ast_build is typically
5069 * a parametric space, although this is currently not enforced.
5070 * In the second case, the space is never a parametric space.
5071 * If the space S is not parametric, then the domain space(s) of "executed"
5072 * need to be wrapped relations with S as domain.
5074 * If the domain of "executed" consists of several spaces, then an AST
5075 * is generated for each of them (in arbitrary order) and the results
5076 * are concatenated.
5078 * If "internal" is set, then the domain "S" above refers to the internal
5079 * schedule domain representation. Otherwise, it refers to the external
5080 * representation, as returned by isl_ast_build_get_schedule_space.
5082 * We essentially run over all the spaces in the domain of "executed"
5083 * and call generate_code_set on each of them.
5085 static __isl_give isl_ast_graft_list *generate_code(
5086 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build,
5087 int internal)
5089 isl_ctx *ctx;
5090 struct isl_generate_code_data data = { 0 };
5091 isl_space *space;
5092 isl_union_set *schedule_domain;
5093 isl_union_map *universe;
5095 if (!build)
5096 goto error;
5097 space = isl_ast_build_get_space(build, 1);
5098 space = isl_space_align_params(space,
5099 isl_union_map_get_space(executed));
5100 space = isl_space_align_params(space,
5101 isl_union_map_get_space(build->options));
5102 build = isl_ast_build_align_params(build, isl_space_copy(space));
5103 executed = isl_union_map_align_params(executed, space);
5104 if (!executed || !build)
5105 goto error;
5107 ctx = isl_ast_build_get_ctx(build);
5109 data.internal = internal;
5110 data.executed = executed;
5111 data.build = build;
5112 data.list = isl_ast_graft_list_alloc(ctx, 0);
5114 universe = isl_union_map_universe(isl_union_map_copy(executed));
5115 schedule_domain = isl_union_map_domain(universe);
5116 if (isl_union_set_foreach_set(schedule_domain, &generate_code_set,
5117 &data) < 0)
5118 data.list = isl_ast_graft_list_free(data.list);
5120 isl_union_set_free(schedule_domain);
5121 isl_union_map_free(executed);
5123 isl_ast_build_free(build);
5124 return data.list;
5125 error:
5126 isl_union_map_free(executed);
5127 isl_ast_build_free(build);
5128 return NULL;
5131 /* Generate an AST that visits the elements in the domain of "schedule"
5132 * in the relative order specified by the corresponding image element(s).
5134 * "build" is an isl_ast_build that has either been constructed by
5135 * isl_ast_build_from_context or passed to a callback set by
5136 * isl_ast_build_set_create_leaf.
5137 * In the first case, the space of the isl_ast_build is typically
5138 * a parametric space, although this is currently not enforced.
5139 * In the second case, the space is never a parametric space.
5140 * If the space S is not parametric, then the range space(s) of "schedule"
5141 * need to be wrapped relations with S as domain.
5143 * If the range of "schedule" consists of several spaces, then an AST
5144 * is generated for each of them (in arbitrary order) and the results
5145 * are concatenated.
5147 * We first initialize the local copies of the relevant options.
5148 * We do this here rather than when the isl_ast_build is created
5149 * because the options may have changed between the construction
5150 * of the isl_ast_build and the call to isl_generate_code.
5152 * The main computation is performed on an inverse schedule (with
5153 * the schedule domain in the domain and the elements to be executed
5154 * in the range) called "executed".
5156 __isl_give isl_ast_node *isl_ast_build_node_from_schedule_map(
5157 __isl_keep isl_ast_build *build, __isl_take isl_union_map *schedule)
5159 isl_ast_graft_list *list;
5160 isl_ast_node *node;
5161 isl_union_map *executed;
5163 build = isl_ast_build_copy(build);
5164 build = isl_ast_build_set_single_valued(build, 0);
5165 schedule = isl_union_map_coalesce(schedule);
5166 schedule = isl_union_map_remove_redundancies(schedule);
5167 executed = isl_union_map_reverse(schedule);
5168 list = generate_code(executed, isl_ast_build_copy(build), 0);
5169 node = isl_ast_node_from_graft_list(list, build);
5170 isl_ast_build_free(build);
5172 return node;
5175 /* The old name for isl_ast_build_node_from_schedule_map.
5176 * It is being kept for backward compatibility, but
5177 * it will be removed in the future.
5179 __isl_give isl_ast_node *isl_ast_build_ast_from_schedule(
5180 __isl_keep isl_ast_build *build, __isl_take isl_union_map *schedule)
5182 return isl_ast_build_node_from_schedule_map(build, schedule);
5185 /* Generate an AST that visits the elements in the domain of "executed"
5186 * in the relative order specified by the leaf node "node".
5188 * The relation "executed" maps the outer generated loop iterators
5189 * to the domain elements executed by those iterations.
5191 * Simply pass control to generate_inner_level.
5192 * Note that the current build does not refer to any band node, so
5193 * that generate_inner_level will not try to visit the child of
5194 * the leaf node.
5196 * If multiple statement instances reach a leaf,
5197 * then they can be executed in any order.
5198 * Group the list of grafts based on shared guards
5199 * such that identical guards are only generated once
5200 * when the list is eventually passed on to isl_ast_graft_list_fuse.
5202 static __isl_give isl_ast_graft_list *build_ast_from_leaf(
5203 __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
5204 __isl_take isl_union_map *executed)
5206 isl_ast_graft_list *list;
5208 isl_schedule_node_free(node);
5209 list = generate_inner_level(executed, isl_ast_build_copy(build));
5210 list = isl_ast_graft_list_group_on_guard(list, build);
5211 isl_ast_build_free(build);
5213 return list;
5216 /* Check that the band partial schedule "partial" does not filter out
5217 * any statement instances, as specified by the range of "executed".
5219 static isl_stat check_band_schedule_total_on_instances(
5220 __isl_keep isl_multi_union_pw_aff *partial,
5221 __isl_keep isl_union_map *executed)
5223 isl_bool subset;
5224 isl_union_set *domain, *instances;
5226 instances = isl_union_map_range(isl_union_map_copy(executed));
5227 partial = isl_multi_union_pw_aff_copy(partial);
5228 domain = isl_multi_union_pw_aff_domain(partial);
5229 subset = isl_union_set_is_subset(instances, domain);
5230 isl_union_set_free(domain);
5231 isl_union_set_free(instances);
5233 if (subset < 0)
5234 return isl_stat_error;
5235 if (!subset)
5236 isl_die(isl_union_map_get_ctx(executed), isl_error_invalid,
5237 "band node is not allowed to drop statement instances",
5238 return isl_stat_error);
5239 return isl_stat_ok;
5242 /* Generate an AST that visits the elements in the domain of "executed"
5243 * in the relative order specified by the band node "node" and its descendants.
5245 * The relation "executed" maps the outer generated loop iterators
5246 * to the domain elements executed by those iterations.
5248 * If the band is empty, we continue with its descendants.
5249 * Otherwise, we extend the build and the inverse schedule with
5250 * the additional space/partial schedule and continue generating
5251 * an AST in generate_next_level.
5252 * As soon as we have extended the inverse schedule with the additional
5253 * partial schedule, we look for equalities that may exists between
5254 * the old and the new part.
5256 static __isl_give isl_ast_graft_list *build_ast_from_band(
5257 __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
5258 __isl_take isl_union_map *executed)
5260 isl_space *space;
5261 isl_multi_union_pw_aff *extra;
5262 isl_union_map *extra_umap;
5263 isl_ast_graft_list *list;
5264 isl_size n1, n2;
5265 isl_size n;
5267 n = isl_schedule_node_band_n_member(node);
5268 if (!build || n < 0 || !executed)
5269 goto error;
5271 if (n == 0)
5272 return build_ast_from_child(build, node, executed);
5274 extra = isl_schedule_node_band_get_partial_schedule(node);
5275 extra = isl_multi_union_pw_aff_align_params(extra,
5276 isl_ast_build_get_space(build, 1));
5277 space = isl_multi_union_pw_aff_get_space(extra);
5279 if (check_band_schedule_total_on_instances(extra, executed) < 0)
5280 executed = isl_union_map_free(executed);
5282 extra_umap = isl_union_map_from_multi_union_pw_aff(extra);
5283 extra_umap = isl_union_map_reverse(extra_umap);
5285 executed = isl_union_map_domain_product(executed, extra_umap);
5286 executed = isl_union_map_detect_equalities(executed);
5288 n1 = isl_ast_build_dim(build, isl_dim_param);
5289 build = isl_ast_build_product(build, space);
5290 n2 = isl_ast_build_dim(build, isl_dim_param);
5291 if (n1 < 0 || n2 < 0)
5292 build = isl_ast_build_free(build);
5293 else if (n2 > n1)
5294 isl_die(isl_ast_build_get_ctx(build), isl_error_invalid,
5295 "band node is not allowed to introduce new parameters",
5296 build = isl_ast_build_free(build));
5297 build = isl_ast_build_set_schedule_node(build, node);
5299 list = generate_next_level(executed, build);
5301 list = isl_ast_graft_list_unembed(list, 1);
5303 return list;
5304 error:
5305 isl_schedule_node_free(node);
5306 isl_union_map_free(executed);
5307 isl_ast_build_free(build);
5308 return NULL;
5311 /* Hoist a list of grafts (in practice containing a single graft)
5312 * from "sub_build" (which includes extra context information)
5313 * to "build".
5315 * In particular, project out all additional parameters introduced
5316 * by the context node from the enforced constraints and the guard
5317 * of the single graft.
5319 static __isl_give isl_ast_graft_list *hoist_out_of_context(
5320 __isl_take isl_ast_graft_list *list, __isl_keep isl_ast_build *build,
5321 __isl_keep isl_ast_build *sub_build)
5323 isl_ast_graft *graft;
5324 isl_basic_set *enforced;
5325 isl_set *guard;
5326 isl_size n_param, extra_param;
5328 n_param = isl_ast_build_dim(build, isl_dim_param);
5329 extra_param = isl_ast_build_dim(sub_build, isl_dim_param);
5330 if (n_param < 0 || extra_param < 0)
5331 return isl_ast_graft_list_free(list);
5333 if (extra_param == n_param)
5334 return list;
5336 extra_param -= n_param;
5337 enforced = isl_ast_graft_list_extract_shared_enforced(list, sub_build);
5338 enforced = isl_basic_set_project_out(enforced, isl_dim_param,
5339 n_param, extra_param);
5340 enforced = isl_basic_set_remove_unknown_divs(enforced);
5341 guard = isl_ast_graft_list_extract_hoistable_guard(list, sub_build);
5342 guard = isl_set_remove_divs_involving_dims(guard, isl_dim_param,
5343 n_param, extra_param);
5344 guard = isl_set_project_out(guard, isl_dim_param, n_param, extra_param);
5345 guard = isl_set_compute_divs(guard);
5346 graft = isl_ast_graft_alloc_from_children(list, guard, enforced,
5347 build, sub_build);
5348 list = isl_ast_graft_list_from_ast_graft(graft);
5350 return list;
5353 /* Generate an AST that visits the elements in the domain of "executed"
5354 * in the relative order specified by the context node "node"
5355 * and its descendants.
5357 * The relation "executed" maps the outer generated loop iterators
5358 * to the domain elements executed by those iterations.
5360 * The context node may introduce additional parameters as well as
5361 * constraints on the outer schedule dimensions or original parameters.
5363 * We add the extra parameters to a new build and the context
5364 * constraints to both the build and (as a single disjunct)
5365 * to the domain of "executed". Since the context constraints
5366 * are specified in terms of the input schedule, we first need
5367 * to map them to the internal schedule domain.
5369 * After constructing the AST from the descendants of "node",
5370 * we combine the list of grafts into a single graft within
5371 * the new build, in order to be able to exploit the additional
5372 * context constraints during this combination.
5374 * Additionally, if the current node is the outermost node in
5375 * the schedule tree (apart from the root domain node), we generate
5376 * all pending guards, again to be able to exploit the additional
5377 * context constraints. We currently do not do this for internal
5378 * context nodes since we may still want to hoist conditions
5379 * to outer AST nodes.
5381 * If the context node introduced any new parameters, then they
5382 * are removed from the set of enforced constraints and guard
5383 * in hoist_out_of_context.
5385 static __isl_give isl_ast_graft_list *build_ast_from_context(
5386 __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
5387 __isl_take isl_union_map *executed)
5389 isl_set *context;
5390 isl_space *space;
5391 isl_multi_aff *internal2input;
5392 isl_ast_build *sub_build;
5393 isl_ast_graft_list *list;
5394 isl_size n;
5395 isl_size depth;
5397 depth = isl_schedule_node_get_tree_depth(node);
5398 if (depth < 0)
5399 build = isl_ast_build_free(build);
5400 space = isl_ast_build_get_space(build, 1);
5401 context = isl_schedule_node_context_get_context(node);
5402 context = isl_set_align_params(context, space);
5403 sub_build = isl_ast_build_copy(build);
5404 space = isl_set_get_space(context);
5405 sub_build = isl_ast_build_align_params(sub_build, space);
5406 internal2input = isl_ast_build_get_internal2input(sub_build);
5407 context = isl_set_preimage_multi_aff(context, internal2input);
5408 sub_build = isl_ast_build_restrict_generated(sub_build,
5409 isl_set_copy(context));
5410 context = isl_set_from_basic_set(isl_set_simple_hull(context));
5411 executed = isl_union_map_intersect_domain(executed,
5412 isl_union_set_from_set(context));
5414 list = build_ast_from_child(isl_ast_build_copy(sub_build),
5415 node, executed);
5416 n = isl_ast_graft_list_n_ast_graft(list);
5417 if (n < 0)
5418 list = isl_ast_graft_list_free(list);
5420 list = isl_ast_graft_list_fuse(list, sub_build);
5421 if (depth == 1)
5422 list = isl_ast_graft_list_insert_pending_guard_nodes(list,
5423 sub_build);
5424 if (n >= 1)
5425 list = hoist_out_of_context(list, build, sub_build);
5427 isl_ast_build_free(build);
5428 isl_ast_build_free(sub_build);
5430 return list;
5433 /* Generate an AST that visits the elements in the domain of "executed"
5434 * in the relative order specified by the expansion node "node" and
5435 * its descendants.
5437 * The relation "executed" maps the outer generated loop iterators
5438 * to the domain elements executed by those iterations.
5440 * We expand the domain elements by the expansion and
5441 * continue with the descendants of the node.
5443 static __isl_give isl_ast_graft_list *build_ast_from_expansion(
5444 __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
5445 __isl_take isl_union_map *executed)
5447 isl_union_map *expansion;
5448 isl_size n1, n2;
5450 expansion = isl_schedule_node_expansion_get_expansion(node);
5451 expansion = isl_union_map_align_params(expansion,
5452 isl_union_map_get_space(executed));
5454 n1 = isl_union_map_dim(executed, isl_dim_param);
5455 executed = isl_union_map_apply_range(executed, expansion);
5456 n2 = isl_union_map_dim(executed, isl_dim_param);
5457 if (n1 < 0 || n2 < 0)
5458 goto error;
5459 if (n2 > n1)
5460 isl_die(isl_ast_build_get_ctx(build), isl_error_invalid,
5461 "expansion node is not allowed to introduce "
5462 "new parameters", goto error);
5464 return build_ast_from_child(build, node, executed);
5465 error:
5466 isl_ast_build_free(build);
5467 isl_schedule_node_free(node);
5468 isl_union_map_free(executed);
5469 return NULL;
5472 /* Generate an AST that visits the elements in the domain of "executed"
5473 * in the relative order specified by the extension node "node" and
5474 * its descendants.
5476 * The relation "executed" maps the outer generated loop iterators
5477 * to the domain elements executed by those iterations.
5479 * Extend the inverse schedule with the extension applied to current
5480 * set of generated constraints. Since the extension if formulated
5481 * in terms of the input schedule, it first needs to be transformed
5482 * to refer to the internal schedule.
5484 static __isl_give isl_ast_graft_list *build_ast_from_extension(
5485 __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
5486 __isl_take isl_union_map *executed)
5488 isl_union_set *schedule_domain;
5489 isl_union_map *extension;
5490 isl_set *set;
5492 set = isl_ast_build_get_generated(build);
5493 set = isl_set_from_basic_set(isl_set_simple_hull(set));
5494 schedule_domain = isl_union_set_from_set(set);
5496 extension = isl_schedule_node_extension_get_extension(node);
5498 extension = isl_union_map_preimage_domain_multi_aff(extension,
5499 isl_multi_aff_copy(build->internal2input));
5500 extension = isl_union_map_intersect_domain(extension, schedule_domain);
5501 extension = isl_ast_build_substitute_values_union_map_domain(build,
5502 extension);
5503 executed = isl_union_map_union(executed, extension);
5505 return build_ast_from_child(build, node, executed);
5508 /* Generate an AST that visits the elements in the domain of "executed"
5509 * in the relative order specified by the filter node "node" and
5510 * its descendants.
5512 * The relation "executed" maps the outer generated loop iterators
5513 * to the domain elements executed by those iterations.
5515 * We simply intersect the iteration domain (i.e., the range of "executed")
5516 * with the filter and continue with the descendants of the node,
5517 * unless the resulting inverse schedule is empty, in which
5518 * case we return an empty list.
5520 * If the result of the intersection is equal to the original "executed"
5521 * relation, then keep the original representation since the intersection
5522 * may have unnecessarily broken up the relation into a greater number
5523 * of disjuncts.
5525 static __isl_give isl_ast_graft_list *build_ast_from_filter(
5526 __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
5527 __isl_take isl_union_map *executed)
5529 isl_ctx *ctx;
5530 isl_union_set *filter;
5531 isl_union_map *orig;
5532 isl_ast_graft_list *list;
5533 int empty;
5534 isl_bool unchanged;
5535 isl_size n1, n2;
5537 orig = isl_union_map_copy(executed);
5538 if (!build || !node || !executed)
5539 goto error;
5541 filter = isl_schedule_node_filter_get_filter(node);
5542 filter = isl_union_set_align_params(filter,
5543 isl_union_map_get_space(executed));
5544 n1 = isl_union_map_dim(executed, isl_dim_param);
5545 executed = isl_union_map_intersect_range(executed, filter);
5546 n2 = isl_union_map_dim(executed, isl_dim_param);
5547 if (n1 < 0 || n2 < 0)
5548 goto error;
5549 if (n2 > n1)
5550 isl_die(isl_ast_build_get_ctx(build), isl_error_invalid,
5551 "filter node is not allowed to introduce "
5552 "new parameters", goto error);
5554 unchanged = isl_union_map_is_subset(orig, executed);
5555 empty = isl_union_map_is_empty(executed);
5556 if (unchanged < 0 || empty < 0)
5557 goto error;
5558 if (unchanged) {
5559 isl_union_map_free(executed);
5560 return build_ast_from_child(build, node, orig);
5562 isl_union_map_free(orig);
5563 if (!empty)
5564 return build_ast_from_child(build, node, executed);
5566 ctx = isl_ast_build_get_ctx(build);
5567 list = isl_ast_graft_list_alloc(ctx, 0);
5568 isl_ast_build_free(build);
5569 isl_schedule_node_free(node);
5570 isl_union_map_free(executed);
5571 return list;
5572 error:
5573 isl_ast_build_free(build);
5574 isl_schedule_node_free(node);
5575 isl_union_map_free(executed);
5576 isl_union_map_free(orig);
5577 return NULL;
5580 /* Generate an AST that visits the elements in the domain of "executed"
5581 * in the relative order specified by the guard node "node" and
5582 * its descendants.
5584 * The relation "executed" maps the outer generated loop iterators
5585 * to the domain elements executed by those iterations.
5587 * Ensure that the associated guard is enforced by the outer AST
5588 * constructs by adding it to the guard of the graft.
5589 * Since we know that we will enforce the guard, we can also include it
5590 * in the generated constraints used to construct an AST for
5591 * the descendant nodes.
5593 static __isl_give isl_ast_graft_list *build_ast_from_guard(
5594 __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
5595 __isl_take isl_union_map *executed)
5597 isl_space *space;
5598 isl_set *guard, *hoisted;
5599 isl_basic_set *enforced;
5600 isl_ast_build *sub_build;
5601 isl_ast_graft *graft;
5602 isl_ast_graft_list *list;
5603 isl_size n1, n2, n;
5605 space = isl_ast_build_get_space(build, 1);
5606 guard = isl_schedule_node_guard_get_guard(node);
5607 n1 = isl_space_dim(space, isl_dim_param);
5608 guard = isl_set_align_params(guard, space);
5609 n2 = isl_set_dim(guard, isl_dim_param);
5610 if (n1 < 0 || n2 < 0)
5611 guard = isl_set_free(guard);
5612 else if (n2 > n1)
5613 isl_die(isl_ast_build_get_ctx(build), isl_error_invalid,
5614 "guard node is not allowed to introduce "
5615 "new parameters", guard = isl_set_free(guard));
5616 guard = isl_set_preimage_multi_aff(guard,
5617 isl_multi_aff_copy(build->internal2input));
5618 guard = isl_ast_build_specialize(build, guard);
5619 guard = isl_set_gist(guard, isl_set_copy(build->generated));
5621 sub_build = isl_ast_build_copy(build);
5622 sub_build = isl_ast_build_restrict_generated(sub_build,
5623 isl_set_copy(guard));
5625 list = build_ast_from_child(isl_ast_build_copy(sub_build),
5626 node, executed);
5628 hoisted = isl_ast_graft_list_extract_hoistable_guard(list, sub_build);
5629 n = isl_set_n_basic_set(hoisted);
5630 if (n < 0)
5631 list = isl_ast_graft_list_free(list);
5632 if (n > 1)
5633 list = isl_ast_graft_list_gist_guards(list,
5634 isl_set_copy(hoisted));
5635 guard = isl_set_intersect(guard, hoisted);
5636 enforced = extract_shared_enforced(list, build);
5637 graft = isl_ast_graft_alloc_from_children(list, guard, enforced,
5638 build, sub_build);
5640 isl_ast_build_free(sub_build);
5641 isl_ast_build_free(build);
5642 return isl_ast_graft_list_from_ast_graft(graft);
5645 /* Call the before_each_mark callback, if requested by the user.
5647 * Return 0 on success and -1 on error.
5649 * The caller is responsible for recording the current inverse schedule
5650 * in "build".
5652 static isl_stat before_each_mark(__isl_keep isl_id *mark,
5653 __isl_keep isl_ast_build *build)
5655 if (!build)
5656 return isl_stat_error;
5657 if (!build->before_each_mark)
5658 return isl_stat_ok;
5659 return build->before_each_mark(mark, build,
5660 build->before_each_mark_user);
5663 /* Call the after_each_mark callback, if requested by the user.
5665 * The caller is responsible for recording the current inverse schedule
5666 * in "build".
5668 static __isl_give isl_ast_graft *after_each_mark(
5669 __isl_take isl_ast_graft *graft, __isl_keep isl_ast_build *build)
5671 if (!graft || !build)
5672 return isl_ast_graft_free(graft);
5673 if (!build->after_each_mark)
5674 return graft;
5675 graft->node = build->after_each_mark(graft->node, build,
5676 build->after_each_mark_user);
5677 if (!graft->node)
5678 return isl_ast_graft_free(graft);
5679 return graft;
5683 /* Generate an AST that visits the elements in the domain of "executed"
5684 * in the relative order specified by the mark node "node" and
5685 * its descendants.
5687 * The relation "executed" maps the outer generated loop iterators
5688 * to the domain elements executed by those iterations.
5690 * Since we may be calling before_each_mark and after_each_mark
5691 * callbacks, we record the current inverse schedule in the build.
5693 * We generate an AST for the child of the mark node, combine
5694 * the graft list into a single graft and then insert the mark
5695 * in the AST of that single graft.
5697 static __isl_give isl_ast_graft_list *build_ast_from_mark(
5698 __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
5699 __isl_take isl_union_map *executed)
5701 isl_id *mark;
5702 isl_ast_graft *graft;
5703 isl_ast_graft_list *list;
5704 isl_size n;
5706 build = isl_ast_build_set_executed(build, isl_union_map_copy(executed));
5708 mark = isl_schedule_node_mark_get_id(node);
5709 if (before_each_mark(mark, build) < 0)
5710 node = isl_schedule_node_free(node);
5712 list = build_ast_from_child(isl_ast_build_copy(build), node, executed);
5713 list = isl_ast_graft_list_fuse(list, build);
5714 n = isl_ast_graft_list_n_ast_graft(list);
5715 if (n < 0)
5716 list = isl_ast_graft_list_free(list);
5717 if (n == 0) {
5718 isl_id_free(mark);
5719 } else {
5720 graft = isl_ast_graft_list_get_ast_graft(list, 0);
5721 graft = isl_ast_graft_insert_mark(graft, mark);
5722 graft = after_each_mark(graft, build);
5723 list = isl_ast_graft_list_set_ast_graft(list, 0, graft);
5725 isl_ast_build_free(build);
5727 return list;
5730 static __isl_give isl_ast_graft_list *build_ast_from_schedule_node(
5731 __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
5732 __isl_take isl_union_map *executed);
5734 /* Generate an AST that visits the elements in the domain of "executed"
5735 * in the relative order specified by the sequence (or set) node "node" and
5736 * its descendants.
5738 * The relation "executed" maps the outer generated loop iterators
5739 * to the domain elements executed by those iterations.
5741 * We simply generate an AST for each of the children and concatenate
5742 * the results.
5744 static __isl_give isl_ast_graft_list *build_ast_from_sequence(
5745 __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
5746 __isl_take isl_union_map *executed)
5748 int i;
5749 isl_size n;
5750 isl_ctx *ctx;
5751 isl_ast_graft_list *list;
5753 ctx = isl_ast_build_get_ctx(build);
5754 list = isl_ast_graft_list_alloc(ctx, 0);
5756 n = isl_schedule_node_n_children(node);
5757 if (n < 0)
5758 list = isl_ast_graft_list_free(list);
5759 for (i = 0; i < n; ++i) {
5760 isl_schedule_node *child;
5761 isl_ast_graft_list *list_i;
5763 child = isl_schedule_node_get_child(node, i);
5764 list_i = build_ast_from_schedule_node(isl_ast_build_copy(build),
5765 child, isl_union_map_copy(executed));
5766 list = isl_ast_graft_list_concat(list, list_i);
5768 isl_ast_build_free(build);
5769 isl_schedule_node_free(node);
5770 isl_union_map_free(executed);
5772 return list;
5775 /* Generate an AST that visits the elements in the domain of "executed"
5776 * in the relative order specified by the node "node" and its descendants.
5778 * The relation "executed" maps the outer generated loop iterators
5779 * to the domain elements executed by those iterations.
5781 * The node types are handled in separate functions.
5782 * Set nodes are currently treated in the same way as sequence nodes.
5783 * The children of a set node may be executed in any order,
5784 * including the order of the children.
5786 static __isl_give isl_ast_graft_list *build_ast_from_schedule_node(
5787 __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
5788 __isl_take isl_union_map *executed)
5790 enum isl_schedule_node_type type;
5792 type = isl_schedule_node_get_type(node);
5794 switch (type) {
5795 case isl_schedule_node_error:
5796 goto error;
5797 case isl_schedule_node_leaf:
5798 return build_ast_from_leaf(build, node, executed);
5799 case isl_schedule_node_band:
5800 return build_ast_from_band(build, node, executed);
5801 case isl_schedule_node_context:
5802 return build_ast_from_context(build, node, executed);
5803 case isl_schedule_node_domain:
5804 isl_die(isl_schedule_node_get_ctx(node), isl_error_unsupported,
5805 "unexpected internal domain node", goto error);
5806 case isl_schedule_node_expansion:
5807 return build_ast_from_expansion(build, node, executed);
5808 case isl_schedule_node_extension:
5809 return build_ast_from_extension(build, node, executed);
5810 case isl_schedule_node_filter:
5811 return build_ast_from_filter(build, node, executed);
5812 case isl_schedule_node_guard:
5813 return build_ast_from_guard(build, node, executed);
5814 case isl_schedule_node_mark:
5815 return build_ast_from_mark(build, node, executed);
5816 case isl_schedule_node_sequence:
5817 case isl_schedule_node_set:
5818 return build_ast_from_sequence(build, node, executed);
5821 isl_die(isl_ast_build_get_ctx(build), isl_error_internal,
5822 "unhandled type", goto error);
5823 error:
5824 isl_union_map_free(executed);
5825 isl_schedule_node_free(node);
5826 isl_ast_build_free(build);
5828 return NULL;
5831 /* Generate an AST that visits the elements in the domain of "executed"
5832 * in the relative order specified by the (single) child of "node" and
5833 * its descendants.
5835 * The relation "executed" maps the outer generated loop iterators
5836 * to the domain elements executed by those iterations.
5838 * This function is never called on a leaf, set or sequence node,
5839 * so the node always has exactly one child.
5841 static __isl_give isl_ast_graft_list *build_ast_from_child(
5842 __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
5843 __isl_take isl_union_map *executed)
5845 node = isl_schedule_node_child(node, 0);
5846 return build_ast_from_schedule_node(build, node, executed);
5849 /* Generate an AST that visits the elements in the domain of the domain
5850 * node "node" in the relative order specified by its descendants.
5852 * An initial inverse schedule is created that maps a zero-dimensional
5853 * schedule space to the node domain.
5854 * The input "build" is assumed to have a parametric domain and
5855 * is replaced by the same zero-dimensional schedule space.
5857 * We also add some of the parameter constraints in the build domain
5858 * to the executed relation. Adding these constraints
5859 * allows for an earlier detection of conflicts in some cases.
5860 * However, we do not want to divide the executed relation into
5861 * more disjuncts than necessary. We therefore approximate
5862 * the constraints on the parameters by a single disjunct set.
5864 static __isl_give isl_ast_node *build_ast_from_domain(
5865 __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node)
5867 isl_ctx *ctx;
5868 isl_union_set *domain, *schedule_domain;
5869 isl_union_map *executed;
5870 isl_space *space;
5871 isl_set *set;
5872 isl_ast_graft_list *list;
5873 isl_ast_node *ast;
5874 int is_params;
5876 if (!build)
5877 goto error;
5879 ctx = isl_ast_build_get_ctx(build);
5880 space = isl_ast_build_get_space(build, 1);
5881 is_params = isl_space_is_params(space);
5882 isl_space_free(space);
5883 if (is_params < 0)
5884 goto error;
5885 if (!is_params)
5886 isl_die(ctx, isl_error_unsupported,
5887 "expecting parametric initial context", goto error);
5889 domain = isl_schedule_node_domain_get_domain(node);
5890 domain = isl_union_set_coalesce(domain);
5892 space = isl_union_set_get_space(domain);
5893 space = isl_space_set_from_params(space);
5894 build = isl_ast_build_product(build, space);
5896 set = isl_ast_build_get_domain(build);
5897 set = isl_set_from_basic_set(isl_set_simple_hull(set));
5898 schedule_domain = isl_union_set_from_set(set);
5900 executed = isl_union_map_from_domain_and_range(schedule_domain, domain);
5901 list = build_ast_from_child(isl_ast_build_copy(build), node, executed);
5902 ast = isl_ast_node_from_graft_list(list, build);
5903 isl_ast_build_free(build);
5905 return ast;
5906 error:
5907 isl_schedule_node_free(node);
5908 isl_ast_build_free(build);
5909 return NULL;
5912 /* Generate an AST that visits the elements in the domain of "schedule"
5913 * in the relative order specified by the schedule tree.
5915 * "build" is an isl_ast_build that has been created using
5916 * isl_ast_build_alloc or isl_ast_build_from_context based
5917 * on a parametric set.
5919 * The construction starts at the root node of the schedule,
5920 * which is assumed to be a domain node.
5922 __isl_give isl_ast_node *isl_ast_build_node_from_schedule(
5923 __isl_keep isl_ast_build *build, __isl_take isl_schedule *schedule)
5925 isl_ctx *ctx;
5926 isl_schedule_node *node;
5928 if (!build || !schedule)
5929 goto error;
5931 ctx = isl_ast_build_get_ctx(build);
5933 node = isl_schedule_get_root(schedule);
5934 if (!node)
5935 goto error;
5936 isl_schedule_free(schedule);
5938 build = isl_ast_build_copy(build);
5939 build = isl_ast_build_set_single_valued(build, 0);
5940 if (isl_schedule_node_get_type(node) != isl_schedule_node_domain)
5941 isl_die(ctx, isl_error_unsupported,
5942 "expecting root domain node",
5943 build = isl_ast_build_free(build));
5944 return build_ast_from_domain(build, node);
5945 error:
5946 isl_schedule_free(schedule);
5947 return NULL;