doc: mention discussion group
[isl.git] / isl_convex_hull.c
blobd3d5ff232c38e26d5c1db748071025b3f43d4029
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
8 */
10 #include "isl_lp.h"
11 #include "isl_map.h"
12 #include "isl_map_private.h"
13 #include "isl_mat.h"
14 #include "isl_set.h"
15 #include "isl_seq.h"
16 #include "isl_equalities.h"
17 #include "isl_tab.h"
19 static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set);
21 static void swap_ineq(struct isl_basic_map *bmap, unsigned i, unsigned j)
23 isl_int *t;
25 if (i != j) {
26 t = bmap->ineq[i];
27 bmap->ineq[i] = bmap->ineq[j];
28 bmap->ineq[j] = t;
32 /* Return 1 if constraint c is redundant with respect to the constraints
33 * in bmap. If c is a lower [upper] bound in some variable and bmap
34 * does not have a lower [upper] bound in that variable, then c cannot
35 * be redundant and we do not need solve any lp.
37 int isl_basic_map_constraint_is_redundant(struct isl_basic_map **bmap,
38 isl_int *c, isl_int *opt_n, isl_int *opt_d)
40 enum isl_lp_result res;
41 unsigned total;
42 int i, j;
44 if (!bmap)
45 return -1;
47 total = isl_basic_map_total_dim(*bmap);
48 for (i = 0; i < total; ++i) {
49 int sign;
50 if (isl_int_is_zero(c[1+i]))
51 continue;
52 sign = isl_int_sgn(c[1+i]);
53 for (j = 0; j < (*bmap)->n_ineq; ++j)
54 if (sign == isl_int_sgn((*bmap)->ineq[j][1+i]))
55 break;
56 if (j == (*bmap)->n_ineq)
57 break;
59 if (i < total)
60 return 0;
62 res = isl_basic_map_solve_lp(*bmap, 0, c, (*bmap)->ctx->one,
63 opt_n, opt_d, NULL);
64 if (res == isl_lp_unbounded)
65 return 0;
66 if (res == isl_lp_error)
67 return -1;
68 if (res == isl_lp_empty) {
69 *bmap = isl_basic_map_set_to_empty(*bmap);
70 return 0;
72 return !isl_int_is_neg(*opt_n);
75 int isl_basic_set_constraint_is_redundant(struct isl_basic_set **bset,
76 isl_int *c, isl_int *opt_n, isl_int *opt_d)
78 return isl_basic_map_constraint_is_redundant(
79 (struct isl_basic_map **)bset, c, opt_n, opt_d);
82 /* Remove redundant
83 * constraints. If the minimal value along the normal of a constraint
84 * is the same if the constraint is removed, then the constraint is redundant.
86 * Alternatively, we could have intersected the basic map with the
87 * corresponding equality and the checked if the dimension was that
88 * of a facet.
90 __isl_give isl_basic_map *isl_basic_map_remove_redundancies(
91 __isl_take isl_basic_map *bmap)
93 struct isl_tab *tab;
95 if (!bmap)
96 return NULL;
98 bmap = isl_basic_map_gauss(bmap, NULL);
99 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
100 return bmap;
101 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_REDUNDANT))
102 return bmap;
103 if (bmap->n_ineq <= 1)
104 return bmap;
106 tab = isl_tab_from_basic_map(bmap);
107 if (isl_tab_detect_implicit_equalities(tab) < 0)
108 goto error;
109 if (isl_tab_detect_redundant(tab) < 0)
110 goto error;
111 bmap = isl_basic_map_update_from_tab(bmap, tab);
112 isl_tab_free(tab);
113 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
114 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_REDUNDANT);
115 return bmap;
116 error:
117 isl_tab_free(tab);
118 isl_basic_map_free(bmap);
119 return NULL;
122 __isl_give isl_basic_set *isl_basic_set_remove_redundancies(
123 __isl_take isl_basic_set *bset)
125 return (struct isl_basic_set *)
126 isl_basic_map_remove_redundancies((struct isl_basic_map *)bset);
129 /* Check if the set set is bound in the direction of the affine
130 * constraint c and if so, set the constant term such that the
131 * resulting constraint is a bounding constraint for the set.
133 static int uset_is_bound(struct isl_set *set, isl_int *c, unsigned len)
135 int first;
136 int j;
137 isl_int opt;
138 isl_int opt_denom;
140 isl_int_init(opt);
141 isl_int_init(opt_denom);
142 first = 1;
143 for (j = 0; j < set->n; ++j) {
144 enum isl_lp_result res;
146 if (ISL_F_ISSET(set->p[j], ISL_BASIC_SET_EMPTY))
147 continue;
149 res = isl_basic_set_solve_lp(set->p[j],
150 0, c, set->ctx->one, &opt, &opt_denom, NULL);
151 if (res == isl_lp_unbounded)
152 break;
153 if (res == isl_lp_error)
154 goto error;
155 if (res == isl_lp_empty) {
156 set->p[j] = isl_basic_set_set_to_empty(set->p[j]);
157 if (!set->p[j])
158 goto error;
159 continue;
161 if (first || isl_int_is_neg(opt)) {
162 if (!isl_int_is_one(opt_denom))
163 isl_seq_scale(c, c, opt_denom, len);
164 isl_int_sub(c[0], c[0], opt);
166 first = 0;
168 isl_int_clear(opt);
169 isl_int_clear(opt_denom);
170 return j >= set->n;
171 error:
172 isl_int_clear(opt);
173 isl_int_clear(opt_denom);
174 return -1;
177 struct isl_basic_set *isl_basic_set_set_rational(struct isl_basic_set *bset)
179 if (!bset)
180 return NULL;
182 if (ISL_F_ISSET(bset, ISL_BASIC_MAP_RATIONAL))
183 return bset;
185 bset = isl_basic_set_cow(bset);
186 if (!bset)
187 return NULL;
189 ISL_F_SET(bset, ISL_BASIC_MAP_RATIONAL);
191 return isl_basic_set_finalize(bset);
194 static struct isl_set *isl_set_set_rational(struct isl_set *set)
196 int i;
198 set = isl_set_cow(set);
199 if (!set)
200 return NULL;
201 for (i = 0; i < set->n; ++i) {
202 set->p[i] = isl_basic_set_set_rational(set->p[i]);
203 if (!set->p[i])
204 goto error;
206 return set;
207 error:
208 isl_set_free(set);
209 return NULL;
212 static struct isl_basic_set *isl_basic_set_add_equality(
213 struct isl_basic_set *bset, isl_int *c)
215 int i;
216 unsigned dim;
218 if (!bset)
219 return NULL;
221 if (ISL_F_ISSET(bset, ISL_BASIC_SET_EMPTY))
222 return bset;
224 isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0, goto error);
225 isl_assert(bset->ctx, bset->n_div == 0, goto error);
226 dim = isl_basic_set_n_dim(bset);
227 bset = isl_basic_set_cow(bset);
228 bset = isl_basic_set_extend(bset, 0, dim, 0, 1, 0);
229 i = isl_basic_set_alloc_equality(bset);
230 if (i < 0)
231 goto error;
232 isl_seq_cpy(bset->eq[i], c, 1 + dim);
233 return bset;
234 error:
235 isl_basic_set_free(bset);
236 return NULL;
239 static struct isl_set *isl_set_add_basic_set_equality(struct isl_set *set, isl_int *c)
241 int i;
243 set = isl_set_cow(set);
244 if (!set)
245 return NULL;
246 for (i = 0; i < set->n; ++i) {
247 set->p[i] = isl_basic_set_add_equality(set->p[i], c);
248 if (!set->p[i])
249 goto error;
251 return set;
252 error:
253 isl_set_free(set);
254 return NULL;
257 /* Given a union of basic sets, construct the constraints for wrapping
258 * a facet around one of its ridges.
259 * In particular, if each of n the d-dimensional basic sets i in "set"
260 * contains the origin, satisfies the constraints x_1 >= 0 and x_2 >= 0
261 * and is defined by the constraints
262 * [ 1 ]
263 * A_i [ x ] >= 0
265 * then the resulting set is of dimension n*(1+d) and has as constraints
267 * [ a_i ]
268 * A_i [ x_i ] >= 0
270 * a_i >= 0
272 * \sum_i x_{i,1} = 1
274 static struct isl_basic_set *wrap_constraints(struct isl_set *set)
276 struct isl_basic_set *lp;
277 unsigned n_eq;
278 unsigned n_ineq;
279 int i, j, k;
280 unsigned dim, lp_dim;
282 if (!set)
283 return NULL;
285 dim = 1 + isl_set_n_dim(set);
286 n_eq = 1;
287 n_ineq = set->n;
288 for (i = 0; i < set->n; ++i) {
289 n_eq += set->p[i]->n_eq;
290 n_ineq += set->p[i]->n_ineq;
292 lp = isl_basic_set_alloc(set->ctx, 0, dim * set->n, 0, n_eq, n_ineq);
293 if (!lp)
294 return NULL;
295 lp_dim = isl_basic_set_n_dim(lp);
296 k = isl_basic_set_alloc_equality(lp);
297 isl_int_set_si(lp->eq[k][0], -1);
298 for (i = 0; i < set->n; ++i) {
299 isl_int_set_si(lp->eq[k][1+dim*i], 0);
300 isl_int_set_si(lp->eq[k][1+dim*i+1], 1);
301 isl_seq_clr(lp->eq[k]+1+dim*i+2, dim-2);
303 for (i = 0; i < set->n; ++i) {
304 k = isl_basic_set_alloc_inequality(lp);
305 isl_seq_clr(lp->ineq[k], 1+lp_dim);
306 isl_int_set_si(lp->ineq[k][1+dim*i], 1);
308 for (j = 0; j < set->p[i]->n_eq; ++j) {
309 k = isl_basic_set_alloc_equality(lp);
310 isl_seq_clr(lp->eq[k], 1+dim*i);
311 isl_seq_cpy(lp->eq[k]+1+dim*i, set->p[i]->eq[j], dim);
312 isl_seq_clr(lp->eq[k]+1+dim*(i+1), dim*(set->n-i-1));
315 for (j = 0; j < set->p[i]->n_ineq; ++j) {
316 k = isl_basic_set_alloc_inequality(lp);
317 isl_seq_clr(lp->ineq[k], 1+dim*i);
318 isl_seq_cpy(lp->ineq[k]+1+dim*i, set->p[i]->ineq[j], dim);
319 isl_seq_clr(lp->ineq[k]+1+dim*(i+1), dim*(set->n-i-1));
322 return lp;
325 /* Given a facet "facet" of the convex hull of "set" and a facet "ridge"
326 * of that facet, compute the other facet of the convex hull that contains
327 * the ridge.
329 * We first transform the set such that the facet constraint becomes
331 * x_1 >= 0
333 * I.e., the facet lies in
335 * x_1 = 0
337 * and on that facet, the constraint that defines the ridge is
339 * x_2 >= 0
341 * (This transformation is not strictly needed, all that is needed is
342 * that the ridge contains the origin.)
344 * Since the ridge contains the origin, the cone of the convex hull
345 * will be of the form
347 * x_1 >= 0
348 * x_2 >= a x_1
350 * with this second constraint defining the new facet.
351 * The constant a is obtained by settting x_1 in the cone of the
352 * convex hull to 1 and minimizing x_2.
353 * Now, each element in the cone of the convex hull is the sum
354 * of elements in the cones of the basic sets.
355 * If a_i is the dilation factor of basic set i, then the problem
356 * we need to solve is
358 * min \sum_i x_{i,2}
359 * st
360 * \sum_i x_{i,1} = 1
361 * a_i >= 0
362 * [ a_i ]
363 * A [ x_i ] >= 0
365 * with
366 * [ 1 ]
367 * A_i [ x_i ] >= 0
369 * the constraints of each (transformed) basic set.
370 * If a = n/d, then the constraint defining the new facet (in the transformed
371 * space) is
373 * -n x_1 + d x_2 >= 0
375 * In the original space, we need to take the same combination of the
376 * corresponding constraints "facet" and "ridge".
378 * If a = -infty = "-1/0", then we just return the original facet constraint.
379 * This means that the facet is unbounded, but has a bounded intersection
380 * with the union of sets.
382 isl_int *isl_set_wrap_facet(__isl_keep isl_set *set,
383 isl_int *facet, isl_int *ridge)
385 int i;
386 isl_ctx *ctx;
387 struct isl_mat *T = NULL;
388 struct isl_basic_set *lp = NULL;
389 struct isl_vec *obj;
390 enum isl_lp_result res;
391 isl_int num, den;
392 unsigned dim;
394 if (!set)
395 return NULL;
396 ctx = set->ctx;
397 set = isl_set_copy(set);
398 set = isl_set_set_rational(set);
400 dim = 1 + isl_set_n_dim(set);
401 T = isl_mat_alloc(ctx, 3, dim);
402 if (!T)
403 goto error;
404 isl_int_set_si(T->row[0][0], 1);
405 isl_seq_clr(T->row[0]+1, dim - 1);
406 isl_seq_cpy(T->row[1], facet, dim);
407 isl_seq_cpy(T->row[2], ridge, dim);
408 T = isl_mat_right_inverse(T);
409 set = isl_set_preimage(set, T);
410 T = NULL;
411 if (!set)
412 goto error;
413 lp = wrap_constraints(set);
414 obj = isl_vec_alloc(ctx, 1 + dim*set->n);
415 if (!obj)
416 goto error;
417 isl_int_set_si(obj->block.data[0], 0);
418 for (i = 0; i < set->n; ++i) {
419 isl_seq_clr(obj->block.data + 1 + dim*i, 2);
420 isl_int_set_si(obj->block.data[1 + dim*i+2], 1);
421 isl_seq_clr(obj->block.data + 1 + dim*i+3, dim-3);
423 isl_int_init(num);
424 isl_int_init(den);
425 res = isl_basic_set_solve_lp(lp, 0,
426 obj->block.data, ctx->one, &num, &den, NULL);
427 if (res == isl_lp_ok) {
428 isl_int_neg(num, num);
429 isl_seq_combine(facet, num, facet, den, ridge, dim);
431 isl_int_clear(num);
432 isl_int_clear(den);
433 isl_vec_free(obj);
434 isl_basic_set_free(lp);
435 isl_set_free(set);
436 if (res == isl_lp_error)
437 return NULL;
438 isl_assert(ctx, res == isl_lp_ok || res == isl_lp_unbounded,
439 return NULL);
440 return facet;
441 error:
442 isl_basic_set_free(lp);
443 isl_mat_free(T);
444 isl_set_free(set);
445 return NULL;
448 /* Compute the constraint of a facet of "set".
450 * We first compute the intersection with a bounding constraint
451 * that is orthogonal to one of the coordinate axes.
452 * If the affine hull of this intersection has only one equality,
453 * we have found a facet.
454 * Otherwise, we wrap the current bounding constraint around
455 * one of the equalities of the face (one that is not equal to
456 * the current bounding constraint).
457 * This process continues until we have found a facet.
458 * The dimension of the intersection increases by at least
459 * one on each iteration, so termination is guaranteed.
461 static __isl_give isl_mat *initial_facet_constraint(__isl_keep isl_set *set)
463 struct isl_set *slice = NULL;
464 struct isl_basic_set *face = NULL;
465 int i;
466 unsigned dim = isl_set_n_dim(set);
467 int is_bound;
468 isl_mat *bounds;
470 isl_assert(set->ctx, set->n > 0, goto error);
471 bounds = isl_mat_alloc(set->ctx, 1, 1 + dim);
472 if (!bounds)
473 return NULL;
475 isl_seq_clr(bounds->row[0], dim);
476 isl_int_set_si(bounds->row[0][1 + dim - 1], 1);
477 is_bound = uset_is_bound(set, bounds->row[0], 1 + dim);
478 isl_assert(set->ctx, is_bound == 1, goto error);
479 isl_seq_normalize(set->ctx, bounds->row[0], 1 + dim);
480 bounds->n_row = 1;
482 for (;;) {
483 slice = isl_set_copy(set);
484 slice = isl_set_add_basic_set_equality(slice, bounds->row[0]);
485 face = isl_set_affine_hull(slice);
486 if (!face)
487 goto error;
488 if (face->n_eq == 1) {
489 isl_basic_set_free(face);
490 break;
492 for (i = 0; i < face->n_eq; ++i)
493 if (!isl_seq_eq(bounds->row[0], face->eq[i], 1 + dim) &&
494 !isl_seq_is_neg(bounds->row[0],
495 face->eq[i], 1 + dim))
496 break;
497 isl_assert(set->ctx, i < face->n_eq, goto error);
498 if (!isl_set_wrap_facet(set, bounds->row[0], face->eq[i]))
499 goto error;
500 isl_seq_normalize(set->ctx, bounds->row[0], bounds->n_col);
501 isl_basic_set_free(face);
504 return bounds;
505 error:
506 isl_basic_set_free(face);
507 isl_mat_free(bounds);
508 return NULL;
511 /* Given the bounding constraint "c" of a facet of the convex hull of "set",
512 * compute a hyperplane description of the facet, i.e., compute the facets
513 * of the facet.
515 * We compute an affine transformation that transforms the constraint
517 * [ 1 ]
518 * c [ x ] = 0
520 * to the constraint
522 * z_1 = 0
524 * by computing the right inverse U of a matrix that starts with the rows
526 * [ 1 0 ]
527 * [ c ]
529 * Then
530 * [ 1 ] [ 1 ]
531 * [ x ] = U [ z ]
532 * and
533 * [ 1 ] [ 1 ]
534 * [ z ] = Q [ x ]
536 * with Q = U^{-1}
537 * Since z_1 is zero, we can drop this variable as well as the corresponding
538 * column of U to obtain
540 * [ 1 ] [ 1 ]
541 * [ x ] = U' [ z' ]
542 * and
543 * [ 1 ] [ 1 ]
544 * [ z' ] = Q' [ x ]
546 * with Q' equal to Q, but without the corresponding row.
547 * After computing the facets of the facet in the z' space,
548 * we convert them back to the x space through Q.
550 static struct isl_basic_set *compute_facet(struct isl_set *set, isl_int *c)
552 struct isl_mat *m, *U, *Q;
553 struct isl_basic_set *facet = NULL;
554 struct isl_ctx *ctx;
555 unsigned dim;
557 ctx = set->ctx;
558 set = isl_set_copy(set);
559 dim = isl_set_n_dim(set);
560 m = isl_mat_alloc(set->ctx, 2, 1 + dim);
561 if (!m)
562 goto error;
563 isl_int_set_si(m->row[0][0], 1);
564 isl_seq_clr(m->row[0]+1, dim);
565 isl_seq_cpy(m->row[1], c, 1+dim);
566 U = isl_mat_right_inverse(m);
567 Q = isl_mat_right_inverse(isl_mat_copy(U));
568 U = isl_mat_drop_cols(U, 1, 1);
569 Q = isl_mat_drop_rows(Q, 1, 1);
570 set = isl_set_preimage(set, U);
571 facet = uset_convex_hull_wrap_bounded(set);
572 facet = isl_basic_set_preimage(facet, Q);
573 if (facet)
574 isl_assert(ctx, facet->n_eq == 0, goto error);
575 return facet;
576 error:
577 isl_basic_set_free(facet);
578 isl_set_free(set);
579 return NULL;
582 /* Given an initial facet constraint, compute the remaining facets.
583 * We do this by running through all facets found so far and computing
584 * the adjacent facets through wrapping, adding those facets that we
585 * hadn't already found before.
587 * For each facet we have found so far, we first compute its facets
588 * in the resulting convex hull. That is, we compute the ridges
589 * of the resulting convex hull contained in the facet.
590 * We also compute the corresponding facet in the current approximation
591 * of the convex hull. There is no need to wrap around the ridges
592 * in this facet since that would result in a facet that is already
593 * present in the current approximation.
595 * This function can still be significantly optimized by checking which of
596 * the facets of the basic sets are also facets of the convex hull and
597 * using all the facets so far to help in constructing the facets of the
598 * facets
599 * and/or
600 * using the technique in section "3.1 Ridge Generation" of
601 * "Extended Convex Hull" by Fukuda et al.
603 static struct isl_basic_set *extend(struct isl_basic_set *hull,
604 struct isl_set *set)
606 int i, j, f;
607 int k;
608 struct isl_basic_set *facet = NULL;
609 struct isl_basic_set *hull_facet = NULL;
610 unsigned dim;
612 if (!hull)
613 return NULL;
615 isl_assert(set->ctx, set->n > 0, goto error);
617 dim = isl_set_n_dim(set);
619 for (i = 0; i < hull->n_ineq; ++i) {
620 facet = compute_facet(set, hull->ineq[i]);
621 facet = isl_basic_set_add_equality(facet, hull->ineq[i]);
622 facet = isl_basic_set_gauss(facet, NULL);
623 facet = isl_basic_set_normalize_constraints(facet);
624 hull_facet = isl_basic_set_copy(hull);
625 hull_facet = isl_basic_set_add_equality(hull_facet, hull->ineq[i]);
626 hull_facet = isl_basic_set_gauss(hull_facet, NULL);
627 hull_facet = isl_basic_set_normalize_constraints(hull_facet);
628 if (!facet || !hull_facet)
629 goto error;
630 hull = isl_basic_set_cow(hull);
631 hull = isl_basic_set_extend_dim(hull,
632 isl_dim_copy(hull->dim), 0, 0, facet->n_ineq);
633 if (!hull)
634 goto error;
635 for (j = 0; j < facet->n_ineq; ++j) {
636 for (f = 0; f < hull_facet->n_ineq; ++f)
637 if (isl_seq_eq(facet->ineq[j],
638 hull_facet->ineq[f], 1 + dim))
639 break;
640 if (f < hull_facet->n_ineq)
641 continue;
642 k = isl_basic_set_alloc_inequality(hull);
643 if (k < 0)
644 goto error;
645 isl_seq_cpy(hull->ineq[k], hull->ineq[i], 1+dim);
646 if (!isl_set_wrap_facet(set, hull->ineq[k], facet->ineq[j]))
647 goto error;
649 isl_basic_set_free(hull_facet);
650 isl_basic_set_free(facet);
652 hull = isl_basic_set_simplify(hull);
653 hull = isl_basic_set_finalize(hull);
654 return hull;
655 error:
656 isl_basic_set_free(hull_facet);
657 isl_basic_set_free(facet);
658 isl_basic_set_free(hull);
659 return NULL;
662 /* Special case for computing the convex hull of a one dimensional set.
663 * We simply collect the lower and upper bounds of each basic set
664 * and the biggest of those.
666 static struct isl_basic_set *convex_hull_1d(struct isl_set *set)
668 struct isl_mat *c = NULL;
669 isl_int *lower = NULL;
670 isl_int *upper = NULL;
671 int i, j, k;
672 isl_int a, b;
673 struct isl_basic_set *hull;
675 for (i = 0; i < set->n; ++i) {
676 set->p[i] = isl_basic_set_simplify(set->p[i]);
677 if (!set->p[i])
678 goto error;
680 set = isl_set_remove_empty_parts(set);
681 if (!set)
682 goto error;
683 isl_assert(set->ctx, set->n > 0, goto error);
684 c = isl_mat_alloc(set->ctx, 2, 2);
685 if (!c)
686 goto error;
688 if (set->p[0]->n_eq > 0) {
689 isl_assert(set->ctx, set->p[0]->n_eq == 1, goto error);
690 lower = c->row[0];
691 upper = c->row[1];
692 if (isl_int_is_pos(set->p[0]->eq[0][1])) {
693 isl_seq_cpy(lower, set->p[0]->eq[0], 2);
694 isl_seq_neg(upper, set->p[0]->eq[0], 2);
695 } else {
696 isl_seq_neg(lower, set->p[0]->eq[0], 2);
697 isl_seq_cpy(upper, set->p[0]->eq[0], 2);
699 } else {
700 for (j = 0; j < set->p[0]->n_ineq; ++j) {
701 if (isl_int_is_pos(set->p[0]->ineq[j][1])) {
702 lower = c->row[0];
703 isl_seq_cpy(lower, set->p[0]->ineq[j], 2);
704 } else {
705 upper = c->row[1];
706 isl_seq_cpy(upper, set->p[0]->ineq[j], 2);
711 isl_int_init(a);
712 isl_int_init(b);
713 for (i = 0; i < set->n; ++i) {
714 struct isl_basic_set *bset = set->p[i];
715 int has_lower = 0;
716 int has_upper = 0;
718 for (j = 0; j < bset->n_eq; ++j) {
719 has_lower = 1;
720 has_upper = 1;
721 if (lower) {
722 isl_int_mul(a, lower[0], bset->eq[j][1]);
723 isl_int_mul(b, lower[1], bset->eq[j][0]);
724 if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
725 isl_seq_cpy(lower, bset->eq[j], 2);
726 if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
727 isl_seq_neg(lower, bset->eq[j], 2);
729 if (upper) {
730 isl_int_mul(a, upper[0], bset->eq[j][1]);
731 isl_int_mul(b, upper[1], bset->eq[j][0]);
732 if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
733 isl_seq_neg(upper, bset->eq[j], 2);
734 if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
735 isl_seq_cpy(upper, bset->eq[j], 2);
738 for (j = 0; j < bset->n_ineq; ++j) {
739 if (isl_int_is_pos(bset->ineq[j][1]))
740 has_lower = 1;
741 if (isl_int_is_neg(bset->ineq[j][1]))
742 has_upper = 1;
743 if (lower && isl_int_is_pos(bset->ineq[j][1])) {
744 isl_int_mul(a, lower[0], bset->ineq[j][1]);
745 isl_int_mul(b, lower[1], bset->ineq[j][0]);
746 if (isl_int_lt(a, b))
747 isl_seq_cpy(lower, bset->ineq[j], 2);
749 if (upper && isl_int_is_neg(bset->ineq[j][1])) {
750 isl_int_mul(a, upper[0], bset->ineq[j][1]);
751 isl_int_mul(b, upper[1], bset->ineq[j][0]);
752 if (isl_int_gt(a, b))
753 isl_seq_cpy(upper, bset->ineq[j], 2);
756 if (!has_lower)
757 lower = NULL;
758 if (!has_upper)
759 upper = NULL;
761 isl_int_clear(a);
762 isl_int_clear(b);
764 hull = isl_basic_set_alloc(set->ctx, 0, 1, 0, 0, 2);
765 hull = isl_basic_set_set_rational(hull);
766 if (!hull)
767 goto error;
768 if (lower) {
769 k = isl_basic_set_alloc_inequality(hull);
770 isl_seq_cpy(hull->ineq[k], lower, 2);
772 if (upper) {
773 k = isl_basic_set_alloc_inequality(hull);
774 isl_seq_cpy(hull->ineq[k], upper, 2);
776 hull = isl_basic_set_finalize(hull);
777 isl_set_free(set);
778 isl_mat_free(c);
779 return hull;
780 error:
781 isl_set_free(set);
782 isl_mat_free(c);
783 return NULL;
786 /* Project out final n dimensions using Fourier-Motzkin */
787 static struct isl_set *set_project_out(struct isl_ctx *ctx,
788 struct isl_set *set, unsigned n)
790 return isl_set_remove_dims(set, isl_set_n_dim(set) - n, n);
793 static struct isl_basic_set *convex_hull_0d(struct isl_set *set)
795 struct isl_basic_set *convex_hull;
797 if (!set)
798 return NULL;
800 if (isl_set_is_empty(set))
801 convex_hull = isl_basic_set_empty(isl_dim_copy(set->dim));
802 else
803 convex_hull = isl_basic_set_universe(isl_dim_copy(set->dim));
804 isl_set_free(set);
805 return convex_hull;
808 /* Compute the convex hull of a pair of basic sets without any parameters or
809 * integer divisions using Fourier-Motzkin elimination.
810 * The convex hull is the set of all points that can be written as
811 * the sum of points from both basic sets (in homogeneous coordinates).
812 * We set up the constraints in a space with dimensions for each of
813 * the three sets and then project out the dimensions corresponding
814 * to the two original basic sets, retaining only those corresponding
815 * to the convex hull.
817 static struct isl_basic_set *convex_hull_pair_elim(struct isl_basic_set *bset1,
818 struct isl_basic_set *bset2)
820 int i, j, k;
821 struct isl_basic_set *bset[2];
822 struct isl_basic_set *hull = NULL;
823 unsigned dim;
825 if (!bset1 || !bset2)
826 goto error;
828 dim = isl_basic_set_n_dim(bset1);
829 hull = isl_basic_set_alloc(bset1->ctx, 0, 2 + 3 * dim, 0,
830 1 + dim + bset1->n_eq + bset2->n_eq,
831 2 + bset1->n_ineq + bset2->n_ineq);
832 bset[0] = bset1;
833 bset[1] = bset2;
834 for (i = 0; i < 2; ++i) {
835 for (j = 0; j < bset[i]->n_eq; ++j) {
836 k = isl_basic_set_alloc_equality(hull);
837 if (k < 0)
838 goto error;
839 isl_seq_clr(hull->eq[k], (i+1) * (1+dim));
840 isl_seq_clr(hull->eq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
841 isl_seq_cpy(hull->eq[k]+(i+1)*(1+dim), bset[i]->eq[j],
842 1+dim);
844 for (j = 0; j < bset[i]->n_ineq; ++j) {
845 k = isl_basic_set_alloc_inequality(hull);
846 if (k < 0)
847 goto error;
848 isl_seq_clr(hull->ineq[k], (i+1) * (1+dim));
849 isl_seq_clr(hull->ineq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
850 isl_seq_cpy(hull->ineq[k]+(i+1)*(1+dim),
851 bset[i]->ineq[j], 1+dim);
853 k = isl_basic_set_alloc_inequality(hull);
854 if (k < 0)
855 goto error;
856 isl_seq_clr(hull->ineq[k], 1+2+3*dim);
857 isl_int_set_si(hull->ineq[k][(i+1)*(1+dim)], 1);
859 for (j = 0; j < 1+dim; ++j) {
860 k = isl_basic_set_alloc_equality(hull);
861 if (k < 0)
862 goto error;
863 isl_seq_clr(hull->eq[k], 1+2+3*dim);
864 isl_int_set_si(hull->eq[k][j], -1);
865 isl_int_set_si(hull->eq[k][1+dim+j], 1);
866 isl_int_set_si(hull->eq[k][2*(1+dim)+j], 1);
868 hull = isl_basic_set_set_rational(hull);
869 hull = isl_basic_set_remove_dims(hull, dim, 2*(1+dim));
870 hull = isl_basic_set_remove_redundancies(hull);
871 isl_basic_set_free(bset1);
872 isl_basic_set_free(bset2);
873 return hull;
874 error:
875 isl_basic_set_free(bset1);
876 isl_basic_set_free(bset2);
877 isl_basic_set_free(hull);
878 return NULL;
881 /* Is the set bounded for each value of the parameters?
883 int isl_basic_set_is_bounded(__isl_keep isl_basic_set *bset)
885 struct isl_tab *tab;
886 int bounded;
888 if (!bset)
889 return -1;
890 if (isl_basic_set_fast_is_empty(bset))
891 return 1;
893 tab = isl_tab_from_recession_cone(bset, 1);
894 bounded = isl_tab_cone_is_bounded(tab);
895 isl_tab_free(tab);
896 return bounded;
899 /* Is the set bounded for each value of the parameters?
901 int isl_set_is_bounded(__isl_keep isl_set *set)
903 int i;
905 if (!set)
906 return -1;
908 for (i = 0; i < set->n; ++i) {
909 int bounded = isl_basic_set_is_bounded(set->p[i]);
910 if (!bounded || bounded < 0)
911 return bounded;
913 return 1;
916 /* Compute the lineality space of the convex hull of bset1 and bset2.
918 * We first compute the intersection of the recession cone of bset1
919 * with the negative of the recession cone of bset2 and then compute
920 * the linear hull of the resulting cone.
922 static struct isl_basic_set *induced_lineality_space(
923 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
925 int i, k;
926 struct isl_basic_set *lin = NULL;
927 unsigned dim;
929 if (!bset1 || !bset2)
930 goto error;
932 dim = isl_basic_set_total_dim(bset1);
933 lin = isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset1), 0,
934 bset1->n_eq + bset2->n_eq,
935 bset1->n_ineq + bset2->n_ineq);
936 lin = isl_basic_set_set_rational(lin);
937 if (!lin)
938 goto error;
939 for (i = 0; i < bset1->n_eq; ++i) {
940 k = isl_basic_set_alloc_equality(lin);
941 if (k < 0)
942 goto error;
943 isl_int_set_si(lin->eq[k][0], 0);
944 isl_seq_cpy(lin->eq[k] + 1, bset1->eq[i] + 1, dim);
946 for (i = 0; i < bset1->n_ineq; ++i) {
947 k = isl_basic_set_alloc_inequality(lin);
948 if (k < 0)
949 goto error;
950 isl_int_set_si(lin->ineq[k][0], 0);
951 isl_seq_cpy(lin->ineq[k] + 1, bset1->ineq[i] + 1, dim);
953 for (i = 0; i < bset2->n_eq; ++i) {
954 k = isl_basic_set_alloc_equality(lin);
955 if (k < 0)
956 goto error;
957 isl_int_set_si(lin->eq[k][0], 0);
958 isl_seq_neg(lin->eq[k] + 1, bset2->eq[i] + 1, dim);
960 for (i = 0; i < bset2->n_ineq; ++i) {
961 k = isl_basic_set_alloc_inequality(lin);
962 if (k < 0)
963 goto error;
964 isl_int_set_si(lin->ineq[k][0], 0);
965 isl_seq_neg(lin->ineq[k] + 1, bset2->ineq[i] + 1, dim);
968 isl_basic_set_free(bset1);
969 isl_basic_set_free(bset2);
970 return isl_basic_set_affine_hull(lin);
971 error:
972 isl_basic_set_free(lin);
973 isl_basic_set_free(bset1);
974 isl_basic_set_free(bset2);
975 return NULL;
978 static struct isl_basic_set *uset_convex_hull(struct isl_set *set);
980 /* Given a set and a linear space "lin" of dimension n > 0,
981 * project the linear space from the set, compute the convex hull
982 * and then map the set back to the original space.
984 * Let
986 * M x = 0
988 * describe the linear space. We first compute the Hermite normal
989 * form H = M U of M = H Q, to obtain
991 * H Q x = 0
993 * The last n rows of H will be zero, so the last n variables of x' = Q x
994 * are the one we want to project out. We do this by transforming each
995 * basic set A x >= b to A U x' >= b and then removing the last n dimensions.
996 * After computing the convex hull in x'_1, i.e., A' x'_1 >= b',
997 * we transform the hull back to the original space as A' Q_1 x >= b',
998 * with Q_1 all but the last n rows of Q.
1000 static struct isl_basic_set *modulo_lineality(struct isl_set *set,
1001 struct isl_basic_set *lin)
1003 unsigned total = isl_basic_set_total_dim(lin);
1004 unsigned lin_dim;
1005 struct isl_basic_set *hull;
1006 struct isl_mat *M, *U, *Q;
1008 if (!set || !lin)
1009 goto error;
1010 lin_dim = total - lin->n_eq;
1011 M = isl_mat_sub_alloc(set->ctx, lin->eq, 0, lin->n_eq, 1, total);
1012 M = isl_mat_left_hermite(M, 0, &U, &Q);
1013 if (!M)
1014 goto error;
1015 isl_mat_free(M);
1016 isl_basic_set_free(lin);
1018 Q = isl_mat_drop_rows(Q, Q->n_row - lin_dim, lin_dim);
1020 U = isl_mat_lin_to_aff(U);
1021 Q = isl_mat_lin_to_aff(Q);
1023 set = isl_set_preimage(set, U);
1024 set = isl_set_remove_dims(set, total - lin_dim, lin_dim);
1025 hull = uset_convex_hull(set);
1026 hull = isl_basic_set_preimage(hull, Q);
1028 return hull;
1029 error:
1030 isl_basic_set_free(lin);
1031 isl_set_free(set);
1032 return NULL;
1035 /* Given two polyhedra with as constraints h_{ij} x >= 0 in homegeneous space,
1036 * set up an LP for solving
1038 * \sum_j \alpha_{1j} h_{1j} = \sum_j \alpha_{2j} h_{2j}
1040 * \alpha{i0} corresponds to the (implicit) positivity constraint 1 >= 0
1041 * The next \alpha{ij} correspond to the equalities and come in pairs.
1042 * The final \alpha{ij} correspond to the inequalities.
1044 static struct isl_basic_set *valid_direction_lp(
1045 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
1047 struct isl_dim *dim;
1048 struct isl_basic_set *lp;
1049 unsigned d;
1050 int n;
1051 int i, j, k;
1053 if (!bset1 || !bset2)
1054 goto error;
1055 d = 1 + isl_basic_set_total_dim(bset1);
1056 n = 2 +
1057 2 * bset1->n_eq + bset1->n_ineq + 2 * bset2->n_eq + bset2->n_ineq;
1058 dim = isl_dim_set_alloc(bset1->ctx, 0, n);
1059 lp = isl_basic_set_alloc_dim(dim, 0, d, n);
1060 if (!lp)
1061 goto error;
1062 for (i = 0; i < n; ++i) {
1063 k = isl_basic_set_alloc_inequality(lp);
1064 if (k < 0)
1065 goto error;
1066 isl_seq_clr(lp->ineq[k] + 1, n);
1067 isl_int_set_si(lp->ineq[k][0], -1);
1068 isl_int_set_si(lp->ineq[k][1 + i], 1);
1070 for (i = 0; i < d; ++i) {
1071 k = isl_basic_set_alloc_equality(lp);
1072 if (k < 0)
1073 goto error;
1074 n = 0;
1075 isl_int_set_si(lp->eq[k][n++], 0);
1076 /* positivity constraint 1 >= 0 */
1077 isl_int_set_si(lp->eq[k][n++], i == 0);
1078 for (j = 0; j < bset1->n_eq; ++j) {
1079 isl_int_set(lp->eq[k][n++], bset1->eq[j][i]);
1080 isl_int_neg(lp->eq[k][n++], bset1->eq[j][i]);
1082 for (j = 0; j < bset1->n_ineq; ++j)
1083 isl_int_set(lp->eq[k][n++], bset1->ineq[j][i]);
1084 /* positivity constraint 1 >= 0 */
1085 isl_int_set_si(lp->eq[k][n++], -(i == 0));
1086 for (j = 0; j < bset2->n_eq; ++j) {
1087 isl_int_neg(lp->eq[k][n++], bset2->eq[j][i]);
1088 isl_int_set(lp->eq[k][n++], bset2->eq[j][i]);
1090 for (j = 0; j < bset2->n_ineq; ++j)
1091 isl_int_neg(lp->eq[k][n++], bset2->ineq[j][i]);
1093 lp = isl_basic_set_gauss(lp, NULL);
1094 isl_basic_set_free(bset1);
1095 isl_basic_set_free(bset2);
1096 return lp;
1097 error:
1098 isl_basic_set_free(bset1);
1099 isl_basic_set_free(bset2);
1100 return NULL;
1103 /* Compute a vector s in the homogeneous space such that <s, r> > 0
1104 * for all rays in the homogeneous space of the two cones that correspond
1105 * to the input polyhedra bset1 and bset2.
1107 * We compute s as a vector that satisfies
1109 * s = \sum_j \alpha_{ij} h_{ij} for i = 1,2 (*)
1111 * with h_{ij} the normals of the facets of polyhedron i
1112 * (including the "positivity constraint" 1 >= 0) and \alpha_{ij}
1113 * strictly positive numbers. For simplicity we impose \alpha_{ij} >= 1.
1114 * We first set up an LP with as variables the \alpha{ij}.
1115 * In this formulation, for each polyhedron i,
1116 * the first constraint is the positivity constraint, followed by pairs
1117 * of variables for the equalities, followed by variables for the inequalities.
1118 * We then simply pick a feasible solution and compute s using (*).
1120 * Note that we simply pick any valid direction and make no attempt
1121 * to pick a "good" or even the "best" valid direction.
1123 static struct isl_vec *valid_direction(
1124 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
1126 struct isl_basic_set *lp;
1127 struct isl_tab *tab;
1128 struct isl_vec *sample = NULL;
1129 struct isl_vec *dir;
1130 unsigned d;
1131 int i;
1132 int n;
1134 if (!bset1 || !bset2)
1135 goto error;
1136 lp = valid_direction_lp(isl_basic_set_copy(bset1),
1137 isl_basic_set_copy(bset2));
1138 tab = isl_tab_from_basic_set(lp);
1139 sample = isl_tab_get_sample_value(tab);
1140 isl_tab_free(tab);
1141 isl_basic_set_free(lp);
1142 if (!sample)
1143 goto error;
1144 d = isl_basic_set_total_dim(bset1);
1145 dir = isl_vec_alloc(bset1->ctx, 1 + d);
1146 if (!dir)
1147 goto error;
1148 isl_seq_clr(dir->block.data + 1, dir->size - 1);
1149 n = 1;
1150 /* positivity constraint 1 >= 0 */
1151 isl_int_set(dir->block.data[0], sample->block.data[n++]);
1152 for (i = 0; i < bset1->n_eq; ++i) {
1153 isl_int_sub(sample->block.data[n],
1154 sample->block.data[n], sample->block.data[n+1]);
1155 isl_seq_combine(dir->block.data,
1156 bset1->ctx->one, dir->block.data,
1157 sample->block.data[n], bset1->eq[i], 1 + d);
1159 n += 2;
1161 for (i = 0; i < bset1->n_ineq; ++i)
1162 isl_seq_combine(dir->block.data,
1163 bset1->ctx->one, dir->block.data,
1164 sample->block.data[n++], bset1->ineq[i], 1 + d);
1165 isl_vec_free(sample);
1166 isl_seq_normalize(bset1->ctx, dir->el, dir->size);
1167 isl_basic_set_free(bset1);
1168 isl_basic_set_free(bset2);
1169 return dir;
1170 error:
1171 isl_vec_free(sample);
1172 isl_basic_set_free(bset1);
1173 isl_basic_set_free(bset2);
1174 return NULL;
1177 /* Given a polyhedron b_i + A_i x >= 0 and a map T = S^{-1},
1178 * compute b_i' + A_i' x' >= 0, with
1180 * [ b_i A_i ] [ y' ] [ y' ]
1181 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1183 * In particular, add the "positivity constraint" and then perform
1184 * the mapping.
1186 static struct isl_basic_set *homogeneous_map(struct isl_basic_set *bset,
1187 struct isl_mat *T)
1189 int k;
1191 if (!bset)
1192 goto error;
1193 bset = isl_basic_set_extend_constraints(bset, 0, 1);
1194 k = isl_basic_set_alloc_inequality(bset);
1195 if (k < 0)
1196 goto error;
1197 isl_seq_clr(bset->ineq[k] + 1, isl_basic_set_total_dim(bset));
1198 isl_int_set_si(bset->ineq[k][0], 1);
1199 bset = isl_basic_set_preimage(bset, T);
1200 return bset;
1201 error:
1202 isl_mat_free(T);
1203 isl_basic_set_free(bset);
1204 return NULL;
1207 /* Compute the convex hull of a pair of basic sets without any parameters or
1208 * integer divisions, where the convex hull is known to be pointed,
1209 * but the basic sets may be unbounded.
1211 * We turn this problem into the computation of a convex hull of a pair
1212 * _bounded_ polyhedra by "changing the direction of the homogeneous
1213 * dimension". This idea is due to Matthias Koeppe.
1215 * Consider the cones in homogeneous space that correspond to the
1216 * input polyhedra. The rays of these cones are also rays of the
1217 * polyhedra if the coordinate that corresponds to the homogeneous
1218 * dimension is zero. That is, if the inner product of the rays
1219 * with the homogeneous direction is zero.
1220 * The cones in the homogeneous space can also be considered to
1221 * correspond to other pairs of polyhedra by chosing a different
1222 * homogeneous direction. To ensure that both of these polyhedra
1223 * are bounded, we need to make sure that all rays of the cones
1224 * correspond to vertices and not to rays.
1225 * Let s be a direction such that <s, r> > 0 for all rays r of both cones.
1226 * Then using s as a homogeneous direction, we obtain a pair of polytopes.
1227 * The vector s is computed in valid_direction.
1229 * Note that we need to consider _all_ rays of the cones and not just
1230 * the rays that correspond to rays in the polyhedra. If we were to
1231 * only consider those rays and turn them into vertices, then we
1232 * may inadvertently turn some vertices into rays.
1234 * The standard homogeneous direction is the unit vector in the 0th coordinate.
1235 * We therefore transform the two polyhedra such that the selected
1236 * direction is mapped onto this standard direction and then proceed
1237 * with the normal computation.
1238 * Let S be a non-singular square matrix with s as its first row,
1239 * then we want to map the polyhedra to the space
1241 * [ y' ] [ y ] [ y ] [ y' ]
1242 * [ x' ] = S [ x ] i.e., [ x ] = S^{-1} [ x' ]
1244 * We take S to be the unimodular completion of s to limit the growth
1245 * of the coefficients in the following computations.
1247 * Let b_i + A_i x >= 0 be the constraints of polyhedron i.
1248 * We first move to the homogeneous dimension
1250 * b_i y + A_i x >= 0 [ b_i A_i ] [ y ] [ 0 ]
1251 * y >= 0 or [ 1 0 ] [ x ] >= [ 0 ]
1253 * Then we change directoin
1255 * [ b_i A_i ] [ y' ] [ y' ]
1256 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1258 * Then we compute the convex hull of the polytopes b_i' + A_i' x' >= 0
1259 * resulting in b' + A' x' >= 0, which we then convert back
1261 * [ y ] [ y ]
1262 * [ b' A' ] S [ x ] >= 0 or [ b A ] [ x ] >= 0
1264 * The polyhedron b + A x >= 0 is then the convex hull of the input polyhedra.
1266 static struct isl_basic_set *convex_hull_pair_pointed(
1267 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
1269 struct isl_ctx *ctx = NULL;
1270 struct isl_vec *dir = NULL;
1271 struct isl_mat *T = NULL;
1272 struct isl_mat *T2 = NULL;
1273 struct isl_basic_set *hull;
1274 struct isl_set *set;
1276 if (!bset1 || !bset2)
1277 goto error;
1278 ctx = bset1->ctx;
1279 dir = valid_direction(isl_basic_set_copy(bset1),
1280 isl_basic_set_copy(bset2));
1281 if (!dir)
1282 goto error;
1283 T = isl_mat_alloc(bset1->ctx, dir->size, dir->size);
1284 if (!T)
1285 goto error;
1286 isl_seq_cpy(T->row[0], dir->block.data, dir->size);
1287 T = isl_mat_unimodular_complete(T, 1);
1288 T2 = isl_mat_right_inverse(isl_mat_copy(T));
1290 bset1 = homogeneous_map(bset1, isl_mat_copy(T2));
1291 bset2 = homogeneous_map(bset2, T2);
1292 set = isl_set_alloc_dim(isl_basic_set_get_dim(bset1), 2, 0);
1293 set = isl_set_add_basic_set(set, bset1);
1294 set = isl_set_add_basic_set(set, bset2);
1295 hull = uset_convex_hull(set);
1296 hull = isl_basic_set_preimage(hull, T);
1298 isl_vec_free(dir);
1300 return hull;
1301 error:
1302 isl_vec_free(dir);
1303 isl_basic_set_free(bset1);
1304 isl_basic_set_free(bset2);
1305 return NULL;
1308 static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set);
1309 static struct isl_basic_set *modulo_affine_hull(
1310 struct isl_set *set, struct isl_basic_set *affine_hull);
1312 /* Compute the convex hull of a pair of basic sets without any parameters or
1313 * integer divisions.
1315 * This function is called from uset_convex_hull_unbounded, which
1316 * means that the complete convex hull is unbounded. Some pairs
1317 * of basic sets may still be bounded, though.
1318 * They may even lie inside a lower dimensional space, in which
1319 * case they need to be handled inside their affine hull since
1320 * the main algorithm assumes that the result is full-dimensional.
1322 * If the convex hull of the two basic sets would have a non-trivial
1323 * lineality space, we first project out this lineality space.
1325 static struct isl_basic_set *convex_hull_pair(struct isl_basic_set *bset1,
1326 struct isl_basic_set *bset2)
1328 isl_basic_set *lin, *aff;
1329 int bounded1, bounded2;
1331 aff = isl_set_affine_hull(isl_basic_set_union(isl_basic_set_copy(bset1),
1332 isl_basic_set_copy(bset2)));
1333 if (!aff)
1334 goto error;
1335 if (aff->n_eq != 0)
1336 return modulo_affine_hull(isl_basic_set_union(bset1, bset2), aff);
1337 isl_basic_set_free(aff);
1339 bounded1 = isl_basic_set_is_bounded(bset1);
1340 bounded2 = isl_basic_set_is_bounded(bset2);
1342 if (bounded1 < 0 || bounded2 < 0)
1343 goto error;
1345 if (bounded1 && bounded2)
1346 uset_convex_hull_wrap(isl_basic_set_union(bset1, bset2));
1348 if (bounded1 || bounded2)
1349 return convex_hull_pair_pointed(bset1, bset2);
1351 lin = induced_lineality_space(isl_basic_set_copy(bset1),
1352 isl_basic_set_copy(bset2));
1353 if (!lin)
1354 goto error;
1355 if (isl_basic_set_is_universe(lin)) {
1356 isl_basic_set_free(bset1);
1357 isl_basic_set_free(bset2);
1358 return lin;
1360 if (lin->n_eq < isl_basic_set_total_dim(lin)) {
1361 struct isl_set *set;
1362 set = isl_set_alloc_dim(isl_basic_set_get_dim(bset1), 2, 0);
1363 set = isl_set_add_basic_set(set, bset1);
1364 set = isl_set_add_basic_set(set, bset2);
1365 return modulo_lineality(set, lin);
1367 isl_basic_set_free(lin);
1369 return convex_hull_pair_pointed(bset1, bset2);
1370 error:
1371 isl_basic_set_free(bset1);
1372 isl_basic_set_free(bset2);
1373 return NULL;
1376 /* Compute the lineality space of a basic set.
1377 * We currently do not allow the basic set to have any divs.
1378 * We basically just drop the constants and turn every inequality
1379 * into an equality.
1381 struct isl_basic_set *isl_basic_set_lineality_space(struct isl_basic_set *bset)
1383 int i, k;
1384 struct isl_basic_set *lin = NULL;
1385 unsigned dim;
1387 if (!bset)
1388 goto error;
1389 isl_assert(bset->ctx, bset->n_div == 0, goto error);
1390 dim = isl_basic_set_total_dim(bset);
1392 lin = isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset), 0, dim, 0);
1393 if (!lin)
1394 goto error;
1395 for (i = 0; i < bset->n_eq; ++i) {
1396 k = isl_basic_set_alloc_equality(lin);
1397 if (k < 0)
1398 goto error;
1399 isl_int_set_si(lin->eq[k][0], 0);
1400 isl_seq_cpy(lin->eq[k] + 1, bset->eq[i] + 1, dim);
1402 lin = isl_basic_set_gauss(lin, NULL);
1403 if (!lin)
1404 goto error;
1405 for (i = 0; i < bset->n_ineq && lin->n_eq < dim; ++i) {
1406 k = isl_basic_set_alloc_equality(lin);
1407 if (k < 0)
1408 goto error;
1409 isl_int_set_si(lin->eq[k][0], 0);
1410 isl_seq_cpy(lin->eq[k] + 1, bset->ineq[i] + 1, dim);
1411 lin = isl_basic_set_gauss(lin, NULL);
1412 if (!lin)
1413 goto error;
1415 isl_basic_set_free(bset);
1416 return lin;
1417 error:
1418 isl_basic_set_free(lin);
1419 isl_basic_set_free(bset);
1420 return NULL;
1423 /* Compute the (linear) hull of the lineality spaces of the basic sets in the
1424 * "underlying" set "set".
1426 static struct isl_basic_set *uset_combined_lineality_space(struct isl_set *set)
1428 int i;
1429 struct isl_set *lin = NULL;
1431 if (!set)
1432 return NULL;
1433 if (set->n == 0) {
1434 struct isl_dim *dim = isl_set_get_dim(set);
1435 isl_set_free(set);
1436 return isl_basic_set_empty(dim);
1439 lin = isl_set_alloc_dim(isl_set_get_dim(set), set->n, 0);
1440 for (i = 0; i < set->n; ++i)
1441 lin = isl_set_add_basic_set(lin,
1442 isl_basic_set_lineality_space(isl_basic_set_copy(set->p[i])));
1443 isl_set_free(set);
1444 return isl_set_affine_hull(lin);
1447 /* Compute the convex hull of a set without any parameters or
1448 * integer divisions.
1449 * In each step, we combined two basic sets until only one
1450 * basic set is left.
1451 * The input basic sets are assumed not to have a non-trivial
1452 * lineality space. If any of the intermediate results has
1453 * a non-trivial lineality space, it is projected out.
1455 static struct isl_basic_set *uset_convex_hull_unbounded(struct isl_set *set)
1457 struct isl_basic_set *convex_hull = NULL;
1459 convex_hull = isl_set_copy_basic_set(set);
1460 set = isl_set_drop_basic_set(set, convex_hull);
1461 if (!set)
1462 goto error;
1463 while (set->n > 0) {
1464 struct isl_basic_set *t;
1465 t = isl_set_copy_basic_set(set);
1466 if (!t)
1467 goto error;
1468 set = isl_set_drop_basic_set(set, t);
1469 if (!set)
1470 goto error;
1471 convex_hull = convex_hull_pair(convex_hull, t);
1472 if (set->n == 0)
1473 break;
1474 t = isl_basic_set_lineality_space(isl_basic_set_copy(convex_hull));
1475 if (!t)
1476 goto error;
1477 if (isl_basic_set_is_universe(t)) {
1478 isl_basic_set_free(convex_hull);
1479 convex_hull = t;
1480 break;
1482 if (t->n_eq < isl_basic_set_total_dim(t)) {
1483 set = isl_set_add_basic_set(set, convex_hull);
1484 return modulo_lineality(set, t);
1486 isl_basic_set_free(t);
1488 isl_set_free(set);
1489 return convex_hull;
1490 error:
1491 isl_set_free(set);
1492 isl_basic_set_free(convex_hull);
1493 return NULL;
1496 /* Compute an initial hull for wrapping containing a single initial
1497 * facet.
1498 * This function assumes that the given set is bounded.
1500 static struct isl_basic_set *initial_hull(struct isl_basic_set *hull,
1501 struct isl_set *set)
1503 struct isl_mat *bounds = NULL;
1504 unsigned dim;
1505 int k;
1507 if (!hull)
1508 goto error;
1509 bounds = initial_facet_constraint(set);
1510 if (!bounds)
1511 goto error;
1512 k = isl_basic_set_alloc_inequality(hull);
1513 if (k < 0)
1514 goto error;
1515 dim = isl_set_n_dim(set);
1516 isl_assert(set->ctx, 1 + dim == bounds->n_col, goto error);
1517 isl_seq_cpy(hull->ineq[k], bounds->row[0], bounds->n_col);
1518 isl_mat_free(bounds);
1520 return hull;
1521 error:
1522 isl_basic_set_free(hull);
1523 isl_mat_free(bounds);
1524 return NULL;
1527 struct max_constraint {
1528 struct isl_mat *c;
1529 int count;
1530 int ineq;
1533 static int max_constraint_equal(const void *entry, const void *val)
1535 struct max_constraint *a = (struct max_constraint *)entry;
1536 isl_int *b = (isl_int *)val;
1538 return isl_seq_eq(a->c->row[0] + 1, b, a->c->n_col - 1);
1541 static void update_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
1542 isl_int *con, unsigned len, int n, int ineq)
1544 struct isl_hash_table_entry *entry;
1545 struct max_constraint *c;
1546 uint32_t c_hash;
1548 c_hash = isl_seq_get_hash(con + 1, len);
1549 entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
1550 con + 1, 0);
1551 if (!entry)
1552 return;
1553 c = entry->data;
1554 if (c->count < n) {
1555 isl_hash_table_remove(ctx, table, entry);
1556 return;
1558 c->count++;
1559 if (isl_int_gt(c->c->row[0][0], con[0]))
1560 return;
1561 if (isl_int_eq(c->c->row[0][0], con[0])) {
1562 if (ineq)
1563 c->ineq = ineq;
1564 return;
1566 c->c = isl_mat_cow(c->c);
1567 isl_int_set(c->c->row[0][0], con[0]);
1568 c->ineq = ineq;
1571 /* Check whether the constraint hash table "table" constains the constraint
1572 * "con".
1574 static int has_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
1575 isl_int *con, unsigned len, int n)
1577 struct isl_hash_table_entry *entry;
1578 struct max_constraint *c;
1579 uint32_t c_hash;
1581 c_hash = isl_seq_get_hash(con + 1, len);
1582 entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
1583 con + 1, 0);
1584 if (!entry)
1585 return 0;
1586 c = entry->data;
1587 if (c->count < n)
1588 return 0;
1589 return isl_int_eq(c->c->row[0][0], con[0]);
1592 /* Check for inequality constraints of a basic set without equalities
1593 * such that the same or more stringent copies of the constraint appear
1594 * in all of the basic sets. Such constraints are necessarily facet
1595 * constraints of the convex hull.
1597 * If the resulting basic set is by chance identical to one of
1598 * the basic sets in "set", then we know that this basic set contains
1599 * all other basic sets and is therefore the convex hull of set.
1600 * In this case we set *is_hull to 1.
1602 static struct isl_basic_set *common_constraints(struct isl_basic_set *hull,
1603 struct isl_set *set, int *is_hull)
1605 int i, j, s, n;
1606 int min_constraints;
1607 int best;
1608 struct max_constraint *constraints = NULL;
1609 struct isl_hash_table *table = NULL;
1610 unsigned total;
1612 *is_hull = 0;
1614 for (i = 0; i < set->n; ++i)
1615 if (set->p[i]->n_eq == 0)
1616 break;
1617 if (i >= set->n)
1618 return hull;
1619 min_constraints = set->p[i]->n_ineq;
1620 best = i;
1621 for (i = best + 1; i < set->n; ++i) {
1622 if (set->p[i]->n_eq != 0)
1623 continue;
1624 if (set->p[i]->n_ineq >= min_constraints)
1625 continue;
1626 min_constraints = set->p[i]->n_ineq;
1627 best = i;
1629 constraints = isl_calloc_array(hull->ctx, struct max_constraint,
1630 min_constraints);
1631 if (!constraints)
1632 return hull;
1633 table = isl_alloc_type(hull->ctx, struct isl_hash_table);
1634 if (isl_hash_table_init(hull->ctx, table, min_constraints))
1635 goto error;
1637 total = isl_dim_total(set->dim);
1638 for (i = 0; i < set->p[best]->n_ineq; ++i) {
1639 constraints[i].c = isl_mat_sub_alloc(hull->ctx,
1640 set->p[best]->ineq + i, 0, 1, 0, 1 + total);
1641 if (!constraints[i].c)
1642 goto error;
1643 constraints[i].ineq = 1;
1645 for (i = 0; i < min_constraints; ++i) {
1646 struct isl_hash_table_entry *entry;
1647 uint32_t c_hash;
1648 c_hash = isl_seq_get_hash(constraints[i].c->row[0] + 1, total);
1649 entry = isl_hash_table_find(hull->ctx, table, c_hash,
1650 max_constraint_equal, constraints[i].c->row[0] + 1, 1);
1651 if (!entry)
1652 goto error;
1653 isl_assert(hull->ctx, !entry->data, goto error);
1654 entry->data = &constraints[i];
1657 n = 0;
1658 for (s = 0; s < set->n; ++s) {
1659 if (s == best)
1660 continue;
1662 for (i = 0; i < set->p[s]->n_eq; ++i) {
1663 isl_int *eq = set->p[s]->eq[i];
1664 for (j = 0; j < 2; ++j) {
1665 isl_seq_neg(eq, eq, 1 + total);
1666 update_constraint(hull->ctx, table,
1667 eq, total, n, 0);
1670 for (i = 0; i < set->p[s]->n_ineq; ++i) {
1671 isl_int *ineq = set->p[s]->ineq[i];
1672 update_constraint(hull->ctx, table, ineq, total, n,
1673 set->p[s]->n_eq == 0);
1675 ++n;
1678 for (i = 0; i < min_constraints; ++i) {
1679 if (constraints[i].count < n)
1680 continue;
1681 if (!constraints[i].ineq)
1682 continue;
1683 j = isl_basic_set_alloc_inequality(hull);
1684 if (j < 0)
1685 goto error;
1686 isl_seq_cpy(hull->ineq[j], constraints[i].c->row[0], 1 + total);
1689 for (s = 0; s < set->n; ++s) {
1690 if (set->p[s]->n_eq)
1691 continue;
1692 if (set->p[s]->n_ineq != hull->n_ineq)
1693 continue;
1694 for (i = 0; i < set->p[s]->n_ineq; ++i) {
1695 isl_int *ineq = set->p[s]->ineq[i];
1696 if (!has_constraint(hull->ctx, table, ineq, total, n))
1697 break;
1699 if (i == set->p[s]->n_ineq)
1700 *is_hull = 1;
1703 isl_hash_table_clear(table);
1704 for (i = 0; i < min_constraints; ++i)
1705 isl_mat_free(constraints[i].c);
1706 free(constraints);
1707 free(table);
1708 return hull;
1709 error:
1710 isl_hash_table_clear(table);
1711 free(table);
1712 if (constraints)
1713 for (i = 0; i < min_constraints; ++i)
1714 isl_mat_free(constraints[i].c);
1715 free(constraints);
1716 return hull;
1719 /* Create a template for the convex hull of "set" and fill it up
1720 * obvious facet constraints, if any. If the result happens to
1721 * be the convex hull of "set" then *is_hull is set to 1.
1723 static struct isl_basic_set *proto_hull(struct isl_set *set, int *is_hull)
1725 struct isl_basic_set *hull;
1726 unsigned n_ineq;
1727 int i;
1729 n_ineq = 1;
1730 for (i = 0; i < set->n; ++i) {
1731 n_ineq += set->p[i]->n_eq;
1732 n_ineq += set->p[i]->n_ineq;
1734 hull = isl_basic_set_alloc_dim(isl_dim_copy(set->dim), 0, 0, n_ineq);
1735 hull = isl_basic_set_set_rational(hull);
1736 if (!hull)
1737 return NULL;
1738 return common_constraints(hull, set, is_hull);
1741 static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set)
1743 struct isl_basic_set *hull;
1744 int is_hull;
1746 hull = proto_hull(set, &is_hull);
1747 if (hull && !is_hull) {
1748 if (hull->n_ineq == 0)
1749 hull = initial_hull(hull, set);
1750 hull = extend(hull, set);
1752 isl_set_free(set);
1754 return hull;
1757 /* Compute the convex hull of a set without any parameters or
1758 * integer divisions. Depending on whether the set is bounded,
1759 * we pass control to the wrapping based convex hull or
1760 * the Fourier-Motzkin elimination based convex hull.
1761 * We also handle a few special cases before checking the boundedness.
1763 static struct isl_basic_set *uset_convex_hull(struct isl_set *set)
1765 struct isl_basic_set *convex_hull = NULL;
1766 struct isl_basic_set *lin;
1768 if (isl_set_n_dim(set) == 0)
1769 return convex_hull_0d(set);
1771 set = isl_set_coalesce(set);
1772 set = isl_set_set_rational(set);
1774 if (!set)
1775 goto error;
1776 if (!set)
1777 return NULL;
1778 if (set->n == 1) {
1779 convex_hull = isl_basic_set_copy(set->p[0]);
1780 isl_set_free(set);
1781 return convex_hull;
1783 if (isl_set_n_dim(set) == 1)
1784 return convex_hull_1d(set);
1786 if (isl_set_is_bounded(set))
1787 return uset_convex_hull_wrap(set);
1789 lin = uset_combined_lineality_space(isl_set_copy(set));
1790 if (!lin)
1791 goto error;
1792 if (isl_basic_set_is_universe(lin)) {
1793 isl_set_free(set);
1794 return lin;
1796 if (lin->n_eq < isl_basic_set_total_dim(lin))
1797 return modulo_lineality(set, lin);
1798 isl_basic_set_free(lin);
1800 return uset_convex_hull_unbounded(set);
1801 error:
1802 isl_set_free(set);
1803 isl_basic_set_free(convex_hull);
1804 return NULL;
1807 /* This is the core procedure, where "set" is a "pure" set, i.e.,
1808 * without parameters or divs and where the convex hull of set is
1809 * known to be full-dimensional.
1811 static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set)
1813 struct isl_basic_set *convex_hull = NULL;
1815 if (!set)
1816 goto error;
1818 if (isl_set_n_dim(set) == 0) {
1819 convex_hull = isl_basic_set_universe(isl_dim_copy(set->dim));
1820 isl_set_free(set);
1821 convex_hull = isl_basic_set_set_rational(convex_hull);
1822 return convex_hull;
1825 set = isl_set_set_rational(set);
1826 set = isl_set_coalesce(set);
1827 if (!set)
1828 goto error;
1829 if (set->n == 1) {
1830 convex_hull = isl_basic_set_copy(set->p[0]);
1831 isl_set_free(set);
1832 return convex_hull;
1834 if (isl_set_n_dim(set) == 1)
1835 return convex_hull_1d(set);
1837 return uset_convex_hull_wrap(set);
1838 error:
1839 isl_set_free(set);
1840 return NULL;
1843 /* Compute the convex hull of set "set" with affine hull "affine_hull",
1844 * We first remove the equalities (transforming the set), compute the
1845 * convex hull of the transformed set and then add the equalities back
1846 * (after performing the inverse transformation.
1848 static struct isl_basic_set *modulo_affine_hull(
1849 struct isl_set *set, struct isl_basic_set *affine_hull)
1851 struct isl_mat *T;
1852 struct isl_mat *T2;
1853 struct isl_basic_set *dummy;
1854 struct isl_basic_set *convex_hull;
1856 dummy = isl_basic_set_remove_equalities(
1857 isl_basic_set_copy(affine_hull), &T, &T2);
1858 if (!dummy)
1859 goto error;
1860 isl_basic_set_free(dummy);
1861 set = isl_set_preimage(set, T);
1862 convex_hull = uset_convex_hull(set);
1863 convex_hull = isl_basic_set_preimage(convex_hull, T2);
1864 convex_hull = isl_basic_set_intersect(convex_hull, affine_hull);
1865 return convex_hull;
1866 error:
1867 isl_basic_set_free(affine_hull);
1868 isl_set_free(set);
1869 return NULL;
1872 /* Compute the convex hull of a map.
1874 * The implementation was inspired by "Extended Convex Hull" by Fukuda et al.,
1875 * specifically, the wrapping of facets to obtain new facets.
1877 struct isl_basic_map *isl_map_convex_hull(struct isl_map *map)
1879 struct isl_basic_set *bset;
1880 struct isl_basic_map *model = NULL;
1881 struct isl_basic_set *affine_hull = NULL;
1882 struct isl_basic_map *convex_hull = NULL;
1883 struct isl_set *set = NULL;
1884 struct isl_ctx *ctx;
1886 if (!map)
1887 goto error;
1889 ctx = map->ctx;
1890 if (map->n == 0) {
1891 convex_hull = isl_basic_map_empty_like_map(map);
1892 isl_map_free(map);
1893 return convex_hull;
1896 map = isl_map_detect_equalities(map);
1897 map = isl_map_align_divs(map);
1898 if (!map)
1899 goto error;
1900 model = isl_basic_map_copy(map->p[0]);
1901 set = isl_map_underlying_set(map);
1902 if (!set)
1903 goto error;
1905 affine_hull = isl_set_affine_hull(isl_set_copy(set));
1906 if (!affine_hull)
1907 goto error;
1908 if (affine_hull->n_eq != 0)
1909 bset = modulo_affine_hull(set, affine_hull);
1910 else {
1911 isl_basic_set_free(affine_hull);
1912 bset = uset_convex_hull(set);
1915 convex_hull = isl_basic_map_overlying_set(bset, model);
1916 if (!convex_hull)
1917 return NULL;
1919 ISL_F_SET(convex_hull, ISL_BASIC_MAP_NO_IMPLICIT);
1920 ISL_F_SET(convex_hull, ISL_BASIC_MAP_ALL_EQUALITIES);
1921 ISL_F_CLR(convex_hull, ISL_BASIC_MAP_RATIONAL);
1922 return convex_hull;
1923 error:
1924 isl_set_free(set);
1925 isl_basic_map_free(model);
1926 return NULL;
1929 struct isl_basic_set *isl_set_convex_hull(struct isl_set *set)
1931 return (struct isl_basic_set *)
1932 isl_map_convex_hull((struct isl_map *)set);
1935 struct sh_data_entry {
1936 struct isl_hash_table *table;
1937 struct isl_tab *tab;
1940 /* Holds the data needed during the simple hull computation.
1941 * In particular,
1942 * n the number of basic sets in the original set
1943 * hull_table a hash table of already computed constraints
1944 * in the simple hull
1945 * p for each basic set,
1946 * table a hash table of the constraints
1947 * tab the tableau corresponding to the basic set
1949 struct sh_data {
1950 struct isl_ctx *ctx;
1951 unsigned n;
1952 struct isl_hash_table *hull_table;
1953 struct sh_data_entry p[1];
1956 static void sh_data_free(struct sh_data *data)
1958 int i;
1960 if (!data)
1961 return;
1962 isl_hash_table_free(data->ctx, data->hull_table);
1963 for (i = 0; i < data->n; ++i) {
1964 isl_hash_table_free(data->ctx, data->p[i].table);
1965 isl_tab_free(data->p[i].tab);
1967 free(data);
1970 struct ineq_cmp_data {
1971 unsigned len;
1972 isl_int *p;
1975 static int has_ineq(const void *entry, const void *val)
1977 isl_int *row = (isl_int *)entry;
1978 struct ineq_cmp_data *v = (struct ineq_cmp_data *)val;
1980 return isl_seq_eq(row + 1, v->p + 1, v->len) ||
1981 isl_seq_is_neg(row + 1, v->p + 1, v->len);
1984 static int hash_ineq(struct isl_ctx *ctx, struct isl_hash_table *table,
1985 isl_int *ineq, unsigned len)
1987 uint32_t c_hash;
1988 struct ineq_cmp_data v;
1989 struct isl_hash_table_entry *entry;
1991 v.len = len;
1992 v.p = ineq;
1993 c_hash = isl_seq_get_hash(ineq + 1, len);
1994 entry = isl_hash_table_find(ctx, table, c_hash, has_ineq, &v, 1);
1995 if (!entry)
1996 return - 1;
1997 entry->data = ineq;
1998 return 0;
2001 /* Fill hash table "table" with the constraints of "bset".
2002 * Equalities are added as two inequalities.
2003 * The value in the hash table is a pointer to the (in)equality of "bset".
2005 static int hash_basic_set(struct isl_hash_table *table,
2006 struct isl_basic_set *bset)
2008 int i, j;
2009 unsigned dim = isl_basic_set_total_dim(bset);
2011 for (i = 0; i < bset->n_eq; ++i) {
2012 for (j = 0; j < 2; ++j) {
2013 isl_seq_neg(bset->eq[i], bset->eq[i], 1 + dim);
2014 if (hash_ineq(bset->ctx, table, bset->eq[i], dim) < 0)
2015 return -1;
2018 for (i = 0; i < bset->n_ineq; ++i) {
2019 if (hash_ineq(bset->ctx, table, bset->ineq[i], dim) < 0)
2020 return -1;
2022 return 0;
2025 static struct sh_data *sh_data_alloc(struct isl_set *set, unsigned n_ineq)
2027 struct sh_data *data;
2028 int i;
2030 data = isl_calloc(set->ctx, struct sh_data,
2031 sizeof(struct sh_data) +
2032 (set->n - 1) * sizeof(struct sh_data_entry));
2033 if (!data)
2034 return NULL;
2035 data->ctx = set->ctx;
2036 data->n = set->n;
2037 data->hull_table = isl_hash_table_alloc(set->ctx, n_ineq);
2038 if (!data->hull_table)
2039 goto error;
2040 for (i = 0; i < set->n; ++i) {
2041 data->p[i].table = isl_hash_table_alloc(set->ctx,
2042 2 * set->p[i]->n_eq + set->p[i]->n_ineq);
2043 if (!data->p[i].table)
2044 goto error;
2045 if (hash_basic_set(data->p[i].table, set->p[i]) < 0)
2046 goto error;
2048 return data;
2049 error:
2050 sh_data_free(data);
2051 return NULL;
2054 /* Check if inequality "ineq" is a bound for basic set "j" or if
2055 * it can be relaxed (by increasing the constant term) to become
2056 * a bound for that basic set. In the latter case, the constant
2057 * term is updated.
2058 * Return 1 if "ineq" is a bound
2059 * 0 if "ineq" may attain arbitrarily small values on basic set "j"
2060 * -1 if some error occurred
2062 static int is_bound(struct sh_data *data, struct isl_set *set, int j,
2063 isl_int *ineq)
2065 enum isl_lp_result res;
2066 isl_int opt;
2068 if (!data->p[j].tab) {
2069 data->p[j].tab = isl_tab_from_basic_set(set->p[j]);
2070 if (!data->p[j].tab)
2071 return -1;
2074 isl_int_init(opt);
2076 res = isl_tab_min(data->p[j].tab, ineq, data->ctx->one,
2077 &opt, NULL, 0);
2078 if (res == isl_lp_ok && isl_int_is_neg(opt))
2079 isl_int_sub(ineq[0], ineq[0], opt);
2081 isl_int_clear(opt);
2083 return (res == isl_lp_ok || res == isl_lp_empty) ? 1 :
2084 res == isl_lp_unbounded ? 0 : -1;
2087 /* Check if inequality "ineq" from basic set "i" can be relaxed to
2088 * become a bound on the whole set. If so, add the (relaxed) inequality
2089 * to "hull".
2091 * We first check if "hull" already contains a translate of the inequality.
2092 * If so, we are done.
2093 * Then, we check if any of the previous basic sets contains a translate
2094 * of the inequality. If so, then we have already considered this
2095 * inequality and we are done.
2096 * Otherwise, for each basic set other than "i", we check if the inequality
2097 * is a bound on the basic set.
2098 * For previous basic sets, we know that they do not contain a translate
2099 * of the inequality, so we directly call is_bound.
2100 * For following basic sets, we first check if a translate of the
2101 * inequality appears in its description and if so directly update
2102 * the inequality accordingly.
2104 static struct isl_basic_set *add_bound(struct isl_basic_set *hull,
2105 struct sh_data *data, struct isl_set *set, int i, isl_int *ineq)
2107 uint32_t c_hash;
2108 struct ineq_cmp_data v;
2109 struct isl_hash_table_entry *entry;
2110 int j, k;
2112 if (!hull)
2113 return NULL;
2115 v.len = isl_basic_set_total_dim(hull);
2116 v.p = ineq;
2117 c_hash = isl_seq_get_hash(ineq + 1, v.len);
2119 entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
2120 has_ineq, &v, 0);
2121 if (entry)
2122 return hull;
2124 for (j = 0; j < i; ++j) {
2125 entry = isl_hash_table_find(hull->ctx, data->p[j].table,
2126 c_hash, has_ineq, &v, 0);
2127 if (entry)
2128 break;
2130 if (j < i)
2131 return hull;
2133 k = isl_basic_set_alloc_inequality(hull);
2134 isl_seq_cpy(hull->ineq[k], ineq, 1 + v.len);
2135 if (k < 0)
2136 goto error;
2138 for (j = 0; j < i; ++j) {
2139 int bound;
2140 bound = is_bound(data, set, j, hull->ineq[k]);
2141 if (bound < 0)
2142 goto error;
2143 if (!bound)
2144 break;
2146 if (j < i) {
2147 isl_basic_set_free_inequality(hull, 1);
2148 return hull;
2151 for (j = i + 1; j < set->n; ++j) {
2152 int bound, neg;
2153 isl_int *ineq_j;
2154 entry = isl_hash_table_find(hull->ctx, data->p[j].table,
2155 c_hash, has_ineq, &v, 0);
2156 if (entry) {
2157 ineq_j = entry->data;
2158 neg = isl_seq_is_neg(ineq_j + 1,
2159 hull->ineq[k] + 1, v.len);
2160 if (neg)
2161 isl_int_neg(ineq_j[0], ineq_j[0]);
2162 if (isl_int_gt(ineq_j[0], hull->ineq[k][0]))
2163 isl_int_set(hull->ineq[k][0], ineq_j[0]);
2164 if (neg)
2165 isl_int_neg(ineq_j[0], ineq_j[0]);
2166 continue;
2168 bound = is_bound(data, set, j, hull->ineq[k]);
2169 if (bound < 0)
2170 goto error;
2171 if (!bound)
2172 break;
2174 if (j < set->n) {
2175 isl_basic_set_free_inequality(hull, 1);
2176 return hull;
2179 entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
2180 has_ineq, &v, 1);
2181 if (!entry)
2182 goto error;
2183 entry->data = hull->ineq[k];
2185 return hull;
2186 error:
2187 isl_basic_set_free(hull);
2188 return NULL;
2191 /* Check if any inequality from basic set "i" can be relaxed to
2192 * become a bound on the whole set. If so, add the (relaxed) inequality
2193 * to "hull".
2195 static struct isl_basic_set *add_bounds(struct isl_basic_set *bset,
2196 struct sh_data *data, struct isl_set *set, int i)
2198 int j, k;
2199 unsigned dim = isl_basic_set_total_dim(bset);
2201 for (j = 0; j < set->p[i]->n_eq; ++j) {
2202 for (k = 0; k < 2; ++k) {
2203 isl_seq_neg(set->p[i]->eq[j], set->p[i]->eq[j], 1+dim);
2204 bset = add_bound(bset, data, set, i, set->p[i]->eq[j]);
2207 for (j = 0; j < set->p[i]->n_ineq; ++j)
2208 bset = add_bound(bset, data, set, i, set->p[i]->ineq[j]);
2209 return bset;
2212 /* Compute a superset of the convex hull of set that is described
2213 * by only translates of the constraints in the constituents of set.
2215 static struct isl_basic_set *uset_simple_hull(struct isl_set *set)
2217 struct sh_data *data = NULL;
2218 struct isl_basic_set *hull = NULL;
2219 unsigned n_ineq;
2220 int i;
2222 if (!set)
2223 return NULL;
2225 n_ineq = 0;
2226 for (i = 0; i < set->n; ++i) {
2227 if (!set->p[i])
2228 goto error;
2229 n_ineq += 2 * set->p[i]->n_eq + set->p[i]->n_ineq;
2232 hull = isl_basic_set_alloc_dim(isl_dim_copy(set->dim), 0, 0, n_ineq);
2233 if (!hull)
2234 goto error;
2236 data = sh_data_alloc(set, n_ineq);
2237 if (!data)
2238 goto error;
2240 for (i = 0; i < set->n; ++i)
2241 hull = add_bounds(hull, data, set, i);
2243 sh_data_free(data);
2244 isl_set_free(set);
2246 return hull;
2247 error:
2248 sh_data_free(data);
2249 isl_basic_set_free(hull);
2250 isl_set_free(set);
2251 return NULL;
2254 /* Compute a superset of the convex hull of map that is described
2255 * by only translates of the constraints in the constituents of map.
2257 struct isl_basic_map *isl_map_simple_hull(struct isl_map *map)
2259 struct isl_set *set = NULL;
2260 struct isl_basic_map *model = NULL;
2261 struct isl_basic_map *hull;
2262 struct isl_basic_map *affine_hull;
2263 struct isl_basic_set *bset = NULL;
2265 if (!map)
2266 return NULL;
2267 if (map->n == 0) {
2268 hull = isl_basic_map_empty_like_map(map);
2269 isl_map_free(map);
2270 return hull;
2272 if (map->n == 1) {
2273 hull = isl_basic_map_copy(map->p[0]);
2274 isl_map_free(map);
2275 return hull;
2278 map = isl_map_detect_equalities(map);
2279 affine_hull = isl_map_affine_hull(isl_map_copy(map));
2280 map = isl_map_align_divs(map);
2281 model = isl_basic_map_copy(map->p[0]);
2283 set = isl_map_underlying_set(map);
2285 bset = uset_simple_hull(set);
2287 hull = isl_basic_map_overlying_set(bset, model);
2289 hull = isl_basic_map_intersect(hull, affine_hull);
2290 hull = isl_basic_map_remove_redundancies(hull);
2291 ISL_F_SET(hull, ISL_BASIC_MAP_NO_IMPLICIT);
2292 ISL_F_SET(hull, ISL_BASIC_MAP_ALL_EQUALITIES);
2294 return hull;
2297 struct isl_basic_set *isl_set_simple_hull(struct isl_set *set)
2299 return (struct isl_basic_set *)
2300 isl_map_simple_hull((struct isl_map *)set);
2303 /* Given a set "set", return parametric bounds on the dimension "dim".
2305 static struct isl_basic_set *set_bounds(struct isl_set *set, int dim)
2307 unsigned set_dim = isl_set_dim(set, isl_dim_set);
2308 set = isl_set_copy(set);
2309 set = isl_set_eliminate_dims(set, dim + 1, set_dim - (dim + 1));
2310 set = isl_set_eliminate_dims(set, 0, dim);
2311 return isl_set_convex_hull(set);
2314 /* Computes a "simple hull" and then check if each dimension in the
2315 * resulting hull is bounded by a symbolic constant. If not, the
2316 * hull is intersected with the corresponding bounds on the whole set.
2318 struct isl_basic_set *isl_set_bounded_simple_hull(struct isl_set *set)
2320 int i, j;
2321 struct isl_basic_set *hull;
2322 unsigned nparam, left;
2323 int removed_divs = 0;
2325 hull = isl_set_simple_hull(isl_set_copy(set));
2326 if (!hull)
2327 goto error;
2329 nparam = isl_basic_set_dim(hull, isl_dim_param);
2330 for (i = 0; i < isl_basic_set_dim(hull, isl_dim_set); ++i) {
2331 int lower = 0, upper = 0;
2332 struct isl_basic_set *bounds;
2334 left = isl_basic_set_total_dim(hull) - nparam - i - 1;
2335 for (j = 0; j < hull->n_eq; ++j) {
2336 if (isl_int_is_zero(hull->eq[j][1 + nparam + i]))
2337 continue;
2338 if (isl_seq_first_non_zero(hull->eq[j]+1+nparam+i+1,
2339 left) == -1)
2340 break;
2342 if (j < hull->n_eq)
2343 continue;
2345 for (j = 0; j < hull->n_ineq; ++j) {
2346 if (isl_int_is_zero(hull->ineq[j][1 + nparam + i]))
2347 continue;
2348 if (isl_seq_first_non_zero(hull->ineq[j]+1+nparam+i+1,
2349 left) != -1 ||
2350 isl_seq_first_non_zero(hull->ineq[j]+1+nparam,
2351 i) != -1)
2352 continue;
2353 if (isl_int_is_pos(hull->ineq[j][1 + nparam + i]))
2354 lower = 1;
2355 else
2356 upper = 1;
2357 if (lower && upper)
2358 break;
2361 if (lower && upper)
2362 continue;
2364 if (!removed_divs) {
2365 set = isl_set_remove_divs(set);
2366 if (!set)
2367 goto error;
2368 removed_divs = 1;
2370 bounds = set_bounds(set, i);
2371 hull = isl_basic_set_intersect(hull, bounds);
2372 if (!hull)
2373 goto error;
2376 isl_set_free(set);
2377 return hull;
2378 error:
2379 isl_set_free(set);
2380 return NULL;