2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, K.U.Leuven, Departement
8 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
10 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
13 #include <isl_ctx_private.h>
14 #include "isl_map_private.h"
17 #include "isl_sample.h"
18 #include <isl_mat_private.h>
19 #include <isl_vec_private.h>
20 #include <isl_aff_private.h>
21 #include <isl_options_private.h>
22 #include <isl_config.h>
25 * The implementation of parametric integer linear programming in this file
26 * was inspired by the paper "Parametric Integer Programming" and the
27 * report "Solving systems of affine (in)equalities" by Paul Feautrier
30 * The strategy used for obtaining a feasible solution is different
31 * from the one used in isl_tab.c. In particular, in isl_tab.c,
32 * upon finding a constraint that is not yet satisfied, we pivot
33 * in a row that increases the constant term of the row holding the
34 * constraint, making sure the sample solution remains feasible
35 * for all the constraints it already satisfied.
36 * Here, we always pivot in the row holding the constraint,
37 * choosing a column that induces the lexicographically smallest
38 * increment to the sample solution.
40 * By starting out from a sample value that is lexicographically
41 * smaller than any integer point in the problem space, the first
42 * feasible integer sample point we find will also be the lexicographically
43 * smallest. If all variables can be assumed to be non-negative,
44 * then the initial sample value may be chosen equal to zero.
45 * However, we will not make this assumption. Instead, we apply
46 * the "big parameter" trick. Any variable x is then not directly
47 * used in the tableau, but instead it is represented by another
48 * variable x' = M + x, where M is an arbitrarily large (positive)
49 * value. x' is therefore always non-negative, whatever the value of x.
50 * Taking as initial sample value x' = 0 corresponds to x = -M,
51 * which is always smaller than any possible value of x.
53 * The big parameter trick is used in the main tableau and
54 * also in the context tableau if isl_context_lex is used.
55 * In this case, each tableaus has its own big parameter.
56 * Before doing any real work, we check if all the parameters
57 * happen to be non-negative. If so, we drop the column corresponding
58 * to M from the initial context tableau.
59 * If isl_context_gbr is used, then the big parameter trick is only
60 * used in the main tableau.
64 struct isl_context_op
{
65 /* detect nonnegative parameters in context and mark them in tab */
66 struct isl_tab
*(*detect_nonnegative_parameters
)(
67 struct isl_context
*context
, struct isl_tab
*tab
);
68 /* return temporary reference to basic set representation of context */
69 struct isl_basic_set
*(*peek_basic_set
)(struct isl_context
*context
);
70 /* return temporary reference to tableau representation of context */
71 struct isl_tab
*(*peek_tab
)(struct isl_context
*context
);
72 /* add equality; check is 1 if eq may not be valid;
73 * update is 1 if we may want to call ineq_sign on context later.
75 void (*add_eq
)(struct isl_context
*context
, isl_int
*eq
,
76 int check
, int update
);
77 /* add inequality; check is 1 if ineq may not be valid;
78 * update is 1 if we may want to call ineq_sign on context later.
80 void (*add_ineq
)(struct isl_context
*context
, isl_int
*ineq
,
81 int check
, int update
);
82 /* check sign of ineq based on previous information.
83 * strict is 1 if saturation should be treated as a positive sign.
85 enum isl_tab_row_sign (*ineq_sign
)(struct isl_context
*context
,
86 isl_int
*ineq
, int strict
);
87 /* check if inequality maintains feasibility */
88 int (*test_ineq
)(struct isl_context
*context
, isl_int
*ineq
);
89 /* return index of a div that corresponds to "div" */
90 int (*get_div
)(struct isl_context
*context
, struct isl_tab
*tab
,
92 /* add div "div" to context and return non-negativity */
93 int (*add_div
)(struct isl_context
*context
, struct isl_vec
*div
);
94 int (*detect_equalities
)(struct isl_context
*context
,
96 /* return row index of "best" split */
97 int (*best_split
)(struct isl_context
*context
, struct isl_tab
*tab
);
98 /* check if context has already been determined to be empty */
99 int (*is_empty
)(struct isl_context
*context
);
100 /* check if context is still usable */
101 int (*is_ok
)(struct isl_context
*context
);
102 /* save a copy/snapshot of context */
103 void *(*save
)(struct isl_context
*context
);
104 /* restore saved context */
105 void (*restore
)(struct isl_context
*context
, void *);
106 /* discard saved context */
107 void (*discard
)(void *);
108 /* invalidate context */
109 void (*invalidate
)(struct isl_context
*context
);
111 void (*free
)(struct isl_context
*context
);
115 struct isl_context_op
*op
;
118 struct isl_context_lex
{
119 struct isl_context context
;
123 /* A stack (linked list) of solutions of subtrees of the search space.
125 * "M" describes the solution in terms of the dimensions of "dom".
126 * The number of columns of "M" is one more than the total number
127 * of dimensions of "dom".
129 * If "M" is NULL, then there is no solution on "dom".
131 struct isl_partial_sol
{
133 struct isl_basic_set
*dom
;
136 struct isl_partial_sol
*next
;
140 struct isl_sol_callback
{
141 struct isl_tab_callback callback
;
145 /* isl_sol is an interface for constructing a solution to
146 * a parametric integer linear programming problem.
147 * Every time the algorithm reaches a state where a solution
148 * can be read off from the tableau (including cases where the tableau
149 * is empty), the function "add" is called on the isl_sol passed
150 * to find_solutions_main.
152 * The context tableau is owned by isl_sol and is updated incrementally.
154 * There are currently two implementations of this interface,
155 * isl_sol_map, which simply collects the solutions in an isl_map
156 * and (optionally) the parts of the context where there is no solution
158 * isl_sol_for, which calls a user-defined function for each part of
167 struct isl_context
*context
;
168 struct isl_partial_sol
*partial
;
169 void (*add
)(struct isl_sol
*sol
,
170 struct isl_basic_set
*dom
, struct isl_mat
*M
);
171 void (*add_empty
)(struct isl_sol
*sol
, struct isl_basic_set
*bset
);
172 void (*free
)(struct isl_sol
*sol
);
173 struct isl_sol_callback dec_level
;
176 static void sol_free(struct isl_sol
*sol
)
178 struct isl_partial_sol
*partial
, *next
;
181 for (partial
= sol
->partial
; partial
; partial
= next
) {
182 next
= partial
->next
;
183 isl_basic_set_free(partial
->dom
);
184 isl_mat_free(partial
->M
);
190 /* Push a partial solution represented by a domain and mapping M
191 * onto the stack of partial solutions.
193 static void sol_push_sol(struct isl_sol
*sol
,
194 struct isl_basic_set
*dom
, struct isl_mat
*M
)
196 struct isl_partial_sol
*partial
;
198 if (sol
->error
|| !dom
)
201 partial
= isl_alloc_type(dom
->ctx
, struct isl_partial_sol
);
205 partial
->level
= sol
->level
;
208 partial
->next
= sol
->partial
;
210 sol
->partial
= partial
;
214 isl_basic_set_free(dom
);
219 /* Pop one partial solution from the partial solution stack and
220 * pass it on to sol->add or sol->add_empty.
222 static void sol_pop_one(struct isl_sol
*sol
)
224 struct isl_partial_sol
*partial
;
226 partial
= sol
->partial
;
227 sol
->partial
= partial
->next
;
230 sol
->add(sol
, partial
->dom
, partial
->M
);
232 sol
->add_empty(sol
, partial
->dom
);
236 /* Return a fresh copy of the domain represented by the context tableau.
238 static struct isl_basic_set
*sol_domain(struct isl_sol
*sol
)
240 struct isl_basic_set
*bset
;
245 bset
= isl_basic_set_dup(sol
->context
->op
->peek_basic_set(sol
->context
));
246 bset
= isl_basic_set_update_from_tab(bset
,
247 sol
->context
->op
->peek_tab(sol
->context
));
252 /* Check whether two partial solutions have the same mapping, where n_div
253 * is the number of divs that the two partial solutions have in common.
255 static int same_solution(struct isl_partial_sol
*s1
, struct isl_partial_sol
*s2
,
261 if (!s1
->M
!= !s2
->M
)
266 dim
= isl_basic_set_total_dim(s1
->dom
) - s1
->dom
->n_div
;
268 for (i
= 0; i
< s1
->M
->n_row
; ++i
) {
269 if (isl_seq_first_non_zero(s1
->M
->row
[i
]+1+dim
+n_div
,
270 s1
->M
->n_col
-1-dim
-n_div
) != -1)
272 if (isl_seq_first_non_zero(s2
->M
->row
[i
]+1+dim
+n_div
,
273 s2
->M
->n_col
-1-dim
-n_div
) != -1)
275 if (!isl_seq_eq(s1
->M
->row
[i
], s2
->M
->row
[i
], 1+dim
+n_div
))
281 /* Pop all solutions from the partial solution stack that were pushed onto
282 * the stack at levels that are deeper than the current level.
283 * If the two topmost elements on the stack have the same level
284 * and represent the same solution, then their domains are combined.
285 * This combined domain is the same as the current context domain
286 * as sol_pop is called each time we move back to a higher level.
288 static void sol_pop(struct isl_sol
*sol
)
290 struct isl_partial_sol
*partial
;
296 if (sol
->level
== 0) {
297 for (partial
= sol
->partial
; partial
; partial
= sol
->partial
)
302 partial
= sol
->partial
;
306 if (partial
->level
<= sol
->level
)
309 if (partial
->next
&& partial
->next
->level
== partial
->level
) {
310 n_div
= isl_basic_set_dim(
311 sol
->context
->op
->peek_basic_set(sol
->context
),
314 if (!same_solution(partial
, partial
->next
, n_div
)) {
318 struct isl_basic_set
*bset
;
322 n
= isl_basic_set_dim(partial
->next
->dom
, isl_dim_div
);
324 bset
= sol_domain(sol
);
325 isl_basic_set_free(partial
->next
->dom
);
326 partial
->next
->dom
= bset
;
327 M
= partial
->next
->M
;
329 M
= isl_mat_drop_cols(M
, M
->n_col
- n
, n
);
330 partial
->next
->M
= M
;
334 partial
->next
->level
= sol
->level
;
339 sol
->partial
= partial
->next
;
340 isl_basic_set_free(partial
->dom
);
341 isl_mat_free(partial
->M
);
348 error
: sol
->error
= 1;
351 static void sol_dec_level(struct isl_sol
*sol
)
361 static int sol_dec_level_wrap(struct isl_tab_callback
*cb
)
363 struct isl_sol_callback
*callback
= (struct isl_sol_callback
*)cb
;
365 sol_dec_level(callback
->sol
);
367 return callback
->sol
->error
? -1 : 0;
370 /* Move down to next level and push callback onto context tableau
371 * to decrease the level again when it gets rolled back across
372 * the current state. That is, dec_level will be called with
373 * the context tableau in the same state as it is when inc_level
376 static void sol_inc_level(struct isl_sol
*sol
)
384 tab
= sol
->context
->op
->peek_tab(sol
->context
);
385 if (isl_tab_push_callback(tab
, &sol
->dec_level
.callback
) < 0)
389 static void scale_rows(struct isl_mat
*mat
, isl_int m
, int n_row
)
393 if (isl_int_is_one(m
))
396 for (i
= 0; i
< n_row
; ++i
)
397 isl_seq_scale(mat
->row
[i
], mat
->row
[i
], m
, mat
->n_col
);
400 /* Add the solution identified by the tableau and the context tableau.
402 * The layout of the variables is as follows.
403 * tab->n_var is equal to the total number of variables in the input
404 * map (including divs that were copied from the context)
405 * + the number of extra divs constructed
406 * Of these, the first tab->n_param and the last tab->n_div variables
407 * correspond to the variables in the context, i.e.,
408 * tab->n_param + tab->n_div = context_tab->n_var
409 * tab->n_param is equal to the number of parameters and input
410 * dimensions in the input map
411 * tab->n_div is equal to the number of divs in the context
413 * If there is no solution, then call add_empty with a basic set
414 * that corresponds to the context tableau. (If add_empty is NULL,
417 * If there is a solution, then first construct a matrix that maps
418 * all dimensions of the context to the output variables, i.e.,
419 * the output dimensions in the input map.
420 * The divs in the input map (if any) that do not correspond to any
421 * div in the context do not appear in the solution.
422 * The algorithm will make sure that they have an integer value,
423 * but these values themselves are of no interest.
424 * We have to be careful not to drop or rearrange any divs in the
425 * context because that would change the meaning of the matrix.
427 * To extract the value of the output variables, it should be noted
428 * that we always use a big parameter M in the main tableau and so
429 * the variable stored in this tableau is not an output variable x itself, but
430 * x' = M + x (in case of minimization)
432 * x' = M - x (in case of maximization)
433 * If x' appears in a column, then its optimal value is zero,
434 * which means that the optimal value of x is an unbounded number
435 * (-M for minimization and M for maximization).
436 * We currently assume that the output dimensions in the original map
437 * are bounded, so this cannot occur.
438 * Similarly, when x' appears in a row, then the coefficient of M in that
439 * row is necessarily 1.
440 * If the row in the tableau represents
441 * d x' = c + d M + e(y)
442 * then, in case of minimization, the corresponding row in the matrix
445 * with a d = m, the (updated) common denominator of the matrix.
446 * In case of maximization, the row will be
449 static void sol_add(struct isl_sol
*sol
, struct isl_tab
*tab
)
451 struct isl_basic_set
*bset
= NULL
;
452 struct isl_mat
*mat
= NULL
;
457 if (sol
->error
|| !tab
)
460 if (tab
->empty
&& !sol
->add_empty
)
462 if (sol
->context
->op
->is_empty(sol
->context
))
465 bset
= sol_domain(sol
);
468 sol_push_sol(sol
, bset
, NULL
);
474 mat
= isl_mat_alloc(tab
->mat
->ctx
, 1 + sol
->n_out
,
475 1 + tab
->n_param
+ tab
->n_div
);
481 isl_seq_clr(mat
->row
[0] + 1, mat
->n_col
- 1);
482 isl_int_set_si(mat
->row
[0][0], 1);
483 for (row
= 0; row
< sol
->n_out
; ++row
) {
484 int i
= tab
->n_param
+ row
;
487 isl_seq_clr(mat
->row
[1 + row
], mat
->n_col
);
488 if (!tab
->var
[i
].is_row
) {
490 isl_die(mat
->ctx
, isl_error_invalid
,
491 "unbounded optimum", goto error2
);
495 r
= tab
->var
[i
].index
;
497 isl_int_ne(tab
->mat
->row
[r
][2], tab
->mat
->row
[r
][0]))
498 isl_die(mat
->ctx
, isl_error_invalid
,
499 "unbounded optimum", goto error2
);
500 isl_int_gcd(m
, mat
->row
[0][0], tab
->mat
->row
[r
][0]);
501 isl_int_divexact(m
, tab
->mat
->row
[r
][0], m
);
502 scale_rows(mat
, m
, 1 + row
);
503 isl_int_divexact(m
, mat
->row
[0][0], tab
->mat
->row
[r
][0]);
504 isl_int_mul(mat
->row
[1 + row
][0], m
, tab
->mat
->row
[r
][1]);
505 for (j
= 0; j
< tab
->n_param
; ++j
) {
507 if (tab
->var
[j
].is_row
)
509 col
= tab
->var
[j
].index
;
510 isl_int_mul(mat
->row
[1 + row
][1 + j
], m
,
511 tab
->mat
->row
[r
][off
+ col
]);
513 for (j
= 0; j
< tab
->n_div
; ++j
) {
515 if (tab
->var
[tab
->n_var
- tab
->n_div
+j
].is_row
)
517 col
= tab
->var
[tab
->n_var
- tab
->n_div
+j
].index
;
518 isl_int_mul(mat
->row
[1 + row
][1 + tab
->n_param
+ j
], m
,
519 tab
->mat
->row
[r
][off
+ col
]);
522 isl_seq_neg(mat
->row
[1 + row
], mat
->row
[1 + row
],
528 sol_push_sol(sol
, bset
, mat
);
533 isl_basic_set_free(bset
);
541 struct isl_set
*empty
;
544 static void sol_map_free(struct isl_sol_map
*sol_map
)
548 if (sol_map
->sol
.context
)
549 sol_map
->sol
.context
->op
->free(sol_map
->sol
.context
);
550 isl_map_free(sol_map
->map
);
551 isl_set_free(sol_map
->empty
);
555 static void sol_map_free_wrap(struct isl_sol
*sol
)
557 sol_map_free((struct isl_sol_map
*)sol
);
560 /* This function is called for parts of the context where there is
561 * no solution, with "bset" corresponding to the context tableau.
562 * Simply add the basic set to the set "empty".
564 static void sol_map_add_empty(struct isl_sol_map
*sol
,
565 struct isl_basic_set
*bset
)
569 isl_assert(bset
->ctx
, sol
->empty
, goto error
);
571 sol
->empty
= isl_set_grow(sol
->empty
, 1);
572 bset
= isl_basic_set_simplify(bset
);
573 bset
= isl_basic_set_finalize(bset
);
574 sol
->empty
= isl_set_add_basic_set(sol
->empty
, isl_basic_set_copy(bset
));
577 isl_basic_set_free(bset
);
580 isl_basic_set_free(bset
);
584 static void sol_map_add_empty_wrap(struct isl_sol
*sol
,
585 struct isl_basic_set
*bset
)
587 sol_map_add_empty((struct isl_sol_map
*)sol
, bset
);
590 /* Given a basic map "dom" that represents the context and an affine
591 * matrix "M" that maps the dimensions of the context to the
592 * output variables, construct a basic map with the same parameters
593 * and divs as the context, the dimensions of the context as input
594 * dimensions and a number of output dimensions that is equal to
595 * the number of output dimensions in the input map.
597 * The constraints and divs of the context are simply copied
598 * from "dom". For each row
602 * is added, with d the common denominator of M.
604 static void sol_map_add(struct isl_sol_map
*sol
,
605 struct isl_basic_set
*dom
, struct isl_mat
*M
)
608 struct isl_basic_map
*bmap
= NULL
;
616 if (sol
->sol
.error
|| !dom
|| !M
)
619 n_out
= sol
->sol
.n_out
;
620 n_eq
= dom
->n_eq
+ n_out
;
621 n_ineq
= dom
->n_ineq
;
623 nparam
= isl_basic_set_total_dim(dom
) - n_div
;
624 total
= isl_map_dim(sol
->map
, isl_dim_all
);
625 bmap
= isl_basic_map_alloc_space(isl_map_get_space(sol
->map
),
626 n_div
, n_eq
, 2 * n_div
+ n_ineq
);
629 if (sol
->sol
.rational
)
630 ISL_F_SET(bmap
, ISL_BASIC_MAP_RATIONAL
);
631 for (i
= 0; i
< dom
->n_div
; ++i
) {
632 int k
= isl_basic_map_alloc_div(bmap
);
635 isl_seq_cpy(bmap
->div
[k
], dom
->div
[i
], 1 + 1 + nparam
);
636 isl_seq_clr(bmap
->div
[k
] + 1 + 1 + nparam
, total
- nparam
);
637 isl_seq_cpy(bmap
->div
[k
] + 1 + 1 + total
,
638 dom
->div
[i
] + 1 + 1 + nparam
, i
);
640 for (i
= 0; i
< dom
->n_eq
; ++i
) {
641 int k
= isl_basic_map_alloc_equality(bmap
);
644 isl_seq_cpy(bmap
->eq
[k
], dom
->eq
[i
], 1 + nparam
);
645 isl_seq_clr(bmap
->eq
[k
] + 1 + nparam
, total
- nparam
);
646 isl_seq_cpy(bmap
->eq
[k
] + 1 + total
,
647 dom
->eq
[i
] + 1 + nparam
, n_div
);
649 for (i
= 0; i
< dom
->n_ineq
; ++i
) {
650 int k
= isl_basic_map_alloc_inequality(bmap
);
653 isl_seq_cpy(bmap
->ineq
[k
], dom
->ineq
[i
], 1 + nparam
);
654 isl_seq_clr(bmap
->ineq
[k
] + 1 + nparam
, total
- nparam
);
655 isl_seq_cpy(bmap
->ineq
[k
] + 1 + total
,
656 dom
->ineq
[i
] + 1 + nparam
, n_div
);
658 for (i
= 0; i
< M
->n_row
- 1; ++i
) {
659 int k
= isl_basic_map_alloc_equality(bmap
);
662 isl_seq_cpy(bmap
->eq
[k
], M
->row
[1 + i
], 1 + nparam
);
663 isl_seq_clr(bmap
->eq
[k
] + 1 + nparam
, n_out
);
664 isl_int_neg(bmap
->eq
[k
][1 + nparam
+ i
], M
->row
[0][0]);
665 isl_seq_cpy(bmap
->eq
[k
] + 1 + nparam
+ n_out
,
666 M
->row
[1 + i
] + 1 + nparam
, n_div
);
668 bmap
= isl_basic_map_simplify(bmap
);
669 bmap
= isl_basic_map_finalize(bmap
);
670 sol
->map
= isl_map_grow(sol
->map
, 1);
671 sol
->map
= isl_map_add_basic_map(sol
->map
, bmap
);
672 isl_basic_set_free(dom
);
678 isl_basic_set_free(dom
);
680 isl_basic_map_free(bmap
);
684 static void sol_map_add_wrap(struct isl_sol
*sol
,
685 struct isl_basic_set
*dom
, struct isl_mat
*M
)
687 sol_map_add((struct isl_sol_map
*)sol
, dom
, M
);
691 /* Store the "parametric constant" of row "row" of tableau "tab" in "line",
692 * i.e., the constant term and the coefficients of all variables that
693 * appear in the context tableau.
694 * Note that the coefficient of the big parameter M is NOT copied.
695 * The context tableau may not have a big parameter and even when it
696 * does, it is a different big parameter.
698 static void get_row_parameter_line(struct isl_tab
*tab
, int row
, isl_int
*line
)
701 unsigned off
= 2 + tab
->M
;
703 isl_int_set(line
[0], tab
->mat
->row
[row
][1]);
704 for (i
= 0; i
< tab
->n_param
; ++i
) {
705 if (tab
->var
[i
].is_row
)
706 isl_int_set_si(line
[1 + i
], 0);
708 int col
= tab
->var
[i
].index
;
709 isl_int_set(line
[1 + i
], tab
->mat
->row
[row
][off
+ col
]);
712 for (i
= 0; i
< tab
->n_div
; ++i
) {
713 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
714 isl_int_set_si(line
[1 + tab
->n_param
+ i
], 0);
716 int col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
717 isl_int_set(line
[1 + tab
->n_param
+ i
],
718 tab
->mat
->row
[row
][off
+ col
]);
723 /* Check if rows "row1" and "row2" have identical "parametric constants",
724 * as explained above.
725 * In this case, we also insist that the coefficients of the big parameter
726 * be the same as the values of the constants will only be the same
727 * if these coefficients are also the same.
729 static int identical_parameter_line(struct isl_tab
*tab
, int row1
, int row2
)
732 unsigned off
= 2 + tab
->M
;
734 if (isl_int_ne(tab
->mat
->row
[row1
][1], tab
->mat
->row
[row2
][1]))
737 if (tab
->M
&& isl_int_ne(tab
->mat
->row
[row1
][2],
738 tab
->mat
->row
[row2
][2]))
741 for (i
= 0; i
< tab
->n_param
+ tab
->n_div
; ++i
) {
742 int pos
= i
< tab
->n_param
? i
:
743 tab
->n_var
- tab
->n_div
+ i
- tab
->n_param
;
746 if (tab
->var
[pos
].is_row
)
748 col
= tab
->var
[pos
].index
;
749 if (isl_int_ne(tab
->mat
->row
[row1
][off
+ col
],
750 tab
->mat
->row
[row2
][off
+ col
]))
756 /* Return an inequality that expresses that the "parametric constant"
757 * should be non-negative.
758 * This function is only called when the coefficient of the big parameter
761 static struct isl_vec
*get_row_parameter_ineq(struct isl_tab
*tab
, int row
)
763 struct isl_vec
*ineq
;
765 ineq
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_param
+ tab
->n_div
);
769 get_row_parameter_line(tab
, row
, ineq
->el
);
771 ineq
= isl_vec_normalize(ineq
);
776 /* Normalize a div expression of the form
778 * [(g*f(x) + c)/(g * m)]
780 * with c the constant term and f(x) the remaining coefficients, to
784 static void normalize_div(__isl_keep isl_vec
*div
)
786 isl_ctx
*ctx
= isl_vec_get_ctx(div
);
787 int len
= div
->size
- 2;
789 isl_seq_gcd(div
->el
+ 2, len
, &ctx
->normalize_gcd
);
790 isl_int_gcd(ctx
->normalize_gcd
, ctx
->normalize_gcd
, div
->el
[0]);
792 if (isl_int_is_one(ctx
->normalize_gcd
))
795 isl_int_divexact(div
->el
[0], div
->el
[0], ctx
->normalize_gcd
);
796 isl_int_fdiv_q(div
->el
[1], div
->el
[1], ctx
->normalize_gcd
);
797 isl_seq_scale_down(div
->el
+ 2, div
->el
+ 2, ctx
->normalize_gcd
, len
);
800 /* Return a integer division for use in a parametric cut based on the given row.
801 * In particular, let the parametric constant of the row be
805 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
806 * The div returned is equal to
808 * floor(\sum_i {-a_i} y_i) = floor((\sum_i (-a_i mod d) y_i)/d)
810 static struct isl_vec
*get_row_parameter_div(struct isl_tab
*tab
, int row
)
814 div
= isl_vec_alloc(tab
->mat
->ctx
, 1 + 1 + tab
->n_param
+ tab
->n_div
);
818 isl_int_set(div
->el
[0], tab
->mat
->row
[row
][0]);
819 get_row_parameter_line(tab
, row
, div
->el
+ 1);
820 isl_seq_neg(div
->el
+ 1, div
->el
+ 1, div
->size
- 1);
822 isl_seq_fdiv_r(div
->el
+ 1, div
->el
+ 1, div
->el
[0], div
->size
- 1);
827 /* Return a integer division for use in transferring an integrality constraint
829 * In particular, let the parametric constant of the row be
833 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
834 * The the returned div is equal to
836 * floor(\sum_i {a_i} y_i) = floor((\sum_i (a_i mod d) y_i)/d)
838 static struct isl_vec
*get_row_split_div(struct isl_tab
*tab
, int row
)
842 div
= isl_vec_alloc(tab
->mat
->ctx
, 1 + 1 + tab
->n_param
+ tab
->n_div
);
846 isl_int_set(div
->el
[0], tab
->mat
->row
[row
][0]);
847 get_row_parameter_line(tab
, row
, div
->el
+ 1);
849 isl_seq_fdiv_r(div
->el
+ 1, div
->el
+ 1, div
->el
[0], div
->size
- 1);
854 /* Construct and return an inequality that expresses an upper bound
856 * In particular, if the div is given by
860 * then the inequality expresses
864 static struct isl_vec
*ineq_for_div(struct isl_basic_set
*bset
, unsigned div
)
868 struct isl_vec
*ineq
;
873 total
= isl_basic_set_total_dim(bset
);
874 div_pos
= 1 + total
- bset
->n_div
+ div
;
876 ineq
= isl_vec_alloc(bset
->ctx
, 1 + total
);
880 isl_seq_cpy(ineq
->el
, bset
->div
[div
] + 1, 1 + total
);
881 isl_int_neg(ineq
->el
[div_pos
], bset
->div
[div
][0]);
885 /* Given a row in the tableau and a div that was created
886 * using get_row_split_div and that has been constrained to equality, i.e.,
888 * d = floor(\sum_i {a_i} y_i) = \sum_i {a_i} y_i
890 * replace the expression "\sum_i {a_i} y_i" in the row by d,
891 * i.e., we subtract "\sum_i {a_i} y_i" and add 1 d.
892 * The coefficients of the non-parameters in the tableau have been
893 * verified to be integral. We can therefore simply replace coefficient b
894 * by floor(b). For the coefficients of the parameters we have
895 * floor(a_i) = a_i - {a_i}, while for the other coefficients, we have
898 static struct isl_tab
*set_row_cst_to_div(struct isl_tab
*tab
, int row
, int div
)
900 isl_seq_fdiv_q(tab
->mat
->row
[row
] + 1, tab
->mat
->row
[row
] + 1,
901 tab
->mat
->row
[row
][0], 1 + tab
->M
+ tab
->n_col
);
903 isl_int_set_si(tab
->mat
->row
[row
][0], 1);
905 if (tab
->var
[tab
->n_var
- tab
->n_div
+ div
].is_row
) {
906 int drow
= tab
->var
[tab
->n_var
- tab
->n_div
+ div
].index
;
908 isl_assert(tab
->mat
->ctx
,
909 isl_int_is_one(tab
->mat
->row
[drow
][0]), goto error
);
910 isl_seq_combine(tab
->mat
->row
[row
] + 1,
911 tab
->mat
->ctx
->one
, tab
->mat
->row
[row
] + 1,
912 tab
->mat
->ctx
->one
, tab
->mat
->row
[drow
] + 1,
913 1 + tab
->M
+ tab
->n_col
);
915 int dcol
= tab
->var
[tab
->n_var
- tab
->n_div
+ div
].index
;
917 isl_int_add_ui(tab
->mat
->row
[row
][2 + tab
->M
+ dcol
],
918 tab
->mat
->row
[row
][2 + tab
->M
+ dcol
], 1);
927 /* Check if the (parametric) constant of the given row is obviously
928 * negative, meaning that we don't need to consult the context tableau.
929 * If there is a big parameter and its coefficient is non-zero,
930 * then this coefficient determines the outcome.
931 * Otherwise, we check whether the constant is negative and
932 * all non-zero coefficients of parameters are negative and
933 * belong to non-negative parameters.
935 static int is_obviously_neg(struct isl_tab
*tab
, int row
)
939 unsigned off
= 2 + tab
->M
;
942 if (isl_int_is_pos(tab
->mat
->row
[row
][2]))
944 if (isl_int_is_neg(tab
->mat
->row
[row
][2]))
948 if (isl_int_is_nonneg(tab
->mat
->row
[row
][1]))
950 for (i
= 0; i
< tab
->n_param
; ++i
) {
951 /* Eliminated parameter */
952 if (tab
->var
[i
].is_row
)
954 col
= tab
->var
[i
].index
;
955 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
957 if (!tab
->var
[i
].is_nonneg
)
959 if (isl_int_is_pos(tab
->mat
->row
[row
][off
+ col
]))
962 for (i
= 0; i
< tab
->n_div
; ++i
) {
963 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
965 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
966 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
968 if (!tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_nonneg
)
970 if (isl_int_is_pos(tab
->mat
->row
[row
][off
+ col
]))
976 /* Check if the (parametric) constant of the given row is obviously
977 * non-negative, meaning that we don't need to consult the context tableau.
978 * If there is a big parameter and its coefficient is non-zero,
979 * then this coefficient determines the outcome.
980 * Otherwise, we check whether the constant is non-negative and
981 * all non-zero coefficients of parameters are positive and
982 * belong to non-negative parameters.
984 static int is_obviously_nonneg(struct isl_tab
*tab
, int row
)
988 unsigned off
= 2 + tab
->M
;
991 if (isl_int_is_pos(tab
->mat
->row
[row
][2]))
993 if (isl_int_is_neg(tab
->mat
->row
[row
][2]))
997 if (isl_int_is_neg(tab
->mat
->row
[row
][1]))
999 for (i
= 0; i
< tab
->n_param
; ++i
) {
1000 /* Eliminated parameter */
1001 if (tab
->var
[i
].is_row
)
1003 col
= tab
->var
[i
].index
;
1004 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
1006 if (!tab
->var
[i
].is_nonneg
)
1008 if (isl_int_is_neg(tab
->mat
->row
[row
][off
+ col
]))
1011 for (i
= 0; i
< tab
->n_div
; ++i
) {
1012 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
1014 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
1015 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
1017 if (!tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_nonneg
)
1019 if (isl_int_is_neg(tab
->mat
->row
[row
][off
+ col
]))
1025 /* Given a row r and two columns, return the column that would
1026 * lead to the lexicographically smallest increment in the sample
1027 * solution when leaving the basis in favor of the row.
1028 * Pivoting with column c will increment the sample value by a non-negative
1029 * constant times a_{V,c}/a_{r,c}, with a_{V,c} the elements of column c
1030 * corresponding to the non-parametric variables.
1031 * If variable v appears in a column c_v, the a_{v,c} = 1 iff c = c_v,
1032 * with all other entries in this virtual row equal to zero.
1033 * If variable v appears in a row, then a_{v,c} is the element in column c
1036 * Let v be the first variable with a_{v,c1}/a_{r,c1} != a_{v,c2}/a_{r,c2}.
1037 * Then if a_{v,c1}/a_{r,c1} < a_{v,c2}/a_{r,c2}, i.e.,
1038 * a_{v,c2} a_{r,c1} - a_{v,c1} a_{r,c2} > 0, c1 results in the minimal
1039 * increment. Otherwise, it's c2.
1041 static int lexmin_col_pair(struct isl_tab
*tab
,
1042 int row
, int col1
, int col2
, isl_int tmp
)
1047 tr
= tab
->mat
->row
[row
] + 2 + tab
->M
;
1049 for (i
= tab
->n_param
; i
< tab
->n_var
- tab
->n_div
; ++i
) {
1053 if (!tab
->var
[i
].is_row
) {
1054 if (tab
->var
[i
].index
== col1
)
1056 if (tab
->var
[i
].index
== col2
)
1061 if (tab
->var
[i
].index
== row
)
1064 r
= tab
->mat
->row
[tab
->var
[i
].index
] + 2 + tab
->M
;
1065 s1
= isl_int_sgn(r
[col1
]);
1066 s2
= isl_int_sgn(r
[col2
]);
1067 if (s1
== 0 && s2
== 0)
1074 isl_int_mul(tmp
, r
[col2
], tr
[col1
]);
1075 isl_int_submul(tmp
, r
[col1
], tr
[col2
]);
1076 if (isl_int_is_pos(tmp
))
1078 if (isl_int_is_neg(tmp
))
1084 /* Given a row in the tableau, find and return the column that would
1085 * result in the lexicographically smallest, but positive, increment
1086 * in the sample point.
1087 * If there is no such column, then return tab->n_col.
1088 * If anything goes wrong, return -1.
1090 static int lexmin_pivot_col(struct isl_tab
*tab
, int row
)
1093 int col
= tab
->n_col
;
1097 tr
= tab
->mat
->row
[row
] + 2 + tab
->M
;
1101 for (j
= tab
->n_dead
; j
< tab
->n_col
; ++j
) {
1102 if (tab
->col_var
[j
] >= 0 &&
1103 (tab
->col_var
[j
] < tab
->n_param
||
1104 tab
->col_var
[j
] >= tab
->n_var
- tab
->n_div
))
1107 if (!isl_int_is_pos(tr
[j
]))
1110 if (col
== tab
->n_col
)
1113 col
= lexmin_col_pair(tab
, row
, col
, j
, tmp
);
1114 isl_assert(tab
->mat
->ctx
, col
>= 0, goto error
);
1124 /* Return the first known violated constraint, i.e., a non-negative
1125 * constraint that currently has an either obviously negative value
1126 * or a previously determined to be negative value.
1128 * If any constraint has a negative coefficient for the big parameter,
1129 * if any, then we return one of these first.
1131 static int first_neg(struct isl_tab
*tab
)
1136 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
1137 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
1139 if (!isl_int_is_neg(tab
->mat
->row
[row
][2]))
1142 tab
->row_sign
[row
] = isl_tab_row_neg
;
1145 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
1146 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
1148 if (tab
->row_sign
) {
1149 if (tab
->row_sign
[row
] == 0 &&
1150 is_obviously_neg(tab
, row
))
1151 tab
->row_sign
[row
] = isl_tab_row_neg
;
1152 if (tab
->row_sign
[row
] != isl_tab_row_neg
)
1154 } else if (!is_obviously_neg(tab
, row
))
1161 /* Check whether the invariant that all columns are lexico-positive
1162 * is satisfied. This function is not called from the current code
1163 * but is useful during debugging.
1165 static void check_lexpos(struct isl_tab
*tab
) __attribute__ ((unused
));
1166 static void check_lexpos(struct isl_tab
*tab
)
1168 unsigned off
= 2 + tab
->M
;
1173 for (col
= tab
->n_dead
; col
< tab
->n_col
; ++col
) {
1174 if (tab
->col_var
[col
] >= 0 &&
1175 (tab
->col_var
[col
] < tab
->n_param
||
1176 tab
->col_var
[col
] >= tab
->n_var
- tab
->n_div
))
1178 for (var
= tab
->n_param
; var
< tab
->n_var
- tab
->n_div
; ++var
) {
1179 if (!tab
->var
[var
].is_row
) {
1180 if (tab
->var
[var
].index
== col
)
1185 row
= tab
->var
[var
].index
;
1186 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
1188 if (isl_int_is_pos(tab
->mat
->row
[row
][off
+ col
]))
1190 fprintf(stderr
, "lexneg column %d (row %d)\n",
1193 if (var
>= tab
->n_var
- tab
->n_div
)
1194 fprintf(stderr
, "zero column %d\n", col
);
1198 /* Report to the caller that the given constraint is part of an encountered
1201 static int report_conflicting_constraint(struct isl_tab
*tab
, int con
)
1203 return tab
->conflict(con
, tab
->conflict_user
);
1206 /* Given a conflicting row in the tableau, report all constraints
1207 * involved in the row to the caller. That is, the row itself
1208 * (if it represents a constraint) and all constraint columns with
1209 * non-zero (and therefore negative) coefficients.
1211 static int report_conflict(struct isl_tab
*tab
, int row
)
1219 if (tab
->row_var
[row
] < 0 &&
1220 report_conflicting_constraint(tab
, ~tab
->row_var
[row
]) < 0)
1223 tr
= tab
->mat
->row
[row
] + 2 + tab
->M
;
1225 for (j
= tab
->n_dead
; j
< tab
->n_col
; ++j
) {
1226 if (tab
->col_var
[j
] >= 0 &&
1227 (tab
->col_var
[j
] < tab
->n_param
||
1228 tab
->col_var
[j
] >= tab
->n_var
- tab
->n_div
))
1231 if (!isl_int_is_neg(tr
[j
]))
1234 if (tab
->col_var
[j
] < 0 &&
1235 report_conflicting_constraint(tab
, ~tab
->col_var
[j
]) < 0)
1242 /* Resolve all known or obviously violated constraints through pivoting.
1243 * In particular, as long as we can find any violated constraint, we
1244 * look for a pivoting column that would result in the lexicographically
1245 * smallest increment in the sample point. If there is no such column
1246 * then the tableau is infeasible.
1248 static int restore_lexmin(struct isl_tab
*tab
) WARN_UNUSED
;
1249 static int restore_lexmin(struct isl_tab
*tab
)
1257 while ((row
= first_neg(tab
)) != -1) {
1258 col
= lexmin_pivot_col(tab
, row
);
1259 if (col
>= tab
->n_col
) {
1260 if (report_conflict(tab
, row
) < 0)
1262 if (isl_tab_mark_empty(tab
) < 0)
1268 if (isl_tab_pivot(tab
, row
, col
) < 0)
1274 /* Given a row that represents an equality, look for an appropriate
1276 * In particular, if there are any non-zero coefficients among
1277 * the non-parameter variables, then we take the last of these
1278 * variables. Eliminating this variable in terms of the other
1279 * variables and/or parameters does not influence the property
1280 * that all column in the initial tableau are lexicographically
1281 * positive. The row corresponding to the eliminated variable
1282 * will only have non-zero entries below the diagonal of the
1283 * initial tableau. That is, we transform
1289 * If there is no such non-parameter variable, then we are dealing with
1290 * pure parameter equality and we pick any parameter with coefficient 1 or -1
1291 * for elimination. This will ensure that the eliminated parameter
1292 * always has an integer value whenever all the other parameters are integral.
1293 * If there is no such parameter then we return -1.
1295 static int last_var_col_or_int_par_col(struct isl_tab
*tab
, int row
)
1297 unsigned off
= 2 + tab
->M
;
1300 for (i
= tab
->n_var
- tab
->n_div
- 1; i
>= 0 && i
>= tab
->n_param
; --i
) {
1302 if (tab
->var
[i
].is_row
)
1304 col
= tab
->var
[i
].index
;
1305 if (col
<= tab
->n_dead
)
1307 if (!isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
1310 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
1311 if (isl_int_is_one(tab
->mat
->row
[row
][off
+ i
]))
1313 if (isl_int_is_negone(tab
->mat
->row
[row
][off
+ i
]))
1319 /* Add an equality that is known to be valid to the tableau.
1320 * We first check if we can eliminate a variable or a parameter.
1321 * If not, we add the equality as two inequalities.
1322 * In this case, the equality was a pure parameter equality and there
1323 * is no need to resolve any constraint violations.
1325 static struct isl_tab
*add_lexmin_valid_eq(struct isl_tab
*tab
, isl_int
*eq
)
1332 r
= isl_tab_add_row(tab
, eq
);
1336 r
= tab
->con
[r
].index
;
1337 i
= last_var_col_or_int_par_col(tab
, r
);
1339 tab
->con
[r
].is_nonneg
= 1;
1340 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1342 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
1343 r
= isl_tab_add_row(tab
, eq
);
1346 tab
->con
[r
].is_nonneg
= 1;
1347 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1350 if (isl_tab_pivot(tab
, r
, i
) < 0)
1352 if (isl_tab_kill_col(tab
, i
) < 0)
1363 /* Check if the given row is a pure constant.
1365 static int is_constant(struct isl_tab
*tab
, int row
)
1367 unsigned off
= 2 + tab
->M
;
1369 return isl_seq_first_non_zero(tab
->mat
->row
[row
] + off
+ tab
->n_dead
,
1370 tab
->n_col
- tab
->n_dead
) == -1;
1373 /* Add an equality that may or may not be valid to the tableau.
1374 * If the resulting row is a pure constant, then it must be zero.
1375 * Otherwise, the resulting tableau is empty.
1377 * If the row is not a pure constant, then we add two inequalities,
1378 * each time checking that they can be satisfied.
1379 * In the end we try to use one of the two constraints to eliminate
1382 static int add_lexmin_eq(struct isl_tab
*tab
, isl_int
*eq
) WARN_UNUSED
;
1383 static int add_lexmin_eq(struct isl_tab
*tab
, isl_int
*eq
)
1387 struct isl_tab_undo
*snap
;
1391 snap
= isl_tab_snap(tab
);
1392 r1
= isl_tab_add_row(tab
, eq
);
1395 tab
->con
[r1
].is_nonneg
= 1;
1396 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r1
]) < 0)
1399 row
= tab
->con
[r1
].index
;
1400 if (is_constant(tab
, row
)) {
1401 if (!isl_int_is_zero(tab
->mat
->row
[row
][1]) ||
1402 (tab
->M
&& !isl_int_is_zero(tab
->mat
->row
[row
][2]))) {
1403 if (isl_tab_mark_empty(tab
) < 0)
1407 if (isl_tab_rollback(tab
, snap
) < 0)
1412 if (restore_lexmin(tab
) < 0)
1417 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
1419 r2
= isl_tab_add_row(tab
, eq
);
1422 tab
->con
[r2
].is_nonneg
= 1;
1423 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r2
]) < 0)
1426 if (restore_lexmin(tab
) < 0)
1431 if (!tab
->con
[r1
].is_row
) {
1432 if (isl_tab_kill_col(tab
, tab
->con
[r1
].index
) < 0)
1434 } else if (!tab
->con
[r2
].is_row
) {
1435 if (isl_tab_kill_col(tab
, tab
->con
[r2
].index
) < 0)
1440 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, eq
);
1441 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
1443 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
1444 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, eq
);
1445 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
1446 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
1455 /* Add an inequality to the tableau, resolving violations using
1458 static struct isl_tab
*add_lexmin_ineq(struct isl_tab
*tab
, isl_int
*ineq
)
1465 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, ineq
);
1466 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
1471 r
= isl_tab_add_row(tab
, ineq
);
1474 tab
->con
[r
].is_nonneg
= 1;
1475 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1477 if (isl_tab_row_is_redundant(tab
, tab
->con
[r
].index
)) {
1478 if (isl_tab_mark_redundant(tab
, tab
->con
[r
].index
) < 0)
1483 if (restore_lexmin(tab
) < 0)
1485 if (!tab
->empty
&& tab
->con
[r
].is_row
&&
1486 isl_tab_row_is_redundant(tab
, tab
->con
[r
].index
))
1487 if (isl_tab_mark_redundant(tab
, tab
->con
[r
].index
) < 0)
1495 /* Check if the coefficients of the parameters are all integral.
1497 static int integer_parameter(struct isl_tab
*tab
, int row
)
1501 unsigned off
= 2 + tab
->M
;
1503 for (i
= 0; i
< tab
->n_param
; ++i
) {
1504 /* Eliminated parameter */
1505 if (tab
->var
[i
].is_row
)
1507 col
= tab
->var
[i
].index
;
1508 if (!isl_int_is_divisible_by(tab
->mat
->row
[row
][off
+ col
],
1509 tab
->mat
->row
[row
][0]))
1512 for (i
= 0; i
< tab
->n_div
; ++i
) {
1513 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
1515 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
1516 if (!isl_int_is_divisible_by(tab
->mat
->row
[row
][off
+ col
],
1517 tab
->mat
->row
[row
][0]))
1523 /* Check if the coefficients of the non-parameter variables are all integral.
1525 static int integer_variable(struct isl_tab
*tab
, int row
)
1528 unsigned off
= 2 + tab
->M
;
1530 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
1531 if (tab
->col_var
[i
] >= 0 &&
1532 (tab
->col_var
[i
] < tab
->n_param
||
1533 tab
->col_var
[i
] >= tab
->n_var
- tab
->n_div
))
1535 if (!isl_int_is_divisible_by(tab
->mat
->row
[row
][off
+ i
],
1536 tab
->mat
->row
[row
][0]))
1542 /* Check if the constant term is integral.
1544 static int integer_constant(struct isl_tab
*tab
, int row
)
1546 return isl_int_is_divisible_by(tab
->mat
->row
[row
][1],
1547 tab
->mat
->row
[row
][0]);
1550 #define I_CST 1 << 0
1551 #define I_PAR 1 << 1
1552 #define I_VAR 1 << 2
1554 /* Check for next (non-parameter) variable after "var" (first if var == -1)
1555 * that is non-integer and therefore requires a cut and return
1556 * the index of the variable.
1557 * For parametric tableaus, there are three parts in a row,
1558 * the constant, the coefficients of the parameters and the rest.
1559 * For each part, we check whether the coefficients in that part
1560 * are all integral and if so, set the corresponding flag in *f.
1561 * If the constant and the parameter part are integral, then the
1562 * current sample value is integral and no cut is required
1563 * (irrespective of whether the variable part is integral).
1565 static int next_non_integer_var(struct isl_tab
*tab
, int var
, int *f
)
1567 var
= var
< 0 ? tab
->n_param
: var
+ 1;
1569 for (; var
< tab
->n_var
- tab
->n_div
; ++var
) {
1572 if (!tab
->var
[var
].is_row
)
1574 row
= tab
->var
[var
].index
;
1575 if (integer_constant(tab
, row
))
1576 ISL_FL_SET(flags
, I_CST
);
1577 if (integer_parameter(tab
, row
))
1578 ISL_FL_SET(flags
, I_PAR
);
1579 if (ISL_FL_ISSET(flags
, I_CST
) && ISL_FL_ISSET(flags
, I_PAR
))
1581 if (integer_variable(tab
, row
))
1582 ISL_FL_SET(flags
, I_VAR
);
1589 /* Check for first (non-parameter) variable that is non-integer and
1590 * therefore requires a cut and return the corresponding row.
1591 * For parametric tableaus, there are three parts in a row,
1592 * the constant, the coefficients of the parameters and the rest.
1593 * For each part, we check whether the coefficients in that part
1594 * are all integral and if so, set the corresponding flag in *f.
1595 * If the constant and the parameter part are integral, then the
1596 * current sample value is integral and no cut is required
1597 * (irrespective of whether the variable part is integral).
1599 static int first_non_integer_row(struct isl_tab
*tab
, int *f
)
1601 int var
= next_non_integer_var(tab
, -1, f
);
1603 return var
< 0 ? -1 : tab
->var
[var
].index
;
1606 /* Add a (non-parametric) cut to cut away the non-integral sample
1607 * value of the given row.
1609 * If the row is given by
1611 * m r = f + \sum_i a_i y_i
1615 * c = - {-f/m} + \sum_i {a_i/m} y_i >= 0
1617 * The big parameter, if any, is ignored, since it is assumed to be big
1618 * enough to be divisible by any integer.
1619 * If the tableau is actually a parametric tableau, then this function
1620 * is only called when all coefficients of the parameters are integral.
1621 * The cut therefore has zero coefficients for the parameters.
1623 * The current value is known to be negative, so row_sign, if it
1624 * exists, is set accordingly.
1626 * Return the row of the cut or -1.
1628 static int add_cut(struct isl_tab
*tab
, int row
)
1633 unsigned off
= 2 + tab
->M
;
1635 if (isl_tab_extend_cons(tab
, 1) < 0)
1637 r
= isl_tab_allocate_con(tab
);
1641 r_row
= tab
->mat
->row
[tab
->con
[r
].index
];
1642 isl_int_set(r_row
[0], tab
->mat
->row
[row
][0]);
1643 isl_int_neg(r_row
[1], tab
->mat
->row
[row
][1]);
1644 isl_int_fdiv_r(r_row
[1], r_row
[1], tab
->mat
->row
[row
][0]);
1645 isl_int_neg(r_row
[1], r_row
[1]);
1647 isl_int_set_si(r_row
[2], 0);
1648 for (i
= 0; i
< tab
->n_col
; ++i
)
1649 isl_int_fdiv_r(r_row
[off
+ i
],
1650 tab
->mat
->row
[row
][off
+ i
], tab
->mat
->row
[row
][0]);
1652 tab
->con
[r
].is_nonneg
= 1;
1653 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1656 tab
->row_sign
[tab
->con
[r
].index
] = isl_tab_row_neg
;
1658 return tab
->con
[r
].index
;
1664 /* Given a non-parametric tableau, add cuts until an integer
1665 * sample point is obtained or until the tableau is determined
1666 * to be integer infeasible.
1667 * As long as there is any non-integer value in the sample point,
1668 * we add appropriate cuts, if possible, for each of these
1669 * non-integer values and then resolve the violated
1670 * cut constraints using restore_lexmin.
1671 * If one of the corresponding rows is equal to an integral
1672 * combination of variables/constraints plus a non-integral constant,
1673 * then there is no way to obtain an integer point and we return
1674 * a tableau that is marked empty.
1675 * The parameter cutting_strategy controls the strategy used when adding cuts
1676 * to remove non-integer points. CUT_ALL adds all possible cuts
1677 * before continuing the search. CUT_ONE adds only one cut at a time.
1679 static struct isl_tab
*cut_to_integer_lexmin(struct isl_tab
*tab
,
1680 int cutting_strategy
)
1691 while ((var
= next_non_integer_var(tab
, -1, &flags
)) != -1) {
1693 if (ISL_FL_ISSET(flags
, I_VAR
)) {
1694 if (isl_tab_mark_empty(tab
) < 0)
1698 row
= tab
->var
[var
].index
;
1699 row
= add_cut(tab
, row
);
1702 if (cutting_strategy
== CUT_ONE
)
1704 } while ((var
= next_non_integer_var(tab
, var
, &flags
)) != -1);
1705 if (restore_lexmin(tab
) < 0)
1716 /* Check whether all the currently active samples also satisfy the inequality
1717 * "ineq" (treated as an equality if eq is set).
1718 * Remove those samples that do not.
1720 static struct isl_tab
*check_samples(struct isl_tab
*tab
, isl_int
*ineq
, int eq
)
1728 isl_assert(tab
->mat
->ctx
, tab
->bmap
, goto error
);
1729 isl_assert(tab
->mat
->ctx
, tab
->samples
, goto error
);
1730 isl_assert(tab
->mat
->ctx
, tab
->samples
->n_col
== 1 + tab
->n_var
, goto error
);
1733 for (i
= tab
->n_outside
; i
< tab
->n_sample
; ++i
) {
1735 isl_seq_inner_product(ineq
, tab
->samples
->row
[i
],
1736 1 + tab
->n_var
, &v
);
1737 sgn
= isl_int_sgn(v
);
1738 if (eq
? (sgn
== 0) : (sgn
>= 0))
1740 tab
= isl_tab_drop_sample(tab
, i
);
1752 /* Check whether the sample value of the tableau is finite,
1753 * i.e., either the tableau does not use a big parameter, or
1754 * all values of the variables are equal to the big parameter plus
1755 * some constant. This constant is the actual sample value.
1757 static int sample_is_finite(struct isl_tab
*tab
)
1764 for (i
= 0; i
< tab
->n_var
; ++i
) {
1766 if (!tab
->var
[i
].is_row
)
1768 row
= tab
->var
[i
].index
;
1769 if (isl_int_ne(tab
->mat
->row
[row
][0], tab
->mat
->row
[row
][2]))
1775 /* Check if the context tableau of sol has any integer points.
1776 * Leave tab in empty state if no integer point can be found.
1777 * If an integer point can be found and if moreover it is finite,
1778 * then it is added to the list of sample values.
1780 * This function is only called when none of the currently active sample
1781 * values satisfies the most recently added constraint.
1783 static struct isl_tab
*check_integer_feasible(struct isl_tab
*tab
)
1785 struct isl_tab_undo
*snap
;
1790 snap
= isl_tab_snap(tab
);
1791 if (isl_tab_push_basis(tab
) < 0)
1794 tab
= cut_to_integer_lexmin(tab
, CUT_ALL
);
1798 if (!tab
->empty
&& sample_is_finite(tab
)) {
1799 struct isl_vec
*sample
;
1801 sample
= isl_tab_get_sample_value(tab
);
1803 tab
= isl_tab_add_sample(tab
, sample
);
1806 if (!tab
->empty
&& isl_tab_rollback(tab
, snap
) < 0)
1815 /* Check if any of the currently active sample values satisfies
1816 * the inequality "ineq" (an equality if eq is set).
1818 static int tab_has_valid_sample(struct isl_tab
*tab
, isl_int
*ineq
, int eq
)
1826 isl_assert(tab
->mat
->ctx
, tab
->bmap
, return -1);
1827 isl_assert(tab
->mat
->ctx
, tab
->samples
, return -1);
1828 isl_assert(tab
->mat
->ctx
, tab
->samples
->n_col
== 1 + tab
->n_var
, return -1);
1831 for (i
= tab
->n_outside
; i
< tab
->n_sample
; ++i
) {
1833 isl_seq_inner_product(ineq
, tab
->samples
->row
[i
],
1834 1 + tab
->n_var
, &v
);
1835 sgn
= isl_int_sgn(v
);
1836 if (eq
? (sgn
== 0) : (sgn
>= 0))
1841 return i
< tab
->n_sample
;
1844 /* Add a div specified by "div" to the tableau "tab" and return
1845 * 1 if the div is obviously non-negative.
1847 static int context_tab_add_div(struct isl_tab
*tab
, struct isl_vec
*div
,
1848 int (*add_ineq
)(void *user
, isl_int
*), void *user
)
1852 struct isl_mat
*samples
;
1855 r
= isl_tab_add_div(tab
, div
, add_ineq
, user
);
1858 nonneg
= tab
->var
[r
].is_nonneg
;
1859 tab
->var
[r
].frozen
= 1;
1861 samples
= isl_mat_extend(tab
->samples
,
1862 tab
->n_sample
, 1 + tab
->n_var
);
1863 tab
->samples
= samples
;
1866 for (i
= tab
->n_outside
; i
< samples
->n_row
; ++i
) {
1867 isl_seq_inner_product(div
->el
+ 1, samples
->row
[i
],
1868 div
->size
- 1, &samples
->row
[i
][samples
->n_col
- 1]);
1869 isl_int_fdiv_q(samples
->row
[i
][samples
->n_col
- 1],
1870 samples
->row
[i
][samples
->n_col
- 1], div
->el
[0]);
1876 /* Add a div specified by "div" to both the main tableau and
1877 * the context tableau. In case of the main tableau, we only
1878 * need to add an extra div. In the context tableau, we also
1879 * need to express the meaning of the div.
1880 * Return the index of the div or -1 if anything went wrong.
1882 static int add_div(struct isl_tab
*tab
, struct isl_context
*context
,
1883 struct isl_vec
*div
)
1888 if ((nonneg
= context
->op
->add_div(context
, div
)) < 0)
1891 if (!context
->op
->is_ok(context
))
1894 if (isl_tab_extend_vars(tab
, 1) < 0)
1896 r
= isl_tab_allocate_var(tab
);
1900 tab
->var
[r
].is_nonneg
= 1;
1901 tab
->var
[r
].frozen
= 1;
1904 return tab
->n_div
- 1;
1906 context
->op
->invalidate(context
);
1910 static int find_div(struct isl_tab
*tab
, isl_int
*div
, isl_int denom
)
1913 unsigned total
= isl_basic_map_total_dim(tab
->bmap
);
1915 for (i
= 0; i
< tab
->bmap
->n_div
; ++i
) {
1916 if (isl_int_ne(tab
->bmap
->div
[i
][0], denom
))
1918 if (!isl_seq_eq(tab
->bmap
->div
[i
] + 1, div
, 1 + total
))
1925 /* Return the index of a div that corresponds to "div".
1926 * We first check if we already have such a div and if not, we create one.
1928 static int get_div(struct isl_tab
*tab
, struct isl_context
*context
,
1929 struct isl_vec
*div
)
1932 struct isl_tab
*context_tab
= context
->op
->peek_tab(context
);
1937 d
= find_div(context_tab
, div
->el
+ 1, div
->el
[0]);
1941 return add_div(tab
, context
, div
);
1944 /* Add a parametric cut to cut away the non-integral sample value
1946 * Let a_i be the coefficients of the constant term and the parameters
1947 * and let b_i be the coefficients of the variables or constraints
1948 * in basis of the tableau.
1949 * Let q be the div q = floor(\sum_i {-a_i} y_i).
1951 * The cut is expressed as
1953 * c = \sum_i -{-a_i} y_i + \sum_i {b_i} x_i + q >= 0
1955 * If q did not already exist in the context tableau, then it is added first.
1956 * If q is in a column of the main tableau then the "+ q" can be accomplished
1957 * by setting the corresponding entry to the denominator of the constraint.
1958 * If q happens to be in a row of the main tableau, then the corresponding
1959 * row needs to be added instead (taking care of the denominators).
1960 * Note that this is very unlikely, but perhaps not entirely impossible.
1962 * The current value of the cut is known to be negative (or at least
1963 * non-positive), so row_sign is set accordingly.
1965 * Return the row of the cut or -1.
1967 static int add_parametric_cut(struct isl_tab
*tab
, int row
,
1968 struct isl_context
*context
)
1970 struct isl_vec
*div
;
1977 unsigned off
= 2 + tab
->M
;
1982 div
= get_row_parameter_div(tab
, row
);
1987 d
= context
->op
->get_div(context
, tab
, div
);
1992 if (isl_tab_extend_cons(tab
, 1) < 0)
1994 r
= isl_tab_allocate_con(tab
);
1998 r_row
= tab
->mat
->row
[tab
->con
[r
].index
];
1999 isl_int_set(r_row
[0], tab
->mat
->row
[row
][0]);
2000 isl_int_neg(r_row
[1], tab
->mat
->row
[row
][1]);
2001 isl_int_fdiv_r(r_row
[1], r_row
[1], tab
->mat
->row
[row
][0]);
2002 isl_int_neg(r_row
[1], r_row
[1]);
2004 isl_int_set_si(r_row
[2], 0);
2005 for (i
= 0; i
< tab
->n_param
; ++i
) {
2006 if (tab
->var
[i
].is_row
)
2008 col
= tab
->var
[i
].index
;
2009 isl_int_neg(r_row
[off
+ col
], tab
->mat
->row
[row
][off
+ col
]);
2010 isl_int_fdiv_r(r_row
[off
+ col
], r_row
[off
+ col
],
2011 tab
->mat
->row
[row
][0]);
2012 isl_int_neg(r_row
[off
+ col
], r_row
[off
+ col
]);
2014 for (i
= 0; i
< tab
->n_div
; ++i
) {
2015 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
2017 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
2018 isl_int_neg(r_row
[off
+ col
], tab
->mat
->row
[row
][off
+ col
]);
2019 isl_int_fdiv_r(r_row
[off
+ col
], r_row
[off
+ col
],
2020 tab
->mat
->row
[row
][0]);
2021 isl_int_neg(r_row
[off
+ col
], r_row
[off
+ col
]);
2023 for (i
= 0; i
< tab
->n_col
; ++i
) {
2024 if (tab
->col_var
[i
] >= 0 &&
2025 (tab
->col_var
[i
] < tab
->n_param
||
2026 tab
->col_var
[i
] >= tab
->n_var
- tab
->n_div
))
2028 isl_int_fdiv_r(r_row
[off
+ i
],
2029 tab
->mat
->row
[row
][off
+ i
], tab
->mat
->row
[row
][0]);
2031 if (tab
->var
[tab
->n_var
- tab
->n_div
+ d
].is_row
) {
2033 int d_row
= tab
->var
[tab
->n_var
- tab
->n_div
+ d
].index
;
2035 isl_int_gcd(gcd
, tab
->mat
->row
[d_row
][0], r_row
[0]);
2036 isl_int_divexact(r_row
[0], r_row
[0], gcd
);
2037 isl_int_divexact(gcd
, tab
->mat
->row
[d_row
][0], gcd
);
2038 isl_seq_combine(r_row
+ 1, gcd
, r_row
+ 1,
2039 r_row
[0], tab
->mat
->row
[d_row
] + 1,
2040 off
- 1 + tab
->n_col
);
2041 isl_int_mul(r_row
[0], r_row
[0], tab
->mat
->row
[d_row
][0]);
2044 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ d
].index
;
2045 isl_int_set(r_row
[off
+ col
], tab
->mat
->row
[row
][0]);
2048 tab
->con
[r
].is_nonneg
= 1;
2049 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
2052 tab
->row_sign
[tab
->con
[r
].index
] = isl_tab_row_neg
;
2054 row
= tab
->con
[r
].index
;
2056 if (d
>= n
&& context
->op
->detect_equalities(context
, tab
) < 0)
2062 /* Construct a tableau for bmap that can be used for computing
2063 * the lexicographic minimum (or maximum) of bmap.
2064 * If not NULL, then dom is the domain where the minimum
2065 * should be computed. In this case, we set up a parametric
2066 * tableau with row signs (initialized to "unknown").
2067 * If M is set, then the tableau will use a big parameter.
2068 * If max is set, then a maximum should be computed instead of a minimum.
2069 * This means that for each variable x, the tableau will contain the variable
2070 * x' = M - x, rather than x' = M + x. This in turn means that the coefficient
2071 * of the variables in all constraints are negated prior to adding them
2074 static struct isl_tab
*tab_for_lexmin(struct isl_basic_map
*bmap
,
2075 struct isl_basic_set
*dom
, unsigned M
, int max
)
2078 struct isl_tab
*tab
;
2080 tab
= isl_tab_alloc(bmap
->ctx
, 2 * bmap
->n_eq
+ bmap
->n_ineq
+ 1,
2081 isl_basic_map_total_dim(bmap
), M
);
2085 tab
->rational
= ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
);
2087 tab
->n_param
= isl_basic_set_total_dim(dom
) - dom
->n_div
;
2088 tab
->n_div
= dom
->n_div
;
2089 tab
->row_sign
= isl_calloc_array(bmap
->ctx
,
2090 enum isl_tab_row_sign
, tab
->mat
->n_row
);
2091 if (tab
->mat
->n_row
&& !tab
->row_sign
)
2094 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
)) {
2095 if (isl_tab_mark_empty(tab
) < 0)
2100 for (i
= tab
->n_param
; i
< tab
->n_var
- tab
->n_div
; ++i
) {
2101 tab
->var
[i
].is_nonneg
= 1;
2102 tab
->var
[i
].frozen
= 1;
2104 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
2106 isl_seq_neg(bmap
->eq
[i
] + 1 + tab
->n_param
,
2107 bmap
->eq
[i
] + 1 + tab
->n_param
,
2108 tab
->n_var
- tab
->n_param
- tab
->n_div
);
2109 tab
= add_lexmin_valid_eq(tab
, bmap
->eq
[i
]);
2111 isl_seq_neg(bmap
->eq
[i
] + 1 + tab
->n_param
,
2112 bmap
->eq
[i
] + 1 + tab
->n_param
,
2113 tab
->n_var
- tab
->n_param
- tab
->n_div
);
2114 if (!tab
|| tab
->empty
)
2117 if (bmap
->n_eq
&& restore_lexmin(tab
) < 0)
2119 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
2121 isl_seq_neg(bmap
->ineq
[i
] + 1 + tab
->n_param
,
2122 bmap
->ineq
[i
] + 1 + tab
->n_param
,
2123 tab
->n_var
- tab
->n_param
- tab
->n_div
);
2124 tab
= add_lexmin_ineq(tab
, bmap
->ineq
[i
]);
2126 isl_seq_neg(bmap
->ineq
[i
] + 1 + tab
->n_param
,
2127 bmap
->ineq
[i
] + 1 + tab
->n_param
,
2128 tab
->n_var
- tab
->n_param
- tab
->n_div
);
2129 if (!tab
|| tab
->empty
)
2138 /* Given a main tableau where more than one row requires a split,
2139 * determine and return the "best" row to split on.
2141 * Given two rows in the main tableau, if the inequality corresponding
2142 * to the first row is redundant with respect to that of the second row
2143 * in the current tableau, then it is better to split on the second row,
2144 * since in the positive part, both row will be positive.
2145 * (In the negative part a pivot will have to be performed and just about
2146 * anything can happen to the sign of the other row.)
2148 * As a simple heuristic, we therefore select the row that makes the most
2149 * of the other rows redundant.
2151 * Perhaps it would also be useful to look at the number of constraints
2152 * that conflict with any given constraint.
2154 static int best_split(struct isl_tab
*tab
, struct isl_tab
*context_tab
)
2156 struct isl_tab_undo
*snap
;
2162 if (isl_tab_extend_cons(context_tab
, 2) < 0)
2165 snap
= isl_tab_snap(context_tab
);
2167 for (split
= tab
->n_redundant
; split
< tab
->n_row
; ++split
) {
2168 struct isl_tab_undo
*snap2
;
2169 struct isl_vec
*ineq
= NULL
;
2173 if (!isl_tab_var_from_row(tab
, split
)->is_nonneg
)
2175 if (tab
->row_sign
[split
] != isl_tab_row_any
)
2178 ineq
= get_row_parameter_ineq(tab
, split
);
2181 ok
= isl_tab_add_ineq(context_tab
, ineq
->el
) >= 0;
2186 snap2
= isl_tab_snap(context_tab
);
2188 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
2189 struct isl_tab_var
*var
;
2193 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
2195 if (tab
->row_sign
[row
] != isl_tab_row_any
)
2198 ineq
= get_row_parameter_ineq(tab
, row
);
2201 ok
= isl_tab_add_ineq(context_tab
, ineq
->el
) >= 0;
2205 var
= &context_tab
->con
[context_tab
->n_con
- 1];
2206 if (!context_tab
->empty
&&
2207 !isl_tab_min_at_most_neg_one(context_tab
, var
))
2209 if (isl_tab_rollback(context_tab
, snap2
) < 0)
2212 if (best
== -1 || r
> best_r
) {
2216 if (isl_tab_rollback(context_tab
, snap
) < 0)
2223 static struct isl_basic_set
*context_lex_peek_basic_set(
2224 struct isl_context
*context
)
2226 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2229 return isl_tab_peek_bset(clex
->tab
);
2232 static struct isl_tab
*context_lex_peek_tab(struct isl_context
*context
)
2234 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2238 static void context_lex_add_eq(struct isl_context
*context
, isl_int
*eq
,
2239 int check
, int update
)
2241 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2242 if (isl_tab_extend_cons(clex
->tab
, 2) < 0)
2244 if (add_lexmin_eq(clex
->tab
, eq
) < 0)
2247 int v
= tab_has_valid_sample(clex
->tab
, eq
, 1);
2251 clex
->tab
= check_integer_feasible(clex
->tab
);
2254 clex
->tab
= check_samples(clex
->tab
, eq
, 1);
2257 isl_tab_free(clex
->tab
);
2261 static void context_lex_add_ineq(struct isl_context
*context
, isl_int
*ineq
,
2262 int check
, int update
)
2264 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2265 if (isl_tab_extend_cons(clex
->tab
, 1) < 0)
2267 clex
->tab
= add_lexmin_ineq(clex
->tab
, ineq
);
2269 int v
= tab_has_valid_sample(clex
->tab
, ineq
, 0);
2273 clex
->tab
= check_integer_feasible(clex
->tab
);
2276 clex
->tab
= check_samples(clex
->tab
, ineq
, 0);
2279 isl_tab_free(clex
->tab
);
2283 static int context_lex_add_ineq_wrap(void *user
, isl_int
*ineq
)
2285 struct isl_context
*context
= (struct isl_context
*)user
;
2286 context_lex_add_ineq(context
, ineq
, 0, 0);
2287 return context
->op
->is_ok(context
) ? 0 : -1;
2290 /* Check which signs can be obtained by "ineq" on all the currently
2291 * active sample values. See row_sign for more information.
2293 static enum isl_tab_row_sign
tab_ineq_sign(struct isl_tab
*tab
, isl_int
*ineq
,
2299 enum isl_tab_row_sign res
= isl_tab_row_unknown
;
2301 isl_assert(tab
->mat
->ctx
, tab
->samples
, return isl_tab_row_unknown
);
2302 isl_assert(tab
->mat
->ctx
, tab
->samples
->n_col
== 1 + tab
->n_var
,
2303 return isl_tab_row_unknown
);
2306 for (i
= tab
->n_outside
; i
< tab
->n_sample
; ++i
) {
2307 isl_seq_inner_product(tab
->samples
->row
[i
], ineq
,
2308 1 + tab
->n_var
, &tmp
);
2309 sgn
= isl_int_sgn(tmp
);
2310 if (sgn
> 0 || (sgn
== 0 && strict
)) {
2311 if (res
== isl_tab_row_unknown
)
2312 res
= isl_tab_row_pos
;
2313 if (res
== isl_tab_row_neg
)
2314 res
= isl_tab_row_any
;
2317 if (res
== isl_tab_row_unknown
)
2318 res
= isl_tab_row_neg
;
2319 if (res
== isl_tab_row_pos
)
2320 res
= isl_tab_row_any
;
2322 if (res
== isl_tab_row_any
)
2330 static enum isl_tab_row_sign
context_lex_ineq_sign(struct isl_context
*context
,
2331 isl_int
*ineq
, int strict
)
2333 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2334 return tab_ineq_sign(clex
->tab
, ineq
, strict
);
2337 /* Check whether "ineq" can be added to the tableau without rendering
2340 static int context_lex_test_ineq(struct isl_context
*context
, isl_int
*ineq
)
2342 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2343 struct isl_tab_undo
*snap
;
2349 if (isl_tab_extend_cons(clex
->tab
, 1) < 0)
2352 snap
= isl_tab_snap(clex
->tab
);
2353 if (isl_tab_push_basis(clex
->tab
) < 0)
2355 clex
->tab
= add_lexmin_ineq(clex
->tab
, ineq
);
2356 clex
->tab
= check_integer_feasible(clex
->tab
);
2359 feasible
= !clex
->tab
->empty
;
2360 if (isl_tab_rollback(clex
->tab
, snap
) < 0)
2366 static int context_lex_get_div(struct isl_context
*context
, struct isl_tab
*tab
,
2367 struct isl_vec
*div
)
2369 return get_div(tab
, context
, div
);
2372 /* Add a div specified by "div" to the context tableau and return
2373 * 1 if the div is obviously non-negative.
2374 * context_tab_add_div will always return 1, because all variables
2375 * in a isl_context_lex tableau are non-negative.
2376 * However, if we are using a big parameter in the context, then this only
2377 * reflects the non-negativity of the variable used to _encode_ the
2378 * div, i.e., div' = M + div, so we can't draw any conclusions.
2380 static int context_lex_add_div(struct isl_context
*context
, struct isl_vec
*div
)
2382 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2384 nonneg
= context_tab_add_div(clex
->tab
, div
,
2385 context_lex_add_ineq_wrap
, context
);
2393 static int context_lex_detect_equalities(struct isl_context
*context
,
2394 struct isl_tab
*tab
)
2399 static int context_lex_best_split(struct isl_context
*context
,
2400 struct isl_tab
*tab
)
2402 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2403 struct isl_tab_undo
*snap
;
2406 snap
= isl_tab_snap(clex
->tab
);
2407 if (isl_tab_push_basis(clex
->tab
) < 0)
2409 r
= best_split(tab
, clex
->tab
);
2411 if (r
>= 0 && isl_tab_rollback(clex
->tab
, snap
) < 0)
2417 static int context_lex_is_empty(struct isl_context
*context
)
2419 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2422 return clex
->tab
->empty
;
2425 static void *context_lex_save(struct isl_context
*context
)
2427 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2428 struct isl_tab_undo
*snap
;
2430 snap
= isl_tab_snap(clex
->tab
);
2431 if (isl_tab_push_basis(clex
->tab
) < 0)
2433 if (isl_tab_save_samples(clex
->tab
) < 0)
2439 static void context_lex_restore(struct isl_context
*context
, void *save
)
2441 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2442 if (isl_tab_rollback(clex
->tab
, (struct isl_tab_undo
*)save
) < 0) {
2443 isl_tab_free(clex
->tab
);
2448 static void context_lex_discard(void *save
)
2452 static int context_lex_is_ok(struct isl_context
*context
)
2454 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2458 /* For each variable in the context tableau, check if the variable can
2459 * only attain non-negative values. If so, mark the parameter as non-negative
2460 * in the main tableau. This allows for a more direct identification of some
2461 * cases of violated constraints.
2463 static struct isl_tab
*tab_detect_nonnegative_parameters(struct isl_tab
*tab
,
2464 struct isl_tab
*context_tab
)
2467 struct isl_tab_undo
*snap
;
2468 struct isl_vec
*ineq
= NULL
;
2469 struct isl_tab_var
*var
;
2472 if (context_tab
->n_var
== 0)
2475 ineq
= isl_vec_alloc(tab
->mat
->ctx
, 1 + context_tab
->n_var
);
2479 if (isl_tab_extend_cons(context_tab
, 1) < 0)
2482 snap
= isl_tab_snap(context_tab
);
2485 isl_seq_clr(ineq
->el
, ineq
->size
);
2486 for (i
= 0; i
< context_tab
->n_var
; ++i
) {
2487 isl_int_set_si(ineq
->el
[1 + i
], 1);
2488 if (isl_tab_add_ineq(context_tab
, ineq
->el
) < 0)
2490 var
= &context_tab
->con
[context_tab
->n_con
- 1];
2491 if (!context_tab
->empty
&&
2492 !isl_tab_min_at_most_neg_one(context_tab
, var
)) {
2494 if (i
>= tab
->n_param
)
2495 j
= i
- tab
->n_param
+ tab
->n_var
- tab
->n_div
;
2496 tab
->var
[j
].is_nonneg
= 1;
2499 isl_int_set_si(ineq
->el
[1 + i
], 0);
2500 if (isl_tab_rollback(context_tab
, snap
) < 0)
2504 if (context_tab
->M
&& n
== context_tab
->n_var
) {
2505 context_tab
->mat
= isl_mat_drop_cols(context_tab
->mat
, 2, 1);
2517 static struct isl_tab
*context_lex_detect_nonnegative_parameters(
2518 struct isl_context
*context
, struct isl_tab
*tab
)
2520 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2521 struct isl_tab_undo
*snap
;
2526 snap
= isl_tab_snap(clex
->tab
);
2527 if (isl_tab_push_basis(clex
->tab
) < 0)
2530 tab
= tab_detect_nonnegative_parameters(tab
, clex
->tab
);
2532 if (isl_tab_rollback(clex
->tab
, snap
) < 0)
2541 static void context_lex_invalidate(struct isl_context
*context
)
2543 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2544 isl_tab_free(clex
->tab
);
2548 static void context_lex_free(struct isl_context
*context
)
2550 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2551 isl_tab_free(clex
->tab
);
2555 struct isl_context_op isl_context_lex_op
= {
2556 context_lex_detect_nonnegative_parameters
,
2557 context_lex_peek_basic_set
,
2558 context_lex_peek_tab
,
2560 context_lex_add_ineq
,
2561 context_lex_ineq_sign
,
2562 context_lex_test_ineq
,
2563 context_lex_get_div
,
2564 context_lex_add_div
,
2565 context_lex_detect_equalities
,
2566 context_lex_best_split
,
2567 context_lex_is_empty
,
2570 context_lex_restore
,
2571 context_lex_discard
,
2572 context_lex_invalidate
,
2576 static struct isl_tab
*context_tab_for_lexmin(struct isl_basic_set
*bset
)
2578 struct isl_tab
*tab
;
2582 tab
= tab_for_lexmin((struct isl_basic_map
*)bset
, NULL
, 1, 0);
2585 if (isl_tab_track_bset(tab
, bset
) < 0)
2587 tab
= isl_tab_init_samples(tab
);
2590 isl_basic_set_free(bset
);
2594 static struct isl_context
*isl_context_lex_alloc(struct isl_basic_set
*dom
)
2596 struct isl_context_lex
*clex
;
2601 clex
= isl_alloc_type(dom
->ctx
, struct isl_context_lex
);
2605 clex
->context
.op
= &isl_context_lex_op
;
2607 clex
->tab
= context_tab_for_lexmin(isl_basic_set_copy(dom
));
2608 if (restore_lexmin(clex
->tab
) < 0)
2610 clex
->tab
= check_integer_feasible(clex
->tab
);
2614 return &clex
->context
;
2616 clex
->context
.op
->free(&clex
->context
);
2620 /* Representation of the context when using generalized basis reduction.
2622 * "shifted" contains the offsets of the unit hypercubes that lie inside the
2623 * context. Any rational point in "shifted" can therefore be rounded
2624 * up to an integer point in the context.
2625 * If the context is constrained by any equality, then "shifted" is not used
2626 * as it would be empty.
2628 struct isl_context_gbr
{
2629 struct isl_context context
;
2630 struct isl_tab
*tab
;
2631 struct isl_tab
*shifted
;
2632 struct isl_tab
*cone
;
2635 static struct isl_tab
*context_gbr_detect_nonnegative_parameters(
2636 struct isl_context
*context
, struct isl_tab
*tab
)
2638 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2641 return tab_detect_nonnegative_parameters(tab
, cgbr
->tab
);
2644 static struct isl_basic_set
*context_gbr_peek_basic_set(
2645 struct isl_context
*context
)
2647 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2650 return isl_tab_peek_bset(cgbr
->tab
);
2653 static struct isl_tab
*context_gbr_peek_tab(struct isl_context
*context
)
2655 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2659 /* Initialize the "shifted" tableau of the context, which
2660 * contains the constraints of the original tableau shifted
2661 * by the sum of all negative coefficients. This ensures
2662 * that any rational point in the shifted tableau can
2663 * be rounded up to yield an integer point in the original tableau.
2665 static void gbr_init_shifted(struct isl_context_gbr
*cgbr
)
2668 struct isl_vec
*cst
;
2669 struct isl_basic_set
*bset
= isl_tab_peek_bset(cgbr
->tab
);
2670 unsigned dim
= isl_basic_set_total_dim(bset
);
2672 cst
= isl_vec_alloc(cgbr
->tab
->mat
->ctx
, bset
->n_ineq
);
2676 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
2677 isl_int_set(cst
->el
[i
], bset
->ineq
[i
][0]);
2678 for (j
= 0; j
< dim
; ++j
) {
2679 if (!isl_int_is_neg(bset
->ineq
[i
][1 + j
]))
2681 isl_int_add(bset
->ineq
[i
][0], bset
->ineq
[i
][0],
2682 bset
->ineq
[i
][1 + j
]);
2686 cgbr
->shifted
= isl_tab_from_basic_set(bset
, 0);
2688 for (i
= 0; i
< bset
->n_ineq
; ++i
)
2689 isl_int_set(bset
->ineq
[i
][0], cst
->el
[i
]);
2694 /* Check if the shifted tableau is non-empty, and if so
2695 * use the sample point to construct an integer point
2696 * of the context tableau.
2698 static struct isl_vec
*gbr_get_shifted_sample(struct isl_context_gbr
*cgbr
)
2700 struct isl_vec
*sample
;
2703 gbr_init_shifted(cgbr
);
2706 if (cgbr
->shifted
->empty
)
2707 return isl_vec_alloc(cgbr
->tab
->mat
->ctx
, 0);
2709 sample
= isl_tab_get_sample_value(cgbr
->shifted
);
2710 sample
= isl_vec_ceil(sample
);
2715 static struct isl_basic_set
*drop_constant_terms(struct isl_basic_set
*bset
)
2722 for (i
= 0; i
< bset
->n_eq
; ++i
)
2723 isl_int_set_si(bset
->eq
[i
][0], 0);
2725 for (i
= 0; i
< bset
->n_ineq
; ++i
)
2726 isl_int_set_si(bset
->ineq
[i
][0], 0);
2731 static int use_shifted(struct isl_context_gbr
*cgbr
)
2735 return cgbr
->tab
->bmap
->n_eq
== 0 && cgbr
->tab
->bmap
->n_div
== 0;
2738 static struct isl_vec
*gbr_get_sample(struct isl_context_gbr
*cgbr
)
2740 struct isl_basic_set
*bset
;
2741 struct isl_basic_set
*cone
;
2743 if (isl_tab_sample_is_integer(cgbr
->tab
))
2744 return isl_tab_get_sample_value(cgbr
->tab
);
2746 if (use_shifted(cgbr
)) {
2747 struct isl_vec
*sample
;
2749 sample
= gbr_get_shifted_sample(cgbr
);
2750 if (!sample
|| sample
->size
> 0)
2753 isl_vec_free(sample
);
2757 bset
= isl_tab_peek_bset(cgbr
->tab
);
2758 cgbr
->cone
= isl_tab_from_recession_cone(bset
, 0);
2761 if (isl_tab_track_bset(cgbr
->cone
,
2762 isl_basic_set_copy(bset
)) < 0)
2765 if (isl_tab_detect_implicit_equalities(cgbr
->cone
) < 0)
2768 if (cgbr
->cone
->n_dead
== cgbr
->cone
->n_col
) {
2769 struct isl_vec
*sample
;
2770 struct isl_tab_undo
*snap
;
2772 if (cgbr
->tab
->basis
) {
2773 if (cgbr
->tab
->basis
->n_col
!= 1 + cgbr
->tab
->n_var
) {
2774 isl_mat_free(cgbr
->tab
->basis
);
2775 cgbr
->tab
->basis
= NULL
;
2777 cgbr
->tab
->n_zero
= 0;
2778 cgbr
->tab
->n_unbounded
= 0;
2781 snap
= isl_tab_snap(cgbr
->tab
);
2783 sample
= isl_tab_sample(cgbr
->tab
);
2785 if (isl_tab_rollback(cgbr
->tab
, snap
) < 0) {
2786 isl_vec_free(sample
);
2793 cone
= isl_basic_set_dup(isl_tab_peek_bset(cgbr
->cone
));
2794 cone
= drop_constant_terms(cone
);
2795 cone
= isl_basic_set_update_from_tab(cone
, cgbr
->cone
);
2796 cone
= isl_basic_set_underlying_set(cone
);
2797 cone
= isl_basic_set_gauss(cone
, NULL
);
2799 bset
= isl_basic_set_dup(isl_tab_peek_bset(cgbr
->tab
));
2800 bset
= isl_basic_set_update_from_tab(bset
, cgbr
->tab
);
2801 bset
= isl_basic_set_underlying_set(bset
);
2802 bset
= isl_basic_set_gauss(bset
, NULL
);
2804 return isl_basic_set_sample_with_cone(bset
, cone
);
2807 static void check_gbr_integer_feasible(struct isl_context_gbr
*cgbr
)
2809 struct isl_vec
*sample
;
2814 if (cgbr
->tab
->empty
)
2817 sample
= gbr_get_sample(cgbr
);
2821 if (sample
->size
== 0) {
2822 isl_vec_free(sample
);
2823 if (isl_tab_mark_empty(cgbr
->tab
) < 0)
2828 cgbr
->tab
= isl_tab_add_sample(cgbr
->tab
, sample
);
2832 isl_tab_free(cgbr
->tab
);
2836 static struct isl_tab
*add_gbr_eq(struct isl_tab
*tab
, isl_int
*eq
)
2841 if (isl_tab_extend_cons(tab
, 2) < 0)
2844 if (isl_tab_add_eq(tab
, eq
) < 0)
2853 /* Add the equality described by "eq" to the context.
2854 * If "check" is set, then we check if the context is empty after
2855 * adding the equality.
2856 * If "update" is set, then we check if the samples are still valid.
2858 * We do not explicitly add shifted copies of the equality to
2859 * cgbr->shifted since they would conflict with each other.
2860 * Instead, we directly mark cgbr->shifted empty.
2862 static void context_gbr_add_eq(struct isl_context
*context
, isl_int
*eq
,
2863 int check
, int update
)
2865 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2867 cgbr
->tab
= add_gbr_eq(cgbr
->tab
, eq
);
2869 if (cgbr
->shifted
&& !cgbr
->shifted
->empty
&& use_shifted(cgbr
)) {
2870 if (isl_tab_mark_empty(cgbr
->shifted
) < 0)
2874 if (cgbr
->cone
&& cgbr
->cone
->n_col
!= cgbr
->cone
->n_dead
) {
2875 if (isl_tab_extend_cons(cgbr
->cone
, 2) < 0)
2877 if (isl_tab_add_eq(cgbr
->cone
, eq
) < 0)
2882 int v
= tab_has_valid_sample(cgbr
->tab
, eq
, 1);
2886 check_gbr_integer_feasible(cgbr
);
2889 cgbr
->tab
= check_samples(cgbr
->tab
, eq
, 1);
2892 isl_tab_free(cgbr
->tab
);
2896 static void add_gbr_ineq(struct isl_context_gbr
*cgbr
, isl_int
*ineq
)
2901 if (isl_tab_extend_cons(cgbr
->tab
, 1) < 0)
2904 if (isl_tab_add_ineq(cgbr
->tab
, ineq
) < 0)
2907 if (cgbr
->shifted
&& !cgbr
->shifted
->empty
&& use_shifted(cgbr
)) {
2910 dim
= isl_basic_map_total_dim(cgbr
->tab
->bmap
);
2912 if (isl_tab_extend_cons(cgbr
->shifted
, 1) < 0)
2915 for (i
= 0; i
< dim
; ++i
) {
2916 if (!isl_int_is_neg(ineq
[1 + i
]))
2918 isl_int_add(ineq
[0], ineq
[0], ineq
[1 + i
]);
2921 if (isl_tab_add_ineq(cgbr
->shifted
, ineq
) < 0)
2924 for (i
= 0; i
< dim
; ++i
) {
2925 if (!isl_int_is_neg(ineq
[1 + i
]))
2927 isl_int_sub(ineq
[0], ineq
[0], ineq
[1 + i
]);
2931 if (cgbr
->cone
&& cgbr
->cone
->n_col
!= cgbr
->cone
->n_dead
) {
2932 if (isl_tab_extend_cons(cgbr
->cone
, 1) < 0)
2934 if (isl_tab_add_ineq(cgbr
->cone
, ineq
) < 0)
2940 isl_tab_free(cgbr
->tab
);
2944 static void context_gbr_add_ineq(struct isl_context
*context
, isl_int
*ineq
,
2945 int check
, int update
)
2947 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2949 add_gbr_ineq(cgbr
, ineq
);
2954 int v
= tab_has_valid_sample(cgbr
->tab
, ineq
, 0);
2958 check_gbr_integer_feasible(cgbr
);
2961 cgbr
->tab
= check_samples(cgbr
->tab
, ineq
, 0);
2964 isl_tab_free(cgbr
->tab
);
2968 static int context_gbr_add_ineq_wrap(void *user
, isl_int
*ineq
)
2970 struct isl_context
*context
= (struct isl_context
*)user
;
2971 context_gbr_add_ineq(context
, ineq
, 0, 0);
2972 return context
->op
->is_ok(context
) ? 0 : -1;
2975 static enum isl_tab_row_sign
context_gbr_ineq_sign(struct isl_context
*context
,
2976 isl_int
*ineq
, int strict
)
2978 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2979 return tab_ineq_sign(cgbr
->tab
, ineq
, strict
);
2982 /* Check whether "ineq" can be added to the tableau without rendering
2985 static int context_gbr_test_ineq(struct isl_context
*context
, isl_int
*ineq
)
2987 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2988 struct isl_tab_undo
*snap
;
2989 struct isl_tab_undo
*shifted_snap
= NULL
;
2990 struct isl_tab_undo
*cone_snap
= NULL
;
2996 if (isl_tab_extend_cons(cgbr
->tab
, 1) < 0)
2999 snap
= isl_tab_snap(cgbr
->tab
);
3001 shifted_snap
= isl_tab_snap(cgbr
->shifted
);
3003 cone_snap
= isl_tab_snap(cgbr
->cone
);
3004 add_gbr_ineq(cgbr
, ineq
);
3005 check_gbr_integer_feasible(cgbr
);
3008 feasible
= !cgbr
->tab
->empty
;
3009 if (isl_tab_rollback(cgbr
->tab
, snap
) < 0)
3012 if (isl_tab_rollback(cgbr
->shifted
, shifted_snap
))
3014 } else if (cgbr
->shifted
) {
3015 isl_tab_free(cgbr
->shifted
);
3016 cgbr
->shifted
= NULL
;
3019 if (isl_tab_rollback(cgbr
->cone
, cone_snap
))
3021 } else if (cgbr
->cone
) {
3022 isl_tab_free(cgbr
->cone
);
3029 /* Return the column of the last of the variables associated to
3030 * a column that has a non-zero coefficient.
3031 * This function is called in a context where only coefficients
3032 * of parameters or divs can be non-zero.
3034 static int last_non_zero_var_col(struct isl_tab
*tab
, isl_int
*p
)
3039 if (tab
->n_var
== 0)
3042 for (i
= tab
->n_var
- 1; i
>= 0; --i
) {
3043 if (i
>= tab
->n_param
&& i
< tab
->n_var
- tab
->n_div
)
3045 if (tab
->var
[i
].is_row
)
3047 col
= tab
->var
[i
].index
;
3048 if (!isl_int_is_zero(p
[col
]))
3055 /* Look through all the recently added equalities in the context
3056 * to see if we can propagate any of them to the main tableau.
3058 * The newly added equalities in the context are encoded as pairs
3059 * of inequalities starting at inequality "first".
3061 * We tentatively add each of these equalities to the main tableau
3062 * and if this happens to result in a row with a final coefficient
3063 * that is one or negative one, we use it to kill a column
3064 * in the main tableau. Otherwise, we discard the tentatively
3067 static void propagate_equalities(struct isl_context_gbr
*cgbr
,
3068 struct isl_tab
*tab
, unsigned first
)
3071 struct isl_vec
*eq
= NULL
;
3073 eq
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_var
);
3077 if (isl_tab_extend_cons(tab
, (cgbr
->tab
->bmap
->n_ineq
- first
)/2) < 0)
3080 isl_seq_clr(eq
->el
+ 1 + tab
->n_param
,
3081 tab
->n_var
- tab
->n_param
- tab
->n_div
);
3082 for (i
= first
; i
< cgbr
->tab
->bmap
->n_ineq
; i
+= 2) {
3085 struct isl_tab_undo
*snap
;
3086 snap
= isl_tab_snap(tab
);
3088 isl_seq_cpy(eq
->el
, cgbr
->tab
->bmap
->ineq
[i
], 1 + tab
->n_param
);
3089 isl_seq_cpy(eq
->el
+ 1 + tab
->n_var
- tab
->n_div
,
3090 cgbr
->tab
->bmap
->ineq
[i
] + 1 + tab
->n_param
,
3093 r
= isl_tab_add_row(tab
, eq
->el
);
3096 r
= tab
->con
[r
].index
;
3097 j
= last_non_zero_var_col(tab
, tab
->mat
->row
[r
] + 2 + tab
->M
);
3098 if (j
< 0 || j
< tab
->n_dead
||
3099 !isl_int_is_one(tab
->mat
->row
[r
][0]) ||
3100 (!isl_int_is_one(tab
->mat
->row
[r
][2 + tab
->M
+ j
]) &&
3101 !isl_int_is_negone(tab
->mat
->row
[r
][2 + tab
->M
+ j
]))) {
3102 if (isl_tab_rollback(tab
, snap
) < 0)
3106 if (isl_tab_pivot(tab
, r
, j
) < 0)
3108 if (isl_tab_kill_col(tab
, j
) < 0)
3111 if (restore_lexmin(tab
) < 0)
3120 isl_tab_free(cgbr
->tab
);
3124 static int context_gbr_detect_equalities(struct isl_context
*context
,
3125 struct isl_tab
*tab
)
3127 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3128 struct isl_ctx
*ctx
;
3131 ctx
= cgbr
->tab
->mat
->ctx
;
3134 struct isl_basic_set
*bset
= isl_tab_peek_bset(cgbr
->tab
);
3135 cgbr
->cone
= isl_tab_from_recession_cone(bset
, 0);
3138 if (isl_tab_track_bset(cgbr
->cone
,
3139 isl_basic_set_copy(bset
)) < 0)
3142 if (isl_tab_detect_implicit_equalities(cgbr
->cone
) < 0)
3145 n_ineq
= cgbr
->tab
->bmap
->n_ineq
;
3146 cgbr
->tab
= isl_tab_detect_equalities(cgbr
->tab
, cgbr
->cone
);
3149 if (cgbr
->tab
->bmap
->n_ineq
> n_ineq
)
3150 propagate_equalities(cgbr
, tab
, n_ineq
);
3154 isl_tab_free(cgbr
->tab
);
3159 static int context_gbr_get_div(struct isl_context
*context
, struct isl_tab
*tab
,
3160 struct isl_vec
*div
)
3162 return get_div(tab
, context
, div
);
3165 static int context_gbr_add_div(struct isl_context
*context
, struct isl_vec
*div
)
3167 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3171 if (isl_tab_extend_cons(cgbr
->cone
, 3) < 0)
3173 if (isl_tab_extend_vars(cgbr
->cone
, 1) < 0)
3175 if (isl_tab_allocate_var(cgbr
->cone
) <0)
3178 cgbr
->cone
->bmap
= isl_basic_map_extend_space(cgbr
->cone
->bmap
,
3179 isl_basic_map_get_space(cgbr
->cone
->bmap
), 1, 0, 2);
3180 k
= isl_basic_map_alloc_div(cgbr
->cone
->bmap
);
3183 isl_seq_cpy(cgbr
->cone
->bmap
->div
[k
], div
->el
, div
->size
);
3184 if (isl_tab_push(cgbr
->cone
, isl_tab_undo_bmap_div
) < 0)
3187 return context_tab_add_div(cgbr
->tab
, div
,
3188 context_gbr_add_ineq_wrap
, context
);
3191 static int context_gbr_best_split(struct isl_context
*context
,
3192 struct isl_tab
*tab
)
3194 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3195 struct isl_tab_undo
*snap
;
3198 snap
= isl_tab_snap(cgbr
->tab
);
3199 r
= best_split(tab
, cgbr
->tab
);
3201 if (r
>= 0 && isl_tab_rollback(cgbr
->tab
, snap
) < 0)
3207 static int context_gbr_is_empty(struct isl_context
*context
)
3209 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3212 return cgbr
->tab
->empty
;
3215 struct isl_gbr_tab_undo
{
3216 struct isl_tab_undo
*tab_snap
;
3217 struct isl_tab_undo
*shifted_snap
;
3218 struct isl_tab_undo
*cone_snap
;
3221 static void *context_gbr_save(struct isl_context
*context
)
3223 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3224 struct isl_gbr_tab_undo
*snap
;
3229 snap
= isl_alloc_type(cgbr
->tab
->mat
->ctx
, struct isl_gbr_tab_undo
);
3233 snap
->tab_snap
= isl_tab_snap(cgbr
->tab
);
3234 if (isl_tab_save_samples(cgbr
->tab
) < 0)
3238 snap
->shifted_snap
= isl_tab_snap(cgbr
->shifted
);
3240 snap
->shifted_snap
= NULL
;
3243 snap
->cone_snap
= isl_tab_snap(cgbr
->cone
);
3245 snap
->cone_snap
= NULL
;
3253 static void context_gbr_restore(struct isl_context
*context
, void *save
)
3255 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3256 struct isl_gbr_tab_undo
*snap
= (struct isl_gbr_tab_undo
*)save
;
3259 if (isl_tab_rollback(cgbr
->tab
, snap
->tab_snap
) < 0) {
3260 isl_tab_free(cgbr
->tab
);
3264 if (snap
->shifted_snap
) {
3265 if (isl_tab_rollback(cgbr
->shifted
, snap
->shifted_snap
) < 0)
3267 } else if (cgbr
->shifted
) {
3268 isl_tab_free(cgbr
->shifted
);
3269 cgbr
->shifted
= NULL
;
3272 if (snap
->cone_snap
) {
3273 if (isl_tab_rollback(cgbr
->cone
, snap
->cone_snap
) < 0)
3275 } else if (cgbr
->cone
) {
3276 isl_tab_free(cgbr
->cone
);
3285 isl_tab_free(cgbr
->tab
);
3289 static void context_gbr_discard(void *save
)
3291 struct isl_gbr_tab_undo
*snap
= (struct isl_gbr_tab_undo
*)save
;
3295 static int context_gbr_is_ok(struct isl_context
*context
)
3297 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3301 static void context_gbr_invalidate(struct isl_context
*context
)
3303 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3304 isl_tab_free(cgbr
->tab
);
3308 static void context_gbr_free(struct isl_context
*context
)
3310 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3311 isl_tab_free(cgbr
->tab
);
3312 isl_tab_free(cgbr
->shifted
);
3313 isl_tab_free(cgbr
->cone
);
3317 struct isl_context_op isl_context_gbr_op
= {
3318 context_gbr_detect_nonnegative_parameters
,
3319 context_gbr_peek_basic_set
,
3320 context_gbr_peek_tab
,
3322 context_gbr_add_ineq
,
3323 context_gbr_ineq_sign
,
3324 context_gbr_test_ineq
,
3325 context_gbr_get_div
,
3326 context_gbr_add_div
,
3327 context_gbr_detect_equalities
,
3328 context_gbr_best_split
,
3329 context_gbr_is_empty
,
3332 context_gbr_restore
,
3333 context_gbr_discard
,
3334 context_gbr_invalidate
,
3338 static struct isl_context
*isl_context_gbr_alloc(struct isl_basic_set
*dom
)
3340 struct isl_context_gbr
*cgbr
;
3345 cgbr
= isl_calloc_type(dom
->ctx
, struct isl_context_gbr
);
3349 cgbr
->context
.op
= &isl_context_gbr_op
;
3351 cgbr
->shifted
= NULL
;
3353 cgbr
->tab
= isl_tab_from_basic_set(dom
, 1);
3354 cgbr
->tab
= isl_tab_init_samples(cgbr
->tab
);
3357 check_gbr_integer_feasible(cgbr
);
3359 return &cgbr
->context
;
3361 cgbr
->context
.op
->free(&cgbr
->context
);
3365 static struct isl_context
*isl_context_alloc(struct isl_basic_set
*dom
)
3370 if (dom
->ctx
->opt
->context
== ISL_CONTEXT_LEXMIN
)
3371 return isl_context_lex_alloc(dom
);
3373 return isl_context_gbr_alloc(dom
);
3376 /* Construct an isl_sol_map structure for accumulating the solution.
3377 * If track_empty is set, then we also keep track of the parts
3378 * of the context where there is no solution.
3379 * If max is set, then we are solving a maximization, rather than
3380 * a minimization problem, which means that the variables in the
3381 * tableau have value "M - x" rather than "M + x".
3383 static struct isl_sol
*sol_map_init(struct isl_basic_map
*bmap
,
3384 struct isl_basic_set
*dom
, int track_empty
, int max
)
3386 struct isl_sol_map
*sol_map
= NULL
;
3391 sol_map
= isl_calloc_type(bmap
->ctx
, struct isl_sol_map
);
3395 sol_map
->sol
.rational
= ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
);
3396 sol_map
->sol
.dec_level
.callback
.run
= &sol_dec_level_wrap
;
3397 sol_map
->sol
.dec_level
.sol
= &sol_map
->sol
;
3398 sol_map
->sol
.max
= max
;
3399 sol_map
->sol
.n_out
= isl_basic_map_dim(bmap
, isl_dim_out
);
3400 sol_map
->sol
.add
= &sol_map_add_wrap
;
3401 sol_map
->sol
.add_empty
= track_empty
? &sol_map_add_empty_wrap
: NULL
;
3402 sol_map
->sol
.free
= &sol_map_free_wrap
;
3403 sol_map
->map
= isl_map_alloc_space(isl_basic_map_get_space(bmap
), 1,
3408 sol_map
->sol
.context
= isl_context_alloc(dom
);
3409 if (!sol_map
->sol
.context
)
3413 sol_map
->empty
= isl_set_alloc_space(isl_basic_set_get_space(dom
),
3414 1, ISL_SET_DISJOINT
);
3415 if (!sol_map
->empty
)
3419 isl_basic_set_free(dom
);
3420 return &sol_map
->sol
;
3422 isl_basic_set_free(dom
);
3423 sol_map_free(sol_map
);
3427 /* Check whether all coefficients of (non-parameter) variables
3428 * are non-positive, meaning that no pivots can be performed on the row.
3430 static int is_critical(struct isl_tab
*tab
, int row
)
3433 unsigned off
= 2 + tab
->M
;
3435 for (j
= tab
->n_dead
; j
< tab
->n_col
; ++j
) {
3436 if (tab
->col_var
[j
] >= 0 &&
3437 (tab
->col_var
[j
] < tab
->n_param
||
3438 tab
->col_var
[j
] >= tab
->n_var
- tab
->n_div
))
3441 if (isl_int_is_pos(tab
->mat
->row
[row
][off
+ j
]))
3448 /* Check whether the inequality represented by vec is strict over the integers,
3449 * i.e., there are no integer values satisfying the constraint with
3450 * equality. This happens if the gcd of the coefficients is not a divisor
3451 * of the constant term. If so, scale the constraint down by the gcd
3452 * of the coefficients.
3454 static int is_strict(struct isl_vec
*vec
)
3460 isl_seq_gcd(vec
->el
+ 1, vec
->size
- 1, &gcd
);
3461 if (!isl_int_is_one(gcd
)) {
3462 strict
= !isl_int_is_divisible_by(vec
->el
[0], gcd
);
3463 isl_int_fdiv_q(vec
->el
[0], vec
->el
[0], gcd
);
3464 isl_seq_scale_down(vec
->el
+ 1, vec
->el
+ 1, gcd
, vec
->size
-1);
3471 /* Determine the sign of the given row of the main tableau.
3472 * The result is one of
3473 * isl_tab_row_pos: always non-negative; no pivot needed
3474 * isl_tab_row_neg: always non-positive; pivot
3475 * isl_tab_row_any: can be both positive and negative; split
3477 * We first handle some simple cases
3478 * - the row sign may be known already
3479 * - the row may be obviously non-negative
3480 * - the parametric constant may be equal to that of another row
3481 * for which we know the sign. This sign will be either "pos" or
3482 * "any". If it had been "neg" then we would have pivoted before.
3484 * If none of these cases hold, we check the value of the row for each
3485 * of the currently active samples. Based on the signs of these values
3486 * we make an initial determination of the sign of the row.
3488 * all zero -> unk(nown)
3489 * all non-negative -> pos
3490 * all non-positive -> neg
3491 * both negative and positive -> all
3493 * If we end up with "all", we are done.
3494 * Otherwise, we perform a check for positive and/or negative
3495 * values as follows.
3497 * samples neg unk pos
3503 * There is no special sign for "zero", because we can usually treat zero
3504 * as either non-negative or non-positive, whatever works out best.
3505 * However, if the row is "critical", meaning that pivoting is impossible
3506 * then we don't want to limp zero with the non-positive case, because
3507 * then we we would lose the solution for those values of the parameters
3508 * where the value of the row is zero. Instead, we treat 0 as non-negative
3509 * ensuring a split if the row can attain both zero and negative values.
3510 * The same happens when the original constraint was one that could not
3511 * be satisfied with equality by any integer values of the parameters.
3512 * In this case, we normalize the constraint, but then a value of zero
3513 * for the normalized constraint is actually a positive value for the
3514 * original constraint, so again we need to treat zero as non-negative.
3515 * In both these cases, we have the following decision tree instead:
3517 * all non-negative -> pos
3518 * all negative -> neg
3519 * both negative and non-negative -> all
3527 static enum isl_tab_row_sign
row_sign(struct isl_tab
*tab
,
3528 struct isl_sol
*sol
, int row
)
3530 struct isl_vec
*ineq
= NULL
;
3531 enum isl_tab_row_sign res
= isl_tab_row_unknown
;
3536 if (tab
->row_sign
[row
] != isl_tab_row_unknown
)
3537 return tab
->row_sign
[row
];
3538 if (is_obviously_nonneg(tab
, row
))
3539 return isl_tab_row_pos
;
3540 for (row2
= tab
->n_redundant
; row2
< tab
->n_row
; ++row2
) {
3541 if (tab
->row_sign
[row2
] == isl_tab_row_unknown
)
3543 if (identical_parameter_line(tab
, row
, row2
))
3544 return tab
->row_sign
[row2
];
3547 critical
= is_critical(tab
, row
);
3549 ineq
= get_row_parameter_ineq(tab
, row
);
3553 strict
= is_strict(ineq
);
3555 res
= sol
->context
->op
->ineq_sign(sol
->context
, ineq
->el
,
3556 critical
|| strict
);
3558 if (res
== isl_tab_row_unknown
|| res
== isl_tab_row_pos
) {
3559 /* test for negative values */
3561 isl_seq_neg(ineq
->el
, ineq
->el
, ineq
->size
);
3562 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3564 feasible
= sol
->context
->op
->test_ineq(sol
->context
, ineq
->el
);
3568 res
= isl_tab_row_pos
;
3570 res
= (res
== isl_tab_row_unknown
) ? isl_tab_row_neg
3572 if (res
== isl_tab_row_neg
) {
3573 isl_seq_neg(ineq
->el
, ineq
->el
, ineq
->size
);
3574 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3578 if (res
== isl_tab_row_neg
) {
3579 /* test for positive values */
3581 if (!critical
&& !strict
)
3582 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3584 feasible
= sol
->context
->op
->test_ineq(sol
->context
, ineq
->el
);
3588 res
= isl_tab_row_any
;
3595 return isl_tab_row_unknown
;
3598 static void find_solutions(struct isl_sol
*sol
, struct isl_tab
*tab
);
3600 /* Find solutions for values of the parameters that satisfy the given
3603 * We currently take a snapshot of the context tableau that is reset
3604 * when we return from this function, while we make a copy of the main
3605 * tableau, leaving the original main tableau untouched.
3606 * These are fairly arbitrary choices. Making a copy also of the context
3607 * tableau would obviate the need to undo any changes made to it later,
3608 * while taking a snapshot of the main tableau could reduce memory usage.
3609 * If we were to switch to taking a snapshot of the main tableau,
3610 * we would have to keep in mind that we need to save the row signs
3611 * and that we need to do this before saving the current basis
3612 * such that the basis has been restore before we restore the row signs.
3614 static void find_in_pos(struct isl_sol
*sol
, struct isl_tab
*tab
, isl_int
*ineq
)
3620 saved
= sol
->context
->op
->save(sol
->context
);
3622 tab
= isl_tab_dup(tab
);
3626 sol
->context
->op
->add_ineq(sol
->context
, ineq
, 0, 1);
3628 find_solutions(sol
, tab
);
3631 sol
->context
->op
->restore(sol
->context
, saved
);
3633 sol
->context
->op
->discard(saved
);
3639 /* Record the absence of solutions for those values of the parameters
3640 * that do not satisfy the given inequality with equality.
3642 static void no_sol_in_strict(struct isl_sol
*sol
,
3643 struct isl_tab
*tab
, struct isl_vec
*ineq
)
3648 if (!sol
->context
|| sol
->error
)
3650 saved
= sol
->context
->op
->save(sol
->context
);
3652 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3654 sol
->context
->op
->add_ineq(sol
->context
, ineq
->el
, 1, 0);
3663 isl_int_add_ui(ineq
->el
[0], ineq
->el
[0], 1);
3665 sol
->context
->op
->restore(sol
->context
, saved
);
3671 /* Compute the lexicographic minimum of the set represented by the main
3672 * tableau "tab" within the context "sol->context_tab".
3673 * On entry the sample value of the main tableau is lexicographically
3674 * less than or equal to this lexicographic minimum.
3675 * Pivots are performed until a feasible point is found, which is then
3676 * necessarily equal to the minimum, or until the tableau is found to
3677 * be infeasible. Some pivots may need to be performed for only some
3678 * feasible values of the context tableau. If so, the context tableau
3679 * is split into a part where the pivot is needed and a part where it is not.
3681 * Whenever we enter the main loop, the main tableau is such that no
3682 * "obvious" pivots need to be performed on it, where "obvious" means
3683 * that the given row can be seen to be negative without looking at
3684 * the context tableau. In particular, for non-parametric problems,
3685 * no pivots need to be performed on the main tableau.
3686 * The caller of find_solutions is responsible for making this property
3687 * hold prior to the first iteration of the loop, while restore_lexmin
3688 * is called before every other iteration.
3690 * Inside the main loop, we first examine the signs of the rows of
3691 * the main tableau within the context of the context tableau.
3692 * If we find a row that is always non-positive for all values of
3693 * the parameters satisfying the context tableau and negative for at
3694 * least one value of the parameters, we perform the appropriate pivot
3695 * and start over. An exception is the case where no pivot can be
3696 * performed on the row. In this case, we require that the sign of
3697 * the row is negative for all values of the parameters (rather than just
3698 * non-positive). This special case is handled inside row_sign, which
3699 * will say that the row can have any sign if it determines that it can
3700 * attain both negative and zero values.
3702 * If we can't find a row that always requires a pivot, but we can find
3703 * one or more rows that require a pivot for some values of the parameters
3704 * (i.e., the row can attain both positive and negative signs), then we split
3705 * the context tableau into two parts, one where we force the sign to be
3706 * non-negative and one where we force is to be negative.
3707 * The non-negative part is handled by a recursive call (through find_in_pos).
3708 * Upon returning from this call, we continue with the negative part and
3709 * perform the required pivot.
3711 * If no such rows can be found, all rows are non-negative and we have
3712 * found a (rational) feasible point. If we only wanted a rational point
3714 * Otherwise, we check if all values of the sample point of the tableau
3715 * are integral for the variables. If so, we have found the minimal
3716 * integral point and we are done.
3717 * If the sample point is not integral, then we need to make a distinction
3718 * based on whether the constant term is non-integral or the coefficients
3719 * of the parameters. Furthermore, in order to decide how to handle
3720 * the non-integrality, we also need to know whether the coefficients
3721 * of the other columns in the tableau are integral. This leads
3722 * to the following table. The first two rows do not correspond
3723 * to a non-integral sample point and are only mentioned for completeness.
3725 * constant parameters other
3728 * int int rat | -> no problem
3730 * rat int int -> fail
3732 * rat int rat -> cut
3735 * rat rat rat | -> parametric cut
3738 * rat rat int | -> split context
3740 * If the parametric constant is completely integral, then there is nothing
3741 * to be done. If the constant term is non-integral, but all the other
3742 * coefficient are integral, then there is nothing that can be done
3743 * and the tableau has no integral solution.
3744 * If, on the other hand, one or more of the other columns have rational
3745 * coefficients, but the parameter coefficients are all integral, then
3746 * we can perform a regular (non-parametric) cut.
3747 * Finally, if there is any parameter coefficient that is non-integral,
3748 * then we need to involve the context tableau. There are two cases here.
3749 * If at least one other column has a rational coefficient, then we
3750 * can perform a parametric cut in the main tableau by adding a new
3751 * integer division in the context tableau.
3752 * If all other columns have integral coefficients, then we need to
3753 * enforce that the rational combination of parameters (c + \sum a_i y_i)/m
3754 * is always integral. We do this by introducing an integer division
3755 * q = floor((c + \sum a_i y_i)/m) and stipulating that its argument should
3756 * always be integral in the context tableau, i.e., m q = c + \sum a_i y_i.
3757 * Since q is expressed in the tableau as
3758 * c + \sum a_i y_i - m q >= 0
3759 * -c - \sum a_i y_i + m q + m - 1 >= 0
3760 * it is sufficient to add the inequality
3761 * -c - \sum a_i y_i + m q >= 0
3762 * In the part of the context where this inequality does not hold, the
3763 * main tableau is marked as being empty.
3765 static void find_solutions(struct isl_sol
*sol
, struct isl_tab
*tab
)
3767 struct isl_context
*context
;
3770 if (!tab
|| sol
->error
)
3773 context
= sol
->context
;
3777 if (context
->op
->is_empty(context
))
3780 for (r
= 0; r
>= 0 && tab
&& !tab
->empty
; r
= restore_lexmin(tab
)) {
3783 enum isl_tab_row_sign sgn
;
3787 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
3788 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
3790 sgn
= row_sign(tab
, sol
, row
);
3793 tab
->row_sign
[row
] = sgn
;
3794 if (sgn
== isl_tab_row_any
)
3796 if (sgn
== isl_tab_row_any
&& split
== -1)
3798 if (sgn
== isl_tab_row_neg
)
3801 if (row
< tab
->n_row
)
3804 struct isl_vec
*ineq
;
3806 split
= context
->op
->best_split(context
, tab
);
3809 ineq
= get_row_parameter_ineq(tab
, split
);
3813 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
3814 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
3816 if (tab
->row_sign
[row
] == isl_tab_row_any
)
3817 tab
->row_sign
[row
] = isl_tab_row_unknown
;
3819 tab
->row_sign
[split
] = isl_tab_row_pos
;
3821 find_in_pos(sol
, tab
, ineq
->el
);
3822 tab
->row_sign
[split
] = isl_tab_row_neg
;
3824 isl_seq_neg(ineq
->el
, ineq
->el
, ineq
->size
);
3825 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3827 context
->op
->add_ineq(context
, ineq
->el
, 0, 1);
3835 row
= first_non_integer_row(tab
, &flags
);
3838 if (ISL_FL_ISSET(flags
, I_PAR
)) {
3839 if (ISL_FL_ISSET(flags
, I_VAR
)) {
3840 if (isl_tab_mark_empty(tab
) < 0)
3844 row
= add_cut(tab
, row
);
3845 } else if (ISL_FL_ISSET(flags
, I_VAR
)) {
3846 struct isl_vec
*div
;
3847 struct isl_vec
*ineq
;
3849 div
= get_row_split_div(tab
, row
);
3852 d
= context
->op
->get_div(context
, tab
, div
);
3856 ineq
= ineq_for_div(context
->op
->peek_basic_set(context
), d
);
3860 no_sol_in_strict(sol
, tab
, ineq
);
3861 isl_seq_neg(ineq
->el
, ineq
->el
, ineq
->size
);
3862 context
->op
->add_ineq(context
, ineq
->el
, 1, 1);
3864 if (sol
->error
|| !context
->op
->is_ok(context
))
3866 tab
= set_row_cst_to_div(tab
, row
, d
);
3867 if (context
->op
->is_empty(context
))
3870 row
= add_parametric_cut(tab
, row
, context
);
3885 /* Does "sol" contain a pair of partial solutions that could potentially
3888 * We currently only check that "sol" is not in an error state
3889 * and that there are at least two partial solutions of which the final two
3890 * are defined at the same level.
3892 static int sol_has_mergeable_solutions(struct isl_sol
*sol
)
3898 if (!sol
->partial
->next
)
3900 return sol
->partial
->level
== sol
->partial
->next
->level
;
3903 /* Compute the lexicographic minimum of the set represented by the main
3904 * tableau "tab" within the context "sol->context_tab".
3906 * As a preprocessing step, we first transfer all the purely parametric
3907 * equalities from the main tableau to the context tableau, i.e.,
3908 * parameters that have been pivoted to a row.
3909 * These equalities are ignored by the main algorithm, because the
3910 * corresponding rows may not be marked as being non-negative.
3911 * In parts of the context where the added equality does not hold,
3912 * the main tableau is marked as being empty.
3914 * Before we embark on the actual computation, we save a copy
3915 * of the context. When we return, we check if there are any
3916 * partial solutions that can potentially be merged. If so,
3917 * we perform a rollback to the initial state of the context.
3918 * The merging of partial solutions happens inside calls to
3919 * sol_dec_level that are pushed onto the undo stack of the context.
3920 * If there are no partial solutions that can potentially be merged
3921 * then the rollback is skipped as it would just be wasted effort.
3923 static void find_solutions_main(struct isl_sol
*sol
, struct isl_tab
*tab
)
3933 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
3937 if (tab
->row_var
[row
] < 0)
3939 if (tab
->row_var
[row
] >= tab
->n_param
&&
3940 tab
->row_var
[row
] < tab
->n_var
- tab
->n_div
)
3942 if (tab
->row_var
[row
] < tab
->n_param
)
3943 p
= tab
->row_var
[row
];
3945 p
= tab
->row_var
[row
]
3946 + tab
->n_param
- (tab
->n_var
- tab
->n_div
);
3948 eq
= isl_vec_alloc(tab
->mat
->ctx
, 1+tab
->n_param
+tab
->n_div
);
3951 get_row_parameter_line(tab
, row
, eq
->el
);
3952 isl_int_neg(eq
->el
[1 + p
], tab
->mat
->row
[row
][0]);
3953 eq
= isl_vec_normalize(eq
);
3956 no_sol_in_strict(sol
, tab
, eq
);
3958 isl_seq_neg(eq
->el
, eq
->el
, eq
->size
);
3960 no_sol_in_strict(sol
, tab
, eq
);
3961 isl_seq_neg(eq
->el
, eq
->el
, eq
->size
);
3963 sol
->context
->op
->add_eq(sol
->context
, eq
->el
, 1, 1);
3967 if (isl_tab_mark_redundant(tab
, row
) < 0)
3970 if (sol
->context
->op
->is_empty(sol
->context
))
3973 row
= tab
->n_redundant
- 1;
3976 saved
= sol
->context
->op
->save(sol
->context
);
3978 find_solutions(sol
, tab
);
3980 if (sol_has_mergeable_solutions(sol
))
3981 sol
->context
->op
->restore(sol
->context
, saved
);
3983 sol
->context
->op
->discard(saved
);
3994 /* Check if integer division "div" of "dom" also occurs in "bmap".
3995 * If so, return its position within the divs.
3996 * If not, return -1.
3998 static int find_context_div(struct isl_basic_map
*bmap
,
3999 struct isl_basic_set
*dom
, unsigned div
)
4002 unsigned b_dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
4003 unsigned d_dim
= isl_space_dim(dom
->dim
, isl_dim_all
);
4005 if (isl_int_is_zero(dom
->div
[div
][0]))
4007 if (isl_seq_first_non_zero(dom
->div
[div
] + 2 + d_dim
, dom
->n_div
) != -1)
4010 for (i
= 0; i
< bmap
->n_div
; ++i
) {
4011 if (isl_int_is_zero(bmap
->div
[i
][0]))
4013 if (isl_seq_first_non_zero(bmap
->div
[i
] + 2 + d_dim
,
4014 (b_dim
- d_dim
) + bmap
->n_div
) != -1)
4016 if (isl_seq_eq(bmap
->div
[i
], dom
->div
[div
], 2 + d_dim
))
4022 /* The correspondence between the variables in the main tableau,
4023 * the context tableau, and the input map and domain is as follows.
4024 * The first n_param and the last n_div variables of the main tableau
4025 * form the variables of the context tableau.
4026 * In the basic map, these n_param variables correspond to the
4027 * parameters and the input dimensions. In the domain, they correspond
4028 * to the parameters and the set dimensions.
4029 * The n_div variables correspond to the integer divisions in the domain.
4030 * To ensure that everything lines up, we may need to copy some of the
4031 * integer divisions of the domain to the map. These have to be placed
4032 * in the same order as those in the context and they have to be placed
4033 * after any other integer divisions that the map may have.
4034 * This function performs the required reordering.
4036 static struct isl_basic_map
*align_context_divs(struct isl_basic_map
*bmap
,
4037 struct isl_basic_set
*dom
)
4043 for (i
= 0; i
< dom
->n_div
; ++i
)
4044 if (find_context_div(bmap
, dom
, i
) != -1)
4046 other
= bmap
->n_div
- common
;
4047 if (dom
->n_div
- common
> 0) {
4048 bmap
= isl_basic_map_extend_space(bmap
, isl_space_copy(bmap
->dim
),
4049 dom
->n_div
- common
, 0, 0);
4053 for (i
= 0; i
< dom
->n_div
; ++i
) {
4054 int pos
= find_context_div(bmap
, dom
, i
);
4056 pos
= isl_basic_map_alloc_div(bmap
);
4059 isl_int_set_si(bmap
->div
[pos
][0], 0);
4061 if (pos
!= other
+ i
)
4062 isl_basic_map_swap_div(bmap
, pos
, other
+ i
);
4066 isl_basic_map_free(bmap
);
4070 /* Base case of isl_tab_basic_map_partial_lexopt, after removing
4071 * some obvious symmetries.
4073 * We make sure the divs in the domain are properly ordered,
4074 * because they will be added one by one in the given order
4075 * during the construction of the solution map.
4077 static struct isl_sol
*basic_map_partial_lexopt_base(
4078 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
4079 __isl_give isl_set
**empty
, int max
,
4080 struct isl_sol
*(*init
)(__isl_keep isl_basic_map
*bmap
,
4081 __isl_take isl_basic_set
*dom
, int track_empty
, int max
))
4083 struct isl_tab
*tab
;
4084 struct isl_sol
*sol
= NULL
;
4085 struct isl_context
*context
;
4088 dom
= isl_basic_set_order_divs(dom
);
4089 bmap
= align_context_divs(bmap
, dom
);
4091 sol
= init(bmap
, dom
, !!empty
, max
);
4095 context
= sol
->context
;
4096 if (isl_basic_set_plain_is_empty(context
->op
->peek_basic_set(context
)))
4098 else if (isl_basic_map_plain_is_empty(bmap
)) {
4101 isl_basic_set_copy(context
->op
->peek_basic_set(context
)));
4103 tab
= tab_for_lexmin(bmap
,
4104 context
->op
->peek_basic_set(context
), 1, max
);
4105 tab
= context
->op
->detect_nonnegative_parameters(context
, tab
);
4106 find_solutions_main(sol
, tab
);
4111 isl_basic_map_free(bmap
);
4115 isl_basic_map_free(bmap
);
4119 /* Base case of isl_tab_basic_map_partial_lexopt, after removing
4120 * some obvious symmetries.
4122 * We call basic_map_partial_lexopt_base and extract the results.
4124 static __isl_give isl_map
*basic_map_partial_lexopt_base_map(
4125 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
4126 __isl_give isl_set
**empty
, int max
)
4128 isl_map
*result
= NULL
;
4129 struct isl_sol
*sol
;
4130 struct isl_sol_map
*sol_map
;
4132 sol
= basic_map_partial_lexopt_base(bmap
, dom
, empty
, max
,
4136 sol_map
= (struct isl_sol_map
*) sol
;
4138 result
= isl_map_copy(sol_map
->map
);
4140 *empty
= isl_set_copy(sol_map
->empty
);
4141 sol_free(&sol_map
->sol
);
4145 /* Structure used during detection of parallel constraints.
4146 * n_in: number of "input" variables: isl_dim_param + isl_dim_in
4147 * n_out: number of "output" variables: isl_dim_out + isl_dim_div
4148 * val: the coefficients of the output variables
4150 struct isl_constraint_equal_info
{
4151 isl_basic_map
*bmap
;
4157 /* Check whether the coefficients of the output variables
4158 * of the constraint in "entry" are equal to info->val.
4160 static int constraint_equal(const void *entry
, const void *val
)
4162 isl_int
**row
= (isl_int
**)entry
;
4163 const struct isl_constraint_equal_info
*info
= val
;
4165 return isl_seq_eq((*row
) + 1 + info
->n_in
, info
->val
, info
->n_out
);
4168 /* Check whether "bmap" has a pair of constraints that have
4169 * the same coefficients for the output variables.
4170 * Note that the coefficients of the existentially quantified
4171 * variables need to be zero since the existentially quantified
4172 * of the result are usually not the same as those of the input.
4173 * the isl_dim_out and isl_dim_div dimensions.
4174 * If so, return 1 and return the row indices of the two constraints
4175 * in *first and *second.
4177 static int parallel_constraints(__isl_keep isl_basic_map
*bmap
,
4178 int *first
, int *second
)
4181 isl_ctx
*ctx
= isl_basic_map_get_ctx(bmap
);
4182 struct isl_hash_table
*table
= NULL
;
4183 struct isl_hash_table_entry
*entry
;
4184 struct isl_constraint_equal_info info
;
4188 ctx
= isl_basic_map_get_ctx(bmap
);
4189 table
= isl_hash_table_alloc(ctx
, bmap
->n_ineq
);
4193 info
.n_in
= isl_basic_map_dim(bmap
, isl_dim_param
) +
4194 isl_basic_map_dim(bmap
, isl_dim_in
);
4196 n_out
= isl_basic_map_dim(bmap
, isl_dim_out
);
4197 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
4198 info
.n_out
= n_out
+ n_div
;
4199 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
4202 info
.val
= bmap
->ineq
[i
] + 1 + info
.n_in
;
4203 if (isl_seq_first_non_zero(info
.val
, n_out
) < 0)
4205 if (isl_seq_first_non_zero(info
.val
+ n_out
, n_div
) >= 0)
4207 hash
= isl_seq_get_hash(info
.val
, info
.n_out
);
4208 entry
= isl_hash_table_find(ctx
, table
, hash
,
4209 constraint_equal
, &info
, 1);
4214 entry
->data
= &bmap
->ineq
[i
];
4217 if (i
< bmap
->n_ineq
) {
4218 *first
= ((isl_int
**)entry
->data
) - bmap
->ineq
;
4222 isl_hash_table_free(ctx
, table
);
4224 return i
< bmap
->n_ineq
;
4226 isl_hash_table_free(ctx
, table
);
4230 /* Given a set of upper bounds in "var", add constraints to "bset"
4231 * that make the i-th bound smallest.
4233 * In particular, if there are n bounds b_i, then add the constraints
4235 * b_i <= b_j for j > i
4236 * b_i < b_j for j < i
4238 static __isl_give isl_basic_set
*select_minimum(__isl_take isl_basic_set
*bset
,
4239 __isl_keep isl_mat
*var
, int i
)
4244 ctx
= isl_mat_get_ctx(var
);
4246 for (j
= 0; j
< var
->n_row
; ++j
) {
4249 k
= isl_basic_set_alloc_inequality(bset
);
4252 isl_seq_combine(bset
->ineq
[k
], ctx
->one
, var
->row
[j
],
4253 ctx
->negone
, var
->row
[i
], var
->n_col
);
4254 isl_int_set_si(bset
->ineq
[k
][var
->n_col
], 0);
4256 isl_int_sub_ui(bset
->ineq
[k
][0], bset
->ineq
[k
][0], 1);
4259 bset
= isl_basic_set_finalize(bset
);
4263 isl_basic_set_free(bset
);
4267 /* Given a set of upper bounds on the last "input" variable m,
4268 * construct a set that assigns the minimal upper bound to m, i.e.,
4269 * construct a set that divides the space into cells where one
4270 * of the upper bounds is smaller than all the others and assign
4271 * this upper bound to m.
4273 * In particular, if there are n bounds b_i, then the result
4274 * consists of n basic sets, each one of the form
4277 * b_i <= b_j for j > i
4278 * b_i < b_j for j < i
4280 static __isl_give isl_set
*set_minimum(__isl_take isl_space
*dim
,
4281 __isl_take isl_mat
*var
)
4284 isl_basic_set
*bset
= NULL
;
4286 isl_set
*set
= NULL
;
4291 ctx
= isl_space_get_ctx(dim
);
4292 set
= isl_set_alloc_space(isl_space_copy(dim
),
4293 var
->n_row
, ISL_SET_DISJOINT
);
4295 for (i
= 0; i
< var
->n_row
; ++i
) {
4296 bset
= isl_basic_set_alloc_space(isl_space_copy(dim
), 0,
4298 k
= isl_basic_set_alloc_equality(bset
);
4301 isl_seq_cpy(bset
->eq
[k
], var
->row
[i
], var
->n_col
);
4302 isl_int_set_si(bset
->eq
[k
][var
->n_col
], -1);
4303 bset
= select_minimum(bset
, var
, i
);
4304 set
= isl_set_add_basic_set(set
, bset
);
4307 isl_space_free(dim
);
4311 isl_basic_set_free(bset
);
4313 isl_space_free(dim
);
4318 /* Given that the last input variable of "bmap" represents the minimum
4319 * of the bounds in "cst", check whether we need to split the domain
4320 * based on which bound attains the minimum.
4322 * A split is needed when the minimum appears in an integer division
4323 * or in an equality. Otherwise, it is only needed if it appears in
4324 * an upper bound that is different from the upper bounds on which it
4327 static int need_split_basic_map(__isl_keep isl_basic_map
*bmap
,
4328 __isl_keep isl_mat
*cst
)
4334 pos
= cst
->n_col
- 1;
4335 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
4337 for (i
= 0; i
< bmap
->n_div
; ++i
)
4338 if (!isl_int_is_zero(bmap
->div
[i
][2 + pos
]))
4341 for (i
= 0; i
< bmap
->n_eq
; ++i
)
4342 if (!isl_int_is_zero(bmap
->eq
[i
][1 + pos
]))
4345 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
4346 if (isl_int_is_nonneg(bmap
->ineq
[i
][1 + pos
]))
4348 if (!isl_int_is_negone(bmap
->ineq
[i
][1 + pos
]))
4350 if (isl_seq_first_non_zero(bmap
->ineq
[i
] + 1 + pos
+ 1,
4351 total
- pos
- 1) >= 0)
4354 for (j
= 0; j
< cst
->n_row
; ++j
)
4355 if (isl_seq_eq(bmap
->ineq
[i
], cst
->row
[j
], cst
->n_col
))
4357 if (j
>= cst
->n_row
)
4364 /* Given that the last set variable of "bset" represents the minimum
4365 * of the bounds in "cst", check whether we need to split the domain
4366 * based on which bound attains the minimum.
4368 * We simply call need_split_basic_map here. This is safe because
4369 * the position of the minimum is computed from "cst" and not
4372 static int need_split_basic_set(__isl_keep isl_basic_set
*bset
,
4373 __isl_keep isl_mat
*cst
)
4375 return need_split_basic_map((isl_basic_map
*)bset
, cst
);
4378 /* Given that the last set variable of "set" represents the minimum
4379 * of the bounds in "cst", check whether we need to split the domain
4380 * based on which bound attains the minimum.
4382 static int need_split_set(__isl_keep isl_set
*set
, __isl_keep isl_mat
*cst
)
4386 for (i
= 0; i
< set
->n
; ++i
)
4387 if (need_split_basic_set(set
->p
[i
], cst
))
4393 /* Given a set of which the last set variable is the minimum
4394 * of the bounds in "cst", split each basic set in the set
4395 * in pieces where one of the bounds is (strictly) smaller than the others.
4396 * This subdivision is given in "min_expr".
4397 * The variable is subsequently projected out.
4399 * We only do the split when it is needed.
4400 * For example if the last input variable m = min(a,b) and the only
4401 * constraints in the given basic set are lower bounds on m,
4402 * i.e., l <= m = min(a,b), then we can simply project out m
4403 * to obtain l <= a and l <= b, without having to split on whether
4404 * m is equal to a or b.
4406 static __isl_give isl_set
*split(__isl_take isl_set
*empty
,
4407 __isl_take isl_set
*min_expr
, __isl_take isl_mat
*cst
)
4414 if (!empty
|| !min_expr
|| !cst
)
4417 n_in
= isl_set_dim(empty
, isl_dim_set
);
4418 dim
= isl_set_get_space(empty
);
4419 dim
= isl_space_drop_dims(dim
, isl_dim_set
, n_in
- 1, 1);
4420 res
= isl_set_empty(dim
);
4422 for (i
= 0; i
< empty
->n
; ++i
) {
4425 set
= isl_set_from_basic_set(isl_basic_set_copy(empty
->p
[i
]));
4426 if (need_split_basic_set(empty
->p
[i
], cst
))
4427 set
= isl_set_intersect(set
, isl_set_copy(min_expr
));
4428 set
= isl_set_remove_dims(set
, isl_dim_set
, n_in
- 1, 1);
4430 res
= isl_set_union_disjoint(res
, set
);
4433 isl_set_free(empty
);
4434 isl_set_free(min_expr
);
4438 isl_set_free(empty
);
4439 isl_set_free(min_expr
);
4444 /* Given a map of which the last input variable is the minimum
4445 * of the bounds in "cst", split each basic set in the set
4446 * in pieces where one of the bounds is (strictly) smaller than the others.
4447 * This subdivision is given in "min_expr".
4448 * The variable is subsequently projected out.
4450 * The implementation is essentially the same as that of "split".
4452 static __isl_give isl_map
*split_domain(__isl_take isl_map
*opt
,
4453 __isl_take isl_set
*min_expr
, __isl_take isl_mat
*cst
)
4460 if (!opt
|| !min_expr
|| !cst
)
4463 n_in
= isl_map_dim(opt
, isl_dim_in
);
4464 dim
= isl_map_get_space(opt
);
4465 dim
= isl_space_drop_dims(dim
, isl_dim_in
, n_in
- 1, 1);
4466 res
= isl_map_empty(dim
);
4468 for (i
= 0; i
< opt
->n
; ++i
) {
4471 map
= isl_map_from_basic_map(isl_basic_map_copy(opt
->p
[i
]));
4472 if (need_split_basic_map(opt
->p
[i
], cst
))
4473 map
= isl_map_intersect_domain(map
,
4474 isl_set_copy(min_expr
));
4475 map
= isl_map_remove_dims(map
, isl_dim_in
, n_in
- 1, 1);
4477 res
= isl_map_union_disjoint(res
, map
);
4481 isl_set_free(min_expr
);
4486 isl_set_free(min_expr
);
4491 static __isl_give isl_map
*basic_map_partial_lexopt(
4492 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
4493 __isl_give isl_set
**empty
, int max
);
4498 isl_pw_multi_aff
*pma
;
4501 /* This function is called from basic_map_partial_lexopt_symm.
4502 * The last variable of "bmap" and "dom" corresponds to the minimum
4503 * of the bounds in "cst". "map_space" is the space of the original
4504 * input relation (of basic_map_partial_lexopt_symm) and "set_space"
4505 * is the space of the original domain.
4507 * We recursively call basic_map_partial_lexopt and then plug in
4508 * the definition of the minimum in the result.
4510 static __isl_give
union isl_lex_res
basic_map_partial_lexopt_symm_map_core(
4511 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
4512 __isl_give isl_set
**empty
, int max
, __isl_take isl_mat
*cst
,
4513 __isl_take isl_space
*map_space
, __isl_take isl_space
*set_space
)
4517 union isl_lex_res res
;
4519 min_expr
= set_minimum(isl_basic_set_get_space(dom
), isl_mat_copy(cst
));
4521 opt
= basic_map_partial_lexopt(bmap
, dom
, empty
, max
);
4524 *empty
= split(*empty
,
4525 isl_set_copy(min_expr
), isl_mat_copy(cst
));
4526 *empty
= isl_set_reset_space(*empty
, set_space
);
4529 opt
= split_domain(opt
, min_expr
, cst
);
4530 opt
= isl_map_reset_space(opt
, map_space
);
4536 /* Given a basic map with at least two parallel constraints (as found
4537 * by the function parallel_constraints), first look for more constraints
4538 * parallel to the two constraint and replace the found list of parallel
4539 * constraints by a single constraint with as "input" part the minimum
4540 * of the input parts of the list of constraints. Then, recursively call
4541 * basic_map_partial_lexopt (possibly finding more parallel constraints)
4542 * and plug in the definition of the minimum in the result.
4544 * More specifically, given a set of constraints
4548 * Replace this set by a single constraint
4552 * with u a new parameter with constraints
4556 * Any solution to the new system is also a solution for the original system
4559 * a x >= -u >= -b_i(p)
4561 * Moreover, m = min_i(b_i(p)) satisfies the constraints on u and can
4562 * therefore be plugged into the solution.
4564 static union isl_lex_res
basic_map_partial_lexopt_symm(
4565 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
4566 __isl_give isl_set
**empty
, int max
, int first
, int second
,
4567 __isl_give
union isl_lex_res (*core
)(__isl_take isl_basic_map
*bmap
,
4568 __isl_take isl_basic_set
*dom
,
4569 __isl_give isl_set
**empty
,
4570 int max
, __isl_take isl_mat
*cst
,
4571 __isl_take isl_space
*map_space
,
4572 __isl_take isl_space
*set_space
))
4576 unsigned n_in
, n_out
, n_div
;
4578 isl_vec
*var
= NULL
;
4579 isl_mat
*cst
= NULL
;
4580 isl_space
*map_space
, *set_space
;
4581 union isl_lex_res res
;
4583 map_space
= isl_basic_map_get_space(bmap
);
4584 set_space
= empty
? isl_basic_set_get_space(dom
) : NULL
;
4586 n_in
= isl_basic_map_dim(bmap
, isl_dim_param
) +
4587 isl_basic_map_dim(bmap
, isl_dim_in
);
4588 n_out
= isl_basic_map_dim(bmap
, isl_dim_all
) - n_in
;
4590 ctx
= isl_basic_map_get_ctx(bmap
);
4591 list
= isl_alloc_array(ctx
, int, bmap
->n_ineq
);
4592 var
= isl_vec_alloc(ctx
, n_out
);
4593 if ((bmap
->n_ineq
&& !list
) || (n_out
&& !var
))
4598 isl_seq_cpy(var
->el
, bmap
->ineq
[first
] + 1 + n_in
, n_out
);
4599 for (i
= second
+ 1, n
= 2; i
< bmap
->n_ineq
; ++i
) {
4600 if (isl_seq_eq(var
->el
, bmap
->ineq
[i
] + 1 + n_in
, n_out
))
4604 cst
= isl_mat_alloc(ctx
, n
, 1 + n_in
);
4608 for (i
= 0; i
< n
; ++i
)
4609 isl_seq_cpy(cst
->row
[i
], bmap
->ineq
[list
[i
]], 1 + n_in
);
4611 bmap
= isl_basic_map_cow(bmap
);
4614 for (i
= n
- 1; i
>= 0; --i
)
4615 if (isl_basic_map_drop_inequality(bmap
, list
[i
]) < 0)
4618 bmap
= isl_basic_map_add(bmap
, isl_dim_in
, 1);
4619 bmap
= isl_basic_map_extend_constraints(bmap
, 0, 1);
4620 k
= isl_basic_map_alloc_inequality(bmap
);
4623 isl_seq_clr(bmap
->ineq
[k
], 1 + n_in
);
4624 isl_int_set_si(bmap
->ineq
[k
][1 + n_in
], 1);
4625 isl_seq_cpy(bmap
->ineq
[k
] + 1 + n_in
+ 1, var
->el
, n_out
);
4626 bmap
= isl_basic_map_finalize(bmap
);
4628 n_div
= isl_basic_set_dim(dom
, isl_dim_div
);
4629 dom
= isl_basic_set_add_dims(dom
, isl_dim_set
, 1);
4630 dom
= isl_basic_set_extend_constraints(dom
, 0, n
);
4631 for (i
= 0; i
< n
; ++i
) {
4632 k
= isl_basic_set_alloc_inequality(dom
);
4635 isl_seq_cpy(dom
->ineq
[k
], cst
->row
[i
], 1 + n_in
);
4636 isl_int_set_si(dom
->ineq
[k
][1 + n_in
], -1);
4637 isl_seq_clr(dom
->ineq
[k
] + 1 + n_in
+ 1, n_div
);
4643 return core(bmap
, dom
, empty
, max
, cst
, map_space
, set_space
);
4645 isl_space_free(map_space
);
4646 isl_space_free(set_space
);
4650 isl_basic_set_free(dom
);
4651 isl_basic_map_free(bmap
);
4656 static __isl_give isl_map
*basic_map_partial_lexopt_symm_map(
4657 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
4658 __isl_give isl_set
**empty
, int max
, int first
, int second
)
4660 return basic_map_partial_lexopt_symm(bmap
, dom
, empty
, max
,
4661 first
, second
, &basic_map_partial_lexopt_symm_map_core
).map
;
4664 /* Recursive part of isl_tab_basic_map_partial_lexopt, after detecting
4665 * equalities and removing redundant constraints.
4667 * We first check if there are any parallel constraints (left).
4668 * If not, we are in the base case.
4669 * If there are parallel constraints, we replace them by a single
4670 * constraint in basic_map_partial_lexopt_symm and then call
4671 * this function recursively to look for more parallel constraints.
4673 static __isl_give isl_map
*basic_map_partial_lexopt(
4674 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
4675 __isl_give isl_set
**empty
, int max
)
4683 if (bmap
->ctx
->opt
->pip_symmetry
)
4684 par
= parallel_constraints(bmap
, &first
, &second
);
4688 return basic_map_partial_lexopt_base_map(bmap
, dom
, empty
, max
);
4690 return basic_map_partial_lexopt_symm_map(bmap
, dom
, empty
, max
,
4693 isl_basic_set_free(dom
);
4694 isl_basic_map_free(bmap
);
4698 /* Compute the lexicographic minimum (or maximum if "max" is set)
4699 * of "bmap" over the domain "dom" and return the result as a map.
4700 * If "empty" is not NULL, then *empty is assigned a set that
4701 * contains those parts of the domain where there is no solution.
4702 * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL),
4703 * then we compute the rational optimum. Otherwise, we compute
4704 * the integral optimum.
4706 * We perform some preprocessing. As the PILP solver does not
4707 * handle implicit equalities very well, we first make sure all
4708 * the equalities are explicitly available.
4710 * We also add context constraints to the basic map and remove
4711 * redundant constraints. This is only needed because of the
4712 * way we handle simple symmetries. In particular, we currently look
4713 * for symmetries on the constraints, before we set up the main tableau.
4714 * It is then no good to look for symmetries on possibly redundant constraints.
4716 struct isl_map
*isl_tab_basic_map_partial_lexopt(
4717 struct isl_basic_map
*bmap
, struct isl_basic_set
*dom
,
4718 struct isl_set
**empty
, int max
)
4725 isl_assert(bmap
->ctx
,
4726 isl_basic_map_compatible_domain(bmap
, dom
), goto error
);
4728 if (isl_basic_set_dim(dom
, isl_dim_all
) == 0)
4729 return basic_map_partial_lexopt(bmap
, dom
, empty
, max
);
4731 bmap
= isl_basic_map_intersect_domain(bmap
, isl_basic_set_copy(dom
));
4732 bmap
= isl_basic_map_detect_equalities(bmap
);
4733 bmap
= isl_basic_map_remove_redundancies(bmap
);
4735 return basic_map_partial_lexopt(bmap
, dom
, empty
, max
);
4737 isl_basic_set_free(dom
);
4738 isl_basic_map_free(bmap
);
4742 struct isl_sol_for
{
4744 int (*fn
)(__isl_take isl_basic_set
*dom
,
4745 __isl_take isl_aff_list
*list
, void *user
);
4749 static void sol_for_free(struct isl_sol_for
*sol_for
)
4751 if (sol_for
->sol
.context
)
4752 sol_for
->sol
.context
->op
->free(sol_for
->sol
.context
);
4756 static void sol_for_free_wrap(struct isl_sol
*sol
)
4758 sol_for_free((struct isl_sol_for
*)sol
);
4761 /* Add the solution identified by the tableau and the context tableau.
4763 * See documentation of sol_add for more details.
4765 * Instead of constructing a basic map, this function calls a user
4766 * defined function with the current context as a basic set and
4767 * a list of affine expressions representing the relation between
4768 * the input and output. The space over which the affine expressions
4769 * are defined is the same as that of the domain. The number of
4770 * affine expressions in the list is equal to the number of output variables.
4772 static void sol_for_add(struct isl_sol_for
*sol
,
4773 struct isl_basic_set
*dom
, struct isl_mat
*M
)
4777 isl_local_space
*ls
;
4781 if (sol
->sol
.error
|| !dom
|| !M
)
4784 ctx
= isl_basic_set_get_ctx(dom
);
4785 ls
= isl_basic_set_get_local_space(dom
);
4786 list
= isl_aff_list_alloc(ctx
, M
->n_row
- 1);
4787 for (i
= 1; i
< M
->n_row
; ++i
) {
4788 aff
= isl_aff_alloc(isl_local_space_copy(ls
));
4790 isl_int_set(aff
->v
->el
[0], M
->row
[0][0]);
4791 isl_seq_cpy(aff
->v
->el
+ 1, M
->row
[i
], M
->n_col
);
4793 aff
= isl_aff_normalize(aff
);
4794 list
= isl_aff_list_add(list
, aff
);
4796 isl_local_space_free(ls
);
4798 dom
= isl_basic_set_finalize(dom
);
4800 if (sol
->fn(isl_basic_set_copy(dom
), list
, sol
->user
) < 0)
4803 isl_basic_set_free(dom
);
4807 isl_basic_set_free(dom
);
4812 static void sol_for_add_wrap(struct isl_sol
*sol
,
4813 struct isl_basic_set
*dom
, struct isl_mat
*M
)
4815 sol_for_add((struct isl_sol_for
*)sol
, dom
, M
);
4818 static struct isl_sol_for
*sol_for_init(struct isl_basic_map
*bmap
, int max
,
4819 int (*fn
)(__isl_take isl_basic_set
*dom
, __isl_take isl_aff_list
*list
,
4823 struct isl_sol_for
*sol_for
= NULL
;
4825 struct isl_basic_set
*dom
= NULL
;
4827 sol_for
= isl_calloc_type(bmap
->ctx
, struct isl_sol_for
);
4831 dom_dim
= isl_space_domain(isl_space_copy(bmap
->dim
));
4832 dom
= isl_basic_set_universe(dom_dim
);
4834 sol_for
->sol
.rational
= ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
);
4835 sol_for
->sol
.dec_level
.callback
.run
= &sol_dec_level_wrap
;
4836 sol_for
->sol
.dec_level
.sol
= &sol_for
->sol
;
4838 sol_for
->user
= user
;
4839 sol_for
->sol
.max
= max
;
4840 sol_for
->sol
.n_out
= isl_basic_map_dim(bmap
, isl_dim_out
);
4841 sol_for
->sol
.add
= &sol_for_add_wrap
;
4842 sol_for
->sol
.add_empty
= NULL
;
4843 sol_for
->sol
.free
= &sol_for_free_wrap
;
4845 sol_for
->sol
.context
= isl_context_alloc(dom
);
4846 if (!sol_for
->sol
.context
)
4849 isl_basic_set_free(dom
);
4852 isl_basic_set_free(dom
);
4853 sol_for_free(sol_for
);
4857 static void sol_for_find_solutions(struct isl_sol_for
*sol_for
,
4858 struct isl_tab
*tab
)
4860 find_solutions_main(&sol_for
->sol
, tab
);
4863 int isl_basic_map_foreach_lexopt(__isl_keep isl_basic_map
*bmap
, int max
,
4864 int (*fn
)(__isl_take isl_basic_set
*dom
, __isl_take isl_aff_list
*list
,
4868 struct isl_sol_for
*sol_for
= NULL
;
4870 bmap
= isl_basic_map_copy(bmap
);
4871 bmap
= isl_basic_map_detect_equalities(bmap
);
4875 sol_for
= sol_for_init(bmap
, max
, fn
, user
);
4879 if (isl_basic_map_plain_is_empty(bmap
))
4882 struct isl_tab
*tab
;
4883 struct isl_context
*context
= sol_for
->sol
.context
;
4884 tab
= tab_for_lexmin(bmap
,
4885 context
->op
->peek_basic_set(context
), 1, max
);
4886 tab
= context
->op
->detect_nonnegative_parameters(context
, tab
);
4887 sol_for_find_solutions(sol_for
, tab
);
4888 if (sol_for
->sol
.error
)
4892 sol_free(&sol_for
->sol
);
4893 isl_basic_map_free(bmap
);
4896 sol_free(&sol_for
->sol
);
4897 isl_basic_map_free(bmap
);
4901 int isl_basic_set_foreach_lexopt(__isl_keep isl_basic_set
*bset
, int max
,
4902 int (*fn
)(__isl_take isl_basic_set
*dom
, __isl_take isl_aff_list
*list
,
4906 return isl_basic_map_foreach_lexopt(bset
, max
, fn
, user
);
4909 /* Check if the given sequence of len variables starting at pos
4910 * represents a trivial (i.e., zero) solution.
4911 * The variables are assumed to be non-negative and to come in pairs,
4912 * with each pair representing a variable of unrestricted sign.
4913 * The solution is trivial if each such pair in the sequence consists
4914 * of two identical values, meaning that the variable being represented
4917 static int region_is_trivial(struct isl_tab
*tab
, int pos
, int len
)
4924 for (i
= 0; i
< len
; i
+= 2) {
4928 neg_row
= tab
->var
[pos
+ i
].is_row
?
4929 tab
->var
[pos
+ i
].index
: -1;
4930 pos_row
= tab
->var
[pos
+ i
+ 1].is_row
?
4931 tab
->var
[pos
+ i
+ 1].index
: -1;
4934 isl_int_is_zero(tab
->mat
->row
[neg_row
][1])) &&
4936 isl_int_is_zero(tab
->mat
->row
[pos_row
][1])))
4939 if (neg_row
< 0 || pos_row
< 0)
4941 if (isl_int_ne(tab
->mat
->row
[neg_row
][1],
4942 tab
->mat
->row
[pos_row
][1]))
4949 /* Return the index of the first trivial region or -1 if all regions
4952 static int first_trivial_region(struct isl_tab
*tab
,
4953 int n_region
, struct isl_region
*region
)
4957 for (i
= 0; i
< n_region
; ++i
) {
4958 if (region_is_trivial(tab
, region
[i
].pos
, region
[i
].len
))
4965 /* Check if the solution is optimal, i.e., whether the first
4966 * n_op entries are zero.
4968 static int is_optimal(__isl_keep isl_vec
*sol
, int n_op
)
4972 for (i
= 0; i
< n_op
; ++i
)
4973 if (!isl_int_is_zero(sol
->el
[1 + i
]))
4978 /* Add constraints to "tab" that ensure that any solution is significantly
4979 * better that that represented by "sol". That is, find the first
4980 * relevant (within first n_op) non-zero coefficient and force it (along
4981 * with all previous coefficients) to be zero.
4982 * If the solution is already optimal (all relevant coefficients are zero),
4983 * then just mark the table as empty.
4985 static int force_better_solution(struct isl_tab
*tab
,
4986 __isl_keep isl_vec
*sol
, int n_op
)
4995 for (i
= 0; i
< n_op
; ++i
)
4996 if (!isl_int_is_zero(sol
->el
[1 + i
]))
5000 if (isl_tab_mark_empty(tab
) < 0)
5005 ctx
= isl_vec_get_ctx(sol
);
5006 v
= isl_vec_alloc(ctx
, 1 + tab
->n_var
);
5010 for (; i
>= 0; --i
) {
5012 isl_int_set_si(v
->el
[1 + i
], -1);
5013 if (add_lexmin_eq(tab
, v
->el
) < 0)
5024 struct isl_trivial
{
5028 struct isl_tab_undo
*snap
;
5031 /* Return the lexicographically smallest non-trivial solution of the
5032 * given ILP problem.
5034 * All variables are assumed to be non-negative.
5036 * n_op is the number of initial coordinates to optimize.
5037 * That is, once a solution has been found, we will only continue looking
5038 * for solution that result in significantly better values for those
5039 * initial coordinates. That is, we only continue looking for solutions
5040 * that increase the number of initial zeros in this sequence.
5042 * A solution is non-trivial, if it is non-trivial on each of the
5043 * specified regions. Each region represents a sequence of pairs
5044 * of variables. A solution is non-trivial on such a region if
5045 * at least one of these pairs consists of different values, i.e.,
5046 * such that the non-negative variable represented by the pair is non-zero.
5048 * Whenever a conflict is encountered, all constraints involved are
5049 * reported to the caller through a call to "conflict".
5051 * We perform a simple branch-and-bound backtracking search.
5052 * Each level in the search represents initially trivial region that is forced
5053 * to be non-trivial.
5054 * At each level we consider n cases, where n is the length of the region.
5055 * In terms of the n/2 variables of unrestricted signs being encoded by
5056 * the region, we consider the cases
5059 * x_0 = 0 and x_1 >= 1
5060 * x_0 = 0 and x_1 <= -1
5061 * x_0 = 0 and x_1 = 0 and x_2 >= 1
5062 * x_0 = 0 and x_1 = 0 and x_2 <= -1
5064 * The cases are considered in this order, assuming that each pair
5065 * x_i_a x_i_b represents the value x_i_b - x_i_a.
5066 * That is, x_0 >= 1 is enforced by adding the constraint
5067 * x_0_b - x_0_a >= 1
5069 __isl_give isl_vec
*isl_tab_basic_set_non_trivial_lexmin(
5070 __isl_take isl_basic_set
*bset
, int n_op
, int n_region
,
5071 struct isl_region
*region
,
5072 int (*conflict
)(int con
, void *user
), void *user
)
5078 isl_vec
*sol
= NULL
;
5079 struct isl_tab
*tab
;
5080 struct isl_trivial
*triv
= NULL
;
5086 ctx
= isl_basic_set_get_ctx(bset
);
5087 sol
= isl_vec_alloc(ctx
, 0);
5089 tab
= tab_for_lexmin(bset
, NULL
, 0, 0);
5092 tab
->conflict
= conflict
;
5093 tab
->conflict_user
= user
;
5095 v
= isl_vec_alloc(ctx
, 1 + tab
->n_var
);
5096 triv
= isl_calloc_array(ctx
, struct isl_trivial
, n_region
);
5097 if (!v
|| (n_region
&& !triv
))
5103 while (level
>= 0) {
5107 tab
= cut_to_integer_lexmin(tab
, CUT_ONE
);
5112 r
= first_trivial_region(tab
, n_region
, region
);
5114 for (i
= 0; i
< level
; ++i
)
5117 sol
= isl_tab_get_sample_value(tab
);
5120 if (is_optimal(sol
, n_op
))
5124 if (level
>= n_region
)
5125 isl_die(ctx
, isl_error_internal
,
5126 "nesting level too deep", goto error
);
5127 if (isl_tab_extend_cons(tab
,
5128 2 * region
[r
].len
+ 2 * n_op
) < 0)
5130 triv
[level
].region
= r
;
5131 triv
[level
].side
= 0;
5134 r
= triv
[level
].region
;
5135 side
= triv
[level
].side
;
5136 base
= 2 * (side
/2);
5138 if (side
>= region
[r
].len
) {
5143 if (isl_tab_rollback(tab
, triv
[level
].snap
) < 0)
5148 if (triv
[level
].update
) {
5149 if (force_better_solution(tab
, sol
, n_op
) < 0)
5151 triv
[level
].update
= 0;
5154 if (side
== base
&& base
>= 2) {
5155 for (j
= base
- 2; j
< base
; ++j
) {
5157 isl_int_set_si(v
->el
[1 + region
[r
].pos
+ j
], 1);
5158 if (add_lexmin_eq(tab
, v
->el
) < 0)
5163 triv
[level
].snap
= isl_tab_snap(tab
);
5164 if (isl_tab_push_basis(tab
) < 0)
5168 isl_int_set_si(v
->el
[0], -1);
5169 isl_int_set_si(v
->el
[1 + region
[r
].pos
+ side
], -1);
5170 isl_int_set_si(v
->el
[1 + region
[r
].pos
+ (side
^ 1)], 1);
5171 tab
= add_lexmin_ineq(tab
, v
->el
);
5181 isl_basic_set_free(bset
);
5188 isl_basic_set_free(bset
);
5193 /* Return the lexicographically smallest rational point in "bset",
5194 * assuming that all variables are non-negative.
5195 * If "bset" is empty, then return a zero-length vector.
5197 __isl_give isl_vec
*isl_tab_basic_set_non_neg_lexmin(
5198 __isl_take isl_basic_set
*bset
)
5200 struct isl_tab
*tab
;
5201 isl_ctx
*ctx
= isl_basic_set_get_ctx(bset
);
5207 tab
= tab_for_lexmin(bset
, NULL
, 0, 0);
5211 sol
= isl_vec_alloc(ctx
, 0);
5213 sol
= isl_tab_get_sample_value(tab
);
5215 isl_basic_set_free(bset
);
5219 isl_basic_set_free(bset
);
5223 struct isl_sol_pma
{
5225 isl_pw_multi_aff
*pma
;
5229 static void sol_pma_free(struct isl_sol_pma
*sol_pma
)
5233 if (sol_pma
->sol
.context
)
5234 sol_pma
->sol
.context
->op
->free(sol_pma
->sol
.context
);
5235 isl_pw_multi_aff_free(sol_pma
->pma
);
5236 isl_set_free(sol_pma
->empty
);
5240 /* This function is called for parts of the context where there is
5241 * no solution, with "bset" corresponding to the context tableau.
5242 * Simply add the basic set to the set "empty".
5244 static void sol_pma_add_empty(struct isl_sol_pma
*sol
,
5245 __isl_take isl_basic_set
*bset
)
5249 isl_assert(bset
->ctx
, sol
->empty
, goto error
);
5251 sol
->empty
= isl_set_grow(sol
->empty
, 1);
5252 bset
= isl_basic_set_simplify(bset
);
5253 bset
= isl_basic_set_finalize(bset
);
5254 sol
->empty
= isl_set_add_basic_set(sol
->empty
, bset
);
5259 isl_basic_set_free(bset
);
5263 /* Given a basic map "dom" that represents the context and an affine
5264 * matrix "M" that maps the dimensions of the context to the
5265 * output variables, construct an isl_pw_multi_aff with a single
5266 * cell corresponding to "dom" and affine expressions copied from "M".
5268 static void sol_pma_add(struct isl_sol_pma
*sol
,
5269 __isl_take isl_basic_set
*dom
, __isl_take isl_mat
*M
)
5272 isl_local_space
*ls
;
5274 isl_multi_aff
*maff
;
5275 isl_pw_multi_aff
*pma
;
5277 maff
= isl_multi_aff_alloc(isl_pw_multi_aff_get_space(sol
->pma
));
5278 ls
= isl_basic_set_get_local_space(dom
);
5279 for (i
= 1; i
< M
->n_row
; ++i
) {
5280 aff
= isl_aff_alloc(isl_local_space_copy(ls
));
5282 isl_int_set(aff
->v
->el
[0], M
->row
[0][0]);
5283 isl_seq_cpy(aff
->v
->el
+ 1, M
->row
[i
], M
->n_col
);
5285 aff
= isl_aff_normalize(aff
);
5286 maff
= isl_multi_aff_set_aff(maff
, i
- 1, aff
);
5288 isl_local_space_free(ls
);
5290 dom
= isl_basic_set_simplify(dom
);
5291 dom
= isl_basic_set_finalize(dom
);
5292 pma
= isl_pw_multi_aff_alloc(isl_set_from_basic_set(dom
), maff
);
5293 sol
->pma
= isl_pw_multi_aff_add_disjoint(sol
->pma
, pma
);
5298 static void sol_pma_free_wrap(struct isl_sol
*sol
)
5300 sol_pma_free((struct isl_sol_pma
*)sol
);
5303 static void sol_pma_add_empty_wrap(struct isl_sol
*sol
,
5304 __isl_take isl_basic_set
*bset
)
5306 sol_pma_add_empty((struct isl_sol_pma
*)sol
, bset
);
5309 static void sol_pma_add_wrap(struct isl_sol
*sol
,
5310 __isl_take isl_basic_set
*dom
, __isl_take isl_mat
*M
)
5312 sol_pma_add((struct isl_sol_pma
*)sol
, dom
, M
);
5315 /* Construct an isl_sol_pma structure for accumulating the solution.
5316 * If track_empty is set, then we also keep track of the parts
5317 * of the context where there is no solution.
5318 * If max is set, then we are solving a maximization, rather than
5319 * a minimization problem, which means that the variables in the
5320 * tableau have value "M - x" rather than "M + x".
5322 static struct isl_sol
*sol_pma_init(__isl_keep isl_basic_map
*bmap
,
5323 __isl_take isl_basic_set
*dom
, int track_empty
, int max
)
5325 struct isl_sol_pma
*sol_pma
= NULL
;
5330 sol_pma
= isl_calloc_type(bmap
->ctx
, struct isl_sol_pma
);
5334 sol_pma
->sol
.rational
= ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
);
5335 sol_pma
->sol
.dec_level
.callback
.run
= &sol_dec_level_wrap
;
5336 sol_pma
->sol
.dec_level
.sol
= &sol_pma
->sol
;
5337 sol_pma
->sol
.max
= max
;
5338 sol_pma
->sol
.n_out
= isl_basic_map_dim(bmap
, isl_dim_out
);
5339 sol_pma
->sol
.add
= &sol_pma_add_wrap
;
5340 sol_pma
->sol
.add_empty
= track_empty
? &sol_pma_add_empty_wrap
: NULL
;
5341 sol_pma
->sol
.free
= &sol_pma_free_wrap
;
5342 sol_pma
->pma
= isl_pw_multi_aff_empty(isl_basic_map_get_space(bmap
));
5346 sol_pma
->sol
.context
= isl_context_alloc(dom
);
5347 if (!sol_pma
->sol
.context
)
5351 sol_pma
->empty
= isl_set_alloc_space(isl_basic_set_get_space(dom
),
5352 1, ISL_SET_DISJOINT
);
5353 if (!sol_pma
->empty
)
5357 isl_basic_set_free(dom
);
5358 return &sol_pma
->sol
;
5360 isl_basic_set_free(dom
);
5361 sol_pma_free(sol_pma
);
5365 /* Base case of isl_tab_basic_map_partial_lexopt, after removing
5366 * some obvious symmetries.
5368 * We call basic_map_partial_lexopt_base and extract the results.
5370 static __isl_give isl_pw_multi_aff
*basic_map_partial_lexopt_base_pma(
5371 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
5372 __isl_give isl_set
**empty
, int max
)
5374 isl_pw_multi_aff
*result
= NULL
;
5375 struct isl_sol
*sol
;
5376 struct isl_sol_pma
*sol_pma
;
5378 sol
= basic_map_partial_lexopt_base(bmap
, dom
, empty
, max
,
5382 sol_pma
= (struct isl_sol_pma
*) sol
;
5384 result
= isl_pw_multi_aff_copy(sol_pma
->pma
);
5386 *empty
= isl_set_copy(sol_pma
->empty
);
5387 sol_free(&sol_pma
->sol
);
5391 /* Given that the last input variable of "maff" represents the minimum
5392 * of some bounds, check whether we need to plug in the expression
5395 * In particular, check if the last input variable appears in any
5396 * of the expressions in "maff".
5398 static int need_substitution(__isl_keep isl_multi_aff
*maff
)
5403 pos
= isl_multi_aff_dim(maff
, isl_dim_in
) - 1;
5405 for (i
= 0; i
< maff
->n
; ++i
)
5406 if (isl_aff_involves_dims(maff
->p
[i
], isl_dim_in
, pos
, 1))
5412 /* Given a set of upper bounds on the last "input" variable m,
5413 * construct a piecewise affine expression that selects
5414 * the minimal upper bound to m, i.e.,
5415 * divide the space into cells where one
5416 * of the upper bounds is smaller than all the others and select
5417 * this upper bound on that cell.
5419 * In particular, if there are n bounds b_i, then the result
5420 * consists of n cell, each one of the form
5422 * b_i <= b_j for j > i
5423 * b_i < b_j for j < i
5425 * The affine expression on this cell is
5429 static __isl_give isl_pw_aff
*set_minimum_pa(__isl_take isl_space
*space
,
5430 __isl_take isl_mat
*var
)
5433 isl_aff
*aff
= NULL
;
5434 isl_basic_set
*bset
= NULL
;
5436 isl_pw_aff
*paff
= NULL
;
5437 isl_space
*pw_space
;
5438 isl_local_space
*ls
= NULL
;
5443 ctx
= isl_space_get_ctx(space
);
5444 ls
= isl_local_space_from_space(isl_space_copy(space
));
5445 pw_space
= isl_space_copy(space
);
5446 pw_space
= isl_space_from_domain(pw_space
);
5447 pw_space
= isl_space_add_dims(pw_space
, isl_dim_out
, 1);
5448 paff
= isl_pw_aff_alloc_size(pw_space
, var
->n_row
);
5450 for (i
= 0; i
< var
->n_row
; ++i
) {
5453 aff
= isl_aff_alloc(isl_local_space_copy(ls
));
5454 bset
= isl_basic_set_alloc_space(isl_space_copy(space
), 0,
5458 isl_int_set_si(aff
->v
->el
[0], 1);
5459 isl_seq_cpy(aff
->v
->el
+ 1, var
->row
[i
], var
->n_col
);
5460 isl_int_set_si(aff
->v
->el
[1 + var
->n_col
], 0);
5461 bset
= select_minimum(bset
, var
, i
);
5462 paff_i
= isl_pw_aff_alloc(isl_set_from_basic_set(bset
), aff
);
5463 paff
= isl_pw_aff_add_disjoint(paff
, paff_i
);
5466 isl_local_space_free(ls
);
5467 isl_space_free(space
);
5472 isl_basic_set_free(bset
);
5473 isl_pw_aff_free(paff
);
5474 isl_local_space_free(ls
);
5475 isl_space_free(space
);
5480 /* Given a piecewise multi-affine expression of which the last input variable
5481 * is the minimum of the bounds in "cst", plug in the value of the minimum.
5482 * This minimum expression is given in "min_expr_pa".
5483 * The set "min_expr" contains the same information, but in the form of a set.
5484 * The variable is subsequently projected out.
5486 * The implementation is similar to those of "split" and "split_domain".
5487 * If the variable appears in a given expression, then minimum expression
5488 * is plugged in. Otherwise, if the variable appears in the constraints
5489 * and a split is required, then the domain is split. Otherwise, no split
5492 static __isl_give isl_pw_multi_aff
*split_domain_pma(
5493 __isl_take isl_pw_multi_aff
*opt
, __isl_take isl_pw_aff
*min_expr_pa
,
5494 __isl_take isl_set
*min_expr
, __isl_take isl_mat
*cst
)
5499 isl_pw_multi_aff
*res
;
5501 if (!opt
|| !min_expr
|| !cst
)
5504 n_in
= isl_pw_multi_aff_dim(opt
, isl_dim_in
);
5505 space
= isl_pw_multi_aff_get_space(opt
);
5506 space
= isl_space_drop_dims(space
, isl_dim_in
, n_in
- 1, 1);
5507 res
= isl_pw_multi_aff_empty(space
);
5509 for (i
= 0; i
< opt
->n
; ++i
) {
5510 isl_pw_multi_aff
*pma
;
5512 pma
= isl_pw_multi_aff_alloc(isl_set_copy(opt
->p
[i
].set
),
5513 isl_multi_aff_copy(opt
->p
[i
].maff
));
5514 if (need_substitution(opt
->p
[i
].maff
))
5515 pma
= isl_pw_multi_aff_substitute(pma
,
5516 isl_dim_in
, n_in
- 1, min_expr_pa
);
5517 else if (need_split_set(opt
->p
[i
].set
, cst
))
5518 pma
= isl_pw_multi_aff_intersect_domain(pma
,
5519 isl_set_copy(min_expr
));
5520 pma
= isl_pw_multi_aff_project_out(pma
,
5521 isl_dim_in
, n_in
- 1, 1);
5523 res
= isl_pw_multi_aff_add_disjoint(res
, pma
);
5526 isl_pw_multi_aff_free(opt
);
5527 isl_pw_aff_free(min_expr_pa
);
5528 isl_set_free(min_expr
);
5532 isl_pw_multi_aff_free(opt
);
5533 isl_pw_aff_free(min_expr_pa
);
5534 isl_set_free(min_expr
);
5539 static __isl_give isl_pw_multi_aff
*basic_map_partial_lexopt_pma(
5540 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
5541 __isl_give isl_set
**empty
, int max
);
5543 /* This function is called from basic_map_partial_lexopt_symm.
5544 * The last variable of "bmap" and "dom" corresponds to the minimum
5545 * of the bounds in "cst". "map_space" is the space of the original
5546 * input relation (of basic_map_partial_lexopt_symm) and "set_space"
5547 * is the space of the original domain.
5549 * We recursively call basic_map_partial_lexopt and then plug in
5550 * the definition of the minimum in the result.
5552 static __isl_give
union isl_lex_res
basic_map_partial_lexopt_symm_pma_core(
5553 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
5554 __isl_give isl_set
**empty
, int max
, __isl_take isl_mat
*cst
,
5555 __isl_take isl_space
*map_space
, __isl_take isl_space
*set_space
)
5557 isl_pw_multi_aff
*opt
;
5558 isl_pw_aff
*min_expr_pa
;
5560 union isl_lex_res res
;
5562 min_expr
= set_minimum(isl_basic_set_get_space(dom
), isl_mat_copy(cst
));
5563 min_expr_pa
= set_minimum_pa(isl_basic_set_get_space(dom
),
5566 opt
= basic_map_partial_lexopt_pma(bmap
, dom
, empty
, max
);
5569 *empty
= split(*empty
,
5570 isl_set_copy(min_expr
), isl_mat_copy(cst
));
5571 *empty
= isl_set_reset_space(*empty
, set_space
);
5574 opt
= split_domain_pma(opt
, min_expr_pa
, min_expr
, cst
);
5575 opt
= isl_pw_multi_aff_reset_space(opt
, map_space
);
5581 static __isl_give isl_pw_multi_aff
*basic_map_partial_lexopt_symm_pma(
5582 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
5583 __isl_give isl_set
**empty
, int max
, int first
, int second
)
5585 return basic_map_partial_lexopt_symm(bmap
, dom
, empty
, max
,
5586 first
, second
, &basic_map_partial_lexopt_symm_pma_core
).pma
;
5589 /* Recursive part of isl_basic_map_partial_lexopt_pw_multi_aff, after detecting
5590 * equalities and removing redundant constraints.
5592 * We first check if there are any parallel constraints (left).
5593 * If not, we are in the base case.
5594 * If there are parallel constraints, we replace them by a single
5595 * constraint in basic_map_partial_lexopt_symm_pma and then call
5596 * this function recursively to look for more parallel constraints.
5598 static __isl_give isl_pw_multi_aff
*basic_map_partial_lexopt_pma(
5599 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
5600 __isl_give isl_set
**empty
, int max
)
5608 if (bmap
->ctx
->opt
->pip_symmetry
)
5609 par
= parallel_constraints(bmap
, &first
, &second
);
5613 return basic_map_partial_lexopt_base_pma(bmap
, dom
, empty
, max
);
5615 return basic_map_partial_lexopt_symm_pma(bmap
, dom
, empty
, max
,
5618 isl_basic_set_free(dom
);
5619 isl_basic_map_free(bmap
);
5623 /* Compute the lexicographic minimum (or maximum if "max" is set)
5624 * of "bmap" over the domain "dom" and return the result as a piecewise
5625 * multi-affine expression.
5626 * If "empty" is not NULL, then *empty is assigned a set that
5627 * contains those parts of the domain where there is no solution.
5628 * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL),
5629 * then we compute the rational optimum. Otherwise, we compute
5630 * the integral optimum.
5632 * We perform some preprocessing. As the PILP solver does not
5633 * handle implicit equalities very well, we first make sure all
5634 * the equalities are explicitly available.
5636 * We also add context constraints to the basic map and remove
5637 * redundant constraints. This is only needed because of the
5638 * way we handle simple symmetries. In particular, we currently look
5639 * for symmetries on the constraints, before we set up the main tableau.
5640 * It is then no good to look for symmetries on possibly redundant constraints.
5642 __isl_give isl_pw_multi_aff
*isl_basic_map_partial_lexopt_pw_multi_aff(
5643 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
5644 __isl_give isl_set
**empty
, int max
)
5651 isl_assert(bmap
->ctx
,
5652 isl_basic_map_compatible_domain(bmap
, dom
), goto error
);
5654 if (isl_basic_set_dim(dom
, isl_dim_all
) == 0)
5655 return basic_map_partial_lexopt_pma(bmap
, dom
, empty
, max
);
5657 bmap
= isl_basic_map_intersect_domain(bmap
, isl_basic_set_copy(dom
));
5658 bmap
= isl_basic_map_detect_equalities(bmap
);
5659 bmap
= isl_basic_map_remove_redundancies(bmap
);
5661 return basic_map_partial_lexopt_pma(bmap
, dom
, empty
, max
);
5663 isl_basic_set_free(dom
);
5664 isl_basic_map_free(bmap
);