2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 #include <isl_ctx_private.h>
11 #include <isl_map_private.h>
12 #include "isl_sample.h"
16 #include "isl_equalities.h"
18 #include "isl_basis_reduction.h"
19 #include <isl_factorization.h>
20 #include <isl_point_private.h>
21 #include <isl_options_private.h>
22 #include <isl_vec_private.h>
24 #include <bset_from_bmap.c>
25 #include <set_to_map.c>
27 static __isl_give isl_vec
*empty_sample(__isl_take isl_basic_set
*bset
)
31 vec
= isl_vec_alloc(bset
->ctx
, 0);
32 isl_basic_set_free(bset
);
36 /* Construct a zero sample of the same dimension as bset.
37 * As a special case, if bset is zero-dimensional, this
38 * function creates a zero-dimensional sample point.
40 static __isl_give isl_vec
*zero_sample(__isl_take isl_basic_set
*bset
)
43 struct isl_vec
*sample
;
45 dim
= isl_basic_set_dim(bset
, isl_dim_all
);
48 sample
= isl_vec_alloc(bset
->ctx
, 1 + dim
);
50 isl_int_set_si(sample
->el
[0], 1);
51 isl_seq_clr(sample
->el
+ 1, dim
);
53 isl_basic_set_free(bset
);
56 isl_basic_set_free(bset
);
60 static __isl_give isl_vec
*interval_sample(__isl_take isl_basic_set
*bset
)
64 struct isl_vec
*sample
;
66 bset
= isl_basic_set_simplify(bset
);
69 if (isl_basic_set_plain_is_empty(bset
))
70 return empty_sample(bset
);
71 if (bset
->n_eq
== 0 && bset
->n_ineq
== 0)
72 return zero_sample(bset
);
74 sample
= isl_vec_alloc(bset
->ctx
, 2);
79 isl_int_set_si(sample
->block
.data
[0], 1);
82 isl_assert(bset
->ctx
, bset
->n_eq
== 1, goto error
);
83 isl_assert(bset
->ctx
, bset
->n_ineq
== 0, goto error
);
84 if (isl_int_is_one(bset
->eq
[0][1]))
85 isl_int_neg(sample
->el
[1], bset
->eq
[0][0]);
87 isl_assert(bset
->ctx
, isl_int_is_negone(bset
->eq
[0][1]),
89 isl_int_set(sample
->el
[1], bset
->eq
[0][0]);
91 isl_basic_set_free(bset
);
96 if (isl_int_is_one(bset
->ineq
[0][1]))
97 isl_int_neg(sample
->block
.data
[1], bset
->ineq
[0][0]);
99 isl_int_set(sample
->block
.data
[1], bset
->ineq
[0][0]);
100 for (i
= 1; i
< bset
->n_ineq
; ++i
) {
101 isl_seq_inner_product(sample
->block
.data
,
102 bset
->ineq
[i
], 2, &t
);
103 if (isl_int_is_neg(t
))
107 if (i
< bset
->n_ineq
) {
108 isl_vec_free(sample
);
109 return empty_sample(bset
);
112 isl_basic_set_free(bset
);
115 isl_basic_set_free(bset
);
116 isl_vec_free(sample
);
120 /* Find a sample integer point, if any, in bset, which is known
121 * to have equalities. If bset contains no integer points, then
122 * return a zero-length vector.
123 * We simply remove the known equalities, compute a sample
124 * in the resulting bset, using the specified recurse function,
125 * and then transform the sample back to the original space.
127 static __isl_give isl_vec
*sample_eq(__isl_take isl_basic_set
*bset
,
128 __isl_give isl_vec
*(*recurse
)(__isl_take isl_basic_set
*))
131 struct isl_vec
*sample
;
136 bset
= isl_basic_set_remove_equalities(bset
, &T
, NULL
);
137 sample
= recurse(bset
);
138 if (!sample
|| sample
->size
== 0)
141 sample
= isl_mat_vec_product(T
, sample
);
145 /* Return a matrix containing the equalities of the tableau
146 * in constraint form. The tableau is assumed to have
147 * an associated bset that has been kept up-to-date.
149 static struct isl_mat
*tab_equalities(struct isl_tab
*tab
)
154 struct isl_basic_set
*bset
;
159 bset
= isl_tab_peek_bset(tab
);
160 isl_assert(tab
->mat
->ctx
, bset
, return NULL
);
162 n_eq
= tab
->n_var
- tab
->n_col
+ tab
->n_dead
;
163 if (tab
->empty
|| n_eq
== 0)
164 return isl_mat_alloc(tab
->mat
->ctx
, 0, tab
->n_var
);
165 if (n_eq
== tab
->n_var
)
166 return isl_mat_identity(tab
->mat
->ctx
, tab
->n_var
);
168 eq
= isl_mat_alloc(tab
->mat
->ctx
, n_eq
, tab
->n_var
);
171 for (i
= 0, j
= 0; i
< tab
->n_con
; ++i
) {
172 if (tab
->con
[i
].is_row
)
174 if (tab
->con
[i
].index
>= 0 && tab
->con
[i
].index
>= tab
->n_dead
)
177 isl_seq_cpy(eq
->row
[j
], bset
->eq
[i
] + 1, tab
->n_var
);
179 isl_seq_cpy(eq
->row
[j
],
180 bset
->ineq
[i
- bset
->n_eq
] + 1, tab
->n_var
);
183 isl_assert(bset
->ctx
, j
== n_eq
, goto error
);
190 /* Compute and return an initial basis for the bounded tableau "tab".
192 * If the tableau is either full-dimensional or zero-dimensional,
193 * the we simply return an identity matrix.
194 * Otherwise, we construct a basis whose first directions correspond
197 static struct isl_mat
*initial_basis(struct isl_tab
*tab
)
203 tab
->n_unbounded
= 0;
204 tab
->n_zero
= n_eq
= tab
->n_var
- tab
->n_col
+ tab
->n_dead
;
205 if (tab
->empty
|| n_eq
== 0 || n_eq
== tab
->n_var
)
206 return isl_mat_identity(tab
->mat
->ctx
, 1 + tab
->n_var
);
208 eq
= tab_equalities(tab
);
209 eq
= isl_mat_left_hermite(eq
, 0, NULL
, &Q
);
214 Q
= isl_mat_lin_to_aff(Q
);
218 /* Compute the minimum of the current ("level") basis row over "tab"
219 * and store the result in position "level" of "min".
221 * This function assumes that at least one more row and at least
222 * one more element in the constraint array are available in the tableau.
224 static enum isl_lp_result
compute_min(isl_ctx
*ctx
, struct isl_tab
*tab
,
225 __isl_keep isl_vec
*min
, int level
)
227 return isl_tab_min(tab
, tab
->basis
->row
[1 + level
],
228 ctx
->one
, &min
->el
[level
], NULL
, 0);
231 /* Compute the maximum of the current ("level") basis row over "tab"
232 * and store the result in position "level" of "max".
234 * This function assumes that at least one more row and at least
235 * one more element in the constraint array are available in the tableau.
237 static enum isl_lp_result
compute_max(isl_ctx
*ctx
, struct isl_tab
*tab
,
238 __isl_keep isl_vec
*max
, int level
)
240 enum isl_lp_result res
;
241 unsigned dim
= tab
->n_var
;
243 isl_seq_neg(tab
->basis
->row
[1 + level
] + 1,
244 tab
->basis
->row
[1 + level
] + 1, dim
);
245 res
= isl_tab_min(tab
, tab
->basis
->row
[1 + level
],
246 ctx
->one
, &max
->el
[level
], NULL
, 0);
247 isl_seq_neg(tab
->basis
->row
[1 + level
] + 1,
248 tab
->basis
->row
[1 + level
] + 1, dim
);
249 isl_int_neg(max
->el
[level
], max
->el
[level
]);
254 /* Perform a greedy search for an integer point in the set represented
255 * by "tab", given that the minimal rational value (rounded up to the
256 * nearest integer) at "level" is smaller than the maximal rational
257 * value (rounded down to the nearest integer).
259 * Return 1 if we have found an integer point (if tab->n_unbounded > 0
260 * then we may have only found integer values for the bounded dimensions
261 * and it is the responsibility of the caller to extend this solution
262 * to the unbounded dimensions).
263 * Return 0 if greedy search did not result in a solution.
264 * Return -1 if some error occurred.
266 * We assign a value half-way between the minimum and the maximum
267 * to the current dimension and check if the minimal value of the
268 * next dimension is still smaller than (or equal) to the maximal value.
269 * We continue this process until either
270 * - the minimal value (rounded up) is greater than the maximal value
271 * (rounded down). In this case, greedy search has failed.
272 * - we have exhausted all bounded dimensions, meaning that we have
274 * - the sample value of the tableau is integral.
275 * - some error has occurred.
277 static int greedy_search(isl_ctx
*ctx
, struct isl_tab
*tab
,
278 __isl_keep isl_vec
*min
, __isl_keep isl_vec
*max
, int level
)
280 struct isl_tab_undo
*snap
;
281 enum isl_lp_result res
;
283 snap
= isl_tab_snap(tab
);
286 isl_int_add(tab
->basis
->row
[1 + level
][0],
287 min
->el
[level
], max
->el
[level
]);
288 isl_int_fdiv_q_ui(tab
->basis
->row
[1 + level
][0],
289 tab
->basis
->row
[1 + level
][0], 2);
290 isl_int_neg(tab
->basis
->row
[1 + level
][0],
291 tab
->basis
->row
[1 + level
][0]);
292 if (isl_tab_add_valid_eq(tab
, tab
->basis
->row
[1 + level
]) < 0)
294 isl_int_set_si(tab
->basis
->row
[1 + level
][0], 0);
296 if (++level
>= tab
->n_var
- tab
->n_unbounded
)
298 if (isl_tab_sample_is_integer(tab
))
301 res
= compute_min(ctx
, tab
, min
, level
);
302 if (res
== isl_lp_error
)
304 if (res
!= isl_lp_ok
)
305 isl_die(ctx
, isl_error_internal
,
306 "expecting bounded rational solution",
308 res
= compute_max(ctx
, tab
, max
, level
);
309 if (res
== isl_lp_error
)
311 if (res
!= isl_lp_ok
)
312 isl_die(ctx
, isl_error_internal
,
313 "expecting bounded rational solution",
315 } while (isl_int_le(min
->el
[level
], max
->el
[level
]));
317 if (isl_tab_rollback(tab
, snap
) < 0)
323 /* Given a tableau representing a set, find and return
324 * an integer point in the set, if there is any.
326 * We perform a depth first search
327 * for an integer point, by scanning all possible values in the range
328 * attained by a basis vector, where an initial basis may have been set
329 * by the calling function. Otherwise an initial basis that exploits
330 * the equalities in the tableau is created.
331 * tab->n_zero is currently ignored and is clobbered by this function.
333 * The tableau is allowed to have unbounded direction, but then
334 * the calling function needs to set an initial basis, with the
335 * unbounded directions last and with tab->n_unbounded set
336 * to the number of unbounded directions.
337 * Furthermore, the calling functions needs to add shifted copies
338 * of all constraints involving unbounded directions to ensure
339 * that any feasible rational value in these directions can be rounded
340 * up to yield a feasible integer value.
341 * In particular, let B define the given basis x' = B x
342 * and let T be the inverse of B, i.e., X = T x'.
343 * Let a x + c >= 0 be a constraint of the set represented by the tableau,
344 * or a T x' + c >= 0 in terms of the given basis. Assume that
345 * the bounded directions have an integer value, then we can safely
346 * round up the values for the unbounded directions if we make sure
347 * that x' not only satisfies the original constraint, but also
348 * the constraint "a T x' + c + s >= 0" with s the sum of all
349 * negative values in the last n_unbounded entries of "a T".
350 * The calling function therefore needs to add the constraint
351 * a x + c + s >= 0. The current function then scans the first
352 * directions for an integer value and once those have been found,
353 * it can compute "T ceil(B x)" to yield an integer point in the set.
354 * Note that during the search, the first rows of B may be changed
355 * by a basis reduction, but the last n_unbounded rows of B remain
356 * unaltered and are also not mixed into the first rows.
358 * The search is implemented iteratively. "level" identifies the current
359 * basis vector. "init" is true if we want the first value at the current
360 * level and false if we want the next value.
362 * At the start of each level, we first check if we can find a solution
363 * using greedy search. If not, we continue with the exhaustive search.
365 * The initial basis is the identity matrix. If the range in some direction
366 * contains more than one integer value, we perform basis reduction based
367 * on the value of ctx->opt->gbr
368 * - ISL_GBR_NEVER: never perform basis reduction
369 * - ISL_GBR_ONCE: only perform basis reduction the first
370 * time such a range is encountered
371 * - ISL_GBR_ALWAYS: always perform basis reduction when
372 * such a range is encountered
374 * When ctx->opt->gbr is set to ISL_GBR_ALWAYS, then we allow the basis
375 * reduction computation to return early. That is, as soon as it
376 * finds a reasonable first direction.
378 __isl_give isl_vec
*isl_tab_sample(struct isl_tab
*tab
)
383 struct isl_vec
*sample
;
386 enum isl_lp_result res
;
390 struct isl_tab_undo
**snap
;
395 return isl_vec_alloc(tab
->mat
->ctx
, 0);
398 tab
->basis
= initial_basis(tab
);
401 isl_assert(tab
->mat
->ctx
, tab
->basis
->n_row
== tab
->n_var
+ 1,
403 isl_assert(tab
->mat
->ctx
, tab
->basis
->n_col
== tab
->n_var
+ 1,
410 if (tab
->n_unbounded
== tab
->n_var
) {
411 sample
= isl_tab_get_sample_value(tab
);
412 sample
= isl_mat_vec_product(isl_mat_copy(tab
->basis
), sample
);
413 sample
= isl_vec_ceil(sample
);
414 sample
= isl_mat_vec_inverse_product(isl_mat_copy(tab
->basis
),
419 if (isl_tab_extend_cons(tab
, dim
+ 1) < 0)
422 min
= isl_vec_alloc(ctx
, dim
);
423 max
= isl_vec_alloc(ctx
, dim
);
424 snap
= isl_alloc_array(ctx
, struct isl_tab_undo
*, dim
);
426 if (!min
|| !max
|| !snap
)
437 res
= compute_min(ctx
, tab
, min
, level
);
438 if (res
== isl_lp_error
)
440 if (res
!= isl_lp_ok
)
441 isl_die(ctx
, isl_error_internal
,
442 "expecting bounded rational solution",
444 if (isl_tab_sample_is_integer(tab
))
446 res
= compute_max(ctx
, tab
, max
, level
);
447 if (res
== isl_lp_error
)
449 if (res
!= isl_lp_ok
)
450 isl_die(ctx
, isl_error_internal
,
451 "expecting bounded rational solution",
453 if (isl_tab_sample_is_integer(tab
))
455 choice
= isl_int_lt(min
->el
[level
], max
->el
[level
]);
458 g
= greedy_search(ctx
, tab
, min
, max
, level
);
464 if (!reduced
&& choice
&&
465 ctx
->opt
->gbr
!= ISL_GBR_NEVER
) {
466 unsigned gbr_only_first
;
467 if (ctx
->opt
->gbr
== ISL_GBR_ONCE
)
468 ctx
->opt
->gbr
= ISL_GBR_NEVER
;
470 gbr_only_first
= ctx
->opt
->gbr_only_first
;
471 ctx
->opt
->gbr_only_first
=
472 ctx
->opt
->gbr
== ISL_GBR_ALWAYS
;
473 tab
= isl_tab_compute_reduced_basis(tab
);
474 ctx
->opt
->gbr_only_first
= gbr_only_first
;
475 if (!tab
|| !tab
->basis
)
481 snap
[level
] = isl_tab_snap(tab
);
483 isl_int_add_ui(min
->el
[level
], min
->el
[level
], 1);
485 if (isl_int_gt(min
->el
[level
], max
->el
[level
])) {
489 if (isl_tab_rollback(tab
, snap
[level
]) < 0)
493 isl_int_neg(tab
->basis
->row
[1 + level
][0], min
->el
[level
]);
494 if (isl_tab_add_valid_eq(tab
, tab
->basis
->row
[1 + level
]) < 0)
496 isl_int_set_si(tab
->basis
->row
[1 + level
][0], 0);
497 if (level
+ tab
->n_unbounded
< dim
- 1) {
506 sample
= isl_tab_get_sample_value(tab
);
509 if (tab
->n_unbounded
&& !isl_int_is_one(sample
->el
[0])) {
510 sample
= isl_mat_vec_product(isl_mat_copy(tab
->basis
),
512 sample
= isl_vec_ceil(sample
);
513 sample
= isl_mat_vec_inverse_product(
514 isl_mat_copy(tab
->basis
), sample
);
517 sample
= isl_vec_alloc(ctx
, 0);
532 static __isl_give isl_vec
*sample_bounded(__isl_take isl_basic_set
*bset
);
534 /* Internal data for factored_sample.
535 * "sample" collects the sample and may get reset to a zero-length vector
536 * signaling the absence of a sample vector.
537 * "pos" is the position of the contribution of the next factor.
539 struct isl_factored_sample_data
{
544 /* isl_factorizer_every_factor_basic_set callback that extends
545 * the sample in data->sample with the contribution
546 * of the factor "bset".
547 * If "bset" turns out to be empty, then the product is empty too and
548 * no further factors need to be considered.
550 static isl_bool
factor_sample(__isl_keep isl_basic_set
*bset
, void *user
)
552 struct isl_factored_sample_data
*data
= user
;
556 n
= isl_basic_set_dim(bset
, isl_dim_set
);
558 return isl_bool_error
;
560 sample
= sample_bounded(isl_basic_set_copy(bset
));
562 return isl_bool_error
;
563 if (sample
->size
== 0) {
564 isl_vec_free(data
->sample
);
565 data
->sample
= sample
;
566 return isl_bool_false
;
568 isl_seq_cpy(data
->sample
->el
+ data
->pos
, sample
->el
+ 1, n
);
569 isl_vec_free(sample
);
572 return isl_bool_true
;
575 /* Compute a sample point of the given basic set, based on the given,
576 * non-trivial factorization.
578 static __isl_give isl_vec
*factored_sample(__isl_take isl_basic_set
*bset
,
579 __isl_take isl_factorizer
*f
)
581 struct isl_factored_sample_data data
= { NULL
};
586 ctx
= isl_basic_set_get_ctx(bset
);
587 total
= isl_basic_set_dim(bset
, isl_dim_all
);
588 if (!ctx
|| total
< 0)
591 data
.sample
= isl_vec_alloc(ctx
, 1 + total
);
594 isl_int_set_si(data
.sample
->el
[0], 1);
597 every
= isl_factorizer_every_factor_basic_set(f
, &factor_sample
, &data
);
599 data
.sample
= isl_vec_free(data
.sample
);
603 morph
= isl_morph_inverse(isl_morph_copy(f
->morph
));
604 data
.sample
= isl_morph_vec(morph
, data
.sample
);
607 isl_basic_set_free(bset
);
608 isl_factorizer_free(f
);
611 isl_basic_set_free(bset
);
612 isl_factorizer_free(f
);
613 isl_vec_free(data
.sample
);
617 /* Given a basic set that is known to be bounded, find and return
618 * an integer point in the basic set, if there is any.
620 * After handling some trivial cases, we construct a tableau
621 * and then use isl_tab_sample to find a sample, passing it
622 * the identity matrix as initial basis.
624 static __isl_give isl_vec
*sample_bounded(__isl_take isl_basic_set
*bset
)
627 struct isl_vec
*sample
;
628 struct isl_tab
*tab
= NULL
;
634 if (isl_basic_set_plain_is_empty(bset
))
635 return empty_sample(bset
);
637 dim
= isl_basic_set_dim(bset
, isl_dim_all
);
639 bset
= isl_basic_set_free(bset
);
641 return zero_sample(bset
);
643 return interval_sample(bset
);
645 return sample_eq(bset
, sample_bounded
);
647 f
= isl_basic_set_factorizer(bset
);
651 return factored_sample(bset
, f
);
652 isl_factorizer_free(f
);
654 tab
= isl_tab_from_basic_set(bset
, 1);
655 if (tab
&& tab
->empty
) {
657 ISL_F_SET(bset
, ISL_BASIC_SET_EMPTY
);
658 sample
= isl_vec_alloc(isl_basic_set_get_ctx(bset
), 0);
659 isl_basic_set_free(bset
);
663 if (!ISL_F_ISSET(bset
, ISL_BASIC_SET_NO_IMPLICIT
))
664 if (isl_tab_detect_implicit_equalities(tab
) < 0)
667 sample
= isl_tab_sample(tab
);
671 if (sample
->size
> 0) {
672 isl_vec_free(bset
->sample
);
673 bset
->sample
= isl_vec_copy(sample
);
676 isl_basic_set_free(bset
);
680 isl_basic_set_free(bset
);
685 /* Given a basic set "bset" and a value "sample" for the first coordinates
686 * of bset, plug in these values and drop the corresponding coordinates.
688 * We do this by computing the preimage of the transformation
694 * where [1 s] is the sample value and I is the identity matrix of the
695 * appropriate dimension.
697 static __isl_give isl_basic_set
*plug_in(__isl_take isl_basic_set
*bset
,
698 __isl_take isl_vec
*sample
)
704 total
= isl_basic_set_dim(bset
, isl_dim_all
);
705 if (total
< 0 || !sample
)
708 T
= isl_mat_alloc(bset
->ctx
, 1 + total
, 1 + total
- (sample
->size
- 1));
712 for (i
= 0; i
< sample
->size
; ++i
) {
713 isl_int_set(T
->row
[i
][0], sample
->el
[i
]);
714 isl_seq_clr(T
->row
[i
] + 1, T
->n_col
- 1);
716 for (i
= 0; i
< T
->n_col
- 1; ++i
) {
717 isl_seq_clr(T
->row
[sample
->size
+ i
], T
->n_col
);
718 isl_int_set_si(T
->row
[sample
->size
+ i
][1 + i
], 1);
720 isl_vec_free(sample
);
722 bset
= isl_basic_set_preimage(bset
, T
);
725 isl_basic_set_free(bset
);
726 isl_vec_free(sample
);
730 /* Given a basic set "bset", return any (possibly non-integer) point
733 static __isl_give isl_vec
*rational_sample(__isl_take isl_basic_set
*bset
)
736 struct isl_vec
*sample
;
741 tab
= isl_tab_from_basic_set(bset
, 0);
742 sample
= isl_tab_get_sample_value(tab
);
745 isl_basic_set_free(bset
);
750 /* Given a linear cone "cone" and a rational point "vec",
751 * construct a polyhedron with shifted copies of the constraints in "cone",
752 * i.e., a polyhedron with "cone" as its recession cone, such that each
753 * point x in this polyhedron is such that the unit box positioned at x
754 * lies entirely inside the affine cone 'vec + cone'.
755 * Any rational point in this polyhedron may therefore be rounded up
756 * to yield an integer point that lies inside said affine cone.
758 * Denote the constraints of cone by "<a_i, x> >= 0" and the rational
759 * point "vec" by v/d.
760 * Let b_i = <a_i, v>. Then the affine cone 'vec + cone' is given
761 * by <a_i, x> - b/d >= 0.
762 * The polyhedron <a_i, x> - ceil{b/d} >= 0 is a subset of this affine cone.
763 * We prefer this polyhedron over the actual affine cone because it doesn't
764 * require a scaling of the constraints.
765 * If each of the vertices of the unit cube positioned at x lies inside
766 * this polyhedron, then the whole unit cube at x lies inside the affine cone.
767 * We therefore impose that x' = x + \sum e_i, for any selection of unit
768 * vectors lies inside the polyhedron, i.e.,
770 * <a_i, x'> - ceil{b/d} = <a_i, x> + sum a_i - ceil{b/d} >= 0
772 * The most stringent of these constraints is the one that selects
773 * all negative a_i, so the polyhedron we are looking for has constraints
775 * <a_i, x> + sum_{a_i < 0} a_i - ceil{b/d} >= 0
777 * Note that if cone were known to have only non-negative rays
778 * (which can be accomplished by a unimodular transformation),
779 * then we would only have to check the points x' = x + e_i
780 * and we only have to add the smallest negative a_i (if any)
781 * instead of the sum of all negative a_i.
783 static __isl_give isl_basic_set
*shift_cone(__isl_take isl_basic_set
*cone
,
784 __isl_take isl_vec
*vec
)
789 struct isl_basic_set
*shift
= NULL
;
791 total
= isl_basic_set_dim(cone
, isl_dim_all
);
792 if (total
< 0 || !vec
)
795 isl_assert(cone
->ctx
, cone
->n_eq
== 0, goto error
);
797 shift
= isl_basic_set_alloc_space(isl_basic_set_get_space(cone
),
800 for (i
= 0; i
< cone
->n_ineq
; ++i
) {
801 k
= isl_basic_set_alloc_inequality(shift
);
804 isl_seq_cpy(shift
->ineq
[k
] + 1, cone
->ineq
[i
] + 1, total
);
805 isl_seq_inner_product(shift
->ineq
[k
] + 1, vec
->el
+ 1, total
,
807 isl_int_cdiv_q(shift
->ineq
[k
][0],
808 shift
->ineq
[k
][0], vec
->el
[0]);
809 isl_int_neg(shift
->ineq
[k
][0], shift
->ineq
[k
][0]);
810 for (j
= 0; j
< total
; ++j
) {
811 if (isl_int_is_nonneg(shift
->ineq
[k
][1 + j
]))
813 isl_int_add(shift
->ineq
[k
][0],
814 shift
->ineq
[k
][0], shift
->ineq
[k
][1 + j
]);
818 isl_basic_set_free(cone
);
821 return isl_basic_set_finalize(shift
);
823 isl_basic_set_free(shift
);
824 isl_basic_set_free(cone
);
829 /* Given a rational point vec in a (transformed) basic set,
830 * such that cone is the recession cone of the original basic set,
831 * "round up" the rational point to an integer point.
833 * We first check if the rational point just happens to be integer.
834 * If not, we transform the cone in the same way as the basic set,
835 * pick a point x in this cone shifted to the rational point such that
836 * the whole unit cube at x is also inside this affine cone.
837 * Then we simply round up the coordinates of x and return the
838 * resulting integer point.
840 static __isl_give isl_vec
*round_up_in_cone(__isl_take isl_vec
*vec
,
841 __isl_take isl_basic_set
*cone
, __isl_take isl_mat
*U
)
845 if (!vec
|| !cone
|| !U
)
848 isl_assert(vec
->ctx
, vec
->size
!= 0, goto error
);
849 if (isl_int_is_one(vec
->el
[0])) {
851 isl_basic_set_free(cone
);
855 total
= isl_basic_set_dim(cone
, isl_dim_all
);
858 cone
= isl_basic_set_preimage(cone
, U
);
859 cone
= isl_basic_set_remove_dims(cone
, isl_dim_set
,
860 0, total
- (vec
->size
- 1));
862 cone
= shift_cone(cone
, vec
);
864 vec
= rational_sample(cone
);
865 vec
= isl_vec_ceil(vec
);
870 isl_basic_set_free(cone
);
874 /* Concatenate two integer vectors, i.e., two vectors with denominator
875 * (stored in element 0) equal to 1.
877 static __isl_give isl_vec
*vec_concat(__isl_take isl_vec
*vec1
,
878 __isl_take isl_vec
*vec2
)
884 isl_assert(vec1
->ctx
, vec1
->size
> 0, goto error
);
885 isl_assert(vec2
->ctx
, vec2
->size
> 0, goto error
);
886 isl_assert(vec1
->ctx
, isl_int_is_one(vec1
->el
[0]), goto error
);
887 isl_assert(vec2
->ctx
, isl_int_is_one(vec2
->el
[0]), goto error
);
889 vec
= isl_vec_alloc(vec1
->ctx
, vec1
->size
+ vec2
->size
- 1);
893 isl_seq_cpy(vec
->el
, vec1
->el
, vec1
->size
);
894 isl_seq_cpy(vec
->el
+ vec1
->size
, vec2
->el
+ 1, vec2
->size
- 1);
906 /* Give a basic set "bset" with recession cone "cone", compute and
907 * return an integer point in bset, if any.
909 * If the recession cone is full-dimensional, then we know that
910 * bset contains an infinite number of integer points and it is
911 * fairly easy to pick one of them.
912 * If the recession cone is not full-dimensional, then we first
913 * transform bset such that the bounded directions appear as
914 * the first dimensions of the transformed basic set.
915 * We do this by using a unimodular transformation that transforms
916 * the equalities in the recession cone to equalities on the first
919 * The transformed set is then projected onto its bounded dimensions.
920 * Note that to compute this projection, we can simply drop all constraints
921 * involving any of the unbounded dimensions since these constraints
922 * cannot be combined to produce a constraint on the bounded dimensions.
923 * To see this, assume that there is such a combination of constraints
924 * that produces a constraint on the bounded dimensions. This means
925 * that some combination of the unbounded dimensions has both an upper
926 * bound and a lower bound in terms of the bounded dimensions, but then
927 * this combination would be a bounded direction too and would have been
928 * transformed into a bounded dimensions.
930 * We then compute a sample value in the bounded dimensions.
931 * If no such value can be found, then the original set did not contain
932 * any integer points and we are done.
933 * Otherwise, we plug in the value we found in the bounded dimensions,
934 * project out these bounded dimensions and end up with a set with
935 * a full-dimensional recession cone.
936 * A sample point in this set is computed by "rounding up" any
937 * rational point in the set.
939 * The sample points in the bounded and unbounded dimensions are
940 * then combined into a single sample point and transformed back
941 * to the original space.
943 __isl_give isl_vec
*isl_basic_set_sample_with_cone(
944 __isl_take isl_basic_set
*bset
, __isl_take isl_basic_set
*cone
)
948 struct isl_mat
*M
, *U
;
949 struct isl_vec
*sample
;
950 struct isl_vec
*cone_sample
;
952 struct isl_basic_set
*bounded
;
954 total
= isl_basic_set_dim(cone
, isl_dim_all
);
955 if (!bset
|| total
< 0)
958 ctx
= isl_basic_set_get_ctx(bset
);
959 cone_dim
= total
- cone
->n_eq
;
961 M
= isl_mat_sub_alloc6(ctx
, cone
->eq
, 0, cone
->n_eq
, 1, total
);
962 M
= isl_mat_left_hermite(M
, 0, &U
, NULL
);
967 U
= isl_mat_lin_to_aff(U
);
968 bset
= isl_basic_set_preimage(bset
, isl_mat_copy(U
));
970 bounded
= isl_basic_set_copy(bset
);
971 bounded
= isl_basic_set_drop_constraints_involving(bounded
,
972 total
- cone_dim
, cone_dim
);
973 bounded
= isl_basic_set_drop_dims(bounded
, total
- cone_dim
, cone_dim
);
974 sample
= sample_bounded(bounded
);
975 if (!sample
|| sample
->size
== 0) {
976 isl_basic_set_free(bset
);
977 isl_basic_set_free(cone
);
981 bset
= plug_in(bset
, isl_vec_copy(sample
));
982 cone_sample
= rational_sample(bset
);
983 cone_sample
= round_up_in_cone(cone_sample
, cone
, isl_mat_copy(U
));
984 sample
= vec_concat(sample
, cone_sample
);
985 sample
= isl_mat_vec_product(U
, sample
);
988 isl_basic_set_free(cone
);
989 isl_basic_set_free(bset
);
993 static void vec_sum_of_neg(__isl_keep isl_vec
*v
, isl_int
*s
)
997 isl_int_set_si(*s
, 0);
999 for (i
= 0; i
< v
->size
; ++i
)
1000 if (isl_int_is_neg(v
->el
[i
]))
1001 isl_int_add(*s
, *s
, v
->el
[i
]);
1004 /* Given a tableau "tab", a tableau "tab_cone" that corresponds
1005 * to the recession cone and the inverse of a new basis U = inv(B),
1006 * with the unbounded directions in B last,
1007 * add constraints to "tab" that ensure any rational value
1008 * in the unbounded directions can be rounded up to an integer value.
1010 * The new basis is given by x' = B x, i.e., x = U x'.
1011 * For any rational value of the last tab->n_unbounded coordinates
1012 * in the update tableau, the value that is obtained by rounding
1013 * up this value should be contained in the original tableau.
1014 * For any constraint "a x + c >= 0", we therefore need to add
1015 * a constraint "a x + c + s >= 0", with s the sum of all negative
1016 * entries in the last elements of "a U".
1018 * Since we are not interested in the first entries of any of the "a U",
1019 * we first drop the columns of U that correpond to bounded directions.
1021 static int tab_shift_cone(struct isl_tab
*tab
,
1022 struct isl_tab
*tab_cone
, struct isl_mat
*U
)
1026 struct isl_basic_set
*bset
= NULL
;
1028 if (tab
&& tab
->n_unbounded
== 0) {
1033 if (!tab
|| !tab_cone
|| !U
)
1035 bset
= isl_tab_peek_bset(tab_cone
);
1036 U
= isl_mat_drop_cols(U
, 0, tab
->n_var
- tab
->n_unbounded
);
1037 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
1039 struct isl_vec
*row
= NULL
;
1040 if (isl_tab_is_equality(tab_cone
, tab_cone
->n_eq
+ i
))
1042 row
= isl_vec_alloc(bset
->ctx
, tab_cone
->n_var
);
1045 isl_seq_cpy(row
->el
, bset
->ineq
[i
] + 1, tab_cone
->n_var
);
1046 row
= isl_vec_mat_product(row
, isl_mat_copy(U
));
1049 vec_sum_of_neg(row
, &v
);
1051 if (isl_int_is_zero(v
))
1053 if (isl_tab_extend_cons(tab
, 1) < 0)
1055 isl_int_add(bset
->ineq
[i
][0], bset
->ineq
[i
][0], v
);
1056 ok
= isl_tab_add_ineq(tab
, bset
->ineq
[i
]) >= 0;
1057 isl_int_sub(bset
->ineq
[i
][0], bset
->ineq
[i
][0], v
);
1071 /* Compute and return an initial basis for the possibly
1072 * unbounded tableau "tab". "tab_cone" is a tableau
1073 * for the corresponding recession cone.
1074 * Additionally, add constraints to "tab" that ensure
1075 * that any rational value for the unbounded directions
1076 * can be rounded up to an integer value.
1078 * If the tableau is bounded, i.e., if the recession cone
1079 * is zero-dimensional, then we just use inital_basis.
1080 * Otherwise, we construct a basis whose first directions
1081 * correspond to equalities, followed by bounded directions,
1082 * i.e., equalities in the recession cone.
1083 * The remaining directions are then unbounded.
1085 int isl_tab_set_initial_basis_with_cone(struct isl_tab
*tab
,
1086 struct isl_tab
*tab_cone
)
1089 struct isl_mat
*cone_eq
;
1090 struct isl_mat
*U
, *Q
;
1092 if (!tab
|| !tab_cone
)
1095 if (tab_cone
->n_col
== tab_cone
->n_dead
) {
1096 tab
->basis
= initial_basis(tab
);
1097 return tab
->basis
? 0 : -1;
1100 eq
= tab_equalities(tab
);
1103 tab
->n_zero
= eq
->n_row
;
1104 cone_eq
= tab_equalities(tab_cone
);
1105 eq
= isl_mat_concat(eq
, cone_eq
);
1108 tab
->n_unbounded
= tab
->n_var
- (eq
->n_row
- tab
->n_zero
);
1109 eq
= isl_mat_left_hermite(eq
, 0, &U
, &Q
);
1113 tab
->basis
= isl_mat_lin_to_aff(Q
);
1114 if (tab_shift_cone(tab
, tab_cone
, U
) < 0)
1121 /* Compute and return a sample point in bset using generalized basis
1122 * reduction. We first check if the input set has a non-trivial
1123 * recession cone. If so, we perform some extra preprocessing in
1124 * sample_with_cone. Otherwise, we directly perform generalized basis
1127 static __isl_give isl_vec
*gbr_sample(__isl_take isl_basic_set
*bset
)
1130 struct isl_basic_set
*cone
;
1132 dim
= isl_basic_set_dim(bset
, isl_dim_all
);
1136 cone
= isl_basic_set_recession_cone(isl_basic_set_copy(bset
));
1140 if (cone
->n_eq
< dim
)
1141 return isl_basic_set_sample_with_cone(bset
, cone
);
1143 isl_basic_set_free(cone
);
1144 return sample_bounded(bset
);
1146 isl_basic_set_free(bset
);
1150 static __isl_give isl_vec
*basic_set_sample(__isl_take isl_basic_set
*bset
,
1153 struct isl_ctx
*ctx
;
1159 if (isl_basic_set_plain_is_empty(bset
))
1160 return empty_sample(bset
);
1162 dim
= isl_basic_set_dim(bset
, isl_dim_set
);
1164 isl_basic_set_check_no_params(bset
) < 0 ||
1165 isl_basic_set_check_no_locals(bset
) < 0)
1168 if (bset
->sample
&& bset
->sample
->size
== 1 + dim
) {
1169 int contains
= isl_basic_set_contains(bset
, bset
->sample
);
1173 struct isl_vec
*sample
= isl_vec_copy(bset
->sample
);
1174 isl_basic_set_free(bset
);
1178 isl_vec_free(bset
->sample
);
1179 bset
->sample
= NULL
;
1182 return sample_eq(bset
, bounded
? isl_basic_set_sample_bounded
1183 : isl_basic_set_sample_vec
);
1185 return zero_sample(bset
);
1187 return interval_sample(bset
);
1189 return bounded
? sample_bounded(bset
) : gbr_sample(bset
);
1191 isl_basic_set_free(bset
);
1195 __isl_give isl_vec
*isl_basic_set_sample_vec(__isl_take isl_basic_set
*bset
)
1197 return basic_set_sample(bset
, 0);
1200 /* Compute an integer sample in "bset", where the caller guarantees
1201 * that "bset" is bounded.
1203 __isl_give isl_vec
*isl_basic_set_sample_bounded(__isl_take isl_basic_set
*bset
)
1205 return basic_set_sample(bset
, 1);
1208 __isl_give isl_basic_set
*isl_basic_set_from_vec(__isl_take isl_vec
*vec
)
1212 struct isl_basic_set
*bset
= NULL
;
1213 struct isl_ctx
*ctx
;
1219 isl_assert(ctx
, vec
->size
!= 0, goto error
);
1221 bset
= isl_basic_set_alloc(ctx
, 0, vec
->size
- 1, 0, vec
->size
- 1, 0);
1222 dim
= isl_basic_set_dim(bset
, isl_dim_set
);
1225 for (i
= dim
- 1; i
>= 0; --i
) {
1226 k
= isl_basic_set_alloc_equality(bset
);
1229 isl_seq_clr(bset
->eq
[k
], 1 + dim
);
1230 isl_int_neg(bset
->eq
[k
][0], vec
->el
[1 + i
]);
1231 isl_int_set(bset
->eq
[k
][1 + i
], vec
->el
[0]);
1237 isl_basic_set_free(bset
);
1242 __isl_give isl_basic_map
*isl_basic_map_sample(__isl_take isl_basic_map
*bmap
)
1244 struct isl_basic_set
*bset
;
1245 struct isl_vec
*sample_vec
;
1247 bset
= isl_basic_map_underlying_set(isl_basic_map_copy(bmap
));
1248 sample_vec
= isl_basic_set_sample_vec(bset
);
1251 if (sample_vec
->size
== 0) {
1252 isl_vec_free(sample_vec
);
1253 return isl_basic_map_set_to_empty(bmap
);
1255 isl_vec_free(bmap
->sample
);
1256 bmap
->sample
= isl_vec_copy(sample_vec
);
1257 bset
= isl_basic_set_from_vec(sample_vec
);
1258 return isl_basic_map_overlying_set(bset
, bmap
);
1260 isl_basic_map_free(bmap
);
1264 __isl_give isl_basic_set
*isl_basic_set_sample(__isl_take isl_basic_set
*bset
)
1266 return isl_basic_map_sample(bset
);
1269 __isl_give isl_basic_map
*isl_map_sample(__isl_take isl_map
*map
)
1272 isl_basic_map
*sample
= NULL
;
1277 for (i
= 0; i
< map
->n
; ++i
) {
1278 sample
= isl_basic_map_sample(isl_basic_map_copy(map
->p
[i
]));
1281 if (!ISL_F_ISSET(sample
, ISL_BASIC_MAP_EMPTY
))
1283 isl_basic_map_free(sample
);
1286 sample
= isl_basic_map_empty(isl_map_get_space(map
));
1294 __isl_give isl_basic_set
*isl_set_sample(__isl_take isl_set
*set
)
1296 return bset_from_bmap(isl_map_sample(set_to_map(set
)));
1299 __isl_give isl_point
*isl_basic_set_sample_point(__isl_take isl_basic_set
*bset
)
1304 space
= isl_basic_set_get_space(bset
);
1305 bset
= isl_basic_set_underlying_set(bset
);
1306 vec
= isl_basic_set_sample_vec(bset
);
1308 return isl_point_alloc(space
, vec
);
1311 __isl_give isl_point
*isl_set_sample_point(__isl_take isl_set
*set
)
1319 for (i
= 0; i
< set
->n
; ++i
) {
1320 pnt
= isl_basic_set_sample_point(isl_basic_set_copy(set
->p
[i
]));
1323 if (!isl_point_is_void(pnt
))
1325 isl_point_free(pnt
);
1328 pnt
= isl_point_void(isl_set_get_space(set
));