isl_map_coalesce: don't drop rational flag from result if set in input
[isl.git] / isl_tab.c
blob497743e95218ba033d713b91ba74f28d2ca7e0a5
1 #include "isl_map_private.h"
2 #include "isl_tab.h"
4 /*
5 * The implementation of tableaus in this file was inspired by Section 8
6 * of David Detlefs, Greg Nelson and James B. Saxe, "Simplify: a theorem
7 * prover for program checking".
8 */
10 struct isl_tab *isl_tab_alloc(struct isl_ctx *ctx,
11 unsigned n_row, unsigned n_var)
13 int i;
14 struct isl_tab *tab;
16 tab = isl_calloc_type(ctx, struct isl_tab);
17 if (!tab)
18 return NULL;
19 tab->mat = isl_mat_alloc(ctx, n_row, 2 + n_var);
20 if (!tab->mat)
21 goto error;
22 tab->var = isl_alloc_array(ctx, struct isl_tab_var, n_var);
23 if (!tab->var)
24 goto error;
25 tab->con = isl_alloc_array(ctx, struct isl_tab_var, n_row);
26 if (!tab->con)
27 goto error;
28 tab->col_var = isl_alloc_array(ctx, int, n_var);
29 if (!tab->col_var)
30 goto error;
31 tab->row_var = isl_alloc_array(ctx, int, n_row);
32 if (!tab->row_var)
33 goto error;
34 for (i = 0; i < n_var; ++i) {
35 tab->var[i].index = i;
36 tab->var[i].is_row = 0;
37 tab->var[i].is_nonneg = 0;
38 tab->var[i].is_zero = 0;
39 tab->var[i].is_redundant = 0;
40 tab->var[i].frozen = 0;
41 tab->col_var[i] = i;
43 tab->n_row = 0;
44 tab->n_con = 0;
45 tab->n_eq = 0;
46 tab->max_con = n_row;
47 tab->n_col = n_var;
48 tab->n_var = n_var;
49 tab->n_dead = 0;
50 tab->n_redundant = 0;
51 tab->need_undo = 0;
52 tab->rational = 0;
53 tab->empty = 0;
54 tab->in_undo = 0;
55 tab->bottom.type = isl_tab_undo_bottom;
56 tab->bottom.next = NULL;
57 tab->top = &tab->bottom;
58 return tab;
59 error:
60 isl_tab_free(tab);
61 return NULL;
64 static int extend_cons(struct isl_tab *tab, unsigned n_new)
66 if (tab->max_con < tab->n_con + n_new) {
67 struct isl_tab_var *con;
69 con = isl_realloc_array(tab->mat->ctx, tab->con,
70 struct isl_tab_var, tab->max_con + n_new);
71 if (!con)
72 return -1;
73 tab->con = con;
74 tab->max_con += n_new;
76 if (tab->mat->n_row < tab->n_row + n_new) {
77 int *row_var;
79 tab->mat = isl_mat_extend(tab->mat,
80 tab->n_row + n_new, tab->n_col);
81 if (!tab->mat)
82 return -1;
83 row_var = isl_realloc_array(tab->mat->ctx, tab->row_var,
84 int, tab->mat->n_row);
85 if (!row_var)
86 return -1;
87 tab->row_var = row_var;
89 return 0;
92 struct isl_tab *isl_tab_extend(struct isl_tab *tab, unsigned n_new)
94 if (extend_cons(tab, n_new) >= 0)
95 return tab;
97 isl_tab_free(tab);
98 return NULL;
101 static void free_undo(struct isl_tab *tab)
103 struct isl_tab_undo *undo, *next;
105 for (undo = tab->top; undo && undo != &tab->bottom; undo = next) {
106 next = undo->next;
107 free(undo);
109 tab->top = undo;
112 void isl_tab_free(struct isl_tab *tab)
114 if (!tab)
115 return;
116 free_undo(tab);
117 isl_mat_free(tab->mat);
118 isl_vec_free(tab->dual);
119 free(tab->var);
120 free(tab->con);
121 free(tab->row_var);
122 free(tab->col_var);
123 free(tab);
126 static struct isl_tab_var *var_from_index(struct isl_tab *tab, int i)
128 if (i >= 0)
129 return &tab->var[i];
130 else
131 return &tab->con[~i];
134 static struct isl_tab_var *var_from_row(struct isl_tab *tab, int i)
136 return var_from_index(tab, tab->row_var[i]);
139 static struct isl_tab_var *var_from_col(struct isl_tab *tab, int i)
141 return var_from_index(tab, tab->col_var[i]);
144 /* Check if there are any upper bounds on column variable "var",
145 * i.e., non-negative rows where var appears with a negative coefficient.
146 * Return 1 if there are no such bounds.
148 static int max_is_manifestly_unbounded(struct isl_tab *tab,
149 struct isl_tab_var *var)
151 int i;
153 if (var->is_row)
154 return 0;
155 for (i = tab->n_redundant; i < tab->n_row; ++i) {
156 if (!isl_int_is_neg(tab->mat->row[i][2 + var->index]))
157 continue;
158 if (var_from_row(tab, i)->is_nonneg)
159 return 0;
161 return 1;
164 /* Check if there are any lower bounds on column variable "var",
165 * i.e., non-negative rows where var appears with a positive coefficient.
166 * Return 1 if there are no such bounds.
168 static int min_is_manifestly_unbounded(struct isl_tab *tab,
169 struct isl_tab_var *var)
171 int i;
173 if (var->is_row)
174 return 0;
175 for (i = tab->n_redundant; i < tab->n_row; ++i) {
176 if (!isl_int_is_pos(tab->mat->row[i][2 + var->index]))
177 continue;
178 if (var_from_row(tab, i)->is_nonneg)
179 return 0;
181 return 1;
184 /* Given the index of a column "c", return the index of a row
185 * that can be used to pivot the column in, with either an increase
186 * (sgn > 0) or a decrease (sgn < 0) of the corresponding variable.
187 * If "var" is not NULL, then the row returned will be different from
188 * the one associated with "var".
190 * Each row in the tableau is of the form
192 * x_r = a_r0 + \sum_i a_ri x_i
194 * Only rows with x_r >= 0 and with the sign of a_ri opposite to "sgn"
195 * impose any limit on the increase or decrease in the value of x_c
196 * and this bound is equal to a_r0 / |a_rc|. We are therefore looking
197 * for the row with the smallest (most stringent) such bound.
198 * Note that the common denominator of each row drops out of the fraction.
199 * To check if row j has a smaller bound than row r, i.e.,
200 * a_j0 / |a_jc| < a_r0 / |a_rc| or a_j0 |a_rc| < a_r0 |a_jc|,
201 * we check if -sign(a_jc) (a_j0 a_rc - a_r0 a_jc) < 0,
202 * where -sign(a_jc) is equal to "sgn".
204 static int pivot_row(struct isl_tab *tab,
205 struct isl_tab_var *var, int sgn, int c)
207 int j, r, tsgn;
208 isl_int t;
210 isl_int_init(t);
211 r = -1;
212 for (j = tab->n_redundant; j < tab->n_row; ++j) {
213 if (var && j == var->index)
214 continue;
215 if (!var_from_row(tab, j)->is_nonneg)
216 continue;
217 if (sgn * isl_int_sgn(tab->mat->row[j][2 + c]) >= 0)
218 continue;
219 if (r < 0) {
220 r = j;
221 continue;
223 isl_int_mul(t, tab->mat->row[r][1], tab->mat->row[j][2 + c]);
224 isl_int_submul(t, tab->mat->row[j][1], tab->mat->row[r][2 + c]);
225 tsgn = sgn * isl_int_sgn(t);
226 if (tsgn < 0 || (tsgn == 0 &&
227 tab->row_var[j] < tab->row_var[r]))
228 r = j;
230 isl_int_clear(t);
231 return r;
234 /* Find a pivot (row and col) that will increase (sgn > 0) or decrease
235 * (sgn < 0) the value of row variable var.
236 * If not NULL, then skip_var is a row variable that should be ignored
237 * while looking for a pivot row. It is usually equal to var.
239 * As the given row in the tableau is of the form
241 * x_r = a_r0 + \sum_i a_ri x_i
243 * we need to find a column such that the sign of a_ri is equal to "sgn"
244 * (such that an increase in x_i will have the desired effect) or a
245 * column with a variable that may attain negative values.
246 * If a_ri is positive, then we need to move x_i in the same direction
247 * to obtain the desired effect. Otherwise, x_i has to move in the
248 * opposite direction.
250 static void find_pivot(struct isl_tab *tab,
251 struct isl_tab_var *var, struct isl_tab_var *skip_var,
252 int sgn, int *row, int *col)
254 int j, r, c;
255 isl_int *tr;
257 *row = *col = -1;
259 isl_assert(tab->mat->ctx, var->is_row, return);
260 tr = tab->mat->row[var->index];
262 c = -1;
263 for (j = tab->n_dead; j < tab->n_col; ++j) {
264 if (isl_int_is_zero(tr[2 + j]))
265 continue;
266 if (isl_int_sgn(tr[2 + j]) != sgn &&
267 var_from_col(tab, j)->is_nonneg)
268 continue;
269 if (c < 0 || tab->col_var[j] < tab->col_var[c])
270 c = j;
272 if (c < 0)
273 return;
275 sgn *= isl_int_sgn(tr[2 + c]);
276 r = pivot_row(tab, skip_var, sgn, c);
277 *row = r < 0 ? var->index : r;
278 *col = c;
281 /* Return 1 if row "row" represents an obviously redundant inequality.
282 * This means
283 * - it represents an inequality or a variable
284 * - that is the sum of a non-negative sample value and a positive
285 * combination of zero or more non-negative variables.
287 static int is_redundant(struct isl_tab *tab, int row)
289 int i;
291 if (tab->row_var[row] < 0 && !var_from_row(tab, row)->is_nonneg)
292 return 0;
294 if (isl_int_is_neg(tab->mat->row[row][1]))
295 return 0;
297 for (i = tab->n_dead; i < tab->n_col; ++i) {
298 if (isl_int_is_zero(tab->mat->row[row][2 + i]))
299 continue;
300 if (isl_int_is_neg(tab->mat->row[row][2 + i]))
301 return 0;
302 if (!var_from_col(tab, i)->is_nonneg)
303 return 0;
305 return 1;
308 static void swap_rows(struct isl_tab *tab, int row1, int row2)
310 int t;
311 t = tab->row_var[row1];
312 tab->row_var[row1] = tab->row_var[row2];
313 tab->row_var[row2] = t;
314 var_from_row(tab, row1)->index = row1;
315 var_from_row(tab, row2)->index = row2;
316 tab->mat = isl_mat_swap_rows(tab->mat, row1, row2);
319 static void push(struct isl_tab *tab,
320 enum isl_tab_undo_type type, struct isl_tab_var *var)
322 struct isl_tab_undo *undo;
324 if (!tab->need_undo)
325 return;
327 undo = isl_alloc_type(tab->mat->ctx, struct isl_tab_undo);
328 if (!undo) {
329 free_undo(tab);
330 tab->top = NULL;
331 return;
333 undo->type = type;
334 undo->var = var;
335 undo->next = tab->top;
336 tab->top = undo;
339 /* Mark row with index "row" as being redundant.
340 * If we may need to undo the operation or if the row represents
341 * a variable of the original problem, the row is kept,
342 * but no longer considered when looking for a pivot row.
343 * Otherwise, the row is simply removed.
345 * The row may be interchanged with some other row. If it
346 * is interchanged with a later row, return 1. Otherwise return 0.
347 * If the rows are checked in order in the calling function,
348 * then a return value of 1 means that the row with the given
349 * row number may now contain a different row that hasn't been checked yet.
351 static int mark_redundant(struct isl_tab *tab, int row)
353 struct isl_tab_var *var = var_from_row(tab, row);
354 var->is_redundant = 1;
355 isl_assert(tab->mat->ctx, row >= tab->n_redundant, return);
356 if (tab->need_undo || tab->row_var[row] >= 0) {
357 if (tab->row_var[row] >= 0) {
358 var->is_nonneg = 1;
359 push(tab, isl_tab_undo_nonneg, var);
361 if (row != tab->n_redundant)
362 swap_rows(tab, row, tab->n_redundant);
363 push(tab, isl_tab_undo_redundant, var);
364 tab->n_redundant++;
365 return 0;
366 } else {
367 if (row != tab->n_row - 1)
368 swap_rows(tab, row, tab->n_row - 1);
369 var_from_row(tab, tab->n_row - 1)->index = -1;
370 tab->n_row--;
371 return 1;
375 static void mark_empty(struct isl_tab *tab)
377 if (!tab->empty && tab->need_undo)
378 push(tab, isl_tab_undo_empty, NULL);
379 tab->empty = 1;
382 /* Given a row number "row" and a column number "col", pivot the tableau
383 * such that the associated variables are interchanged.
384 * The given row in the tableau expresses
386 * x_r = a_r0 + \sum_i a_ri x_i
388 * or
390 * x_c = 1/a_rc x_r - a_r0/a_rc + sum_{i \ne r} -a_ri/a_rc
392 * Substituting this equality into the other rows
394 * x_j = a_j0 + \sum_i a_ji x_i
396 * with a_jc \ne 0, we obtain
398 * x_j = a_jc/a_rc x_r + a_j0 - a_jc a_r0/a_rc + sum a_ji - a_jc a_ri/a_rc
400 * The tableau
402 * n_rc/d_r n_ri/d_r
403 * n_jc/d_j n_ji/d_j
405 * where i is any other column and j is any other row,
406 * is therefore transformed into
408 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
409 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
411 * The transformation is performed along the following steps
413 * d_r/n_rc n_ri/n_rc
414 * n_jc/d_j n_ji/d_j
416 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
417 * n_jc/d_j n_ji/d_j
419 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
420 * n_jc/(|n_rc| d_j) n_ji/(|n_rc| d_j)
422 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
423 * n_jc/(|n_rc| d_j) (n_ji |n_rc|)/(|n_rc| d_j)
425 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
426 * n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
428 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
429 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
432 static void pivot(struct isl_tab *tab, int row, int col)
434 int i, j;
435 int sgn;
436 int t;
437 struct isl_mat *mat = tab->mat;
438 struct isl_tab_var *var;
440 isl_int_swap(mat->row[row][0], mat->row[row][2 + col]);
441 sgn = isl_int_sgn(mat->row[row][0]);
442 if (sgn < 0) {
443 isl_int_neg(mat->row[row][0], mat->row[row][0]);
444 isl_int_neg(mat->row[row][2 + col], mat->row[row][2 + col]);
445 } else
446 for (j = 0; j < 1 + tab->n_col; ++j) {
447 if (j == 1 + col)
448 continue;
449 isl_int_neg(mat->row[row][1 + j], mat->row[row][1 + j]);
451 if (!isl_int_is_one(mat->row[row][0]))
452 isl_seq_normalize(mat->row[row], 2 + tab->n_col);
453 for (i = 0; i < tab->n_row; ++i) {
454 if (i == row)
455 continue;
456 if (isl_int_is_zero(mat->row[i][2 + col]))
457 continue;
458 isl_int_mul(mat->row[i][0], mat->row[i][0], mat->row[row][0]);
459 for (j = 0; j < 1 + tab->n_col; ++j) {
460 if (j == 1 + col)
461 continue;
462 isl_int_mul(mat->row[i][1 + j],
463 mat->row[i][1 + j], mat->row[row][0]);
464 isl_int_addmul(mat->row[i][1 + j],
465 mat->row[i][2 + col], mat->row[row][1 + j]);
467 isl_int_mul(mat->row[i][2 + col],
468 mat->row[i][2 + col], mat->row[row][2 + col]);
469 if (!isl_int_is_one(mat->row[row][0]))
470 isl_seq_normalize(mat->row[i], 2 + tab->n_col);
472 t = tab->row_var[row];
473 tab->row_var[row] = tab->col_var[col];
474 tab->col_var[col] = t;
475 var = var_from_row(tab, row);
476 var->is_row = 1;
477 var->index = row;
478 var = var_from_col(tab, col);
479 var->is_row = 0;
480 var->index = col;
481 if (tab->in_undo)
482 return;
483 for (i = tab->n_redundant; i < tab->n_row; ++i) {
484 if (isl_int_is_zero(mat->row[i][2 + col]))
485 continue;
486 if (!var_from_row(tab, i)->frozen &&
487 is_redundant(tab, i))
488 if (mark_redundant(tab, i))
489 --i;
493 /* If "var" represents a column variable, then pivot is up (sgn > 0)
494 * or down (sgn < 0) to a row. The variable is assumed not to be
495 * unbounded in the specified direction.
497 static void to_row(struct isl_tab *tab, struct isl_tab_var *var, int sign)
499 int r;
501 if (var->is_row)
502 return;
504 r = pivot_row(tab, NULL, sign, var->index);
505 isl_assert(tab->mat->ctx, r >= 0, return);
506 pivot(tab, r, var->index);
509 static void check_table(struct isl_tab *tab)
511 int i;
513 if (tab->empty)
514 return;
515 for (i = 0; i < tab->n_row; ++i) {
516 if (!var_from_row(tab, i)->is_nonneg)
517 continue;
518 assert(!isl_int_is_neg(tab->mat->row[i][1]));
522 /* Return the sign of the maximal value of "var".
523 * If the sign is not negative, then on return from this function,
524 * the sample value will also be non-negative.
526 * If "var" is manifestly unbounded wrt positive values, we are done.
527 * Otherwise, we pivot the variable up to a row if needed
528 * Then we continue pivoting down until either
529 * - no more down pivots can be performed
530 * - the sample value is positive
531 * - the variable is pivoted into a manifestly unbounded column
533 static int sign_of_max(struct isl_tab *tab, struct isl_tab_var *var)
535 int row, col;
537 if (max_is_manifestly_unbounded(tab, var))
538 return 1;
539 to_row(tab, var, 1);
540 while (!isl_int_is_pos(tab->mat->row[var->index][1])) {
541 find_pivot(tab, var, var, 1, &row, &col);
542 if (row == -1)
543 return isl_int_sgn(tab->mat->row[var->index][1]);
544 pivot(tab, row, col);
545 if (!var->is_row) /* manifestly unbounded */
546 return 1;
548 return 1;
551 /* Perform pivots until the row variable "var" has a non-negative
552 * sample value or until no more upward pivots can be performed.
553 * Return the sign of the sample value after the pivots have been
554 * performed.
556 static int restore_row(struct isl_tab *tab, struct isl_tab_var *var)
558 int row, col;
560 while (isl_int_is_neg(tab->mat->row[var->index][1])) {
561 find_pivot(tab, var, var, 1, &row, &col);
562 if (row == -1)
563 break;
564 pivot(tab, row, col);
565 if (!var->is_row) /* manifestly unbounded */
566 return 1;
568 return isl_int_sgn(tab->mat->row[var->index][1]);
571 /* Perform pivots until we are sure that the row variable "var"
572 * can attain non-negative values. After return from this
573 * function, "var" is still a row variable, but its sample
574 * value may not be non-negative, even if the function returns 1.
576 static int at_least_zero(struct isl_tab *tab, struct isl_tab_var *var)
578 int row, col;
580 while (isl_int_is_neg(tab->mat->row[var->index][1])) {
581 find_pivot(tab, var, var, 1, &row, &col);
582 if (row == -1)
583 break;
584 if (row == var->index) /* manifestly unbounded */
585 return 1;
586 pivot(tab, row, col);
588 return !isl_int_is_neg(tab->mat->row[var->index][1]);
591 /* Return a negative value if "var" can attain negative values.
592 * Return a non-negative value otherwise.
594 * If "var" is manifestly unbounded wrt negative values, we are done.
595 * Otherwise, if var is in a column, we can pivot it down to a row.
596 * Then we continue pivoting down until either
597 * - the pivot would result in a manifestly unbounded column
598 * => we don't perform the pivot, but simply return -1
599 * - no more down pivots can be performed
600 * - the sample value is negative
601 * If the sample value becomes negative and the variable is supposed
602 * to be nonnegative, then we undo the last pivot.
603 * However, if the last pivot has made the pivoting variable
604 * obviously redundant, then it may have moved to another row.
605 * In that case we look for upward pivots until we reach a non-negative
606 * value again.
608 static int sign_of_min(struct isl_tab *tab, struct isl_tab_var *var)
610 int row, col;
611 struct isl_tab_var *pivot_var;
613 if (min_is_manifestly_unbounded(tab, var))
614 return -1;
615 if (!var->is_row) {
616 col = var->index;
617 row = pivot_row(tab, NULL, -1, col);
618 pivot_var = var_from_col(tab, col);
619 pivot(tab, row, col);
620 if (var->is_redundant)
621 return 0;
622 if (isl_int_is_neg(tab->mat->row[var->index][1])) {
623 if (var->is_nonneg) {
624 if (!pivot_var->is_redundant &&
625 pivot_var->index == row)
626 pivot(tab, row, col);
627 else
628 restore_row(tab, var);
630 return -1;
633 if (var->is_redundant)
634 return 0;
635 while (!isl_int_is_neg(tab->mat->row[var->index][1])) {
636 find_pivot(tab, var, var, -1, &row, &col);
637 if (row == var->index)
638 return -1;
639 if (row == -1)
640 return isl_int_sgn(tab->mat->row[var->index][1]);
641 pivot_var = var_from_col(tab, col);
642 pivot(tab, row, col);
643 if (var->is_redundant)
644 return 0;
646 if (var->is_nonneg) {
647 /* pivot back to non-negative value */
648 if (!pivot_var->is_redundant && pivot_var->index == row)
649 pivot(tab, row, col);
650 else
651 restore_row(tab, var);
653 return -1;
656 /* Return 1 if "var" can attain values <= -1.
657 * Return 0 otherwise.
659 * The sample value of "var" is assumed to be non-negative when the
660 * the function is called and will be made non-negative again before
661 * the function returns.
663 static int min_at_most_neg_one(struct isl_tab *tab, struct isl_tab_var *var)
665 int row, col;
666 struct isl_tab_var *pivot_var;
668 if (min_is_manifestly_unbounded(tab, var))
669 return 1;
670 if (!var->is_row) {
671 col = var->index;
672 row = pivot_row(tab, NULL, -1, col);
673 pivot_var = var_from_col(tab, col);
674 pivot(tab, row, col);
675 if (var->is_redundant)
676 return 0;
677 if (isl_int_is_neg(tab->mat->row[var->index][1]) &&
678 isl_int_abs_ge(tab->mat->row[var->index][1],
679 tab->mat->row[var->index][0])) {
680 if (var->is_nonneg) {
681 if (!pivot_var->is_redundant &&
682 pivot_var->index == row)
683 pivot(tab, row, col);
684 else
685 restore_row(tab, var);
687 return 1;
690 if (var->is_redundant)
691 return 0;
692 do {
693 find_pivot(tab, var, var, -1, &row, &col);
694 if (row == var->index)
695 return 1;
696 if (row == -1)
697 return 0;
698 pivot_var = var_from_col(tab, col);
699 pivot(tab, row, col);
700 if (var->is_redundant)
701 return 0;
702 } while (!isl_int_is_neg(tab->mat->row[var->index][1]) ||
703 isl_int_abs_lt(tab->mat->row[var->index][1],
704 tab->mat->row[var->index][0]));
705 if (var->is_nonneg) {
706 /* pivot back to non-negative value */
707 if (!pivot_var->is_redundant && pivot_var->index == row)
708 pivot(tab, row, col);
709 restore_row(tab, var);
711 return 1;
714 /* Return 1 if "var" can attain values >= 1.
715 * Return 0 otherwise.
717 static int at_least_one(struct isl_tab *tab, struct isl_tab_var *var)
719 int row, col;
720 isl_int *r;
722 if (max_is_manifestly_unbounded(tab, var))
723 return 1;
724 to_row(tab, var, 1);
725 r = tab->mat->row[var->index];
726 while (isl_int_lt(r[1], r[0])) {
727 find_pivot(tab, var, var, 1, &row, &col);
728 if (row == -1)
729 return isl_int_ge(r[1], r[0]);
730 if (row == var->index) /* manifestly unbounded */
731 return 1;
732 pivot(tab, row, col);
734 return 1;
737 static void swap_cols(struct isl_tab *tab, int col1, int col2)
739 int t;
740 t = tab->col_var[col1];
741 tab->col_var[col1] = tab->col_var[col2];
742 tab->col_var[col2] = t;
743 var_from_col(tab, col1)->index = col1;
744 var_from_col(tab, col2)->index = col2;
745 tab->mat = isl_mat_swap_cols(tab->mat, 2 + col1, 2 + col2);
748 /* Mark column with index "col" as representing a zero variable.
749 * If we may need to undo the operation the column is kept,
750 * but no longer considered.
751 * Otherwise, the column is simply removed.
753 * The column may be interchanged with some other column. If it
754 * is interchanged with a later column, return 1. Otherwise return 0.
755 * If the columns are checked in order in the calling function,
756 * then a return value of 1 means that the column with the given
757 * column number may now contain a different column that
758 * hasn't been checked yet.
760 static int kill_col(struct isl_tab *tab, int col)
762 var_from_col(tab, col)->is_zero = 1;
763 if (tab->need_undo) {
764 push(tab, isl_tab_undo_zero, var_from_col(tab, col));
765 if (col != tab->n_dead)
766 swap_cols(tab, col, tab->n_dead);
767 tab->n_dead++;
768 return 0;
769 } else {
770 if (col != tab->n_col - 1)
771 swap_cols(tab, col, tab->n_col - 1);
772 var_from_col(tab, tab->n_col - 1)->index = -1;
773 tab->n_col--;
774 return 1;
778 /* Row variable "var" is non-negative and cannot attain any values
779 * larger than zero. This means that the coefficients of the unrestricted
780 * column variables are zero and that the coefficients of the non-negative
781 * column variables are zero or negative.
782 * Each of the non-negative variables with a negative coefficient can
783 * then also be written as the negative sum of non-negative variables
784 * and must therefore also be zero.
786 static void close_row(struct isl_tab *tab, struct isl_tab_var *var)
788 int j;
789 struct isl_mat *mat = tab->mat;
791 isl_assert(tab->mat->ctx, var->is_nonneg, return);
792 var->is_zero = 1;
793 for (j = tab->n_dead; j < tab->n_col; ++j) {
794 if (isl_int_is_zero(mat->row[var->index][2 + j]))
795 continue;
796 isl_assert(tab->mat->ctx,
797 isl_int_is_neg(mat->row[var->index][2 + j]), return);
798 if (kill_col(tab, j))
799 --j;
801 mark_redundant(tab, var->index);
804 /* Add a row to the tableau. The row is given as an affine combination
805 * of the original variables and needs to be expressed in terms of the
806 * column variables.
808 * We add each term in turn.
809 * If r = n/d_r is the current sum and we need to add k x, then
810 * if x is a column variable, we increase the numerator of
811 * this column by k d_r
812 * if x = f/d_x is a row variable, then the new representation of r is
814 * n k f d_x/g n + d_r/g k f m/d_r n + m/d_g k f
815 * --- + --- = ------------------- = -------------------
816 * d_r d_r d_r d_x/g m
818 * with g the gcd of d_r and d_x and m the lcm of d_r and d_x.
820 static int add_row(struct isl_tab *tab, isl_int *line)
822 int i;
823 unsigned r;
824 isl_int *row;
825 isl_int a, b;
827 isl_assert(tab->mat->ctx, tab->n_row < tab->mat->n_row, return -1);
829 isl_int_init(a);
830 isl_int_init(b);
831 r = tab->n_con;
832 tab->con[r].index = tab->n_row;
833 tab->con[r].is_row = 1;
834 tab->con[r].is_nonneg = 0;
835 tab->con[r].is_zero = 0;
836 tab->con[r].is_redundant = 0;
837 tab->con[r].frozen = 0;
838 tab->row_var[tab->n_row] = ~r;
839 row = tab->mat->row[tab->n_row];
840 isl_int_set_si(row[0], 1);
841 isl_int_set(row[1], line[0]);
842 isl_seq_clr(row + 2, tab->n_col);
843 for (i = 0; i < tab->n_var; ++i) {
844 if (tab->var[i].is_zero)
845 continue;
846 if (tab->var[i].is_row) {
847 isl_int_lcm(a,
848 row[0], tab->mat->row[tab->var[i].index][0]);
849 isl_int_swap(a, row[0]);
850 isl_int_divexact(a, row[0], a);
851 isl_int_divexact(b,
852 row[0], tab->mat->row[tab->var[i].index][0]);
853 isl_int_mul(b, b, line[1 + i]);
854 isl_seq_combine(row + 1, a, row + 1,
855 b, tab->mat->row[tab->var[i].index] + 1,
856 1 + tab->n_col);
857 } else
858 isl_int_addmul(row[2 + tab->var[i].index],
859 line[1 + i], row[0]);
861 isl_seq_normalize(row, 2 + tab->n_col);
862 tab->n_row++;
863 tab->n_con++;
864 push(tab, isl_tab_undo_allocate, &tab->con[r]);
865 isl_int_clear(a);
866 isl_int_clear(b);
868 return r;
871 static int drop_row(struct isl_tab *tab, int row)
873 isl_assert(tab->mat->ctx, ~tab->row_var[row] == tab->n_con - 1, return -1);
874 if (row != tab->n_row - 1)
875 swap_rows(tab, row, tab->n_row - 1);
876 tab->n_row--;
877 tab->n_con--;
878 return 0;
881 /* Add inequality "ineq" and check if it conflicts with the
882 * previously added constraints or if it is obviously redundant.
884 struct isl_tab *isl_tab_add_ineq(struct isl_tab *tab, isl_int *ineq)
886 int r;
887 int sgn;
889 if (!tab)
890 return NULL;
891 r = add_row(tab, ineq);
892 if (r < 0)
893 goto error;
894 tab->con[r].is_nonneg = 1;
895 push(tab, isl_tab_undo_nonneg, &tab->con[r]);
896 if (is_redundant(tab, tab->con[r].index)) {
897 mark_redundant(tab, tab->con[r].index);
898 return tab;
901 sgn = restore_row(tab, &tab->con[r]);
902 if (sgn < 0)
903 mark_empty(tab);
904 else if (tab->con[r].is_row &&
905 is_redundant(tab, tab->con[r].index))
906 mark_redundant(tab, tab->con[r].index);
907 return tab;
908 error:
909 isl_tab_free(tab);
910 return NULL;
913 /* Pivot a non-negative variable down until it reaches the value zero
914 * and then pivot the variable into a column position.
916 static int to_col(struct isl_tab *tab, struct isl_tab_var *var)
918 int i;
919 int row, col;
921 if (!var->is_row)
922 return;
924 while (isl_int_is_pos(tab->mat->row[var->index][1])) {
925 find_pivot(tab, var, NULL, -1, &row, &col);
926 isl_assert(tab->mat->ctx, row != -1, return -1);
927 pivot(tab, row, col);
928 if (!var->is_row)
929 return;
932 for (i = tab->n_dead; i < tab->n_col; ++i)
933 if (!isl_int_is_zero(tab->mat->row[var->index][2 + i]))
934 break;
936 isl_assert(tab->mat->ctx, i < tab->n_col, return -1);
937 pivot(tab, var->index, i);
939 return 0;
942 /* We assume Gaussian elimination has been performed on the equalities.
943 * The equalities can therefore never conflict.
944 * Adding the equalities is currently only really useful for a later call
945 * to isl_tab_ineq_type.
947 static struct isl_tab *add_eq(struct isl_tab *tab, isl_int *eq)
949 int i;
950 int r;
952 if (!tab)
953 return NULL;
954 r = add_row(tab, eq);
955 if (r < 0)
956 goto error;
958 r = tab->con[r].index;
959 for (i = tab->n_dead; i < tab->n_col; ++i) {
960 if (isl_int_is_zero(tab->mat->row[r][2 + i]))
961 continue;
962 pivot(tab, r, i);
963 kill_col(tab, i);
964 break;
966 tab->n_eq++;
968 return tab;
969 error:
970 isl_tab_free(tab);
971 return NULL;
974 /* Add an equality that is known to be valid for the given tableau.
976 struct isl_tab *isl_tab_add_valid_eq(struct isl_tab *tab, isl_int *eq)
978 struct isl_tab_var *var;
979 int i;
980 int r;
982 if (!tab)
983 return NULL;
984 r = add_row(tab, eq);
985 if (r < 0)
986 goto error;
988 var = &tab->con[r];
989 r = var->index;
990 if (isl_int_is_neg(tab->mat->row[r][1]))
991 isl_seq_neg(tab->mat->row[r] + 1, tab->mat->row[r] + 1,
992 1 + tab->n_col);
993 var->is_nonneg = 1;
994 if (to_col(tab, var) < 0)
995 goto error;
996 var->is_nonneg = 0;
997 kill_col(tab, var->index);
999 return tab;
1000 error:
1001 isl_tab_free(tab);
1002 return NULL;
1005 struct isl_tab *isl_tab_from_basic_map(struct isl_basic_map *bmap)
1007 int i;
1008 struct isl_tab *tab;
1010 if (!bmap)
1011 return NULL;
1012 tab = isl_tab_alloc(bmap->ctx,
1013 isl_basic_map_total_dim(bmap) + bmap->n_ineq + 1,
1014 isl_basic_map_total_dim(bmap));
1015 if (!tab)
1016 return NULL;
1017 tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
1018 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) {
1019 mark_empty(tab);
1020 return tab;
1022 for (i = 0; i < bmap->n_eq; ++i) {
1023 tab = add_eq(tab, bmap->eq[i]);
1024 if (!tab)
1025 return tab;
1027 for (i = 0; i < bmap->n_ineq; ++i) {
1028 tab = isl_tab_add_ineq(tab, bmap->ineq[i]);
1029 if (!tab || tab->empty)
1030 return tab;
1032 return tab;
1035 struct isl_tab *isl_tab_from_basic_set(struct isl_basic_set *bset)
1037 return isl_tab_from_basic_map((struct isl_basic_map *)bset);
1040 /* Construct a tableau corresponding to the recession cone of "bmap".
1042 struct isl_tab *isl_tab_from_recession_cone(struct isl_basic_map *bmap)
1044 isl_int cst;
1045 int i;
1046 struct isl_tab *tab;
1048 if (!bmap)
1049 return NULL;
1050 tab = isl_tab_alloc(bmap->ctx, bmap->n_eq + bmap->n_ineq,
1051 isl_basic_map_total_dim(bmap));
1052 if (!tab)
1053 return NULL;
1054 tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
1056 isl_int_init(cst);
1057 for (i = 0; i < bmap->n_eq; ++i) {
1058 isl_int_swap(bmap->eq[i][0], cst);
1059 tab = add_eq(tab, bmap->eq[i]);
1060 isl_int_swap(bmap->eq[i][0], cst);
1061 if (!tab)
1062 goto done;
1064 for (i = 0; i < bmap->n_ineq; ++i) {
1065 int r;
1066 isl_int_swap(bmap->ineq[i][0], cst);
1067 r = add_row(tab, bmap->ineq[i]);
1068 isl_int_swap(bmap->ineq[i][0], cst);
1069 if (r < 0)
1070 goto error;
1071 tab->con[r].is_nonneg = 1;
1072 push(tab, isl_tab_undo_nonneg, &tab->con[r]);
1074 done:
1075 isl_int_clear(cst);
1076 return tab;
1077 error:
1078 isl_int_clear(cst);
1079 isl_tab_free(tab);
1080 return NULL;
1083 /* Assuming "tab" is the tableau of a cone, check if the cone is
1084 * bounded, i.e., if it is empty or only contains the origin.
1086 int isl_tab_cone_is_bounded(struct isl_tab *tab)
1088 int i;
1090 if (!tab)
1091 return -1;
1092 if (tab->empty)
1093 return 1;
1094 if (tab->n_dead == tab->n_col)
1095 return 1;
1097 for (;;) {
1098 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1099 struct isl_tab_var *var;
1100 var = var_from_row(tab, i);
1101 if (!var->is_nonneg)
1102 continue;
1103 if (sign_of_max(tab, var) != 0)
1104 return 0;
1105 close_row(tab, var);
1106 break;
1108 if (tab->n_dead == tab->n_col)
1109 return 1;
1110 if (i == tab->n_row)
1111 return 0;
1115 int isl_tab_sample_is_integer(struct isl_tab *tab)
1117 int i;
1119 if (!tab)
1120 return -1;
1122 for (i = 0; i < tab->n_var; ++i) {
1123 int row;
1124 if (!tab->var[i].is_row)
1125 continue;
1126 row = tab->var[i].index;
1127 if (!isl_int_is_divisible_by(tab->mat->row[row][1],
1128 tab->mat->row[row][0]))
1129 return 0;
1131 return 1;
1134 static struct isl_vec *extract_integer_sample(struct isl_tab *tab)
1136 int i;
1137 struct isl_vec *vec;
1139 vec = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
1140 if (!vec)
1141 return NULL;
1143 isl_int_set_si(vec->block.data[0], 1);
1144 for (i = 0; i < tab->n_var; ++i) {
1145 if (!tab->var[i].is_row)
1146 isl_int_set_si(vec->block.data[1 + i], 0);
1147 else {
1148 int row = tab->var[i].index;
1149 isl_int_divexact(vec->block.data[1 + i],
1150 tab->mat->row[row][1], tab->mat->row[row][0]);
1154 return vec;
1157 struct isl_vec *isl_tab_get_sample_value(struct isl_tab *tab)
1159 int i;
1160 struct isl_vec *vec;
1161 isl_int m;
1163 if (!tab)
1164 return NULL;
1166 vec = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
1167 if (!vec)
1168 return NULL;
1170 isl_int_init(m);
1172 isl_int_set_si(vec->block.data[0], 1);
1173 for (i = 0; i < tab->n_var; ++i) {
1174 int row;
1175 if (!tab->var[i].is_row) {
1176 isl_int_set_si(vec->block.data[1 + i], 0);
1177 continue;
1179 row = tab->var[i].index;
1180 isl_int_gcd(m, vec->block.data[0], tab->mat->row[row][0]);
1181 isl_int_divexact(m, tab->mat->row[row][0], m);
1182 isl_seq_scale(vec->block.data, vec->block.data, m, 1 + i);
1183 isl_int_divexact(m, vec->block.data[0], tab->mat->row[row][0]);
1184 isl_int_mul(vec->block.data[1 + i], m, tab->mat->row[row][1]);
1186 isl_seq_normalize(vec->block.data, vec->size);
1188 isl_int_clear(m);
1189 return vec;
1192 /* Update "bmap" based on the results of the tableau "tab".
1193 * In particular, implicit equalities are made explicit, redundant constraints
1194 * are removed and if the sample value happens to be integer, it is stored
1195 * in "bmap" (unless "bmap" already had an integer sample).
1197 * The tableau is assumed to have been created from "bmap" using
1198 * isl_tab_from_basic_map.
1200 struct isl_basic_map *isl_basic_map_update_from_tab(struct isl_basic_map *bmap,
1201 struct isl_tab *tab)
1203 int i;
1204 unsigned n_eq;
1206 if (!bmap)
1207 return NULL;
1208 if (!tab)
1209 return bmap;
1211 n_eq = tab->n_eq;
1212 if (tab->empty)
1213 bmap = isl_basic_map_set_to_empty(bmap);
1214 else
1215 for (i = bmap->n_ineq - 1; i >= 0; --i) {
1216 if (isl_tab_is_equality(tab, n_eq + i))
1217 isl_basic_map_inequality_to_equality(bmap, i);
1218 else if (isl_tab_is_redundant(tab, n_eq + i))
1219 isl_basic_map_drop_inequality(bmap, i);
1221 if (!tab->rational &&
1222 !bmap->sample && isl_tab_sample_is_integer(tab))
1223 bmap->sample = extract_integer_sample(tab);
1224 return bmap;
1227 struct isl_basic_set *isl_basic_set_update_from_tab(struct isl_basic_set *bset,
1228 struct isl_tab *tab)
1230 return (struct isl_basic_set *)isl_basic_map_update_from_tab(
1231 (struct isl_basic_map *)bset, tab);
1234 /* Given a non-negative variable "var", add a new non-negative variable
1235 * that is the opposite of "var", ensuring that var can only attain the
1236 * value zero.
1237 * If var = n/d is a row variable, then the new variable = -n/d.
1238 * If var is a column variables, then the new variable = -var.
1239 * If the new variable cannot attain non-negative values, then
1240 * the resulting tableau is empty.
1241 * Otherwise, we know the value will be zero and we close the row.
1243 static struct isl_tab *cut_to_hyperplane(struct isl_tab *tab,
1244 struct isl_tab_var *var)
1246 unsigned r;
1247 isl_int *row;
1248 int sgn;
1250 if (extend_cons(tab, 1) < 0)
1251 goto error;
1253 r = tab->n_con;
1254 tab->con[r].index = tab->n_row;
1255 tab->con[r].is_row = 1;
1256 tab->con[r].is_nonneg = 0;
1257 tab->con[r].is_zero = 0;
1258 tab->con[r].is_redundant = 0;
1259 tab->con[r].frozen = 0;
1260 tab->row_var[tab->n_row] = ~r;
1261 row = tab->mat->row[tab->n_row];
1263 if (var->is_row) {
1264 isl_int_set(row[0], tab->mat->row[var->index][0]);
1265 isl_seq_neg(row + 1,
1266 tab->mat->row[var->index] + 1, 1 + tab->n_col);
1267 } else {
1268 isl_int_set_si(row[0], 1);
1269 isl_seq_clr(row + 1, 1 + tab->n_col);
1270 isl_int_set_si(row[2 + var->index], -1);
1273 tab->n_row++;
1274 tab->n_con++;
1275 push(tab, isl_tab_undo_allocate, &tab->con[r]);
1277 sgn = sign_of_max(tab, &tab->con[r]);
1278 if (sgn < 0)
1279 mark_empty(tab);
1280 else {
1281 tab->con[r].is_nonneg = 1;
1282 push(tab, isl_tab_undo_nonneg, &tab->con[r]);
1283 /* sgn == 0 */
1284 close_row(tab, &tab->con[r]);
1287 return tab;
1288 error:
1289 isl_tab_free(tab);
1290 return NULL;
1293 /* Given a tableau "tab" and an inequality constraint "con" of the tableau,
1294 * relax the inequality by one. That is, the inequality r >= 0 is replaced
1295 * by r' = r + 1 >= 0.
1296 * If r is a row variable, we simply increase the constant term by one
1297 * (taking into account the denominator).
1298 * If r is a column variable, then we need to modify each row that
1299 * refers to r = r' - 1 by substituting this equality, effectively
1300 * subtracting the coefficient of the column from the constant.
1302 struct isl_tab *isl_tab_relax(struct isl_tab *tab, int con)
1304 struct isl_tab_var *var;
1305 if (!tab)
1306 return NULL;
1308 var = &tab->con[con];
1310 if (!var->is_row && !max_is_manifestly_unbounded(tab, var))
1311 to_row(tab, var, 1);
1313 if (var->is_row)
1314 isl_int_add(tab->mat->row[var->index][1],
1315 tab->mat->row[var->index][1], tab->mat->row[var->index][0]);
1316 else {
1317 int i;
1319 for (i = 0; i < tab->n_row; ++i) {
1320 if (isl_int_is_zero(tab->mat->row[i][2 + var->index]))
1321 continue;
1322 isl_int_sub(tab->mat->row[i][1], tab->mat->row[i][1],
1323 tab->mat->row[i][2 + var->index]);
1328 push(tab, isl_tab_undo_relax, var);
1330 return tab;
1333 struct isl_tab *isl_tab_select_facet(struct isl_tab *tab, int con)
1335 if (!tab)
1336 return NULL;
1338 return cut_to_hyperplane(tab, &tab->con[con]);
1341 static int may_be_equality(struct isl_tab *tab, int row)
1343 return (tab->rational ? isl_int_is_zero(tab->mat->row[row][1])
1344 : isl_int_lt(tab->mat->row[row][1],
1345 tab->mat->row[row][0])) &&
1346 isl_seq_first_non_zero(tab->mat->row[row] + 2 + tab->n_dead,
1347 tab->n_col - tab->n_dead) != -1;
1350 /* Check for (near) equalities among the constraints.
1351 * A constraint is an equality if it is non-negative and if
1352 * its maximal value is either
1353 * - zero (in case of rational tableaus), or
1354 * - strictly less than 1 (in case of integer tableaus)
1356 * We first mark all non-redundant and non-dead variables that
1357 * are not frozen and not obviously not an equality.
1358 * Then we iterate over all marked variables if they can attain
1359 * any values larger than zero or at least one.
1360 * If the maximal value is zero, we mark any column variables
1361 * that appear in the row as being zero and mark the row as being redundant.
1362 * Otherwise, if the maximal value is strictly less than one (and the
1363 * tableau is integer), then we restrict the value to being zero
1364 * by adding an opposite non-negative variable.
1366 struct isl_tab *isl_tab_detect_equalities(struct isl_tab *tab)
1368 int i;
1369 unsigned n_marked;
1371 if (!tab)
1372 return NULL;
1373 if (tab->empty)
1374 return tab;
1375 if (tab->n_dead == tab->n_col)
1376 return tab;
1378 n_marked = 0;
1379 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1380 struct isl_tab_var *var = var_from_row(tab, i);
1381 var->marked = !var->frozen && var->is_nonneg &&
1382 may_be_equality(tab, i);
1383 if (var->marked)
1384 n_marked++;
1386 for (i = tab->n_dead; i < tab->n_col; ++i) {
1387 struct isl_tab_var *var = var_from_col(tab, i);
1388 var->marked = !var->frozen && var->is_nonneg;
1389 if (var->marked)
1390 n_marked++;
1392 while (n_marked) {
1393 struct isl_tab_var *var;
1394 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1395 var = var_from_row(tab, i);
1396 if (var->marked)
1397 break;
1399 if (i == tab->n_row) {
1400 for (i = tab->n_dead; i < tab->n_col; ++i) {
1401 var = var_from_col(tab, i);
1402 if (var->marked)
1403 break;
1405 if (i == tab->n_col)
1406 break;
1408 var->marked = 0;
1409 n_marked--;
1410 if (sign_of_max(tab, var) == 0)
1411 close_row(tab, var);
1412 else if (!tab->rational && !at_least_one(tab, var)) {
1413 tab = cut_to_hyperplane(tab, var);
1414 return isl_tab_detect_equalities(tab);
1416 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1417 var = var_from_row(tab, i);
1418 if (!var->marked)
1419 continue;
1420 if (may_be_equality(tab, i))
1421 continue;
1422 var->marked = 0;
1423 n_marked--;
1427 return tab;
1430 /* Check for (near) redundant constraints.
1431 * A constraint is redundant if it is non-negative and if
1432 * its minimal value (temporarily ignoring the non-negativity) is either
1433 * - zero (in case of rational tableaus), or
1434 * - strictly larger than -1 (in case of integer tableaus)
1436 * We first mark all non-redundant and non-dead variables that
1437 * are not frozen and not obviously negatively unbounded.
1438 * Then we iterate over all marked variables if they can attain
1439 * any values smaller than zero or at most negative one.
1440 * If not, we mark the row as being redundant (assuming it hasn't
1441 * been detected as being obviously redundant in the mean time).
1443 struct isl_tab *isl_tab_detect_redundant(struct isl_tab *tab)
1445 int i;
1446 unsigned n_marked;
1448 if (!tab)
1449 return NULL;
1450 if (tab->empty)
1451 return tab;
1452 if (tab->n_redundant == tab->n_row)
1453 return tab;
1455 n_marked = 0;
1456 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1457 struct isl_tab_var *var = var_from_row(tab, i);
1458 var->marked = !var->frozen && var->is_nonneg;
1459 if (var->marked)
1460 n_marked++;
1462 for (i = tab->n_dead; i < tab->n_col; ++i) {
1463 struct isl_tab_var *var = var_from_col(tab, i);
1464 var->marked = !var->frozen && var->is_nonneg &&
1465 !min_is_manifestly_unbounded(tab, var);
1466 if (var->marked)
1467 n_marked++;
1469 while (n_marked) {
1470 struct isl_tab_var *var;
1471 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1472 var = var_from_row(tab, i);
1473 if (var->marked)
1474 break;
1476 if (i == tab->n_row) {
1477 for (i = tab->n_dead; i < tab->n_col; ++i) {
1478 var = var_from_col(tab, i);
1479 if (var->marked)
1480 break;
1482 if (i == tab->n_col)
1483 break;
1485 var->marked = 0;
1486 n_marked--;
1487 if ((tab->rational ? (sign_of_min(tab, var) >= 0)
1488 : !min_at_most_neg_one(tab, var)) &&
1489 !var->is_redundant)
1490 mark_redundant(tab, var->index);
1491 for (i = tab->n_dead; i < tab->n_col; ++i) {
1492 var = var_from_col(tab, i);
1493 if (!var->marked)
1494 continue;
1495 if (!min_is_manifestly_unbounded(tab, var))
1496 continue;
1497 var->marked = 0;
1498 n_marked--;
1502 return tab;
1505 int isl_tab_is_equality(struct isl_tab *tab, int con)
1507 int row;
1509 if (!tab)
1510 return -1;
1511 if (tab->con[con].is_zero)
1512 return 1;
1513 if (tab->con[con].is_redundant)
1514 return 0;
1515 if (!tab->con[con].is_row)
1516 return tab->con[con].index < tab->n_dead;
1518 row = tab->con[con].index;
1520 return isl_int_is_zero(tab->mat->row[row][1]) &&
1521 isl_seq_first_non_zero(tab->mat->row[row] + 2 + tab->n_dead,
1522 tab->n_col - tab->n_dead) == -1;
1525 /* Return the minimial value of the affine expression "f" with denominator
1526 * "denom" in *opt, *opt_denom, assuming the tableau is not empty and
1527 * the expression cannot attain arbitrarily small values.
1528 * If opt_denom is NULL, then *opt is rounded up to the nearest integer.
1529 * The return value reflects the nature of the result (empty, unbounded,
1530 * minmimal value returned in *opt).
1532 enum isl_lp_result isl_tab_min(struct isl_tab *tab,
1533 isl_int *f, isl_int denom, isl_int *opt, isl_int *opt_denom,
1534 unsigned flags)
1536 int r;
1537 enum isl_lp_result res = isl_lp_ok;
1538 struct isl_tab_var *var;
1539 struct isl_tab_undo *snap;
1541 if (tab->empty)
1542 return isl_lp_empty;
1544 snap = isl_tab_snap(tab);
1545 r = add_row(tab, f);
1546 if (r < 0)
1547 return isl_lp_error;
1548 var = &tab->con[r];
1549 isl_int_mul(tab->mat->row[var->index][0],
1550 tab->mat->row[var->index][0], denom);
1551 for (;;) {
1552 int row, col;
1553 find_pivot(tab, var, var, -1, &row, &col);
1554 if (row == var->index) {
1555 res = isl_lp_unbounded;
1556 break;
1558 if (row == -1)
1559 break;
1560 pivot(tab, row, col);
1562 if (isl_tab_rollback(tab, snap) < 0)
1563 return isl_lp_error;
1564 if (ISL_FL_ISSET(flags, ISL_TAB_SAVE_DUAL)) {
1565 int i;
1567 isl_vec_free(tab->dual);
1568 tab->dual = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_con);
1569 if (!tab->dual)
1570 return isl_lp_error;
1571 isl_int_set(tab->dual->el[0], tab->mat->row[var->index][0]);
1572 for (i = 0; i < tab->n_con; ++i) {
1573 if (tab->con[i].is_row)
1574 isl_int_set_si(tab->dual->el[1 + i], 0);
1575 else {
1576 int pos = 2 + tab->con[i].index;
1577 isl_int_set(tab->dual->el[1 + i],
1578 tab->mat->row[var->index][pos]);
1582 if (res == isl_lp_ok) {
1583 if (opt_denom) {
1584 isl_int_set(*opt, tab->mat->row[var->index][1]);
1585 isl_int_set(*opt_denom, tab->mat->row[var->index][0]);
1586 } else
1587 isl_int_cdiv_q(*opt, tab->mat->row[var->index][1],
1588 tab->mat->row[var->index][0]);
1590 return res;
1593 int isl_tab_is_redundant(struct isl_tab *tab, int con)
1595 int row;
1596 unsigned n_col;
1598 if (!tab)
1599 return -1;
1600 if (tab->con[con].is_zero)
1601 return 0;
1602 if (tab->con[con].is_redundant)
1603 return 1;
1604 return tab->con[con].is_row && tab->con[con].index < tab->n_redundant;
1607 /* Take a snapshot of the tableau that can be restored by s call to
1608 * isl_tab_rollback.
1610 struct isl_tab_undo *isl_tab_snap(struct isl_tab *tab)
1612 if (!tab)
1613 return NULL;
1614 tab->need_undo = 1;
1615 return tab->top;
1618 /* Undo the operation performed by isl_tab_relax.
1620 static void unrelax(struct isl_tab *tab, struct isl_tab_var *var)
1622 if (!var->is_row && !max_is_manifestly_unbounded(tab, var))
1623 to_row(tab, var, 1);
1625 if (var->is_row)
1626 isl_int_sub(tab->mat->row[var->index][1],
1627 tab->mat->row[var->index][1], tab->mat->row[var->index][0]);
1628 else {
1629 int i;
1631 for (i = 0; i < tab->n_row; ++i) {
1632 if (isl_int_is_zero(tab->mat->row[i][2 + var->index]))
1633 continue;
1634 isl_int_add(tab->mat->row[i][1], tab->mat->row[i][1],
1635 tab->mat->row[i][2 + var->index]);
1641 static void perform_undo(struct isl_tab *tab, struct isl_tab_undo *undo)
1643 switch(undo->type) {
1644 case isl_tab_undo_empty:
1645 tab->empty = 0;
1646 break;
1647 case isl_tab_undo_nonneg:
1648 undo->var->is_nonneg = 0;
1649 break;
1650 case isl_tab_undo_redundant:
1651 undo->var->is_redundant = 0;
1652 tab->n_redundant--;
1653 break;
1654 case isl_tab_undo_zero:
1655 undo->var->is_zero = 0;
1656 tab->n_dead--;
1657 break;
1658 case isl_tab_undo_allocate:
1659 if (!undo->var->is_row) {
1660 if (max_is_manifestly_unbounded(tab, undo->var))
1661 to_row(tab, undo->var, -1);
1662 else
1663 to_row(tab, undo->var, 1);
1665 drop_row(tab, undo->var->index);
1666 break;
1667 case isl_tab_undo_relax:
1668 unrelax(tab, undo->var);
1669 break;
1673 /* Return the tableau to the state it was in when the snapshot "snap"
1674 * was taken.
1676 int isl_tab_rollback(struct isl_tab *tab, struct isl_tab_undo *snap)
1678 struct isl_tab_undo *undo, *next;
1680 if (!tab)
1681 return -1;
1683 tab->in_undo = 1;
1684 for (undo = tab->top; undo && undo != &tab->bottom; undo = next) {
1685 next = undo->next;
1686 if (undo == snap)
1687 break;
1688 perform_undo(tab, undo);
1689 free(undo);
1691 tab->in_undo = 0;
1692 tab->top = undo;
1693 if (!undo)
1694 return -1;
1695 return 0;
1698 /* The given row "row" represents an inequality violated by all
1699 * points in the tableau. Check for some special cases of such
1700 * separating constraints.
1701 * In particular, if the row has been reduced to the constant -1,
1702 * then we know the inequality is adjacent (but opposite) to
1703 * an equality in the tableau.
1704 * If the row has been reduced to r = -1 -r', with r' an inequality
1705 * of the tableau, then the inequality is adjacent (but opposite)
1706 * to the inequality r'.
1708 static enum isl_ineq_type separation_type(struct isl_tab *tab, unsigned row)
1710 int pos;
1712 if (tab->rational)
1713 return isl_ineq_separate;
1715 if (!isl_int_is_one(tab->mat->row[row][0]))
1716 return isl_ineq_separate;
1717 if (!isl_int_is_negone(tab->mat->row[row][1]))
1718 return isl_ineq_separate;
1720 pos = isl_seq_first_non_zero(tab->mat->row[row] + 2 + tab->n_dead,
1721 tab->n_col - tab->n_dead);
1722 if (pos == -1)
1723 return isl_ineq_adj_eq;
1725 if (!isl_int_is_negone(tab->mat->row[row][2 + tab->n_dead + pos]))
1726 return isl_ineq_separate;
1728 pos = isl_seq_first_non_zero(
1729 tab->mat->row[row] + 2 + tab->n_dead + pos + 1,
1730 tab->n_col - tab->n_dead - pos - 1);
1732 return pos == -1 ? isl_ineq_adj_ineq : isl_ineq_separate;
1735 /* Check the effect of inequality "ineq" on the tableau "tab".
1736 * The result may be
1737 * isl_ineq_redundant: satisfied by all points in the tableau
1738 * isl_ineq_separate: satisfied by no point in the tableau
1739 * isl_ineq_cut: satisfied by some by not all points
1740 * isl_ineq_adj_eq: adjacent to an equality
1741 * isl_ineq_adj_ineq: adjacent to an inequality.
1743 enum isl_ineq_type isl_tab_ineq_type(struct isl_tab *tab, isl_int *ineq)
1745 enum isl_ineq_type type = isl_ineq_error;
1746 struct isl_tab_undo *snap = NULL;
1747 int con;
1748 int row;
1750 if (!tab)
1751 return isl_ineq_error;
1753 if (extend_cons(tab, 1) < 0)
1754 return isl_ineq_error;
1756 snap = isl_tab_snap(tab);
1758 con = add_row(tab, ineq);
1759 if (con < 0)
1760 goto error;
1762 row = tab->con[con].index;
1763 if (is_redundant(tab, row))
1764 type = isl_ineq_redundant;
1765 else if (isl_int_is_neg(tab->mat->row[row][1]) &&
1766 (tab->rational ||
1767 isl_int_abs_ge(tab->mat->row[row][1],
1768 tab->mat->row[row][0]))) {
1769 if (at_least_zero(tab, &tab->con[con]))
1770 type = isl_ineq_cut;
1771 else
1772 type = separation_type(tab, row);
1773 } else if (tab->rational ? (sign_of_min(tab, &tab->con[con]) < 0)
1774 : min_at_most_neg_one(tab, &tab->con[con]))
1775 type = isl_ineq_cut;
1776 else
1777 type = isl_ineq_redundant;
1779 if (isl_tab_rollback(tab, snap))
1780 return isl_ineq_error;
1781 return type;
1782 error:
1783 isl_tab_rollback(tab, snap);
1784 return isl_ineq_error;
1787 void isl_tab_dump(struct isl_tab *tab, FILE *out, int indent)
1789 unsigned r, c;
1790 int i;
1792 if (!tab) {
1793 fprintf(out, "%*snull tab\n", indent, "");
1794 return;
1796 fprintf(out, "%*sn_redundant: %d, n_dead: %d", indent, "",
1797 tab->n_redundant, tab->n_dead);
1798 if (tab->rational)
1799 fprintf(out, ", rational");
1800 if (tab->empty)
1801 fprintf(out, ", empty");
1802 fprintf(out, "\n");
1803 fprintf(out, "%*s[", indent, "");
1804 for (i = 0; i < tab->n_var; ++i) {
1805 if (i)
1806 fprintf(out, ", ");
1807 fprintf(out, "%c%d%s", tab->var[i].is_row ? 'r' : 'c',
1808 tab->var[i].index,
1809 tab->var[i].is_zero ? " [=0]" :
1810 tab->var[i].is_redundant ? " [R]" : "");
1812 fprintf(out, "]\n");
1813 fprintf(out, "%*s[", indent, "");
1814 for (i = 0; i < tab->n_con; ++i) {
1815 if (i)
1816 fprintf(out, ", ");
1817 fprintf(out, "%c%d%s", tab->con[i].is_row ? 'r' : 'c',
1818 tab->con[i].index,
1819 tab->con[i].is_zero ? " [=0]" :
1820 tab->con[i].is_redundant ? " [R]" : "");
1822 fprintf(out, "]\n");
1823 fprintf(out, "%*s[", indent, "");
1824 for (i = 0; i < tab->n_row; ++i) {
1825 if (i)
1826 fprintf(out, ", ");
1827 fprintf(out, "r%d: %d%s", i, tab->row_var[i],
1828 var_from_row(tab, i)->is_nonneg ? " [>=0]" : "");
1830 fprintf(out, "]\n");
1831 fprintf(out, "%*s[", indent, "");
1832 for (i = 0; i < tab->n_col; ++i) {
1833 if (i)
1834 fprintf(out, ", ");
1835 fprintf(out, "c%d: %d%s", i, tab->col_var[i],
1836 var_from_col(tab, i)->is_nonneg ? " [>=0]" : "");
1838 fprintf(out, "]\n");
1839 r = tab->mat->n_row;
1840 tab->mat->n_row = tab->n_row;
1841 c = tab->mat->n_col;
1842 tab->mat->n_col = 2 + tab->n_col;
1843 isl_mat_dump(tab->mat, out, indent);
1844 tab->mat->n_row = r;
1845 tab->mat->n_col = c;