isl_qpolynomial_from_affine: rename "dim" argument to "space"
[isl.git] / isl_farkas.c
blob81ac8717896468b08ed46727516c236dfc666b7f
1 /*
2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
8 * 91893 Orsay, France
9 */
11 #include <isl_map_private.h>
12 #include <isl/set.h>
13 #include <isl_space_private.h>
14 #include <isl_seq.h>
17 * Let C be a cone and define
19 * C' := { y | forall x in C : y x >= 0 }
21 * C' contains the coefficients of all linear constraints
22 * that are valid for C.
23 * Furthermore, C'' = C.
25 * If C is defined as { x | A x >= 0 }
26 * then any element in C' must be a non-negative combination
27 * of the rows of A, i.e., y = t A with t >= 0. That is,
29 * C' = { y | exists t >= 0 : y = t A }
31 * If any of the rows in A actually represents an equality, then
32 * also negative combinations of this row are allowed and so the
33 * non-negativity constraint on the corresponding element of t
34 * can be dropped.
36 * A polyhedron P = { x | b + A x >= 0 } can be represented
37 * in homogeneous coordinates by the cone
38 * C = { [z,x] | b z + A x >= and z >= 0 }
39 * The valid linear constraints on C correspond to the valid affine
40 * constraints on P.
41 * This is essentially Farkas' lemma.
43 * Since
44 * [ 1 0 ]
45 * [ w y ] = [t_0 t] [ b A ]
47 * we have
49 * C' = { w, y | exists t_0, t >= 0 : y = t A and w = t_0 + t b }
50 * or
52 * C' = { w, y | exists t >= 0 : y = t A and w - t b >= 0 }
54 * In practice, we introduce an extra variable (w), shifting all
55 * other variables to the right, and an extra inequality
56 * (w - t b >= 0) corresponding to the positivity constraint on
57 * the homogeneous coordinate.
59 * When going back from coefficients to solutions, we immediately
60 * plug in 1 for z, which corresponds to shifting all variables
61 * to the left, with the leftmost ending up in the constant position.
64 /* Add the given prefix to all named isl_dim_set dimensions in "space".
66 static __isl_give isl_space *isl_space_prefix(__isl_take isl_space *space,
67 const char *prefix)
69 int i;
70 isl_ctx *ctx;
71 unsigned nvar;
72 size_t prefix_len = strlen(prefix);
74 if (!space)
75 return NULL;
77 ctx = isl_space_get_ctx(space);
78 nvar = isl_space_dim(space, isl_dim_set);
80 for (i = 0; i < nvar; ++i) {
81 const char *name;
82 char *prefix_name;
84 name = isl_space_get_dim_name(space, isl_dim_set, i);
85 if (!name)
86 continue;
88 prefix_name = isl_alloc_array(ctx, char,
89 prefix_len + strlen(name) + 1);
90 if (!prefix_name)
91 goto error;
92 memcpy(prefix_name, prefix, prefix_len);
93 strcpy(prefix_name + prefix_len, name);
95 space = isl_space_set_dim_name(space,
96 isl_dim_set, i, prefix_name);
97 free(prefix_name);
100 return space;
101 error:
102 isl_space_free(space);
103 return NULL;
106 /* Given a dimension specification of the solutions space, construct
107 * a dimension specification for the space of coefficients.
109 * In particular transform
111 * [params] -> { S }
113 * to
115 * { coefficients[[cst, params] -> S] }
117 * and prefix each dimension name with "c_".
119 static __isl_give isl_space *isl_space_coefficients(__isl_take isl_space *space)
121 isl_space *dim_param;
122 unsigned nvar;
123 unsigned nparam;
125 nvar = isl_space_dim(space, isl_dim_set);
126 nparam = isl_space_dim(space, isl_dim_param);
127 dim_param = isl_space_copy(space);
128 dim_param = isl_space_drop_dims(dim_param, isl_dim_set, 0, nvar);
129 dim_param = isl_space_move_dims(dim_param, isl_dim_set, 0,
130 isl_dim_param, 0, nparam);
131 dim_param = isl_space_prefix(dim_param, "c_");
132 dim_param = isl_space_insert_dims(dim_param, isl_dim_set, 0, 1);
133 dim_param = isl_space_set_dim_name(dim_param, isl_dim_set, 0, "c_cst");
134 space = isl_space_drop_dims(space, isl_dim_param, 0, nparam);
135 space = isl_space_prefix(space, "c_");
136 space = isl_space_join(isl_space_from_domain(dim_param),
137 isl_space_from_range(space));
138 space = isl_space_wrap(space);
139 space = isl_space_set_tuple_name(space, isl_dim_set, "coefficients");
141 return space;
144 /* Drop the given prefix from all named dimensions of type "type" in "space".
146 static __isl_give isl_space *isl_space_unprefix(__isl_take isl_space *space,
147 enum isl_dim_type type, const char *prefix)
149 int i;
150 unsigned n;
151 size_t prefix_len = strlen(prefix);
153 n = isl_space_dim(space, type);
155 for (i = 0; i < n; ++i) {
156 const char *name;
158 name = isl_space_get_dim_name(space, type, i);
159 if (!name)
160 continue;
161 if (strncmp(name, prefix, prefix_len))
162 continue;
164 space = isl_space_set_dim_name(space,
165 type, i, name + prefix_len);
168 return space;
171 /* Given a dimension specification of the space of coefficients, construct
172 * a dimension specification for the space of solutions.
174 * In particular transform
176 * { coefficients[[cst, params] -> S] }
178 * to
180 * [params] -> { S }
182 * and drop the "c_" prefix from the dimension names.
184 static __isl_give isl_space *isl_space_solutions(__isl_take isl_space *space)
186 unsigned nparam;
188 space = isl_space_unwrap(space);
189 space = isl_space_drop_dims(space, isl_dim_in, 0, 1);
190 space = isl_space_unprefix(space, isl_dim_in, "c_");
191 space = isl_space_unprefix(space, isl_dim_out, "c_");
192 nparam = isl_space_dim(space, isl_dim_in);
193 space = isl_space_move_dims(space,
194 isl_dim_param, 0, isl_dim_in, 0, nparam);
195 space = isl_space_range(space);
197 return space;
200 /* Return the rational universe basic set in the given space.
202 static __isl_give isl_basic_set *rational_universe(__isl_take isl_space *space)
204 isl_basic_set *bset;
206 bset = isl_basic_set_universe(space);
207 bset = isl_basic_set_set_rational(bset);
209 return bset;
212 /* Compute the dual of "bset" by applying Farkas' lemma.
213 * As explained above, we add an extra dimension to represent
214 * the coefficient of the constant term when going from solutions
215 * to coefficients (shift == 1) and we drop the extra dimension when going
216 * in the opposite direction (shift == -1). "dim" is the space in which
217 * the dual should be created.
219 * If "bset" is (obviously) empty, then the way this emptiness
220 * is represented by the constraints does not allow for the application
221 * of the standard farkas algorithm. We therefore handle this case
222 * specifically and return the universe basic set.
224 static __isl_give isl_basic_set *farkas(__isl_take isl_space *space,
225 __isl_take isl_basic_set *bset, int shift)
227 int i, j, k;
228 isl_basic_set *dual = NULL;
229 unsigned total;
231 if (isl_basic_set_plain_is_empty(bset)) {
232 isl_basic_set_free(bset);
233 return rational_universe(space);
236 total = isl_basic_set_total_dim(bset);
238 dual = isl_basic_set_alloc_space(space, bset->n_eq + bset->n_ineq,
239 total, bset->n_ineq + (shift > 0));
240 dual = isl_basic_set_set_rational(dual);
242 for (i = 0; i < bset->n_eq + bset->n_ineq; ++i) {
243 k = isl_basic_set_alloc_div(dual);
244 if (k < 0)
245 goto error;
246 isl_int_set_si(dual->div[k][0], 0);
249 for (i = 0; i < total; ++i) {
250 k = isl_basic_set_alloc_equality(dual);
251 if (k < 0)
252 goto error;
253 isl_seq_clr(dual->eq[k], 1 + shift + total);
254 isl_int_set_si(dual->eq[k][1 + shift + i], -1);
255 for (j = 0; j < bset->n_eq; ++j)
256 isl_int_set(dual->eq[k][1 + shift + total + j],
257 bset->eq[j][1 + i]);
258 for (j = 0; j < bset->n_ineq; ++j)
259 isl_int_set(dual->eq[k][1 + shift + total + bset->n_eq + j],
260 bset->ineq[j][1 + i]);
263 for (i = 0; i < bset->n_ineq; ++i) {
264 k = isl_basic_set_alloc_inequality(dual);
265 if (k < 0)
266 goto error;
267 isl_seq_clr(dual->ineq[k],
268 1 + shift + total + bset->n_eq + bset->n_ineq);
269 isl_int_set_si(dual->ineq[k][1 + shift + total + bset->n_eq + i], 1);
272 if (shift > 0) {
273 k = isl_basic_set_alloc_inequality(dual);
274 if (k < 0)
275 goto error;
276 isl_seq_clr(dual->ineq[k], 2 + total);
277 isl_int_set_si(dual->ineq[k][1], 1);
278 for (j = 0; j < bset->n_eq; ++j)
279 isl_int_neg(dual->ineq[k][2 + total + j],
280 bset->eq[j][0]);
281 for (j = 0; j < bset->n_ineq; ++j)
282 isl_int_neg(dual->ineq[k][2 + total + bset->n_eq + j],
283 bset->ineq[j][0]);
286 dual = isl_basic_set_remove_divs(dual);
287 dual = isl_basic_set_simplify(dual);
288 dual = isl_basic_set_finalize(dual);
290 isl_basic_set_free(bset);
291 return dual;
292 error:
293 isl_basic_set_free(bset);
294 isl_basic_set_free(dual);
295 return NULL;
298 /* Construct a basic set containing the tuples of coefficients of all
299 * valid affine constraints on the given basic set.
301 __isl_give isl_basic_set *isl_basic_set_coefficients(
302 __isl_take isl_basic_set *bset)
304 isl_space *dim;
306 if (!bset)
307 return NULL;
308 if (bset->n_div)
309 isl_die(bset->ctx, isl_error_invalid,
310 "input set not allowed to have local variables",
311 goto error);
313 dim = isl_basic_set_get_space(bset);
314 dim = isl_space_coefficients(dim);
316 return farkas(dim, bset, 1);
317 error:
318 isl_basic_set_free(bset);
319 return NULL;
322 /* Construct a basic set containing the elements that satisfy all
323 * affine constraints whose coefficient tuples are
324 * contained in the given basic set.
326 __isl_give isl_basic_set *isl_basic_set_solutions(
327 __isl_take isl_basic_set *bset)
329 isl_space *dim;
331 if (!bset)
332 return NULL;
333 if (bset->n_div)
334 isl_die(bset->ctx, isl_error_invalid,
335 "input set not allowed to have local variables",
336 goto error);
338 dim = isl_basic_set_get_space(bset);
339 dim = isl_space_solutions(dim);
341 return farkas(dim, bset, -1);
342 error:
343 isl_basic_set_free(bset);
344 return NULL;
347 /* Construct a basic set containing the tuples of coefficients of all
348 * valid affine constraints on the given set.
350 __isl_give isl_basic_set *isl_set_coefficients(__isl_take isl_set *set)
352 int i;
353 isl_basic_set *coeff;
355 if (!set)
356 return NULL;
357 if (set->n == 0) {
358 isl_space *space = isl_set_get_space(set);
359 space = isl_space_coefficients(space);
360 isl_set_free(set);
361 return rational_universe(space);
364 coeff = isl_basic_set_coefficients(isl_basic_set_copy(set->p[0]));
366 for (i = 1; i < set->n; ++i) {
367 isl_basic_set *bset, *coeff_i;
368 bset = isl_basic_set_copy(set->p[i]);
369 coeff_i = isl_basic_set_coefficients(bset);
370 coeff = isl_basic_set_intersect(coeff, coeff_i);
373 isl_set_free(set);
374 return coeff;
377 /* Wrapper around isl_basic_set_coefficients for use
378 * as a isl_basic_set_list_map callback.
380 static __isl_give isl_basic_set *coefficients_wrap(
381 __isl_take isl_basic_set *bset, void *user)
383 return isl_basic_set_coefficients(bset);
386 /* Replace the elements of "list" by the result of applying
387 * isl_basic_set_coefficients to them.
389 __isl_give isl_basic_set_list *isl_basic_set_list_coefficients(
390 __isl_take isl_basic_set_list *list)
392 return isl_basic_set_list_map(list, &coefficients_wrap, NULL);
395 /* Construct a basic set containing the elements that satisfy all
396 * affine constraints whose coefficient tuples are
397 * contained in the given set.
399 __isl_give isl_basic_set *isl_set_solutions(__isl_take isl_set *set)
401 int i;
402 isl_basic_set *sol;
404 if (!set)
405 return NULL;
406 if (set->n == 0) {
407 isl_space *space = isl_set_get_space(set);
408 space = isl_space_solutions(space);
409 isl_set_free(set);
410 return rational_universe(space);
413 sol = isl_basic_set_solutions(isl_basic_set_copy(set->p[0]));
415 for (i = 1; i < set->n; ++i) {
416 isl_basic_set *bset, *sol_i;
417 bset = isl_basic_set_copy(set->p[i]);
418 sol_i = isl_basic_set_solutions(bset);
419 sol = isl_basic_set_intersect(sol, sol_i);
422 isl_set_free(set);
423 return sol;