2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
11 #include <isl_ctx_private.h>
12 #include <isl_map_private.h>
15 #include <isl_space_private.h>
16 #include <isl_lp_private.h>
17 #include <isl/union_map.h>
18 #include <isl_mat_private.h>
19 #include <isl_vec_private.h>
20 #include <isl_options_private.h>
21 #include <isl_tarjan.h>
23 int isl_map_is_transitively_closed(__isl_keep isl_map
*map
)
28 map2
= isl_map_apply_range(isl_map_copy(map
), isl_map_copy(map
));
29 closed
= isl_map_is_subset(map2
, map
);
35 int isl_union_map_is_transitively_closed(__isl_keep isl_union_map
*umap
)
40 umap2
= isl_union_map_apply_range(isl_union_map_copy(umap
),
41 isl_union_map_copy(umap
));
42 closed
= isl_union_map_is_subset(umap2
, umap
);
43 isl_union_map_free(umap2
);
48 /* Given a map that represents a path with the length of the path
49 * encoded as the difference between the last output coordindate
50 * and the last input coordinate, set this length to either
51 * exactly "length" (if "exactly" is set) or at least "length"
52 * (if "exactly" is not set).
54 static __isl_give isl_map
*set_path_length(__isl_take isl_map
*map
,
55 int exactly
, int length
)
58 struct isl_basic_map
*bmap
;
67 space
= isl_map_get_space(map
);
68 d
= isl_space_dim(space
, isl_dim_in
);
69 nparam
= isl_space_dim(space
, isl_dim_param
);
70 bmap
= isl_basic_map_alloc_space(space
, 0, 1, 1);
72 k
= isl_basic_map_alloc_equality(bmap
);
77 k
= isl_basic_map_alloc_inequality(bmap
);
82 isl_seq_clr(c
, 1 + isl_basic_map_total_dim(bmap
));
83 isl_int_set_si(c
[0], -length
);
84 isl_int_set_si(c
[1 + nparam
+ d
- 1], -1);
85 isl_int_set_si(c
[1 + nparam
+ d
+ d
- 1], 1);
87 bmap
= isl_basic_map_finalize(bmap
);
88 map
= isl_map_intersect(map
, isl_map_from_basic_map(bmap
));
92 isl_basic_map_free(bmap
);
97 /* Check whether the overapproximation of the power of "map" is exactly
98 * the power of "map". Let R be "map" and A_k the overapproximation.
99 * The approximation is exact if
102 * A_k = A_{k-1} \circ R k >= 2
104 * Since A_k is known to be an overapproximation, we only need to check
107 * A_k \subset A_{k-1} \circ R k >= 2
109 * In practice, "app" has an extra input and output coordinate
110 * to encode the length of the path. So, we first need to add
111 * this coordinate to "map" and set the length of the path to
114 static int check_power_exactness(__isl_take isl_map
*map
,
115 __isl_take isl_map
*app
)
121 map
= isl_map_add_dims(map
, isl_dim_in
, 1);
122 map
= isl_map_add_dims(map
, isl_dim_out
, 1);
123 map
= set_path_length(map
, 1, 1);
125 app_1
= set_path_length(isl_map_copy(app
), 1, 1);
127 exact
= isl_map_is_subset(app_1
, map
);
130 if (!exact
|| exact
< 0) {
136 app_1
= set_path_length(isl_map_copy(app
), 0, 1);
137 app_2
= set_path_length(app
, 0, 2);
138 app_1
= isl_map_apply_range(map
, app_1
);
140 exact
= isl_map_is_subset(app_2
, app_1
);
148 /* Check whether the overapproximation of the power of "map" is exactly
149 * the power of "map", possibly after projecting out the power (if "project"
152 * If "project" is set and if "steps" can only result in acyclic paths,
155 * A = R \cup (A \circ R)
157 * where A is the overapproximation with the power projected out, i.e.,
158 * an overapproximation of the transitive closure.
159 * More specifically, since A is known to be an overapproximation, we check
161 * A \subset R \cup (A \circ R)
163 * Otherwise, we check if the power is exact.
165 * Note that "app" has an extra input and output coordinate to encode
166 * the length of the part. If we are only interested in the transitive
167 * closure, then we can simply project out these coordinates first.
169 static int check_exactness(__isl_take isl_map
*map
, __isl_take isl_map
*app
,
177 return check_power_exactness(map
, app
);
179 d
= isl_map_dim(map
, isl_dim_in
);
180 app
= set_path_length(app
, 0, 1);
181 app
= isl_map_project_out(app
, isl_dim_in
, d
, 1);
182 app
= isl_map_project_out(app
, isl_dim_out
, d
, 1);
184 app
= isl_map_reset_space(app
, isl_map_get_space(map
));
186 test
= isl_map_apply_range(isl_map_copy(map
), isl_map_copy(app
));
187 test
= isl_map_union(test
, isl_map_copy(map
));
189 exact
= isl_map_is_subset(app
, test
);
200 * The transitive closure implementation is based on the paper
201 * "Computing the Transitive Closure of a Union of Affine Integer
202 * Tuple Relations" by Anna Beletska, Denis Barthou, Wlodzimierz Bielecki and
206 /* Given a set of n offsets v_i (the rows of "steps"), construct a relation
207 * of the given dimension specification (Z^{n+1} -> Z^{n+1})
208 * that maps an element x to any element that can be reached
209 * by taking a non-negative number of steps along any of
210 * the extended offsets v'_i = [v_i 1].
213 * { [x] -> [y] : exists k_i >= 0, y = x + \sum_i k_i v'_i }
215 * For any element in this relation, the number of steps taken
216 * is equal to the difference in the final coordinates.
218 static __isl_give isl_map
*path_along_steps(__isl_take isl_space
*space
,
219 __isl_keep isl_mat
*steps
)
222 struct isl_basic_map
*path
= NULL
;
227 if (!space
|| !steps
)
230 d
= isl_space_dim(space
, isl_dim_in
);
232 nparam
= isl_space_dim(space
, isl_dim_param
);
234 path
= isl_basic_map_alloc_space(isl_space_copy(space
), n
, d
, n
);
236 for (i
= 0; i
< n
; ++i
) {
237 k
= isl_basic_map_alloc_div(path
);
240 isl_assert(steps
->ctx
, i
== k
, goto error
);
241 isl_int_set_si(path
->div
[k
][0], 0);
244 for (i
= 0; i
< d
; ++i
) {
245 k
= isl_basic_map_alloc_equality(path
);
248 isl_seq_clr(path
->eq
[k
], 1 + isl_basic_map_total_dim(path
));
249 isl_int_set_si(path
->eq
[k
][1 + nparam
+ i
], 1);
250 isl_int_set_si(path
->eq
[k
][1 + nparam
+ d
+ i
], -1);
252 for (j
= 0; j
< n
; ++j
)
253 isl_int_set_si(path
->eq
[k
][1 + nparam
+ 2 * d
+ j
], 1);
255 for (j
= 0; j
< n
; ++j
)
256 isl_int_set(path
->eq
[k
][1 + nparam
+ 2 * d
+ j
],
260 for (i
= 0; i
< n
; ++i
) {
261 k
= isl_basic_map_alloc_inequality(path
);
264 isl_seq_clr(path
->ineq
[k
], 1 + isl_basic_map_total_dim(path
));
265 isl_int_set_si(path
->ineq
[k
][1 + nparam
+ 2 * d
+ i
], 1);
268 isl_space_free(space
);
270 path
= isl_basic_map_simplify(path
);
271 path
= isl_basic_map_finalize(path
);
272 return isl_map_from_basic_map(path
);
274 isl_space_free(space
);
275 isl_basic_map_free(path
);
284 /* Check whether the parametric constant term of constraint c is never
285 * positive in "bset".
287 static isl_bool
parametric_constant_never_positive(
288 __isl_keep isl_basic_set
*bset
, isl_int
*c
, int *div_purity
)
297 n_div
= isl_basic_set_dim(bset
, isl_dim_div
);
298 d
= isl_basic_set_dim(bset
, isl_dim_set
);
299 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
301 bset
= isl_basic_set_copy(bset
);
302 bset
= isl_basic_set_cow(bset
);
303 bset
= isl_basic_set_extend_constraints(bset
, 0, 1);
304 k
= isl_basic_set_alloc_inequality(bset
);
307 isl_seq_clr(bset
->ineq
[k
], 1 + isl_basic_set_total_dim(bset
));
308 isl_seq_cpy(bset
->ineq
[k
], c
, 1 + nparam
);
309 for (i
= 0; i
< n_div
; ++i
) {
310 if (div_purity
[i
] != PURE_PARAM
)
312 isl_int_set(bset
->ineq
[k
][1 + nparam
+ d
+ i
],
313 c
[1 + nparam
+ d
+ i
]);
315 isl_int_sub_ui(bset
->ineq
[k
][0], bset
->ineq
[k
][0], 1);
316 empty
= isl_basic_set_is_empty(bset
);
317 isl_basic_set_free(bset
);
321 isl_basic_set_free(bset
);
322 return isl_bool_error
;
325 /* Return PURE_PARAM if only the coefficients of the parameters are non-zero.
326 * Return PURE_VAR if only the coefficients of the set variables are non-zero.
327 * Return MIXED if only the coefficients of the parameters and the set
328 * variables are non-zero and if moreover the parametric constant
329 * can never attain positive values.
330 * Return IMPURE otherwise.
332 static int purity(__isl_keep isl_basic_set
*bset
, isl_int
*c
, int *div_purity
,
342 n_div
= isl_basic_set_dim(bset
, isl_dim_div
);
343 d
= isl_basic_set_dim(bset
, isl_dim_set
);
344 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
346 for (i
= 0; i
< n_div
; ++i
) {
347 if (isl_int_is_zero(c
[1 + nparam
+ d
+ i
]))
349 switch (div_purity
[i
]) {
350 case PURE_PARAM
: p
= 1; break;
351 case PURE_VAR
: v
= 1; break;
352 default: return IMPURE
;
355 if (!p
&& isl_seq_first_non_zero(c
+ 1, nparam
) == -1)
357 if (!v
&& isl_seq_first_non_zero(c
+ 1 + nparam
, d
) == -1)
360 empty
= parametric_constant_never_positive(bset
, c
, div_purity
);
361 if (eq
&& empty
>= 0 && !empty
) {
362 isl_seq_neg(c
, c
, 1 + nparam
+ d
+ n_div
);
363 empty
= parametric_constant_never_positive(bset
, c
, div_purity
);
366 return empty
< 0 ? -1 : empty
? MIXED
: IMPURE
;
369 /* Return an array of integers indicating the type of each div in bset.
370 * If the div is (recursively) defined in terms of only the parameters,
371 * then the type is PURE_PARAM.
372 * If the div is (recursively) defined in terms of only the set variables,
373 * then the type is PURE_VAR.
374 * Otherwise, the type is IMPURE.
376 static __isl_give
int *get_div_purity(__isl_keep isl_basic_set
*bset
)
387 n_div
= isl_basic_set_dim(bset
, isl_dim_div
);
388 d
= isl_basic_set_dim(bset
, isl_dim_set
);
389 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
391 div_purity
= isl_alloc_array(bset
->ctx
, int, n_div
);
392 if (n_div
&& !div_purity
)
395 for (i
= 0; i
< bset
->n_div
; ++i
) {
397 if (isl_int_is_zero(bset
->div
[i
][0])) {
398 div_purity
[i
] = IMPURE
;
401 if (isl_seq_first_non_zero(bset
->div
[i
] + 2, nparam
) != -1)
403 if (isl_seq_first_non_zero(bset
->div
[i
] + 2 + nparam
, d
) != -1)
405 for (j
= 0; j
< i
; ++j
) {
406 if (isl_int_is_zero(bset
->div
[i
][2 + nparam
+ d
+ j
]))
408 switch (div_purity
[j
]) {
409 case PURE_PARAM
: p
= 1; break;
410 case PURE_VAR
: v
= 1; break;
411 default: p
= v
= 1; break;
414 div_purity
[i
] = v
? p
? IMPURE
: PURE_VAR
: PURE_PARAM
;
420 /* Given a path with the as yet unconstrained length at position "pos",
421 * check if setting the length to zero results in only the identity
424 static int empty_path_is_identity(__isl_keep isl_basic_map
*path
, unsigned pos
)
426 isl_basic_map
*test
= NULL
;
427 isl_basic_map
*id
= NULL
;
431 test
= isl_basic_map_copy(path
);
432 test
= isl_basic_map_extend_constraints(test
, 1, 0);
433 k
= isl_basic_map_alloc_equality(test
);
436 isl_seq_clr(test
->eq
[k
], 1 + isl_basic_map_total_dim(test
));
437 isl_int_set_si(test
->eq
[k
][pos
], 1);
438 test
= isl_basic_map_gauss(test
, NULL
);
439 id
= isl_basic_map_identity(isl_basic_map_get_space(path
));
440 is_id
= isl_basic_map_is_equal(test
, id
);
441 isl_basic_map_free(test
);
442 isl_basic_map_free(id
);
445 isl_basic_map_free(test
);
449 /* If any of the constraints is found to be impure then this function
450 * sets *impurity to 1.
452 * If impurity is NULL then we are dealing with a non-parametric set
453 * and so the constraints are obviously PURE_VAR.
455 static __isl_give isl_basic_map
*add_delta_constraints(
456 __isl_take isl_basic_map
*path
,
457 __isl_keep isl_basic_set
*delta
, unsigned off
, unsigned nparam
,
458 unsigned d
, int *div_purity
, int eq
, int *impurity
)
461 int n
= eq
? delta
->n_eq
: delta
->n_ineq
;
462 isl_int
**delta_c
= eq
? delta
->eq
: delta
->ineq
;
465 n_div
= isl_basic_set_dim(delta
, isl_dim_div
);
467 for (i
= 0; i
< n
; ++i
) {
471 p
= purity(delta
, delta_c
[i
], div_purity
, eq
);
474 if (p
!= PURE_VAR
&& p
!= PURE_PARAM
&& !*impurity
)
478 if (eq
&& p
!= MIXED
) {
479 k
= isl_basic_map_alloc_equality(path
);
482 path_c
= path
->eq
[k
];
484 k
= isl_basic_map_alloc_inequality(path
);
487 path_c
= path
->ineq
[k
];
489 isl_seq_clr(path_c
, 1 + isl_basic_map_total_dim(path
));
491 isl_seq_cpy(path_c
+ off
,
492 delta_c
[i
] + 1 + nparam
, d
);
493 isl_int_set(path_c
[off
+ d
], delta_c
[i
][0]);
494 } else if (p
== PURE_PARAM
) {
495 isl_seq_cpy(path_c
, delta_c
[i
], 1 + nparam
);
497 isl_seq_cpy(path_c
+ off
,
498 delta_c
[i
] + 1 + nparam
, d
);
499 isl_seq_cpy(path_c
, delta_c
[i
], 1 + nparam
);
501 isl_seq_cpy(path_c
+ off
- n_div
,
502 delta_c
[i
] + 1 + nparam
+ d
, n_div
);
507 isl_basic_map_free(path
);
511 /* Given a set of offsets "delta", construct a relation of the
512 * given dimension specification (Z^{n+1} -> Z^{n+1}) that
513 * is an overapproximation of the relations that
514 * maps an element x to any element that can be reached
515 * by taking a non-negative number of steps along any of
516 * the elements in "delta".
517 * That is, construct an approximation of
519 * { [x] -> [y] : exists f \in \delta, k \in Z :
520 * y = x + k [f, 1] and k >= 0 }
522 * For any element in this relation, the number of steps taken
523 * is equal to the difference in the final coordinates.
525 * In particular, let delta be defined as
527 * \delta = [p] -> { [x] : A x + a >= 0 and B p + b >= 0 and
528 * C x + C'p + c >= 0 and
529 * D x + D'p + d >= 0 }
531 * where the constraints C x + C'p + c >= 0 are such that the parametric
532 * constant term of each constraint j, "C_j x + C'_j p + c_j",
533 * can never attain positive values, then the relation is constructed as
535 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
536 * A f + k a >= 0 and B p + b >= 0 and
537 * C f + C'p + c >= 0 and k >= 1 }
538 * union { [x] -> [x] }
540 * If the zero-length paths happen to correspond exactly to the identity
541 * mapping, then we return
543 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
544 * A f + k a >= 0 and B p + b >= 0 and
545 * C f + C'p + c >= 0 and k >= 0 }
549 * Existentially quantified variables in \delta are handled by
550 * classifying them as independent of the parameters, purely
551 * parameter dependent and others. Constraints containing
552 * any of the other existentially quantified variables are removed.
553 * This is safe, but leads to an additional overapproximation.
555 * If there are any impure constraints, then we also eliminate
556 * the parameters from \delta, resulting in a set
558 * \delta' = { [x] : E x + e >= 0 }
560 * and add the constraints
564 * to the constructed relation.
566 static __isl_give isl_map
*path_along_delta(__isl_take isl_space
*space
,
567 __isl_take isl_basic_set
*delta
)
569 isl_basic_map
*path
= NULL
;
576 int *div_purity
= NULL
;
581 n_div
= isl_basic_set_dim(delta
, isl_dim_div
);
582 d
= isl_basic_set_dim(delta
, isl_dim_set
);
583 nparam
= isl_basic_set_dim(delta
, isl_dim_param
);
584 path
= isl_basic_map_alloc_space(isl_space_copy(space
), n_div
+ d
+ 1,
585 d
+ 1 + delta
->n_eq
, delta
->n_eq
+ delta
->n_ineq
+ 1);
586 off
= 1 + nparam
+ 2 * (d
+ 1) + n_div
;
588 for (i
= 0; i
< n_div
+ d
+ 1; ++i
) {
589 k
= isl_basic_map_alloc_div(path
);
592 isl_int_set_si(path
->div
[k
][0], 0);
595 for (i
= 0; i
< d
+ 1; ++i
) {
596 k
= isl_basic_map_alloc_equality(path
);
599 isl_seq_clr(path
->eq
[k
], 1 + isl_basic_map_total_dim(path
));
600 isl_int_set_si(path
->eq
[k
][1 + nparam
+ i
], 1);
601 isl_int_set_si(path
->eq
[k
][1 + nparam
+ d
+ 1 + i
], -1);
602 isl_int_set_si(path
->eq
[k
][off
+ i
], 1);
605 div_purity
= get_div_purity(delta
);
606 if (n_div
&& !div_purity
)
609 path
= add_delta_constraints(path
, delta
, off
, nparam
, d
,
610 div_purity
, 1, &impurity
);
611 path
= add_delta_constraints(path
, delta
, off
, nparam
, d
,
612 div_purity
, 0, &impurity
);
614 isl_space
*space
= isl_basic_set_get_space(delta
);
615 delta
= isl_basic_set_project_out(delta
,
616 isl_dim_param
, 0, nparam
);
617 delta
= isl_basic_set_add_dims(delta
, isl_dim_param
, nparam
);
618 delta
= isl_basic_set_reset_space(delta
, space
);
621 path
= isl_basic_map_extend_constraints(path
, delta
->n_eq
,
623 path
= add_delta_constraints(path
, delta
, off
, nparam
, d
,
625 path
= add_delta_constraints(path
, delta
, off
, nparam
, d
,
627 path
= isl_basic_map_gauss(path
, NULL
);
630 is_id
= empty_path_is_identity(path
, off
+ d
);
634 k
= isl_basic_map_alloc_inequality(path
);
637 isl_seq_clr(path
->ineq
[k
], 1 + isl_basic_map_total_dim(path
));
639 isl_int_set_si(path
->ineq
[k
][0], -1);
640 isl_int_set_si(path
->ineq
[k
][off
+ d
], 1);
643 isl_basic_set_free(delta
);
644 path
= isl_basic_map_finalize(path
);
646 isl_space_free(space
);
647 return isl_map_from_basic_map(path
);
649 return isl_basic_map_union(path
, isl_basic_map_identity(space
));
652 isl_space_free(space
);
653 isl_basic_set_free(delta
);
654 isl_basic_map_free(path
);
658 /* Given a dimension specification Z^{n+1} -> Z^{n+1} and a parameter "param",
659 * construct a map that equates the parameter to the difference
660 * in the final coordinates and imposes that this difference is positive.
663 * { [x,x_s] -> [y,y_s] : k = y_s - x_s > 0 }
665 static __isl_give isl_map
*equate_parameter_to_length(
666 __isl_take isl_space
*space
, unsigned param
)
668 struct isl_basic_map
*bmap
;
673 d
= isl_space_dim(space
, isl_dim_in
);
674 nparam
= isl_space_dim(space
, isl_dim_param
);
675 bmap
= isl_basic_map_alloc_space(space
, 0, 1, 1);
676 k
= isl_basic_map_alloc_equality(bmap
);
679 isl_seq_clr(bmap
->eq
[k
], 1 + isl_basic_map_total_dim(bmap
));
680 isl_int_set_si(bmap
->eq
[k
][1 + param
], -1);
681 isl_int_set_si(bmap
->eq
[k
][1 + nparam
+ d
- 1], -1);
682 isl_int_set_si(bmap
->eq
[k
][1 + nparam
+ d
+ d
- 1], 1);
684 k
= isl_basic_map_alloc_inequality(bmap
);
687 isl_seq_clr(bmap
->ineq
[k
], 1 + isl_basic_map_total_dim(bmap
));
688 isl_int_set_si(bmap
->ineq
[k
][1 + param
], 1);
689 isl_int_set_si(bmap
->ineq
[k
][0], -1);
691 bmap
= isl_basic_map_finalize(bmap
);
692 return isl_map_from_basic_map(bmap
);
694 isl_basic_map_free(bmap
);
698 /* Check whether "path" is acyclic, where the last coordinates of domain
699 * and range of path encode the number of steps taken.
700 * That is, check whether
702 * { d | d = y - x and (x,y) in path }
704 * does not contain any element with positive last coordinate (positive length)
705 * and zero remaining coordinates (cycle).
707 static int is_acyclic(__isl_take isl_map
*path
)
712 struct isl_set
*delta
;
714 delta
= isl_map_deltas(path
);
715 dim
= isl_set_dim(delta
, isl_dim_set
);
716 for (i
= 0; i
< dim
; ++i
) {
718 delta
= isl_set_lower_bound_si(delta
, isl_dim_set
, i
, 1);
720 delta
= isl_set_fix_si(delta
, isl_dim_set
, i
, 0);
723 acyclic
= isl_set_is_empty(delta
);
729 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
730 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
731 * construct a map that is an overapproximation of the map
732 * that takes an element from the space D \times Z to another
733 * element from the same space, such that the first n coordinates of the
734 * difference between them is a sum of differences between images
735 * and pre-images in one of the R_i and such that the last coordinate
736 * is equal to the number of steps taken.
739 * \Delta_i = { y - x | (x, y) in R_i }
741 * then the constructed map is an overapproximation of
743 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
744 * d = (\sum_i k_i \delta_i, \sum_i k_i) }
746 * The elements of the singleton \Delta_i's are collected as the
747 * rows of the steps matrix. For all these \Delta_i's together,
748 * a single path is constructed.
749 * For each of the other \Delta_i's, we compute an overapproximation
750 * of the paths along elements of \Delta_i.
751 * Since each of these paths performs an addition, composition is
752 * symmetric and we can simply compose all resulting paths in any order.
754 static __isl_give isl_map
*construct_extended_path(__isl_take isl_space
*space
,
755 __isl_keep isl_map
*map
, int *project
)
757 struct isl_mat
*steps
= NULL
;
758 struct isl_map
*path
= NULL
;
765 d
= isl_map_dim(map
, isl_dim_in
);
767 path
= isl_map_identity(isl_space_copy(space
));
769 steps
= isl_mat_alloc(map
->ctx
, map
->n
, d
);
774 for (i
= 0; i
< map
->n
; ++i
) {
775 struct isl_basic_set
*delta
;
777 delta
= isl_basic_map_deltas(isl_basic_map_copy(map
->p
[i
]));
779 for (j
= 0; j
< d
; ++j
) {
782 fixed
= isl_basic_set_plain_dim_is_fixed(delta
, j
,
785 isl_basic_set_free(delta
);
794 path
= isl_map_apply_range(path
,
795 path_along_delta(isl_space_copy(space
), delta
));
796 path
= isl_map_coalesce(path
);
798 isl_basic_set_free(delta
);
805 path
= isl_map_apply_range(path
,
806 path_along_steps(isl_space_copy(space
), steps
));
809 if (project
&& *project
) {
810 *project
= is_acyclic(isl_map_copy(path
));
815 isl_space_free(space
);
819 isl_space_free(space
);
825 static isl_bool
isl_set_overlaps(__isl_keep isl_set
*set1
,
826 __isl_keep isl_set
*set2
)
832 return isl_bool_error
;
834 if (!isl_space_tuple_is_equal(set1
->dim
, isl_dim_set
,
835 set2
->dim
, isl_dim_set
))
836 return isl_bool_false
;
838 i
= isl_set_intersect(isl_set_copy(set1
), isl_set_copy(set2
));
839 no_overlap
= isl_set_is_empty(i
);
842 return isl_bool_not(no_overlap
);
845 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
846 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
847 * construct a map that is an overapproximation of the map
848 * that takes an element from the dom R \times Z to an
849 * element from ran R \times Z, such that the first n coordinates of the
850 * difference between them is a sum of differences between images
851 * and pre-images in one of the R_i and such that the last coordinate
852 * is equal to the number of steps taken.
855 * \Delta_i = { y - x | (x, y) in R_i }
857 * then the constructed map is an overapproximation of
859 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
860 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
861 * x in dom R and x + d in ran R and
864 static __isl_give isl_map
*construct_component(__isl_take isl_space
*dim
,
865 __isl_keep isl_map
*map
, int *exact
, int project
)
867 struct isl_set
*domain
= NULL
;
868 struct isl_set
*range
= NULL
;
869 struct isl_map
*app
= NULL
;
870 struct isl_map
*path
= NULL
;
873 domain
= isl_map_domain(isl_map_copy(map
));
874 domain
= isl_set_coalesce(domain
);
875 range
= isl_map_range(isl_map_copy(map
));
876 range
= isl_set_coalesce(range
);
877 overlaps
= isl_set_overlaps(domain
, range
);
878 if (overlaps
< 0 || !overlaps
) {
879 isl_set_free(domain
);
885 map
= isl_map_copy(map
);
886 map
= isl_map_add_dims(map
, isl_dim_in
, 1);
887 map
= isl_map_add_dims(map
, isl_dim_out
, 1);
888 map
= set_path_length(map
, 1, 1);
891 app
= isl_map_from_domain_and_range(domain
, range
);
892 app
= isl_map_add_dims(app
, isl_dim_in
, 1);
893 app
= isl_map_add_dims(app
, isl_dim_out
, 1);
895 path
= construct_extended_path(isl_space_copy(dim
), map
,
896 exact
&& *exact
? &project
: NULL
);
897 app
= isl_map_intersect(app
, path
);
899 if (exact
&& *exact
&&
900 (*exact
= check_exactness(isl_map_copy(map
), isl_map_copy(app
),
905 app
= set_path_length(app
, 0, 1);
913 /* Call construct_component and, if "project" is set, project out
914 * the final coordinates.
916 static __isl_give isl_map
*construct_projected_component(
917 __isl_take isl_space
*space
,
918 __isl_keep isl_map
*map
, int *exact
, int project
)
925 d
= isl_space_dim(space
, isl_dim_in
);
927 app
= construct_component(space
, map
, exact
, project
);
929 app
= isl_map_project_out(app
, isl_dim_in
, d
- 1, 1);
930 app
= isl_map_project_out(app
, isl_dim_out
, d
- 1, 1);
935 /* Compute an extended version, i.e., with path lengths, of
936 * an overapproximation of the transitive closure of "bmap"
937 * with path lengths greater than or equal to zero and with
938 * domain and range equal to "dom".
940 static __isl_give isl_map
*q_closure(__isl_take isl_space
*dim
,
941 __isl_take isl_set
*dom
, __isl_keep isl_basic_map
*bmap
, int *exact
)
948 dom
= isl_set_add_dims(dom
, isl_dim_set
, 1);
949 app
= isl_map_from_domain_and_range(dom
, isl_set_copy(dom
));
950 map
= isl_map_from_basic_map(isl_basic_map_copy(bmap
));
951 path
= construct_extended_path(dim
, map
, &project
);
952 app
= isl_map_intersect(app
, path
);
954 if ((*exact
= check_exactness(map
, isl_map_copy(app
), project
)) < 0)
963 /* Check whether qc has any elements of length at least one
964 * with domain and/or range outside of dom and ran.
966 static int has_spurious_elements(__isl_keep isl_map
*qc
,
967 __isl_keep isl_set
*dom
, __isl_keep isl_set
*ran
)
973 if (!qc
|| !dom
|| !ran
)
976 d
= isl_map_dim(qc
, isl_dim_in
);
978 qc
= isl_map_copy(qc
);
979 qc
= set_path_length(qc
, 0, 1);
980 qc
= isl_map_project_out(qc
, isl_dim_in
, d
- 1, 1);
981 qc
= isl_map_project_out(qc
, isl_dim_out
, d
- 1, 1);
983 s
= isl_map_domain(isl_map_copy(qc
));
984 subset
= isl_set_is_subset(s
, dom
);
993 s
= isl_map_range(qc
);
994 subset
= isl_set_is_subset(s
, ran
);
997 return subset
< 0 ? -1 : !subset
;
1006 /* For each basic map in "map", except i, check whether it combines
1007 * with the transitive closure that is reflexive on C combines
1008 * to the left and to the right.
1012 * dom map_j \subseteq C
1014 * then right[j] is set to 1. Otherwise, if
1016 * ran map_i \cap dom map_j = \emptyset
1018 * then right[j] is set to 0. Otherwise, composing to the right
1021 * Similar, for composing to the left, we have if
1023 * ran map_j \subseteq C
1025 * then left[j] is set to 1. Otherwise, if
1027 * dom map_i \cap ran map_j = \emptyset
1029 * then left[j] is set to 0. Otherwise, composing to the left
1032 * The return value is or'd with LEFT if composing to the left
1033 * is possible and with RIGHT if composing to the right is possible.
1035 static int composability(__isl_keep isl_set
*C
, int i
,
1036 isl_set
**dom
, isl_set
**ran
, int *left
, int *right
,
1037 __isl_keep isl_map
*map
)
1043 for (j
= 0; j
< map
->n
&& ok
; ++j
) {
1044 isl_bool overlaps
, subset
;
1050 dom
[j
] = isl_set_from_basic_set(
1051 isl_basic_map_domain(
1052 isl_basic_map_copy(map
->p
[j
])));
1055 overlaps
= isl_set_overlaps(ran
[i
], dom
[j
]);
1061 subset
= isl_set_is_subset(dom
[j
], C
);
1073 ran
[j
] = isl_set_from_basic_set(
1074 isl_basic_map_range(
1075 isl_basic_map_copy(map
->p
[j
])));
1078 overlaps
= isl_set_overlaps(dom
[i
], ran
[j
]);
1084 subset
= isl_set_is_subset(ran
[j
], C
);
1098 static __isl_give isl_map
*anonymize(__isl_take isl_map
*map
)
1100 map
= isl_map_reset(map
, isl_dim_in
);
1101 map
= isl_map_reset(map
, isl_dim_out
);
1105 /* Return a map that is a union of the basic maps in "map", except i,
1106 * composed to left and right with qc based on the entries of "left"
1109 static __isl_give isl_map
*compose(__isl_keep isl_map
*map
, int i
,
1110 __isl_take isl_map
*qc
, int *left
, int *right
)
1115 comp
= isl_map_empty(isl_map_get_space(map
));
1116 for (j
= 0; j
< map
->n
; ++j
) {
1122 map_j
= isl_map_from_basic_map(isl_basic_map_copy(map
->p
[j
]));
1123 map_j
= anonymize(map_j
);
1124 if (left
&& left
[j
])
1125 map_j
= isl_map_apply_range(map_j
, isl_map_copy(qc
));
1126 if (right
&& right
[j
])
1127 map_j
= isl_map_apply_range(isl_map_copy(qc
), map_j
);
1128 comp
= isl_map_union(comp
, map_j
);
1131 comp
= isl_map_compute_divs(comp
);
1132 comp
= isl_map_coalesce(comp
);
1139 /* Compute the transitive closure of "map" incrementally by
1146 * map_i^+ \cup ((id \cup map_i^) \circ qc^+)
1150 * map_i^+ \cup (qc^+ \circ (id \cup map_i^))
1152 * depending on whether left or right are NULL.
1154 static __isl_give isl_map
*compute_incremental(
1155 __isl_take isl_space
*space
, __isl_keep isl_map
*map
,
1156 int i
, __isl_take isl_map
*qc
, int *left
, int *right
, int *exact
)
1160 isl_map
*rtc
= NULL
;
1164 isl_assert(map
->ctx
, left
|| right
, goto error
);
1166 map_i
= isl_map_from_basic_map(isl_basic_map_copy(map
->p
[i
]));
1167 tc
= construct_projected_component(isl_space_copy(space
), map_i
,
1169 isl_map_free(map_i
);
1172 qc
= isl_map_transitive_closure(qc
, exact
);
1175 isl_space_free(space
);
1178 return isl_map_universe(isl_map_get_space(map
));
1181 if (!left
|| !right
)
1182 rtc
= isl_map_union(isl_map_copy(tc
),
1183 isl_map_identity(isl_map_get_space(tc
)));
1185 qc
= isl_map_apply_range(rtc
, qc
);
1187 qc
= isl_map_apply_range(qc
, rtc
);
1188 qc
= isl_map_union(tc
, qc
);
1190 isl_space_free(space
);
1194 isl_space_free(space
);
1199 /* Given a map "map", try to find a basic map such that
1200 * map^+ can be computed as
1202 * map^+ = map_i^+ \cup
1203 * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
1205 * with C the simple hull of the domain and range of the input map.
1206 * map_i^ \cup Id_C is computed by allowing the path lengths to be zero
1207 * and by intersecting domain and range with C.
1208 * Of course, we need to check that this is actually equal to map_i^ \cup Id_C.
1209 * Also, we only use the incremental computation if all the transitive
1210 * closures are exact and if the number of basic maps in the union,
1211 * after computing the integer divisions, is smaller than the number
1212 * of basic maps in the input map.
1214 static int incremental_on_entire_domain(__isl_keep isl_space
*space
,
1215 __isl_keep isl_map
*map
,
1216 isl_set
**dom
, isl_set
**ran
, int *left
, int *right
,
1217 __isl_give isl_map
**res
)
1225 C
= isl_set_union(isl_map_domain(isl_map_copy(map
)),
1226 isl_map_range(isl_map_copy(map
)));
1227 C
= isl_set_from_basic_set(isl_set_simple_hull(C
));
1235 d
= isl_map_dim(map
, isl_dim_in
);
1237 for (i
= 0; i
< map
->n
; ++i
) {
1239 int exact_i
, spurious
;
1241 dom
[i
] = isl_set_from_basic_set(isl_basic_map_domain(
1242 isl_basic_map_copy(map
->p
[i
])));
1243 ran
[i
] = isl_set_from_basic_set(isl_basic_map_range(
1244 isl_basic_map_copy(map
->p
[i
])));
1245 qc
= q_closure(isl_space_copy(space
), isl_set_copy(C
),
1246 map
->p
[i
], &exact_i
);
1253 spurious
= has_spurious_elements(qc
, dom
[i
], ran
[i
]);
1260 qc
= isl_map_project_out(qc
, isl_dim_in
, d
, 1);
1261 qc
= isl_map_project_out(qc
, isl_dim_out
, d
, 1);
1262 qc
= isl_map_compute_divs(qc
);
1263 for (j
= 0; j
< map
->n
; ++j
)
1264 left
[j
] = right
[j
] = 1;
1265 qc
= compose(map
, i
, qc
, left
, right
);
1268 if (qc
->n
>= map
->n
) {
1272 *res
= compute_incremental(isl_space_copy(space
), map
, i
, qc
,
1273 left
, right
, &exact_i
);
1284 return *res
!= NULL
;
1290 /* Try and compute the transitive closure of "map" as
1292 * map^+ = map_i^+ \cup
1293 * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
1295 * with C either the simple hull of the domain and range of the entire
1296 * map or the simple hull of domain and range of map_i.
1298 static __isl_give isl_map
*incremental_closure(__isl_take isl_space
*space
,
1299 __isl_keep isl_map
*map
, int *exact
, int project
)
1302 isl_set
**dom
= NULL
;
1303 isl_set
**ran
= NULL
;
1308 isl_map
*res
= NULL
;
1311 return construct_projected_component(space
, map
, exact
,
1317 return construct_projected_component(space
, map
, exact
,
1320 d
= isl_map_dim(map
, isl_dim_in
);
1322 dom
= isl_calloc_array(map
->ctx
, isl_set
*, map
->n
);
1323 ran
= isl_calloc_array(map
->ctx
, isl_set
*, map
->n
);
1324 left
= isl_calloc_array(map
->ctx
, int, map
->n
);
1325 right
= isl_calloc_array(map
->ctx
, int, map
->n
);
1326 if (!ran
|| !dom
|| !left
|| !right
)
1329 if (incremental_on_entire_domain(space
, map
, dom
, ran
, left
, right
,
1333 for (i
= 0; !res
&& i
< map
->n
; ++i
) {
1335 int exact_i
, spurious
, comp
;
1337 dom
[i
] = isl_set_from_basic_set(
1338 isl_basic_map_domain(
1339 isl_basic_map_copy(map
->p
[i
])));
1343 ran
[i
] = isl_set_from_basic_set(
1344 isl_basic_map_range(
1345 isl_basic_map_copy(map
->p
[i
])));
1348 C
= isl_set_union(isl_set_copy(dom
[i
]),
1349 isl_set_copy(ran
[i
]));
1350 C
= isl_set_from_basic_set(isl_set_simple_hull(C
));
1357 comp
= composability(C
, i
, dom
, ran
, left
, right
, map
);
1358 if (!comp
|| comp
< 0) {
1364 qc
= q_closure(isl_space_copy(space
), C
, map
->p
[i
], &exact_i
);
1371 spurious
= has_spurious_elements(qc
, dom
[i
], ran
[i
]);
1378 qc
= isl_map_project_out(qc
, isl_dim_in
, d
, 1);
1379 qc
= isl_map_project_out(qc
, isl_dim_out
, d
, 1);
1380 qc
= isl_map_compute_divs(qc
);
1381 qc
= compose(map
, i
, qc
, (comp
& LEFT
) ? left
: NULL
,
1382 (comp
& RIGHT
) ? right
: NULL
);
1385 if (qc
->n
>= map
->n
) {
1389 res
= compute_incremental(isl_space_copy(space
), map
, i
, qc
,
1390 (comp
& LEFT
) ? left
: NULL
,
1391 (comp
& RIGHT
) ? right
: NULL
, &exact_i
);
1400 for (i
= 0; i
< map
->n
; ++i
) {
1401 isl_set_free(dom
[i
]);
1402 isl_set_free(ran
[i
]);
1410 isl_space_free(space
);
1414 return construct_projected_component(space
, map
, exact
, project
);
1417 for (i
= 0; i
< map
->n
; ++i
)
1418 isl_set_free(dom
[i
]);
1421 for (i
= 0; i
< map
->n
; ++i
)
1422 isl_set_free(ran
[i
]);
1426 isl_space_free(space
);
1430 /* Given an array of sets "set", add "dom" at position "pos"
1431 * and search for elements at earlier positions that overlap with "dom".
1432 * If any can be found, then merge all of them, together with "dom", into
1433 * a single set and assign the union to the first in the array,
1434 * which becomes the new group leader for all groups involved in the merge.
1435 * During the search, we only consider group leaders, i.e., those with
1436 * group[i] = i, as the other sets have already been combined
1437 * with one of the group leaders.
1439 static int merge(isl_set
**set
, int *group
, __isl_take isl_set
*dom
, int pos
)
1444 set
[pos
] = isl_set_copy(dom
);
1446 for (i
= pos
- 1; i
>= 0; --i
) {
1452 o
= isl_set_overlaps(set
[i
], dom
);
1458 set
[i
] = isl_set_union(set
[i
], set
[group
[pos
]]);
1459 set
[group
[pos
]] = NULL
;
1462 group
[group
[pos
]] = i
;
1473 /* Replace each entry in the n by n grid of maps by the cross product
1474 * with the relation { [i] -> [i + 1] }.
1476 static int add_length(__isl_keep isl_map
*map
, isl_map
***grid
, int n
)
1480 isl_basic_map
*bstep
;
1487 space
= isl_map_get_space(map
);
1488 nparam
= isl_space_dim(space
, isl_dim_param
);
1489 space
= isl_space_drop_dims(space
, isl_dim_in
, 0,
1490 isl_space_dim(space
, isl_dim_in
));
1491 space
= isl_space_drop_dims(space
, isl_dim_out
, 0,
1492 isl_space_dim(space
, isl_dim_out
));
1493 space
= isl_space_add_dims(space
, isl_dim_in
, 1);
1494 space
= isl_space_add_dims(space
, isl_dim_out
, 1);
1495 bstep
= isl_basic_map_alloc_space(space
, 0, 1, 0);
1496 k
= isl_basic_map_alloc_equality(bstep
);
1498 isl_basic_map_free(bstep
);
1501 isl_seq_clr(bstep
->eq
[k
], 1 + isl_basic_map_total_dim(bstep
));
1502 isl_int_set_si(bstep
->eq
[k
][0], 1);
1503 isl_int_set_si(bstep
->eq
[k
][1 + nparam
], 1);
1504 isl_int_set_si(bstep
->eq
[k
][1 + nparam
+ 1], -1);
1505 bstep
= isl_basic_map_finalize(bstep
);
1506 step
= isl_map_from_basic_map(bstep
);
1508 for (i
= 0; i
< n
; ++i
)
1509 for (j
= 0; j
< n
; ++j
)
1510 grid
[i
][j
] = isl_map_product(grid
[i
][j
],
1511 isl_map_copy(step
));
1518 /* The core of the Floyd-Warshall algorithm.
1519 * Updates the given n x x matrix of relations in place.
1521 * The algorithm iterates over all vertices. In each step, the whole
1522 * matrix is updated to include all paths that go to the current vertex,
1523 * possibly stay there a while (including passing through earlier vertices)
1524 * and then come back. At the start of each iteration, the diagonal
1525 * element corresponding to the current vertex is replaced by its
1526 * transitive closure to account for all indirect paths that stay
1527 * in the current vertex.
1529 static void floyd_warshall_iterate(isl_map
***grid
, int n
, int *exact
)
1533 for (r
= 0; r
< n
; ++r
) {
1535 grid
[r
][r
] = isl_map_transitive_closure(grid
[r
][r
],
1536 (exact
&& *exact
) ? &r_exact
: NULL
);
1537 if (exact
&& *exact
&& !r_exact
)
1540 for (p
= 0; p
< n
; ++p
)
1541 for (q
= 0; q
< n
; ++q
) {
1543 if (p
== r
&& q
== r
)
1545 loop
= isl_map_apply_range(
1546 isl_map_copy(grid
[p
][r
]),
1547 isl_map_copy(grid
[r
][q
]));
1548 grid
[p
][q
] = isl_map_union(grid
[p
][q
], loop
);
1549 loop
= isl_map_apply_range(
1550 isl_map_copy(grid
[p
][r
]),
1551 isl_map_apply_range(
1552 isl_map_copy(grid
[r
][r
]),
1553 isl_map_copy(grid
[r
][q
])));
1554 grid
[p
][q
] = isl_map_union(grid
[p
][q
], loop
);
1555 grid
[p
][q
] = isl_map_coalesce(grid
[p
][q
]);
1560 /* Given a partition of the domains and ranges of the basic maps in "map",
1561 * apply the Floyd-Warshall algorithm with the elements in the partition
1564 * In particular, there are "n" elements in the partition and "group" is
1565 * an array of length 2 * map->n with entries in [0,n-1].
1567 * We first construct a matrix of relations based on the partition information,
1568 * apply Floyd-Warshall on this matrix of relations and then take the
1569 * union of all entries in the matrix as the final result.
1571 * If we are actually computing the power instead of the transitive closure,
1572 * i.e., when "project" is not set, then the result should have the
1573 * path lengths encoded as the difference between an extra pair of
1574 * coordinates. We therefore apply the nested transitive closures
1575 * to relations that include these lengths. In particular, we replace
1576 * the input relation by the cross product with the unit length relation
1577 * { [i] -> [i + 1] }.
1579 static __isl_give isl_map
*floyd_warshall_with_groups(
1580 __isl_take isl_space
*space
, __isl_keep isl_map
*map
,
1581 int *exact
, int project
, int *group
, int n
)
1584 isl_map
***grid
= NULL
;
1592 return incremental_closure(space
, map
, exact
, project
);
1595 grid
= isl_calloc_array(map
->ctx
, isl_map
**, n
);
1598 for (i
= 0; i
< n
; ++i
) {
1599 grid
[i
] = isl_calloc_array(map
->ctx
, isl_map
*, n
);
1602 for (j
= 0; j
< n
; ++j
)
1603 grid
[i
][j
] = isl_map_empty(isl_map_get_space(map
));
1606 for (k
= 0; k
< map
->n
; ++k
) {
1608 j
= group
[2 * k
+ 1];
1609 grid
[i
][j
] = isl_map_union(grid
[i
][j
],
1610 isl_map_from_basic_map(
1611 isl_basic_map_copy(map
->p
[k
])));
1614 if (!project
&& add_length(map
, grid
, n
) < 0)
1617 floyd_warshall_iterate(grid
, n
, exact
);
1619 app
= isl_map_empty(isl_map_get_space(grid
[0][0]));
1621 for (i
= 0; i
< n
; ++i
) {
1622 for (j
= 0; j
< n
; ++j
)
1623 app
= isl_map_union(app
, grid
[i
][j
]);
1629 isl_space_free(space
);
1634 for (i
= 0; i
< n
; ++i
) {
1637 for (j
= 0; j
< n
; ++j
)
1638 isl_map_free(grid
[i
][j
]);
1643 isl_space_free(space
);
1647 /* Partition the domains and ranges of the n basic relations in list
1648 * into disjoint cells.
1650 * To find the partition, we simply consider all of the domains
1651 * and ranges in turn and combine those that overlap.
1652 * "set" contains the partition elements and "group" indicates
1653 * to which partition element a given domain or range belongs.
1654 * The domain of basic map i corresponds to element 2 * i in these arrays,
1655 * while the domain corresponds to element 2 * i + 1.
1656 * During the construction group[k] is either equal to k,
1657 * in which case set[k] contains the union of all the domains and
1658 * ranges in the corresponding group, or is equal to some l < k,
1659 * with l another domain or range in the same group.
1661 static int *setup_groups(isl_ctx
*ctx
, __isl_keep isl_basic_map
**list
, int n
,
1662 isl_set
***set
, int *n_group
)
1668 *set
= isl_calloc_array(ctx
, isl_set
*, 2 * n
);
1669 group
= isl_alloc_array(ctx
, int, 2 * n
);
1671 if (!*set
|| !group
)
1674 for (i
= 0; i
< n
; ++i
) {
1676 dom
= isl_set_from_basic_set(isl_basic_map_domain(
1677 isl_basic_map_copy(list
[i
])));
1678 if (merge(*set
, group
, dom
, 2 * i
) < 0)
1680 dom
= isl_set_from_basic_set(isl_basic_map_range(
1681 isl_basic_map_copy(list
[i
])));
1682 if (merge(*set
, group
, dom
, 2 * i
+ 1) < 0)
1687 for (i
= 0; i
< 2 * n
; ++i
)
1688 if (group
[i
] == i
) {
1690 (*set
)[g
] = (*set
)[i
];
1695 group
[i
] = group
[group
[i
]];
1702 for (i
= 0; i
< 2 * n
; ++i
)
1703 isl_set_free((*set
)[i
]);
1711 /* Check if the domains and ranges of the basic maps in "map" can
1712 * be partitioned, and if so, apply Floyd-Warshall on the elements
1713 * of the partition. Note that we also apply this algorithm
1714 * if we want to compute the power, i.e., when "project" is not set.
1715 * However, the results are unlikely to be exact since the recursive
1716 * calls inside the Floyd-Warshall algorithm typically result in
1717 * non-linear path lengths quite quickly.
1719 static __isl_give isl_map
*floyd_warshall(__isl_take isl_space
*space
,
1720 __isl_keep isl_map
*map
, int *exact
, int project
)
1723 isl_set
**set
= NULL
;
1730 return incremental_closure(space
, map
, exact
, project
);
1732 group
= setup_groups(map
->ctx
, map
->p
, map
->n
, &set
, &n
);
1736 for (i
= 0; i
< 2 * map
->n
; ++i
)
1737 isl_set_free(set
[i
]);
1741 return floyd_warshall_with_groups(space
, map
, exact
, project
, group
, n
);
1743 isl_space_free(space
);
1747 /* Structure for representing the nodes of the graph of which
1748 * strongly connected components are being computed.
1750 * list contains the actual nodes
1751 * check_closed is set if we may have used the fact that
1752 * a pair of basic maps can be interchanged
1754 struct isl_tc_follows_data
{
1755 isl_basic_map
**list
;
1759 /* Check whether in the computation of the transitive closure
1760 * "list[i]" (R_1) should follow (or be part of the same component as)
1763 * That is check whether
1771 * If so, then there is no reason for R_1 to immediately follow R_2
1774 * *check_closed is set if the subset relation holds while
1775 * R_1 \circ R_2 is not empty.
1777 static isl_bool
basic_map_follows(int i
, int j
, void *user
)
1779 struct isl_tc_follows_data
*data
= user
;
1780 struct isl_map
*map12
= NULL
;
1781 struct isl_map
*map21
= NULL
;
1784 if (!isl_space_tuple_is_equal(data
->list
[i
]->dim
, isl_dim_in
,
1785 data
->list
[j
]->dim
, isl_dim_out
))
1786 return isl_bool_false
;
1788 map21
= isl_map_from_basic_map(
1789 isl_basic_map_apply_range(
1790 isl_basic_map_copy(data
->list
[j
]),
1791 isl_basic_map_copy(data
->list
[i
])));
1792 subset
= isl_map_is_empty(map21
);
1796 isl_map_free(map21
);
1797 return isl_bool_false
;
1800 if (!isl_space_tuple_is_equal(data
->list
[i
]->dim
, isl_dim_in
,
1801 data
->list
[i
]->dim
, isl_dim_out
) ||
1802 !isl_space_tuple_is_equal(data
->list
[j
]->dim
, isl_dim_in
,
1803 data
->list
[j
]->dim
, isl_dim_out
)) {
1804 isl_map_free(map21
);
1805 return isl_bool_true
;
1808 map12
= isl_map_from_basic_map(
1809 isl_basic_map_apply_range(
1810 isl_basic_map_copy(data
->list
[i
]),
1811 isl_basic_map_copy(data
->list
[j
])));
1813 subset
= isl_map_is_subset(map21
, map12
);
1815 isl_map_free(map12
);
1816 isl_map_free(map21
);
1819 data
->check_closed
= 1;
1821 return isl_bool_not(subset
);
1823 isl_map_free(map21
);
1824 return isl_bool_error
;
1827 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
1828 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
1829 * construct a map that is an overapproximation of the map
1830 * that takes an element from the dom R \times Z to an
1831 * element from ran R \times Z, such that the first n coordinates of the
1832 * difference between them is a sum of differences between images
1833 * and pre-images in one of the R_i and such that the last coordinate
1834 * is equal to the number of steps taken.
1835 * If "project" is set, then these final coordinates are not included,
1836 * i.e., a relation of type Z^n -> Z^n is returned.
1839 * \Delta_i = { y - x | (x, y) in R_i }
1841 * then the constructed map is an overapproximation of
1843 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1844 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
1845 * x in dom R and x + d in ran R }
1849 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1850 * d = (\sum_i k_i \delta_i) and
1851 * x in dom R and x + d in ran R }
1853 * if "project" is set.
1855 * We first split the map into strongly connected components, perform
1856 * the above on each component and then join the results in the correct
1857 * order, at each join also taking in the union of both arguments
1858 * to allow for paths that do not go through one of the two arguments.
1860 static __isl_give isl_map
*construct_power_components(
1861 __isl_take isl_space
*space
, __isl_keep isl_map
*map
, int *exact
,
1865 struct isl_map
*path
= NULL
;
1866 struct isl_tc_follows_data data
;
1867 struct isl_tarjan_graph
*g
= NULL
;
1874 return floyd_warshall(space
, map
, exact
, project
);
1877 data
.check_closed
= 0;
1878 g
= isl_tarjan_graph_init(map
->ctx
, map
->n
, &basic_map_follows
, &data
);
1883 if (data
.check_closed
&& !exact
)
1884 exact
= &local_exact
;
1890 path
= isl_map_empty(isl_map_get_space(map
));
1892 path
= isl_map_empty(isl_space_copy(space
));
1893 path
= anonymize(path
);
1895 struct isl_map
*comp
;
1896 isl_map
*path_comp
, *path_comb
;
1897 comp
= isl_map_alloc_space(isl_map_get_space(map
), n
, 0);
1898 while (g
->order
[i
] != -1) {
1899 comp
= isl_map_add_basic_map(comp
,
1900 isl_basic_map_copy(map
->p
[g
->order
[i
]]));
1904 path_comp
= floyd_warshall(isl_space_copy(space
),
1905 comp
, exact
, project
);
1906 path_comp
= anonymize(path_comp
);
1907 path_comb
= isl_map_apply_range(isl_map_copy(path
),
1908 isl_map_copy(path_comp
));
1909 path
= isl_map_union(path
, path_comp
);
1910 path
= isl_map_union(path
, path_comb
);
1916 if (c
> 1 && data
.check_closed
&& !*exact
) {
1919 closed
= isl_map_is_transitively_closed(path
);
1923 isl_tarjan_graph_free(g
);
1925 return floyd_warshall(space
, map
, orig_exact
, project
);
1929 isl_tarjan_graph_free(g
);
1930 isl_space_free(space
);
1934 isl_tarjan_graph_free(g
);
1935 isl_space_free(space
);
1940 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D,
1941 * construct a map that is an overapproximation of the map
1942 * that takes an element from the space D to another
1943 * element from the same space, such that the difference between
1944 * them is a strictly positive sum of differences between images
1945 * and pre-images in one of the R_i.
1946 * The number of differences in the sum is equated to parameter "param".
1949 * \Delta_i = { y - x | (x, y) in R_i }
1951 * then the constructed map is an overapproximation of
1953 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1954 * d = \sum_i k_i \delta_i and k = \sum_i k_i > 0 }
1957 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1958 * d = \sum_i k_i \delta_i and \sum_i k_i > 0 }
1960 * if "project" is set.
1962 * If "project" is not set, then
1963 * we construct an extended mapping with an extra coordinate
1964 * that indicates the number of steps taken. In particular,
1965 * the difference in the last coordinate is equal to the number
1966 * of steps taken to move from a domain element to the corresponding
1969 static __isl_give isl_map
*construct_power(__isl_keep isl_map
*map
,
1970 int *exact
, int project
)
1972 struct isl_map
*app
= NULL
;
1973 isl_space
*space
= NULL
;
1978 space
= isl_map_get_space(map
);
1980 space
= isl_space_add_dims(space
, isl_dim_in
, 1);
1981 space
= isl_space_add_dims(space
, isl_dim_out
, 1);
1983 app
= construct_power_components(isl_space_copy(space
), map
,
1986 isl_space_free(space
);
1991 /* Compute the positive powers of "map", or an overapproximation.
1992 * If the result is exact, then *exact is set to 1.
1994 * If project is set, then we are actually interested in the transitive
1995 * closure, so we can use a more relaxed exactness check.
1996 * The lengths of the paths are also projected out instead of being
1997 * encoded as the difference between an extra pair of final coordinates.
1999 static __isl_give isl_map
*map_power(__isl_take isl_map
*map
,
2000 int *exact
, int project
)
2002 struct isl_map
*app
= NULL
;
2010 isl_assert(map
->ctx
,
2011 isl_map_dim(map
, isl_dim_in
) == isl_map_dim(map
, isl_dim_out
),
2014 app
= construct_power(map
, exact
, project
);
2024 /* Compute the positive powers of "map", or an overapproximation.
2025 * The result maps the exponent to a nested copy of the corresponding power.
2026 * If the result is exact, then *exact is set to 1.
2027 * map_power constructs an extended relation with the path lengths
2028 * encoded as the difference between the final coordinates.
2029 * In the final step, this difference is equated to an extra parameter
2030 * and made positive. The extra coordinates are subsequently projected out
2031 * and the parameter is turned into the domain of the result.
2033 __isl_give isl_map
*isl_map_power(__isl_take isl_map
*map
, int *exact
)
2035 isl_space
*target_space
;
2044 d
= isl_map_dim(map
, isl_dim_in
);
2045 param
= isl_map_dim(map
, isl_dim_param
);
2047 map
= isl_map_compute_divs(map
);
2048 map
= isl_map_coalesce(map
);
2050 if (isl_map_plain_is_empty(map
)) {
2051 map
= isl_map_from_range(isl_map_wrap(map
));
2052 map
= isl_map_add_dims(map
, isl_dim_in
, 1);
2053 map
= isl_map_set_dim_name(map
, isl_dim_in
, 0, "k");
2057 target_space
= isl_map_get_space(map
);
2058 target_space
= isl_space_from_range(isl_space_wrap(target_space
));
2059 target_space
= isl_space_add_dims(target_space
, isl_dim_in
, 1);
2060 target_space
= isl_space_set_dim_name(target_space
, isl_dim_in
, 0, "k");
2062 map
= map_power(map
, exact
, 0);
2064 map
= isl_map_add_dims(map
, isl_dim_param
, 1);
2065 space
= isl_map_get_space(map
);
2066 diff
= equate_parameter_to_length(space
, param
);
2067 map
= isl_map_intersect(map
, diff
);
2068 map
= isl_map_project_out(map
, isl_dim_in
, d
, 1);
2069 map
= isl_map_project_out(map
, isl_dim_out
, d
, 1);
2070 map
= isl_map_from_range(isl_map_wrap(map
));
2071 map
= isl_map_move_dims(map
, isl_dim_in
, 0, isl_dim_param
, param
, 1);
2073 map
= isl_map_reset_space(map
, target_space
);
2078 /* Compute a relation that maps each element in the range of the input
2079 * relation to the lengths of all paths composed of edges in the input
2080 * relation that end up in the given range element.
2081 * The result may be an overapproximation, in which case *exact is set to 0.
2082 * The resulting relation is very similar to the power relation.
2083 * The difference are that the domain has been projected out, the
2084 * range has become the domain and the exponent is the range instead
2087 __isl_give isl_map
*isl_map_reaching_path_lengths(__isl_take isl_map
*map
,
2098 d
= isl_map_dim(map
, isl_dim_in
);
2099 param
= isl_map_dim(map
, isl_dim_param
);
2101 map
= isl_map_compute_divs(map
);
2102 map
= isl_map_coalesce(map
);
2104 if (isl_map_plain_is_empty(map
)) {
2107 map
= isl_map_project_out(map
, isl_dim_out
, 0, d
);
2108 map
= isl_map_add_dims(map
, isl_dim_out
, 1);
2112 map
= map_power(map
, exact
, 0);
2114 map
= isl_map_add_dims(map
, isl_dim_param
, 1);
2115 space
= isl_map_get_space(map
);
2116 diff
= equate_parameter_to_length(space
, param
);
2117 map
= isl_map_intersect(map
, diff
);
2118 map
= isl_map_project_out(map
, isl_dim_in
, 0, d
+ 1);
2119 map
= isl_map_project_out(map
, isl_dim_out
, d
, 1);
2120 map
= isl_map_reverse(map
);
2121 map
= isl_map_move_dims(map
, isl_dim_out
, 0, isl_dim_param
, param
, 1);
2126 /* Given a map, compute the smallest superset of this map that is of the form
2128 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2130 * (where p ranges over the (non-parametric) dimensions),
2131 * compute the transitive closure of this map, i.e.,
2133 * { i -> j : exists k > 0:
2134 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2136 * and intersect domain and range of this transitive closure with
2137 * the given domain and range.
2139 * If with_id is set, then try to include as much of the identity mapping
2140 * as possible, by computing
2142 * { i -> j : exists k >= 0:
2143 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2145 * instead (i.e., allow k = 0).
2147 * In practice, we compute the difference set
2149 * delta = { j - i | i -> j in map },
2151 * look for stride constraint on the individual dimensions and compute
2152 * (constant) lower and upper bounds for each individual dimension,
2153 * adding a constraint for each bound not equal to infinity.
2155 static __isl_give isl_map
*box_closure_on_domain(__isl_take isl_map
*map
,
2156 __isl_take isl_set
*dom
, __isl_take isl_set
*ran
, int with_id
)
2165 isl_map
*app
= NULL
;
2166 isl_basic_set
*aff
= NULL
;
2167 isl_basic_map
*bmap
= NULL
;
2168 isl_vec
*obj
= NULL
;
2173 delta
= isl_map_deltas(isl_map_copy(map
));
2175 aff
= isl_set_affine_hull(isl_set_copy(delta
));
2178 dim
= isl_map_get_space(map
);
2179 d
= isl_space_dim(dim
, isl_dim_in
);
2180 nparam
= isl_space_dim(dim
, isl_dim_param
);
2181 total
= isl_space_dim(dim
, isl_dim_all
);
2182 bmap
= isl_basic_map_alloc_space(dim
,
2183 aff
->n_div
+ 1, aff
->n_div
, 2 * d
+ 1);
2184 for (i
= 0; i
< aff
->n_div
+ 1; ++i
) {
2185 k
= isl_basic_map_alloc_div(bmap
);
2188 isl_int_set_si(bmap
->div
[k
][0], 0);
2190 for (i
= 0; i
< aff
->n_eq
; ++i
) {
2191 if (!isl_basic_set_eq_is_stride(aff
, i
))
2193 k
= isl_basic_map_alloc_equality(bmap
);
2196 isl_seq_clr(bmap
->eq
[k
], 1 + nparam
);
2197 isl_seq_cpy(bmap
->eq
[k
] + 1 + nparam
+ d
,
2198 aff
->eq
[i
] + 1 + nparam
, d
);
2199 isl_seq_neg(bmap
->eq
[k
] + 1 + nparam
,
2200 aff
->eq
[i
] + 1 + nparam
, d
);
2201 isl_seq_cpy(bmap
->eq
[k
] + 1 + nparam
+ 2 * d
,
2202 aff
->eq
[i
] + 1 + nparam
+ d
, aff
->n_div
);
2203 isl_int_set_si(bmap
->eq
[k
][1 + total
+ aff
->n_div
], 0);
2205 obj
= isl_vec_alloc(map
->ctx
, 1 + nparam
+ d
);
2208 isl_seq_clr(obj
->el
, 1 + nparam
+ d
);
2209 for (i
= 0; i
< d
; ++ i
) {
2210 enum isl_lp_result res
;
2212 isl_int_set_si(obj
->el
[1 + nparam
+ i
], 1);
2214 res
= isl_set_solve_lp(delta
, 0, obj
->el
, map
->ctx
->one
, &opt
,
2216 if (res
== isl_lp_error
)
2218 if (res
== isl_lp_ok
) {
2219 k
= isl_basic_map_alloc_inequality(bmap
);
2222 isl_seq_clr(bmap
->ineq
[k
],
2223 1 + nparam
+ 2 * d
+ bmap
->n_div
);
2224 isl_int_set_si(bmap
->ineq
[k
][1 + nparam
+ i
], -1);
2225 isl_int_set_si(bmap
->ineq
[k
][1 + nparam
+ d
+ i
], 1);
2226 isl_int_neg(bmap
->ineq
[k
][1 + nparam
+ 2 * d
+ aff
->n_div
], opt
);
2229 res
= isl_set_solve_lp(delta
, 1, obj
->el
, map
->ctx
->one
, &opt
,
2231 if (res
== isl_lp_error
)
2233 if (res
== isl_lp_ok
) {
2234 k
= isl_basic_map_alloc_inequality(bmap
);
2237 isl_seq_clr(bmap
->ineq
[k
],
2238 1 + nparam
+ 2 * d
+ bmap
->n_div
);
2239 isl_int_set_si(bmap
->ineq
[k
][1 + nparam
+ i
], 1);
2240 isl_int_set_si(bmap
->ineq
[k
][1 + nparam
+ d
+ i
], -1);
2241 isl_int_set(bmap
->ineq
[k
][1 + nparam
+ 2 * d
+ aff
->n_div
], opt
);
2244 isl_int_set_si(obj
->el
[1 + nparam
+ i
], 0);
2246 k
= isl_basic_map_alloc_inequality(bmap
);
2249 isl_seq_clr(bmap
->ineq
[k
],
2250 1 + nparam
+ 2 * d
+ bmap
->n_div
);
2252 isl_int_set_si(bmap
->ineq
[k
][0], -1);
2253 isl_int_set_si(bmap
->ineq
[k
][1 + nparam
+ 2 * d
+ aff
->n_div
], 1);
2255 app
= isl_map_from_domain_and_range(dom
, ran
);
2258 isl_basic_set_free(aff
);
2260 bmap
= isl_basic_map_finalize(bmap
);
2261 isl_set_free(delta
);
2264 map
= isl_map_from_basic_map(bmap
);
2265 map
= isl_map_intersect(map
, app
);
2270 isl_basic_map_free(bmap
);
2271 isl_basic_set_free(aff
);
2275 isl_set_free(delta
);
2280 /* Given a map, compute the smallest superset of this map that is of the form
2282 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2284 * (where p ranges over the (non-parametric) dimensions),
2285 * compute the transitive closure of this map, i.e.,
2287 * { i -> j : exists k > 0:
2288 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2290 * and intersect domain and range of this transitive closure with
2291 * domain and range of the original map.
2293 static __isl_give isl_map
*box_closure(__isl_take isl_map
*map
)
2298 domain
= isl_map_domain(isl_map_copy(map
));
2299 domain
= isl_set_coalesce(domain
);
2300 range
= isl_map_range(isl_map_copy(map
));
2301 range
= isl_set_coalesce(range
);
2303 return box_closure_on_domain(map
, domain
, range
, 0);
2306 /* Given a map, compute the smallest superset of this map that is of the form
2308 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2310 * (where p ranges over the (non-parametric) dimensions),
2311 * compute the transitive and partially reflexive closure of this map, i.e.,
2313 * { i -> j : exists k >= 0:
2314 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2316 * and intersect domain and range of this transitive closure with
2319 static __isl_give isl_map
*box_closure_with_identity(__isl_take isl_map
*map
,
2320 __isl_take isl_set
*dom
)
2322 return box_closure_on_domain(map
, dom
, isl_set_copy(dom
), 1);
2325 /* Check whether app is the transitive closure of map.
2326 * In particular, check that app is acyclic and, if so,
2329 * app \subset (map \cup (map \circ app))
2331 static int check_exactness_omega(__isl_keep isl_map
*map
,
2332 __isl_keep isl_map
*app
)
2336 isl_bool is_empty
, is_exact
;
2340 delta
= isl_map_deltas(isl_map_copy(app
));
2341 d
= isl_set_dim(delta
, isl_dim_set
);
2342 for (i
= 0; i
< d
; ++i
)
2343 delta
= isl_set_fix_si(delta
, isl_dim_set
, i
, 0);
2344 is_empty
= isl_set_is_empty(delta
);
2345 isl_set_free(delta
);
2351 test
= isl_map_apply_range(isl_map_copy(app
), isl_map_copy(map
));
2352 test
= isl_map_union(test
, isl_map_copy(map
));
2353 is_exact
= isl_map_is_subset(app
, test
);
2359 /* Check if basic map M_i can be combined with all the other
2360 * basic maps such that
2364 * can be computed as
2366 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
2368 * In particular, check if we can compute a compact representation
2371 * M_i^* \circ M_j \circ M_i^*
2374 * Let M_i^? be an extension of M_i^+ that allows paths
2375 * of length zero, i.e., the result of box_closure(., 1).
2376 * The criterion, as proposed by Kelly et al., is that
2377 * id = M_i^? - M_i^+ can be represented as a basic map
2380 * id \circ M_j \circ id = M_j
2384 * If this function returns 1, then tc and qc are set to
2385 * M_i^+ and M_i^?, respectively.
2387 static int can_be_split_off(__isl_keep isl_map
*map
, int i
,
2388 __isl_give isl_map
**tc
, __isl_give isl_map
**qc
)
2390 isl_map
*map_i
, *id
= NULL
;
2397 C
= isl_set_union(isl_map_domain(isl_map_copy(map
)),
2398 isl_map_range(isl_map_copy(map
)));
2399 C
= isl_set_from_basic_set(isl_set_simple_hull(C
));
2403 map_i
= isl_map_from_basic_map(isl_basic_map_copy(map
->p
[i
]));
2404 *tc
= box_closure(isl_map_copy(map_i
));
2405 *qc
= box_closure_with_identity(map_i
, C
);
2406 id
= isl_map_subtract(isl_map_copy(*qc
), isl_map_copy(*tc
));
2410 if (id
->n
!= 1 || (*qc
)->n
!= 1)
2413 for (j
= 0; j
< map
->n
; ++j
) {
2414 isl_map
*map_j
, *test
;
2419 map_j
= isl_map_from_basic_map(
2420 isl_basic_map_copy(map
->p
[j
]));
2421 test
= isl_map_apply_range(isl_map_copy(id
),
2422 isl_map_copy(map_j
));
2423 test
= isl_map_apply_range(test
, isl_map_copy(id
));
2424 is_ok
= isl_map_is_equal(test
, map_j
);
2425 isl_map_free(map_j
);
2453 static __isl_give isl_map
*box_closure_with_check(__isl_take isl_map
*map
,
2458 app
= box_closure(isl_map_copy(map
));
2460 *exact
= check_exactness_omega(map
, app
);
2466 /* Compute an overapproximation of the transitive closure of "map"
2467 * using a variation of the algorithm from
2468 * "Transitive Closure of Infinite Graphs and its Applications"
2471 * We first check whether we can can split of any basic map M_i and
2478 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
2480 * using a recursive call on the remaining map.
2482 * If not, we simply call box_closure on the whole map.
2484 static __isl_give isl_map
*transitive_closure_omega(__isl_take isl_map
*map
,
2494 return box_closure_with_check(map
, exact
);
2496 for (i
= 0; i
< map
->n
; ++i
) {
2499 ok
= can_be_split_off(map
, i
, &tc
, &qc
);
2505 app
= isl_map_alloc_space(isl_map_get_space(map
), map
->n
- 1, 0);
2507 for (j
= 0; j
< map
->n
; ++j
) {
2510 app
= isl_map_add_basic_map(app
,
2511 isl_basic_map_copy(map
->p
[j
]));
2514 app
= isl_map_apply_range(isl_map_copy(qc
), app
);
2515 app
= isl_map_apply_range(app
, qc
);
2517 app
= isl_map_union(tc
, transitive_closure_omega(app
, NULL
));
2518 exact_i
= check_exactness_omega(map
, app
);
2530 return box_closure_with_check(map
, exact
);
2536 /* Compute the transitive closure of "map", or an overapproximation.
2537 * If the result is exact, then *exact is set to 1.
2538 * Simply use map_power to compute the powers of map, but tell
2539 * it to project out the lengths of the paths instead of equating
2540 * the length to a parameter.
2542 __isl_give isl_map
*isl_map_transitive_closure(__isl_take isl_map
*map
,
2545 isl_space
*target_dim
;
2551 if (map
->ctx
->opt
->closure
== ISL_CLOSURE_BOX
)
2552 return transitive_closure_omega(map
, exact
);
2554 map
= isl_map_compute_divs(map
);
2555 map
= isl_map_coalesce(map
);
2556 closed
= isl_map_is_transitively_closed(map
);
2565 target_dim
= isl_map_get_space(map
);
2566 map
= map_power(map
, exact
, 1);
2567 map
= isl_map_reset_space(map
, target_dim
);
2575 static isl_stat
inc_count(__isl_take isl_map
*map
, void *user
)
2586 static isl_stat
collect_basic_map(__isl_take isl_map
*map
, void *user
)
2589 isl_basic_map
***next
= user
;
2591 for (i
= 0; i
< map
->n
; ++i
) {
2592 **next
= isl_basic_map_copy(map
->p
[i
]);
2602 return isl_stat_error
;
2605 /* Perform Floyd-Warshall on the given list of basic relations.
2606 * The basic relations may live in different dimensions,
2607 * but basic relations that get assigned to the diagonal of the
2608 * grid have domains and ranges of the same dimension and so
2609 * the standard algorithm can be used because the nested transitive
2610 * closures are only applied to diagonal elements and because all
2611 * compositions are peformed on relations with compatible domains and ranges.
2613 static __isl_give isl_union_map
*union_floyd_warshall_on_list(isl_ctx
*ctx
,
2614 __isl_keep isl_basic_map
**list
, int n
, int *exact
)
2619 isl_set
**set
= NULL
;
2620 isl_map
***grid
= NULL
;
2623 group
= setup_groups(ctx
, list
, n
, &set
, &n_group
);
2627 grid
= isl_calloc_array(ctx
, isl_map
**, n_group
);
2630 for (i
= 0; i
< n_group
; ++i
) {
2631 grid
[i
] = isl_calloc_array(ctx
, isl_map
*, n_group
);
2634 for (j
= 0; j
< n_group
; ++j
) {
2635 isl_space
*space1
, *space2
, *space
;
2636 space1
= isl_space_reverse(isl_set_get_space(set
[i
]));
2637 space2
= isl_set_get_space(set
[j
]);
2638 space
= isl_space_join(space1
, space2
);
2639 grid
[i
][j
] = isl_map_empty(space
);
2643 for (k
= 0; k
< n
; ++k
) {
2645 j
= group
[2 * k
+ 1];
2646 grid
[i
][j
] = isl_map_union(grid
[i
][j
],
2647 isl_map_from_basic_map(
2648 isl_basic_map_copy(list
[k
])));
2651 floyd_warshall_iterate(grid
, n_group
, exact
);
2653 app
= isl_union_map_empty(isl_map_get_space(grid
[0][0]));
2655 for (i
= 0; i
< n_group
; ++i
) {
2656 for (j
= 0; j
< n_group
; ++j
)
2657 app
= isl_union_map_add_map(app
, grid
[i
][j
]);
2662 for (i
= 0; i
< 2 * n
; ++i
)
2663 isl_set_free(set
[i
]);
2670 for (i
= 0; i
< n_group
; ++i
) {
2673 for (j
= 0; j
< n_group
; ++j
)
2674 isl_map_free(grid
[i
][j
]);
2679 for (i
= 0; i
< 2 * n
; ++i
)
2680 isl_set_free(set
[i
]);
2687 /* Perform Floyd-Warshall on the given union relation.
2688 * The implementation is very similar to that for non-unions.
2689 * The main difference is that it is applied unconditionally.
2690 * We first extract a list of basic maps from the union map
2691 * and then perform the algorithm on this list.
2693 static __isl_give isl_union_map
*union_floyd_warshall(
2694 __isl_take isl_union_map
*umap
, int *exact
)
2698 isl_basic_map
**list
= NULL
;
2699 isl_basic_map
**next
;
2703 if (isl_union_map_foreach_map(umap
, inc_count
, &n
) < 0)
2706 ctx
= isl_union_map_get_ctx(umap
);
2707 list
= isl_calloc_array(ctx
, isl_basic_map
*, n
);
2712 if (isl_union_map_foreach_map(umap
, collect_basic_map
, &next
) < 0)
2715 res
= union_floyd_warshall_on_list(ctx
, list
, n
, exact
);
2718 for (i
= 0; i
< n
; ++i
)
2719 isl_basic_map_free(list
[i
]);
2723 isl_union_map_free(umap
);
2727 for (i
= 0; i
< n
; ++i
)
2728 isl_basic_map_free(list
[i
]);
2731 isl_union_map_free(umap
);
2735 /* Decompose the give union relation into strongly connected components.
2736 * The implementation is essentially the same as that of
2737 * construct_power_components with the major difference that all
2738 * operations are performed on union maps.
2740 static __isl_give isl_union_map
*union_components(
2741 __isl_take isl_union_map
*umap
, int *exact
)
2746 isl_basic_map
**list
= NULL
;
2747 isl_basic_map
**next
;
2748 isl_union_map
*path
= NULL
;
2749 struct isl_tc_follows_data data
;
2750 struct isl_tarjan_graph
*g
= NULL
;
2755 if (isl_union_map_foreach_map(umap
, inc_count
, &n
) < 0)
2761 return union_floyd_warshall(umap
, exact
);
2763 ctx
= isl_union_map_get_ctx(umap
);
2764 list
= isl_calloc_array(ctx
, isl_basic_map
*, n
);
2769 if (isl_union_map_foreach_map(umap
, collect_basic_map
, &next
) < 0)
2773 data
.check_closed
= 0;
2774 g
= isl_tarjan_graph_init(ctx
, n
, &basic_map_follows
, &data
);
2781 path
= isl_union_map_empty(isl_union_map_get_space(umap
));
2783 isl_union_map
*comp
;
2784 isl_union_map
*path_comp
, *path_comb
;
2785 comp
= isl_union_map_empty(isl_union_map_get_space(umap
));
2786 while (g
->order
[i
] != -1) {
2787 comp
= isl_union_map_add_map(comp
,
2788 isl_map_from_basic_map(
2789 isl_basic_map_copy(list
[g
->order
[i
]])));
2793 path_comp
= union_floyd_warshall(comp
, exact
);
2794 path_comb
= isl_union_map_apply_range(isl_union_map_copy(path
),
2795 isl_union_map_copy(path_comp
));
2796 path
= isl_union_map_union(path
, path_comp
);
2797 path
= isl_union_map_union(path
, path_comb
);
2802 if (c
> 1 && data
.check_closed
&& !*exact
) {
2805 closed
= isl_union_map_is_transitively_closed(path
);
2811 isl_tarjan_graph_free(g
);
2813 for (i
= 0; i
< n
; ++i
)
2814 isl_basic_map_free(list
[i
]);
2818 isl_union_map_free(path
);
2819 return union_floyd_warshall(umap
, exact
);
2822 isl_union_map_free(umap
);
2826 isl_tarjan_graph_free(g
);
2828 for (i
= 0; i
< n
; ++i
)
2829 isl_basic_map_free(list
[i
]);
2832 isl_union_map_free(umap
);
2833 isl_union_map_free(path
);
2837 /* Compute the transitive closure of "umap", or an overapproximation.
2838 * If the result is exact, then *exact is set to 1.
2840 __isl_give isl_union_map
*isl_union_map_transitive_closure(
2841 __isl_take isl_union_map
*umap
, int *exact
)
2851 umap
= isl_union_map_compute_divs(umap
);
2852 umap
= isl_union_map_coalesce(umap
);
2853 closed
= isl_union_map_is_transitively_closed(umap
);
2858 umap
= union_components(umap
, exact
);
2861 isl_union_map_free(umap
);
2865 struct isl_union_power
{
2870 static isl_stat
power(__isl_take isl_map
*map
, void *user
)
2872 struct isl_union_power
*up
= user
;
2874 map
= isl_map_power(map
, up
->exact
);
2875 up
->pow
= isl_union_map_from_map(map
);
2877 return isl_stat_error
;
2880 /* Construct a map [x] -> [x+1], with parameters prescribed by "space".
2882 static __isl_give isl_union_map
*increment(__isl_take isl_space
*space
)
2885 isl_basic_map
*bmap
;
2887 space
= isl_space_add_dims(space
, isl_dim_in
, 1);
2888 space
= isl_space_add_dims(space
, isl_dim_out
, 1);
2889 bmap
= isl_basic_map_alloc_space(space
, 0, 1, 0);
2890 k
= isl_basic_map_alloc_equality(bmap
);
2893 isl_seq_clr(bmap
->eq
[k
], 1 + isl_basic_map_total_dim(bmap
));
2894 isl_int_set_si(bmap
->eq
[k
][0], 1);
2895 isl_int_set_si(bmap
->eq
[k
][isl_basic_map_offset(bmap
, isl_dim_in
)], 1);
2896 isl_int_set_si(bmap
->eq
[k
][isl_basic_map_offset(bmap
, isl_dim_out
)], -1);
2897 return isl_union_map_from_map(isl_map_from_basic_map(bmap
));
2899 isl_basic_map_free(bmap
);
2903 /* Construct a map [[x]->[y]] -> [y-x], with parameters prescribed by "dim".
2905 static __isl_give isl_union_map
*deltas_map(__isl_take isl_space
*dim
)
2907 isl_basic_map
*bmap
;
2909 dim
= isl_space_add_dims(dim
, isl_dim_in
, 1);
2910 dim
= isl_space_add_dims(dim
, isl_dim_out
, 1);
2911 bmap
= isl_basic_map_universe(dim
);
2912 bmap
= isl_basic_map_deltas_map(bmap
);
2914 return isl_union_map_from_map(isl_map_from_basic_map(bmap
));
2917 /* Compute the positive powers of "map", or an overapproximation.
2918 * The result maps the exponent to a nested copy of the corresponding power.
2919 * If the result is exact, then *exact is set to 1.
2921 __isl_give isl_union_map
*isl_union_map_power(__isl_take isl_union_map
*umap
,
2930 n
= isl_union_map_n_map(umap
);
2934 struct isl_union_power up
= { NULL
, exact
};
2935 isl_union_map_foreach_map(umap
, &power
, &up
);
2936 isl_union_map_free(umap
);
2939 inc
= increment(isl_union_map_get_space(umap
));
2940 umap
= isl_union_map_product(inc
, umap
);
2941 umap
= isl_union_map_transitive_closure(umap
, exact
);
2942 umap
= isl_union_map_zip(umap
);
2943 dm
= deltas_map(isl_union_map_get_space(umap
));
2944 umap
= isl_union_map_apply_domain(umap
, dm
);
2950 #define TYPE isl_map
2951 #include "isl_power_templ.c"
2954 #define TYPE isl_union_map
2955 #include "isl_power_templ.c"