add isl_aff_list
[isl.git] / isl_tab_pip.c
blob5bf39efd1efbce2fb04ac6fd3dc42c860981464d
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
5 * Use of this software is governed by the GNU LGPLv2.1 license
7 * Written by Sven Verdoolaege, K.U.Leuven, Departement
8 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
10 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
13 #include <isl_ctx_private.h>
14 #include "isl_map_private.h"
15 #include <isl/seq.h>
16 #include "isl_tab.h"
17 #include "isl_sample.h"
18 #include <isl_mat_private.h>
19 #include <isl_config.h>
22 * The implementation of parametric integer linear programming in this file
23 * was inspired by the paper "Parametric Integer Programming" and the
24 * report "Solving systems of affine (in)equalities" by Paul Feautrier
25 * (and others).
27 * The strategy used for obtaining a feasible solution is different
28 * from the one used in isl_tab.c. In particular, in isl_tab.c,
29 * upon finding a constraint that is not yet satisfied, we pivot
30 * in a row that increases the constant term of the row holding the
31 * constraint, making sure the sample solution remains feasible
32 * for all the constraints it already satisfied.
33 * Here, we always pivot in the row holding the constraint,
34 * choosing a column that induces the lexicographically smallest
35 * increment to the sample solution.
37 * By starting out from a sample value that is lexicographically
38 * smaller than any integer point in the problem space, the first
39 * feasible integer sample point we find will also be the lexicographically
40 * smallest. If all variables can be assumed to be non-negative,
41 * then the initial sample value may be chosen equal to zero.
42 * However, we will not make this assumption. Instead, we apply
43 * the "big parameter" trick. Any variable x is then not directly
44 * used in the tableau, but instead it is represented by another
45 * variable x' = M + x, where M is an arbitrarily large (positive)
46 * value. x' is therefore always non-negative, whatever the value of x.
47 * Taking as initial sample value x' = 0 corresponds to x = -M,
48 * which is always smaller than any possible value of x.
50 * The big parameter trick is used in the main tableau and
51 * also in the context tableau if isl_context_lex is used.
52 * In this case, each tableaus has its own big parameter.
53 * Before doing any real work, we check if all the parameters
54 * happen to be non-negative. If so, we drop the column corresponding
55 * to M from the initial context tableau.
56 * If isl_context_gbr is used, then the big parameter trick is only
57 * used in the main tableau.
60 struct isl_context;
61 struct isl_context_op {
62 /* detect nonnegative parameters in context and mark them in tab */
63 struct isl_tab *(*detect_nonnegative_parameters)(
64 struct isl_context *context, struct isl_tab *tab);
65 /* return temporary reference to basic set representation of context */
66 struct isl_basic_set *(*peek_basic_set)(struct isl_context *context);
67 /* return temporary reference to tableau representation of context */
68 struct isl_tab *(*peek_tab)(struct isl_context *context);
69 /* add equality; check is 1 if eq may not be valid;
70 * update is 1 if we may want to call ineq_sign on context later.
72 void (*add_eq)(struct isl_context *context, isl_int *eq,
73 int check, int update);
74 /* add inequality; check is 1 if ineq may not be valid;
75 * update is 1 if we may want to call ineq_sign on context later.
77 void (*add_ineq)(struct isl_context *context, isl_int *ineq,
78 int check, int update);
79 /* check sign of ineq based on previous information.
80 * strict is 1 if saturation should be treated as a positive sign.
82 enum isl_tab_row_sign (*ineq_sign)(struct isl_context *context,
83 isl_int *ineq, int strict);
84 /* check if inequality maintains feasibility */
85 int (*test_ineq)(struct isl_context *context, isl_int *ineq);
86 /* return index of a div that corresponds to "div" */
87 int (*get_div)(struct isl_context *context, struct isl_tab *tab,
88 struct isl_vec *div);
89 /* add div "div" to context and return non-negativity */
90 int (*add_div)(struct isl_context *context, struct isl_vec *div);
91 int (*detect_equalities)(struct isl_context *context,
92 struct isl_tab *tab);
93 /* return row index of "best" split */
94 int (*best_split)(struct isl_context *context, struct isl_tab *tab);
95 /* check if context has already been determined to be empty */
96 int (*is_empty)(struct isl_context *context);
97 /* check if context is still usable */
98 int (*is_ok)(struct isl_context *context);
99 /* save a copy/snapshot of context */
100 void *(*save)(struct isl_context *context);
101 /* restore saved context */
102 void (*restore)(struct isl_context *context, void *);
103 /* invalidate context */
104 void (*invalidate)(struct isl_context *context);
105 /* free context */
106 void (*free)(struct isl_context *context);
109 struct isl_context {
110 struct isl_context_op *op;
113 struct isl_context_lex {
114 struct isl_context context;
115 struct isl_tab *tab;
118 struct isl_partial_sol {
119 int level;
120 struct isl_basic_set *dom;
121 struct isl_mat *M;
123 struct isl_partial_sol *next;
126 struct isl_sol;
127 struct isl_sol_callback {
128 struct isl_tab_callback callback;
129 struct isl_sol *sol;
132 /* isl_sol is an interface for constructing a solution to
133 * a parametric integer linear programming problem.
134 * Every time the algorithm reaches a state where a solution
135 * can be read off from the tableau (including cases where the tableau
136 * is empty), the function "add" is called on the isl_sol passed
137 * to find_solutions_main.
139 * The context tableau is owned by isl_sol and is updated incrementally.
141 * There are currently two implementations of this interface,
142 * isl_sol_map, which simply collects the solutions in an isl_map
143 * and (optionally) the parts of the context where there is no solution
144 * in an isl_set, and
145 * isl_sol_for, which calls a user-defined function for each part of
146 * the solution.
148 struct isl_sol {
149 int error;
150 int rational;
151 int level;
152 int max;
153 int n_out;
154 struct isl_context *context;
155 struct isl_partial_sol *partial;
156 void (*add)(struct isl_sol *sol,
157 struct isl_basic_set *dom, struct isl_mat *M);
158 void (*add_empty)(struct isl_sol *sol, struct isl_basic_set *bset);
159 void (*free)(struct isl_sol *sol);
160 struct isl_sol_callback dec_level;
163 static void sol_free(struct isl_sol *sol)
165 struct isl_partial_sol *partial, *next;
166 if (!sol)
167 return;
168 for (partial = sol->partial; partial; partial = next) {
169 next = partial->next;
170 isl_basic_set_free(partial->dom);
171 isl_mat_free(partial->M);
172 free(partial);
174 sol->free(sol);
177 /* Push a partial solution represented by a domain and mapping M
178 * onto the stack of partial solutions.
180 static void sol_push_sol(struct isl_sol *sol,
181 struct isl_basic_set *dom, struct isl_mat *M)
183 struct isl_partial_sol *partial;
185 if (sol->error || !dom)
186 goto error;
188 partial = isl_alloc_type(dom->ctx, struct isl_partial_sol);
189 if (!partial)
190 goto error;
192 partial->level = sol->level;
193 partial->dom = dom;
194 partial->M = M;
195 partial->next = sol->partial;
197 sol->partial = partial;
199 return;
200 error:
201 isl_basic_set_free(dom);
202 sol->error = 1;
205 /* Pop one partial solution from the partial solution stack and
206 * pass it on to sol->add or sol->add_empty.
208 static void sol_pop_one(struct isl_sol *sol)
210 struct isl_partial_sol *partial;
212 partial = sol->partial;
213 sol->partial = partial->next;
215 if (partial->M)
216 sol->add(sol, partial->dom, partial->M);
217 else
218 sol->add_empty(sol, partial->dom);
219 free(partial);
222 /* Return a fresh copy of the domain represented by the context tableau.
224 static struct isl_basic_set *sol_domain(struct isl_sol *sol)
226 struct isl_basic_set *bset;
228 if (sol->error)
229 return NULL;
231 bset = isl_basic_set_dup(sol->context->op->peek_basic_set(sol->context));
232 bset = isl_basic_set_update_from_tab(bset,
233 sol->context->op->peek_tab(sol->context));
235 return bset;
238 /* Check whether two partial solutions have the same mapping, where n_div
239 * is the number of divs that the two partial solutions have in common.
241 static int same_solution(struct isl_partial_sol *s1, struct isl_partial_sol *s2,
242 unsigned n_div)
244 int i;
245 unsigned dim;
247 if (!s1->M != !s2->M)
248 return 0;
249 if (!s1->M)
250 return 1;
252 dim = isl_basic_set_total_dim(s1->dom) - s1->dom->n_div;
254 for (i = 0; i < s1->M->n_row; ++i) {
255 if (isl_seq_first_non_zero(s1->M->row[i]+1+dim+n_div,
256 s1->M->n_col-1-dim-n_div) != -1)
257 return 0;
258 if (isl_seq_first_non_zero(s2->M->row[i]+1+dim+n_div,
259 s2->M->n_col-1-dim-n_div) != -1)
260 return 0;
261 if (!isl_seq_eq(s1->M->row[i], s2->M->row[i], 1+dim+n_div))
262 return 0;
264 return 1;
267 /* Pop all solutions from the partial solution stack that were pushed onto
268 * the stack at levels that are deeper than the current level.
269 * If the two topmost elements on the stack have the same level
270 * and represent the same solution, then their domains are combined.
271 * This combined domain is the same as the current context domain
272 * as sol_pop is called each time we move back to a higher level.
274 static void sol_pop(struct isl_sol *sol)
276 struct isl_partial_sol *partial;
277 unsigned n_div;
279 if (sol->error)
280 return;
282 if (sol->level == 0) {
283 for (partial = sol->partial; partial; partial = sol->partial)
284 sol_pop_one(sol);
285 return;
288 partial = sol->partial;
289 if (!partial)
290 return;
292 if (partial->level <= sol->level)
293 return;
295 if (partial->next && partial->next->level == partial->level) {
296 n_div = isl_basic_set_dim(
297 sol->context->op->peek_basic_set(sol->context),
298 isl_dim_div);
300 if (!same_solution(partial, partial->next, n_div)) {
301 sol_pop_one(sol);
302 sol_pop_one(sol);
303 } else {
304 struct isl_basic_set *bset;
306 bset = sol_domain(sol);
308 isl_basic_set_free(partial->next->dom);
309 partial->next->dom = bset;
310 partial->next->level = sol->level;
312 sol->partial = partial->next;
313 isl_basic_set_free(partial->dom);
314 isl_mat_free(partial->M);
315 free(partial);
317 } else
318 sol_pop_one(sol);
321 static void sol_dec_level(struct isl_sol *sol)
323 if (sol->error)
324 return;
326 sol->level--;
328 sol_pop(sol);
331 static int sol_dec_level_wrap(struct isl_tab_callback *cb)
333 struct isl_sol_callback *callback = (struct isl_sol_callback *)cb;
335 sol_dec_level(callback->sol);
337 return callback->sol->error ? -1 : 0;
340 /* Move down to next level and push callback onto context tableau
341 * to decrease the level again when it gets rolled back across
342 * the current state. That is, dec_level will be called with
343 * the context tableau in the same state as it is when inc_level
344 * is called.
346 static void sol_inc_level(struct isl_sol *sol)
348 struct isl_tab *tab;
350 if (sol->error)
351 return;
353 sol->level++;
354 tab = sol->context->op->peek_tab(sol->context);
355 if (isl_tab_push_callback(tab, &sol->dec_level.callback) < 0)
356 sol->error = 1;
359 static void scale_rows(struct isl_mat *mat, isl_int m, int n_row)
361 int i;
363 if (isl_int_is_one(m))
364 return;
366 for (i = 0; i < n_row; ++i)
367 isl_seq_scale(mat->row[i], mat->row[i], m, mat->n_col);
370 /* Add the solution identified by the tableau and the context tableau.
372 * The layout of the variables is as follows.
373 * tab->n_var is equal to the total number of variables in the input
374 * map (including divs that were copied from the context)
375 * + the number of extra divs constructed
376 * Of these, the first tab->n_param and the last tab->n_div variables
377 * correspond to the variables in the context, i.e.,
378 * tab->n_param + tab->n_div = context_tab->n_var
379 * tab->n_param is equal to the number of parameters and input
380 * dimensions in the input map
381 * tab->n_div is equal to the number of divs in the context
383 * If there is no solution, then call add_empty with a basic set
384 * that corresponds to the context tableau. (If add_empty is NULL,
385 * then do nothing).
387 * If there is a solution, then first construct a matrix that maps
388 * all dimensions of the context to the output variables, i.e.,
389 * the output dimensions in the input map.
390 * The divs in the input map (if any) that do not correspond to any
391 * div in the context do not appear in the solution.
392 * The algorithm will make sure that they have an integer value,
393 * but these values themselves are of no interest.
394 * We have to be careful not to drop or rearrange any divs in the
395 * context because that would change the meaning of the matrix.
397 * To extract the value of the output variables, it should be noted
398 * that we always use a big parameter M in the main tableau and so
399 * the variable stored in this tableau is not an output variable x itself, but
400 * x' = M + x (in case of minimization)
401 * or
402 * x' = M - x (in case of maximization)
403 * If x' appears in a column, then its optimal value is zero,
404 * which means that the optimal value of x is an unbounded number
405 * (-M for minimization and M for maximization).
406 * We currently assume that the output dimensions in the original map
407 * are bounded, so this cannot occur.
408 * Similarly, when x' appears in a row, then the coefficient of M in that
409 * row is necessarily 1.
410 * If the row in the tableau represents
411 * d x' = c + d M + e(y)
412 * then, in case of minimization, the corresponding row in the matrix
413 * will be
414 * a c + a e(y)
415 * with a d = m, the (updated) common denominator of the matrix.
416 * In case of maximization, the row will be
417 * -a c - a e(y)
419 static void sol_add(struct isl_sol *sol, struct isl_tab *tab)
421 struct isl_basic_set *bset = NULL;
422 struct isl_mat *mat = NULL;
423 unsigned off;
424 int row;
425 isl_int m;
427 if (sol->error || !tab)
428 goto error;
430 if (tab->empty && !sol->add_empty)
431 return;
433 bset = sol_domain(sol);
435 if (tab->empty) {
436 sol_push_sol(sol, bset, NULL);
437 return;
440 off = 2 + tab->M;
442 mat = isl_mat_alloc(tab->mat->ctx, 1 + sol->n_out,
443 1 + tab->n_param + tab->n_div);
444 if (!mat)
445 goto error;
447 isl_int_init(m);
449 isl_seq_clr(mat->row[0] + 1, mat->n_col - 1);
450 isl_int_set_si(mat->row[0][0], 1);
451 for (row = 0; row < sol->n_out; ++row) {
452 int i = tab->n_param + row;
453 int r, j;
455 isl_seq_clr(mat->row[1 + row], mat->n_col);
456 if (!tab->var[i].is_row) {
457 if (tab->M)
458 isl_die(mat->ctx, isl_error_invalid,
459 "unbounded optimum", goto error2);
460 continue;
463 r = tab->var[i].index;
464 if (tab->M &&
465 isl_int_ne(tab->mat->row[r][2], tab->mat->row[r][0]))
466 isl_die(mat->ctx, isl_error_invalid,
467 "unbounded optimum", goto error2);
468 isl_int_gcd(m, mat->row[0][0], tab->mat->row[r][0]);
469 isl_int_divexact(m, tab->mat->row[r][0], m);
470 scale_rows(mat, m, 1 + row);
471 isl_int_divexact(m, mat->row[0][0], tab->mat->row[r][0]);
472 isl_int_mul(mat->row[1 + row][0], m, tab->mat->row[r][1]);
473 for (j = 0; j < tab->n_param; ++j) {
474 int col;
475 if (tab->var[j].is_row)
476 continue;
477 col = tab->var[j].index;
478 isl_int_mul(mat->row[1 + row][1 + j], m,
479 tab->mat->row[r][off + col]);
481 for (j = 0; j < tab->n_div; ++j) {
482 int col;
483 if (tab->var[tab->n_var - tab->n_div+j].is_row)
484 continue;
485 col = tab->var[tab->n_var - tab->n_div+j].index;
486 isl_int_mul(mat->row[1 + row][1 + tab->n_param + j], m,
487 tab->mat->row[r][off + col]);
489 if (sol->max)
490 isl_seq_neg(mat->row[1 + row], mat->row[1 + row],
491 mat->n_col);
494 isl_int_clear(m);
496 sol_push_sol(sol, bset, mat);
497 return;
498 error2:
499 isl_int_clear(m);
500 error:
501 isl_basic_set_free(bset);
502 isl_mat_free(mat);
503 sol->error = 1;
506 struct isl_sol_map {
507 struct isl_sol sol;
508 struct isl_map *map;
509 struct isl_set *empty;
512 static void sol_map_free(struct isl_sol_map *sol_map)
514 if (!sol_map)
515 return;
516 if (sol_map->sol.context)
517 sol_map->sol.context->op->free(sol_map->sol.context);
518 isl_map_free(sol_map->map);
519 isl_set_free(sol_map->empty);
520 free(sol_map);
523 static void sol_map_free_wrap(struct isl_sol *sol)
525 sol_map_free((struct isl_sol_map *)sol);
528 /* This function is called for parts of the context where there is
529 * no solution, with "bset" corresponding to the context tableau.
530 * Simply add the basic set to the set "empty".
532 static void sol_map_add_empty(struct isl_sol_map *sol,
533 struct isl_basic_set *bset)
535 if (!bset)
536 goto error;
537 isl_assert(bset->ctx, sol->empty, goto error);
539 sol->empty = isl_set_grow(sol->empty, 1);
540 bset = isl_basic_set_simplify(bset);
541 bset = isl_basic_set_finalize(bset);
542 sol->empty = isl_set_add_basic_set(sol->empty, isl_basic_set_copy(bset));
543 if (!sol->empty)
544 goto error;
545 isl_basic_set_free(bset);
546 return;
547 error:
548 isl_basic_set_free(bset);
549 sol->sol.error = 1;
552 static void sol_map_add_empty_wrap(struct isl_sol *sol,
553 struct isl_basic_set *bset)
555 sol_map_add_empty((struct isl_sol_map *)sol, bset);
558 /* Add bset to sol's empty, but only if we are actually collecting
559 * the empty set.
561 static void sol_map_add_empty_if_needed(struct isl_sol_map *sol,
562 struct isl_basic_set *bset)
564 if (sol->empty)
565 sol_map_add_empty(sol, bset);
566 else
567 isl_basic_set_free(bset);
570 /* Given a basic map "dom" that represents the context and an affine
571 * matrix "M" that maps the dimensions of the context to the
572 * output variables, construct a basic map with the same parameters
573 * and divs as the context, the dimensions of the context as input
574 * dimensions and a number of output dimensions that is equal to
575 * the number of output dimensions in the input map.
577 * The constraints and divs of the context are simply copied
578 * from "dom". For each row
579 * x = c + e(y)
580 * an equality
581 * c + e(y) - d x = 0
582 * is added, with d the common denominator of M.
584 static void sol_map_add(struct isl_sol_map *sol,
585 struct isl_basic_set *dom, struct isl_mat *M)
587 int i;
588 struct isl_basic_map *bmap = NULL;
589 unsigned n_eq;
590 unsigned n_ineq;
591 unsigned nparam;
592 unsigned total;
593 unsigned n_div;
594 unsigned n_out;
596 if (sol->sol.error || !dom || !M)
597 goto error;
599 n_out = sol->sol.n_out;
600 n_eq = dom->n_eq + n_out;
601 n_ineq = dom->n_ineq;
602 n_div = dom->n_div;
603 nparam = isl_basic_set_total_dim(dom) - n_div;
604 total = isl_map_dim(sol->map, isl_dim_all);
605 bmap = isl_basic_map_alloc_dim(isl_map_get_dim(sol->map),
606 n_div, n_eq, 2 * n_div + n_ineq);
607 if (!bmap)
608 goto error;
609 if (sol->sol.rational)
610 ISL_F_SET(bmap, ISL_BASIC_MAP_RATIONAL);
611 for (i = 0; i < dom->n_div; ++i) {
612 int k = isl_basic_map_alloc_div(bmap);
613 if (k < 0)
614 goto error;
615 isl_seq_cpy(bmap->div[k], dom->div[i], 1 + 1 + nparam);
616 isl_seq_clr(bmap->div[k] + 1 + 1 + nparam, total - nparam);
617 isl_seq_cpy(bmap->div[k] + 1 + 1 + total,
618 dom->div[i] + 1 + 1 + nparam, i);
620 for (i = 0; i < dom->n_eq; ++i) {
621 int k = isl_basic_map_alloc_equality(bmap);
622 if (k < 0)
623 goto error;
624 isl_seq_cpy(bmap->eq[k], dom->eq[i], 1 + nparam);
625 isl_seq_clr(bmap->eq[k] + 1 + nparam, total - nparam);
626 isl_seq_cpy(bmap->eq[k] + 1 + total,
627 dom->eq[i] + 1 + nparam, n_div);
629 for (i = 0; i < dom->n_ineq; ++i) {
630 int k = isl_basic_map_alloc_inequality(bmap);
631 if (k < 0)
632 goto error;
633 isl_seq_cpy(bmap->ineq[k], dom->ineq[i], 1 + nparam);
634 isl_seq_clr(bmap->ineq[k] + 1 + nparam, total - nparam);
635 isl_seq_cpy(bmap->ineq[k] + 1 + total,
636 dom->ineq[i] + 1 + nparam, n_div);
638 for (i = 0; i < M->n_row - 1; ++i) {
639 int k = isl_basic_map_alloc_equality(bmap);
640 if (k < 0)
641 goto error;
642 isl_seq_cpy(bmap->eq[k], M->row[1 + i], 1 + nparam);
643 isl_seq_clr(bmap->eq[k] + 1 + nparam, n_out);
644 isl_int_neg(bmap->eq[k][1 + nparam + i], M->row[0][0]);
645 isl_seq_cpy(bmap->eq[k] + 1 + nparam + n_out,
646 M->row[1 + i] + 1 + nparam, n_div);
648 bmap = isl_basic_map_simplify(bmap);
649 bmap = isl_basic_map_finalize(bmap);
650 sol->map = isl_map_grow(sol->map, 1);
651 sol->map = isl_map_add_basic_map(sol->map, bmap);
652 if (!sol->map)
653 goto error;
654 isl_basic_set_free(dom);
655 isl_mat_free(M);
656 return;
657 error:
658 isl_basic_set_free(dom);
659 isl_mat_free(M);
660 isl_basic_map_free(bmap);
661 sol->sol.error = 1;
664 static void sol_map_add_wrap(struct isl_sol *sol,
665 struct isl_basic_set *dom, struct isl_mat *M)
667 sol_map_add((struct isl_sol_map *)sol, dom, M);
671 /* Store the "parametric constant" of row "row" of tableau "tab" in "line",
672 * i.e., the constant term and the coefficients of all variables that
673 * appear in the context tableau.
674 * Note that the coefficient of the big parameter M is NOT copied.
675 * The context tableau may not have a big parameter and even when it
676 * does, it is a different big parameter.
678 static void get_row_parameter_line(struct isl_tab *tab, int row, isl_int *line)
680 int i;
681 unsigned off = 2 + tab->M;
683 isl_int_set(line[0], tab->mat->row[row][1]);
684 for (i = 0; i < tab->n_param; ++i) {
685 if (tab->var[i].is_row)
686 isl_int_set_si(line[1 + i], 0);
687 else {
688 int col = tab->var[i].index;
689 isl_int_set(line[1 + i], tab->mat->row[row][off + col]);
692 for (i = 0; i < tab->n_div; ++i) {
693 if (tab->var[tab->n_var - tab->n_div + i].is_row)
694 isl_int_set_si(line[1 + tab->n_param + i], 0);
695 else {
696 int col = tab->var[tab->n_var - tab->n_div + i].index;
697 isl_int_set(line[1 + tab->n_param + i],
698 tab->mat->row[row][off + col]);
703 /* Check if rows "row1" and "row2" have identical "parametric constants",
704 * as explained above.
705 * In this case, we also insist that the coefficients of the big parameter
706 * be the same as the values of the constants will only be the same
707 * if these coefficients are also the same.
709 static int identical_parameter_line(struct isl_tab *tab, int row1, int row2)
711 int i;
712 unsigned off = 2 + tab->M;
714 if (isl_int_ne(tab->mat->row[row1][1], tab->mat->row[row2][1]))
715 return 0;
717 if (tab->M && isl_int_ne(tab->mat->row[row1][2],
718 tab->mat->row[row2][2]))
719 return 0;
721 for (i = 0; i < tab->n_param + tab->n_div; ++i) {
722 int pos = i < tab->n_param ? i :
723 tab->n_var - tab->n_div + i - tab->n_param;
724 int col;
726 if (tab->var[pos].is_row)
727 continue;
728 col = tab->var[pos].index;
729 if (isl_int_ne(tab->mat->row[row1][off + col],
730 tab->mat->row[row2][off + col]))
731 return 0;
733 return 1;
736 /* Return an inequality that expresses that the "parametric constant"
737 * should be non-negative.
738 * This function is only called when the coefficient of the big parameter
739 * is equal to zero.
741 static struct isl_vec *get_row_parameter_ineq(struct isl_tab *tab, int row)
743 struct isl_vec *ineq;
745 ineq = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_param + tab->n_div);
746 if (!ineq)
747 return NULL;
749 get_row_parameter_line(tab, row, ineq->el);
750 if (ineq)
751 ineq = isl_vec_normalize(ineq);
753 return ineq;
756 /* Return a integer division for use in a parametric cut based on the given row.
757 * In particular, let the parametric constant of the row be
759 * \sum_i a_i y_i
761 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
762 * The div returned is equal to
764 * floor(\sum_i {-a_i} y_i) = floor((\sum_i (-a_i mod d) y_i)/d)
766 static struct isl_vec *get_row_parameter_div(struct isl_tab *tab, int row)
768 struct isl_vec *div;
770 div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div);
771 if (!div)
772 return NULL;
774 isl_int_set(div->el[0], tab->mat->row[row][0]);
775 get_row_parameter_line(tab, row, div->el + 1);
776 div = isl_vec_normalize(div);
777 isl_seq_neg(div->el + 1, div->el + 1, div->size - 1);
778 isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1);
780 return div;
783 /* Return a integer division for use in transferring an integrality constraint
784 * to the context.
785 * In particular, let the parametric constant of the row be
787 * \sum_i a_i y_i
789 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
790 * The the returned div is equal to
792 * floor(\sum_i {a_i} y_i) = floor((\sum_i (a_i mod d) y_i)/d)
794 static struct isl_vec *get_row_split_div(struct isl_tab *tab, int row)
796 struct isl_vec *div;
798 div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div);
799 if (!div)
800 return NULL;
802 isl_int_set(div->el[0], tab->mat->row[row][0]);
803 get_row_parameter_line(tab, row, div->el + 1);
804 div = isl_vec_normalize(div);
805 isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1);
807 return div;
810 /* Construct and return an inequality that expresses an upper bound
811 * on the given div.
812 * In particular, if the div is given by
814 * d = floor(e/m)
816 * then the inequality expresses
818 * m d <= e
820 static struct isl_vec *ineq_for_div(struct isl_basic_set *bset, unsigned div)
822 unsigned total;
823 unsigned div_pos;
824 struct isl_vec *ineq;
826 if (!bset)
827 return NULL;
829 total = isl_basic_set_total_dim(bset);
830 div_pos = 1 + total - bset->n_div + div;
832 ineq = isl_vec_alloc(bset->ctx, 1 + total);
833 if (!ineq)
834 return NULL;
836 isl_seq_cpy(ineq->el, bset->div[div] + 1, 1 + total);
837 isl_int_neg(ineq->el[div_pos], bset->div[div][0]);
838 return ineq;
841 /* Given a row in the tableau and a div that was created
842 * using get_row_split_div and that been constrained to equality, i.e.,
844 * d = floor(\sum_i {a_i} y_i) = \sum_i {a_i} y_i
846 * replace the expression "\sum_i {a_i} y_i" in the row by d,
847 * i.e., we subtract "\sum_i {a_i} y_i" and add 1 d.
848 * The coefficients of the non-parameters in the tableau have been
849 * verified to be integral. We can therefore simply replace coefficient b
850 * by floor(b). For the coefficients of the parameters we have
851 * floor(a_i) = a_i - {a_i}, while for the other coefficients, we have
852 * floor(b) = b.
854 static struct isl_tab *set_row_cst_to_div(struct isl_tab *tab, int row, int div)
856 isl_seq_fdiv_q(tab->mat->row[row] + 1, tab->mat->row[row] + 1,
857 tab->mat->row[row][0], 1 + tab->M + tab->n_col);
859 isl_int_set_si(tab->mat->row[row][0], 1);
861 if (tab->var[tab->n_var - tab->n_div + div].is_row) {
862 int drow = tab->var[tab->n_var - tab->n_div + div].index;
864 isl_assert(tab->mat->ctx,
865 isl_int_is_one(tab->mat->row[drow][0]), goto error);
866 isl_seq_combine(tab->mat->row[row] + 1,
867 tab->mat->ctx->one, tab->mat->row[row] + 1,
868 tab->mat->ctx->one, tab->mat->row[drow] + 1,
869 1 + tab->M + tab->n_col);
870 } else {
871 int dcol = tab->var[tab->n_var - tab->n_div + div].index;
873 isl_int_set_si(tab->mat->row[row][2 + tab->M + dcol], 1);
876 return tab;
877 error:
878 isl_tab_free(tab);
879 return NULL;
882 /* Check if the (parametric) constant of the given row is obviously
883 * negative, meaning that we don't need to consult the context tableau.
884 * If there is a big parameter and its coefficient is non-zero,
885 * then this coefficient determines the outcome.
886 * Otherwise, we check whether the constant is negative and
887 * all non-zero coefficients of parameters are negative and
888 * belong to non-negative parameters.
890 static int is_obviously_neg(struct isl_tab *tab, int row)
892 int i;
893 int col;
894 unsigned off = 2 + tab->M;
896 if (tab->M) {
897 if (isl_int_is_pos(tab->mat->row[row][2]))
898 return 0;
899 if (isl_int_is_neg(tab->mat->row[row][2]))
900 return 1;
903 if (isl_int_is_nonneg(tab->mat->row[row][1]))
904 return 0;
905 for (i = 0; i < tab->n_param; ++i) {
906 /* Eliminated parameter */
907 if (tab->var[i].is_row)
908 continue;
909 col = tab->var[i].index;
910 if (isl_int_is_zero(tab->mat->row[row][off + col]))
911 continue;
912 if (!tab->var[i].is_nonneg)
913 return 0;
914 if (isl_int_is_pos(tab->mat->row[row][off + col]))
915 return 0;
917 for (i = 0; i < tab->n_div; ++i) {
918 if (tab->var[tab->n_var - tab->n_div + i].is_row)
919 continue;
920 col = tab->var[tab->n_var - tab->n_div + i].index;
921 if (isl_int_is_zero(tab->mat->row[row][off + col]))
922 continue;
923 if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg)
924 return 0;
925 if (isl_int_is_pos(tab->mat->row[row][off + col]))
926 return 0;
928 return 1;
931 /* Check if the (parametric) constant of the given row is obviously
932 * non-negative, meaning that we don't need to consult the context tableau.
933 * If there is a big parameter and its coefficient is non-zero,
934 * then this coefficient determines the outcome.
935 * Otherwise, we check whether the constant is non-negative and
936 * all non-zero coefficients of parameters are positive and
937 * belong to non-negative parameters.
939 static int is_obviously_nonneg(struct isl_tab *tab, int row)
941 int i;
942 int col;
943 unsigned off = 2 + tab->M;
945 if (tab->M) {
946 if (isl_int_is_pos(tab->mat->row[row][2]))
947 return 1;
948 if (isl_int_is_neg(tab->mat->row[row][2]))
949 return 0;
952 if (isl_int_is_neg(tab->mat->row[row][1]))
953 return 0;
954 for (i = 0; i < tab->n_param; ++i) {
955 /* Eliminated parameter */
956 if (tab->var[i].is_row)
957 continue;
958 col = tab->var[i].index;
959 if (isl_int_is_zero(tab->mat->row[row][off + col]))
960 continue;
961 if (!tab->var[i].is_nonneg)
962 return 0;
963 if (isl_int_is_neg(tab->mat->row[row][off + col]))
964 return 0;
966 for (i = 0; i < tab->n_div; ++i) {
967 if (tab->var[tab->n_var - tab->n_div + i].is_row)
968 continue;
969 col = tab->var[tab->n_var - tab->n_div + i].index;
970 if (isl_int_is_zero(tab->mat->row[row][off + col]))
971 continue;
972 if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg)
973 return 0;
974 if (isl_int_is_neg(tab->mat->row[row][off + col]))
975 return 0;
977 return 1;
980 /* Given a row r and two columns, return the column that would
981 * lead to the lexicographically smallest increment in the sample
982 * solution when leaving the basis in favor of the row.
983 * Pivoting with column c will increment the sample value by a non-negative
984 * constant times a_{V,c}/a_{r,c}, with a_{V,c} the elements of column c
985 * corresponding to the non-parametric variables.
986 * If variable v appears in a column c_v, the a_{v,c} = 1 iff c = c_v,
987 * with all other entries in this virtual row equal to zero.
988 * If variable v appears in a row, then a_{v,c} is the element in column c
989 * of that row.
991 * Let v be the first variable with a_{v,c1}/a_{r,c1} != a_{v,c2}/a_{r,c2}.
992 * Then if a_{v,c1}/a_{r,c1} < a_{v,c2}/a_{r,c2}, i.e.,
993 * a_{v,c2} a_{r,c1} - a_{v,c1} a_{r,c2} > 0, c1 results in the minimal
994 * increment. Otherwise, it's c2.
996 static int lexmin_col_pair(struct isl_tab *tab,
997 int row, int col1, int col2, isl_int tmp)
999 int i;
1000 isl_int *tr;
1002 tr = tab->mat->row[row] + 2 + tab->M;
1004 for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) {
1005 int s1, s2;
1006 isl_int *r;
1008 if (!tab->var[i].is_row) {
1009 if (tab->var[i].index == col1)
1010 return col2;
1011 if (tab->var[i].index == col2)
1012 return col1;
1013 continue;
1016 if (tab->var[i].index == row)
1017 continue;
1019 r = tab->mat->row[tab->var[i].index] + 2 + tab->M;
1020 s1 = isl_int_sgn(r[col1]);
1021 s2 = isl_int_sgn(r[col2]);
1022 if (s1 == 0 && s2 == 0)
1023 continue;
1024 if (s1 < s2)
1025 return col1;
1026 if (s2 < s1)
1027 return col2;
1029 isl_int_mul(tmp, r[col2], tr[col1]);
1030 isl_int_submul(tmp, r[col1], tr[col2]);
1031 if (isl_int_is_pos(tmp))
1032 return col1;
1033 if (isl_int_is_neg(tmp))
1034 return col2;
1036 return -1;
1039 /* Given a row in the tableau, find and return the column that would
1040 * result in the lexicographically smallest, but positive, increment
1041 * in the sample point.
1042 * If there is no such column, then return tab->n_col.
1043 * If anything goes wrong, return -1.
1045 static int lexmin_pivot_col(struct isl_tab *tab, int row)
1047 int j;
1048 int col = tab->n_col;
1049 isl_int *tr;
1050 isl_int tmp;
1052 tr = tab->mat->row[row] + 2 + tab->M;
1054 isl_int_init(tmp);
1056 for (j = tab->n_dead; j < tab->n_col; ++j) {
1057 if (tab->col_var[j] >= 0 &&
1058 (tab->col_var[j] < tab->n_param ||
1059 tab->col_var[j] >= tab->n_var - tab->n_div))
1060 continue;
1062 if (!isl_int_is_pos(tr[j]))
1063 continue;
1065 if (col == tab->n_col)
1066 col = j;
1067 else
1068 col = lexmin_col_pair(tab, row, col, j, tmp);
1069 isl_assert(tab->mat->ctx, col >= 0, goto error);
1072 isl_int_clear(tmp);
1073 return col;
1074 error:
1075 isl_int_clear(tmp);
1076 return -1;
1079 /* Return the first known violated constraint, i.e., a non-negative
1080 * constraint that currently has an either obviously negative value
1081 * or a previously determined to be negative value.
1083 * If any constraint has a negative coefficient for the big parameter,
1084 * if any, then we return one of these first.
1086 static int first_neg(struct isl_tab *tab)
1088 int row;
1090 if (tab->M)
1091 for (row = tab->n_redundant; row < tab->n_row; ++row) {
1092 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
1093 continue;
1094 if (!isl_int_is_neg(tab->mat->row[row][2]))
1095 continue;
1096 if (tab->row_sign)
1097 tab->row_sign[row] = isl_tab_row_neg;
1098 return row;
1100 for (row = tab->n_redundant; row < tab->n_row; ++row) {
1101 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
1102 continue;
1103 if (tab->row_sign) {
1104 if (tab->row_sign[row] == 0 &&
1105 is_obviously_neg(tab, row))
1106 tab->row_sign[row] = isl_tab_row_neg;
1107 if (tab->row_sign[row] != isl_tab_row_neg)
1108 continue;
1109 } else if (!is_obviously_neg(tab, row))
1110 continue;
1111 return row;
1113 return -1;
1116 /* Check whether the invariant that all columns are lexico-positive
1117 * is satisfied. This function is not called from the current code
1118 * but is useful during debugging.
1120 static void check_lexpos(struct isl_tab *tab) __attribute__ ((unused));
1121 static void check_lexpos(struct isl_tab *tab)
1123 unsigned off = 2 + tab->M;
1124 int col;
1125 int var;
1126 int row;
1128 for (col = tab->n_dead; col < tab->n_col; ++col) {
1129 if (tab->col_var[col] >= 0 &&
1130 (tab->col_var[col] < tab->n_param ||
1131 tab->col_var[col] >= tab->n_var - tab->n_div))
1132 continue;
1133 for (var = tab->n_param; var < tab->n_var - tab->n_div; ++var) {
1134 if (!tab->var[var].is_row) {
1135 if (tab->var[var].index == col)
1136 break;
1137 else
1138 continue;
1140 row = tab->var[var].index;
1141 if (isl_int_is_zero(tab->mat->row[row][off + col]))
1142 continue;
1143 if (isl_int_is_pos(tab->mat->row[row][off + col]))
1144 break;
1145 fprintf(stderr, "lexneg column %d (row %d)\n",
1146 col, row);
1148 if (var >= tab->n_var - tab->n_div)
1149 fprintf(stderr, "zero column %d\n", col);
1153 /* Report to the caller that the given constraint is part of an encountered
1154 * conflict.
1156 static int report_conflicting_constraint(struct isl_tab *tab, int con)
1158 return tab->conflict(con, tab->conflict_user);
1161 /* Given a conflicting row in the tableau, report all constraints
1162 * involved in the row to the caller. That is, the row itself
1163 * (if represents a constraint) and all constraint columns with
1164 * non-zero (and therefore negative) coefficient.
1166 static int report_conflict(struct isl_tab *tab, int row)
1168 int j;
1169 isl_int *tr;
1171 if (!tab->conflict)
1172 return 0;
1174 if (tab->row_var[row] < 0 &&
1175 report_conflicting_constraint(tab, ~tab->row_var[row]) < 0)
1176 return -1;
1178 tr = tab->mat->row[row] + 2 + tab->M;
1180 for (j = tab->n_dead; j < tab->n_col; ++j) {
1181 if (tab->col_var[j] >= 0 &&
1182 (tab->col_var[j] < tab->n_param ||
1183 tab->col_var[j] >= tab->n_var - tab->n_div))
1184 continue;
1186 if (!isl_int_is_neg(tr[j]))
1187 continue;
1189 if (tab->col_var[j] < 0 &&
1190 report_conflicting_constraint(tab, ~tab->col_var[j]) < 0)
1191 return -1;
1194 return 0;
1197 /* Resolve all known or obviously violated constraints through pivoting.
1198 * In particular, as long as we can find any violated constraint, we
1199 * look for a pivoting column that would result in the lexicographically
1200 * smallest increment in the sample point. If there is no such column
1201 * then the tableau is infeasible.
1203 static int restore_lexmin(struct isl_tab *tab) WARN_UNUSED;
1204 static int restore_lexmin(struct isl_tab *tab)
1206 int row, col;
1208 if (!tab)
1209 return -1;
1210 if (tab->empty)
1211 return 0;
1212 while ((row = first_neg(tab)) != -1) {
1213 col = lexmin_pivot_col(tab, row);
1214 if (col >= tab->n_col) {
1215 if (report_conflict(tab, row) < 0)
1216 return -1;
1217 if (isl_tab_mark_empty(tab) < 0)
1218 return -1;
1219 return 0;
1221 if (col < 0)
1222 return -1;
1223 if (isl_tab_pivot(tab, row, col) < 0)
1224 return -1;
1226 return 0;
1229 /* Given a row that represents an equality, look for an appropriate
1230 * pivoting column.
1231 * In particular, if there are any non-zero coefficients among
1232 * the non-parameter variables, then we take the last of these
1233 * variables. Eliminating this variable in terms of the other
1234 * variables and/or parameters does not influence the property
1235 * that all column in the initial tableau are lexicographically
1236 * positive. The row corresponding to the eliminated variable
1237 * will only have non-zero entries below the diagonal of the
1238 * initial tableau. That is, we transform
1240 * I I
1241 * 1 into a
1242 * I I
1244 * If there is no such non-parameter variable, then we are dealing with
1245 * pure parameter equality and we pick any parameter with coefficient 1 or -1
1246 * for elimination. This will ensure that the eliminated parameter
1247 * always has an integer value whenever all the other parameters are integral.
1248 * If there is no such parameter then we return -1.
1250 static int last_var_col_or_int_par_col(struct isl_tab *tab, int row)
1252 unsigned off = 2 + tab->M;
1253 int i;
1255 for (i = tab->n_var - tab->n_div - 1; i >= 0 && i >= tab->n_param; --i) {
1256 int col;
1257 if (tab->var[i].is_row)
1258 continue;
1259 col = tab->var[i].index;
1260 if (col <= tab->n_dead)
1261 continue;
1262 if (!isl_int_is_zero(tab->mat->row[row][off + col]))
1263 return col;
1265 for (i = tab->n_dead; i < tab->n_col; ++i) {
1266 if (isl_int_is_one(tab->mat->row[row][off + i]))
1267 return i;
1268 if (isl_int_is_negone(tab->mat->row[row][off + i]))
1269 return i;
1271 return -1;
1274 /* Add an equality that is known to be valid to the tableau.
1275 * We first check if we can eliminate a variable or a parameter.
1276 * If not, we add the equality as two inequalities.
1277 * In this case, the equality was a pure parameter equality and there
1278 * is no need to resolve any constraint violations.
1280 static struct isl_tab *add_lexmin_valid_eq(struct isl_tab *tab, isl_int *eq)
1282 int i;
1283 int r;
1285 if (!tab)
1286 return NULL;
1287 r = isl_tab_add_row(tab, eq);
1288 if (r < 0)
1289 goto error;
1291 r = tab->con[r].index;
1292 i = last_var_col_or_int_par_col(tab, r);
1293 if (i < 0) {
1294 tab->con[r].is_nonneg = 1;
1295 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1296 goto error;
1297 isl_seq_neg(eq, eq, 1 + tab->n_var);
1298 r = isl_tab_add_row(tab, eq);
1299 if (r < 0)
1300 goto error;
1301 tab->con[r].is_nonneg = 1;
1302 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1303 goto error;
1304 } else {
1305 if (isl_tab_pivot(tab, r, i) < 0)
1306 goto error;
1307 if (isl_tab_kill_col(tab, i) < 0)
1308 goto error;
1309 tab->n_eq++;
1312 return tab;
1313 error:
1314 isl_tab_free(tab);
1315 return NULL;
1318 /* Check if the given row is a pure constant.
1320 static int is_constant(struct isl_tab *tab, int row)
1322 unsigned off = 2 + tab->M;
1324 return isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
1325 tab->n_col - tab->n_dead) == -1;
1328 /* Add an equality that may or may not be valid to the tableau.
1329 * If the resulting row is a pure constant, then it must be zero.
1330 * Otherwise, the resulting tableau is empty.
1332 * If the row is not a pure constant, then we add two inequalities,
1333 * each time checking that they can be satisfied.
1334 * In the end we try to use one of the two constraints to eliminate
1335 * a column.
1337 static int add_lexmin_eq(struct isl_tab *tab, isl_int *eq) WARN_UNUSED;
1338 static int add_lexmin_eq(struct isl_tab *tab, isl_int *eq)
1340 int r1, r2;
1341 int row;
1342 struct isl_tab_undo *snap;
1344 if (!tab)
1345 return -1;
1346 snap = isl_tab_snap(tab);
1347 r1 = isl_tab_add_row(tab, eq);
1348 if (r1 < 0)
1349 return -1;
1350 tab->con[r1].is_nonneg = 1;
1351 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r1]) < 0)
1352 return -1;
1354 row = tab->con[r1].index;
1355 if (is_constant(tab, row)) {
1356 if (!isl_int_is_zero(tab->mat->row[row][1]) ||
1357 (tab->M && !isl_int_is_zero(tab->mat->row[row][2]))) {
1358 if (isl_tab_mark_empty(tab) < 0)
1359 return -1;
1360 return 0;
1362 if (isl_tab_rollback(tab, snap) < 0)
1363 return -1;
1364 return 0;
1367 if (restore_lexmin(tab) < 0)
1368 return -1;
1369 if (tab->empty)
1370 return 0;
1372 isl_seq_neg(eq, eq, 1 + tab->n_var);
1374 r2 = isl_tab_add_row(tab, eq);
1375 if (r2 < 0)
1376 return -1;
1377 tab->con[r2].is_nonneg = 1;
1378 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r2]) < 0)
1379 return -1;
1381 if (restore_lexmin(tab) < 0)
1382 return -1;
1383 if (tab->empty)
1384 return 0;
1386 if (!tab->con[r1].is_row) {
1387 if (isl_tab_kill_col(tab, tab->con[r1].index) < 0)
1388 return -1;
1389 } else if (!tab->con[r2].is_row) {
1390 if (isl_tab_kill_col(tab, tab->con[r2].index) < 0)
1391 return -1;
1394 if (tab->bmap) {
1395 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
1396 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1397 return -1;
1398 isl_seq_neg(eq, eq, 1 + tab->n_var);
1399 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
1400 isl_seq_neg(eq, eq, 1 + tab->n_var);
1401 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1402 return -1;
1403 if (!tab->bmap)
1404 return -1;
1407 return 0;
1410 /* Add an inequality to the tableau, resolving violations using
1411 * restore_lexmin.
1413 static struct isl_tab *add_lexmin_ineq(struct isl_tab *tab, isl_int *ineq)
1415 int r;
1417 if (!tab)
1418 return NULL;
1419 if (tab->bmap) {
1420 tab->bmap = isl_basic_map_add_ineq(tab->bmap, ineq);
1421 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1422 goto error;
1423 if (!tab->bmap)
1424 goto error;
1426 r = isl_tab_add_row(tab, ineq);
1427 if (r < 0)
1428 goto error;
1429 tab->con[r].is_nonneg = 1;
1430 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1431 goto error;
1432 if (isl_tab_row_is_redundant(tab, tab->con[r].index)) {
1433 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1434 goto error;
1435 return tab;
1438 if (restore_lexmin(tab) < 0)
1439 goto error;
1440 if (!tab->empty && tab->con[r].is_row &&
1441 isl_tab_row_is_redundant(tab, tab->con[r].index))
1442 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1443 goto error;
1444 return tab;
1445 error:
1446 isl_tab_free(tab);
1447 return NULL;
1450 /* Check if the coefficients of the parameters are all integral.
1452 static int integer_parameter(struct isl_tab *tab, int row)
1454 int i;
1455 int col;
1456 unsigned off = 2 + tab->M;
1458 for (i = 0; i < tab->n_param; ++i) {
1459 /* Eliminated parameter */
1460 if (tab->var[i].is_row)
1461 continue;
1462 col = tab->var[i].index;
1463 if (!isl_int_is_divisible_by(tab->mat->row[row][off + col],
1464 tab->mat->row[row][0]))
1465 return 0;
1467 for (i = 0; i < tab->n_div; ++i) {
1468 if (tab->var[tab->n_var - tab->n_div + i].is_row)
1469 continue;
1470 col = tab->var[tab->n_var - tab->n_div + i].index;
1471 if (!isl_int_is_divisible_by(tab->mat->row[row][off + col],
1472 tab->mat->row[row][0]))
1473 return 0;
1475 return 1;
1478 /* Check if the coefficients of the non-parameter variables are all integral.
1480 static int integer_variable(struct isl_tab *tab, int row)
1482 int i;
1483 unsigned off = 2 + tab->M;
1485 for (i = tab->n_dead; i < tab->n_col; ++i) {
1486 if (tab->col_var[i] >= 0 &&
1487 (tab->col_var[i] < tab->n_param ||
1488 tab->col_var[i] >= tab->n_var - tab->n_div))
1489 continue;
1490 if (!isl_int_is_divisible_by(tab->mat->row[row][off + i],
1491 tab->mat->row[row][0]))
1492 return 0;
1494 return 1;
1497 /* Check if the constant term is integral.
1499 static int integer_constant(struct isl_tab *tab, int row)
1501 return isl_int_is_divisible_by(tab->mat->row[row][1],
1502 tab->mat->row[row][0]);
1505 #define I_CST 1 << 0
1506 #define I_PAR 1 << 1
1507 #define I_VAR 1 << 2
1509 /* Check for next (non-parameter) variable after "var" (first if var == -1)
1510 * that is non-integer and therefore requires a cut and return
1511 * the index of the variable.
1512 * For parametric tableaus, there are three parts in a row,
1513 * the constant, the coefficients of the parameters and the rest.
1514 * For each part, we check whether the coefficients in that part
1515 * are all integral and if so, set the corresponding flag in *f.
1516 * If the constant and the parameter part are integral, then the
1517 * current sample value is integral and no cut is required
1518 * (irrespective of whether the variable part is integral).
1520 static int next_non_integer_var(struct isl_tab *tab, int var, int *f)
1522 var = var < 0 ? tab->n_param : var + 1;
1524 for (; var < tab->n_var - tab->n_div; ++var) {
1525 int flags = 0;
1526 int row;
1527 if (!tab->var[var].is_row)
1528 continue;
1529 row = tab->var[var].index;
1530 if (integer_constant(tab, row))
1531 ISL_FL_SET(flags, I_CST);
1532 if (integer_parameter(tab, row))
1533 ISL_FL_SET(flags, I_PAR);
1534 if (ISL_FL_ISSET(flags, I_CST) && ISL_FL_ISSET(flags, I_PAR))
1535 continue;
1536 if (integer_variable(tab, row))
1537 ISL_FL_SET(flags, I_VAR);
1538 *f = flags;
1539 return var;
1541 return -1;
1544 /* Check for first (non-parameter) variable that is non-integer and
1545 * therefore requires a cut and return the corresponding row.
1546 * For parametric tableaus, there are three parts in a row,
1547 * the constant, the coefficients of the parameters and the rest.
1548 * For each part, we check whether the coefficients in that part
1549 * are all integral and if so, set the corresponding flag in *f.
1550 * If the constant and the parameter part are integral, then the
1551 * current sample value is integral and no cut is required
1552 * (irrespective of whether the variable part is integral).
1554 static int first_non_integer_row(struct isl_tab *tab, int *f)
1556 int var = next_non_integer_var(tab, -1, f);
1558 return var < 0 ? -1 : tab->var[var].index;
1561 /* Add a (non-parametric) cut to cut away the non-integral sample
1562 * value of the given row.
1564 * If the row is given by
1566 * m r = f + \sum_i a_i y_i
1568 * then the cut is
1570 * c = - {-f/m} + \sum_i {a_i/m} y_i >= 0
1572 * The big parameter, if any, is ignored, since it is assumed to be big
1573 * enough to be divisible by any integer.
1574 * If the tableau is actually a parametric tableau, then this function
1575 * is only called when all coefficients of the parameters are integral.
1576 * The cut therefore has zero coefficients for the parameters.
1578 * The current value is known to be negative, so row_sign, if it
1579 * exists, is set accordingly.
1581 * Return the row of the cut or -1.
1583 static int add_cut(struct isl_tab *tab, int row)
1585 int i;
1586 int r;
1587 isl_int *r_row;
1588 unsigned off = 2 + tab->M;
1590 if (isl_tab_extend_cons(tab, 1) < 0)
1591 return -1;
1592 r = isl_tab_allocate_con(tab);
1593 if (r < 0)
1594 return -1;
1596 r_row = tab->mat->row[tab->con[r].index];
1597 isl_int_set(r_row[0], tab->mat->row[row][0]);
1598 isl_int_neg(r_row[1], tab->mat->row[row][1]);
1599 isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]);
1600 isl_int_neg(r_row[1], r_row[1]);
1601 if (tab->M)
1602 isl_int_set_si(r_row[2], 0);
1603 for (i = 0; i < tab->n_col; ++i)
1604 isl_int_fdiv_r(r_row[off + i],
1605 tab->mat->row[row][off + i], tab->mat->row[row][0]);
1607 tab->con[r].is_nonneg = 1;
1608 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1609 return -1;
1610 if (tab->row_sign)
1611 tab->row_sign[tab->con[r].index] = isl_tab_row_neg;
1613 return tab->con[r].index;
1616 /* Given a non-parametric tableau, add cuts until an integer
1617 * sample point is obtained or until the tableau is determined
1618 * to be integer infeasible.
1619 * As long as there is any non-integer value in the sample point,
1620 * we add appropriate cuts, if possible, for each of these
1621 * non-integer values and then resolve the violated
1622 * cut constraints using restore_lexmin.
1623 * If one of the corresponding rows is equal to an integral
1624 * combination of variables/constraints plus a non-integral constant,
1625 * then there is no way to obtain an integer point and we return
1626 * a tableau that is marked empty.
1628 static struct isl_tab *cut_to_integer_lexmin(struct isl_tab *tab)
1630 int var;
1631 int row;
1632 int flags;
1634 if (!tab)
1635 return NULL;
1636 if (tab->empty)
1637 return tab;
1639 while ((var = next_non_integer_var(tab, -1, &flags)) != -1) {
1640 do {
1641 if (ISL_FL_ISSET(flags, I_VAR)) {
1642 if (isl_tab_mark_empty(tab) < 0)
1643 goto error;
1644 return tab;
1646 row = tab->var[var].index;
1647 row = add_cut(tab, row);
1648 if (row < 0)
1649 goto error;
1650 } while ((var = next_non_integer_var(tab, var, &flags)) != -1);
1651 if (restore_lexmin(tab) < 0)
1652 goto error;
1653 if (tab->empty)
1654 break;
1656 return tab;
1657 error:
1658 isl_tab_free(tab);
1659 return NULL;
1662 /* Check whether all the currently active samples also satisfy the inequality
1663 * "ineq" (treated as an equality if eq is set).
1664 * Remove those samples that do not.
1666 static struct isl_tab *check_samples(struct isl_tab *tab, isl_int *ineq, int eq)
1668 int i;
1669 isl_int v;
1671 if (!tab)
1672 return NULL;
1674 isl_assert(tab->mat->ctx, tab->bmap, goto error);
1675 isl_assert(tab->mat->ctx, tab->samples, goto error);
1676 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error);
1678 isl_int_init(v);
1679 for (i = tab->n_outside; i < tab->n_sample; ++i) {
1680 int sgn;
1681 isl_seq_inner_product(ineq, tab->samples->row[i],
1682 1 + tab->n_var, &v);
1683 sgn = isl_int_sgn(v);
1684 if (eq ? (sgn == 0) : (sgn >= 0))
1685 continue;
1686 tab = isl_tab_drop_sample(tab, i);
1687 if (!tab)
1688 break;
1690 isl_int_clear(v);
1692 return tab;
1693 error:
1694 isl_tab_free(tab);
1695 return NULL;
1698 /* Check whether the sample value of the tableau is finite,
1699 * i.e., either the tableau does not use a big parameter, or
1700 * all values of the variables are equal to the big parameter plus
1701 * some constant. This constant is the actual sample value.
1703 static int sample_is_finite(struct isl_tab *tab)
1705 int i;
1707 if (!tab->M)
1708 return 1;
1710 for (i = 0; i < tab->n_var; ++i) {
1711 int row;
1712 if (!tab->var[i].is_row)
1713 return 0;
1714 row = tab->var[i].index;
1715 if (isl_int_ne(tab->mat->row[row][0], tab->mat->row[row][2]))
1716 return 0;
1718 return 1;
1721 /* Check if the context tableau of sol has any integer points.
1722 * Leave tab in empty state if no integer point can be found.
1723 * If an integer point can be found and if moreover it is finite,
1724 * then it is added to the list of sample values.
1726 * This function is only called when none of the currently active sample
1727 * values satisfies the most recently added constraint.
1729 static struct isl_tab *check_integer_feasible(struct isl_tab *tab)
1731 struct isl_tab_undo *snap;
1733 if (!tab)
1734 return NULL;
1736 snap = isl_tab_snap(tab);
1737 if (isl_tab_push_basis(tab) < 0)
1738 goto error;
1740 tab = cut_to_integer_lexmin(tab);
1741 if (!tab)
1742 goto error;
1744 if (!tab->empty && sample_is_finite(tab)) {
1745 struct isl_vec *sample;
1747 sample = isl_tab_get_sample_value(tab);
1749 tab = isl_tab_add_sample(tab, sample);
1752 if (!tab->empty && isl_tab_rollback(tab, snap) < 0)
1753 goto error;
1755 return tab;
1756 error:
1757 isl_tab_free(tab);
1758 return NULL;
1761 /* Check if any of the currently active sample values satisfies
1762 * the inequality "ineq" (an equality if eq is set).
1764 static int tab_has_valid_sample(struct isl_tab *tab, isl_int *ineq, int eq)
1766 int i;
1767 isl_int v;
1769 if (!tab)
1770 return -1;
1772 isl_assert(tab->mat->ctx, tab->bmap, return -1);
1773 isl_assert(tab->mat->ctx, tab->samples, return -1);
1774 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, return -1);
1776 isl_int_init(v);
1777 for (i = tab->n_outside; i < tab->n_sample; ++i) {
1778 int sgn;
1779 isl_seq_inner_product(ineq, tab->samples->row[i],
1780 1 + tab->n_var, &v);
1781 sgn = isl_int_sgn(v);
1782 if (eq ? (sgn == 0) : (sgn >= 0))
1783 break;
1785 isl_int_clear(v);
1787 return i < tab->n_sample;
1790 /* Add a div specified by "div" to the tableau "tab" and return
1791 * 1 if the div is obviously non-negative.
1793 static int context_tab_add_div(struct isl_tab *tab, struct isl_vec *div,
1794 int (*add_ineq)(void *user, isl_int *), void *user)
1796 int i;
1797 int r;
1798 struct isl_mat *samples;
1799 int nonneg;
1801 r = isl_tab_add_div(tab, div, add_ineq, user);
1802 if (r < 0)
1803 return -1;
1804 nonneg = tab->var[r].is_nonneg;
1805 tab->var[r].frozen = 1;
1807 samples = isl_mat_extend(tab->samples,
1808 tab->n_sample, 1 + tab->n_var);
1809 tab->samples = samples;
1810 if (!samples)
1811 return -1;
1812 for (i = tab->n_outside; i < samples->n_row; ++i) {
1813 isl_seq_inner_product(div->el + 1, samples->row[i],
1814 div->size - 1, &samples->row[i][samples->n_col - 1]);
1815 isl_int_fdiv_q(samples->row[i][samples->n_col - 1],
1816 samples->row[i][samples->n_col - 1], div->el[0]);
1819 return nonneg;
1822 /* Add a div specified by "div" to both the main tableau and
1823 * the context tableau. In case of the main tableau, we only
1824 * need to add an extra div. In the context tableau, we also
1825 * need to express the meaning of the div.
1826 * Return the index of the div or -1 if anything went wrong.
1828 static int add_div(struct isl_tab *tab, struct isl_context *context,
1829 struct isl_vec *div)
1831 int r;
1832 int nonneg;
1834 if ((nonneg = context->op->add_div(context, div)) < 0)
1835 goto error;
1837 if (!context->op->is_ok(context))
1838 goto error;
1840 if (isl_tab_extend_vars(tab, 1) < 0)
1841 goto error;
1842 r = isl_tab_allocate_var(tab);
1843 if (r < 0)
1844 goto error;
1845 if (nonneg)
1846 tab->var[r].is_nonneg = 1;
1847 tab->var[r].frozen = 1;
1848 tab->n_div++;
1850 return tab->n_div - 1;
1851 error:
1852 context->op->invalidate(context);
1853 return -1;
1856 static int find_div(struct isl_tab *tab, isl_int *div, isl_int denom)
1858 int i;
1859 unsigned total = isl_basic_map_total_dim(tab->bmap);
1861 for (i = 0; i < tab->bmap->n_div; ++i) {
1862 if (isl_int_ne(tab->bmap->div[i][0], denom))
1863 continue;
1864 if (!isl_seq_eq(tab->bmap->div[i] + 1, div, 1 + total))
1865 continue;
1866 return i;
1868 return -1;
1871 /* Return the index of a div that corresponds to "div".
1872 * We first check if we already have such a div and if not, we create one.
1874 static int get_div(struct isl_tab *tab, struct isl_context *context,
1875 struct isl_vec *div)
1877 int d;
1878 struct isl_tab *context_tab = context->op->peek_tab(context);
1880 if (!context_tab)
1881 return -1;
1883 d = find_div(context_tab, div->el + 1, div->el[0]);
1884 if (d != -1)
1885 return d;
1887 return add_div(tab, context, div);
1890 /* Add a parametric cut to cut away the non-integral sample value
1891 * of the give row.
1892 * Let a_i be the coefficients of the constant term and the parameters
1893 * and let b_i be the coefficients of the variables or constraints
1894 * in basis of the tableau.
1895 * Let q be the div q = floor(\sum_i {-a_i} y_i).
1897 * The cut is expressed as
1899 * c = \sum_i -{-a_i} y_i + \sum_i {b_i} x_i + q >= 0
1901 * If q did not already exist in the context tableau, then it is added first.
1902 * If q is in a column of the main tableau then the "+ q" can be accomplished
1903 * by setting the corresponding entry to the denominator of the constraint.
1904 * If q happens to be in a row of the main tableau, then the corresponding
1905 * row needs to be added instead (taking care of the denominators).
1906 * Note that this is very unlikely, but perhaps not entirely impossible.
1908 * The current value of the cut is known to be negative (or at least
1909 * non-positive), so row_sign is set accordingly.
1911 * Return the row of the cut or -1.
1913 static int add_parametric_cut(struct isl_tab *tab, int row,
1914 struct isl_context *context)
1916 struct isl_vec *div;
1917 int d;
1918 int i;
1919 int r;
1920 isl_int *r_row;
1921 int col;
1922 int n;
1923 unsigned off = 2 + tab->M;
1925 if (!context)
1926 return -1;
1928 div = get_row_parameter_div(tab, row);
1929 if (!div)
1930 return -1;
1932 n = tab->n_div;
1933 d = context->op->get_div(context, tab, div);
1934 if (d < 0)
1935 return -1;
1937 if (isl_tab_extend_cons(tab, 1) < 0)
1938 return -1;
1939 r = isl_tab_allocate_con(tab);
1940 if (r < 0)
1941 return -1;
1943 r_row = tab->mat->row[tab->con[r].index];
1944 isl_int_set(r_row[0], tab->mat->row[row][0]);
1945 isl_int_neg(r_row[1], tab->mat->row[row][1]);
1946 isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]);
1947 isl_int_neg(r_row[1], r_row[1]);
1948 if (tab->M)
1949 isl_int_set_si(r_row[2], 0);
1950 for (i = 0; i < tab->n_param; ++i) {
1951 if (tab->var[i].is_row)
1952 continue;
1953 col = tab->var[i].index;
1954 isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]);
1955 isl_int_fdiv_r(r_row[off + col], r_row[off + col],
1956 tab->mat->row[row][0]);
1957 isl_int_neg(r_row[off + col], r_row[off + col]);
1959 for (i = 0; i < tab->n_div; ++i) {
1960 if (tab->var[tab->n_var - tab->n_div + i].is_row)
1961 continue;
1962 col = tab->var[tab->n_var - tab->n_div + i].index;
1963 isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]);
1964 isl_int_fdiv_r(r_row[off + col], r_row[off + col],
1965 tab->mat->row[row][0]);
1966 isl_int_neg(r_row[off + col], r_row[off + col]);
1968 for (i = 0; i < tab->n_col; ++i) {
1969 if (tab->col_var[i] >= 0 &&
1970 (tab->col_var[i] < tab->n_param ||
1971 tab->col_var[i] >= tab->n_var - tab->n_div))
1972 continue;
1973 isl_int_fdiv_r(r_row[off + i],
1974 tab->mat->row[row][off + i], tab->mat->row[row][0]);
1976 if (tab->var[tab->n_var - tab->n_div + d].is_row) {
1977 isl_int gcd;
1978 int d_row = tab->var[tab->n_var - tab->n_div + d].index;
1979 isl_int_init(gcd);
1980 isl_int_gcd(gcd, tab->mat->row[d_row][0], r_row[0]);
1981 isl_int_divexact(r_row[0], r_row[0], gcd);
1982 isl_int_divexact(gcd, tab->mat->row[d_row][0], gcd);
1983 isl_seq_combine(r_row + 1, gcd, r_row + 1,
1984 r_row[0], tab->mat->row[d_row] + 1,
1985 off - 1 + tab->n_col);
1986 isl_int_mul(r_row[0], r_row[0], tab->mat->row[d_row][0]);
1987 isl_int_clear(gcd);
1988 } else {
1989 col = tab->var[tab->n_var - tab->n_div + d].index;
1990 isl_int_set(r_row[off + col], tab->mat->row[row][0]);
1993 tab->con[r].is_nonneg = 1;
1994 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1995 return -1;
1996 if (tab->row_sign)
1997 tab->row_sign[tab->con[r].index] = isl_tab_row_neg;
1999 isl_vec_free(div);
2001 row = tab->con[r].index;
2003 if (d >= n && context->op->detect_equalities(context, tab) < 0)
2004 return -1;
2006 return row;
2009 /* Construct a tableau for bmap that can be used for computing
2010 * the lexicographic minimum (or maximum) of bmap.
2011 * If not NULL, then dom is the domain where the minimum
2012 * should be computed. In this case, we set up a parametric
2013 * tableau with row signs (initialized to "unknown").
2014 * If M is set, then the tableau will use a big parameter.
2015 * If max is set, then a maximum should be computed instead of a minimum.
2016 * This means that for each variable x, the tableau will contain the variable
2017 * x' = M - x, rather than x' = M + x. This in turn means that the coefficient
2018 * of the variables in all constraints are negated prior to adding them
2019 * to the tableau.
2021 static struct isl_tab *tab_for_lexmin(struct isl_basic_map *bmap,
2022 struct isl_basic_set *dom, unsigned M, int max)
2024 int i;
2025 struct isl_tab *tab;
2027 tab = isl_tab_alloc(bmap->ctx, 2 * bmap->n_eq + bmap->n_ineq + 1,
2028 isl_basic_map_total_dim(bmap), M);
2029 if (!tab)
2030 return NULL;
2032 tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
2033 if (dom) {
2034 tab->n_param = isl_basic_set_total_dim(dom) - dom->n_div;
2035 tab->n_div = dom->n_div;
2036 tab->row_sign = isl_calloc_array(bmap->ctx,
2037 enum isl_tab_row_sign, tab->mat->n_row);
2038 if (!tab->row_sign)
2039 goto error;
2041 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) {
2042 if (isl_tab_mark_empty(tab) < 0)
2043 goto error;
2044 return tab;
2047 for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) {
2048 tab->var[i].is_nonneg = 1;
2049 tab->var[i].frozen = 1;
2051 for (i = 0; i < bmap->n_eq; ++i) {
2052 if (max)
2053 isl_seq_neg(bmap->eq[i] + 1 + tab->n_param,
2054 bmap->eq[i] + 1 + tab->n_param,
2055 tab->n_var - tab->n_param - tab->n_div);
2056 tab = add_lexmin_valid_eq(tab, bmap->eq[i]);
2057 if (max)
2058 isl_seq_neg(bmap->eq[i] + 1 + tab->n_param,
2059 bmap->eq[i] + 1 + tab->n_param,
2060 tab->n_var - tab->n_param - tab->n_div);
2061 if (!tab || tab->empty)
2062 return tab;
2064 if (bmap->n_eq && restore_lexmin(tab) < 0)
2065 goto error;
2066 for (i = 0; i < bmap->n_ineq; ++i) {
2067 if (max)
2068 isl_seq_neg(bmap->ineq[i] + 1 + tab->n_param,
2069 bmap->ineq[i] + 1 + tab->n_param,
2070 tab->n_var - tab->n_param - tab->n_div);
2071 tab = add_lexmin_ineq(tab, bmap->ineq[i]);
2072 if (max)
2073 isl_seq_neg(bmap->ineq[i] + 1 + tab->n_param,
2074 bmap->ineq[i] + 1 + tab->n_param,
2075 tab->n_var - tab->n_param - tab->n_div);
2076 if (!tab || tab->empty)
2077 return tab;
2079 return tab;
2080 error:
2081 isl_tab_free(tab);
2082 return NULL;
2085 /* Given a main tableau where more than one row requires a split,
2086 * determine and return the "best" row to split on.
2088 * Given two rows in the main tableau, if the inequality corresponding
2089 * to the first row is redundant with respect to that of the second row
2090 * in the current tableau, then it is better to split on the second row,
2091 * since in the positive part, both row will be positive.
2092 * (In the negative part a pivot will have to be performed and just about
2093 * anything can happen to the sign of the other row.)
2095 * As a simple heuristic, we therefore select the row that makes the most
2096 * of the other rows redundant.
2098 * Perhaps it would also be useful to look at the number of constraints
2099 * that conflict with any given constraint.
2101 static int best_split(struct isl_tab *tab, struct isl_tab *context_tab)
2103 struct isl_tab_undo *snap;
2104 int split;
2105 int row;
2106 int best = -1;
2107 int best_r;
2109 if (isl_tab_extend_cons(context_tab, 2) < 0)
2110 return -1;
2112 snap = isl_tab_snap(context_tab);
2114 for (split = tab->n_redundant; split < tab->n_row; ++split) {
2115 struct isl_tab_undo *snap2;
2116 struct isl_vec *ineq = NULL;
2117 int r = 0;
2118 int ok;
2120 if (!isl_tab_var_from_row(tab, split)->is_nonneg)
2121 continue;
2122 if (tab->row_sign[split] != isl_tab_row_any)
2123 continue;
2125 ineq = get_row_parameter_ineq(tab, split);
2126 if (!ineq)
2127 return -1;
2128 ok = isl_tab_add_ineq(context_tab, ineq->el) >= 0;
2129 isl_vec_free(ineq);
2130 if (!ok)
2131 return -1;
2133 snap2 = isl_tab_snap(context_tab);
2135 for (row = tab->n_redundant; row < tab->n_row; ++row) {
2136 struct isl_tab_var *var;
2138 if (row == split)
2139 continue;
2140 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
2141 continue;
2142 if (tab->row_sign[row] != isl_tab_row_any)
2143 continue;
2145 ineq = get_row_parameter_ineq(tab, row);
2146 if (!ineq)
2147 return -1;
2148 ok = isl_tab_add_ineq(context_tab, ineq->el) >= 0;
2149 isl_vec_free(ineq);
2150 if (!ok)
2151 return -1;
2152 var = &context_tab->con[context_tab->n_con - 1];
2153 if (!context_tab->empty &&
2154 !isl_tab_min_at_most_neg_one(context_tab, var))
2155 r++;
2156 if (isl_tab_rollback(context_tab, snap2) < 0)
2157 return -1;
2159 if (best == -1 || r > best_r) {
2160 best = split;
2161 best_r = r;
2163 if (isl_tab_rollback(context_tab, snap) < 0)
2164 return -1;
2167 return best;
2170 static struct isl_basic_set *context_lex_peek_basic_set(
2171 struct isl_context *context)
2173 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2174 if (!clex->tab)
2175 return NULL;
2176 return isl_tab_peek_bset(clex->tab);
2179 static struct isl_tab *context_lex_peek_tab(struct isl_context *context)
2181 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2182 return clex->tab;
2185 static void context_lex_add_eq(struct isl_context *context, isl_int *eq,
2186 int check, int update)
2188 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2189 if (isl_tab_extend_cons(clex->tab, 2) < 0)
2190 goto error;
2191 if (add_lexmin_eq(clex->tab, eq) < 0)
2192 goto error;
2193 if (check) {
2194 int v = tab_has_valid_sample(clex->tab, eq, 1);
2195 if (v < 0)
2196 goto error;
2197 if (!v)
2198 clex->tab = check_integer_feasible(clex->tab);
2200 if (update)
2201 clex->tab = check_samples(clex->tab, eq, 1);
2202 return;
2203 error:
2204 isl_tab_free(clex->tab);
2205 clex->tab = NULL;
2208 static void context_lex_add_ineq(struct isl_context *context, isl_int *ineq,
2209 int check, int update)
2211 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2212 if (isl_tab_extend_cons(clex->tab, 1) < 0)
2213 goto error;
2214 clex->tab = add_lexmin_ineq(clex->tab, ineq);
2215 if (check) {
2216 int v = tab_has_valid_sample(clex->tab, ineq, 0);
2217 if (v < 0)
2218 goto error;
2219 if (!v)
2220 clex->tab = check_integer_feasible(clex->tab);
2222 if (update)
2223 clex->tab = check_samples(clex->tab, ineq, 0);
2224 return;
2225 error:
2226 isl_tab_free(clex->tab);
2227 clex->tab = NULL;
2230 static int context_lex_add_ineq_wrap(void *user, isl_int *ineq)
2232 struct isl_context *context = (struct isl_context *)user;
2233 context_lex_add_ineq(context, ineq, 0, 0);
2234 return context->op->is_ok(context) ? 0 : -1;
2237 /* Check which signs can be obtained by "ineq" on all the currently
2238 * active sample values. See row_sign for more information.
2240 static enum isl_tab_row_sign tab_ineq_sign(struct isl_tab *tab, isl_int *ineq,
2241 int strict)
2243 int i;
2244 int sgn;
2245 isl_int tmp;
2246 enum isl_tab_row_sign res = isl_tab_row_unknown;
2248 isl_assert(tab->mat->ctx, tab->samples, return isl_tab_row_unknown);
2249 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var,
2250 return isl_tab_row_unknown);
2252 isl_int_init(tmp);
2253 for (i = tab->n_outside; i < tab->n_sample; ++i) {
2254 isl_seq_inner_product(tab->samples->row[i], ineq,
2255 1 + tab->n_var, &tmp);
2256 sgn = isl_int_sgn(tmp);
2257 if (sgn > 0 || (sgn == 0 && strict)) {
2258 if (res == isl_tab_row_unknown)
2259 res = isl_tab_row_pos;
2260 if (res == isl_tab_row_neg)
2261 res = isl_tab_row_any;
2263 if (sgn < 0) {
2264 if (res == isl_tab_row_unknown)
2265 res = isl_tab_row_neg;
2266 if (res == isl_tab_row_pos)
2267 res = isl_tab_row_any;
2269 if (res == isl_tab_row_any)
2270 break;
2272 isl_int_clear(tmp);
2274 return res;
2277 static enum isl_tab_row_sign context_lex_ineq_sign(struct isl_context *context,
2278 isl_int *ineq, int strict)
2280 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2281 return tab_ineq_sign(clex->tab, ineq, strict);
2284 /* Check whether "ineq" can be added to the tableau without rendering
2285 * it infeasible.
2287 static int context_lex_test_ineq(struct isl_context *context, isl_int *ineq)
2289 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2290 struct isl_tab_undo *snap;
2291 int feasible;
2293 if (!clex->tab)
2294 return -1;
2296 if (isl_tab_extend_cons(clex->tab, 1) < 0)
2297 return -1;
2299 snap = isl_tab_snap(clex->tab);
2300 if (isl_tab_push_basis(clex->tab) < 0)
2301 return -1;
2302 clex->tab = add_lexmin_ineq(clex->tab, ineq);
2303 clex->tab = check_integer_feasible(clex->tab);
2304 if (!clex->tab)
2305 return -1;
2306 feasible = !clex->tab->empty;
2307 if (isl_tab_rollback(clex->tab, snap) < 0)
2308 return -1;
2310 return feasible;
2313 static int context_lex_get_div(struct isl_context *context, struct isl_tab *tab,
2314 struct isl_vec *div)
2316 return get_div(tab, context, div);
2319 /* Add a div specified by "div" to the context tableau and return
2320 * 1 if the div is obviously non-negative.
2321 * context_tab_add_div will always return 1, because all variables
2322 * in a isl_context_lex tableau are non-negative.
2323 * However, if we are using a big parameter in the context, then this only
2324 * reflects the non-negativity of the variable used to _encode_ the
2325 * div, i.e., div' = M + div, so we can't draw any conclusions.
2327 static int context_lex_add_div(struct isl_context *context, struct isl_vec *div)
2329 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2330 int nonneg;
2331 nonneg = context_tab_add_div(clex->tab, div,
2332 context_lex_add_ineq_wrap, context);
2333 if (nonneg < 0)
2334 return -1;
2335 if (clex->tab->M)
2336 return 0;
2337 return nonneg;
2340 static int context_lex_detect_equalities(struct isl_context *context,
2341 struct isl_tab *tab)
2343 return 0;
2346 static int context_lex_best_split(struct isl_context *context,
2347 struct isl_tab *tab)
2349 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2350 struct isl_tab_undo *snap;
2351 int r;
2353 snap = isl_tab_snap(clex->tab);
2354 if (isl_tab_push_basis(clex->tab) < 0)
2355 return -1;
2356 r = best_split(tab, clex->tab);
2358 if (r >= 0 && isl_tab_rollback(clex->tab, snap) < 0)
2359 return -1;
2361 return r;
2364 static int context_lex_is_empty(struct isl_context *context)
2366 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2367 if (!clex->tab)
2368 return -1;
2369 return clex->tab->empty;
2372 static void *context_lex_save(struct isl_context *context)
2374 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2375 struct isl_tab_undo *snap;
2377 snap = isl_tab_snap(clex->tab);
2378 if (isl_tab_push_basis(clex->tab) < 0)
2379 return NULL;
2380 if (isl_tab_save_samples(clex->tab) < 0)
2381 return NULL;
2383 return snap;
2386 static void context_lex_restore(struct isl_context *context, void *save)
2388 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2389 if (isl_tab_rollback(clex->tab, (struct isl_tab_undo *)save) < 0) {
2390 isl_tab_free(clex->tab);
2391 clex->tab = NULL;
2395 static int context_lex_is_ok(struct isl_context *context)
2397 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2398 return !!clex->tab;
2401 /* For each variable in the context tableau, check if the variable can
2402 * only attain non-negative values. If so, mark the parameter as non-negative
2403 * in the main tableau. This allows for a more direct identification of some
2404 * cases of violated constraints.
2406 static struct isl_tab *tab_detect_nonnegative_parameters(struct isl_tab *tab,
2407 struct isl_tab *context_tab)
2409 int i;
2410 struct isl_tab_undo *snap;
2411 struct isl_vec *ineq = NULL;
2412 struct isl_tab_var *var;
2413 int n;
2415 if (context_tab->n_var == 0)
2416 return tab;
2418 ineq = isl_vec_alloc(tab->mat->ctx, 1 + context_tab->n_var);
2419 if (!ineq)
2420 goto error;
2422 if (isl_tab_extend_cons(context_tab, 1) < 0)
2423 goto error;
2425 snap = isl_tab_snap(context_tab);
2427 n = 0;
2428 isl_seq_clr(ineq->el, ineq->size);
2429 for (i = 0; i < context_tab->n_var; ++i) {
2430 isl_int_set_si(ineq->el[1 + i], 1);
2431 if (isl_tab_add_ineq(context_tab, ineq->el) < 0)
2432 goto error;
2433 var = &context_tab->con[context_tab->n_con - 1];
2434 if (!context_tab->empty &&
2435 !isl_tab_min_at_most_neg_one(context_tab, var)) {
2436 int j = i;
2437 if (i >= tab->n_param)
2438 j = i - tab->n_param + tab->n_var - tab->n_div;
2439 tab->var[j].is_nonneg = 1;
2440 n++;
2442 isl_int_set_si(ineq->el[1 + i], 0);
2443 if (isl_tab_rollback(context_tab, snap) < 0)
2444 goto error;
2447 if (context_tab->M && n == context_tab->n_var) {
2448 context_tab->mat = isl_mat_drop_cols(context_tab->mat, 2, 1);
2449 context_tab->M = 0;
2452 isl_vec_free(ineq);
2453 return tab;
2454 error:
2455 isl_vec_free(ineq);
2456 isl_tab_free(tab);
2457 return NULL;
2460 static struct isl_tab *context_lex_detect_nonnegative_parameters(
2461 struct isl_context *context, struct isl_tab *tab)
2463 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2464 struct isl_tab_undo *snap;
2466 if (!tab)
2467 return NULL;
2469 snap = isl_tab_snap(clex->tab);
2470 if (isl_tab_push_basis(clex->tab) < 0)
2471 goto error;
2473 tab = tab_detect_nonnegative_parameters(tab, clex->tab);
2475 if (isl_tab_rollback(clex->tab, snap) < 0)
2476 goto error;
2478 return tab;
2479 error:
2480 isl_tab_free(tab);
2481 return NULL;
2484 static void context_lex_invalidate(struct isl_context *context)
2486 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2487 isl_tab_free(clex->tab);
2488 clex->tab = NULL;
2491 static void context_lex_free(struct isl_context *context)
2493 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2494 isl_tab_free(clex->tab);
2495 free(clex);
2498 struct isl_context_op isl_context_lex_op = {
2499 context_lex_detect_nonnegative_parameters,
2500 context_lex_peek_basic_set,
2501 context_lex_peek_tab,
2502 context_lex_add_eq,
2503 context_lex_add_ineq,
2504 context_lex_ineq_sign,
2505 context_lex_test_ineq,
2506 context_lex_get_div,
2507 context_lex_add_div,
2508 context_lex_detect_equalities,
2509 context_lex_best_split,
2510 context_lex_is_empty,
2511 context_lex_is_ok,
2512 context_lex_save,
2513 context_lex_restore,
2514 context_lex_invalidate,
2515 context_lex_free,
2518 static struct isl_tab *context_tab_for_lexmin(struct isl_basic_set *bset)
2520 struct isl_tab *tab;
2522 bset = isl_basic_set_cow(bset);
2523 if (!bset)
2524 return NULL;
2525 tab = tab_for_lexmin((struct isl_basic_map *)bset, NULL, 1, 0);
2526 if (!tab)
2527 goto error;
2528 if (isl_tab_track_bset(tab, bset) < 0)
2529 goto error;
2530 tab = isl_tab_init_samples(tab);
2531 return tab;
2532 error:
2533 isl_basic_set_free(bset);
2534 return NULL;
2537 static struct isl_context *isl_context_lex_alloc(struct isl_basic_set *dom)
2539 struct isl_context_lex *clex;
2541 if (!dom)
2542 return NULL;
2544 clex = isl_alloc_type(dom->ctx, struct isl_context_lex);
2545 if (!clex)
2546 return NULL;
2548 clex->context.op = &isl_context_lex_op;
2550 clex->tab = context_tab_for_lexmin(isl_basic_set_copy(dom));
2551 if (restore_lexmin(clex->tab) < 0)
2552 goto error;
2553 clex->tab = check_integer_feasible(clex->tab);
2554 if (!clex->tab)
2555 goto error;
2557 return &clex->context;
2558 error:
2559 clex->context.op->free(&clex->context);
2560 return NULL;
2563 struct isl_context_gbr {
2564 struct isl_context context;
2565 struct isl_tab *tab;
2566 struct isl_tab *shifted;
2567 struct isl_tab *cone;
2570 static struct isl_tab *context_gbr_detect_nonnegative_parameters(
2571 struct isl_context *context, struct isl_tab *tab)
2573 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2574 if (!tab)
2575 return NULL;
2576 return tab_detect_nonnegative_parameters(tab, cgbr->tab);
2579 static struct isl_basic_set *context_gbr_peek_basic_set(
2580 struct isl_context *context)
2582 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2583 if (!cgbr->tab)
2584 return NULL;
2585 return isl_tab_peek_bset(cgbr->tab);
2588 static struct isl_tab *context_gbr_peek_tab(struct isl_context *context)
2590 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2591 return cgbr->tab;
2594 /* Initialize the "shifted" tableau of the context, which
2595 * contains the constraints of the original tableau shifted
2596 * by the sum of all negative coefficients. This ensures
2597 * that any rational point in the shifted tableau can
2598 * be rounded up to yield an integer point in the original tableau.
2600 static void gbr_init_shifted(struct isl_context_gbr *cgbr)
2602 int i, j;
2603 struct isl_vec *cst;
2604 struct isl_basic_set *bset = isl_tab_peek_bset(cgbr->tab);
2605 unsigned dim = isl_basic_set_total_dim(bset);
2607 cst = isl_vec_alloc(cgbr->tab->mat->ctx, bset->n_ineq);
2608 if (!cst)
2609 return;
2611 for (i = 0; i < bset->n_ineq; ++i) {
2612 isl_int_set(cst->el[i], bset->ineq[i][0]);
2613 for (j = 0; j < dim; ++j) {
2614 if (!isl_int_is_neg(bset->ineq[i][1 + j]))
2615 continue;
2616 isl_int_add(bset->ineq[i][0], bset->ineq[i][0],
2617 bset->ineq[i][1 + j]);
2621 cgbr->shifted = isl_tab_from_basic_set(bset);
2623 for (i = 0; i < bset->n_ineq; ++i)
2624 isl_int_set(bset->ineq[i][0], cst->el[i]);
2626 isl_vec_free(cst);
2629 /* Check if the shifted tableau is non-empty, and if so
2630 * use the sample point to construct an integer point
2631 * of the context tableau.
2633 static struct isl_vec *gbr_get_shifted_sample(struct isl_context_gbr *cgbr)
2635 struct isl_vec *sample;
2637 if (!cgbr->shifted)
2638 gbr_init_shifted(cgbr);
2639 if (!cgbr->shifted)
2640 return NULL;
2641 if (cgbr->shifted->empty)
2642 return isl_vec_alloc(cgbr->tab->mat->ctx, 0);
2644 sample = isl_tab_get_sample_value(cgbr->shifted);
2645 sample = isl_vec_ceil(sample);
2647 return sample;
2650 static struct isl_basic_set *drop_constant_terms(struct isl_basic_set *bset)
2652 int i;
2654 if (!bset)
2655 return NULL;
2657 for (i = 0; i < bset->n_eq; ++i)
2658 isl_int_set_si(bset->eq[i][0], 0);
2660 for (i = 0; i < bset->n_ineq; ++i)
2661 isl_int_set_si(bset->ineq[i][0], 0);
2663 return bset;
2666 static int use_shifted(struct isl_context_gbr *cgbr)
2668 return cgbr->tab->bmap->n_eq == 0 && cgbr->tab->bmap->n_div == 0;
2671 static struct isl_vec *gbr_get_sample(struct isl_context_gbr *cgbr)
2673 struct isl_basic_set *bset;
2674 struct isl_basic_set *cone;
2676 if (isl_tab_sample_is_integer(cgbr->tab))
2677 return isl_tab_get_sample_value(cgbr->tab);
2679 if (use_shifted(cgbr)) {
2680 struct isl_vec *sample;
2682 sample = gbr_get_shifted_sample(cgbr);
2683 if (!sample || sample->size > 0)
2684 return sample;
2686 isl_vec_free(sample);
2689 if (!cgbr->cone) {
2690 bset = isl_tab_peek_bset(cgbr->tab);
2691 cgbr->cone = isl_tab_from_recession_cone(bset, 0);
2692 if (!cgbr->cone)
2693 return NULL;
2694 if (isl_tab_track_bset(cgbr->cone, isl_basic_set_dup(bset)) < 0)
2695 return NULL;
2697 if (isl_tab_detect_implicit_equalities(cgbr->cone) < 0)
2698 return NULL;
2700 if (cgbr->cone->n_dead == cgbr->cone->n_col) {
2701 struct isl_vec *sample;
2702 struct isl_tab_undo *snap;
2704 if (cgbr->tab->basis) {
2705 if (cgbr->tab->basis->n_col != 1 + cgbr->tab->n_var) {
2706 isl_mat_free(cgbr->tab->basis);
2707 cgbr->tab->basis = NULL;
2709 cgbr->tab->n_zero = 0;
2710 cgbr->tab->n_unbounded = 0;
2713 snap = isl_tab_snap(cgbr->tab);
2715 sample = isl_tab_sample(cgbr->tab);
2717 if (isl_tab_rollback(cgbr->tab, snap) < 0) {
2718 isl_vec_free(sample);
2719 return NULL;
2722 return sample;
2725 cone = isl_basic_set_dup(isl_tab_peek_bset(cgbr->cone));
2726 cone = drop_constant_terms(cone);
2727 cone = isl_basic_set_update_from_tab(cone, cgbr->cone);
2728 cone = isl_basic_set_underlying_set(cone);
2729 cone = isl_basic_set_gauss(cone, NULL);
2731 bset = isl_basic_set_dup(isl_tab_peek_bset(cgbr->tab));
2732 bset = isl_basic_set_update_from_tab(bset, cgbr->tab);
2733 bset = isl_basic_set_underlying_set(bset);
2734 bset = isl_basic_set_gauss(bset, NULL);
2736 return isl_basic_set_sample_with_cone(bset, cone);
2739 static void check_gbr_integer_feasible(struct isl_context_gbr *cgbr)
2741 struct isl_vec *sample;
2743 if (!cgbr->tab)
2744 return;
2746 if (cgbr->tab->empty)
2747 return;
2749 sample = gbr_get_sample(cgbr);
2750 if (!sample)
2751 goto error;
2753 if (sample->size == 0) {
2754 isl_vec_free(sample);
2755 if (isl_tab_mark_empty(cgbr->tab) < 0)
2756 goto error;
2757 return;
2760 cgbr->tab = isl_tab_add_sample(cgbr->tab, sample);
2762 return;
2763 error:
2764 isl_tab_free(cgbr->tab);
2765 cgbr->tab = NULL;
2768 static struct isl_tab *add_gbr_eq(struct isl_tab *tab, isl_int *eq)
2770 if (!tab)
2771 return NULL;
2773 if (isl_tab_extend_cons(tab, 2) < 0)
2774 goto error;
2776 if (isl_tab_add_eq(tab, eq) < 0)
2777 goto error;
2779 return tab;
2780 error:
2781 isl_tab_free(tab);
2782 return NULL;
2785 static void context_gbr_add_eq(struct isl_context *context, isl_int *eq,
2786 int check, int update)
2788 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2790 cgbr->tab = add_gbr_eq(cgbr->tab, eq);
2792 if (cgbr->cone && cgbr->cone->n_col != cgbr->cone->n_dead) {
2793 if (isl_tab_extend_cons(cgbr->cone, 2) < 0)
2794 goto error;
2795 if (isl_tab_add_eq(cgbr->cone, eq) < 0)
2796 goto error;
2799 if (check) {
2800 int v = tab_has_valid_sample(cgbr->tab, eq, 1);
2801 if (v < 0)
2802 goto error;
2803 if (!v)
2804 check_gbr_integer_feasible(cgbr);
2806 if (update)
2807 cgbr->tab = check_samples(cgbr->tab, eq, 1);
2808 return;
2809 error:
2810 isl_tab_free(cgbr->tab);
2811 cgbr->tab = NULL;
2814 static void add_gbr_ineq(struct isl_context_gbr *cgbr, isl_int *ineq)
2816 if (!cgbr->tab)
2817 return;
2819 if (isl_tab_extend_cons(cgbr->tab, 1) < 0)
2820 goto error;
2822 if (isl_tab_add_ineq(cgbr->tab, ineq) < 0)
2823 goto error;
2825 if (cgbr->shifted && !cgbr->shifted->empty && use_shifted(cgbr)) {
2826 int i;
2827 unsigned dim;
2828 dim = isl_basic_map_total_dim(cgbr->tab->bmap);
2830 if (isl_tab_extend_cons(cgbr->shifted, 1) < 0)
2831 goto error;
2833 for (i = 0; i < dim; ++i) {
2834 if (!isl_int_is_neg(ineq[1 + i]))
2835 continue;
2836 isl_int_add(ineq[0], ineq[0], ineq[1 + i]);
2839 if (isl_tab_add_ineq(cgbr->shifted, ineq) < 0)
2840 goto error;
2842 for (i = 0; i < dim; ++i) {
2843 if (!isl_int_is_neg(ineq[1 + i]))
2844 continue;
2845 isl_int_sub(ineq[0], ineq[0], ineq[1 + i]);
2849 if (cgbr->cone && cgbr->cone->n_col != cgbr->cone->n_dead) {
2850 if (isl_tab_extend_cons(cgbr->cone, 1) < 0)
2851 goto error;
2852 if (isl_tab_add_ineq(cgbr->cone, ineq) < 0)
2853 goto error;
2856 return;
2857 error:
2858 isl_tab_free(cgbr->tab);
2859 cgbr->tab = NULL;
2862 static void context_gbr_add_ineq(struct isl_context *context, isl_int *ineq,
2863 int check, int update)
2865 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2867 add_gbr_ineq(cgbr, ineq);
2868 if (!cgbr->tab)
2869 return;
2871 if (check) {
2872 int v = tab_has_valid_sample(cgbr->tab, ineq, 0);
2873 if (v < 0)
2874 goto error;
2875 if (!v)
2876 check_gbr_integer_feasible(cgbr);
2878 if (update)
2879 cgbr->tab = check_samples(cgbr->tab, ineq, 0);
2880 return;
2881 error:
2882 isl_tab_free(cgbr->tab);
2883 cgbr->tab = NULL;
2886 static int context_gbr_add_ineq_wrap(void *user, isl_int *ineq)
2888 struct isl_context *context = (struct isl_context *)user;
2889 context_gbr_add_ineq(context, ineq, 0, 0);
2890 return context->op->is_ok(context) ? 0 : -1;
2893 static enum isl_tab_row_sign context_gbr_ineq_sign(struct isl_context *context,
2894 isl_int *ineq, int strict)
2896 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2897 return tab_ineq_sign(cgbr->tab, ineq, strict);
2900 /* Check whether "ineq" can be added to the tableau without rendering
2901 * it infeasible.
2903 static int context_gbr_test_ineq(struct isl_context *context, isl_int *ineq)
2905 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2906 struct isl_tab_undo *snap;
2907 struct isl_tab_undo *shifted_snap = NULL;
2908 struct isl_tab_undo *cone_snap = NULL;
2909 int feasible;
2911 if (!cgbr->tab)
2912 return -1;
2914 if (isl_tab_extend_cons(cgbr->tab, 1) < 0)
2915 return -1;
2917 snap = isl_tab_snap(cgbr->tab);
2918 if (cgbr->shifted)
2919 shifted_snap = isl_tab_snap(cgbr->shifted);
2920 if (cgbr->cone)
2921 cone_snap = isl_tab_snap(cgbr->cone);
2922 add_gbr_ineq(cgbr, ineq);
2923 check_gbr_integer_feasible(cgbr);
2924 if (!cgbr->tab)
2925 return -1;
2926 feasible = !cgbr->tab->empty;
2927 if (isl_tab_rollback(cgbr->tab, snap) < 0)
2928 return -1;
2929 if (shifted_snap) {
2930 if (isl_tab_rollback(cgbr->shifted, shifted_snap))
2931 return -1;
2932 } else if (cgbr->shifted) {
2933 isl_tab_free(cgbr->shifted);
2934 cgbr->shifted = NULL;
2936 if (cone_snap) {
2937 if (isl_tab_rollback(cgbr->cone, cone_snap))
2938 return -1;
2939 } else if (cgbr->cone) {
2940 isl_tab_free(cgbr->cone);
2941 cgbr->cone = NULL;
2944 return feasible;
2947 /* Return the column of the last of the variables associated to
2948 * a column that has a non-zero coefficient.
2949 * This function is called in a context where only coefficients
2950 * of parameters or divs can be non-zero.
2952 static int last_non_zero_var_col(struct isl_tab *tab, isl_int *p)
2954 int i;
2955 int col;
2957 if (tab->n_var == 0)
2958 return -1;
2960 for (i = tab->n_var - 1; i >= 0; --i) {
2961 if (i >= tab->n_param && i < tab->n_var - tab->n_div)
2962 continue;
2963 if (tab->var[i].is_row)
2964 continue;
2965 col = tab->var[i].index;
2966 if (!isl_int_is_zero(p[col]))
2967 return col;
2970 return -1;
2973 /* Look through all the recently added equalities in the context
2974 * to see if we can propagate any of them to the main tableau.
2976 * The newly added equalities in the context are encoded as pairs
2977 * of inequalities starting at inequality "first".
2979 * We tentatively add each of these equalities to the main tableau
2980 * and if this happens to result in a row with a final coefficient
2981 * that is one or negative one, we use it to kill a column
2982 * in the main tableau. Otherwise, we discard the tentatively
2983 * added row.
2985 static void propagate_equalities(struct isl_context_gbr *cgbr,
2986 struct isl_tab *tab, unsigned first)
2988 int i;
2989 struct isl_vec *eq = NULL;
2991 eq = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
2992 if (!eq)
2993 goto error;
2995 if (isl_tab_extend_cons(tab, (cgbr->tab->bmap->n_ineq - first)/2) < 0)
2996 goto error;
2998 isl_seq_clr(eq->el + 1 + tab->n_param,
2999 tab->n_var - tab->n_param - tab->n_div);
3000 for (i = first; i < cgbr->tab->bmap->n_ineq; i += 2) {
3001 int j;
3002 int r;
3003 struct isl_tab_undo *snap;
3004 snap = isl_tab_snap(tab);
3006 isl_seq_cpy(eq->el, cgbr->tab->bmap->ineq[i], 1 + tab->n_param);
3007 isl_seq_cpy(eq->el + 1 + tab->n_var - tab->n_div,
3008 cgbr->tab->bmap->ineq[i] + 1 + tab->n_param,
3009 tab->n_div);
3011 r = isl_tab_add_row(tab, eq->el);
3012 if (r < 0)
3013 goto error;
3014 r = tab->con[r].index;
3015 j = last_non_zero_var_col(tab, tab->mat->row[r] + 2 + tab->M);
3016 if (j < 0 || j < tab->n_dead ||
3017 !isl_int_is_one(tab->mat->row[r][0]) ||
3018 (!isl_int_is_one(tab->mat->row[r][2 + tab->M + j]) &&
3019 !isl_int_is_negone(tab->mat->row[r][2 + tab->M + j]))) {
3020 if (isl_tab_rollback(tab, snap) < 0)
3021 goto error;
3022 continue;
3024 if (isl_tab_pivot(tab, r, j) < 0)
3025 goto error;
3026 if (isl_tab_kill_col(tab, j) < 0)
3027 goto error;
3029 if (restore_lexmin(tab) < 0)
3030 goto error;
3033 isl_vec_free(eq);
3035 return;
3036 error:
3037 isl_vec_free(eq);
3038 isl_tab_free(cgbr->tab);
3039 cgbr->tab = NULL;
3042 static int context_gbr_detect_equalities(struct isl_context *context,
3043 struct isl_tab *tab)
3045 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3046 struct isl_ctx *ctx;
3047 unsigned n_ineq;
3049 ctx = cgbr->tab->mat->ctx;
3051 if (!cgbr->cone) {
3052 struct isl_basic_set *bset = isl_tab_peek_bset(cgbr->tab);
3053 cgbr->cone = isl_tab_from_recession_cone(bset, 0);
3054 if (!cgbr->cone)
3055 goto error;
3056 if (isl_tab_track_bset(cgbr->cone, isl_basic_set_dup(bset)) < 0)
3057 goto error;
3059 if (isl_tab_detect_implicit_equalities(cgbr->cone) < 0)
3060 goto error;
3062 n_ineq = cgbr->tab->bmap->n_ineq;
3063 cgbr->tab = isl_tab_detect_equalities(cgbr->tab, cgbr->cone);
3064 if (cgbr->tab && cgbr->tab->bmap->n_ineq > n_ineq)
3065 propagate_equalities(cgbr, tab, n_ineq);
3067 return 0;
3068 error:
3069 isl_tab_free(cgbr->tab);
3070 cgbr->tab = NULL;
3071 return -1;
3074 static int context_gbr_get_div(struct isl_context *context, struct isl_tab *tab,
3075 struct isl_vec *div)
3077 return get_div(tab, context, div);
3080 static int context_gbr_add_div(struct isl_context *context, struct isl_vec *div)
3082 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3083 if (cgbr->cone) {
3084 int k;
3086 if (isl_tab_extend_cons(cgbr->cone, 3) < 0)
3087 return -1;
3088 if (isl_tab_extend_vars(cgbr->cone, 1) < 0)
3089 return -1;
3090 if (isl_tab_allocate_var(cgbr->cone) <0)
3091 return -1;
3093 cgbr->cone->bmap = isl_basic_map_extend_dim(cgbr->cone->bmap,
3094 isl_basic_map_get_dim(cgbr->cone->bmap), 1, 0, 2);
3095 k = isl_basic_map_alloc_div(cgbr->cone->bmap);
3096 if (k < 0)
3097 return -1;
3098 isl_seq_cpy(cgbr->cone->bmap->div[k], div->el, div->size);
3099 if (isl_tab_push(cgbr->cone, isl_tab_undo_bmap_div) < 0)
3100 return -1;
3102 return context_tab_add_div(cgbr->tab, div,
3103 context_gbr_add_ineq_wrap, context);
3106 static int context_gbr_best_split(struct isl_context *context,
3107 struct isl_tab *tab)
3109 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3110 struct isl_tab_undo *snap;
3111 int r;
3113 snap = isl_tab_snap(cgbr->tab);
3114 r = best_split(tab, cgbr->tab);
3116 if (r >= 0 && isl_tab_rollback(cgbr->tab, snap) < 0)
3117 return -1;
3119 return r;
3122 static int context_gbr_is_empty(struct isl_context *context)
3124 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3125 if (!cgbr->tab)
3126 return -1;
3127 return cgbr->tab->empty;
3130 struct isl_gbr_tab_undo {
3131 struct isl_tab_undo *tab_snap;
3132 struct isl_tab_undo *shifted_snap;
3133 struct isl_tab_undo *cone_snap;
3136 static void *context_gbr_save(struct isl_context *context)
3138 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3139 struct isl_gbr_tab_undo *snap;
3141 snap = isl_alloc_type(cgbr->tab->mat->ctx, struct isl_gbr_tab_undo);
3142 if (!snap)
3143 return NULL;
3145 snap->tab_snap = isl_tab_snap(cgbr->tab);
3146 if (isl_tab_save_samples(cgbr->tab) < 0)
3147 goto error;
3149 if (cgbr->shifted)
3150 snap->shifted_snap = isl_tab_snap(cgbr->shifted);
3151 else
3152 snap->shifted_snap = NULL;
3154 if (cgbr->cone)
3155 snap->cone_snap = isl_tab_snap(cgbr->cone);
3156 else
3157 snap->cone_snap = NULL;
3159 return snap;
3160 error:
3161 free(snap);
3162 return NULL;
3165 static void context_gbr_restore(struct isl_context *context, void *save)
3167 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3168 struct isl_gbr_tab_undo *snap = (struct isl_gbr_tab_undo *)save;
3169 if (!snap)
3170 goto error;
3171 if (isl_tab_rollback(cgbr->tab, snap->tab_snap) < 0) {
3172 isl_tab_free(cgbr->tab);
3173 cgbr->tab = NULL;
3176 if (snap->shifted_snap) {
3177 if (isl_tab_rollback(cgbr->shifted, snap->shifted_snap) < 0)
3178 goto error;
3179 } else if (cgbr->shifted) {
3180 isl_tab_free(cgbr->shifted);
3181 cgbr->shifted = NULL;
3184 if (snap->cone_snap) {
3185 if (isl_tab_rollback(cgbr->cone, snap->cone_snap) < 0)
3186 goto error;
3187 } else if (cgbr->cone) {
3188 isl_tab_free(cgbr->cone);
3189 cgbr->cone = NULL;
3192 free(snap);
3194 return;
3195 error:
3196 free(snap);
3197 isl_tab_free(cgbr->tab);
3198 cgbr->tab = NULL;
3201 static int context_gbr_is_ok(struct isl_context *context)
3203 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3204 return !!cgbr->tab;
3207 static void context_gbr_invalidate(struct isl_context *context)
3209 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3210 isl_tab_free(cgbr->tab);
3211 cgbr->tab = NULL;
3214 static void context_gbr_free(struct isl_context *context)
3216 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3217 isl_tab_free(cgbr->tab);
3218 isl_tab_free(cgbr->shifted);
3219 isl_tab_free(cgbr->cone);
3220 free(cgbr);
3223 struct isl_context_op isl_context_gbr_op = {
3224 context_gbr_detect_nonnegative_parameters,
3225 context_gbr_peek_basic_set,
3226 context_gbr_peek_tab,
3227 context_gbr_add_eq,
3228 context_gbr_add_ineq,
3229 context_gbr_ineq_sign,
3230 context_gbr_test_ineq,
3231 context_gbr_get_div,
3232 context_gbr_add_div,
3233 context_gbr_detect_equalities,
3234 context_gbr_best_split,
3235 context_gbr_is_empty,
3236 context_gbr_is_ok,
3237 context_gbr_save,
3238 context_gbr_restore,
3239 context_gbr_invalidate,
3240 context_gbr_free,
3243 static struct isl_context *isl_context_gbr_alloc(struct isl_basic_set *dom)
3245 struct isl_context_gbr *cgbr;
3247 if (!dom)
3248 return NULL;
3250 cgbr = isl_calloc_type(dom->ctx, struct isl_context_gbr);
3251 if (!cgbr)
3252 return NULL;
3254 cgbr->context.op = &isl_context_gbr_op;
3256 cgbr->shifted = NULL;
3257 cgbr->cone = NULL;
3258 cgbr->tab = isl_tab_from_basic_set(dom);
3259 cgbr->tab = isl_tab_init_samples(cgbr->tab);
3260 if (!cgbr->tab)
3261 goto error;
3262 if (isl_tab_track_bset(cgbr->tab,
3263 isl_basic_set_cow(isl_basic_set_copy(dom))) < 0)
3264 goto error;
3265 check_gbr_integer_feasible(cgbr);
3267 return &cgbr->context;
3268 error:
3269 cgbr->context.op->free(&cgbr->context);
3270 return NULL;
3273 static struct isl_context *isl_context_alloc(struct isl_basic_set *dom)
3275 if (!dom)
3276 return NULL;
3278 if (dom->ctx->opt->context == ISL_CONTEXT_LEXMIN)
3279 return isl_context_lex_alloc(dom);
3280 else
3281 return isl_context_gbr_alloc(dom);
3284 /* Construct an isl_sol_map structure for accumulating the solution.
3285 * If track_empty is set, then we also keep track of the parts
3286 * of the context where there is no solution.
3287 * If max is set, then we are solving a maximization, rather than
3288 * a minimization problem, which means that the variables in the
3289 * tableau have value "M - x" rather than "M + x".
3291 static struct isl_sol_map *sol_map_init(struct isl_basic_map *bmap,
3292 struct isl_basic_set *dom, int track_empty, int max)
3294 struct isl_sol_map *sol_map = NULL;
3296 if (!bmap)
3297 goto error;
3299 sol_map = isl_calloc_type(bmap->ctx, struct isl_sol_map);
3300 if (!sol_map)
3301 goto error;
3303 sol_map->sol.rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
3304 sol_map->sol.dec_level.callback.run = &sol_dec_level_wrap;
3305 sol_map->sol.dec_level.sol = &sol_map->sol;
3306 sol_map->sol.max = max;
3307 sol_map->sol.n_out = isl_basic_map_dim(bmap, isl_dim_out);
3308 sol_map->sol.add = &sol_map_add_wrap;
3309 sol_map->sol.add_empty = track_empty ? &sol_map_add_empty_wrap : NULL;
3310 sol_map->sol.free = &sol_map_free_wrap;
3311 sol_map->map = isl_map_alloc_dim(isl_basic_map_get_dim(bmap), 1,
3312 ISL_MAP_DISJOINT);
3313 if (!sol_map->map)
3314 goto error;
3316 sol_map->sol.context = isl_context_alloc(dom);
3317 if (!sol_map->sol.context)
3318 goto error;
3320 if (track_empty) {
3321 sol_map->empty = isl_set_alloc_dim(isl_basic_set_get_dim(dom),
3322 1, ISL_SET_DISJOINT);
3323 if (!sol_map->empty)
3324 goto error;
3327 isl_basic_set_free(dom);
3328 return sol_map;
3329 error:
3330 isl_basic_set_free(dom);
3331 sol_map_free(sol_map);
3332 return NULL;
3335 /* Check whether all coefficients of (non-parameter) variables
3336 * are non-positive, meaning that no pivots can be performed on the row.
3338 static int is_critical(struct isl_tab *tab, int row)
3340 int j;
3341 unsigned off = 2 + tab->M;
3343 for (j = tab->n_dead; j < tab->n_col; ++j) {
3344 if (tab->col_var[j] >= 0 &&
3345 (tab->col_var[j] < tab->n_param ||
3346 tab->col_var[j] >= tab->n_var - tab->n_div))
3347 continue;
3349 if (isl_int_is_pos(tab->mat->row[row][off + j]))
3350 return 0;
3353 return 1;
3356 /* Check whether the inequality represented by vec is strict over the integers,
3357 * i.e., there are no integer values satisfying the constraint with
3358 * equality. This happens if the gcd of the coefficients is not a divisor
3359 * of the constant term. If so, scale the constraint down by the gcd
3360 * of the coefficients.
3362 static int is_strict(struct isl_vec *vec)
3364 isl_int gcd;
3365 int strict = 0;
3367 isl_int_init(gcd);
3368 isl_seq_gcd(vec->el + 1, vec->size - 1, &gcd);
3369 if (!isl_int_is_one(gcd)) {
3370 strict = !isl_int_is_divisible_by(vec->el[0], gcd);
3371 isl_int_fdiv_q(vec->el[0], vec->el[0], gcd);
3372 isl_seq_scale_down(vec->el + 1, vec->el + 1, gcd, vec->size-1);
3374 isl_int_clear(gcd);
3376 return strict;
3379 /* Determine the sign of the given row of the main tableau.
3380 * The result is one of
3381 * isl_tab_row_pos: always non-negative; no pivot needed
3382 * isl_tab_row_neg: always non-positive; pivot
3383 * isl_tab_row_any: can be both positive and negative; split
3385 * We first handle some simple cases
3386 * - the row sign may be known already
3387 * - the row may be obviously non-negative
3388 * - the parametric constant may be equal to that of another row
3389 * for which we know the sign. This sign will be either "pos" or
3390 * "any". If it had been "neg" then we would have pivoted before.
3392 * If none of these cases hold, we check the value of the row for each
3393 * of the currently active samples. Based on the signs of these values
3394 * we make an initial determination of the sign of the row.
3396 * all zero -> unk(nown)
3397 * all non-negative -> pos
3398 * all non-positive -> neg
3399 * both negative and positive -> all
3401 * If we end up with "all", we are done.
3402 * Otherwise, we perform a check for positive and/or negative
3403 * values as follows.
3405 * samples neg unk pos
3406 * <0 ? Y N Y N
3407 * pos any pos
3408 * >0 ? Y N Y N
3409 * any neg any neg
3411 * There is no special sign for "zero", because we can usually treat zero
3412 * as either non-negative or non-positive, whatever works out best.
3413 * However, if the row is "critical", meaning that pivoting is impossible
3414 * then we don't want to limp zero with the non-positive case, because
3415 * then we we would lose the solution for those values of the parameters
3416 * where the value of the row is zero. Instead, we treat 0 as non-negative
3417 * ensuring a split if the row can attain both zero and negative values.
3418 * The same happens when the original constraint was one that could not
3419 * be satisfied with equality by any integer values of the parameters.
3420 * In this case, we normalize the constraint, but then a value of zero
3421 * for the normalized constraint is actually a positive value for the
3422 * original constraint, so again we need to treat zero as non-negative.
3423 * In both these cases, we have the following decision tree instead:
3425 * all non-negative -> pos
3426 * all negative -> neg
3427 * both negative and non-negative -> all
3429 * samples neg pos
3430 * <0 ? Y N
3431 * any pos
3432 * >=0 ? Y N
3433 * any neg
3435 static enum isl_tab_row_sign row_sign(struct isl_tab *tab,
3436 struct isl_sol *sol, int row)
3438 struct isl_vec *ineq = NULL;
3439 enum isl_tab_row_sign res = isl_tab_row_unknown;
3440 int critical;
3441 int strict;
3442 int row2;
3444 if (tab->row_sign[row] != isl_tab_row_unknown)
3445 return tab->row_sign[row];
3446 if (is_obviously_nonneg(tab, row))
3447 return isl_tab_row_pos;
3448 for (row2 = tab->n_redundant; row2 < tab->n_row; ++row2) {
3449 if (tab->row_sign[row2] == isl_tab_row_unknown)
3450 continue;
3451 if (identical_parameter_line(tab, row, row2))
3452 return tab->row_sign[row2];
3455 critical = is_critical(tab, row);
3457 ineq = get_row_parameter_ineq(tab, row);
3458 if (!ineq)
3459 goto error;
3461 strict = is_strict(ineq);
3463 res = sol->context->op->ineq_sign(sol->context, ineq->el,
3464 critical || strict);
3466 if (res == isl_tab_row_unknown || res == isl_tab_row_pos) {
3467 /* test for negative values */
3468 int feasible;
3469 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3470 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3472 feasible = sol->context->op->test_ineq(sol->context, ineq->el);
3473 if (feasible < 0)
3474 goto error;
3475 if (!feasible)
3476 res = isl_tab_row_pos;
3477 else
3478 res = (res == isl_tab_row_unknown) ? isl_tab_row_neg
3479 : isl_tab_row_any;
3480 if (res == isl_tab_row_neg) {
3481 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3482 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3486 if (res == isl_tab_row_neg) {
3487 /* test for positive values */
3488 int feasible;
3489 if (!critical && !strict)
3490 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3492 feasible = sol->context->op->test_ineq(sol->context, ineq->el);
3493 if (feasible < 0)
3494 goto error;
3495 if (feasible)
3496 res = isl_tab_row_any;
3499 isl_vec_free(ineq);
3500 return res;
3501 error:
3502 isl_vec_free(ineq);
3503 return isl_tab_row_unknown;
3506 static void find_solutions(struct isl_sol *sol, struct isl_tab *tab);
3508 /* Find solutions for values of the parameters that satisfy the given
3509 * inequality.
3511 * We currently take a snapshot of the context tableau that is reset
3512 * when we return from this function, while we make a copy of the main
3513 * tableau, leaving the original main tableau untouched.
3514 * These are fairly arbitrary choices. Making a copy also of the context
3515 * tableau would obviate the need to undo any changes made to it later,
3516 * while taking a snapshot of the main tableau could reduce memory usage.
3517 * If we were to switch to taking a snapshot of the main tableau,
3518 * we would have to keep in mind that we need to save the row signs
3519 * and that we need to do this before saving the current basis
3520 * such that the basis has been restore before we restore the row signs.
3522 static void find_in_pos(struct isl_sol *sol, struct isl_tab *tab, isl_int *ineq)
3524 void *saved;
3526 if (!sol->context)
3527 goto error;
3528 saved = sol->context->op->save(sol->context);
3530 tab = isl_tab_dup(tab);
3531 if (!tab)
3532 goto error;
3534 sol->context->op->add_ineq(sol->context, ineq, 0, 1);
3536 find_solutions(sol, tab);
3538 if (!sol->error)
3539 sol->context->op->restore(sol->context, saved);
3540 return;
3541 error:
3542 sol->error = 1;
3545 /* Record the absence of solutions for those values of the parameters
3546 * that do not satisfy the given inequality with equality.
3548 static void no_sol_in_strict(struct isl_sol *sol,
3549 struct isl_tab *tab, struct isl_vec *ineq)
3551 int empty;
3552 void *saved;
3554 if (!sol->context || sol->error)
3555 goto error;
3556 saved = sol->context->op->save(sol->context);
3558 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3560 sol->context->op->add_ineq(sol->context, ineq->el, 1, 0);
3561 if (!sol->context)
3562 goto error;
3564 empty = tab->empty;
3565 tab->empty = 1;
3566 sol_add(sol, tab);
3567 tab->empty = empty;
3569 isl_int_add_ui(ineq->el[0], ineq->el[0], 1);
3571 sol->context->op->restore(sol->context, saved);
3572 return;
3573 error:
3574 sol->error = 1;
3577 /* Compute the lexicographic minimum of the set represented by the main
3578 * tableau "tab" within the context "sol->context_tab".
3579 * On entry the sample value of the main tableau is lexicographically
3580 * less than or equal to this lexicographic minimum.
3581 * Pivots are performed until a feasible point is found, which is then
3582 * necessarily equal to the minimum, or until the tableau is found to
3583 * be infeasible. Some pivots may need to be performed for only some
3584 * feasible values of the context tableau. If so, the context tableau
3585 * is split into a part where the pivot is needed and a part where it is not.
3587 * Whenever we enter the main loop, the main tableau is such that no
3588 * "obvious" pivots need to be performed on it, where "obvious" means
3589 * that the given row can be seen to be negative without looking at
3590 * the context tableau. In particular, for non-parametric problems,
3591 * no pivots need to be performed on the main tableau.
3592 * The caller of find_solutions is responsible for making this property
3593 * hold prior to the first iteration of the loop, while restore_lexmin
3594 * is called before every other iteration.
3596 * Inside the main loop, we first examine the signs of the rows of
3597 * the main tableau within the context of the context tableau.
3598 * If we find a row that is always non-positive for all values of
3599 * the parameters satisfying the context tableau and negative for at
3600 * least one value of the parameters, we perform the appropriate pivot
3601 * and start over. An exception is the case where no pivot can be
3602 * performed on the row. In this case, we require that the sign of
3603 * the row is negative for all values of the parameters (rather than just
3604 * non-positive). This special case is handled inside row_sign, which
3605 * will say that the row can have any sign if it determines that it can
3606 * attain both negative and zero values.
3608 * If we can't find a row that always requires a pivot, but we can find
3609 * one or more rows that require a pivot for some values of the parameters
3610 * (i.e., the row can attain both positive and negative signs), then we split
3611 * the context tableau into two parts, one where we force the sign to be
3612 * non-negative and one where we force is to be negative.
3613 * The non-negative part is handled by a recursive call (through find_in_pos).
3614 * Upon returning from this call, we continue with the negative part and
3615 * perform the required pivot.
3617 * If no such rows can be found, all rows are non-negative and we have
3618 * found a (rational) feasible point. If we only wanted a rational point
3619 * then we are done.
3620 * Otherwise, we check if all values of the sample point of the tableau
3621 * are integral for the variables. If so, we have found the minimal
3622 * integral point and we are done.
3623 * If the sample point is not integral, then we need to make a distinction
3624 * based on whether the constant term is non-integral or the coefficients
3625 * of the parameters. Furthermore, in order to decide how to handle
3626 * the non-integrality, we also need to know whether the coefficients
3627 * of the other columns in the tableau are integral. This leads
3628 * to the following table. The first two rows do not correspond
3629 * to a non-integral sample point and are only mentioned for completeness.
3631 * constant parameters other
3633 * int int int |
3634 * int int rat | -> no problem
3636 * rat int int -> fail
3638 * rat int rat -> cut
3640 * int rat rat |
3641 * rat rat rat | -> parametric cut
3643 * int rat int |
3644 * rat rat int | -> split context
3646 * If the parametric constant is completely integral, then there is nothing
3647 * to be done. If the constant term is non-integral, but all the other
3648 * coefficient are integral, then there is nothing that can be done
3649 * and the tableau has no integral solution.
3650 * If, on the other hand, one or more of the other columns have rational
3651 * coefficients, but the parameter coefficients are all integral, then
3652 * we can perform a regular (non-parametric) cut.
3653 * Finally, if there is any parameter coefficient that is non-integral,
3654 * then we need to involve the context tableau. There are two cases here.
3655 * If at least one other column has a rational coefficient, then we
3656 * can perform a parametric cut in the main tableau by adding a new
3657 * integer division in the context tableau.
3658 * If all other columns have integral coefficients, then we need to
3659 * enforce that the rational combination of parameters (c + \sum a_i y_i)/m
3660 * is always integral. We do this by introducing an integer division
3661 * q = floor((c + \sum a_i y_i)/m) and stipulating that its argument should
3662 * always be integral in the context tableau, i.e., m q = c + \sum a_i y_i.
3663 * Since q is expressed in the tableau as
3664 * c + \sum a_i y_i - m q >= 0
3665 * -c - \sum a_i y_i + m q + m - 1 >= 0
3666 * it is sufficient to add the inequality
3667 * -c - \sum a_i y_i + m q >= 0
3668 * In the part of the context where this inequality does not hold, the
3669 * main tableau is marked as being empty.
3671 static void find_solutions(struct isl_sol *sol, struct isl_tab *tab)
3673 struct isl_context *context;
3674 int r;
3676 if (!tab || sol->error)
3677 goto error;
3679 context = sol->context;
3681 if (tab->empty)
3682 goto done;
3683 if (context->op->is_empty(context))
3684 goto done;
3686 for (r = 0; r >= 0 && tab && !tab->empty; r = restore_lexmin(tab)) {
3687 int flags;
3688 int row;
3689 enum isl_tab_row_sign sgn;
3690 int split = -1;
3691 int n_split = 0;
3693 for (row = tab->n_redundant; row < tab->n_row; ++row) {
3694 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
3695 continue;
3696 sgn = row_sign(tab, sol, row);
3697 if (!sgn)
3698 goto error;
3699 tab->row_sign[row] = sgn;
3700 if (sgn == isl_tab_row_any)
3701 n_split++;
3702 if (sgn == isl_tab_row_any && split == -1)
3703 split = row;
3704 if (sgn == isl_tab_row_neg)
3705 break;
3707 if (row < tab->n_row)
3708 continue;
3709 if (split != -1) {
3710 struct isl_vec *ineq;
3711 if (n_split != 1)
3712 split = context->op->best_split(context, tab);
3713 if (split < 0)
3714 goto error;
3715 ineq = get_row_parameter_ineq(tab, split);
3716 if (!ineq)
3717 goto error;
3718 is_strict(ineq);
3719 for (row = tab->n_redundant; row < tab->n_row; ++row) {
3720 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
3721 continue;
3722 if (tab->row_sign[row] == isl_tab_row_any)
3723 tab->row_sign[row] = isl_tab_row_unknown;
3725 tab->row_sign[split] = isl_tab_row_pos;
3726 sol_inc_level(sol);
3727 find_in_pos(sol, tab, ineq->el);
3728 tab->row_sign[split] = isl_tab_row_neg;
3729 row = split;
3730 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3731 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3732 if (!sol->error)
3733 context->op->add_ineq(context, ineq->el, 0, 1);
3734 isl_vec_free(ineq);
3735 if (sol->error)
3736 goto error;
3737 continue;
3739 if (tab->rational)
3740 break;
3741 row = first_non_integer_row(tab, &flags);
3742 if (row < 0)
3743 break;
3744 if (ISL_FL_ISSET(flags, I_PAR)) {
3745 if (ISL_FL_ISSET(flags, I_VAR)) {
3746 if (isl_tab_mark_empty(tab) < 0)
3747 goto error;
3748 break;
3750 row = add_cut(tab, row);
3751 } else if (ISL_FL_ISSET(flags, I_VAR)) {
3752 struct isl_vec *div;
3753 struct isl_vec *ineq;
3754 int d;
3755 div = get_row_split_div(tab, row);
3756 if (!div)
3757 goto error;
3758 d = context->op->get_div(context, tab, div);
3759 isl_vec_free(div);
3760 if (d < 0)
3761 goto error;
3762 ineq = ineq_for_div(context->op->peek_basic_set(context), d);
3763 if (!ineq)
3764 goto error;
3765 sol_inc_level(sol);
3766 no_sol_in_strict(sol, tab, ineq);
3767 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3768 context->op->add_ineq(context, ineq->el, 1, 1);
3769 isl_vec_free(ineq);
3770 if (sol->error || !context->op->is_ok(context))
3771 goto error;
3772 tab = set_row_cst_to_div(tab, row, d);
3773 if (context->op->is_empty(context))
3774 break;
3775 } else
3776 row = add_parametric_cut(tab, row, context);
3777 if (row < 0)
3778 goto error;
3780 if (r < 0)
3781 goto error;
3782 done:
3783 sol_add(sol, tab);
3784 isl_tab_free(tab);
3785 return;
3786 error:
3787 isl_tab_free(tab);
3788 sol->error = 1;
3791 /* Compute the lexicographic minimum of the set represented by the main
3792 * tableau "tab" within the context "sol->context_tab".
3794 * As a preprocessing step, we first transfer all the purely parametric
3795 * equalities from the main tableau to the context tableau, i.e.,
3796 * parameters that have been pivoted to a row.
3797 * These equalities are ignored by the main algorithm, because the
3798 * corresponding rows may not be marked as being non-negative.
3799 * In parts of the context where the added equality does not hold,
3800 * the main tableau is marked as being empty.
3802 static void find_solutions_main(struct isl_sol *sol, struct isl_tab *tab)
3804 int row;
3806 if (!tab)
3807 goto error;
3809 sol->level = 0;
3811 for (row = tab->n_redundant; row < tab->n_row; ++row) {
3812 int p;
3813 struct isl_vec *eq;
3815 if (tab->row_var[row] < 0)
3816 continue;
3817 if (tab->row_var[row] >= tab->n_param &&
3818 tab->row_var[row] < tab->n_var - tab->n_div)
3819 continue;
3820 if (tab->row_var[row] < tab->n_param)
3821 p = tab->row_var[row];
3822 else
3823 p = tab->row_var[row]
3824 + tab->n_param - (tab->n_var - tab->n_div);
3826 eq = isl_vec_alloc(tab->mat->ctx, 1+tab->n_param+tab->n_div);
3827 if (!eq)
3828 goto error;
3829 get_row_parameter_line(tab, row, eq->el);
3830 isl_int_neg(eq->el[1 + p], tab->mat->row[row][0]);
3831 eq = isl_vec_normalize(eq);
3833 sol_inc_level(sol);
3834 no_sol_in_strict(sol, tab, eq);
3836 isl_seq_neg(eq->el, eq->el, eq->size);
3837 sol_inc_level(sol);
3838 no_sol_in_strict(sol, tab, eq);
3839 isl_seq_neg(eq->el, eq->el, eq->size);
3841 sol->context->op->add_eq(sol->context, eq->el, 1, 1);
3843 isl_vec_free(eq);
3845 if (isl_tab_mark_redundant(tab, row) < 0)
3846 goto error;
3848 if (sol->context->op->is_empty(sol->context))
3849 break;
3851 row = tab->n_redundant - 1;
3854 find_solutions(sol, tab);
3856 sol->level = 0;
3857 sol_pop(sol);
3859 return;
3860 error:
3861 isl_tab_free(tab);
3862 sol->error = 1;
3865 static void sol_map_find_solutions(struct isl_sol_map *sol_map,
3866 struct isl_tab *tab)
3868 find_solutions_main(&sol_map->sol, tab);
3871 /* Check if integer division "div" of "dom" also occurs in "bmap".
3872 * If so, return its position within the divs.
3873 * If not, return -1.
3875 static int find_context_div(struct isl_basic_map *bmap,
3876 struct isl_basic_set *dom, unsigned div)
3878 int i;
3879 unsigned b_dim = isl_dim_total(bmap->dim);
3880 unsigned d_dim = isl_dim_total(dom->dim);
3882 if (isl_int_is_zero(dom->div[div][0]))
3883 return -1;
3884 if (isl_seq_first_non_zero(dom->div[div] + 2 + d_dim, dom->n_div) != -1)
3885 return -1;
3887 for (i = 0; i < bmap->n_div; ++i) {
3888 if (isl_int_is_zero(bmap->div[i][0]))
3889 continue;
3890 if (isl_seq_first_non_zero(bmap->div[i] + 2 + d_dim,
3891 (b_dim - d_dim) + bmap->n_div) != -1)
3892 continue;
3893 if (isl_seq_eq(bmap->div[i], dom->div[div], 2 + d_dim))
3894 return i;
3896 return -1;
3899 /* The correspondence between the variables in the main tableau,
3900 * the context tableau, and the input map and domain is as follows.
3901 * The first n_param and the last n_div variables of the main tableau
3902 * form the variables of the context tableau.
3903 * In the basic map, these n_param variables correspond to the
3904 * parameters and the input dimensions. In the domain, they correspond
3905 * to the parameters and the set dimensions.
3906 * The n_div variables correspond to the integer divisions in the domain.
3907 * To ensure that everything lines up, we may need to copy some of the
3908 * integer divisions of the domain to the map. These have to be placed
3909 * in the same order as those in the context and they have to be placed
3910 * after any other integer divisions that the map may have.
3911 * This function performs the required reordering.
3913 static struct isl_basic_map *align_context_divs(struct isl_basic_map *bmap,
3914 struct isl_basic_set *dom)
3916 int i;
3917 int common = 0;
3918 int other;
3920 for (i = 0; i < dom->n_div; ++i)
3921 if (find_context_div(bmap, dom, i) != -1)
3922 common++;
3923 other = bmap->n_div - common;
3924 if (dom->n_div - common > 0) {
3925 bmap = isl_basic_map_extend_dim(bmap, isl_dim_copy(bmap->dim),
3926 dom->n_div - common, 0, 0);
3927 if (!bmap)
3928 return NULL;
3930 for (i = 0; i < dom->n_div; ++i) {
3931 int pos = find_context_div(bmap, dom, i);
3932 if (pos < 0) {
3933 pos = isl_basic_map_alloc_div(bmap);
3934 if (pos < 0)
3935 goto error;
3936 isl_int_set_si(bmap->div[pos][0], 0);
3938 if (pos != other + i)
3939 isl_basic_map_swap_div(bmap, pos, other + i);
3941 return bmap;
3942 error:
3943 isl_basic_map_free(bmap);
3944 return NULL;
3947 /* Base case of isl_tab_basic_map_partial_lexopt, after removing
3948 * some obvious symmetries.
3950 * We make sure the divs in the domain are properly ordered,
3951 * because they will be added one by one in the given order
3952 * during the construction of the solution map.
3954 static __isl_give isl_map *basic_map_partial_lexopt_base(
3955 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
3956 __isl_give isl_set **empty, int max)
3958 isl_map *result = NULL;
3959 struct isl_tab *tab;
3960 struct isl_sol_map *sol_map = NULL;
3961 struct isl_context *context;
3963 if (dom->n_div) {
3964 dom = isl_basic_set_order_divs(dom);
3965 bmap = align_context_divs(bmap, dom);
3967 sol_map = sol_map_init(bmap, dom, !!empty, max);
3968 if (!sol_map)
3969 goto error;
3971 context = sol_map->sol.context;
3972 if (isl_basic_set_plain_is_empty(context->op->peek_basic_set(context)))
3973 /* nothing */;
3974 else if (isl_basic_map_plain_is_empty(bmap))
3975 sol_map_add_empty_if_needed(sol_map,
3976 isl_basic_set_copy(context->op->peek_basic_set(context)));
3977 else {
3978 tab = tab_for_lexmin(bmap,
3979 context->op->peek_basic_set(context), 1, max);
3980 tab = context->op->detect_nonnegative_parameters(context, tab);
3981 sol_map_find_solutions(sol_map, tab);
3983 if (sol_map->sol.error)
3984 goto error;
3986 result = isl_map_copy(sol_map->map);
3987 if (empty)
3988 *empty = isl_set_copy(sol_map->empty);
3989 sol_free(&sol_map->sol);
3990 isl_basic_map_free(bmap);
3991 return result;
3992 error:
3993 sol_free(&sol_map->sol);
3994 isl_basic_map_free(bmap);
3995 return NULL;
3998 /* Structure used during detection of parallel constraints.
3999 * n_in: number of "input" variables: isl_dim_param + isl_dim_in
4000 * n_out: number of "output" variables: isl_dim_out + isl_dim_div
4001 * val: the coefficients of the output variables
4003 struct isl_constraint_equal_info {
4004 isl_basic_map *bmap;
4005 unsigned n_in;
4006 unsigned n_out;
4007 isl_int *val;
4010 /* Check whether the coefficients of the output variables
4011 * of the constraint in "entry" are equal to info->val.
4013 static int constraint_equal(const void *entry, const void *val)
4015 isl_int **row = (isl_int **)entry;
4016 const struct isl_constraint_equal_info *info = val;
4018 return isl_seq_eq((*row) + 1 + info->n_in, info->val, info->n_out);
4021 /* Check whether "bmap" has a pair of constraints that have
4022 * the same coefficients for the output variables.
4023 * Note that the coefficients of the existentially quantified
4024 * variables need to be zero since the existentially quantified
4025 * of the result are usually not the same as those of the input.
4026 * the isl_dim_out and isl_dim_div dimensions.
4027 * If so, return 1 and return the row indices of the two constraints
4028 * in *first and *second.
4030 static int parallel_constraints(__isl_keep isl_basic_map *bmap,
4031 int *first, int *second)
4033 int i;
4034 isl_ctx *ctx = isl_basic_map_get_ctx(bmap);
4035 struct isl_hash_table *table = NULL;
4036 struct isl_hash_table_entry *entry;
4037 struct isl_constraint_equal_info info;
4038 unsigned n_out;
4039 unsigned n_div;
4041 ctx = isl_basic_map_get_ctx(bmap);
4042 table = isl_hash_table_alloc(ctx, bmap->n_ineq);
4043 if (!table)
4044 goto error;
4046 info.n_in = isl_basic_map_dim(bmap, isl_dim_param) +
4047 isl_basic_map_dim(bmap, isl_dim_in);
4048 info.bmap = bmap;
4049 n_out = isl_basic_map_dim(bmap, isl_dim_out);
4050 n_div = isl_basic_map_dim(bmap, isl_dim_div);
4051 info.n_out = n_out + n_div;
4052 for (i = 0; i < bmap->n_ineq; ++i) {
4053 uint32_t hash;
4055 info.val = bmap->ineq[i] + 1 + info.n_in;
4056 if (isl_seq_first_non_zero(info.val, n_out) < 0)
4057 continue;
4058 if (isl_seq_first_non_zero(info.val + n_out, n_div) >= 0)
4059 continue;
4060 hash = isl_seq_get_hash(info.val, info.n_out);
4061 entry = isl_hash_table_find(ctx, table, hash,
4062 constraint_equal, &info, 1);
4063 if (!entry)
4064 goto error;
4065 if (entry->data)
4066 break;
4067 entry->data = &bmap->ineq[i];
4070 if (i < bmap->n_ineq) {
4071 *first = ((isl_int **)entry->data) - bmap->ineq;
4072 *second = i;
4075 isl_hash_table_free(ctx, table);
4077 return i < bmap->n_ineq;
4078 error:
4079 isl_hash_table_free(ctx, table);
4080 return -1;
4083 /* Given a set of upper bounds on the last "input" variable m,
4084 * construct a set that assigns the minimal upper bound to m, i.e.,
4085 * construct a set that divides the space into cells where one
4086 * of the upper bounds is smaller than all the others and assign
4087 * this upper bound to m.
4089 * In particular, if there are n bounds b_i, then the result
4090 * consists of n basic sets, each one of the form
4092 * m = b_i
4093 * b_i <= b_j for j > i
4094 * b_i < b_j for j < i
4096 static __isl_give isl_set *set_minimum(__isl_take isl_dim *dim,
4097 __isl_take isl_mat *var)
4099 int i, j, k;
4100 isl_basic_set *bset = NULL;
4101 isl_ctx *ctx;
4102 isl_set *set = NULL;
4104 if (!dim || !var)
4105 goto error;
4107 ctx = isl_dim_get_ctx(dim);
4108 set = isl_set_alloc_dim(isl_dim_copy(dim),
4109 var->n_row, ISL_SET_DISJOINT);
4111 for (i = 0; i < var->n_row; ++i) {
4112 bset = isl_basic_set_alloc_dim(isl_dim_copy(dim), 0,
4113 1, var->n_row - 1);
4114 k = isl_basic_set_alloc_equality(bset);
4115 if (k < 0)
4116 goto error;
4117 isl_seq_cpy(bset->eq[k], var->row[i], var->n_col);
4118 isl_int_set_si(bset->eq[k][var->n_col], -1);
4119 for (j = 0; j < var->n_row; ++j) {
4120 if (j == i)
4121 continue;
4122 k = isl_basic_set_alloc_inequality(bset);
4123 if (k < 0)
4124 goto error;
4125 isl_seq_combine(bset->ineq[k], ctx->one, var->row[j],
4126 ctx->negone, var->row[i],
4127 var->n_col);
4128 isl_int_set_si(bset->ineq[k][var->n_col], 0);
4129 if (j < i)
4130 isl_int_sub_ui(bset->ineq[k][0],
4131 bset->ineq[k][0], 1);
4133 bset = isl_basic_set_finalize(bset);
4134 set = isl_set_add_basic_set(set, bset);
4137 isl_dim_free(dim);
4138 isl_mat_free(var);
4139 return set;
4140 error:
4141 isl_basic_set_free(bset);
4142 isl_set_free(set);
4143 isl_dim_free(dim);
4144 isl_mat_free(var);
4145 return NULL;
4148 /* Given that the last input variable of "bmap" represents the minimum
4149 * of the bounds in "cst", check whether we need to split the domain
4150 * based on which bound attains the minimum.
4152 * A split is needed when the minimum appears in an integer division
4153 * or in an equality. Otherwise, it is only needed if it appears in
4154 * an upper bound that is different from the upper bounds on which it
4155 * is defined.
4157 static int need_split_map(__isl_keep isl_basic_map *bmap,
4158 __isl_keep isl_mat *cst)
4160 int i, j;
4161 unsigned total;
4162 unsigned pos;
4164 pos = cst->n_col - 1;
4165 total = isl_basic_map_dim(bmap, isl_dim_all);
4167 for (i = 0; i < bmap->n_div; ++i)
4168 if (!isl_int_is_zero(bmap->div[i][2 + pos]))
4169 return 1;
4171 for (i = 0; i < bmap->n_eq; ++i)
4172 if (!isl_int_is_zero(bmap->eq[i][1 + pos]))
4173 return 1;
4175 for (i = 0; i < bmap->n_ineq; ++i) {
4176 if (isl_int_is_nonneg(bmap->ineq[i][1 + pos]))
4177 continue;
4178 if (!isl_int_is_negone(bmap->ineq[i][1 + pos]))
4179 return 1;
4180 if (isl_seq_first_non_zero(bmap->ineq[i] + 1 + pos + 1,
4181 total - pos - 1) >= 0)
4182 return 1;
4184 for (j = 0; j < cst->n_row; ++j)
4185 if (isl_seq_eq(bmap->ineq[i], cst->row[j], cst->n_col))
4186 break;
4187 if (j >= cst->n_row)
4188 return 1;
4191 return 0;
4194 static int need_split_set(__isl_keep isl_basic_set *bset,
4195 __isl_keep isl_mat *cst)
4197 return need_split_map((isl_basic_map *)bset, cst);
4200 /* Given a set of which the last set variable is the minimum
4201 * of the bounds in "cst", split each basic set in the set
4202 * in pieces where one of the bounds is (strictly) smaller than the others.
4203 * This subdivision is given in "min_expr".
4204 * The variable is subsequently projected out.
4206 * We only do the split when it is needed.
4207 * For example if the last input variable m = min(a,b) and the only
4208 * constraints in the given basic set are lower bounds on m,
4209 * i.e., l <= m = min(a,b), then we can simply project out m
4210 * to obtain l <= a and l <= b, without having to split on whether
4211 * m is equal to a or b.
4213 static __isl_give isl_set *split(__isl_take isl_set *empty,
4214 __isl_take isl_set *min_expr, __isl_take isl_mat *cst)
4216 int n_in;
4217 int i;
4218 isl_dim *dim;
4219 isl_set *res;
4221 if (!empty || !min_expr || !cst)
4222 goto error;
4224 n_in = isl_set_dim(empty, isl_dim_set);
4225 dim = isl_set_get_dim(empty);
4226 dim = isl_dim_drop(dim, isl_dim_set, n_in - 1, 1);
4227 res = isl_set_empty(dim);
4229 for (i = 0; i < empty->n; ++i) {
4230 isl_set *set;
4232 set = isl_set_from_basic_set(isl_basic_set_copy(empty->p[i]));
4233 if (need_split_set(empty->p[i], cst))
4234 set = isl_set_intersect(set, isl_set_copy(min_expr));
4235 set = isl_set_remove_dims(set, isl_dim_set, n_in - 1, 1);
4237 res = isl_set_union_disjoint(res, set);
4240 isl_set_free(empty);
4241 isl_set_free(min_expr);
4242 isl_mat_free(cst);
4243 return res;
4244 error:
4245 isl_set_free(empty);
4246 isl_set_free(min_expr);
4247 isl_mat_free(cst);
4248 return NULL;
4251 /* Given a map of which the last input variable is the minimum
4252 * of the bounds in "cst", split each basic set in the set
4253 * in pieces where one of the bounds is (strictly) smaller than the others.
4254 * This subdivision is given in "min_expr".
4255 * The variable is subsequently projected out.
4257 * The implementation is essentially the same as that of "split".
4259 static __isl_give isl_map *split_domain(__isl_take isl_map *opt,
4260 __isl_take isl_set *min_expr, __isl_take isl_mat *cst)
4262 int n_in;
4263 int i;
4264 isl_dim *dim;
4265 isl_map *res;
4267 if (!opt || !min_expr || !cst)
4268 goto error;
4270 n_in = isl_map_dim(opt, isl_dim_in);
4271 dim = isl_map_get_dim(opt);
4272 dim = isl_dim_drop(dim, isl_dim_in, n_in - 1, 1);
4273 res = isl_map_empty(dim);
4275 for (i = 0; i < opt->n; ++i) {
4276 isl_map *map;
4278 map = isl_map_from_basic_map(isl_basic_map_copy(opt->p[i]));
4279 if (need_split_map(opt->p[i], cst))
4280 map = isl_map_intersect_domain(map,
4281 isl_set_copy(min_expr));
4282 map = isl_map_remove_dims(map, isl_dim_in, n_in - 1, 1);
4284 res = isl_map_union_disjoint(res, map);
4287 isl_map_free(opt);
4288 isl_set_free(min_expr);
4289 isl_mat_free(cst);
4290 return res;
4291 error:
4292 isl_map_free(opt);
4293 isl_set_free(min_expr);
4294 isl_mat_free(cst);
4295 return NULL;
4298 static __isl_give isl_map *basic_map_partial_lexopt(
4299 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
4300 __isl_give isl_set **empty, int max);
4302 /* Given a basic map with at least two parallel constraints (as found
4303 * by the function parallel_constraints), first look for more constraints
4304 * parallel to the two constraint and replace the found list of parallel
4305 * constraints by a single constraint with as "input" part the minimum
4306 * of the input parts of the list of constraints. Then, recursively call
4307 * basic_map_partial_lexopt (possibly finding more parallel constraints)
4308 * and plug in the definition of the minimum in the result.
4310 * More specifically, given a set of constraints
4312 * a x + b_i(p) >= 0
4314 * Replace this set by a single constraint
4316 * a x + u >= 0
4318 * with u a new parameter with constraints
4320 * u <= b_i(p)
4322 * Any solution to the new system is also a solution for the original system
4323 * since
4325 * a x >= -u >= -b_i(p)
4327 * Moreover, m = min_i(b_i(p)) satisfies the constraints on u and can
4328 * therefore be plugged into the solution.
4330 static __isl_give isl_map *basic_map_partial_lexopt_symm(
4331 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
4332 __isl_give isl_set **empty, int max, int first, int second)
4334 int i, n, k;
4335 int *list = NULL;
4336 unsigned n_in, n_out, n_div;
4337 isl_ctx *ctx;
4338 isl_vec *var = NULL;
4339 isl_mat *cst = NULL;
4340 isl_map *opt;
4341 isl_set *min_expr;
4342 isl_dim *map_dim, *set_dim;
4344 map_dim = isl_basic_map_get_dim(bmap);
4345 set_dim = empty ? isl_basic_set_get_dim(dom) : NULL;
4347 n_in = isl_basic_map_dim(bmap, isl_dim_param) +
4348 isl_basic_map_dim(bmap, isl_dim_in);
4349 n_out = isl_basic_map_dim(bmap, isl_dim_all) - n_in;
4351 ctx = isl_basic_map_get_ctx(bmap);
4352 list = isl_alloc_array(ctx, int, bmap->n_ineq);
4353 var = isl_vec_alloc(ctx, n_out);
4354 if (!list || !var)
4355 goto error;
4357 list[0] = first;
4358 list[1] = second;
4359 isl_seq_cpy(var->el, bmap->ineq[first] + 1 + n_in, n_out);
4360 for (i = second + 1, n = 2; i < bmap->n_ineq; ++i) {
4361 if (isl_seq_eq(var->el, bmap->ineq[i] + 1 + n_in, n_out))
4362 list[n++] = i;
4365 cst = isl_mat_alloc(ctx, n, 1 + n_in);
4366 if (!cst)
4367 goto error;
4369 for (i = 0; i < n; ++i)
4370 isl_seq_cpy(cst->row[i], bmap->ineq[list[i]], 1 + n_in);
4372 bmap = isl_basic_map_cow(bmap);
4373 if (!bmap)
4374 goto error;
4375 for (i = n - 1; i >= 0; --i)
4376 if (isl_basic_map_drop_inequality(bmap, list[i]) < 0)
4377 goto error;
4379 bmap = isl_basic_map_add(bmap, isl_dim_in, 1);
4380 bmap = isl_basic_map_extend_constraints(bmap, 0, 1);
4381 k = isl_basic_map_alloc_inequality(bmap);
4382 if (k < 0)
4383 goto error;
4384 isl_seq_clr(bmap->ineq[k], 1 + n_in);
4385 isl_int_set_si(bmap->ineq[k][1 + n_in], 1);
4386 isl_seq_cpy(bmap->ineq[k] + 1 + n_in + 1, var->el, n_out);
4387 bmap = isl_basic_map_finalize(bmap);
4389 n_div = isl_basic_set_dim(dom, isl_dim_div);
4390 dom = isl_basic_set_add(dom, isl_dim_set, 1);
4391 dom = isl_basic_set_extend_constraints(dom, 0, n);
4392 for (i = 0; i < n; ++i) {
4393 k = isl_basic_set_alloc_inequality(dom);
4394 if (k < 0)
4395 goto error;
4396 isl_seq_cpy(dom->ineq[k], cst->row[i], 1 + n_in);
4397 isl_int_set_si(dom->ineq[k][1 + n_in], -1);
4398 isl_seq_clr(dom->ineq[k] + 1 + n_in + 1, n_div);
4401 min_expr = set_minimum(isl_basic_set_get_dim(dom), isl_mat_copy(cst));
4403 isl_vec_free(var);
4404 free(list);
4406 opt = basic_map_partial_lexopt(bmap, dom, empty, max);
4408 if (empty) {
4409 *empty = split(*empty,
4410 isl_set_copy(min_expr), isl_mat_copy(cst));
4411 *empty = isl_set_reset_dim(*empty, set_dim);
4414 opt = split_domain(opt, min_expr, cst);
4415 opt = isl_map_reset_dim(opt, map_dim);
4417 return opt;
4418 error:
4419 isl_dim_free(map_dim);
4420 isl_dim_free(set_dim);
4421 isl_mat_free(cst);
4422 isl_vec_free(var);
4423 free(list);
4424 isl_basic_set_free(dom);
4425 isl_basic_map_free(bmap);
4426 return NULL;
4429 /* Recursive part of isl_tab_basic_map_partial_lexopt, after detecting
4430 * equalities and removing redundant constraints.
4432 * We first check if there are any parallel constraints (left).
4433 * If not, we are in the base case.
4434 * If there are parallel constraints, we replace them by a single
4435 * constraint in basic_map_partial_lexopt_symm and then call
4436 * this function recursively to look for more parallel constraints.
4438 static __isl_give isl_map *basic_map_partial_lexopt(
4439 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
4440 __isl_give isl_set **empty, int max)
4442 int par = 0;
4443 int first, second;
4445 if (!bmap)
4446 goto error;
4448 if (bmap->ctx->opt->pip_symmetry)
4449 par = parallel_constraints(bmap, &first, &second);
4450 if (par < 0)
4451 goto error;
4452 if (!par)
4453 return basic_map_partial_lexopt_base(bmap, dom, empty, max);
4455 return basic_map_partial_lexopt_symm(bmap, dom, empty, max,
4456 first, second);
4457 error:
4458 isl_basic_set_free(dom);
4459 isl_basic_map_free(bmap);
4460 return NULL;
4463 /* Compute the lexicographic minimum (or maximum if "max" is set)
4464 * of "bmap" over the domain "dom" and return the result as a map.
4465 * If "empty" is not NULL, then *empty is assigned a set that
4466 * contains those parts of the domain where there is no solution.
4467 * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL),
4468 * then we compute the rational optimum. Otherwise, we compute
4469 * the integral optimum.
4471 * We perform some preprocessing. As the PILP solver does not
4472 * handle implicit equalities very well, we first make sure all
4473 * the equalities are explicitly available.
4475 * We also add context constraints to the basic map and remove
4476 * redundant constraints. This is only needed because of the
4477 * way we handle simple symmetries. In particular, we currently look
4478 * for symmetries on the constraints, before we set up the main tableau.
4479 * It is then no good to look for symmetries on possibly redundant constraints.
4481 struct isl_map *isl_tab_basic_map_partial_lexopt(
4482 struct isl_basic_map *bmap, struct isl_basic_set *dom,
4483 struct isl_set **empty, int max)
4485 if (empty)
4486 *empty = NULL;
4487 if (!bmap || !dom)
4488 goto error;
4490 isl_assert(bmap->ctx,
4491 isl_basic_map_compatible_domain(bmap, dom), goto error);
4493 if (isl_basic_set_dim(dom, isl_dim_all) == 0)
4494 return basic_map_partial_lexopt(bmap, dom, empty, max);
4496 bmap = isl_basic_map_intersect_domain(bmap, isl_basic_set_copy(dom));
4497 bmap = isl_basic_map_detect_equalities(bmap);
4498 bmap = isl_basic_map_remove_redundancies(bmap);
4500 return basic_map_partial_lexopt(bmap, dom, empty, max);
4501 error:
4502 isl_basic_set_free(dom);
4503 isl_basic_map_free(bmap);
4504 return NULL;
4507 struct isl_sol_for {
4508 struct isl_sol sol;
4509 int (*fn)(__isl_take isl_basic_set *dom,
4510 __isl_take isl_mat *map, void *user);
4511 void *user;
4514 static void sol_for_free(struct isl_sol_for *sol_for)
4516 if (sol_for->sol.context)
4517 sol_for->sol.context->op->free(sol_for->sol.context);
4518 free(sol_for);
4521 static void sol_for_free_wrap(struct isl_sol *sol)
4523 sol_for_free((struct isl_sol_for *)sol);
4526 /* Add the solution identified by the tableau and the context tableau.
4528 * See documentation of sol_add for more details.
4530 * Instead of constructing a basic map, this function calls a user
4531 * defined function with the current context as a basic set and
4532 * an affine matrix representing the relation between the input and output.
4533 * The number of rows in this matrix is equal to one plus the number
4534 * of output variables. The number of columns is equal to one plus
4535 * the total dimension of the context, i.e., the number of parameters,
4536 * input variables and divs. Since some of the columns in the matrix
4537 * may refer to the divs, the basic set is not simplified.
4538 * (Simplification may reorder or remove divs.)
4540 static void sol_for_add(struct isl_sol_for *sol,
4541 struct isl_basic_set *dom, struct isl_mat *M)
4543 if (sol->sol.error || !dom || !M)
4544 goto error;
4546 dom = isl_basic_set_finalize(dom);
4548 if (sol->fn(isl_basic_set_copy(dom), isl_mat_copy(M), sol->user) < 0)
4549 goto error;
4551 isl_basic_set_free(dom);
4552 isl_mat_free(M);
4553 return;
4554 error:
4555 isl_basic_set_free(dom);
4556 isl_mat_free(M);
4557 sol->sol.error = 1;
4560 static void sol_for_add_wrap(struct isl_sol *sol,
4561 struct isl_basic_set *dom, struct isl_mat *M)
4563 sol_for_add((struct isl_sol_for *)sol, dom, M);
4566 static struct isl_sol_for *sol_for_init(struct isl_basic_map *bmap, int max,
4567 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_mat *map,
4568 void *user),
4569 void *user)
4571 struct isl_sol_for *sol_for = NULL;
4572 struct isl_dim *dom_dim;
4573 struct isl_basic_set *dom = NULL;
4575 sol_for = isl_calloc_type(bmap->ctx, struct isl_sol_for);
4576 if (!sol_for)
4577 goto error;
4579 dom_dim = isl_dim_domain(isl_dim_copy(bmap->dim));
4580 dom = isl_basic_set_universe(dom_dim);
4582 sol_for->sol.rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
4583 sol_for->sol.dec_level.callback.run = &sol_dec_level_wrap;
4584 sol_for->sol.dec_level.sol = &sol_for->sol;
4585 sol_for->fn = fn;
4586 sol_for->user = user;
4587 sol_for->sol.max = max;
4588 sol_for->sol.n_out = isl_basic_map_dim(bmap, isl_dim_out);
4589 sol_for->sol.add = &sol_for_add_wrap;
4590 sol_for->sol.add_empty = NULL;
4591 sol_for->sol.free = &sol_for_free_wrap;
4593 sol_for->sol.context = isl_context_alloc(dom);
4594 if (!sol_for->sol.context)
4595 goto error;
4597 isl_basic_set_free(dom);
4598 return sol_for;
4599 error:
4600 isl_basic_set_free(dom);
4601 sol_for_free(sol_for);
4602 return NULL;
4605 static void sol_for_find_solutions(struct isl_sol_for *sol_for,
4606 struct isl_tab *tab)
4608 find_solutions_main(&sol_for->sol, tab);
4611 int isl_basic_map_foreach_lexopt(__isl_keep isl_basic_map *bmap, int max,
4612 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_mat *map,
4613 void *user),
4614 void *user)
4616 struct isl_sol_for *sol_for = NULL;
4618 bmap = isl_basic_map_copy(bmap);
4619 if (!bmap)
4620 return -1;
4622 bmap = isl_basic_map_detect_equalities(bmap);
4623 sol_for = sol_for_init(bmap, max, fn, user);
4625 if (isl_basic_map_plain_is_empty(bmap))
4626 /* nothing */;
4627 else {
4628 struct isl_tab *tab;
4629 struct isl_context *context = sol_for->sol.context;
4630 tab = tab_for_lexmin(bmap,
4631 context->op->peek_basic_set(context), 1, max);
4632 tab = context->op->detect_nonnegative_parameters(context, tab);
4633 sol_for_find_solutions(sol_for, tab);
4634 if (sol_for->sol.error)
4635 goto error;
4638 sol_free(&sol_for->sol);
4639 isl_basic_map_free(bmap);
4640 return 0;
4641 error:
4642 sol_free(&sol_for->sol);
4643 isl_basic_map_free(bmap);
4644 return -1;
4647 int isl_basic_map_foreach_lexmin(__isl_keep isl_basic_map *bmap,
4648 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_mat *map,
4649 void *user),
4650 void *user)
4652 return isl_basic_map_foreach_lexopt(bmap, 0, fn, user);
4655 int isl_basic_map_foreach_lexmax(__isl_keep isl_basic_map *bmap,
4656 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_mat *map,
4657 void *user),
4658 void *user)
4660 return isl_basic_map_foreach_lexopt(bmap, 1, fn, user);
4663 /* Check if the given sequence of len variables starting at pos
4664 * represents a trivial (i.e., zero) solution.
4665 * The variables are assumed to be non-negative and to come in pairs,
4666 * with each pair representing a variable of unrestricted sign.
4667 * The solution is trivial if each such pair in the sequence consists
4668 * of two identical values, meaning that the variable being represented
4669 * has value zero.
4671 static int region_is_trivial(struct isl_tab *tab, int pos, int len)
4673 int i;
4675 if (len == 0)
4676 return 0;
4678 for (i = 0; i < len; i += 2) {
4679 int neg_row;
4680 int pos_row;
4682 neg_row = tab->var[pos + i].is_row ?
4683 tab->var[pos + i].index : -1;
4684 pos_row = tab->var[pos + i + 1].is_row ?
4685 tab->var[pos + i + 1].index : -1;
4687 if ((neg_row < 0 ||
4688 isl_int_is_zero(tab->mat->row[neg_row][1])) &&
4689 (pos_row < 0 ||
4690 isl_int_is_zero(tab->mat->row[pos_row][1])))
4691 continue;
4693 if (neg_row < 0 || pos_row < 0)
4694 return 0;
4695 if (isl_int_ne(tab->mat->row[neg_row][1],
4696 tab->mat->row[pos_row][1]))
4697 return 0;
4700 return 1;
4703 /* Return the index of the first trivial region or -1 if all regions
4704 * are non-trivial.
4706 static int first_trivial_region(struct isl_tab *tab,
4707 int n_region, struct isl_region *region)
4709 int i;
4711 for (i = 0; i < n_region; ++i) {
4712 if (region_is_trivial(tab, region[i].pos, region[i].len))
4713 return i;
4716 return -1;
4719 /* Check if the solution is optimal, i.e., whether the first
4720 * n_op entries are zero.
4722 static int is_optimal(__isl_keep isl_vec *sol, int n_op)
4724 int i;
4726 for (i = 0; i < n_op; ++i)
4727 if (!isl_int_is_zero(sol->el[1 + i]))
4728 return 0;
4729 return 1;
4732 /* Add constraints to "tab" that ensure that any solution is significantly
4733 * better that that represented by "sol". That is, find the first
4734 * relevant (within first n_op) non-zero coefficient and force it (along
4735 * with all previous coefficients) to be zero.
4736 * If the solution is already optimal (all relevant coefficients are zero),
4737 * then just mark the table as empty.
4739 static int force_better_solution(struct isl_tab *tab,
4740 __isl_keep isl_vec *sol, int n_op)
4742 int i;
4743 isl_ctx *ctx;
4744 isl_vec *v = NULL;
4746 if (!sol)
4747 return -1;
4749 for (i = 0; i < n_op; ++i)
4750 if (!isl_int_is_zero(sol->el[1 + i]))
4751 break;
4753 if (i == n_op) {
4754 if (isl_tab_mark_empty(tab) < 0)
4755 return -1;
4756 return 0;
4759 ctx = isl_vec_get_ctx(sol);
4760 v = isl_vec_alloc(ctx, 1 + tab->n_var);
4761 if (!v)
4762 return -1;
4764 for (; i >= 0; --i) {
4765 v = isl_vec_clr(v);
4766 isl_int_set_si(v->el[1 + i], -1);
4767 if (add_lexmin_eq(tab, v->el) < 0)
4768 goto error;
4771 isl_vec_free(v);
4772 return 0;
4773 error:
4774 isl_vec_free(v);
4775 return -1;
4778 struct isl_trivial {
4779 int update;
4780 int region;
4781 int side;
4782 struct isl_tab_undo *snap;
4785 /* Return the lexicographically smallest non-trivial solution of the
4786 * given ILP problem.
4788 * All variables are assumed to be non-negative.
4790 * n_op is the number of initial coordinates to optimize.
4791 * That is, once a solution has been found, we will only continue looking
4792 * for solution that result in significantly better values for those
4793 * initial coordinates. That is, we only continue looking for solutions
4794 * that increase the number of initial zeros in this sequence.
4796 * A solution is non-trivial, if it is non-trivial on each of the
4797 * specified regions. Each region represents a sequence of pairs
4798 * of variables. A solution is non-trivial on such a region if
4799 * at least one of these pairs consists of different values, i.e.,
4800 * such that the non-negative variable represented by the pair is non-zero.
4802 * Whenever a conflict is encountered, all constraints involved are
4803 * reported to the caller through a call to "conflict".
4805 * We perform a simple branch-and-bound backtracking search.
4806 * Each level in the search represents initially trivial region that is forced
4807 * to be non-trivial.
4808 * At each level we consider n cases, where n is the length of the region.
4809 * In terms of the n/2 variables of unrestricted signs being encoded by
4810 * the region, we consider the cases
4811 * x_0 >= 1
4812 * x_0 <= -1
4813 * x_0 = 0 and x_1 >= 1
4814 * x_0 = 0 and x_1 <= -1
4815 * x_0 = 0 and x_1 = 0 and x_2 >= 1
4816 * x_0 = 0 and x_1 = 0 and x_2 <= -1
4817 * ...
4818 * The cases are considered in this order, assuming that each pair
4819 * x_i_a x_i_b represents the value x_i_b - x_i_a.
4820 * That is, x_0 >= 1 is enforced by adding the constraint
4821 * x_0_b - x_0_a >= 1
4823 __isl_give isl_vec *isl_tab_basic_set_non_trivial_lexmin(
4824 __isl_take isl_basic_set *bset, int n_op, int n_region,
4825 struct isl_region *region,
4826 int (*conflict)(int con, void *user), void *user)
4828 int i, j;
4829 int r;
4830 isl_ctx *ctx = isl_basic_set_get_ctx(bset);
4831 isl_vec *v = NULL;
4832 isl_vec *sol = isl_vec_alloc(ctx, 0);
4833 struct isl_tab *tab;
4834 struct isl_trivial *triv = NULL;
4835 int level, init;
4837 tab = tab_for_lexmin(isl_basic_map_from_range(bset), NULL, 0, 0);
4838 if (!tab)
4839 goto error;
4840 tab->conflict = conflict;
4841 tab->conflict_user = user;
4843 v = isl_vec_alloc(ctx, 1 + tab->n_var);
4844 triv = isl_calloc_array(ctx, struct isl_trivial, n_region);
4845 if (!v || !triv)
4846 goto error;
4848 level = 0;
4849 init = 1;
4851 while (level >= 0) {
4852 int side, base;
4854 if (init) {
4855 tab = cut_to_integer_lexmin(tab);
4856 if (!tab)
4857 goto error;
4858 if (tab->empty)
4859 goto backtrack;
4860 r = first_trivial_region(tab, n_region, region);
4861 if (r < 0) {
4862 for (i = 0; i < level; ++i)
4863 triv[i].update = 1;
4864 isl_vec_free(sol);
4865 sol = isl_tab_get_sample_value(tab);
4866 if (!sol)
4867 goto error;
4868 if (is_optimal(sol, n_op))
4869 break;
4870 goto backtrack;
4872 if (level >= n_region)
4873 isl_die(ctx, isl_error_internal,
4874 "nesting level too deep", goto error);
4875 if (isl_tab_extend_cons(tab,
4876 2 * region[r].len + 2 * n_op) < 0)
4877 goto error;
4878 triv[level].region = r;
4879 triv[level].side = 0;
4882 r = triv[level].region;
4883 side = triv[level].side;
4884 base = 2 * (side/2);
4886 if (side >= region[r].len) {
4887 backtrack:
4888 level--;
4889 init = 0;
4890 if (level >= 0)
4891 if (isl_tab_rollback(tab, triv[level].snap) < 0)
4892 goto error;
4893 continue;
4896 if (triv[level].update) {
4897 if (force_better_solution(tab, sol, n_op) < 0)
4898 goto error;
4899 triv[level].update = 0;
4902 if (side == base && base >= 2) {
4903 for (j = base - 2; j < base; ++j) {
4904 v = isl_vec_clr(v);
4905 isl_int_set_si(v->el[1 + region[r].pos + j], 1);
4906 if (add_lexmin_eq(tab, v->el) < 0)
4907 goto error;
4911 triv[level].snap = isl_tab_snap(tab);
4912 if (isl_tab_push_basis(tab) < 0)
4913 goto error;
4915 v = isl_vec_clr(v);
4916 isl_int_set_si(v->el[0], -1);
4917 isl_int_set_si(v->el[1 + region[r].pos + side], -1);
4918 isl_int_set_si(v->el[1 + region[r].pos + (side ^ 1)], 1);
4919 tab = add_lexmin_ineq(tab, v->el);
4921 triv[level].side++;
4922 level++;
4923 init = 1;
4926 free(triv);
4927 isl_vec_free(v);
4928 isl_tab_free(tab);
4929 isl_basic_set_free(bset);
4931 return sol;
4932 error:
4933 free(triv);
4934 isl_vec_free(v);
4935 isl_tab_free(tab);
4936 isl_basic_set_free(bset);
4937 isl_vec_free(sol);
4938 return NULL;
4941 /* Return the lexicographically smallest rational point in "bset",
4942 * assuming that all variables are non-negative.
4943 * If "bset" is empty, then return a zero-length vector.
4945 __isl_give isl_vec *isl_tab_basic_set_non_neg_lexmin(
4946 __isl_take isl_basic_set *bset)
4948 struct isl_tab *tab;
4949 isl_ctx *ctx = isl_basic_set_get_ctx(bset);
4950 isl_vec *sol;
4952 tab = tab_for_lexmin(isl_basic_map_from_range(bset), NULL, 0, 0);
4953 if (!tab)
4954 goto error;
4955 if (tab->empty)
4956 sol = isl_vec_alloc(ctx, 0);
4957 else
4958 sol = isl_tab_get_sample_value(tab);
4959 isl_tab_free(tab);
4960 isl_basic_set_free(bset);
4961 return sol;
4962 error:
4963 isl_tab_free(tab);
4964 isl_basic_set_free(bset);
4965 return NULL;