2 * Copyright 2012-2014 Ecole Normale Superieure
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege,
7 * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
14 #include <isl/union_map.h>
16 #include <isl_tarjan.h>
17 #include <isl_ast_private.h>
18 #include <isl_ast_build_expr.h>
19 #include <isl_ast_build_private.h>
20 #include <isl_ast_graft_private.h>
22 /* Add the constraint to the list that "user" points to, if it is not
25 static int collect_constraint(__isl_take isl_constraint
*constraint
,
28 isl_constraint_list
**list
= user
;
30 if (isl_constraint_is_div_constraint(constraint
))
31 isl_constraint_free(constraint
);
33 *list
= isl_constraint_list_add(*list
, constraint
);
38 /* Extract the constraints of "bset" (except the div constraints)
39 * and collect them in an isl_constraint_list.
41 static __isl_give isl_constraint_list
*isl_constraint_list_from_basic_set(
42 __isl_take isl_basic_set
*bset
)
46 isl_constraint_list
*list
;
51 ctx
= isl_basic_set_get_ctx(bset
);
53 n
= isl_basic_set_n_constraint(bset
);
54 list
= isl_constraint_list_alloc(ctx
, n
);
55 if (isl_basic_set_foreach_constraint(bset
,
56 &collect_constraint
, &list
) < 0)
57 list
= isl_constraint_list_free(list
);
59 isl_basic_set_free(bset
);
63 /* Data used in generate_domain.
65 * "build" is the input build.
66 * "list" collects the results.
68 struct isl_generate_domain_data
{
71 isl_ast_graft_list
*list
;
74 static __isl_give isl_ast_graft_list
*generate_next_level(
75 __isl_take isl_union_map
*executed
,
76 __isl_take isl_ast_build
*build
);
77 static __isl_give isl_ast_graft_list
*generate_code(
78 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
,
81 /* Generate an AST for a single domain based on
82 * the (non single valued) inverse schedule "executed".
84 * We extend the schedule with the iteration domain
85 * and continue generating through a call to generate_code.
87 * In particular, if executed has the form
91 * then we continue generating code on
95 * The extended inverse schedule is clearly single valued
96 * ensuring that the nested generate_code will not reach this function,
97 * but will instead create calls to all elements of D that need
98 * to be executed from the current schedule domain.
100 static int generate_non_single_valued(__isl_take isl_map
*executed
,
101 struct isl_generate_domain_data
*data
)
104 isl_ast_build
*build
;
105 isl_ast_graft_list
*list
;
107 build
= isl_ast_build_copy(data
->build
);
109 identity
= isl_set_identity(isl_map_range(isl_map_copy(executed
)));
110 executed
= isl_map_domain_product(executed
, identity
);
111 build
= isl_ast_build_set_single_valued(build
, 1);
113 list
= generate_code(isl_union_map_from_map(executed
), build
, 1);
115 data
->list
= isl_ast_graft_list_concat(data
->list
, list
);
120 /* Call the at_each_domain callback, if requested by the user,
121 * after recording the current inverse schedule in the build.
123 static __isl_give isl_ast_graft
*at_each_domain(__isl_take isl_ast_graft
*graft
,
124 __isl_keep isl_map
*executed
, __isl_keep isl_ast_build
*build
)
126 if (!graft
|| !build
)
127 return isl_ast_graft_free(graft
);
128 if (!build
->at_each_domain
)
131 build
= isl_ast_build_copy(build
);
132 build
= isl_ast_build_set_executed(build
,
133 isl_union_map_from_map(isl_map_copy(executed
)));
135 return isl_ast_graft_free(graft
);
137 graft
->node
= build
->at_each_domain(graft
->node
,
138 build
, build
->at_each_domain_user
);
139 isl_ast_build_free(build
);
142 graft
= isl_ast_graft_free(graft
);
147 /* Generate an AST for a single domain based on
148 * the inverse schedule "executed" and add it to data->list.
150 * If there is more than one domain element associated to the current
151 * schedule "time", then we need to continue the generation process
152 * in generate_non_single_valued.
153 * Note that the inverse schedule being single-valued may depend
154 * on constraints that are only available in the original context
155 * domain specified by the user. We therefore first introduce
156 * the constraints from data->build->domain.
157 * On the other hand, we only perform the test after having taken the gist
158 * of the domain as the resulting map is the one from which the call
159 * expression is constructed. Using this map to construct the call
160 * expression usually yields simpler results.
161 * Because we perform the single-valuedness test on the gisted map,
162 * we may in rare cases fail to recognize that the inverse schedule
163 * is single-valued. This becomes problematic if this happens
164 * from the recursive call through generate_non_single_valued
165 * as we would then end up in an infinite recursion.
166 * We therefore check if we are inside a call to generate_non_single_valued
167 * and revert to the ungisted map if the gisted map turns out not to be
170 * Otherwise, we generate a call expression for the single executed
171 * domain element and put a guard around it based on the (simplified)
172 * domain of "executed".
174 * If the user has set an at_each_domain callback, it is called
175 * on the constructed call expression node.
177 static int generate_domain(__isl_take isl_map
*executed
, void *user
)
179 struct isl_generate_domain_data
*data
= user
;
180 isl_ast_graft
*graft
;
181 isl_ast_graft_list
*list
;
186 executed
= isl_map_intersect_domain(executed
,
187 isl_set_copy(data
->build
->domain
));
188 empty
= isl_map_is_empty(executed
);
192 isl_map_free(executed
);
196 executed
= isl_map_coalesce(executed
);
197 map
= isl_map_copy(executed
);
198 map
= isl_ast_build_compute_gist_map_domain(data
->build
, map
);
199 sv
= isl_map_is_single_valued(map
);
204 if (data
->build
->single_valued
)
205 map
= isl_map_copy(executed
);
207 return generate_non_single_valued(executed
, data
);
209 guard
= isl_map_domain(isl_map_copy(map
));
210 guard
= isl_set_compute_divs(guard
);
211 guard
= isl_set_coalesce(guard
);
212 guard
= isl_ast_build_compute_gist(data
->build
, guard
);
213 graft
= isl_ast_graft_alloc_domain(map
, data
->build
);
214 graft
= at_each_domain(graft
, executed
, data
->build
);
216 isl_map_free(executed
);
217 graft
= isl_ast_graft_add_guard(graft
, guard
, data
->build
);
219 list
= isl_ast_graft_list_from_ast_graft(graft
);
220 data
->list
= isl_ast_graft_list_concat(data
->list
, list
);
225 isl_map_free(executed
);
229 /* Call build->create_leaf to a create "leaf" node in the AST,
230 * encapsulate the result in an isl_ast_graft and return the result
231 * as a 1-element list.
233 * Note that the node returned by the user may be an entire tree.
235 * Before we pass control to the user, we first clear some information
236 * from the build that is (presumbably) only meaningful
237 * for the current code generation.
238 * This includes the create_leaf callback itself, so we make a copy
239 * of the build first.
241 static __isl_give isl_ast_graft_list
*call_create_leaf(
242 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
245 isl_ast_graft
*graft
;
246 isl_ast_build
*user_build
;
248 user_build
= isl_ast_build_copy(build
);
249 user_build
= isl_ast_build_set_executed(user_build
, executed
);
250 user_build
= isl_ast_build_clear_local_info(user_build
);
254 node
= build
->create_leaf(user_build
, build
->create_leaf_user
);
255 graft
= isl_ast_graft_alloc(node
, build
);
256 isl_ast_build_free(build
);
257 return isl_ast_graft_list_from_ast_graft(graft
);
260 /* Generate an AST after having handled the complete schedule
261 * of this call to the code generator.
263 * If the user has specified a create_leaf callback, control
264 * is passed to the user in call_create_leaf.
266 * Otherwise, we generate one or more calls for each individual
267 * domain in generate_domain.
269 static __isl_give isl_ast_graft_list
*generate_inner_level(
270 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
273 struct isl_generate_domain_data data
= { build
};
275 if (!build
|| !executed
)
278 if (build
->create_leaf
)
279 return call_create_leaf(executed
, build
);
281 ctx
= isl_union_map_get_ctx(executed
);
282 data
.list
= isl_ast_graft_list_alloc(ctx
, 0);
283 if (isl_union_map_foreach_map(executed
, &generate_domain
, &data
) < 0)
284 data
.list
= isl_ast_graft_list_free(data
.list
);
287 error
: data
.list
= NULL
;
288 isl_ast_build_free(build
);
289 isl_union_map_free(executed
);
293 /* Call the before_each_for callback, if requested by the user.
295 static __isl_give isl_ast_node
*before_each_for(__isl_take isl_ast_node
*node
,
296 __isl_keep isl_ast_build
*build
)
301 return isl_ast_node_free(node
);
302 if (!build
->before_each_for
)
304 id
= build
->before_each_for(build
, build
->before_each_for_user
);
305 node
= isl_ast_node_set_annotation(node
, id
);
309 /* Call the after_each_for callback, if requested by the user.
311 static __isl_give isl_ast_graft
*after_each_for(__isl_keep isl_ast_graft
*graft
,
312 __isl_keep isl_ast_build
*build
)
314 if (!graft
|| !build
)
315 return isl_ast_graft_free(graft
);
316 if (!build
->after_each_for
)
318 graft
->node
= build
->after_each_for(graft
->node
, build
,
319 build
->after_each_for_user
);
321 return isl_ast_graft_free(graft
);
325 /* Plug in all the know values of the current and outer dimensions
326 * in the domain of "executed". In principle, we only need to plug
327 * in the known value of the current dimension since the values of
328 * outer dimensions have been plugged in already.
329 * However, it turns out to be easier to just plug in all known values.
331 static __isl_give isl_union_map
*plug_in_values(
332 __isl_take isl_union_map
*executed
, __isl_keep isl_ast_build
*build
)
334 return isl_ast_build_substitute_values_union_map_domain(build
,
338 /* Check if the constraint "c" is a lower bound on dimension "pos",
339 * an upper bound, or independent of dimension "pos".
341 static int constraint_type(isl_constraint
*c
, int pos
)
343 if (isl_constraint_is_lower_bound(c
, isl_dim_set
, pos
))
345 if (isl_constraint_is_upper_bound(c
, isl_dim_set
, pos
))
350 /* Compare the types of the constraints "a" and "b",
351 * resulting in constraints that are independent of "depth"
352 * to be sorted before the lower bounds on "depth", which in
353 * turn are sorted before the upper bounds on "depth".
355 static int cmp_constraint(__isl_keep isl_constraint
*a
,
356 __isl_keep isl_constraint
*b
, void *user
)
359 int t1
= constraint_type(a
, *depth
);
360 int t2
= constraint_type(b
, *depth
);
365 /* Extract a lower bound on dimension "pos" from constraint "c".
367 * If the constraint is of the form
371 * then we essentially return
373 * l = ceil(-f(...)/a)
375 * However, if the current dimension is strided, then we need to make
376 * sure that the lower bound we construct is of the form
380 * with f the offset and s the stride.
381 * We therefore compute
383 * f + s * ceil((l - f)/s)
385 static __isl_give isl_aff
*lower_bound(__isl_keep isl_constraint
*c
,
386 int pos
, __isl_keep isl_ast_build
*build
)
390 aff
= isl_constraint_get_bound(c
, isl_dim_set
, pos
);
391 aff
= isl_aff_ceil(aff
);
393 if (isl_ast_build_has_stride(build
, pos
)) {
397 offset
= isl_ast_build_get_offset(build
, pos
);
398 stride
= isl_ast_build_get_stride(build
, pos
);
400 aff
= isl_aff_sub(aff
, isl_aff_copy(offset
));
401 aff
= isl_aff_scale_down_val(aff
, isl_val_copy(stride
));
402 aff
= isl_aff_ceil(aff
);
403 aff
= isl_aff_scale_val(aff
, stride
);
404 aff
= isl_aff_add(aff
, offset
);
407 aff
= isl_ast_build_compute_gist_aff(build
, aff
);
412 /* Return the exact lower bound (or upper bound if "upper" is set)
413 * of "domain" as a piecewise affine expression.
415 * If we are computing a lower bound (of a strided dimension), then
416 * we need to make sure it is of the form
420 * where f is the offset and s is the stride.
421 * We therefore need to include the stride constraint before computing
424 static __isl_give isl_pw_aff
*exact_bound(__isl_keep isl_set
*domain
,
425 __isl_keep isl_ast_build
*build
, int upper
)
430 isl_pw_multi_aff
*pma
;
432 domain
= isl_set_copy(domain
);
434 stride
= isl_ast_build_get_stride_constraint(build
);
435 domain
= isl_set_intersect(domain
, stride
);
437 it_map
= isl_ast_build_map_to_iterator(build
, domain
);
439 pma
= isl_map_lexmax_pw_multi_aff(it_map
);
441 pma
= isl_map_lexmin_pw_multi_aff(it_map
);
442 pa
= isl_pw_multi_aff_get_pw_aff(pma
, 0);
443 isl_pw_multi_aff_free(pma
);
444 pa
= isl_ast_build_compute_gist_pw_aff(build
, pa
);
445 pa
= isl_pw_aff_coalesce(pa
);
450 /* Extract a lower bound on dimension "pos" from each constraint
451 * in "constraints" and return the list of lower bounds.
452 * If "constraints" has zero elements, then we extract a lower bound
453 * from "domain" instead.
455 static __isl_give isl_pw_aff_list
*lower_bounds(
456 __isl_keep isl_constraint_list
*constraints
, int pos
,
457 __isl_keep isl_set
*domain
, __isl_keep isl_ast_build
*build
)
460 isl_pw_aff_list
*list
;
466 n
= isl_constraint_list_n_constraint(constraints
);
469 pa
= exact_bound(domain
, build
, 0);
470 return isl_pw_aff_list_from_pw_aff(pa
);
473 ctx
= isl_ast_build_get_ctx(build
);
474 list
= isl_pw_aff_list_alloc(ctx
,n
);
476 for (i
= 0; i
< n
; ++i
) {
480 c
= isl_constraint_list_get_constraint(constraints
, i
);
481 aff
= lower_bound(c
, pos
, build
);
482 isl_constraint_free(c
);
483 list
= isl_pw_aff_list_add(list
, isl_pw_aff_from_aff(aff
));
489 /* Extract an upper bound on dimension "pos" from each constraint
490 * in "constraints" and return the list of upper bounds.
491 * If "constraints" has zero elements, then we extract an upper bound
492 * from "domain" instead.
494 static __isl_give isl_pw_aff_list
*upper_bounds(
495 __isl_keep isl_constraint_list
*constraints
, int pos
,
496 __isl_keep isl_set
*domain
, __isl_keep isl_ast_build
*build
)
499 isl_pw_aff_list
*list
;
502 n
= isl_constraint_list_n_constraint(constraints
);
505 pa
= exact_bound(domain
, build
, 1);
506 return isl_pw_aff_list_from_pw_aff(pa
);
509 ctx
= isl_ast_build_get_ctx(build
);
510 list
= isl_pw_aff_list_alloc(ctx
,n
);
512 for (i
= 0; i
< n
; ++i
) {
516 c
= isl_constraint_list_get_constraint(constraints
, i
);
517 aff
= isl_constraint_get_bound(c
, isl_dim_set
, pos
);
518 isl_constraint_free(c
);
519 aff
= isl_aff_floor(aff
);
520 list
= isl_pw_aff_list_add(list
, isl_pw_aff_from_aff(aff
));
526 /* Callback for sorting the isl_pw_aff_list passed to reduce_list.
528 static int reduce_list_cmp(__isl_keep isl_pw_aff
*a
, __isl_keep isl_pw_aff
*b
,
531 return isl_pw_aff_plain_cmp(a
, b
);
534 /* Return an isl_ast_expr that performs the reduction of type "type"
535 * on AST expressions corresponding to the elements in "list".
537 * The list is assumed to contain at least one element.
538 * If the list contains exactly one element, then the returned isl_ast_expr
539 * simply computes that affine expression.
540 * If the list contains more than one element, then we sort it
541 * using a fairly abitrary but hopefully reasonably stable order.
543 static __isl_give isl_ast_expr
*reduce_list(enum isl_ast_op_type type
,
544 __isl_keep isl_pw_aff_list
*list
, __isl_keep isl_ast_build
*build
)
553 n
= isl_pw_aff_list_n_pw_aff(list
);
556 return isl_ast_build_expr_from_pw_aff_internal(build
,
557 isl_pw_aff_list_get_pw_aff(list
, 0));
559 ctx
= isl_pw_aff_list_get_ctx(list
);
560 expr
= isl_ast_expr_alloc_op(ctx
, type
, n
);
564 list
= isl_pw_aff_list_copy(list
);
565 list
= isl_pw_aff_list_sort(list
, &reduce_list_cmp
, NULL
);
567 return isl_ast_expr_free(expr
);
569 for (i
= 0; i
< n
; ++i
) {
570 isl_ast_expr
*expr_i
;
572 expr_i
= isl_ast_build_expr_from_pw_aff_internal(build
,
573 isl_pw_aff_list_get_pw_aff(list
, i
));
576 expr
->u
.op
.args
[i
] = expr_i
;
579 isl_pw_aff_list_free(list
);
582 isl_pw_aff_list_free(list
);
583 isl_ast_expr_free(expr
);
587 /* Add a guard to "graft" based on "bound" in the case of a degenerate
588 * level (including the special case of an eliminated level).
590 * We eliminate the current dimension, simplify the result in the current
591 * build and add the result as guards to the graft.
593 * Note that we cannot simply drop the constraints on the current dimension
594 * even in the eliminated case, because the single affine expression may
595 * not be explicitly available in "bounds". Moreover, the single affine
596 * expression may only be defined on a subset of the build domain,
597 * so we do in some cases need to insert a guard even in the eliminated case.
599 static __isl_give isl_ast_graft
*add_degenerate_guard(
600 __isl_take isl_ast_graft
*graft
, __isl_keep isl_basic_set
*bounds
,
601 __isl_keep isl_ast_build
*build
)
606 depth
= isl_ast_build_get_depth(build
);
608 dom
= isl_set_from_basic_set(isl_basic_set_copy(bounds
));
609 if (isl_ast_build_has_stride(build
, depth
)) {
612 stride
= isl_ast_build_get_stride_constraint(build
);
613 dom
= isl_set_intersect(dom
, stride
);
615 dom
= isl_set_eliminate(dom
, isl_dim_set
, depth
, 1);
616 dom
= isl_ast_build_compute_gist(build
, dom
);
618 graft
= isl_ast_graft_add_guard(graft
, dom
, build
);
623 /* Update "graft" based on "bounds" for the eliminated case.
625 * In the eliminated case, no for node is created, so we only need
626 * to check if "bounds" imply any guards that need to be inserted.
628 static __isl_give isl_ast_graft
*refine_eliminated(
629 __isl_take isl_ast_graft
*graft
, __isl_keep isl_basic_set
*bounds
,
630 __isl_keep isl_ast_build
*build
)
632 return add_degenerate_guard(graft
, bounds
, build
);
635 /* Update "graft" based on "bounds" and "sub_build" for the degenerate case.
637 * "build" is the build in which graft->node was created
638 * "sub_build" contains information about the current level itself,
639 * including the single value attained.
641 * We first set the initialization part of the for loop to the single
642 * value attained by the current dimension.
643 * The increment and condition are not strictly needed as the are known
644 * to be "1" and "iterator <= value" respectively.
645 * Then we set the size of the iterator and
646 * check if "bounds" imply any guards that need to be inserted.
648 static __isl_give isl_ast_graft
*refine_degenerate(
649 __isl_take isl_ast_graft
*graft
, __isl_keep isl_basic_set
*bounds
,
650 __isl_keep isl_ast_build
*build
,
651 __isl_keep isl_ast_build
*sub_build
)
655 if (!graft
|| !sub_build
)
656 return isl_ast_graft_free(graft
);
658 value
= isl_pw_aff_copy(sub_build
->value
);
660 graft
->node
->u
.f
.init
= isl_ast_build_expr_from_pw_aff_internal(build
,
662 if (!graft
->node
->u
.f
.init
)
663 return isl_ast_graft_free(graft
);
665 graft
= add_degenerate_guard(graft
, bounds
, build
);
670 /* Return the intersection of constraints in "list" as a set.
672 static __isl_give isl_set
*intersect_constraints(
673 __isl_keep isl_constraint_list
*list
)
678 n
= isl_constraint_list_n_constraint(list
);
680 isl_die(isl_constraint_list_get_ctx(list
), isl_error_internal
,
681 "expecting at least one constraint", return NULL
);
683 bset
= isl_basic_set_from_constraint(
684 isl_constraint_list_get_constraint(list
, 0));
685 for (i
= 1; i
< n
; ++i
) {
686 isl_basic_set
*bset_i
;
688 bset_i
= isl_basic_set_from_constraint(
689 isl_constraint_list_get_constraint(list
, i
));
690 bset
= isl_basic_set_intersect(bset
, bset_i
);
693 return isl_set_from_basic_set(bset
);
696 /* Compute the constraints on the outer dimensions enforced by
697 * graft->node and add those constraints to graft->enforced,
698 * in case the upper bound is expressed as a set "upper".
700 * In particular, if l(...) is a lower bound in "lower", and
702 * -a i + f(...) >= 0 or a i <= f(...)
704 * is an upper bound ocnstraint on the current dimension i,
705 * then the for loop enforces the constraint
707 * -a l(...) + f(...) >= 0 or a l(...) <= f(...)
709 * We therefore simply take each lower bound in turn, plug it into
710 * the upper bounds and compute the intersection over all lower bounds.
712 * If a lower bound is a rational expression, then
713 * isl_basic_set_preimage_multi_aff will force this rational
714 * expression to have only integer values. However, the loop
715 * itself does not enforce this integrality constraint. We therefore
716 * use the ceil of the lower bounds instead of the lower bounds themselves.
717 * Other constraints will make sure that the for loop is only executed
718 * when each of the lower bounds attains an integral value.
719 * In particular, potentially rational values only occur in
720 * lower_bound if the offset is a (seemingly) rational expression,
721 * but then outer conditions will make sure that this rational expression
722 * only attains integer values.
724 static __isl_give isl_ast_graft
*set_enforced_from_set(
725 __isl_take isl_ast_graft
*graft
,
726 __isl_keep isl_pw_aff_list
*lower
, int pos
, __isl_keep isl_set
*upper
)
729 isl_basic_set
*enforced
;
730 isl_pw_multi_aff
*pma
;
733 if (!graft
|| !lower
)
734 return isl_ast_graft_free(graft
);
736 space
= isl_set_get_space(upper
);
737 enforced
= isl_basic_set_universe(isl_space_copy(space
));
739 space
= isl_space_map_from_set(space
);
740 pma
= isl_pw_multi_aff_identity(space
);
742 n
= isl_pw_aff_list_n_pw_aff(lower
);
743 for (i
= 0; i
< n
; ++i
) {
747 isl_pw_multi_aff
*pma_i
;
749 pa
= isl_pw_aff_list_get_pw_aff(lower
, i
);
750 pa
= isl_pw_aff_ceil(pa
);
751 pma_i
= isl_pw_multi_aff_copy(pma
);
752 pma_i
= isl_pw_multi_aff_set_pw_aff(pma_i
, pos
, pa
);
753 enforced_i
= isl_set_copy(upper
);
754 enforced_i
= isl_set_preimage_pw_multi_aff(enforced_i
, pma_i
);
755 hull
= isl_set_simple_hull(enforced_i
);
756 enforced
= isl_basic_set_intersect(enforced
, hull
);
759 isl_pw_multi_aff_free(pma
);
761 graft
= isl_ast_graft_enforce(graft
, enforced
);
766 /* Compute the constraints on the outer dimensions enforced by
767 * graft->node and add those constraints to graft->enforced,
768 * in case the upper bound is expressed as
769 * a list of affine expressions "upper".
771 * The enforced condition is that each lower bound expression is less
772 * than or equal to each upper bound expression.
774 static __isl_give isl_ast_graft
*set_enforced_from_list(
775 __isl_take isl_ast_graft
*graft
,
776 __isl_keep isl_pw_aff_list
*lower
, __isl_keep isl_pw_aff_list
*upper
)
779 isl_basic_set
*enforced
;
781 lower
= isl_pw_aff_list_copy(lower
);
782 upper
= isl_pw_aff_list_copy(upper
);
783 cond
= isl_pw_aff_list_le_set(lower
, upper
);
784 enforced
= isl_set_simple_hull(cond
);
785 graft
= isl_ast_graft_enforce(graft
, enforced
);
790 /* Does "aff" have a negative constant term?
792 static int aff_constant_is_negative(__isl_take isl_set
*set
,
793 __isl_take isl_aff
*aff
, void *user
)
798 v
= isl_aff_get_constant_val(aff
);
799 *neg
= isl_val_is_neg(v
);
804 return *neg
? 0 : -1;
807 /* Does "pa" have a negative constant term over its entire domain?
809 static int pw_aff_constant_is_negative(__isl_take isl_pw_aff
*pa
, void *user
)
814 r
= isl_pw_aff_foreach_piece(pa
, &aff_constant_is_negative
, user
);
817 return *neg
? 0 : -1;
820 /* Does each element in "list" have a negative constant term?
822 * The callback terminates the iteration as soon an element has been
823 * found that does not have a negative constant term.
825 static int list_constant_is_negative(__isl_keep isl_pw_aff_list
*list
)
829 if (isl_pw_aff_list_foreach(list
,
830 &pw_aff_constant_is_negative
, &neg
) < 0 && neg
)
836 /* Add 1 to each of the elements in "list", where each of these elements
837 * is defined over the internal schedule space of "build".
839 static __isl_give isl_pw_aff_list
*list_add_one(
840 __isl_take isl_pw_aff_list
*list
, __isl_keep isl_ast_build
*build
)
847 space
= isl_ast_build_get_space(build
, 1);
848 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(space
));
849 aff
= isl_aff_add_constant_si(aff
, 1);
850 one
= isl_pw_aff_from_aff(aff
);
852 n
= isl_pw_aff_list_n_pw_aff(list
);
853 for (i
= 0; i
< n
; ++i
) {
855 pa
= isl_pw_aff_list_get_pw_aff(list
, i
);
856 pa
= isl_pw_aff_add(pa
, isl_pw_aff_copy(one
));
857 list
= isl_pw_aff_list_set_pw_aff(list
, i
, pa
);
860 isl_pw_aff_free(one
);
865 /* Set the condition part of the for node graft->node in case
866 * the upper bound is represented as a list of piecewise affine expressions.
868 * In particular, set the condition to
870 * iterator <= min(list of upper bounds)
872 * If each of the upper bounds has a negative constant term, then
873 * set the condition to
875 * iterator < min(list of (upper bound + 1)s)
878 static __isl_give isl_ast_graft
*set_for_cond_from_list(
879 __isl_take isl_ast_graft
*graft
, __isl_keep isl_pw_aff_list
*list
,
880 __isl_keep isl_ast_build
*build
)
883 isl_ast_expr
*bound
, *iterator
, *cond
;
884 enum isl_ast_op_type type
= isl_ast_op_le
;
887 return isl_ast_graft_free(graft
);
889 neg
= list_constant_is_negative(list
);
891 return isl_ast_graft_free(graft
);
892 list
= isl_pw_aff_list_copy(list
);
894 list
= list_add_one(list
, build
);
895 type
= isl_ast_op_lt
;
898 bound
= reduce_list(isl_ast_op_min
, list
, build
);
899 iterator
= isl_ast_expr_copy(graft
->node
->u
.f
.iterator
);
900 cond
= isl_ast_expr_alloc_binary(type
, iterator
, bound
);
901 graft
->node
->u
.f
.cond
= cond
;
903 isl_pw_aff_list_free(list
);
904 if (!graft
->node
->u
.f
.cond
)
905 return isl_ast_graft_free(graft
);
909 /* Set the condition part of the for node graft->node in case
910 * the upper bound is represented as a set.
912 static __isl_give isl_ast_graft
*set_for_cond_from_set(
913 __isl_take isl_ast_graft
*graft
, __isl_keep isl_set
*set
,
914 __isl_keep isl_ast_build
*build
)
921 cond
= isl_ast_build_expr_from_set(build
, isl_set_copy(set
));
922 graft
->node
->u
.f
.cond
= cond
;
923 if (!graft
->node
->u
.f
.cond
)
924 return isl_ast_graft_free(graft
);
928 /* Construct an isl_ast_expr for the increment (i.e., stride) of
929 * the current dimension.
931 static __isl_give isl_ast_expr
*for_inc(__isl_keep isl_ast_build
*build
)
939 ctx
= isl_ast_build_get_ctx(build
);
940 depth
= isl_ast_build_get_depth(build
);
942 if (!isl_ast_build_has_stride(build
, depth
))
943 return isl_ast_expr_alloc_int_si(ctx
, 1);
945 v
= isl_ast_build_get_stride(build
, depth
);
946 return isl_ast_expr_from_val(v
);
949 /* Should we express the loop condition as
951 * iterator <= min(list of upper bounds)
953 * or as a conjunction of constraints?
955 * The first is constructed from a list of upper bounds.
956 * The second is constructed from a set.
958 * If there are no upper bounds in "constraints", then this could mean
959 * that "domain" simply doesn't have an upper bound or that we didn't
960 * pick any upper bound. In the first case, we want to generate the
961 * loop condition as a(n empty) conjunction of constraints
962 * In the second case, we will compute
963 * a single upper bound from "domain" and so we use the list form.
965 * If there are upper bounds in "constraints",
966 * then we use the list form iff the atomic_upper_bound option is set.
968 static int use_upper_bound_list(isl_ctx
*ctx
, int n_upper
,
969 __isl_keep isl_set
*domain
, int depth
)
972 return isl_options_get_ast_build_atomic_upper_bound(ctx
);
974 return isl_set_dim_has_upper_bound(domain
, isl_dim_set
, depth
);
977 /* Fill in the expressions of the for node in graft->node.
980 * - set the initialization part of the loop to the maximum of the lower bounds
981 * - set the size of the iterator based on the values attained by the iterator
982 * - extract the increment from the stride of the current dimension
983 * - construct the for condition either based on a list of upper bounds
984 * or on a set of upper bound constraints.
986 static __isl_give isl_ast_graft
*set_for_node_expressions(
987 __isl_take isl_ast_graft
*graft
, __isl_keep isl_pw_aff_list
*lower
,
988 int use_list
, __isl_keep isl_pw_aff_list
*upper_list
,
989 __isl_keep isl_set
*upper_set
, __isl_keep isl_ast_build
*build
)
996 build
= isl_ast_build_copy(build
);
997 build
= isl_ast_build_set_enforced(build
,
998 isl_ast_graft_get_enforced(graft
));
1001 node
->u
.f
.init
= reduce_list(isl_ast_op_max
, lower
, build
);
1002 node
->u
.f
.inc
= for_inc(build
);
1005 graft
= set_for_cond_from_list(graft
, upper_list
, build
);
1007 graft
= set_for_cond_from_set(graft
, upper_set
, build
);
1009 isl_ast_build_free(build
);
1011 if (!node
->u
.f
.iterator
|| !node
->u
.f
.init
||
1012 !node
->u
.f
.cond
|| !node
->u
.f
.inc
)
1013 return isl_ast_graft_free(graft
);
1018 /* Update "graft" based on "bounds" and "domain" for the generic,
1019 * non-degenerate, case.
1021 * "c_lower" and "c_upper" contain the lower and upper bounds
1022 * that the loop node should express.
1023 * "domain" is the subset of the intersection of the constraints
1024 * for which some code is executed.
1026 * There may be zero lower bounds or zero upper bounds in "constraints"
1027 * in case the list of constraints was created
1028 * based on the atomic option or based on separation with explicit bounds.
1029 * In that case, we use "domain" to derive lower and/or upper bounds.
1031 * We first compute a list of one or more lower bounds.
1033 * Then we decide if we want to express the condition as
1035 * iterator <= min(list of upper bounds)
1037 * or as a conjunction of constraints.
1039 * The set of enforced constraints is then computed either based on
1040 * a list of upper bounds or on a set of upper bound constraints.
1041 * We do not compute any enforced constraints if we were forced
1042 * to compute a lower or upper bound using exact_bound. The domains
1043 * of the resulting expressions may imply some bounds on outer dimensions
1044 * that we do not want to appear in the enforced constraints since
1045 * they are not actually enforced by the corresponding code.
1047 * Finally, we fill in the expressions of the for node.
1049 static __isl_give isl_ast_graft
*refine_generic_bounds(
1050 __isl_take isl_ast_graft
*graft
,
1051 __isl_take isl_constraint_list
*c_lower
,
1052 __isl_take isl_constraint_list
*c_upper
,
1053 __isl_keep isl_set
*domain
, __isl_keep isl_ast_build
*build
)
1057 isl_pw_aff_list
*lower
;
1059 isl_set
*upper_set
= NULL
;
1060 isl_pw_aff_list
*upper_list
= NULL
;
1061 int n_lower
, n_upper
;
1063 if (!graft
|| !c_lower
|| !c_upper
|| !build
)
1066 depth
= isl_ast_build_get_depth(build
);
1067 ctx
= isl_ast_graft_get_ctx(graft
);
1069 n_lower
= isl_constraint_list_n_constraint(c_lower
);
1070 n_upper
= isl_constraint_list_n_constraint(c_upper
);
1072 use_list
= use_upper_bound_list(ctx
, n_upper
, domain
, depth
);
1074 lower
= lower_bounds(c_lower
, depth
, domain
, build
);
1077 upper_list
= upper_bounds(c_upper
, depth
, domain
, build
);
1078 else if (n_upper
> 0)
1079 upper_set
= intersect_constraints(c_upper
);
1081 upper_set
= isl_set_universe(isl_set_get_space(domain
));
1083 if (n_lower
== 0 || n_upper
== 0)
1086 graft
= set_enforced_from_list(graft
, lower
, upper_list
);
1088 graft
= set_enforced_from_set(graft
, lower
, depth
, upper_set
);
1090 graft
= set_for_node_expressions(graft
, lower
, use_list
, upper_list
,
1093 isl_pw_aff_list_free(lower
);
1094 isl_pw_aff_list_free(upper_list
);
1095 isl_set_free(upper_set
);
1096 isl_constraint_list_free(c_lower
);
1097 isl_constraint_list_free(c_upper
);
1101 isl_constraint_list_free(c_lower
);
1102 isl_constraint_list_free(c_upper
);
1103 return isl_ast_graft_free(graft
);
1106 /* Internal data structure used inside count_constraints to keep
1107 * track of the number of constraints that are independent of dimension "pos",
1108 * the lower bounds in "pos" and the upper bounds in "pos".
1110 struct isl_ast_count_constraints_data
{
1118 /* Increment data->n_indep, data->lower or data->upper depending
1119 * on whether "c" is independenct of dimensions data->pos,
1120 * a lower bound or an upper bound.
1122 static int count_constraints(__isl_take isl_constraint
*c
, void *user
)
1124 struct isl_ast_count_constraints_data
*data
= user
;
1126 if (isl_constraint_is_lower_bound(c
, isl_dim_set
, data
->pos
))
1128 else if (isl_constraint_is_upper_bound(c
, isl_dim_set
, data
->pos
))
1133 isl_constraint_free(c
);
1138 /* Update "graft" based on "bounds" and "domain" for the generic,
1139 * non-degenerate, case.
1141 * "list" respresent the list of bounds that need to be encoded by
1142 * the for loop (or a guard around the for loop).
1143 * "domain" is the subset of the intersection of the constraints
1144 * for which some code is executed.
1145 * "build" is the build in which graft->node was created.
1147 * We separate lower bounds, upper bounds and constraints that
1148 * are independent of the loop iterator.
1150 * The actual for loop bounds are generated in refine_generic_bounds.
1151 * If there are any constraints that are independent of the loop iterator,
1152 * we need to put a guard around the for loop (which may get hoisted up
1153 * to higher levels) and we call refine_generic_bounds in a build
1154 * where this guard is enforced.
1156 static __isl_give isl_ast_graft
*refine_generic_split(
1157 __isl_take isl_ast_graft
*graft
, __isl_take isl_constraint_list
*list
,
1158 __isl_keep isl_set
*domain
, __isl_keep isl_ast_build
*build
)
1160 isl_ast_build
*for_build
;
1162 struct isl_ast_count_constraints_data data
;
1163 isl_constraint_list
*lower
;
1164 isl_constraint_list
*upper
;
1167 return isl_ast_graft_free(graft
);
1169 data
.pos
= isl_ast_build_get_depth(build
);
1171 list
= isl_constraint_list_sort(list
, &cmp_constraint
, &data
.pos
);
1173 return isl_ast_graft_free(graft
);
1175 data
.n_indep
= data
.n_lower
= data
.n_upper
= 0;
1176 if (isl_constraint_list_foreach(list
, &count_constraints
, &data
) < 0) {
1177 isl_constraint_list_free(list
);
1178 return isl_ast_graft_free(graft
);
1181 lower
= isl_constraint_list_copy(list
);
1182 lower
= isl_constraint_list_drop(lower
, 0, data
.n_indep
);
1183 upper
= isl_constraint_list_copy(lower
);
1184 lower
= isl_constraint_list_drop(lower
, data
.n_lower
, data
.n_upper
);
1185 upper
= isl_constraint_list_drop(upper
, 0, data
.n_lower
);
1187 if (data
.n_indep
== 0) {
1188 isl_constraint_list_free(list
);
1189 return refine_generic_bounds(graft
, lower
, upper
,
1193 list
= isl_constraint_list_drop(list
, data
.n_indep
,
1194 data
.n_lower
+ data
.n_upper
);
1195 guard
= intersect_constraints(list
);
1196 isl_constraint_list_free(list
);
1198 for_build
= isl_ast_build_copy(build
);
1199 for_build
= isl_ast_build_restrict_pending(for_build
,
1200 isl_set_copy(guard
));
1201 graft
= refine_generic_bounds(graft
, lower
, upper
, domain
, for_build
);
1202 isl_ast_build_free(for_build
);
1204 graft
= isl_ast_graft_add_guard(graft
, guard
, build
);
1209 /* Add the guard implied by the current stride constraint (if any),
1210 * but not (necessarily) enforced by the generated AST to "graft".
1212 static __isl_give isl_ast_graft
*add_stride_guard(
1213 __isl_take isl_ast_graft
*graft
, __isl_keep isl_ast_build
*build
)
1218 depth
= isl_ast_build_get_depth(build
);
1219 if (!isl_ast_build_has_stride(build
, depth
))
1222 dom
= isl_ast_build_get_stride_constraint(build
);
1223 dom
= isl_set_eliminate(dom
, isl_dim_set
, depth
, 1);
1224 dom
= isl_ast_build_compute_gist(build
, dom
);
1226 graft
= isl_ast_graft_add_guard(graft
, dom
, build
);
1231 /* Update "graft" based on "bounds" and "domain" for the generic,
1232 * non-degenerate, case.
1234 * "bounds" respresent the bounds that need to be encoded by
1235 * the for loop (or a guard around the for loop).
1236 * "domain" is the subset of "bounds" for which some code is executed.
1237 * "build" is the build in which graft->node was created.
1239 * We break up "bounds" into a list of constraints and continue with
1240 * refine_generic_split.
1242 static __isl_give isl_ast_graft
*refine_generic(
1243 __isl_take isl_ast_graft
*graft
,
1244 __isl_keep isl_basic_set
*bounds
, __isl_keep isl_set
*domain
,
1245 __isl_keep isl_ast_build
*build
)
1247 isl_constraint_list
*list
;
1249 if (!build
|| !graft
)
1250 return isl_ast_graft_free(graft
);
1252 bounds
= isl_basic_set_copy(bounds
);
1253 bounds
= isl_ast_build_compute_gist_basic_set(build
, bounds
);
1254 list
= isl_constraint_list_from_basic_set(bounds
);
1256 graft
= refine_generic_split(graft
, list
, domain
, build
);
1257 graft
= add_stride_guard(graft
, build
);
1262 /* Create a for node for the current level.
1264 * Mark the for node degenerate if "degenerate" is set.
1266 static __isl_give isl_ast_node
*create_for(__isl_keep isl_ast_build
*build
,
1276 depth
= isl_ast_build_get_depth(build
);
1277 id
= isl_ast_build_get_iterator_id(build
, depth
);
1278 node
= isl_ast_node_alloc_for(id
);
1280 node
= isl_ast_node_for_mark_degenerate(node
);
1285 /* Create an AST node for the current dimension based on
1286 * the schedule domain "bounds" and return the node encapsulated
1287 * in an isl_ast_graft.
1289 * "executed" is the current inverse schedule, taking into account
1290 * the bounds in "bounds"
1291 * "domain" is the domain of "executed", with inner dimensions projected out.
1292 * It may be a strict subset of "bounds" in case "bounds" was created
1293 * based on the atomic option or based on separation with explicit bounds.
1295 * "domain" may satisfy additional equalities that result
1296 * from intersecting "executed" with "bounds" in add_node.
1297 * It may also satisfy some global constraints that were dropped out because
1298 * we performed separation with explicit bounds.
1299 * The very first step is then to copy these constraints to "bounds".
1301 * Since we may be calling before_each_for and after_each_for
1302 * callbacks, we record the current inverse schedule in the build.
1304 * We consider three builds,
1305 * "build" is the one in which the current level is created,
1306 * "body_build" is the build in which the next level is created,
1307 * "sub_build" is essentially the same as "body_build", except that
1308 * the depth has not been increased yet.
1310 * "build" already contains information (in strides and offsets)
1311 * about the strides at the current level, but this information is not
1312 * reflected in the build->domain.
1313 * We first add this information and the "bounds" to the sub_build->domain.
1314 * isl_ast_build_set_loop_bounds checks whether the current dimension attains
1315 * only a single value and whether this single value can be represented using
1316 * a single affine expression.
1317 * In the first case, the current level is considered "degenerate".
1318 * In the second, sub-case, the current level is considered "eliminated".
1319 * Eliminated level don't need to be reflected in the AST since we can
1320 * simply plug in the affine expression. For degenerate, but non-eliminated,
1321 * levels, we do introduce a for node, but mark is as degenerate so that
1322 * it can be printed as an assignment of the single value to the loop
1325 * If the current level is eliminated, we explicitly plug in the value
1326 * for the current level found by isl_ast_build_set_loop_bounds in the
1327 * inverse schedule. This ensures that if we are working on a slice
1328 * of the domain based on information available in the inverse schedule
1329 * and the build domain, that then this information is also reflected
1330 * in the inverse schedule. This operation also eliminates the current
1331 * dimension from the inverse schedule making sure no inner dimensions depend
1332 * on the current dimension. Otherwise, we create a for node, marking
1333 * it degenerate if appropriate. The initial for node is still incomplete
1334 * and will be completed in either refine_degenerate or refine_generic.
1336 * We then generate a sequence of grafts for the next level,
1337 * create a surrounding graft for the current level and insert
1338 * the for node we created (if the current level is not eliminated).
1340 * Finally, we set the bounds of the for loop and insert guards
1341 * (either in the AST or in the graft) in one of
1342 * refine_eliminated, refine_degenerate or refine_generic.
1344 static __isl_give isl_ast_graft
*create_node_scaled(
1345 __isl_take isl_union_map
*executed
,
1346 __isl_take isl_basic_set
*bounds
, __isl_take isl_set
*domain
,
1347 __isl_take isl_ast_build
*build
)
1350 int degenerate
, eliminated
;
1351 isl_basic_set
*hull
;
1352 isl_ast_node
*node
= NULL
;
1353 isl_ast_graft
*graft
;
1354 isl_ast_graft_list
*children
;
1355 isl_ast_build
*sub_build
;
1356 isl_ast_build
*body_build
;
1358 domain
= isl_ast_build_eliminate_divs(build
, domain
);
1359 domain
= isl_set_detect_equalities(domain
);
1360 hull
= isl_set_unshifted_simple_hull(isl_set_copy(domain
));
1361 bounds
= isl_basic_set_intersect(bounds
, hull
);
1362 build
= isl_ast_build_set_executed(build
, isl_union_map_copy(executed
));
1364 depth
= isl_ast_build_get_depth(build
);
1365 sub_build
= isl_ast_build_copy(build
);
1366 sub_build
= isl_ast_build_include_stride(sub_build
);
1367 sub_build
= isl_ast_build_set_loop_bounds(sub_build
,
1368 isl_basic_set_copy(bounds
));
1369 degenerate
= isl_ast_build_has_value(sub_build
);
1370 eliminated
= isl_ast_build_has_affine_value(sub_build
, depth
);
1371 if (degenerate
< 0 || eliminated
< 0)
1372 executed
= isl_union_map_free(executed
);
1374 executed
= plug_in_values(executed
, sub_build
);
1376 node
= create_for(build
, degenerate
);
1378 body_build
= isl_ast_build_copy(sub_build
);
1379 body_build
= isl_ast_build_increase_depth(body_build
);
1381 node
= before_each_for(node
, body_build
);
1382 children
= generate_next_level(executed
,
1383 isl_ast_build_copy(body_build
));
1385 graft
= isl_ast_graft_alloc_level(children
, build
, sub_build
);
1387 graft
= isl_ast_graft_insert_for(graft
, node
);
1389 graft
= refine_eliminated(graft
, bounds
, build
);
1390 else if (degenerate
)
1391 graft
= refine_degenerate(graft
, bounds
, build
, sub_build
);
1393 graft
= refine_generic(graft
, bounds
, domain
, build
);
1395 graft
= after_each_for(graft
, body_build
);
1397 isl_ast_build_free(body_build
);
1398 isl_ast_build_free(sub_build
);
1399 isl_ast_build_free(build
);
1400 isl_basic_set_free(bounds
);
1401 isl_set_free(domain
);
1406 /* Internal data structure for checking if all constraints involving
1407 * the input dimension "depth" are such that the other coefficients
1408 * are multiples of "m", reducing "m" if they are not.
1409 * If "m" is reduced all the way down to "1", then the check has failed
1410 * and we break out of the iteration.
1412 struct isl_check_scaled_data
{
1417 /* If constraint "c" involves the input dimension data->depth,
1418 * then make sure that all the other coefficients are multiples of data->m,
1419 * reducing data->m if needed.
1420 * Break out of the iteration if data->m has become equal to "1".
1422 static int constraint_check_scaled(__isl_take isl_constraint
*c
, void *user
)
1424 struct isl_check_scaled_data
*data
= user
;
1426 enum isl_dim_type t
[] = { isl_dim_param
, isl_dim_in
, isl_dim_out
,
1429 if (!isl_constraint_involves_dims(c
, isl_dim_in
, data
->depth
, 1)) {
1430 isl_constraint_free(c
);
1434 for (i
= 0; i
< 4; ++i
) {
1435 n
= isl_constraint_dim(c
, t
[i
]);
1436 for (j
= 0; j
< n
; ++j
) {
1439 if (t
[i
] == isl_dim_in
&& j
== data
->depth
)
1441 if (!isl_constraint_involves_dims(c
, t
[i
], j
, 1))
1443 d
= isl_constraint_get_coefficient_val(c
, t
[i
], j
);
1444 data
->m
= isl_val_gcd(data
->m
, d
);
1445 if (isl_val_is_one(data
->m
))
1452 isl_constraint_free(c
);
1454 return i
< 4 ? -1 : 0;
1457 /* For each constraint of "bmap" that involves the input dimension data->depth,
1458 * make sure that all the other coefficients are multiples of data->m,
1459 * reducing data->m if needed.
1460 * Break out of the iteration if data->m has become equal to "1".
1462 static int basic_map_check_scaled(__isl_take isl_basic_map
*bmap
, void *user
)
1466 r
= isl_basic_map_foreach_constraint(bmap
,
1467 &constraint_check_scaled
, user
);
1468 isl_basic_map_free(bmap
);
1473 /* For each constraint of "map" that involves the input dimension data->depth,
1474 * make sure that all the other coefficients are multiples of data->m,
1475 * reducing data->m if needed.
1476 * Break out of the iteration if data->m has become equal to "1".
1478 static int map_check_scaled(__isl_take isl_map
*map
, void *user
)
1482 r
= isl_map_foreach_basic_map(map
, &basic_map_check_scaled
, user
);
1488 /* Create an AST node for the current dimension based on
1489 * the schedule domain "bounds" and return the node encapsulated
1490 * in an isl_ast_graft.
1492 * "executed" is the current inverse schedule, taking into account
1493 * the bounds in "bounds"
1494 * "domain" is the domain of "executed", with inner dimensions projected out.
1497 * Before moving on to the actual AST node construction in create_node_scaled,
1498 * we first check if the current dimension is strided and if we can scale
1499 * down this stride. Note that we only do this if the ast_build_scale_strides
1502 * In particular, let the current dimension take on values
1506 * with a an integer. We check if we can find an integer m that (obviouly)
1507 * divides both f and s.
1509 * If so, we check if the current dimension only appears in constraints
1510 * where the coefficients of the other variables are multiples of m.
1511 * We perform this extra check to avoid the risk of introducing
1512 * divisions by scaling down the current dimension.
1514 * If so, we scale the current dimension down by a factor of m.
1515 * That is, we plug in
1519 * Note that in principle we could always scale down strided loops
1524 * but this may result in i' taking on larger values than the original i,
1525 * due to the shift by "f".
1526 * By constrast, the scaling in (1) can only reduce the (absolute) value "i".
1528 static __isl_give isl_ast_graft
*create_node(__isl_take isl_union_map
*executed
,
1529 __isl_take isl_basic_set
*bounds
, __isl_take isl_set
*domain
,
1530 __isl_take isl_ast_build
*build
)
1532 struct isl_check_scaled_data data
;
1537 ctx
= isl_ast_build_get_ctx(build
);
1538 if (!isl_options_get_ast_build_scale_strides(ctx
))
1539 return create_node_scaled(executed
, bounds
, domain
, build
);
1541 data
.depth
= isl_ast_build_get_depth(build
);
1542 if (!isl_ast_build_has_stride(build
, data
.depth
))
1543 return create_node_scaled(executed
, bounds
, domain
, build
);
1545 offset
= isl_ast_build_get_offset(build
, data
.depth
);
1546 data
.m
= isl_ast_build_get_stride(build
, data
.depth
);
1548 offset
= isl_aff_free(offset
);
1549 offset
= isl_aff_scale_down_val(offset
, isl_val_copy(data
.m
));
1550 d
= isl_aff_get_denominator_val(offset
);
1552 executed
= isl_union_map_free(executed
);
1554 if (executed
&& isl_val_is_divisible_by(data
.m
, d
))
1555 data
.m
= isl_val_div(data
.m
, d
);
1557 data
.m
= isl_val_set_si(data
.m
, 1);
1561 if (!isl_val_is_one(data
.m
)) {
1562 if (isl_union_map_foreach_map(executed
, &map_check_scaled
,
1564 !isl_val_is_one(data
.m
))
1565 executed
= isl_union_map_free(executed
);
1568 if (!isl_val_is_one(data
.m
)) {
1573 isl_union_map
*umap
;
1575 space
= isl_ast_build_get_space(build
, 1);
1576 space
= isl_space_map_from_set(space
);
1577 ma
= isl_multi_aff_identity(space
);
1578 aff
= isl_multi_aff_get_aff(ma
, data
.depth
);
1579 aff
= isl_aff_scale_val(aff
, isl_val_copy(data
.m
));
1580 ma
= isl_multi_aff_set_aff(ma
, data
.depth
, aff
);
1582 bounds
= isl_basic_set_preimage_multi_aff(bounds
,
1583 isl_multi_aff_copy(ma
));
1584 domain
= isl_set_preimage_multi_aff(domain
,
1585 isl_multi_aff_copy(ma
));
1586 map
= isl_map_reverse(isl_map_from_multi_aff(ma
));
1587 umap
= isl_union_map_from_map(map
);
1588 executed
= isl_union_map_apply_domain(executed
,
1589 isl_union_map_copy(umap
));
1590 build
= isl_ast_build_scale_down(build
, isl_val_copy(data
.m
),
1593 isl_aff_free(offset
);
1594 isl_val_free(data
.m
);
1596 return create_node_scaled(executed
, bounds
, domain
, build
);
1599 /* Add the basic set to the list that "user" points to.
1601 static int collect_basic_set(__isl_take isl_basic_set
*bset
, void *user
)
1603 isl_basic_set_list
**list
= user
;
1605 *list
= isl_basic_set_list_add(*list
, bset
);
1610 /* Extract the basic sets of "set" and collect them in an isl_basic_set_list.
1612 static __isl_give isl_basic_set_list
*isl_basic_set_list_from_set(
1613 __isl_take isl_set
*set
)
1617 isl_basic_set_list
*list
;
1622 ctx
= isl_set_get_ctx(set
);
1624 n
= isl_set_n_basic_set(set
);
1625 list
= isl_basic_set_list_alloc(ctx
, n
);
1626 if (isl_set_foreach_basic_set(set
, &collect_basic_set
, &list
) < 0)
1627 list
= isl_basic_set_list_free(list
);
1633 /* Generate code for the schedule domain "bounds"
1634 * and add the result to "list".
1636 * We mainly detect strides and additional equalities here
1637 * and then pass over control to create_node.
1639 * "bounds" reflects the bounds on the current dimension and possibly
1640 * some extra conditions on outer dimensions.
1641 * It does not, however, include any divs involving the current dimension,
1642 * so it does not capture any stride constraints.
1643 * We therefore need to compute that part of the schedule domain that
1644 * intersects with "bounds" and derive the strides from the result.
1646 static __isl_give isl_ast_graft_list
*add_node(
1647 __isl_take isl_ast_graft_list
*list
, __isl_take isl_union_map
*executed
,
1648 __isl_take isl_basic_set
*bounds
, __isl_take isl_ast_build
*build
)
1650 isl_ast_graft
*graft
;
1651 isl_set
*domain
= NULL
;
1652 isl_union_set
*uset
;
1655 uset
= isl_union_set_from_basic_set(isl_basic_set_copy(bounds
));
1656 executed
= isl_union_map_intersect_domain(executed
, uset
);
1657 empty
= isl_union_map_is_empty(executed
);
1663 uset
= isl_union_map_domain(isl_union_map_copy(executed
));
1664 domain
= isl_set_from_union_set(uset
);
1665 domain
= isl_ast_build_compute_gist(build
, domain
);
1666 empty
= isl_set_is_empty(domain
);
1672 domain
= isl_ast_build_eliminate_inner(build
, domain
);
1673 build
= isl_ast_build_detect_strides(build
, isl_set_copy(domain
));
1675 graft
= create_node(executed
, bounds
, domain
,
1676 isl_ast_build_copy(build
));
1677 list
= isl_ast_graft_list_add(list
, graft
);
1678 isl_ast_build_free(build
);
1681 list
= isl_ast_graft_list_free(list
);
1683 isl_set_free(domain
);
1684 isl_basic_set_free(bounds
);
1685 isl_union_map_free(executed
);
1686 isl_ast_build_free(build
);
1690 /* Does any element of i follow or coincide with any element of j
1691 * at the current depth for equal values of the outer dimensions?
1693 static int domain_follows_at_depth(__isl_keep isl_basic_set
*i
,
1694 __isl_keep isl_basic_set
*j
, void *user
)
1696 int depth
= *(int *) user
;
1697 isl_basic_map
*test
;
1701 test
= isl_basic_map_from_domain_and_range(isl_basic_set_copy(i
),
1702 isl_basic_set_copy(j
));
1703 for (l
= 0; l
< depth
; ++l
)
1704 test
= isl_basic_map_equate(test
, isl_dim_in
, l
,
1706 test
= isl_basic_map_order_ge(test
, isl_dim_in
, depth
,
1707 isl_dim_out
, depth
);
1708 empty
= isl_basic_map_is_empty(test
);
1709 isl_basic_map_free(test
);
1711 return empty
< 0 ? -1 : !empty
;
1714 /* Split up each element of "list" into a part that is related to "bset"
1715 * according to "gt" and a part that is not.
1716 * Return a list that consist of "bset" and all the pieces.
1718 static __isl_give isl_basic_set_list
*add_split_on(
1719 __isl_take isl_basic_set_list
*list
, __isl_take isl_basic_set
*bset
,
1720 __isl_keep isl_basic_map
*gt
)
1723 isl_basic_set_list
*res
;
1726 bset
= isl_basic_set_free(bset
);
1728 gt
= isl_basic_map_copy(gt
);
1729 gt
= isl_basic_map_intersect_domain(gt
, isl_basic_set_copy(bset
));
1730 n
= isl_basic_set_list_n_basic_set(list
);
1731 res
= isl_basic_set_list_from_basic_set(bset
);
1732 for (i
= 0; res
&& i
< n
; ++i
) {
1733 isl_basic_set
*bset
;
1734 isl_set
*set1
, *set2
;
1735 isl_basic_map
*bmap
;
1738 bset
= isl_basic_set_list_get_basic_set(list
, i
);
1739 bmap
= isl_basic_map_copy(gt
);
1740 bmap
= isl_basic_map_intersect_range(bmap
, bset
);
1741 bset
= isl_basic_map_range(bmap
);
1742 empty
= isl_basic_set_is_empty(bset
);
1744 res
= isl_basic_set_list_free(res
);
1746 isl_basic_set_free(bset
);
1747 bset
= isl_basic_set_list_get_basic_set(list
, i
);
1748 res
= isl_basic_set_list_add(res
, bset
);
1752 res
= isl_basic_set_list_add(res
, isl_basic_set_copy(bset
));
1753 set1
= isl_set_from_basic_set(bset
);
1754 bset
= isl_basic_set_list_get_basic_set(list
, i
);
1755 set2
= isl_set_from_basic_set(bset
);
1756 set1
= isl_set_subtract(set2
, set1
);
1757 set1
= isl_set_make_disjoint(set1
);
1759 res
= isl_basic_set_list_concat(res
,
1760 isl_basic_set_list_from_set(set1
));
1762 isl_basic_map_free(gt
);
1763 isl_basic_set_list_free(list
);
1767 static __isl_give isl_ast_graft_list
*generate_sorted_domains(
1768 __isl_keep isl_basic_set_list
*domain_list
,
1769 __isl_keep isl_union_map
*executed
,
1770 __isl_keep isl_ast_build
*build
);
1772 /* Internal data structure for add_nodes.
1774 * "executed" and "build" are extra arguments to be passed to add_node.
1775 * "list" collects the results.
1777 struct isl_add_nodes_data
{
1778 isl_union_map
*executed
;
1779 isl_ast_build
*build
;
1781 isl_ast_graft_list
*list
;
1784 /* Generate code for the schedule domains in "scc"
1785 * and add the results to "list".
1787 * The domains in "scc" form a strongly connected component in the ordering.
1788 * If the number of domains in "scc" is larger than 1, then this means
1789 * that we cannot determine a valid ordering for the domains in the component.
1790 * This should be fairly rare because the individual domains
1791 * have been made disjoint first.
1792 * The problem is that the domains may be integrally disjoint but not
1793 * rationally disjoint. For example, we may have domains
1795 * { [i,i] : 0 <= i <= 1 } and { [i,1-i] : 0 <= i <= 1 }
1797 * These two domains have an empty intersection, but their rational
1798 * relaxations do intersect. It is impossible to order these domains
1799 * in the second dimension because the first should be ordered before
1800 * the second for outer dimension equal to 0, while it should be ordered
1801 * after for outer dimension equal to 1.
1803 * This may happen in particular in case of unrolling since the domain
1804 * of each slice is replaced by its simple hull.
1806 * For each basic set i in "scc" and for each of the following basic sets j,
1807 * we split off that part of the basic set i that shares the outer dimensions
1808 * with j and lies before j in the current dimension.
1809 * We collect all the pieces in a new list that replaces "scc".
1811 * While the elements in "scc" should be disjoint, we double-check
1812 * this property to avoid running into an infinite recursion in case
1813 * they intersect due to some internal error.
1815 static int add_nodes(__isl_take isl_basic_set_list
*scc
, void *user
)
1817 struct isl_add_nodes_data
*data
= user
;
1819 isl_basic_set
*bset
, *first
;
1820 isl_basic_set_list
*list
;
1824 n
= isl_basic_set_list_n_basic_set(scc
);
1825 bset
= isl_basic_set_list_get_basic_set(scc
, 0);
1827 isl_basic_set_list_free(scc
);
1828 data
->list
= add_node(data
->list
,
1829 isl_union_map_copy(data
->executed
), bset
,
1830 isl_ast_build_copy(data
->build
));
1831 return data
->list
? 0 : -1;
1834 depth
= isl_ast_build_get_depth(data
->build
);
1835 space
= isl_basic_set_get_space(bset
);
1836 space
= isl_space_map_from_set(space
);
1837 gt
= isl_basic_map_universe(space
);
1838 for (i
= 0; i
< depth
; ++i
)
1839 gt
= isl_basic_map_equate(gt
, isl_dim_in
, i
, isl_dim_out
, i
);
1840 gt
= isl_basic_map_order_gt(gt
, isl_dim_in
, depth
, isl_dim_out
, depth
);
1842 first
= isl_basic_set_copy(bset
);
1843 list
= isl_basic_set_list_from_basic_set(bset
);
1844 for (i
= 1; i
< n
; ++i
) {
1847 bset
= isl_basic_set_list_get_basic_set(scc
, i
);
1849 disjoint
= isl_basic_set_is_disjoint(bset
, first
);
1851 list
= isl_basic_set_list_free(list
);
1853 isl_die(isl_basic_set_list_get_ctx(scc
),
1855 "basic sets in scc are assumed to be disjoint",
1856 list
= isl_basic_set_list_free(list
));
1858 list
= add_split_on(list
, bset
, gt
);
1860 isl_basic_set_free(first
);
1861 isl_basic_map_free(gt
);
1862 isl_basic_set_list_free(scc
);
1864 data
->list
= isl_ast_graft_list_concat(data
->list
,
1865 generate_sorted_domains(scc
, data
->executed
, data
->build
));
1866 isl_basic_set_list_free(scc
);
1868 return data
->list
? 0 : -1;
1871 /* Sort the domains in "domain_list" according to the execution order
1872 * at the current depth (for equal values of the outer dimensions),
1873 * generate code for each of them, collecting the results in a list.
1874 * If no code is generated (because the intersection of the inverse schedule
1875 * with the domains turns out to be empty), then an empty list is returned.
1877 * The caller is responsible for ensuring that the basic sets in "domain_list"
1878 * are pair-wise disjoint. It can, however, in principle happen that
1879 * two basic sets should be ordered one way for one value of the outer
1880 * dimensions and the other way for some other value of the outer dimensions.
1881 * We therefore play safe and look for strongly connected components.
1882 * The function add_nodes takes care of handling non-trivial components.
1884 static __isl_give isl_ast_graft_list
*generate_sorted_domains(
1885 __isl_keep isl_basic_set_list
*domain_list
,
1886 __isl_keep isl_union_map
*executed
, __isl_keep isl_ast_build
*build
)
1889 struct isl_add_nodes_data data
;
1896 ctx
= isl_basic_set_list_get_ctx(domain_list
);
1897 n
= isl_basic_set_list_n_basic_set(domain_list
);
1898 data
.list
= isl_ast_graft_list_alloc(ctx
, n
);
1902 return add_node(data
.list
, isl_union_map_copy(executed
),
1903 isl_basic_set_list_get_basic_set(domain_list
, 0),
1904 isl_ast_build_copy(build
));
1906 depth
= isl_ast_build_get_depth(build
);
1907 data
.executed
= executed
;
1909 if (isl_basic_set_list_foreach_scc(domain_list
,
1910 &domain_follows_at_depth
, &depth
,
1911 &add_nodes
, &data
) < 0)
1912 data
.list
= isl_ast_graft_list_free(data
.list
);
1917 /* Do i and j share any values for the outer dimensions?
1919 static int shared_outer(__isl_keep isl_basic_set
*i
,
1920 __isl_keep isl_basic_set
*j
, void *user
)
1922 int depth
= *(int *) user
;
1923 isl_basic_map
*test
;
1927 test
= isl_basic_map_from_domain_and_range(isl_basic_set_copy(i
),
1928 isl_basic_set_copy(j
));
1929 for (l
= 0; l
< depth
; ++l
)
1930 test
= isl_basic_map_equate(test
, isl_dim_in
, l
,
1932 empty
= isl_basic_map_is_empty(test
);
1933 isl_basic_map_free(test
);
1935 return empty
< 0 ? -1 : !empty
;
1938 /* Internal data structure for generate_sorted_domains_wrap.
1940 * "n" is the total number of basic sets
1941 * "executed" and "build" are extra arguments to be passed
1942 * to generate_sorted_domains.
1944 * "single" is set to 1 by generate_sorted_domains_wrap if there
1945 * is only a single component.
1946 * "list" collects the results.
1948 struct isl_ast_generate_parallel_domains_data
{
1950 isl_union_map
*executed
;
1951 isl_ast_build
*build
;
1954 isl_ast_graft_list
*list
;
1957 /* Call generate_sorted_domains on "scc", fuse the result into a list
1958 * with either zero or one graft and collect the these single element
1959 * lists into data->list.
1961 * If there is only one component, i.e., if the number of basic sets
1962 * in the current component is equal to the total number of basic sets,
1963 * then data->single is set to 1 and the result of generate_sorted_domains
1966 static int generate_sorted_domains_wrap(__isl_take isl_basic_set_list
*scc
,
1969 struct isl_ast_generate_parallel_domains_data
*data
= user
;
1970 isl_ast_graft_list
*list
;
1972 list
= generate_sorted_domains(scc
, data
->executed
, data
->build
);
1973 data
->single
= isl_basic_set_list_n_basic_set(scc
) == data
->n
;
1975 list
= isl_ast_graft_list_fuse(list
, data
->build
);
1979 data
->list
= isl_ast_graft_list_concat(data
->list
, list
);
1981 isl_basic_set_list_free(scc
);
1988 /* Look for any (weakly connected) components in the "domain_list"
1989 * of domains that share some values of the outer dimensions.
1990 * That is, domains in different components do not share any values
1991 * of the outer dimensions. This means that these components
1992 * can be freely reordered.
1993 * Within each of the components, we sort the domains according
1994 * to the execution order at the current depth.
1996 * If there is more than one component, then generate_sorted_domains_wrap
1997 * fuses the result of each call to generate_sorted_domains
1998 * into a list with either zero or one graft and collects these (at most)
1999 * single element lists into a bigger list. This means that the elements of the
2000 * final list can be freely reordered. In particular, we sort them
2001 * according to an arbitrary but fixed ordering to ease merging of
2002 * graft lists from different components.
2004 static __isl_give isl_ast_graft_list
*generate_parallel_domains(
2005 __isl_keep isl_basic_set_list
*domain_list
,
2006 __isl_keep isl_union_map
*executed
, __isl_keep isl_ast_build
*build
)
2009 struct isl_ast_generate_parallel_domains_data data
;
2014 data
.n
= isl_basic_set_list_n_basic_set(domain_list
);
2016 return generate_sorted_domains(domain_list
, executed
, build
);
2018 depth
= isl_ast_build_get_depth(build
);
2020 data
.executed
= executed
;
2023 if (isl_basic_set_list_foreach_scc(domain_list
, &shared_outer
, &depth
,
2024 &generate_sorted_domains_wrap
,
2026 data
.list
= isl_ast_graft_list_free(data
.list
);
2029 data
.list
= isl_ast_graft_list_sort_guard(data
.list
);
2034 /* Internal data for separate_domain.
2036 * "explicit" is set if we only want to use explicit bounds.
2038 * "domain" collects the separated domains.
2040 struct isl_separate_domain_data
{
2041 isl_ast_build
*build
;
2046 /* Extract implicit bounds on the current dimension for the executed "map".
2048 * The domain of "map" may involve inner dimensions, so we
2049 * need to eliminate them.
2051 static __isl_give isl_set
*implicit_bounds(__isl_take isl_map
*map
,
2052 __isl_keep isl_ast_build
*build
)
2056 domain
= isl_map_domain(map
);
2057 domain
= isl_ast_build_eliminate(build
, domain
);
2062 /* Extract explicit bounds on the current dimension for the executed "map".
2064 * Rather than eliminating the inner dimensions as in implicit_bounds,
2065 * we simply drop any constraints involving those inner dimensions.
2066 * The idea is that most bounds that are implied by constraints on the
2067 * inner dimensions will be enforced by for loops and not by explicit guards.
2068 * There is then no need to separate along those bounds.
2070 static __isl_give isl_set
*explicit_bounds(__isl_take isl_map
*map
,
2071 __isl_keep isl_ast_build
*build
)
2076 dim
= isl_map_dim(map
, isl_dim_out
);
2077 map
= isl_map_drop_constraints_involving_dims(map
, isl_dim_out
, 0, dim
);
2079 domain
= isl_map_domain(map
);
2080 depth
= isl_ast_build_get_depth(build
);
2081 dim
= isl_set_dim(domain
, isl_dim_set
);
2082 domain
= isl_set_detect_equalities(domain
);
2083 domain
= isl_set_drop_constraints_involving_dims(domain
,
2084 isl_dim_set
, depth
+ 1, dim
- (depth
+ 1));
2085 domain
= isl_set_remove_divs_involving_dims(domain
,
2086 isl_dim_set
, depth
, 1);
2087 domain
= isl_set_remove_unknown_divs(domain
);
2092 /* Split data->domain into pieces that intersect with the range of "map"
2093 * and pieces that do not intersect with the range of "map"
2094 * and then add that part of the range of "map" that does not intersect
2095 * with data->domain.
2097 static int separate_domain(__isl_take isl_map
*map
, void *user
)
2099 struct isl_separate_domain_data
*data
= user
;
2104 domain
= explicit_bounds(map
, data
->build
);
2106 domain
= implicit_bounds(map
, data
->build
);
2108 domain
= isl_set_coalesce(domain
);
2109 domain
= isl_set_make_disjoint(domain
);
2110 d1
= isl_set_subtract(isl_set_copy(domain
), isl_set_copy(data
->domain
));
2111 d2
= isl_set_subtract(isl_set_copy(data
->domain
), isl_set_copy(domain
));
2112 data
->domain
= isl_set_intersect(data
->domain
, domain
);
2113 data
->domain
= isl_set_union(data
->domain
, d1
);
2114 data
->domain
= isl_set_union(data
->domain
, d2
);
2119 /* Separate the schedule domains of "executed".
2121 * That is, break up the domain of "executed" into basic sets,
2122 * such that for each basic set S, every element in S is associated with
2123 * the same domain spaces.
2125 * "space" is the (single) domain space of "executed".
2127 static __isl_give isl_set
*separate_schedule_domains(
2128 __isl_take isl_space
*space
, __isl_take isl_union_map
*executed
,
2129 __isl_keep isl_ast_build
*build
)
2131 struct isl_separate_domain_data data
= { build
};
2134 ctx
= isl_ast_build_get_ctx(build
);
2135 data
.explicit = isl_options_get_ast_build_separation_bounds(ctx
) ==
2136 ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT
;
2137 data
.domain
= isl_set_empty(space
);
2138 if (isl_union_map_foreach_map(executed
, &separate_domain
, &data
) < 0)
2139 data
.domain
= isl_set_free(data
.domain
);
2141 isl_union_map_free(executed
);
2145 /* Temporary data used during the search for a lower bound for unrolling.
2147 * "domain" is the original set for which to find a lower bound
2148 * "depth" is the dimension for which to find a lower boudn
2150 * "lower" is the best lower bound found so far. It is NULL if we have not
2152 * "n" is the corresponding size. If lower is NULL, then the value of n
2155 struct isl_find_unroll_data
{
2163 /* Check if we can use "c" as a lower bound and if it is better than
2164 * any previously found lower bound.
2166 * If "c" does not involve the dimension at the current depth,
2167 * then we cannot use it.
2168 * Otherwise, let "c" be of the form
2172 * We compute the maximal value of
2174 * -ceil(f(j)/a)) + i + 1
2176 * over the domain. If there is such a value "n", then we know
2178 * -ceil(f(j)/a)) + i + 1 <= n
2182 * i < ceil(f(j)/a)) + n
2184 * meaning that we can use ceil(f(j)/a)) as a lower bound for unrolling.
2185 * We just need to check if we have found any lower bound before and
2186 * if the new lower bound is better (smaller n) than the previously found
2189 static int update_unrolling_lower_bound(struct isl_find_unroll_data
*data
,
2190 __isl_keep isl_constraint
*c
)
2192 isl_aff
*aff
, *lower
;
2195 if (!isl_constraint_is_lower_bound(c
, isl_dim_set
, data
->depth
))
2198 lower
= isl_constraint_get_bound(c
, isl_dim_set
, data
->depth
);
2199 lower
= isl_aff_ceil(lower
);
2200 aff
= isl_aff_copy(lower
);
2201 aff
= isl_aff_neg(aff
);
2202 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, data
->depth
, 1);
2203 aff
= isl_aff_add_constant_si(aff
, 1);
2204 max
= isl_set_max_val(data
->domain
, aff
);
2209 if (isl_val_is_infty(max
)) {
2211 isl_aff_free(lower
);
2215 if (isl_val_cmp_si(max
, INT_MAX
) <= 0 &&
2216 (!data
->lower
|| isl_val_cmp_si(max
, *data
->n
) < 0)) {
2217 isl_aff_free(data
->lower
);
2218 data
->lower
= lower
;
2219 *data
->n
= isl_val_get_num_si(max
);
2221 isl_aff_free(lower
);
2226 isl_aff_free(lower
);
2230 /* Check if we can use "c" as a lower bound and if it is better than
2231 * any previously found lower bound.
2233 static int constraint_find_unroll(__isl_take isl_constraint
*c
, void *user
)
2235 struct isl_find_unroll_data
*data
;
2238 data
= (struct isl_find_unroll_data
*) user
;
2239 r
= update_unrolling_lower_bound(data
, c
);
2240 isl_constraint_free(c
);
2245 /* Look for a lower bound l(i) on the dimension at "depth"
2246 * and a size n such that "domain" is a subset of
2248 * { [i] : l(i) <= i_d < l(i) + n }
2250 * where d is "depth" and l(i) depends only on earlier dimensions.
2251 * Furthermore, try and find a lower bound such that n is as small as possible.
2252 * In particular, "n" needs to be finite.
2254 * Inner dimensions have been eliminated from "domain" by the caller.
2256 * We first construct a collection of lower bounds on the input set
2257 * by computing its simple hull. We then iterate through them,
2258 * discarding those that we cannot use (either because they do not
2259 * involve the dimension at "depth" or because they have no corresponding
2260 * upper bound, meaning that "n" would be unbounded) and pick out the
2261 * best from the remaining ones.
2263 * If we cannot find a suitable lower bound, then we consider that
2266 static __isl_give isl_aff
*find_unroll_lower_bound(__isl_keep isl_set
*domain
,
2269 struct isl_find_unroll_data data
= { domain
, depth
, NULL
, n
};
2270 isl_basic_set
*hull
;
2272 hull
= isl_set_simple_hull(isl_set_copy(domain
));
2274 if (isl_basic_set_foreach_constraint(hull
,
2275 &constraint_find_unroll
, &data
) < 0)
2278 isl_basic_set_free(hull
);
2281 isl_die(isl_set_get_ctx(domain
), isl_error_invalid
,
2282 "cannot find lower bound for unrolling", return NULL
);
2286 isl_basic_set_free(hull
);
2287 return isl_aff_free(data
.lower
);
2290 /* Return the constraint
2292 * i_"depth" = aff + offset
2294 static __isl_give isl_constraint
*at_offset(int depth
, __isl_keep isl_aff
*aff
,
2297 aff
= isl_aff_copy(aff
);
2298 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, depth
, -1);
2299 aff
= isl_aff_add_constant_si(aff
, offset
);
2300 return isl_equality_from_aff(aff
);
2303 /* Data structure for storing the results and the intermediate objects
2304 * of compute_domains.
2306 * "list" is the main result of the function and contains a list
2307 * of disjoint basic sets for which code should be generated.
2309 * "executed" and "build" are inputs to compute_domains.
2310 * "schedule_domain" is the domain of "executed".
2312 * "option" constains the domains at the current depth that should by
2313 * atomic, separated or unrolled. These domains are as specified by
2314 * the user, except that inner dimensions have been eliminated and
2315 * that they have been made pair-wise disjoint.
2317 * "sep_class" contains the user-specified split into separation classes
2318 * specialized to the current depth.
2319 * "done" contains the union of the separation domains that have already
2322 struct isl_codegen_domains
{
2323 isl_basic_set_list
*list
;
2325 isl_union_map
*executed
;
2326 isl_ast_build
*build
;
2327 isl_set
*schedule_domain
;
2335 /* Extend domains->list with a list of basic sets, one for each value
2336 * of the current dimension in "domain" and remove the corresponding
2337 * sets from the class domain. Return the updated class domain.
2338 * The divs that involve the current dimension have not been projected out
2341 * Since we are going to be iterating over the individual values,
2342 * we first check if there are any strides on the current dimension.
2343 * If there is, we rewrite the current dimension i as
2345 * i = stride i' + offset
2347 * and then iterate over individual values of i' instead.
2349 * We then look for a lower bound on i' and a size such that the domain
2352 * { [j,i'] : l(j) <= i' < l(j) + n }
2354 * and then take slices of the domain at values of i'
2355 * between l(j) and l(j) + n - 1.
2357 * We compute the unshifted simple hull of each slice to ensure that
2358 * we have a single basic set per offset. The slicing constraint
2359 * may get simplified away before the unshifted simple hull is taken
2360 * and may therefore in some rare cases disappear from the result.
2361 * We therefore explicitly add the constraint back after computing
2362 * the unshifted simple hull to ensure that the basic sets
2363 * remain disjoint. The constraints that are dropped by taking the hull
2364 * will be taken into account at the next level, as in the case of the
2367 * Finally, we map i' back to i and add each basic set to the list.
2368 * Since we may have dropped some constraints, we intersect with
2369 * the class domain again to ensure that each element in the list
2370 * is disjoint from the other class domains.
2372 static __isl_give isl_set
*do_unroll(struct isl_codegen_domains
*domains
,
2373 __isl_take isl_set
*domain
, __isl_take isl_set
*class_domain
)
2379 isl_multi_aff
*expansion
;
2380 isl_basic_map
*bmap
;
2381 isl_set
*unroll_domain
;
2382 isl_ast_build
*build
;
2385 return isl_set_free(class_domain
);
2387 ctx
= isl_set_get_ctx(domain
);
2388 depth
= isl_ast_build_get_depth(domains
->build
);
2389 build
= isl_ast_build_copy(domains
->build
);
2390 domain
= isl_ast_build_eliminate_inner(build
, domain
);
2391 build
= isl_ast_build_detect_strides(build
, isl_set_copy(domain
));
2392 expansion
= isl_ast_build_get_stride_expansion(build
);
2394 domain
= isl_set_preimage_multi_aff(domain
,
2395 isl_multi_aff_copy(expansion
));
2396 domain
= isl_ast_build_eliminate_divs(build
, domain
);
2398 isl_ast_build_free(build
);
2400 lower
= find_unroll_lower_bound(domain
, depth
, &n
);
2402 class_domain
= isl_set_free(class_domain
);
2404 bmap
= isl_basic_map_from_multi_aff(expansion
);
2406 unroll_domain
= isl_set_empty(isl_set_get_space(domain
));
2408 for (i
= 0; class_domain
&& i
< n
; ++i
) {
2410 isl_basic_set
*bset
;
2411 isl_constraint
*slice
;
2412 isl_basic_set_list
*list
;
2414 slice
= at_offset(depth
, lower
, i
);
2415 set
= isl_set_copy(domain
);
2416 set
= isl_set_add_constraint(set
, isl_constraint_copy(slice
));
2417 bset
= isl_set_unshifted_simple_hull(set
);
2418 bset
= isl_basic_set_add_constraint(bset
, slice
);
2419 bset
= isl_basic_set_apply(bset
, isl_basic_map_copy(bmap
));
2420 set
= isl_set_from_basic_set(bset
);
2421 unroll_domain
= isl_set_union(unroll_domain
, isl_set_copy(set
));
2422 set
= isl_set_intersect(set
, isl_set_copy(class_domain
));
2423 set
= isl_set_make_disjoint(set
);
2424 list
= isl_basic_set_list_from_set(set
);
2425 domains
->list
= isl_basic_set_list_concat(domains
->list
, list
);
2428 class_domain
= isl_set_subtract(class_domain
, unroll_domain
);
2430 isl_aff_free(lower
);
2431 isl_set_free(domain
);
2432 isl_basic_map_free(bmap
);
2434 return class_domain
;
2437 /* Add domains to domains->list for each individual value of the current
2438 * dimension, for that part of the schedule domain that lies in the
2439 * intersection of the option domain and the class domain.
2440 * Remove the corresponding sets from the class domain and
2441 * return the updated class domain.
2443 * We first break up the unroll option domain into individual pieces
2444 * and then handle each of them separately. The unroll option domain
2445 * has been made disjoint in compute_domains_init_options,
2447 * Note that we actively want to combine different pieces of the
2448 * schedule domain that have the same value at the current dimension.
2449 * We therefore need to break up the unroll option domain before
2450 * intersecting with class and schedule domain, hoping that the
2451 * unroll option domain specified by the user is relatively simple.
2453 static __isl_give isl_set
*compute_unroll_domains(
2454 struct isl_codegen_domains
*domains
, __isl_take isl_set
*class_domain
)
2456 isl_set
*unroll_domain
;
2457 isl_basic_set_list
*unroll_list
;
2461 empty
= isl_set_is_empty(domains
->option
[unroll
]);
2463 return isl_set_free(class_domain
);
2465 return class_domain
;
2467 unroll_domain
= isl_set_copy(domains
->option
[unroll
]);
2468 unroll_list
= isl_basic_set_list_from_set(unroll_domain
);
2470 n
= isl_basic_set_list_n_basic_set(unroll_list
);
2471 for (i
= 0; i
< n
; ++i
) {
2472 isl_basic_set
*bset
;
2474 bset
= isl_basic_set_list_get_basic_set(unroll_list
, i
);
2475 unroll_domain
= isl_set_from_basic_set(bset
);
2476 unroll_domain
= isl_set_intersect(unroll_domain
,
2477 isl_set_copy(class_domain
));
2478 unroll_domain
= isl_set_intersect(unroll_domain
,
2479 isl_set_copy(domains
->schedule_domain
));
2481 empty
= isl_set_is_empty(unroll_domain
);
2482 if (empty
>= 0 && empty
) {
2483 isl_set_free(unroll_domain
);
2487 class_domain
= do_unroll(domains
, unroll_domain
, class_domain
);
2490 isl_basic_set_list_free(unroll_list
);
2492 return class_domain
;
2495 /* Try and construct a single basic set that includes the intersection of
2496 * the schedule domain, the atomic option domain and the class domain.
2497 * Add the resulting basic set(s) to domains->list and remove them
2498 * from class_domain. Return the updated class domain.
2500 * We construct a single domain rather than trying to combine
2501 * the schedule domains of individual domains because we are working
2502 * within a single component so that non-overlapping schedule domains
2503 * should already have been separated.
2504 * We do however need to make sure that this single domains is a subset
2505 * of the class domain so that it would not intersect with any other
2506 * class domains. This means that we may end up splitting up the atomic
2507 * domain in case separation classes are being used.
2509 * "domain" is the intersection of the schedule domain and the class domain,
2510 * with inner dimensions projected out.
2512 static __isl_give isl_set
*compute_atomic_domain(
2513 struct isl_codegen_domains
*domains
, __isl_take isl_set
*class_domain
)
2515 isl_basic_set
*bset
;
2516 isl_basic_set_list
*list
;
2517 isl_set
*domain
, *atomic_domain
;
2520 domain
= isl_set_copy(domains
->option
[atomic
]);
2521 domain
= isl_set_intersect(domain
, isl_set_copy(class_domain
));
2522 domain
= isl_set_intersect(domain
,
2523 isl_set_copy(domains
->schedule_domain
));
2524 empty
= isl_set_is_empty(domain
);
2526 class_domain
= isl_set_free(class_domain
);
2528 isl_set_free(domain
);
2529 return class_domain
;
2532 domain
= isl_ast_build_eliminate(domains
->build
, domain
);
2533 domain
= isl_set_coalesce(domain
);
2534 bset
= isl_set_unshifted_simple_hull(domain
);
2535 domain
= isl_set_from_basic_set(bset
);
2536 atomic_domain
= isl_set_copy(domain
);
2537 domain
= isl_set_intersect(domain
, isl_set_copy(class_domain
));
2538 class_domain
= isl_set_subtract(class_domain
, atomic_domain
);
2539 domain
= isl_set_make_disjoint(domain
);
2540 list
= isl_basic_set_list_from_set(domain
);
2541 domains
->list
= isl_basic_set_list_concat(domains
->list
, list
);
2543 return class_domain
;
2546 /* Split up the schedule domain into uniform basic sets,
2547 * in the sense that each element in a basic set is associated to
2548 * elements of the same domains, and add the result to domains->list.
2549 * Do this for that part of the schedule domain that lies in the
2550 * intersection of "class_domain" and the separate option domain.
2552 * "class_domain" may or may not include the constraints
2553 * of the schedule domain, but this does not make a difference
2554 * since we are going to intersect it with the domain of the inverse schedule.
2555 * If it includes schedule domain constraints, then they may involve
2556 * inner dimensions, but we will eliminate them in separation_domain.
2558 static int compute_separate_domain(struct isl_codegen_domains
*domains
,
2559 __isl_keep isl_set
*class_domain
)
2563 isl_union_map
*executed
;
2564 isl_basic_set_list
*list
;
2567 domain
= isl_set_copy(domains
->option
[separate
]);
2568 domain
= isl_set_intersect(domain
, isl_set_copy(class_domain
));
2569 executed
= isl_union_map_copy(domains
->executed
);
2570 executed
= isl_union_map_intersect_domain(executed
,
2571 isl_union_set_from_set(domain
));
2572 empty
= isl_union_map_is_empty(executed
);
2573 if (empty
< 0 || empty
) {
2574 isl_union_map_free(executed
);
2575 return empty
< 0 ? -1 : 0;
2578 space
= isl_set_get_space(class_domain
);
2579 domain
= separate_schedule_domains(space
, executed
, domains
->build
);
2581 list
= isl_basic_set_list_from_set(domain
);
2582 domains
->list
= isl_basic_set_list_concat(domains
->list
, list
);
2587 /* Split up the domain at the current depth into disjoint
2588 * basic sets for which code should be generated separately
2589 * for the given separation class domain.
2591 * If any separation classes have been defined, then "class_domain"
2592 * is the domain of the current class and does not refer to inner dimensions.
2593 * Otherwise, "class_domain" is the universe domain.
2595 * We first make sure that the class domain is disjoint from
2596 * previously considered class domains.
2598 * The separate domains can be computed directly from the "class_domain".
2600 * The unroll, atomic and remainder domains need the constraints
2601 * from the schedule domain.
2603 * For unrolling, the actual schedule domain is needed (with divs that
2604 * may refer to the current dimension) so that stride detection can be
2607 * For atomic and remainder domains, inner dimensions and divs involving
2608 * the current dimensions should be eliminated.
2609 * In case we are working within a separation class, we need to intersect
2610 * the result with the current "class_domain" to ensure that the domains
2611 * are disjoint from those generated from other class domains.
2613 * The domain that has been made atomic may be larger than specified
2614 * by the user since it needs to be representable as a single basic set.
2615 * This possibly larger domain is removed from class_domain by
2616 * compute_atomic_domain. It is computed first so that the extended domain
2617 * would not overlap with any domains computed before.
2618 * Similary, the unrolled domains may have some constraints removed and
2619 * may therefore also be larger than specified by the user.
2621 * If anything is left after handling separate, unroll and atomic,
2622 * we split it up into basic sets and append the basic sets to domains->list.
2624 static int compute_partial_domains(struct isl_codegen_domains
*domains
,
2625 __isl_take isl_set
*class_domain
)
2627 isl_basic_set_list
*list
;
2630 class_domain
= isl_set_subtract(class_domain
,
2631 isl_set_copy(domains
->done
));
2632 domains
->done
= isl_set_union(domains
->done
,
2633 isl_set_copy(class_domain
));
2635 class_domain
= compute_atomic_domain(domains
, class_domain
);
2636 class_domain
= compute_unroll_domains(domains
, class_domain
);
2638 domain
= isl_set_copy(class_domain
);
2640 if (compute_separate_domain(domains
, domain
) < 0)
2642 domain
= isl_set_subtract(domain
,
2643 isl_set_copy(domains
->option
[separate
]));
2645 domain
= isl_set_intersect(domain
,
2646 isl_set_copy(domains
->schedule_domain
));
2648 domain
= isl_ast_build_eliminate(domains
->build
, domain
);
2649 domain
= isl_set_intersect(domain
, isl_set_copy(class_domain
));
2651 domain
= isl_set_coalesce(domain
);
2652 domain
= isl_set_make_disjoint(domain
);
2654 list
= isl_basic_set_list_from_set(domain
);
2655 domains
->list
= isl_basic_set_list_concat(domains
->list
, list
);
2657 isl_set_free(class_domain
);
2661 isl_set_free(domain
);
2662 isl_set_free(class_domain
);
2666 /* Split up the domain at the current depth into disjoint
2667 * basic sets for which code should be generated separately
2668 * for the separation class identified by "pnt".
2670 * We extract the corresponding class domain from domains->sep_class,
2671 * eliminate inner dimensions and pass control to compute_partial_domains.
2673 static int compute_class_domains(__isl_take isl_point
*pnt
, void *user
)
2675 struct isl_codegen_domains
*domains
= user
;
2680 class_set
= isl_set_from_point(pnt
);
2681 domain
= isl_map_domain(isl_map_intersect_range(
2682 isl_map_copy(domains
->sep_class
), class_set
));
2683 domain
= isl_ast_build_compute_gist(domains
->build
, domain
);
2684 domain
= isl_ast_build_eliminate(domains
->build
, domain
);
2686 disjoint
= isl_set_plain_is_disjoint(domain
, domains
->schedule_domain
);
2690 isl_set_free(domain
);
2694 return compute_partial_domains(domains
, domain
);
2697 /* Extract the domains at the current depth that should be atomic,
2698 * separated or unrolled and store them in option.
2700 * The domains specified by the user might overlap, so we make
2701 * them disjoint by subtracting earlier domains from later domains.
2703 static void compute_domains_init_options(isl_set
*option
[3],
2704 __isl_keep isl_ast_build
*build
)
2706 enum isl_ast_build_domain_type type
, type2
;
2708 for (type
= atomic
; type
<= separate
; ++type
) {
2709 option
[type
] = isl_ast_build_get_option_domain(build
, type
);
2710 for (type2
= atomic
; type2
< type
; ++type2
)
2711 option
[type
] = isl_set_subtract(option
[type
],
2712 isl_set_copy(option
[type2
]));
2715 option
[unroll
] = isl_set_coalesce(option
[unroll
]);
2716 option
[unroll
] = isl_set_make_disjoint(option
[unroll
]);
2719 /* Split up the domain at the current depth into disjoint
2720 * basic sets for which code should be generated separately,
2721 * based on the user-specified options.
2722 * Return the list of disjoint basic sets.
2724 * There are three kinds of domains that we need to keep track of.
2725 * - the "schedule domain" is the domain of "executed"
2726 * - the "class domain" is the domain corresponding to the currrent
2728 * - the "option domain" is the domain corresponding to one of the options
2729 * atomic, unroll or separate
2731 * We first consider the individial values of the separation classes
2732 * and split up the domain for each of them separately.
2733 * Finally, we consider the remainder. If no separation classes were
2734 * specified, then we call compute_partial_domains with the universe
2735 * "class_domain". Otherwise, we take the "schedule_domain" as "class_domain",
2736 * with inner dimensions removed. We do this because we want to
2737 * avoid computing the complement of the class domains (i.e., the difference
2738 * between the universe and domains->done).
2740 static __isl_give isl_basic_set_list
*compute_domains(
2741 __isl_keep isl_union_map
*executed
, __isl_keep isl_ast_build
*build
)
2743 struct isl_codegen_domains domains
;
2746 isl_union_set
*schedule_domain
;
2750 enum isl_ast_build_domain_type type
;
2756 ctx
= isl_union_map_get_ctx(executed
);
2757 domains
.list
= isl_basic_set_list_alloc(ctx
, 0);
2759 schedule_domain
= isl_union_map_domain(isl_union_map_copy(executed
));
2760 domain
= isl_set_from_union_set(schedule_domain
);
2762 compute_domains_init_options(domains
.option
, build
);
2764 domains
.sep_class
= isl_ast_build_get_separation_class(build
);
2765 classes
= isl_map_range(isl_map_copy(domains
.sep_class
));
2766 n_param
= isl_set_dim(classes
, isl_dim_param
);
2767 classes
= isl_set_project_out(classes
, isl_dim_param
, 0, n_param
);
2769 space
= isl_set_get_space(domain
);
2770 domains
.build
= build
;
2771 domains
.schedule_domain
= isl_set_copy(domain
);
2772 domains
.executed
= executed
;
2773 domains
.done
= isl_set_empty(space
);
2775 if (isl_set_foreach_point(classes
, &compute_class_domains
, &domains
) < 0)
2776 domains
.list
= isl_basic_set_list_free(domains
.list
);
2777 isl_set_free(classes
);
2779 empty
= isl_set_is_empty(domains
.done
);
2781 domains
.list
= isl_basic_set_list_free(domains
.list
);
2782 domain
= isl_set_free(domain
);
2784 isl_set_free(domain
);
2785 domain
= isl_set_universe(isl_set_get_space(domains
.done
));
2787 domain
= isl_ast_build_eliminate(build
, domain
);
2789 if (compute_partial_domains(&domains
, domain
) < 0)
2790 domains
.list
= isl_basic_set_list_free(domains
.list
);
2792 isl_set_free(domains
.schedule_domain
);
2793 isl_set_free(domains
.done
);
2794 isl_map_free(domains
.sep_class
);
2795 for (type
= atomic
; type
<= separate
; ++type
)
2796 isl_set_free(domains
.option
[type
]);
2798 return domains
.list
;
2801 /* Generate code for a single component, after shifting (if any)
2804 * We first split up the domain at the current depth into disjoint
2805 * basic sets based on the user-specified options.
2806 * Then we generated code for each of them and concatenate the results.
2808 static __isl_give isl_ast_graft_list
*generate_shifted_component(
2809 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
2811 isl_basic_set_list
*domain_list
;
2812 isl_ast_graft_list
*list
= NULL
;
2814 domain_list
= compute_domains(executed
, build
);
2815 list
= generate_parallel_domains(domain_list
, executed
, build
);
2817 isl_basic_set_list_free(domain_list
);
2818 isl_union_map_free(executed
);
2819 isl_ast_build_free(build
);
2824 struct isl_set_map_pair
{
2829 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2830 * of indices into the "domain" array,
2831 * return the union of the "map" fields of the elements
2832 * indexed by the first "n" elements of "order".
2834 static __isl_give isl_union_map
*construct_component_executed(
2835 struct isl_set_map_pair
*domain
, int *order
, int n
)
2839 isl_union_map
*executed
;
2841 map
= isl_map_copy(domain
[order
[0]].map
);
2842 executed
= isl_union_map_from_map(map
);
2843 for (i
= 1; i
< n
; ++i
) {
2844 map
= isl_map_copy(domain
[order
[i
]].map
);
2845 executed
= isl_union_map_add_map(executed
, map
);
2851 /* Generate code for a single component, after shifting (if any)
2854 * The component inverse schedule is specified as the "map" fields
2855 * of the elements of "domain" indexed by the first "n" elements of "order".
2857 static __isl_give isl_ast_graft_list
*generate_shifted_component_from_list(
2858 struct isl_set_map_pair
*domain
, int *order
, int n
,
2859 __isl_take isl_ast_build
*build
)
2861 isl_union_map
*executed
;
2863 executed
= construct_component_executed(domain
, order
, n
);
2864 return generate_shifted_component(executed
, build
);
2867 /* Does set dimension "pos" of "set" have an obviously fixed value?
2869 static int dim_is_fixed(__isl_keep isl_set
*set
, int pos
)
2874 v
= isl_set_plain_get_val_if_fixed(set
, isl_dim_set
, pos
);
2877 fixed
= !isl_val_is_nan(v
);
2883 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2884 * of indices into the "domain" array,
2885 * do all (except for at most one) of the "set" field of the elements
2886 * indexed by the first "n" elements of "order" have a fixed value
2887 * at position "depth"?
2889 static int at_most_one_non_fixed(struct isl_set_map_pair
*domain
,
2890 int *order
, int n
, int depth
)
2895 for (i
= 0; i
< n
; ++i
) {
2898 f
= dim_is_fixed(domain
[order
[i
]].set
, depth
);
2911 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2912 * of indices into the "domain" array,
2913 * eliminate the inner dimensions from the "set" field of the elements
2914 * indexed by the first "n" elements of "order", provided the current
2915 * dimension does not have a fixed value.
2917 * Return the index of the first element in "order" with a corresponding
2918 * "set" field that does not have an (obviously) fixed value.
2920 static int eliminate_non_fixed(struct isl_set_map_pair
*domain
,
2921 int *order
, int n
, int depth
, __isl_keep isl_ast_build
*build
)
2926 for (i
= n
- 1; i
>= 0; --i
) {
2928 f
= dim_is_fixed(domain
[order
[i
]].set
, depth
);
2933 domain
[order
[i
]].set
= isl_ast_build_eliminate_inner(build
,
2934 domain
[order
[i
]].set
);
2941 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2942 * of indices into the "domain" array,
2943 * find the element of "domain" (amongst those indexed by the first "n"
2944 * elements of "order") with the "set" field that has the smallest
2945 * value for the current iterator.
2947 * Note that the domain with the smallest value may depend on the parameters
2948 * and/or outer loop dimension. Since the result of this function is only
2949 * used as heuristic, we only make a reasonable attempt at finding the best
2950 * domain, one that should work in case a single domain provides the smallest
2951 * value for the current dimension over all values of the parameters
2952 * and outer dimensions.
2954 * In particular, we compute the smallest value of the first domain
2955 * and replace it by that of any later domain if that later domain
2956 * has a smallest value that is smaller for at least some value
2957 * of the parameters and outer dimensions.
2959 static int first_offset(struct isl_set_map_pair
*domain
, int *order
, int n
,
2960 __isl_keep isl_ast_build
*build
)
2966 min_first
= isl_ast_build_map_to_iterator(build
,
2967 isl_set_copy(domain
[order
[0]].set
));
2968 min_first
= isl_map_lexmin(min_first
);
2970 for (i
= 1; i
< n
; ++i
) {
2971 isl_map
*min
, *test
;
2974 min
= isl_ast_build_map_to_iterator(build
,
2975 isl_set_copy(domain
[order
[i
]].set
));
2976 min
= isl_map_lexmin(min
);
2977 test
= isl_map_copy(min
);
2978 test
= isl_map_apply_domain(isl_map_copy(min_first
), test
);
2979 test
= isl_map_order_lt(test
, isl_dim_in
, 0, isl_dim_out
, 0);
2980 empty
= isl_map_is_empty(test
);
2982 if (empty
>= 0 && !empty
) {
2983 isl_map_free(min_first
);
2993 isl_map_free(min_first
);
2995 return i
< n
? -1 : first
;
2998 /* Construct a shifted inverse schedule based on the original inverse schedule,
2999 * the stride and the offset.
3001 * The original inverse schedule is specified as the "map" fields
3002 * of the elements of "domain" indexed by the first "n" elements of "order".
3004 * "stride" and "offset" are such that the difference
3005 * between the values of the current dimension of domain "i"
3006 * and the values of the current dimension for some reference domain are
3009 * stride * integer + offset[i]
3011 * Moreover, 0 <= offset[i] < stride.
3013 * For each domain, we create a map
3015 * { [..., j, ...] -> [..., j - offset[i], offset[i], ....] }
3017 * where j refers to the current dimension and the other dimensions are
3018 * unchanged, and apply this map to the original schedule domain.
3020 * For example, for the original schedule
3022 * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
3024 * and assuming the offset is 0 for the A domain and 1 for the B domain,
3025 * we apply the mapping
3029 * to the schedule of the "A" domain and the mapping
3031 * { [j - 1] -> [j, 1] }
3033 * to the schedule of the "B" domain.
3036 * Note that after the transformation, the differences between pairs
3037 * of values of the current dimension over all domains are multiples
3038 * of stride and that we have therefore exposed the stride.
3041 * To see that the mapping preserves the lexicographic order,
3042 * first note that each of the individual maps above preserves the order.
3043 * If the value of the current iterator is j1 in one domain and j2 in another,
3044 * then if j1 = j2, we know that the same map is applied to both domains
3045 * and the order is preserved.
3046 * Otherwise, let us assume, without loss of generality, that j1 < j2.
3047 * If c1 >= c2 (with c1 and c2 the corresponding offsets), then
3051 * and the order is preserved.
3052 * If c1 < c2, then we know
3058 * j2 - j1 = n * s + r
3060 * with n >= 0 and 0 <= r < s.
3061 * In other words, r = c2 - c1.
3072 * (j1 - c1, c1) << (j2 - c2, c2)
3074 * with "<<" the lexicographic order, proving that the order is preserved
3077 static __isl_give isl_union_map
*contruct_shifted_executed(
3078 struct isl_set_map_pair
*domain
, int *order
, int n
,
3079 __isl_keep isl_val
*stride
, __isl_keep isl_multi_val
*offset
,
3080 __isl_take isl_ast_build
*build
)
3083 isl_union_map
*executed
;
3089 depth
= isl_ast_build_get_depth(build
);
3090 space
= isl_ast_build_get_space(build
, 1);
3091 executed
= isl_union_map_empty(isl_space_copy(space
));
3092 space
= isl_space_map_from_set(space
);
3093 map
= isl_map_identity(isl_space_copy(space
));
3094 map
= isl_map_eliminate(map
, isl_dim_out
, depth
, 1);
3095 map
= isl_map_insert_dims(map
, isl_dim_out
, depth
+ 1, 1);
3096 space
= isl_space_insert_dims(space
, isl_dim_out
, depth
+ 1, 1);
3098 c
= isl_equality_alloc(isl_local_space_from_space(space
));
3099 c
= isl_constraint_set_coefficient_si(c
, isl_dim_in
, depth
, 1);
3100 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, depth
, -1);
3102 for (i
= 0; i
< n
; ++i
) {
3106 v
= isl_multi_val_get_val(offset
, i
);
3109 map_i
= isl_map_copy(map
);
3110 map_i
= isl_map_fix_val(map_i
, isl_dim_out
, depth
+ 1,
3113 c
= isl_constraint_set_constant_val(c
, v
);
3114 map_i
= isl_map_add_constraint(map_i
, isl_constraint_copy(c
));
3116 map_i
= isl_map_apply_domain(isl_map_copy(domain
[order
[i
]].map
),
3118 executed
= isl_union_map_add_map(executed
, map_i
);
3121 isl_constraint_free(c
);
3125 executed
= isl_union_map_free(executed
);
3130 /* Generate code for a single component, after exposing the stride,
3131 * given that the schedule domain is "shifted strided".
3133 * The component inverse schedule is specified as the "map" fields
3134 * of the elements of "domain" indexed by the first "n" elements of "order".
3136 * The schedule domain being "shifted strided" means that the differences
3137 * between the values of the current dimension of domain "i"
3138 * and the values of the current dimension for some reference domain are
3141 * stride * integer + offset[i]
3143 * We first look for the domain with the "smallest" value for the current
3144 * dimension and adjust the offsets such that the offset of the "smallest"
3145 * domain is equal to zero. The other offsets are reduced modulo stride.
3147 * Based on this information, we construct a new inverse schedule in
3148 * contruct_shifted_executed that exposes the stride.
3149 * Since this involves the introduction of a new schedule dimension,
3150 * the build needs to be changed accodingly.
3151 * After computing the AST, the newly introduced dimension needs
3152 * to be removed again from the list of grafts. We do this by plugging
3153 * in a mapping that represents the new schedule domain in terms of the
3154 * old schedule domain.
3156 static __isl_give isl_ast_graft_list
*generate_shift_component(
3157 struct isl_set_map_pair
*domain
, int *order
, int n
,
3158 __isl_keep isl_val
*stride
, __isl_keep isl_multi_val
*offset
,
3159 __isl_take isl_ast_build
*build
)
3161 isl_ast_graft_list
*list
;
3168 isl_multi_aff
*ma
, *zero
;
3169 isl_union_map
*executed
;
3171 ctx
= isl_ast_build_get_ctx(build
);
3172 depth
= isl_ast_build_get_depth(build
);
3174 first
= first_offset(domain
, order
, n
, build
);
3178 mv
= isl_multi_val_copy(offset
);
3179 val
= isl_multi_val_get_val(offset
, first
);
3180 val
= isl_val_neg(val
);
3181 mv
= isl_multi_val_add_val(mv
, val
);
3182 mv
= isl_multi_val_mod_val(mv
, isl_val_copy(stride
));
3184 executed
= contruct_shifted_executed(domain
, order
, n
, stride
, mv
,
3186 space
= isl_ast_build_get_space(build
, 1);
3187 space
= isl_space_map_from_set(space
);
3188 ma
= isl_multi_aff_identity(isl_space_copy(space
));
3189 space
= isl_space_from_domain(isl_space_domain(space
));
3190 space
= isl_space_add_dims(space
, isl_dim_out
, 1);
3191 zero
= isl_multi_aff_zero(space
);
3192 ma
= isl_multi_aff_range_splice(ma
, depth
+ 1, zero
);
3193 build
= isl_ast_build_insert_dim(build
, depth
+ 1);
3194 list
= generate_shifted_component(executed
, build
);
3196 list
= isl_ast_graft_list_preimage_multi_aff(list
, ma
);
3198 isl_multi_val_free(mv
);
3202 isl_ast_build_free(build
);
3206 /* Generate code for a single component.
3208 * The component inverse schedule is specified as the "map" fields
3209 * of the elements of "domain" indexed by the first "n" elements of "order".
3211 * This function may modify the "set" fields of "domain".
3213 * Before proceeding with the actual code generation for the component,
3214 * we first check if there are any "shifted" strides, meaning that
3215 * the schedule domains of the individual domains are all strided,
3216 * but that they have different offsets, resulting in the union
3217 * of schedule domains not being strided anymore.
3219 * The simplest example is the schedule
3221 * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
3223 * Both schedule domains are strided, but their union is not.
3224 * This function detects such cases and then rewrites the schedule to
3226 * { A[i] -> [2i, 0]: 0 <= i < 10; B[i] -> [2i, 1] : 0 <= i < 10 }
3228 * In the new schedule, the schedule domains have the same offset (modulo
3229 * the stride), ensuring that the union of schedule domains is also strided.
3232 * If there is only a single domain in the component, then there is
3233 * nothing to do. Similarly, if the current schedule dimension has
3234 * a fixed value for almost all domains then there is nothing to be done.
3235 * In particular, we need at least two domains where the current schedule
3236 * dimension does not have a fixed value.
3237 * Finally, if any of the options refer to the current schedule dimension,
3238 * then we bail out as well. It would be possible to reformulate the options
3239 * in terms of the new schedule domain, but that would introduce constraints
3240 * that separate the domains in the options and that is something we would
3244 * To see if there is any shifted stride, we look at the differences
3245 * between the values of the current dimension in pairs of domains
3246 * for equal values of outer dimensions. These differences should be
3251 * with "m" the stride and "r" a constant. Note that we cannot perform
3252 * this analysis on individual domains as the lower bound in each domain
3253 * may depend on parameters or outer dimensions and so the current dimension
3254 * itself may not have a fixed remainder on division by the stride.
3256 * In particular, we compare the first domain that does not have an
3257 * obviously fixed value for the current dimension to itself and all
3258 * other domains and collect the offsets and the gcd of the strides.
3259 * If the gcd becomes one, then we failed to find shifted strides.
3260 * If the gcd is zero, then the differences were all fixed, meaning
3261 * that some domains had non-obviously fixed values for the current dimension.
3262 * If all the offsets are the same (for those domains that do not have
3263 * an obviously fixed value for the current dimension), then we do not
3264 * apply the transformation.
3265 * If none of the domains were skipped, then there is nothing to do.
3266 * If some of them were skipped, then if we apply separation, the schedule
3267 * domain should get split in pieces with a (non-shifted) stride.
3269 * Otherwise, we apply a shift to expose the stride in
3270 * generate_shift_component.
3272 static __isl_give isl_ast_graft_list
*generate_component(
3273 struct isl_set_map_pair
*domain
, int *order
, int n
,
3274 __isl_take isl_ast_build
*build
)
3281 isl_val
*gcd
= NULL
;
3285 isl_ast_graft_list
*list
;
3288 depth
= isl_ast_build_get_depth(build
);
3291 if (skip
>= 0 && !skip
)
3292 skip
= at_most_one_non_fixed(domain
, order
, n
, depth
);
3293 if (skip
>= 0 && !skip
)
3294 skip
= isl_ast_build_options_involve_depth(build
);
3298 return generate_shifted_component_from_list(domain
,
3301 base
= eliminate_non_fixed(domain
, order
, n
, depth
, build
);
3305 ctx
= isl_ast_build_get_ctx(build
);
3307 mv
= isl_multi_val_zero(isl_space_set_alloc(ctx
, 0, n
));
3310 for (i
= 0; i
< n
; ++i
) {
3313 map
= isl_map_from_domain_and_range(
3314 isl_set_copy(domain
[order
[base
]].set
),
3315 isl_set_copy(domain
[order
[i
]].set
));
3316 for (d
= 0; d
< depth
; ++d
)
3317 map
= isl_map_equate(map
, isl_dim_in
, d
,
3319 deltas
= isl_map_deltas(map
);
3320 res
= isl_set_dim_residue_class_val(deltas
, depth
, &m
, &r
);
3321 isl_set_free(deltas
);
3328 gcd
= isl_val_gcd(gcd
, m
);
3329 if (isl_val_is_one(gcd
)) {
3333 mv
= isl_multi_val_set_val(mv
, i
, r
);
3335 res
= dim_is_fixed(domain
[order
[i
]].set
, depth
);
3341 if (fixed
&& i
> base
) {
3343 a
= isl_multi_val_get_val(mv
, i
);
3344 b
= isl_multi_val_get_val(mv
, base
);
3345 if (isl_val_ne(a
, b
))
3352 if (res
< 0 || !gcd
) {
3353 isl_ast_build_free(build
);
3355 } else if (i
< n
|| fixed
|| isl_val_is_zero(gcd
)) {
3356 list
= generate_shifted_component_from_list(domain
,
3359 list
= generate_shift_component(domain
, order
, n
, gcd
, mv
,
3364 isl_multi_val_free(mv
);
3368 isl_ast_build_free(build
);
3372 /* Store both "map" itself and its domain in the
3373 * structure pointed to by *next and advance to the next array element.
3375 static int extract_domain(__isl_take isl_map
*map
, void *user
)
3377 struct isl_set_map_pair
**next
= user
;
3379 (*next
)->map
= isl_map_copy(map
);
3380 (*next
)->set
= isl_map_domain(map
);
3386 /* Internal data for any_scheduled_after.
3388 * "depth" is the number of loops that have already been generated
3389 * "group_coscheduled" is a local copy of options->ast_build_group_coscheduled
3390 * "domain" is an array of set-map pairs corresponding to the different
3391 * iteration domains. The set is the schedule domain, i.e., the domain
3392 * of the inverse schedule, while the map is the inverse schedule itself.
3394 struct isl_any_scheduled_after_data
{
3396 int group_coscheduled
;
3397 struct isl_set_map_pair
*domain
;
3400 /* Is any element of domain "i" scheduled after any element of domain "j"
3401 * (for a common iteration of the first data->depth loops)?
3403 * data->domain[i].set contains the domain of the inverse schedule
3404 * for domain "i", i.e., elements in the schedule domain.
3406 * If data->group_coscheduled is set, then we also return 1 if there
3407 * is any pair of elements in the two domains that are scheduled together.
3409 static int any_scheduled_after(int i
, int j
, void *user
)
3411 struct isl_any_scheduled_after_data
*data
= user
;
3412 int dim
= isl_set_dim(data
->domain
[i
].set
, isl_dim_set
);
3415 for (pos
= data
->depth
; pos
< dim
; ++pos
) {
3418 follows
= isl_set_follows_at(data
->domain
[i
].set
,
3419 data
->domain
[j
].set
, pos
);
3429 return data
->group_coscheduled
;
3432 /* Look for independent components at the current depth and generate code
3433 * for each component separately. The resulting lists of grafts are
3434 * merged in an attempt to combine grafts with identical guards.
3436 * Code for two domains can be generated separately if all the elements
3437 * of one domain are scheduled before (or together with) all the elements
3438 * of the other domain. We therefore consider the graph with as nodes
3439 * the domains and an edge between two nodes if any element of the first
3440 * node is scheduled after any element of the second node.
3441 * If the ast_build_group_coscheduled is set, then we also add an edge if
3442 * there is any pair of elements in the two domains that are scheduled
3444 * Code is then generated (by generate_component)
3445 * for each of the strongly connected components in this graph
3446 * in their topological order.
3448 * Since the test is performed on the domain of the inverse schedules of
3449 * the different domains, we precompute these domains and store
3450 * them in data.domain.
3452 static __isl_give isl_ast_graft_list
*generate_components(
3453 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
3456 isl_ctx
*ctx
= isl_ast_build_get_ctx(build
);
3457 int n
= isl_union_map_n_map(executed
);
3458 struct isl_any_scheduled_after_data data
;
3459 struct isl_set_map_pair
*next
;
3460 struct isl_tarjan_graph
*g
= NULL
;
3461 isl_ast_graft_list
*list
= NULL
;
3464 data
.domain
= isl_calloc_array(ctx
, struct isl_set_map_pair
, n
);
3470 if (isl_union_map_foreach_map(executed
, &extract_domain
, &next
) < 0)
3475 data
.depth
= isl_ast_build_get_depth(build
);
3476 data
.group_coscheduled
= isl_options_get_ast_build_group_coscheduled(ctx
);
3477 g
= isl_tarjan_graph_init(ctx
, n
, &any_scheduled_after
, &data
);
3479 list
= isl_ast_graft_list_alloc(ctx
, 0);
3483 isl_ast_graft_list
*list_c
;
3486 if (g
->order
[i
] == -1)
3487 isl_die(ctx
, isl_error_internal
, "cannot happen",
3490 while (g
->order
[i
] != -1) {
3494 list_c
= generate_component(data
.domain
,
3495 g
->order
+ first
, i
- first
,
3496 isl_ast_build_copy(build
));
3497 list
= isl_ast_graft_list_merge(list
, list_c
, build
);
3503 error
: list
= isl_ast_graft_list_free(list
);
3504 isl_tarjan_graph_free(g
);
3505 for (i
= 0; i
< n_domain
; ++i
) {
3506 isl_map_free(data
.domain
[i
].map
);
3507 isl_set_free(data
.domain
[i
].set
);
3510 isl_union_map_free(executed
);
3511 isl_ast_build_free(build
);
3516 /* Generate code for the next level (and all inner levels).
3518 * If "executed" is empty, i.e., no code needs to be generated,
3519 * then we return an empty list.
3521 * If we have already generated code for all loop levels, then we pass
3522 * control to generate_inner_level.
3524 * If "executed" lives in a single space, i.e., if code needs to be
3525 * generated for a single domain, then there can only be a single
3526 * component and we go directly to generate_shifted_component.
3527 * Otherwise, we call generate_components to detect the components
3528 * and to call generate_component on each of them separately.
3530 static __isl_give isl_ast_graft_list
*generate_next_level(
3531 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
3535 if (!build
|| !executed
)
3538 if (isl_union_map_is_empty(executed
)) {
3539 isl_ctx
*ctx
= isl_ast_build_get_ctx(build
);
3540 isl_union_map_free(executed
);
3541 isl_ast_build_free(build
);
3542 return isl_ast_graft_list_alloc(ctx
, 0);
3545 depth
= isl_ast_build_get_depth(build
);
3546 if (depth
>= isl_set_dim(build
->domain
, isl_dim_set
))
3547 return generate_inner_level(executed
, build
);
3549 if (isl_union_map_n_map(executed
) == 1)
3550 return generate_shifted_component(executed
, build
);
3552 return generate_components(executed
, build
);
3554 isl_union_map_free(executed
);
3555 isl_ast_build_free(build
);
3559 /* Internal data structure used by isl_ast_build_ast_from_schedule.
3560 * internal, executed and build are the inputs to generate_code.
3561 * list collects the output.
3563 struct isl_generate_code_data
{
3565 isl_union_map
*executed
;
3566 isl_ast_build
*build
;
3568 isl_ast_graft_list
*list
;
3571 /* Given an inverse schedule in terms of the external build schedule, i.e.,
3575 * with E the external build schedule and S the additional schedule "space",
3576 * reformulate the inverse schedule in terms of the internal schedule domain,
3581 * We first obtain a mapping
3585 * take the inverse and the product with S -> S, resulting in
3587 * [I -> S] -> [E -> S]
3589 * Applying the map to the input produces the desired result.
3591 static __isl_give isl_union_map
*internal_executed(
3592 __isl_take isl_union_map
*executed
, __isl_keep isl_space
*space
,
3593 __isl_keep isl_ast_build
*build
)
3597 proj
= isl_ast_build_get_schedule_map(build
);
3598 proj
= isl_map_reverse(proj
);
3599 space
= isl_space_map_from_set(isl_space_copy(space
));
3600 id
= isl_map_identity(space
);
3601 proj
= isl_map_product(proj
, id
);
3602 executed
= isl_union_map_apply_domain(executed
,
3603 isl_union_map_from_map(proj
));
3607 /* Generate an AST that visits the elements in the range of data->executed
3608 * in the relative order specified by the corresponding image element(s)
3609 * for those image elements that belong to "set".
3610 * Add the result to data->list.
3612 * The caller ensures that "set" is a universe domain.
3613 * "space" is the space of the additional part of the schedule.
3614 * It is equal to the space of "set" if build->domain is parametric.
3615 * Otherwise, it is equal to the range of the wrapped space of "set".
3617 * If the build space is not parametric and if isl_ast_build_ast_from_schedule
3618 * was called from an outside user (data->internal not set), then
3619 * the (inverse) schedule refers to the external build domain and needs to
3620 * be transformed to refer to the internal build domain.
3622 * The build is extended to include the additional part of the schedule.
3623 * If the original build space was not parametric, then the options
3624 * in data->build refer only to the additional part of the schedule
3625 * and they need to be adjusted to refer to the complete AST build
3628 * After having adjusted inverse schedule and build, we start generating
3629 * code with the outer loop of the current code generation
3630 * in generate_next_level.
3632 * If the original build space was not parametric, we undo the embedding
3633 * on the resulting isl_ast_node_list so that it can be used within
3634 * the outer AST build.
3636 static int generate_code_in_space(struct isl_generate_code_data
*data
,
3637 __isl_take isl_set
*set
, __isl_take isl_space
*space
)
3639 isl_union_map
*executed
;
3640 isl_ast_build
*build
;
3641 isl_ast_graft_list
*list
;
3644 executed
= isl_union_map_copy(data
->executed
);
3645 executed
= isl_union_map_intersect_domain(executed
,
3646 isl_union_set_from_set(set
));
3648 embed
= !isl_set_is_params(data
->build
->domain
);
3649 if (embed
&& !data
->internal
)
3650 executed
= internal_executed(executed
, space
, data
->build
);
3652 build
= isl_ast_build_copy(data
->build
);
3653 build
= isl_ast_build_product(build
, space
);
3655 list
= generate_next_level(executed
, build
);
3657 list
= isl_ast_graft_list_unembed(list
, embed
);
3659 data
->list
= isl_ast_graft_list_concat(data
->list
, list
);
3664 /* Generate an AST that visits the elements in the range of data->executed
3665 * in the relative order specified by the corresponding domain element(s)
3666 * for those domain elements that belong to "set".
3667 * Add the result to data->list.
3669 * The caller ensures that "set" is a universe domain.
3671 * If the build space S is not parametric, then the space of "set"
3672 * need to be a wrapped relation with S as domain. That is, it needs
3677 * Check this property and pass control to generate_code_in_space
3679 * If the build space is not parametric, then T is the space of "set".
3681 static int generate_code_set(__isl_take isl_set
*set
, void *user
)
3683 struct isl_generate_code_data
*data
= user
;
3684 isl_space
*space
, *build_space
;
3687 space
= isl_set_get_space(set
);
3689 if (isl_set_is_params(data
->build
->domain
))
3690 return generate_code_in_space(data
, set
, space
);
3692 build_space
= isl_ast_build_get_space(data
->build
, data
->internal
);
3693 space
= isl_space_unwrap(space
);
3694 is_domain
= isl_space_is_domain(build_space
, space
);
3695 isl_space_free(build_space
);
3696 space
= isl_space_range(space
);
3701 isl_die(isl_set_get_ctx(set
), isl_error_invalid
,
3702 "invalid nested schedule space", goto error
);
3704 return generate_code_in_space(data
, set
, space
);
3707 isl_space_free(space
);
3711 /* Generate an AST that visits the elements in the range of "executed"
3712 * in the relative order specified by the corresponding domain element(s).
3714 * "build" is an isl_ast_build that has either been constructed by
3715 * isl_ast_build_from_context or passed to a callback set by
3716 * isl_ast_build_set_create_leaf.
3717 * In the first case, the space of the isl_ast_build is typically
3718 * a parametric space, although this is currently not enforced.
3719 * In the second case, the space is never a parametric space.
3720 * If the space S is not parametric, then the domain space(s) of "executed"
3721 * need to be wrapped relations with S as domain.
3723 * If the domain of "executed" consists of several spaces, then an AST
3724 * is generated for each of them (in arbitrary order) and the results
3727 * If "internal" is set, then the domain "S" above refers to the internal
3728 * schedule domain representation. Otherwise, it refers to the external
3729 * representation, as returned by isl_ast_build_get_schedule_space.
3731 * We essentially run over all the spaces in the domain of "executed"
3732 * and call generate_code_set on each of them.
3734 static __isl_give isl_ast_graft_list
*generate_code(
3735 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
,
3739 struct isl_generate_code_data data
= { 0 };
3741 isl_union_set
*schedule_domain
;
3742 isl_union_map
*universe
;
3746 space
= isl_ast_build_get_space(build
, 1);
3747 space
= isl_space_align_params(space
,
3748 isl_union_map_get_space(executed
));
3749 space
= isl_space_align_params(space
,
3750 isl_union_map_get_space(build
->options
));
3751 build
= isl_ast_build_align_params(build
, isl_space_copy(space
));
3752 executed
= isl_union_map_align_params(executed
, space
);
3753 if (!executed
|| !build
)
3756 ctx
= isl_ast_build_get_ctx(build
);
3758 data
.internal
= internal
;
3759 data
.executed
= executed
;
3761 data
.list
= isl_ast_graft_list_alloc(ctx
, 0);
3763 universe
= isl_union_map_universe(isl_union_map_copy(executed
));
3764 schedule_domain
= isl_union_map_domain(universe
);
3765 if (isl_union_set_foreach_set(schedule_domain
, &generate_code_set
,
3767 data
.list
= isl_ast_graft_list_free(data
.list
);
3769 isl_union_set_free(schedule_domain
);
3770 isl_union_map_free(executed
);
3772 isl_ast_build_free(build
);
3775 isl_union_map_free(executed
);
3776 isl_ast_build_free(build
);
3780 /* Generate an AST that visits the elements in the domain of "schedule"
3781 * in the relative order specified by the corresponding image element(s).
3783 * "build" is an isl_ast_build that has either been constructed by
3784 * isl_ast_build_from_context or passed to a callback set by
3785 * isl_ast_build_set_create_leaf.
3786 * In the first case, the space of the isl_ast_build is typically
3787 * a parametric space, although this is currently not enforced.
3788 * In the second case, the space is never a parametric space.
3789 * If the space S is not parametric, then the range space(s) of "schedule"
3790 * need to be wrapped relations with S as domain.
3792 * If the range of "schedule" consists of several spaces, then an AST
3793 * is generated for each of them (in arbitrary order) and the results
3796 * We first initialize the local copies of the relevant options.
3797 * We do this here rather than when the isl_ast_build is created
3798 * because the options may have changed between the construction
3799 * of the isl_ast_build and the call to isl_generate_code.
3801 * The main computation is performed on an inverse schedule (with
3802 * the schedule domain in the domain and the elements to be executed
3803 * in the range) called "executed".
3805 __isl_give isl_ast_node
*isl_ast_build_ast_from_schedule(
3806 __isl_keep isl_ast_build
*build
, __isl_take isl_union_map
*schedule
)
3808 isl_ast_graft_list
*list
;
3810 isl_union_map
*executed
;
3812 build
= isl_ast_build_copy(build
);
3813 build
= isl_ast_build_set_single_valued(build
, 0);
3814 schedule
= isl_union_map_coalesce(schedule
);
3815 executed
= isl_union_map_reverse(schedule
);
3816 list
= generate_code(executed
, isl_ast_build_copy(build
), 0);
3817 node
= isl_ast_node_from_graft_list(list
, build
);
3818 isl_ast_build_free(build
);