2 * Copyright 2006-2007 Universiteit Leiden
3 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Copyright 2010 INRIA Saclay
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
9 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
10 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
11 * B-3001 Leuven, Belgium
12 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
13 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
16 #include <isl_ctx_private.h>
17 #include <isl_map_private.h>
20 #include <isl_morph.h>
21 #include <isl_factorization.h>
22 #include <isl_vertices_private.h>
23 #include <isl_polynomial_private.h>
24 #include <isl_options_private.h>
25 #include <isl_vec_private.h>
26 #include <isl_bernstein.h>
28 struct bernstein_data
{
30 isl_qpolynomial
*poly
;
35 isl_qpolynomial_fold
*fold
;
36 isl_qpolynomial_fold
*fold_tight
;
37 isl_pw_qpolynomial_fold
*pwf
;
38 isl_pw_qpolynomial_fold
*pwf_tight
;
41 static int vertex_is_integral(__isl_keep isl_basic_set
*vertex
)
47 nvar
= isl_basic_set_dim(vertex
, isl_dim_set
);
48 nparam
= isl_basic_set_dim(vertex
, isl_dim_param
);
49 for (i
= 0; i
< nvar
; ++i
) {
51 if (!isl_int_is_one(vertex
->eq
[r
][1 + nparam
+ i
]) &&
52 !isl_int_is_negone(vertex
->eq
[r
][1 + nparam
+ i
]))
59 static __isl_give isl_qpolynomial
*vertex_coordinate(
60 __isl_keep isl_basic_set
*vertex
, int i
, __isl_take isl_space
*dim
)
68 nvar
= isl_basic_set_dim(vertex
, isl_dim_set
);
69 nparam
= isl_basic_set_dim(vertex
, isl_dim_param
);
73 isl_int_set(denom
, vertex
->eq
[r
][1 + nparam
+ i
]);
74 isl_assert(vertex
->ctx
, !isl_int_is_zero(denom
), goto error
);
76 if (isl_int_is_pos(denom
))
77 isl_seq_neg(vertex
->eq
[r
], vertex
->eq
[r
],
78 1 + isl_basic_set_total_dim(vertex
));
80 isl_int_neg(denom
, denom
);
82 v
= isl_qpolynomial_from_affine(dim
, vertex
->eq
[r
], denom
);
92 /* Check whether the bound associated to the selection "k" is tight,
93 * which is the case if we select exactly one vertex and if that vertex
94 * is integral for all values of the parameters.
96 static int is_tight(int *k
, int n
, int d
, isl_cell
*cell
)
100 for (i
= 0; i
< n
; ++i
) {
107 v
= cell
->ids
[n
- 1 - i
];
108 return vertex_is_integral(cell
->vertices
->v
[v
].vertex
);
114 static void add_fold(__isl_take isl_qpolynomial
*b
, __isl_keep isl_set
*dom
,
115 int *k
, int n
, int d
, struct bernstein_data
*data
)
117 isl_qpolynomial_fold
*fold
;
119 fold
= isl_qpolynomial_fold_alloc(data
->type
, b
);
121 if (data
->check_tight
&& is_tight(k
, n
, d
, data
->cell
))
122 data
->fold_tight
= isl_qpolynomial_fold_fold_on_domain(dom
,
123 data
->fold_tight
, fold
);
125 data
->fold
= isl_qpolynomial_fold_fold_on_domain(dom
,
129 /* Extract the coefficients of the Bernstein base polynomials and store
130 * them in data->fold and data->fold_tight.
132 * In particular, the coefficient of each monomial
133 * of multi-degree (k[0], k[1], ..., k[n-1]) is divided by the corresponding
134 * multinomial coefficient d!/k[0]! k[1]! ... k[n-1]!
136 * c[i] contains the coefficient of the selected powers of the first i+1 vars.
137 * multinom[i] contains the partial multinomial coefficient.
139 static void extract_coefficients(isl_qpolynomial
*poly
,
140 __isl_keep isl_set
*dom
, struct bernstein_data
*data
)
146 isl_qpolynomial
**c
= NULL
;
149 isl_vec
*multinom
= NULL
;
154 ctx
= isl_qpolynomial_get_ctx(poly
);
155 n
= isl_qpolynomial_dim(poly
, isl_dim_in
);
156 d
= isl_qpolynomial_degree(poly
);
157 isl_assert(ctx
, n
>= 2, return);
159 c
= isl_calloc_array(ctx
, isl_qpolynomial
*, n
);
160 k
= isl_alloc_array(ctx
, int, n
);
161 left
= isl_alloc_array(ctx
, int, n
);
162 multinom
= isl_vec_alloc(ctx
, n
);
163 if (!c
|| !k
|| !left
|| !multinom
)
166 isl_int_set_si(multinom
->el
[0], 1);
167 for (k
[0] = d
; k
[0] >= 0; --k
[0]) {
169 isl_qpolynomial_free(c
[0]);
170 c
[0] = isl_qpolynomial_coeff(poly
, isl_dim_in
, n
- 1, k
[0]);
173 isl_int_set(multinom
->el
[1], multinom
->el
[0]);
180 for (j
= 2; j
<= left
[i
- 1]; ++j
)
181 isl_int_divexact_ui(multinom
->el
[i
],
183 b
= isl_qpolynomial_coeff(c
[i
- 1], isl_dim_in
,
184 n
- 1 - i
, left
[i
- 1]);
185 b
= isl_qpolynomial_project_domain_on_params(b
);
186 dim
= isl_qpolynomial_get_domain_space(b
);
187 f
= isl_qpolynomial_rat_cst_on_domain(dim
, ctx
->one
,
189 b
= isl_qpolynomial_mul(b
, f
);
190 k
[n
- 1] = left
[n
- 2];
191 add_fold(b
, dom
, k
, n
, d
, data
);
195 if (k
[i
] >= left
[i
- 1]) {
201 isl_int_divexact_ui(multinom
->el
[i
],
202 multinom
->el
[i
], k
[i
]);
203 isl_qpolynomial_free(c
[i
]);
204 c
[i
] = isl_qpolynomial_coeff(c
[i
- 1], isl_dim_in
,
206 left
[i
] = left
[i
- 1] - k
[i
];
208 isl_int_set(multinom
->el
[i
+ 1], multinom
->el
[i
]);
211 isl_int_mul_ui(multinom
->el
[0], multinom
->el
[0], k
[0]);
214 for (i
= 0; i
< n
; ++i
)
215 isl_qpolynomial_free(c
[i
]);
217 isl_vec_free(multinom
);
223 isl_vec_free(multinom
);
227 for (i
= 0; i
< n
; ++i
)
228 isl_qpolynomial_free(c
[i
]);
233 /* Perform bernstein expansion on the parametric vertices that are active
236 * data->poly has been homogenized in the calling function.
238 * We plug in the barycentric coordinates for the set variables
240 * \vec x = \sum_i \alpha_i v_i(\vec p)
242 * and the constant "1 = \sum_i \alpha_i" for the homogeneous dimension.
243 * Next, we extract the coefficients of the Bernstein base polynomials.
245 static int bernstein_coefficients_cell(__isl_take isl_cell
*cell
, void *user
)
248 struct bernstein_data
*data
= (struct bernstein_data
*)user
;
249 isl_space
*dim_param
;
251 isl_qpolynomial
*poly
= data
->poly
;
254 isl_qpolynomial
**subs
;
255 isl_pw_qpolynomial_fold
*pwf
;
262 nvar
= isl_qpolynomial_dim(poly
, isl_dim_in
) - 1;
263 n_vertices
= cell
->n_vertices
;
265 ctx
= isl_qpolynomial_get_ctx(poly
);
266 if (n_vertices
> nvar
+ 1 && ctx
->opt
->bernstein_triangulate
)
267 return isl_cell_foreach_simplex(cell
,
268 &bernstein_coefficients_cell
, user
);
270 subs
= isl_alloc_array(ctx
, isl_qpolynomial
*, 1 + nvar
);
274 dim_param
= isl_basic_set_get_space(cell
->dom
);
275 dim_dst
= isl_qpolynomial_get_domain_space(poly
);
276 dim_dst
= isl_space_add_dims(dim_dst
, isl_dim_set
, n_vertices
);
278 for (i
= 0; i
< 1 + nvar
; ++i
)
279 subs
[i
] = isl_qpolynomial_zero_on_domain(isl_space_copy(dim_dst
));
281 for (i
= 0; i
< n_vertices
; ++i
) {
283 c
= isl_qpolynomial_var_on_domain(isl_space_copy(dim_dst
), isl_dim_set
,
285 for (j
= 0; j
< nvar
; ++j
) {
286 int k
= cell
->ids
[i
];
288 v
= vertex_coordinate(cell
->vertices
->v
[k
].vertex
, j
,
289 isl_space_copy(dim_param
));
290 v
= isl_qpolynomial_add_dims(v
, isl_dim_in
,
291 1 + nvar
+ n_vertices
);
292 v
= isl_qpolynomial_mul(v
, isl_qpolynomial_copy(c
));
293 subs
[1 + j
] = isl_qpolynomial_add(subs
[1 + j
], v
);
295 subs
[0] = isl_qpolynomial_add(subs
[0], c
);
297 isl_space_free(dim_dst
);
299 poly
= isl_qpolynomial_copy(poly
);
301 poly
= isl_qpolynomial_add_dims(poly
, isl_dim_in
, n_vertices
);
302 poly
= isl_qpolynomial_substitute(poly
, isl_dim_in
, 0, 1 + nvar
, subs
);
303 poly
= isl_qpolynomial_drop_dims(poly
, isl_dim_in
, 0, 1 + nvar
);
306 dom
= isl_set_from_basic_set(isl_basic_set_copy(cell
->dom
));
307 data
->fold
= isl_qpolynomial_fold_empty(data
->type
, isl_space_copy(dim_param
));
308 data
->fold_tight
= isl_qpolynomial_fold_empty(data
->type
, dim_param
);
309 extract_coefficients(poly
, dom
, data
);
311 pwf
= isl_pw_qpolynomial_fold_alloc(data
->type
, isl_set_copy(dom
),
313 data
->pwf
= isl_pw_qpolynomial_fold_fold(data
->pwf
, pwf
);
314 pwf
= isl_pw_qpolynomial_fold_alloc(data
->type
, dom
, data
->fold_tight
);
315 data
->pwf_tight
= isl_pw_qpolynomial_fold_fold(data
->pwf_tight
, pwf
);
317 isl_qpolynomial_free(poly
);
319 for (i
= 0; i
< 1 + nvar
; ++i
)
320 isl_qpolynomial_free(subs
[i
]);
328 /* Base case of applying bernstein expansion.
330 * We compute the chamber decomposition of the parametric polytope "bset"
331 * and then perform bernstein expansion on the parametric vertices
332 * that are active on each chamber.
334 static __isl_give isl_pw_qpolynomial_fold
*bernstein_coefficients_base(
335 __isl_take isl_basic_set
*bset
,
336 __isl_take isl_qpolynomial
*poly
, struct bernstein_data
*data
, int *tight
)
340 isl_pw_qpolynomial_fold
*pwf
;
341 isl_vertices
*vertices
;
344 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
347 isl_qpolynomial_fold
*fold
;
349 fold
= isl_qpolynomial_fold_alloc(data
->type
, poly
);
350 dom
= isl_set_from_basic_set(bset
);
353 pwf
= isl_pw_qpolynomial_fold_alloc(data
->type
, dom
, fold
);
354 return isl_pw_qpolynomial_fold_project_domain_on_params(pwf
);
357 if (isl_qpolynomial_is_zero(poly
)) {
359 isl_qpolynomial_fold
*fold
;
360 fold
= isl_qpolynomial_fold_alloc(data
->type
, poly
);
361 dom
= isl_set_from_basic_set(bset
);
362 pwf
= isl_pw_qpolynomial_fold_alloc(data
->type
, dom
, fold
);
365 return isl_pw_qpolynomial_fold_project_domain_on_params(pwf
);
368 dim
= isl_basic_set_get_space(bset
);
369 dim
= isl_space_params(dim
);
370 dim
= isl_space_from_domain(dim
);
371 dim
= isl_space_add_dims(dim
, isl_dim_set
, 1);
372 data
->pwf
= isl_pw_qpolynomial_fold_zero(isl_space_copy(dim
), data
->type
);
373 data
->pwf_tight
= isl_pw_qpolynomial_fold_zero(dim
, data
->type
);
374 data
->poly
= isl_qpolynomial_homogenize(isl_qpolynomial_copy(poly
));
375 vertices
= isl_basic_set_compute_vertices(bset
);
376 isl_vertices_foreach_disjoint_cell(vertices
,
377 &bernstein_coefficients_cell
, data
);
378 isl_vertices_free(vertices
);
379 isl_qpolynomial_free(data
->poly
);
381 isl_basic_set_free(bset
);
382 isl_qpolynomial_free(poly
);
384 covers
= isl_pw_qpolynomial_fold_covers(data
->pwf_tight
, data
->pwf
);
392 isl_pw_qpolynomial_fold_free(data
->pwf
);
393 return data
->pwf_tight
;
396 data
->pwf
= isl_pw_qpolynomial_fold_fold(data
->pwf
, data
->pwf_tight
);
400 isl_pw_qpolynomial_fold_free(data
->pwf_tight
);
401 isl_pw_qpolynomial_fold_free(data
->pwf
);
405 /* Apply bernstein expansion recursively by working in on len[i]
406 * set variables at a time, with i ranging from n_group - 1 to 0.
408 static __isl_give isl_pw_qpolynomial_fold
*bernstein_coefficients_recursive(
409 __isl_take isl_pw_qpolynomial
*pwqp
,
410 int n_group
, int *len
, struct bernstein_data
*data
, int *tight
)
415 isl_pw_qpolynomial_fold
*pwf
;
420 nparam
= isl_pw_qpolynomial_dim(pwqp
, isl_dim_param
);
421 nvar
= isl_pw_qpolynomial_dim(pwqp
, isl_dim_in
);
423 pwqp
= isl_pw_qpolynomial_move_dims(pwqp
, isl_dim_param
, nparam
,
424 isl_dim_in
, 0, nvar
- len
[n_group
- 1]);
425 pwf
= isl_pw_qpolynomial_bound(pwqp
, data
->type
, tight
);
427 for (i
= n_group
- 2; i
>= 0; --i
) {
428 nparam
= isl_pw_qpolynomial_fold_dim(pwf
, isl_dim_param
);
429 pwf
= isl_pw_qpolynomial_fold_move_dims(pwf
, isl_dim_in
, 0,
430 isl_dim_param
, nparam
- len
[i
], len
[i
]);
431 if (tight
&& !*tight
)
433 pwf
= isl_pw_qpolynomial_fold_bound(pwf
, tight
);
439 static __isl_give isl_pw_qpolynomial_fold
*bernstein_coefficients_factors(
440 __isl_take isl_basic_set
*bset
,
441 __isl_take isl_qpolynomial
*poly
, struct bernstein_data
*data
, int *tight
)
445 isl_pw_qpolynomial
*pwqp
;
446 isl_pw_qpolynomial_fold
*pwf
;
448 f
= isl_basic_set_factorizer(bset
);
451 if (f
->n_group
== 0) {
452 isl_factorizer_free(f
);
453 return bernstein_coefficients_base(bset
, poly
, data
, tight
);
456 set
= isl_set_from_basic_set(bset
);
457 pwqp
= isl_pw_qpolynomial_alloc(set
, poly
);
458 pwqp
= isl_pw_qpolynomial_morph_domain(pwqp
, isl_morph_copy(f
->morph
));
460 pwf
= bernstein_coefficients_recursive(pwqp
, f
->n_group
, f
->len
, data
,
463 isl_factorizer_free(f
);
467 isl_basic_set_free(bset
);
468 isl_qpolynomial_free(poly
);
472 static __isl_give isl_pw_qpolynomial_fold
*bernstein_coefficients_full_recursive(
473 __isl_take isl_basic_set
*bset
,
474 __isl_take isl_qpolynomial
*poly
, struct bernstein_data
*data
, int *tight
)
479 isl_pw_qpolynomial_fold
*pwf
;
481 isl_pw_qpolynomial
*pwqp
;
486 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
488 len
= isl_alloc_array(bset
->ctx
, int, nvar
);
492 for (i
= 0; i
< nvar
; ++i
)
495 set
= isl_set_from_basic_set(bset
);
496 pwqp
= isl_pw_qpolynomial_alloc(set
, poly
);
498 pwf
= bernstein_coefficients_recursive(pwqp
, nvar
, len
, data
, tight
);
504 isl_basic_set_free(bset
);
505 isl_qpolynomial_free(poly
);
509 /* Compute a bound on the polynomial defined over the parametric polytope
510 * using bernstein expansion and store the result
511 * in bound->pwf and bound->pwf_tight.
513 * If bernstein_recurse is set to ISL_BERNSTEIN_FACTORS, we check if
514 * the polytope can be factorized and apply bernstein expansion recursively
516 * If bernstein_recurse is set to ISL_BERNSTEIN_INTERVALS, we apply
517 * bernstein expansion recursively on each dimension.
518 * Otherwise, we apply bernstein expansion on the entire polytope.
520 int isl_qpolynomial_bound_on_domain_bernstein(__isl_take isl_basic_set
*bset
,
521 __isl_take isl_qpolynomial
*poly
, struct isl_bound
*bound
)
523 struct bernstein_data data
;
524 isl_pw_qpolynomial_fold
*pwf
;
527 int *tp
= bound
->check_tight
? &tight
: NULL
;
532 data
.type
= bound
->type
;
533 data
.check_tight
= bound
->check_tight
;
535 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
537 if (bset
->ctx
->opt
->bernstein_recurse
& ISL_BERNSTEIN_FACTORS
)
538 pwf
= bernstein_coefficients_factors(bset
, poly
, &data
, tp
);
540 (bset
->ctx
->opt
->bernstein_recurse
& ISL_BERNSTEIN_INTERVALS
))
541 pwf
= bernstein_coefficients_full_recursive(bset
, poly
, &data
, tp
);
543 pwf
= bernstein_coefficients_base(bset
, poly
, &data
, tp
);
546 bound
->pwf_tight
= isl_pw_qpolynomial_fold_fold(bound
->pwf_tight
, pwf
);
548 bound
->pwf
= isl_pw_qpolynomial_fold_fold(bound
->pwf
, pwf
);
552 isl_basic_set_free(bset
);
553 isl_qpolynomial_free(poly
);