isl 0.15
[isl.git] / isl_morph.c
blob9c14c80a4665de32b2e67783cfdfd48b861b4f92
1 /*
2 * Copyright 2010-2011 INRIA Saclay
3 * Copyright 2014 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
8 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
9 * 91893 Orsay, France
10 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
13 #include <isl_map_private.h>
14 #include <isl_aff_private.h>
15 #include <isl_morph.h>
16 #include <isl_seq.h>
17 #include <isl_mat_private.h>
18 #include <isl_space_private.h>
19 #include <isl_equalities.h>
21 isl_ctx *isl_morph_get_ctx(__isl_keep isl_morph *morph)
23 if (!morph)
24 return NULL;
25 return isl_basic_set_get_ctx(morph->dom);
28 __isl_give isl_morph *isl_morph_alloc(
29 __isl_take isl_basic_set *dom, __isl_take isl_basic_set *ran,
30 __isl_take isl_mat *map, __isl_take isl_mat *inv)
32 isl_morph *morph;
34 if (!dom || !ran || !map || !inv)
35 goto error;
37 morph = isl_alloc_type(dom->ctx, struct isl_morph);
38 if (!morph)
39 goto error;
41 morph->ref = 1;
42 morph->dom = dom;
43 morph->ran = ran;
44 morph->map = map;
45 morph->inv = inv;
47 return morph;
48 error:
49 isl_basic_set_free(dom);
50 isl_basic_set_free(ran);
51 isl_mat_free(map);
52 isl_mat_free(inv);
53 return NULL;
56 __isl_give isl_morph *isl_morph_copy(__isl_keep isl_morph *morph)
58 if (!morph)
59 return NULL;
61 morph->ref++;
62 return morph;
65 __isl_give isl_morph *isl_morph_dup(__isl_keep isl_morph *morph)
67 if (!morph)
68 return NULL;
70 return isl_morph_alloc(isl_basic_set_copy(morph->dom),
71 isl_basic_set_copy(morph->ran),
72 isl_mat_copy(morph->map), isl_mat_copy(morph->inv));
75 __isl_give isl_morph *isl_morph_cow(__isl_take isl_morph *morph)
77 if (!morph)
78 return NULL;
80 if (morph->ref == 1)
81 return morph;
82 morph->ref--;
83 return isl_morph_dup(morph);
86 void isl_morph_free(__isl_take isl_morph *morph)
88 if (!morph)
89 return;
91 if (--morph->ref > 0)
92 return;
94 isl_basic_set_free(morph->dom);
95 isl_basic_set_free(morph->ran);
96 isl_mat_free(morph->map);
97 isl_mat_free(morph->inv);
98 free(morph);
101 /* Is "morph" an identity on the parameters?
103 static int identity_on_parameters(__isl_keep isl_morph *morph)
105 int is_identity;
106 unsigned nparam;
107 isl_mat *sub;
109 nparam = isl_morph_dom_dim(morph, isl_dim_param);
110 if (nparam != isl_morph_ran_dim(morph, isl_dim_param))
111 return 0;
112 if (nparam == 0)
113 return 1;
114 sub = isl_mat_sub_alloc(morph->map, 0, 1 + nparam, 0, 1 + nparam);
115 is_identity = isl_mat_is_scaled_identity(sub);
116 isl_mat_free(sub);
118 return is_identity;
121 /* Return an affine expression of the variables of the range of "morph"
122 * in terms of the parameters and the variables of the domain on "morph".
124 * In order for the space manipulations to make sense, we require
125 * that the parameters are not modified by "morph".
127 __isl_give isl_multi_aff *isl_morph_get_var_multi_aff(
128 __isl_keep isl_morph *morph)
130 isl_space *dom, *ran, *space;
131 isl_local_space *ls;
132 isl_multi_aff *ma;
133 unsigned nparam, nvar;
134 int i;
135 int is_identity;
137 if (!morph)
138 return NULL;
140 is_identity = identity_on_parameters(morph);
141 if (is_identity < 0)
142 return NULL;
143 if (!is_identity)
144 isl_die(isl_morph_get_ctx(morph), isl_error_invalid,
145 "cannot handle parameter compression", return NULL);
147 dom = isl_morph_get_dom_space(morph);
148 ls = isl_local_space_from_space(isl_space_copy(dom));
149 ran = isl_morph_get_ran_space(morph);
150 space = isl_space_map_from_domain_and_range(dom, ran);
151 ma = isl_multi_aff_zero(space);
153 nparam = isl_multi_aff_dim(ma, isl_dim_param);
154 nvar = isl_multi_aff_dim(ma, isl_dim_out);
155 for (i = 0; i < nvar; ++i) {
156 isl_val *val;
157 isl_vec *v;
158 isl_aff *aff;
160 v = isl_mat_get_row(morph->map, 1 + nparam + i);
161 v = isl_vec_insert_els(v, 0, 1);
162 val = isl_mat_get_element_val(morph->map, 0, 0);
163 v = isl_vec_set_element_val(v, 0, val);
164 aff = isl_aff_alloc_vec(isl_local_space_copy(ls), v);
165 ma = isl_multi_aff_set_aff(ma, i, aff);
168 isl_local_space_free(ls);
169 return ma;
172 /* Return the domain space of "morph".
174 __isl_give isl_space *isl_morph_get_dom_space(__isl_keep isl_morph *morph)
176 if (!morph)
177 return NULL;
179 return isl_basic_set_get_space(morph->dom);
182 __isl_give isl_space *isl_morph_get_ran_space(__isl_keep isl_morph *morph)
184 if (!morph)
185 return NULL;
187 return isl_space_copy(morph->ran->dim);
190 unsigned isl_morph_dom_dim(__isl_keep isl_morph *morph, enum isl_dim_type type)
192 if (!morph)
193 return 0;
195 return isl_basic_set_dim(morph->dom, type);
198 unsigned isl_morph_ran_dim(__isl_keep isl_morph *morph, enum isl_dim_type type)
200 if (!morph)
201 return 0;
203 return isl_basic_set_dim(morph->ran, type);
206 __isl_give isl_morph *isl_morph_remove_dom_dims(__isl_take isl_morph *morph,
207 enum isl_dim_type type, unsigned first, unsigned n)
209 unsigned dom_offset;
211 if (n == 0)
212 return morph;
214 morph = isl_morph_cow(morph);
215 if (!morph)
216 return NULL;
218 dom_offset = 1 + isl_space_offset(morph->dom->dim, type);
220 morph->dom = isl_basic_set_remove_dims(morph->dom, type, first, n);
222 morph->map = isl_mat_drop_cols(morph->map, dom_offset + first, n);
224 morph->inv = isl_mat_drop_rows(morph->inv, dom_offset + first, n);
226 if (morph->dom && morph->ran && morph->map && morph->inv)
227 return morph;
229 isl_morph_free(morph);
230 return NULL;
233 __isl_give isl_morph *isl_morph_remove_ran_dims(__isl_take isl_morph *morph,
234 enum isl_dim_type type, unsigned first, unsigned n)
236 unsigned ran_offset;
238 if (n == 0)
239 return morph;
241 morph = isl_morph_cow(morph);
242 if (!morph)
243 return NULL;
245 ran_offset = 1 + isl_space_offset(morph->ran->dim, type);
247 morph->ran = isl_basic_set_remove_dims(morph->ran, type, first, n);
249 morph->map = isl_mat_drop_rows(morph->map, ran_offset + first, n);
251 morph->inv = isl_mat_drop_cols(morph->inv, ran_offset + first, n);
253 if (morph->dom && morph->ran && morph->map && morph->inv)
254 return morph;
256 isl_morph_free(morph);
257 return NULL;
260 /* Project domain of morph onto its parameter domain.
262 __isl_give isl_morph *isl_morph_dom_params(__isl_take isl_morph *morph)
264 unsigned n;
266 morph = isl_morph_cow(morph);
267 if (!morph)
268 return NULL;
269 n = isl_basic_set_dim(morph->dom, isl_dim_set);
270 morph = isl_morph_remove_dom_dims(morph, isl_dim_set, 0, n);
271 if (!morph)
272 return NULL;
273 morph->dom = isl_basic_set_params(morph->dom);
274 if (morph->dom)
275 return morph;
277 isl_morph_free(morph);
278 return NULL;
281 /* Project range of morph onto its parameter domain.
283 __isl_give isl_morph *isl_morph_ran_params(__isl_take isl_morph *morph)
285 unsigned n;
287 morph = isl_morph_cow(morph);
288 if (!morph)
289 return NULL;
290 n = isl_basic_set_dim(morph->ran, isl_dim_set);
291 morph = isl_morph_remove_ran_dims(morph, isl_dim_set, 0, n);
292 if (!morph)
293 return NULL;
294 morph->ran = isl_basic_set_params(morph->ran);
295 if (morph->ran)
296 return morph;
298 isl_morph_free(morph);
299 return NULL;
302 void isl_morph_print_internal(__isl_take isl_morph *morph, FILE *out)
304 if (!morph)
305 return;
307 isl_basic_set_dump(morph->dom);
308 isl_basic_set_dump(morph->ran);
309 isl_mat_print_internal(morph->map, out, 4);
310 isl_mat_print_internal(morph->inv, out, 4);
313 void isl_morph_dump(__isl_take isl_morph *morph)
315 isl_morph_print_internal(morph, stderr);
318 __isl_give isl_morph *isl_morph_identity(__isl_keep isl_basic_set *bset)
320 isl_mat *id;
321 isl_basic_set *universe;
322 unsigned total;
324 if (!bset)
325 return NULL;
327 total = isl_basic_set_total_dim(bset);
328 id = isl_mat_identity(bset->ctx, 1 + total);
329 universe = isl_basic_set_universe(isl_space_copy(bset->dim));
331 return isl_morph_alloc(universe, isl_basic_set_copy(universe),
332 id, isl_mat_copy(id));
335 /* Create a(n identity) morphism between empty sets of the same dimension
336 * a "bset".
338 __isl_give isl_morph *isl_morph_empty(__isl_keep isl_basic_set *bset)
340 isl_mat *id;
341 isl_basic_set *empty;
342 unsigned total;
344 if (!bset)
345 return NULL;
347 total = isl_basic_set_total_dim(bset);
348 id = isl_mat_identity(bset->ctx, 1 + total);
349 empty = isl_basic_set_empty(isl_space_copy(bset->dim));
351 return isl_morph_alloc(empty, isl_basic_set_copy(empty),
352 id, isl_mat_copy(id));
355 /* Given a matrix that maps a (possibly) parametric domain to
356 * a parametric domain, add in rows that map the "nparam" parameters onto
357 * themselves.
359 static __isl_give isl_mat *insert_parameter_rows(__isl_take isl_mat *mat,
360 unsigned nparam)
362 int i;
364 if (nparam == 0)
365 return mat;
366 if (!mat)
367 return NULL;
369 mat = isl_mat_insert_rows(mat, 1, nparam);
370 if (!mat)
371 return NULL;
373 for (i = 0; i < nparam; ++i) {
374 isl_seq_clr(mat->row[1 + i], mat->n_col);
375 isl_int_set(mat->row[1 + i][1 + i], mat->row[0][0]);
378 return mat;
381 /* Construct a basic set described by the "n" equalities of "bset" starting
382 * at "first".
384 static __isl_give isl_basic_set *copy_equalities(__isl_keep isl_basic_set *bset,
385 unsigned first, unsigned n)
387 int i, k;
388 isl_basic_set *eq;
389 unsigned total;
391 isl_assert(bset->ctx, bset->n_div == 0, return NULL);
393 total = isl_basic_set_total_dim(bset);
394 eq = isl_basic_set_alloc_space(isl_space_copy(bset->dim), 0, n, 0);
395 if (!eq)
396 return NULL;
397 for (i = 0; i < n; ++i) {
398 k = isl_basic_set_alloc_equality(eq);
399 if (k < 0)
400 goto error;
401 isl_seq_cpy(eq->eq[k], bset->eq[first + k], 1 + total);
404 return eq;
405 error:
406 isl_basic_set_free(eq);
407 return NULL;
410 /* Given a basic set, exploit the equalties in the basic set to construct
411 * a morphishm that maps the basic set to a lower-dimensional space.
412 * Specifically, the morphism reduces the number of dimensions of type "type".
414 * This function is a slight generalization of isl_mat_variable_compression
415 * in that it allows the input to be parametric and that it allows for the
416 * compression of either parameters or set variables.
418 * We first select the equalities of interest, that is those that involve
419 * variables of type "type" and no later variables.
420 * Denote those equalities as
422 * -C(p) + M x = 0
424 * where C(p) depends on the parameters if type == isl_dim_set and
425 * is a constant if type == isl_dim_param.
427 * First compute the (left) Hermite normal form of M,
429 * M [U1 U2] = M U = H = [H1 0]
430 * or
431 * M = H Q = [H1 0] [Q1]
432 * [Q2]
434 * with U, Q unimodular, Q = U^{-1} (and H lower triangular).
435 * Define the transformed variables as
437 * x = [U1 U2] [ x1' ] = [U1 U2] [Q1] x
438 * [ x2' ] [Q2]
440 * The equalities then become
442 * -C(p) + H1 x1' = 0 or x1' = H1^{-1} C(p) = C'(p)
444 * If the denominator of the constant term does not divide the
445 * the common denominator of the parametric terms, then every
446 * integer point is mapped to a non-integer point and then the original set has no
447 * integer solutions (since the x' are a unimodular transformation
448 * of the x). In this case, an empty morphism is returned.
449 * Otherwise, the transformation is given by
451 * x = U1 H1^{-1} C(p) + U2 x2'
453 * The inverse transformation is simply
455 * x2' = Q2 x
457 * Both matrices are extended to map the full original space to the full
458 * compressed space.
460 __isl_give isl_morph *isl_basic_set_variable_compression(
461 __isl_keep isl_basic_set *bset, enum isl_dim_type type)
463 unsigned otype;
464 unsigned ntype;
465 unsigned orest;
466 unsigned nrest;
467 int f_eq, n_eq;
468 isl_space *dim;
469 isl_mat *H, *U, *Q, *C = NULL, *H1, *U1, *U2;
470 isl_basic_set *dom, *ran;
472 if (!bset)
473 return NULL;
475 if (isl_basic_set_plain_is_empty(bset))
476 return isl_morph_empty(bset);
478 isl_assert(bset->ctx, bset->n_div == 0, return NULL);
480 otype = 1 + isl_space_offset(bset->dim, type);
481 ntype = isl_basic_set_dim(bset, type);
482 orest = otype + ntype;
483 nrest = isl_basic_set_total_dim(bset) - (orest - 1);
485 for (f_eq = 0; f_eq < bset->n_eq; ++f_eq)
486 if (isl_seq_first_non_zero(bset->eq[f_eq] + orest, nrest) == -1)
487 break;
488 for (n_eq = 0; f_eq + n_eq < bset->n_eq; ++n_eq)
489 if (isl_seq_first_non_zero(bset->eq[f_eq + n_eq] + otype, ntype) == -1)
490 break;
491 if (n_eq == 0)
492 return isl_morph_identity(bset);
494 H = isl_mat_sub_alloc6(bset->ctx, bset->eq, f_eq, n_eq, otype, ntype);
495 H = isl_mat_left_hermite(H, 0, &U, &Q);
496 if (!H || !U || !Q)
497 goto error;
498 Q = isl_mat_drop_rows(Q, 0, n_eq);
499 Q = isl_mat_diagonal(isl_mat_identity(bset->ctx, otype), Q);
500 Q = isl_mat_diagonal(Q, isl_mat_identity(bset->ctx, nrest));
501 C = isl_mat_alloc(bset->ctx, 1 + n_eq, otype);
502 if (!C)
503 goto error;
504 isl_int_set_si(C->row[0][0], 1);
505 isl_seq_clr(C->row[0] + 1, otype - 1);
506 isl_mat_sub_neg(C->ctx, C->row + 1, bset->eq + f_eq, n_eq, 0, 0, otype);
507 H1 = isl_mat_sub_alloc(H, 0, H->n_row, 0, H->n_row);
508 H1 = isl_mat_lin_to_aff(H1);
509 C = isl_mat_inverse_product(H1, C);
510 if (!C)
511 goto error;
512 isl_mat_free(H);
514 if (!isl_int_is_one(C->row[0][0])) {
515 int i;
516 isl_int g;
518 isl_int_init(g);
519 for (i = 0; i < n_eq; ++i) {
520 isl_seq_gcd(C->row[1 + i] + 1, otype - 1, &g);
521 isl_int_gcd(g, g, C->row[0][0]);
522 if (!isl_int_is_divisible_by(C->row[1 + i][0], g))
523 break;
525 isl_int_clear(g);
527 if (i < n_eq) {
528 isl_mat_free(C);
529 isl_mat_free(U);
530 isl_mat_free(Q);
531 return isl_morph_empty(bset);
534 C = isl_mat_normalize(C);
537 U1 = isl_mat_sub_alloc(U, 0, U->n_row, 0, n_eq);
538 U1 = isl_mat_lin_to_aff(U1);
539 U2 = isl_mat_sub_alloc(U, 0, U->n_row, n_eq, U->n_row - n_eq);
540 U2 = isl_mat_lin_to_aff(U2);
541 isl_mat_free(U);
543 C = isl_mat_product(U1, C);
544 C = isl_mat_aff_direct_sum(C, U2);
545 C = insert_parameter_rows(C, otype - 1);
546 C = isl_mat_diagonal(C, isl_mat_identity(bset->ctx, nrest));
548 dim = isl_space_copy(bset->dim);
549 dim = isl_space_drop_dims(dim, type, 0, ntype);
550 dim = isl_space_add_dims(dim, type, ntype - n_eq);
551 ran = isl_basic_set_universe(dim);
552 dom = copy_equalities(bset, f_eq, n_eq);
554 return isl_morph_alloc(dom, ran, Q, C);
555 error:
556 isl_mat_free(C);
557 isl_mat_free(H);
558 isl_mat_free(U);
559 isl_mat_free(Q);
560 return NULL;
563 /* Construct a parameter compression for "bset".
564 * We basically just call isl_mat_parameter_compression with the right input
565 * and then extend the resulting matrix to include the variables.
567 * The implementation assumes that "bset" does not have any equalities
568 * that only involve the parameters and that isl_basic_set_gauss has
569 * been applied to "bset".
571 * Let the equalities be given as
573 * B(p) + A x = 0.
575 * We use isl_mat_parameter_compression_ext to compute the compression
577 * p = T p'.
579 __isl_give isl_morph *isl_basic_set_parameter_compression(
580 __isl_keep isl_basic_set *bset)
582 unsigned nparam;
583 unsigned nvar;
584 unsigned n_div;
585 int n_eq;
586 isl_mat *H, *B;
587 isl_mat *map, *inv;
588 isl_basic_set *dom, *ran;
590 if (!bset)
591 return NULL;
593 if (isl_basic_set_plain_is_empty(bset))
594 return isl_morph_empty(bset);
595 if (bset->n_eq == 0)
596 return isl_morph_identity(bset);
598 n_eq = bset->n_eq;
599 nparam = isl_basic_set_dim(bset, isl_dim_param);
600 nvar = isl_basic_set_dim(bset, isl_dim_set);
601 n_div = isl_basic_set_dim(bset, isl_dim_div);
603 if (isl_seq_first_non_zero(bset->eq[bset->n_eq - 1] + 1 + nparam,
604 nvar + n_div) == -1)
605 isl_die(isl_basic_set_get_ctx(bset), isl_error_invalid,
606 "input not allowed to have parameter equalities",
607 return NULL);
608 if (n_eq > nvar + n_div)
609 isl_die(isl_basic_set_get_ctx(bset), isl_error_invalid,
610 "input not gaussed", return NULL);
612 B = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, n_eq, 0, 1 + nparam);
613 H = isl_mat_sub_alloc6(bset->ctx, bset->eq,
614 0, n_eq, 1 + nparam, nvar + n_div);
615 inv = isl_mat_parameter_compression_ext(B, H);
616 inv = isl_mat_diagonal(inv, isl_mat_identity(bset->ctx, nvar));
617 map = isl_mat_right_inverse(isl_mat_copy(inv));
619 dom = isl_basic_set_universe(isl_space_copy(bset->dim));
620 ran = isl_basic_set_universe(isl_space_copy(bset->dim));
622 return isl_morph_alloc(dom, ran, map, inv);
625 /* Add stride constraints to "bset" based on the inverse mapping
626 * that was plugged in. In particular, if morph maps x' to x,
627 * the the constraints of the original input
629 * A x' + b >= 0
631 * have been rewritten to
633 * A inv x + b >= 0
635 * However, this substitution may loose information on the integrality of x',
636 * so we need to impose that
638 * inv x
640 * is integral. If inv = B/d, this means that we need to impose that
642 * B x = 0 mod d
644 * or
646 * exists alpha in Z^m: B x = d alpha
648 * This function is similar to add_strides in isl_affine_hull.c
650 static __isl_give isl_basic_set *add_strides(__isl_take isl_basic_set *bset,
651 __isl_keep isl_morph *morph)
653 int i, div, k;
654 isl_int gcd;
656 if (isl_int_is_one(morph->inv->row[0][0]))
657 return bset;
659 isl_int_init(gcd);
661 for (i = 0; 1 + i < morph->inv->n_row; ++i) {
662 isl_seq_gcd(morph->inv->row[1 + i], morph->inv->n_col, &gcd);
663 if (isl_int_is_divisible_by(gcd, morph->inv->row[0][0]))
664 continue;
665 div = isl_basic_set_alloc_div(bset);
666 if (div < 0)
667 goto error;
668 isl_int_set_si(bset->div[div][0], 0);
669 k = isl_basic_set_alloc_equality(bset);
670 if (k < 0)
671 goto error;
672 isl_seq_cpy(bset->eq[k], morph->inv->row[1 + i],
673 morph->inv->n_col);
674 isl_seq_clr(bset->eq[k] + morph->inv->n_col, bset->n_div);
675 isl_int_set(bset->eq[k][morph->inv->n_col + div],
676 morph->inv->row[0][0]);
679 isl_int_clear(gcd);
681 return bset;
682 error:
683 isl_int_clear(gcd);
684 isl_basic_set_free(bset);
685 return NULL;
688 /* Apply the morphism to the basic set.
689 * We basically just compute the preimage of "bset" under the inverse mapping
690 * in morph, add in stride constraints and intersect with the range
691 * of the morphism.
693 __isl_give isl_basic_set *isl_morph_basic_set(__isl_take isl_morph *morph,
694 __isl_take isl_basic_set *bset)
696 isl_basic_set *res = NULL;
697 isl_mat *mat = NULL;
698 int i, k;
699 int max_stride;
701 if (!morph || !bset)
702 goto error;
704 isl_assert(bset->ctx, isl_space_is_equal(bset->dim, morph->dom->dim),
705 goto error);
707 max_stride = morph->inv->n_row - 1;
708 if (isl_int_is_one(morph->inv->row[0][0]))
709 max_stride = 0;
710 res = isl_basic_set_alloc_space(isl_space_copy(morph->ran->dim),
711 bset->n_div + max_stride, bset->n_eq + max_stride, bset->n_ineq);
713 for (i = 0; i < bset->n_div; ++i)
714 if (isl_basic_set_alloc_div(res) < 0)
715 goto error;
717 mat = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, bset->n_eq,
718 0, morph->inv->n_row);
719 mat = isl_mat_product(mat, isl_mat_copy(morph->inv));
720 if (!mat)
721 goto error;
722 for (i = 0; i < bset->n_eq; ++i) {
723 k = isl_basic_set_alloc_equality(res);
724 if (k < 0)
725 goto error;
726 isl_seq_cpy(res->eq[k], mat->row[i], mat->n_col);
727 isl_seq_scale(res->eq[k] + mat->n_col, bset->eq[i] + mat->n_col,
728 morph->inv->row[0][0], bset->n_div);
730 isl_mat_free(mat);
732 mat = isl_mat_sub_alloc6(bset->ctx, bset->ineq, 0, bset->n_ineq,
733 0, morph->inv->n_row);
734 mat = isl_mat_product(mat, isl_mat_copy(morph->inv));
735 if (!mat)
736 goto error;
737 for (i = 0; i < bset->n_ineq; ++i) {
738 k = isl_basic_set_alloc_inequality(res);
739 if (k < 0)
740 goto error;
741 isl_seq_cpy(res->ineq[k], mat->row[i], mat->n_col);
742 isl_seq_scale(res->ineq[k] + mat->n_col,
743 bset->ineq[i] + mat->n_col,
744 morph->inv->row[0][0], bset->n_div);
746 isl_mat_free(mat);
748 mat = isl_mat_sub_alloc6(bset->ctx, bset->div, 0, bset->n_div,
749 1, morph->inv->n_row);
750 mat = isl_mat_product(mat, isl_mat_copy(morph->inv));
751 if (!mat)
752 goto error;
753 for (i = 0; i < bset->n_div; ++i) {
754 isl_int_mul(res->div[i][0],
755 morph->inv->row[0][0], bset->div[i][0]);
756 isl_seq_cpy(res->div[i] + 1, mat->row[i], mat->n_col);
757 isl_seq_scale(res->div[i] + 1 + mat->n_col,
758 bset->div[i] + 1 + mat->n_col,
759 morph->inv->row[0][0], bset->n_div);
761 isl_mat_free(mat);
763 res = add_strides(res, morph);
765 if (isl_basic_set_is_rational(bset))
766 res = isl_basic_set_set_rational(res);
768 res = isl_basic_set_simplify(res);
769 res = isl_basic_set_finalize(res);
771 res = isl_basic_set_intersect(res, isl_basic_set_copy(morph->ran));
773 isl_morph_free(morph);
774 isl_basic_set_free(bset);
775 return res;
776 error:
777 isl_mat_free(mat);
778 isl_morph_free(morph);
779 isl_basic_set_free(bset);
780 isl_basic_set_free(res);
781 return NULL;
784 /* Apply the morphism to the set.
786 __isl_give isl_set *isl_morph_set(__isl_take isl_morph *morph,
787 __isl_take isl_set *set)
789 int i;
791 if (!morph || !set)
792 goto error;
794 isl_assert(set->ctx, isl_space_is_equal(set->dim, morph->dom->dim), goto error);
796 set = isl_set_cow(set);
797 if (!set)
798 goto error;
800 isl_space_free(set->dim);
801 set->dim = isl_space_copy(morph->ran->dim);
802 if (!set->dim)
803 goto error;
805 for (i = 0; i < set->n; ++i) {
806 set->p[i] = isl_morph_basic_set(isl_morph_copy(morph), set->p[i]);
807 if (!set->p[i])
808 goto error;
811 isl_morph_free(morph);
813 ISL_F_CLR(set, ISL_SET_NORMALIZED);
815 return set;
816 error:
817 isl_set_free(set);
818 isl_morph_free(morph);
819 return NULL;
822 /* Construct a morphism that first does morph2 and then morph1.
824 __isl_give isl_morph *isl_morph_compose(__isl_take isl_morph *morph1,
825 __isl_take isl_morph *morph2)
827 isl_mat *map, *inv;
828 isl_basic_set *dom, *ran;
830 if (!morph1 || !morph2)
831 goto error;
833 map = isl_mat_product(isl_mat_copy(morph1->map), isl_mat_copy(morph2->map));
834 inv = isl_mat_product(isl_mat_copy(morph2->inv), isl_mat_copy(morph1->inv));
835 dom = isl_morph_basic_set(isl_morph_inverse(isl_morph_copy(morph2)),
836 isl_basic_set_copy(morph1->dom));
837 dom = isl_basic_set_intersect(dom, isl_basic_set_copy(morph2->dom));
838 ran = isl_morph_basic_set(isl_morph_copy(morph1),
839 isl_basic_set_copy(morph2->ran));
840 ran = isl_basic_set_intersect(ran, isl_basic_set_copy(morph1->ran));
842 isl_morph_free(morph1);
843 isl_morph_free(morph2);
845 return isl_morph_alloc(dom, ran, map, inv);
846 error:
847 isl_morph_free(morph1);
848 isl_morph_free(morph2);
849 return NULL;
852 __isl_give isl_morph *isl_morph_inverse(__isl_take isl_morph *morph)
854 isl_basic_set *bset;
855 isl_mat *mat;
857 morph = isl_morph_cow(morph);
858 if (!morph)
859 return NULL;
861 bset = morph->dom;
862 morph->dom = morph->ran;
863 morph->ran = bset;
865 mat = morph->map;
866 morph->map = morph->inv;
867 morph->inv = mat;
869 return morph;
872 /* We detect all the equalities first to avoid implicit equalties
873 * being discovered during the computations. In particular,
874 * the compression on the variables could expose additional stride
875 * constraints on the parameters. This would result in existentially
876 * quantified variables after applying the resulting morph, which
877 * in turn could break invariants of the calling functions.
879 __isl_give isl_morph *isl_basic_set_full_compression(
880 __isl_keep isl_basic_set *bset)
882 isl_morph *morph, *morph2;
884 bset = isl_basic_set_copy(bset);
885 bset = isl_basic_set_detect_equalities(bset);
887 morph = isl_basic_set_variable_compression(bset, isl_dim_param);
888 bset = isl_morph_basic_set(isl_morph_copy(morph), bset);
890 morph2 = isl_basic_set_parameter_compression(bset);
891 bset = isl_morph_basic_set(isl_morph_copy(morph2), bset);
893 morph = isl_morph_compose(morph2, morph);
895 morph2 = isl_basic_set_variable_compression(bset, isl_dim_set);
896 isl_basic_set_free(bset);
898 morph = isl_morph_compose(morph2, morph);
900 return morph;
903 __isl_give isl_vec *isl_morph_vec(__isl_take isl_morph *morph,
904 __isl_take isl_vec *vec)
906 if (!morph)
907 goto error;
909 vec = isl_mat_vec_product(isl_mat_copy(morph->map), vec);
911 isl_morph_free(morph);
912 return vec;
913 error:
914 isl_morph_free(morph);
915 isl_vec_free(vec);
916 return NULL;