2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
15 #include "isl_map_private.h"
16 #include "isl_equalities.h"
17 #include "isl_sample.h"
20 struct isl_basic_map
*isl_basic_map_implicit_equalities(
21 struct isl_basic_map
*bmap
)
28 bmap
= isl_basic_map_gauss(bmap
, NULL
);
29 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
31 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_NO_IMPLICIT
))
33 if (bmap
->n_ineq
<= 1)
36 tab
= isl_tab_from_basic_map(bmap
);
37 tab
= isl_tab_detect_implicit_equalities(tab
);
38 bmap
= isl_basic_map_update_from_tab(bmap
, tab
);
40 bmap
= isl_basic_map_gauss(bmap
, NULL
);
41 ISL_F_SET(bmap
, ISL_BASIC_MAP_NO_IMPLICIT
);
45 struct isl_basic_set
*isl_basic_set_implicit_equalities(
46 struct isl_basic_set
*bset
)
48 return (struct isl_basic_set
*)
49 isl_basic_map_implicit_equalities((struct isl_basic_map
*)bset
);
52 struct isl_map
*isl_map_implicit_equalities(struct isl_map
*map
)
59 for (i
= 0; i
< map
->n
; ++i
) {
60 map
->p
[i
] = isl_basic_map_implicit_equalities(map
->p
[i
]);
71 /* Make eq[row][col] of both bmaps equal so we can add the row
72 * add the column to the common matrix.
73 * Note that because of the echelon form, the columns of row row
74 * after column col are zero.
76 static void set_common_multiple(
77 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
,
78 unsigned row
, unsigned col
)
82 if (isl_int_eq(bset1
->eq
[row
][col
], bset2
->eq
[row
][col
]))
87 isl_int_lcm(m
, bset1
->eq
[row
][col
], bset2
->eq
[row
][col
]);
88 isl_int_divexact(c
, m
, bset1
->eq
[row
][col
]);
89 isl_seq_scale(bset1
->eq
[row
], bset1
->eq
[row
], c
, col
+1);
90 isl_int_divexact(c
, m
, bset2
->eq
[row
][col
]);
91 isl_seq_scale(bset2
->eq
[row
], bset2
->eq
[row
], c
, col
+1);
96 /* Delete a given equality, moving all the following equalities one up.
98 static void delete_row(struct isl_basic_set
*bset
, unsigned row
)
105 for (r
= row
; r
< bset
->n_eq
; ++r
)
106 bset
->eq
[r
] = bset
->eq
[r
+1];
107 bset
->eq
[bset
->n_eq
] = t
;
110 /* Make first row entries in column col of bset1 identical to
111 * those of bset2, using the fact that entry bset1->eq[row][col]=a
112 * is non-zero. Initially, these elements of bset1 are all zero.
113 * For each row i < row, we set
114 * A[i] = a * A[i] + B[i][col] * A[row]
117 * A[i][col] = B[i][col] = a * old(B[i][col])
119 static void construct_column(
120 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
,
121 unsigned row
, unsigned col
)
130 total
= 1 + isl_basic_set_n_dim(bset1
);
131 for (r
= 0; r
< row
; ++r
) {
132 if (isl_int_is_zero(bset2
->eq
[r
][col
]))
134 isl_int_gcd(b
, bset2
->eq
[r
][col
], bset1
->eq
[row
][col
]);
135 isl_int_divexact(a
, bset1
->eq
[row
][col
], b
);
136 isl_int_divexact(b
, bset2
->eq
[r
][col
], b
);
137 isl_seq_combine(bset1
->eq
[r
], a
, bset1
->eq
[r
],
138 b
, bset1
->eq
[row
], total
);
139 isl_seq_scale(bset2
->eq
[r
], bset2
->eq
[r
], a
, total
);
143 delete_row(bset1
, row
);
146 /* Make first row entries in column col of bset1 identical to
147 * those of bset2, using only these entries of the two matrices.
148 * Let t be the last row with different entries.
149 * For each row i < t, we set
150 * A[i] = (A[t][col]-B[t][col]) * A[i] + (B[i][col]-A[i][col) * A[t]
151 * B[i] = (A[t][col]-B[t][col]) * B[i] + (B[i][col]-A[i][col) * B[t]
153 * A[i][col] = B[i][col] = old(A[t][col]*B[i][col]-A[i][col]*B[t][col])
155 static int transform_column(
156 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
,
157 unsigned row
, unsigned col
)
163 for (t
= row
-1; t
>= 0; --t
)
164 if (isl_int_ne(bset1
->eq
[t
][col
], bset2
->eq
[t
][col
]))
169 total
= 1 + isl_basic_set_n_dim(bset1
);
173 isl_int_sub(b
, bset1
->eq
[t
][col
], bset2
->eq
[t
][col
]);
174 for (i
= 0; i
< t
; ++i
) {
175 isl_int_sub(a
, bset2
->eq
[i
][col
], bset1
->eq
[i
][col
]);
176 isl_int_gcd(g
, a
, b
);
177 isl_int_divexact(a
, a
, g
);
178 isl_int_divexact(g
, b
, g
);
179 isl_seq_combine(bset1
->eq
[i
], g
, bset1
->eq
[i
], a
, bset1
->eq
[t
],
181 isl_seq_combine(bset2
->eq
[i
], g
, bset2
->eq
[i
], a
, bset2
->eq
[t
],
187 delete_row(bset1
, t
);
188 delete_row(bset2
, t
);
192 /* The implementation is based on Section 5.2 of Michael Karr,
193 * "Affine Relationships Among Variables of a Program",
194 * except that the echelon form we use starts from the last column
195 * and that we are dealing with integer coefficients.
197 static struct isl_basic_set
*affine_hull(
198 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
204 total
= 1 + isl_basic_set_n_dim(bset1
);
207 for (col
= total
-1; col
>= 0; --col
) {
208 int is_zero1
= row
>= bset1
->n_eq
||
209 isl_int_is_zero(bset1
->eq
[row
][col
]);
210 int is_zero2
= row
>= bset2
->n_eq
||
211 isl_int_is_zero(bset2
->eq
[row
][col
]);
212 if (!is_zero1
&& !is_zero2
) {
213 set_common_multiple(bset1
, bset2
, row
, col
);
215 } else if (!is_zero1
&& is_zero2
) {
216 construct_column(bset1
, bset2
, row
, col
);
217 } else if (is_zero1
&& !is_zero2
) {
218 construct_column(bset2
, bset1
, row
, col
);
220 if (transform_column(bset1
, bset2
, row
, col
))
224 isl_basic_set_free(bset2
);
225 isl_assert(bset1
->ctx
, row
== bset1
->n_eq
, goto error
);
226 bset1
= isl_basic_set_normalize_constraints(bset1
);
229 isl_basic_set_free(bset1
);
233 /* Find an integer point in the set represented by "tab"
234 * that lies outside of the equality "eq" e(x) = 0.
235 * If "up" is true, look for a point satisfying e(x) - 1 >= 0.
236 * Otherwise, look for a point satisfying -e(x) - 1 >= 0 (i.e., e(x) <= -1).
237 * The point, if found, is returned.
238 * If no point can be found, a zero-length vector is returned.
240 * Before solving an ILP problem, we first check if simply
241 * adding the normal of the constraint to one of the known
242 * integer points in the basic set represented by "tab"
243 * yields another point inside the basic set.
245 * The caller of this function ensures that the tableau is bounded or
246 * that tab->basis and tab->n_unbounded have been set appropriately.
248 static struct isl_vec
*outside_point(struct isl_tab
*tab
, isl_int
*eq
, int up
)
251 struct isl_vec
*sample
= NULL
;
252 struct isl_tab_undo
*snap
;
261 sample
= isl_vec_alloc(ctx
, 1 + dim
);
264 isl_int_set_si(sample
->el
[0], 1);
265 isl_seq_combine(sample
->el
+ 1,
266 ctx
->one
, tab
->bmap
->sample
->el
+ 1,
267 up
? ctx
->one
: ctx
->negone
, eq
+ 1, dim
);
268 if (isl_basic_map_contains(tab
->bmap
, sample
))
270 isl_vec_free(sample
);
273 snap
= isl_tab_snap(tab
);
276 isl_seq_neg(eq
, eq
, 1 + dim
);
277 isl_int_sub_ui(eq
[0], eq
[0], 1);
279 if (isl_tab_extend_cons(tab
, 1) < 0)
281 if (isl_tab_add_ineq(tab
, eq
) < 0)
284 sample
= isl_tab_sample(tab
);
286 isl_int_add_ui(eq
[0], eq
[0], 1);
288 isl_seq_neg(eq
, eq
, 1 + dim
);
290 if (isl_tab_rollback(tab
, snap
) < 0)
295 isl_vec_free(sample
);
299 struct isl_basic_set
*isl_basic_set_recession_cone(struct isl_basic_set
*bset
)
303 bset
= isl_basic_set_cow(bset
);
306 isl_assert(bset
->ctx
, bset
->n_div
== 0, goto error
);
308 for (i
= 0; i
< bset
->n_eq
; ++i
)
309 isl_int_set_si(bset
->eq
[i
][0], 0);
311 for (i
= 0; i
< bset
->n_ineq
; ++i
)
312 isl_int_set_si(bset
->ineq
[i
][0], 0);
314 ISL_F_CLR(bset
, ISL_BASIC_SET_NO_IMPLICIT
);
315 return isl_basic_set_implicit_equalities(bset
);
317 isl_basic_set_free(bset
);
321 __isl_give isl_set
*isl_set_recession_cone(__isl_take isl_set
*set
)
330 set
= isl_set_remove_divs(set
);
331 set
= isl_set_cow(set
);
335 for (i
= 0; i
< set
->n
; ++i
) {
336 set
->p
[i
] = isl_basic_set_recession_cone(set
->p
[i
]);
347 /* Extend an initial (under-)approximation of the affine hull of basic
348 * set represented by the tableau "tab"
349 * by looking for points that do not satisfy one of the equalities
350 * in the current approximation and adding them to that approximation
351 * until no such points can be found any more.
353 * The caller of this function ensures that "tab" is bounded or
354 * that tab->basis and tab->n_unbounded have been set appropriately.
356 static struct isl_basic_set
*extend_affine_hull(struct isl_tab
*tab
,
357 struct isl_basic_set
*hull
)
367 if (isl_tab_extend_cons(tab
, 2 * dim
+ 1) < 0)
370 for (i
= 0; i
< dim
; ++i
) {
371 struct isl_vec
*sample
;
372 struct isl_basic_set
*point
;
373 for (j
= 0; j
< hull
->n_eq
; ++j
) {
374 sample
= outside_point(tab
, hull
->eq
[j
], 1);
377 if (sample
->size
> 0)
379 isl_vec_free(sample
);
380 sample
= outside_point(tab
, hull
->eq
[j
], 0);
383 if (sample
->size
> 0)
385 isl_vec_free(sample
);
387 tab
= isl_tab_add_eq(tab
, hull
->eq
[j
]);
394 tab
= isl_tab_add_sample(tab
, isl_vec_copy(sample
));
397 point
= isl_basic_set_from_vec(sample
);
398 hull
= affine_hull(hull
, point
);
403 isl_basic_set_free(hull
);
407 /* Drop all constraints in bset that involve any of the dimensions
408 * first to first+n-1.
410 static struct isl_basic_set
*drop_constraints_involving
411 (struct isl_basic_set
*bset
, unsigned first
, unsigned n
)
418 bset
= isl_basic_set_cow(bset
);
420 for (i
= bset
->n_eq
- 1; i
>= 0; --i
) {
421 if (isl_seq_first_non_zero(bset
->eq
[i
] + 1 + first
, n
) == -1)
423 isl_basic_set_drop_equality(bset
, i
);
426 for (i
= bset
->n_ineq
- 1; i
>= 0; --i
) {
427 if (isl_seq_first_non_zero(bset
->ineq
[i
] + 1 + first
, n
) == -1)
429 isl_basic_set_drop_inequality(bset
, i
);
435 /* Look for all equalities satisfied by the integer points in bset,
436 * which is assumed to be bounded.
438 * The equalities are obtained by successively looking for
439 * a point that is affinely independent of the points found so far.
440 * In particular, for each equality satisfied by the points so far,
441 * we check if there is any point on a hyperplane parallel to the
442 * corresponding hyperplane shifted by at least one (in either direction).
444 static struct isl_basic_set
*uset_affine_hull_bounded(struct isl_basic_set
*bset
)
446 struct isl_vec
*sample
= NULL
;
447 struct isl_basic_set
*hull
;
448 struct isl_tab
*tab
= NULL
;
451 if (isl_basic_set_fast_is_empty(bset
))
454 dim
= isl_basic_set_n_dim(bset
);
456 if (bset
->sample
&& bset
->sample
->size
== 1 + dim
) {
457 int contains
= isl_basic_set_contains(bset
, bset
->sample
);
463 sample
= isl_vec_copy(bset
->sample
);
465 isl_vec_free(bset
->sample
);
470 tab
= isl_tab_from_basic_set(bset
);
475 isl_vec_free(sample
);
476 return isl_basic_set_set_to_empty(bset
);
478 if (isl_tab_track_bset(tab
, isl_basic_set_copy(bset
)) < 0)
482 struct isl_tab_undo
*snap
;
483 snap
= isl_tab_snap(tab
);
484 sample
= isl_tab_sample(tab
);
485 if (isl_tab_rollback(tab
, snap
) < 0)
487 isl_vec_free(tab
->bmap
->sample
);
488 tab
->bmap
->sample
= isl_vec_copy(sample
);
493 if (sample
->size
== 0) {
495 isl_vec_free(sample
);
496 return isl_basic_set_set_to_empty(bset
);
499 hull
= isl_basic_set_from_vec(sample
);
501 isl_basic_set_free(bset
);
502 hull
= extend_affine_hull(tab
, hull
);
507 isl_vec_free(sample
);
509 isl_basic_set_free(bset
);
513 /* Given an unbounded tableau and an integer point satisfying the tableau,
514 * construct an intial affine hull containing the recession cone
515 * shifted to the given point.
517 * The unbounded directions are taken from the last rows of the basis,
518 * which is assumed to have been initialized appropriately.
520 static __isl_give isl_basic_set
*initial_hull(struct isl_tab
*tab
,
521 __isl_take isl_vec
*vec
)
525 struct isl_basic_set
*bset
= NULL
;
532 isl_assert(ctx
, vec
->size
!= 0, goto error
);
534 bset
= isl_basic_set_alloc(ctx
, 0, vec
->size
- 1, 0, vec
->size
- 1, 0);
537 dim
= isl_basic_set_n_dim(bset
) - tab
->n_unbounded
;
538 for (i
= 0; i
< dim
; ++i
) {
539 k
= isl_basic_set_alloc_equality(bset
);
542 isl_seq_cpy(bset
->eq
[k
] + 1, tab
->basis
->row
[1 + i
] + 1,
544 isl_seq_inner_product(bset
->eq
[k
] + 1, vec
->el
+1,
545 vec
->size
- 1, &bset
->eq
[k
][0]);
546 isl_int_neg(bset
->eq
[k
][0], bset
->eq
[k
][0]);
549 bset
= isl_basic_set_gauss(bset
, NULL
);
553 isl_basic_set_free(bset
);
558 /* Given a tableau of a set and a tableau of the corresponding
559 * recession cone, detect and add all equalities to the tableau.
560 * If the tableau is bounded, then we can simply keep the
561 * tableau in its state after the return from extend_affine_hull.
562 * However, if the tableau is unbounded, then
563 * isl_tab_set_initial_basis_with_cone will add some additional
564 * constraints to the tableau that have to be removed again.
565 * In this case, we therefore rollback to the state before
566 * any constraints were added and then add the eqaulities back in.
568 struct isl_tab
*isl_tab_detect_equalities(struct isl_tab
*tab
,
569 struct isl_tab
*tab_cone
)
572 struct isl_vec
*sample
;
573 struct isl_basic_set
*hull
;
574 struct isl_tab_undo
*snap
;
576 if (!tab
|| !tab_cone
)
579 snap
= isl_tab_snap(tab
);
581 isl_mat_free(tab
->basis
);
584 isl_assert(tab
->mat
->ctx
, tab
->bmap
, goto error
);
585 isl_assert(tab
->mat
->ctx
, tab
->samples
, goto error
);
586 isl_assert(tab
->mat
->ctx
, tab
->samples
->n_col
== 1 + tab
->n_var
, goto error
);
587 isl_assert(tab
->mat
->ctx
, tab
->n_sample
> tab
->n_outside
, goto error
);
589 if (isl_tab_set_initial_basis_with_cone(tab
, tab_cone
) < 0)
592 sample
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_var
);
596 isl_seq_cpy(sample
->el
, tab
->samples
->row
[tab
->n_outside
], sample
->size
);
598 isl_vec_free(tab
->bmap
->sample
);
599 tab
->bmap
->sample
= isl_vec_copy(sample
);
601 if (tab
->n_unbounded
== 0)
602 hull
= isl_basic_set_from_vec(isl_vec_copy(sample
));
604 hull
= initial_hull(tab
, isl_vec_copy(sample
));
606 for (j
= tab
->n_outside
+ 1; j
< tab
->n_sample
; ++j
) {
607 isl_seq_cpy(sample
->el
, tab
->samples
->row
[j
], sample
->size
);
608 hull
= affine_hull(hull
,
609 isl_basic_set_from_vec(isl_vec_copy(sample
)));
612 isl_vec_free(sample
);
614 hull
= extend_affine_hull(tab
, hull
);
618 if (tab
->n_unbounded
== 0) {
619 isl_basic_set_free(hull
);
623 if (isl_tab_rollback(tab
, snap
) < 0)
626 if (hull
->n_eq
> tab
->n_zero
) {
627 for (j
= 0; j
< hull
->n_eq
; ++j
) {
628 isl_seq_normalize(tab
->mat
->ctx
, hull
->eq
[j
], 1 + tab
->n_var
);
629 tab
= isl_tab_add_eq(tab
, hull
->eq
[j
]);
633 isl_basic_set_free(hull
);
641 /* Compute the affine hull of "bset", where "cone" is the recession cone
644 * We first compute a unimodular transformation that puts the unbounded
645 * directions in the last dimensions. In particular, we take a transformation
646 * that maps all equalities to equalities (in HNF) on the first dimensions.
647 * Let x be the original dimensions and y the transformed, with y_1 bounded
650 * [ y_1 ] [ y_1 ] [ Q_1 ]
651 * x = U [ y_2 ] [ y_2 ] = [ Q_2 ] x
653 * Let's call the input basic set S. We compute S' = preimage(S, U)
654 * and drop the final dimensions including any constraints involving them.
655 * This results in set S''.
656 * Then we compute the affine hull A'' of S''.
657 * Let F y_1 >= g be the constraint system of A''. In the transformed
658 * space the y_2 are unbounded, so we can add them back without any constraints,
662 * [ F 0 ] [ y_2 ] >= g
665 * [ F 0 ] [ Q_2 ] x >= g
669 * The affine hull in the original space is then obtained as
670 * A = preimage(A'', Q_1).
672 static struct isl_basic_set
*affine_hull_with_cone(struct isl_basic_set
*bset
,
673 struct isl_basic_set
*cone
)
677 struct isl_basic_set
*hull
;
678 struct isl_mat
*M
, *U
, *Q
;
683 total
= isl_basic_set_total_dim(cone
);
684 cone_dim
= total
- cone
->n_eq
;
686 M
= isl_mat_sub_alloc(bset
->ctx
, cone
->eq
, 0, cone
->n_eq
, 1, total
);
687 M
= isl_mat_left_hermite(M
, 0, &U
, &Q
);
692 U
= isl_mat_lin_to_aff(U
);
693 bset
= isl_basic_set_preimage(bset
, isl_mat_copy(U
));
695 bset
= drop_constraints_involving(bset
, total
- cone_dim
, cone_dim
);
696 bset
= isl_basic_set_drop_dims(bset
, total
- cone_dim
, cone_dim
);
698 Q
= isl_mat_lin_to_aff(Q
);
699 Q
= isl_mat_drop_rows(Q
, 1 + total
- cone_dim
, cone_dim
);
701 if (bset
&& bset
->sample
&& bset
->sample
->size
== 1 + total
)
702 bset
->sample
= isl_mat_vec_product(isl_mat_copy(Q
), bset
->sample
);
704 hull
= uset_affine_hull_bounded(bset
);
709 struct isl_vec
*sample
= isl_vec_copy(hull
->sample
);
710 U
= isl_mat_drop_cols(U
, 1 + total
- cone_dim
, cone_dim
);
711 if (sample
&& sample
->size
> 0)
712 sample
= isl_mat_vec_product(U
, sample
);
715 hull
= isl_basic_set_preimage(hull
, Q
);
716 isl_vec_free(hull
->sample
);
717 hull
->sample
= sample
;
720 isl_basic_set_free(cone
);
724 isl_basic_set_free(bset
);
725 isl_basic_set_free(cone
);
729 /* Look for all equalities satisfied by the integer points in bset,
730 * which is assumed not to have any explicit equalities.
732 * The equalities are obtained by successively looking for
733 * a point that is affinely independent of the points found so far.
734 * In particular, for each equality satisfied by the points so far,
735 * we check if there is any point on a hyperplane parallel to the
736 * corresponding hyperplane shifted by at least one (in either direction).
738 * Before looking for any outside points, we first compute the recession
739 * cone. The directions of this recession cone will always be part
740 * of the affine hull, so there is no need for looking for any points
741 * in these directions.
742 * In particular, if the recession cone is full-dimensional, then
743 * the affine hull is simply the whole universe.
745 static struct isl_basic_set
*uset_affine_hull(struct isl_basic_set
*bset
)
747 struct isl_basic_set
*cone
;
749 if (isl_basic_set_fast_is_empty(bset
))
752 cone
= isl_basic_set_recession_cone(isl_basic_set_copy(bset
));
755 if (cone
->n_eq
== 0) {
756 struct isl_basic_set
*hull
;
757 isl_basic_set_free(cone
);
758 hull
= isl_basic_set_universe_like(bset
);
759 isl_basic_set_free(bset
);
763 if (cone
->n_eq
< isl_basic_set_total_dim(cone
))
764 return affine_hull_with_cone(bset
, cone
);
766 isl_basic_set_free(cone
);
767 return uset_affine_hull_bounded(bset
);
769 isl_basic_set_free(bset
);
773 /* Look for all equalities satisfied by the integer points in bmap
774 * that are independent of the equalities already explicitly available
777 * We first remove all equalities already explicitly available,
778 * then look for additional equalities in the reduced space
779 * and then transform the result to the original space.
780 * The original equalities are _not_ added to this set. This is
781 * the responsibility of the calling function.
782 * The resulting basic set has all meaning about the dimensions removed.
783 * In particular, dimensions that correspond to existential variables
784 * in bmap and that are found to be fixed are not removed.
786 static struct isl_basic_set
*equalities_in_underlying_set(
787 struct isl_basic_map
*bmap
)
789 struct isl_mat
*T1
= NULL
;
790 struct isl_mat
*T2
= NULL
;
791 struct isl_basic_set
*bset
= NULL
;
792 struct isl_basic_set
*hull
= NULL
;
794 bset
= isl_basic_map_underlying_set(bmap
);
798 bset
= isl_basic_set_remove_equalities(bset
, &T1
, &T2
);
802 hull
= uset_affine_hull(bset
);
809 struct isl_vec
*sample
= isl_vec_copy(hull
->sample
);
810 if (sample
&& sample
->size
> 0)
811 sample
= isl_mat_vec_product(T1
, sample
);
814 hull
= isl_basic_set_preimage(hull
, T2
);
815 isl_vec_free(hull
->sample
);
816 hull
->sample
= sample
;
822 isl_basic_set_free(bset
);
823 isl_basic_set_free(hull
);
827 /* Detect and make explicit all equalities satisfied by the (integer)
830 struct isl_basic_map
*isl_basic_map_detect_equalities(
831 struct isl_basic_map
*bmap
)
834 struct isl_basic_set
*hull
= NULL
;
838 if (bmap
->n_ineq
== 0)
840 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
842 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_ALL_EQUALITIES
))
844 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
845 return isl_basic_map_implicit_equalities(bmap
);
847 hull
= equalities_in_underlying_set(isl_basic_map_copy(bmap
));
850 if (ISL_F_ISSET(hull
, ISL_BASIC_SET_EMPTY
)) {
851 isl_basic_set_free(hull
);
852 return isl_basic_map_set_to_empty(bmap
);
854 bmap
= isl_basic_map_extend_dim(bmap
, isl_dim_copy(bmap
->dim
), 0,
856 for (i
= 0; i
< hull
->n_eq
; ++i
) {
857 j
= isl_basic_map_alloc_equality(bmap
);
860 isl_seq_cpy(bmap
->eq
[j
], hull
->eq
[i
],
861 1 + isl_basic_set_total_dim(hull
));
863 isl_vec_free(bmap
->sample
);
864 bmap
->sample
= isl_vec_copy(hull
->sample
);
865 isl_basic_set_free(hull
);
866 ISL_F_SET(bmap
, ISL_BASIC_MAP_NO_IMPLICIT
| ISL_BASIC_MAP_ALL_EQUALITIES
);
867 bmap
= isl_basic_map_simplify(bmap
);
868 return isl_basic_map_finalize(bmap
);
870 isl_basic_set_free(hull
);
871 isl_basic_map_free(bmap
);
875 __isl_give isl_basic_set
*isl_basic_set_detect_equalities(
876 __isl_take isl_basic_set
*bset
)
878 return (isl_basic_set
*)
879 isl_basic_map_detect_equalities((isl_basic_map
*)bset
);
882 struct isl_map
*isl_map_detect_equalities(struct isl_map
*map
)
884 struct isl_basic_map
*bmap
;
890 for (i
= 0; i
< map
->n
; ++i
) {
891 bmap
= isl_basic_map_copy(map
->p
[i
]);
892 bmap
= isl_basic_map_detect_equalities(bmap
);
895 isl_basic_map_free(map
->p
[i
]);
905 __isl_give isl_set
*isl_set_detect_equalities(__isl_take isl_set
*set
)
907 return (isl_set
*)isl_map_detect_equalities((isl_map
*)set
);
910 /* After computing the rational affine hull (by detecting the implicit
911 * equalities), we compute the additional equalities satisfied by
912 * the integer points (if any) and add the original equalities back in.
914 struct isl_basic_map
*isl_basic_map_affine_hull(struct isl_basic_map
*bmap
)
916 bmap
= isl_basic_map_detect_equalities(bmap
);
917 bmap
= isl_basic_map_cow(bmap
);
918 isl_basic_map_free_inequality(bmap
, bmap
->n_ineq
);
922 struct isl_basic_set
*isl_basic_set_affine_hull(struct isl_basic_set
*bset
)
924 return (struct isl_basic_set
*)
925 isl_basic_map_affine_hull((struct isl_basic_map
*)bset
);
928 struct isl_basic_map
*isl_map_affine_hull(struct isl_map
*map
)
931 struct isl_basic_map
*model
= NULL
;
932 struct isl_basic_map
*hull
= NULL
;
935 map
= isl_map_detect_equalities(map
);
936 map
= isl_map_align_divs(map
);
942 hull
= isl_basic_map_empty_like_map(map
);
947 model
= isl_basic_map_copy(map
->p
[0]);
948 set
= isl_map_underlying_set(map
);
949 set
= isl_set_cow(set
);
953 for (i
= 0; i
< set
->n
; ++i
) {
954 set
->p
[i
] = isl_basic_set_cow(set
->p
[i
]);
955 set
->p
[i
] = isl_basic_set_affine_hull(set
->p
[i
]);
956 set
->p
[i
] = isl_basic_set_gauss(set
->p
[i
], NULL
);
960 set
= isl_set_remove_empty_parts(set
);
962 hull
= isl_basic_map_empty_like(model
);
963 isl_basic_map_free(model
);
965 struct isl_basic_set
*bset
;
967 set
->p
[0] = affine_hull(set
->p
[0], set
->p
[--set
->n
]);
971 bset
= isl_basic_set_copy(set
->p
[0]);
972 hull
= isl_basic_map_overlying_set(bset
, model
);
975 hull
= isl_basic_map_simplify(hull
);
976 return isl_basic_map_finalize(hull
);
978 isl_basic_map_free(model
);
983 struct isl_basic_set
*isl_set_affine_hull(struct isl_set
*set
)
985 return (struct isl_basic_set
*)
986 isl_map_affine_hull((struct isl_map
*)set
);