2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
12 #include "isl_map_private.h"
16 #include "isl_equalities.h"
19 static struct isl_basic_set
*uset_convex_hull_wrap_bounded(struct isl_set
*set
);
21 static void swap_ineq(struct isl_basic_map
*bmap
, unsigned i
, unsigned j
)
27 bmap
->ineq
[i
] = bmap
->ineq
[j
];
32 /* Return 1 if constraint c is redundant with respect to the constraints
33 * in bmap. If c is a lower [upper] bound in some variable and bmap
34 * does not have a lower [upper] bound in that variable, then c cannot
35 * be redundant and we do not need solve any lp.
37 int isl_basic_map_constraint_is_redundant(struct isl_basic_map
**bmap
,
38 isl_int
*c
, isl_int
*opt_n
, isl_int
*opt_d
)
40 enum isl_lp_result res
;
47 total
= isl_basic_map_total_dim(*bmap
);
48 for (i
= 0; i
< total
; ++i
) {
50 if (isl_int_is_zero(c
[1+i
]))
52 sign
= isl_int_sgn(c
[1+i
]);
53 for (j
= 0; j
< (*bmap
)->n_ineq
; ++j
)
54 if (sign
== isl_int_sgn((*bmap
)->ineq
[j
][1+i
]))
56 if (j
== (*bmap
)->n_ineq
)
62 res
= isl_basic_map_solve_lp(*bmap
, 0, c
, (*bmap
)->ctx
->one
,
64 if (res
== isl_lp_unbounded
)
66 if (res
== isl_lp_error
)
68 if (res
== isl_lp_empty
) {
69 *bmap
= isl_basic_map_set_to_empty(*bmap
);
72 return !isl_int_is_neg(*opt_n
);
75 int isl_basic_set_constraint_is_redundant(struct isl_basic_set
**bset
,
76 isl_int
*c
, isl_int
*opt_n
, isl_int
*opt_d
)
78 return isl_basic_map_constraint_is_redundant(
79 (struct isl_basic_map
**)bset
, c
, opt_n
, opt_d
);
82 /* Compute the convex hull of a basic map, by removing the redundant
83 * constraints. If the minimal value along the normal of a constraint
84 * is the same if the constraint is removed, then the constraint is redundant.
86 * Alternatively, we could have intersected the basic map with the
87 * corresponding equality and the checked if the dimension was that
90 struct isl_basic_map
*isl_basic_map_convex_hull(struct isl_basic_map
*bmap
)
97 bmap
= isl_basic_map_gauss(bmap
, NULL
);
98 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
100 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_NO_REDUNDANT
))
102 if (bmap
->n_ineq
<= 1)
105 tab
= isl_tab_from_basic_map(bmap
);
106 tab
= isl_tab_detect_implicit_equalities(tab
);
107 if (isl_tab_detect_redundant(tab
) < 0)
109 bmap
= isl_basic_map_update_from_tab(bmap
, tab
);
111 ISL_F_SET(bmap
, ISL_BASIC_MAP_NO_IMPLICIT
);
112 ISL_F_SET(bmap
, ISL_BASIC_MAP_NO_REDUNDANT
);
116 isl_basic_map_free(bmap
);
120 struct isl_basic_set
*isl_basic_set_convex_hull(struct isl_basic_set
*bset
)
122 return (struct isl_basic_set
*)
123 isl_basic_map_convex_hull((struct isl_basic_map
*)bset
);
126 /* Check if the set set is bound in the direction of the affine
127 * constraint c and if so, set the constant term such that the
128 * resulting constraint is a bounding constraint for the set.
130 static int uset_is_bound(struct isl_set
*set
, isl_int
*c
, unsigned len
)
138 isl_int_init(opt_denom
);
140 for (j
= 0; j
< set
->n
; ++j
) {
141 enum isl_lp_result res
;
143 if (ISL_F_ISSET(set
->p
[j
], ISL_BASIC_SET_EMPTY
))
146 res
= isl_basic_set_solve_lp(set
->p
[j
],
147 0, c
, set
->ctx
->one
, &opt
, &opt_denom
, NULL
);
148 if (res
== isl_lp_unbounded
)
150 if (res
== isl_lp_error
)
152 if (res
== isl_lp_empty
) {
153 set
->p
[j
] = isl_basic_set_set_to_empty(set
->p
[j
]);
158 if (first
|| isl_int_is_neg(opt
)) {
159 if (!isl_int_is_one(opt_denom
))
160 isl_seq_scale(c
, c
, opt_denom
, len
);
161 isl_int_sub(c
[0], c
[0], opt
);
166 isl_int_clear(opt_denom
);
170 isl_int_clear(opt_denom
);
174 struct isl_basic_set
*isl_basic_set_set_rational(struct isl_basic_set
*bset
)
179 if (ISL_F_ISSET(bset
, ISL_BASIC_MAP_RATIONAL
))
182 bset
= isl_basic_set_cow(bset
);
186 ISL_F_SET(bset
, ISL_BASIC_MAP_RATIONAL
);
188 return isl_basic_set_finalize(bset
);
191 static struct isl_set
*isl_set_set_rational(struct isl_set
*set
)
195 set
= isl_set_cow(set
);
198 for (i
= 0; i
< set
->n
; ++i
) {
199 set
->p
[i
] = isl_basic_set_set_rational(set
->p
[i
]);
209 static struct isl_basic_set
*isl_basic_set_add_equality(
210 struct isl_basic_set
*bset
, isl_int
*c
)
215 if (ISL_F_ISSET(bset
, ISL_BASIC_SET_EMPTY
))
218 isl_assert(bset
->ctx
, isl_basic_set_n_param(bset
) == 0, goto error
);
219 isl_assert(bset
->ctx
, bset
->n_div
== 0, goto error
);
220 dim
= isl_basic_set_n_dim(bset
);
221 bset
= isl_basic_set_cow(bset
);
222 bset
= isl_basic_set_extend(bset
, 0, dim
, 0, 1, 0);
223 i
= isl_basic_set_alloc_equality(bset
);
226 isl_seq_cpy(bset
->eq
[i
], c
, 1 + dim
);
229 isl_basic_set_free(bset
);
233 static struct isl_set
*isl_set_add_basic_set_equality(struct isl_set
*set
, isl_int
*c
)
237 set
= isl_set_cow(set
);
240 for (i
= 0; i
< set
->n
; ++i
) {
241 set
->p
[i
] = isl_basic_set_add_equality(set
->p
[i
], c
);
251 /* Given a union of basic sets, construct the constraints for wrapping
252 * a facet around one of its ridges.
253 * In particular, if each of n the d-dimensional basic sets i in "set"
254 * contains the origin, satisfies the constraints x_1 >= 0 and x_2 >= 0
255 * and is defined by the constraints
259 * then the resulting set is of dimension n*(1+d) and has as constraints
268 static struct isl_basic_set
*wrap_constraints(struct isl_set
*set
)
270 struct isl_basic_set
*lp
;
274 unsigned dim
, lp_dim
;
279 dim
= 1 + isl_set_n_dim(set
);
282 for (i
= 0; i
< set
->n
; ++i
) {
283 n_eq
+= set
->p
[i
]->n_eq
;
284 n_ineq
+= set
->p
[i
]->n_ineq
;
286 lp
= isl_basic_set_alloc(set
->ctx
, 0, dim
* set
->n
, 0, n_eq
, n_ineq
);
289 lp_dim
= isl_basic_set_n_dim(lp
);
290 k
= isl_basic_set_alloc_equality(lp
);
291 isl_int_set_si(lp
->eq
[k
][0], -1);
292 for (i
= 0; i
< set
->n
; ++i
) {
293 isl_int_set_si(lp
->eq
[k
][1+dim
*i
], 0);
294 isl_int_set_si(lp
->eq
[k
][1+dim
*i
+1], 1);
295 isl_seq_clr(lp
->eq
[k
]+1+dim
*i
+2, dim
-2);
297 for (i
= 0; i
< set
->n
; ++i
) {
298 k
= isl_basic_set_alloc_inequality(lp
);
299 isl_seq_clr(lp
->ineq
[k
], 1+lp_dim
);
300 isl_int_set_si(lp
->ineq
[k
][1+dim
*i
], 1);
302 for (j
= 0; j
< set
->p
[i
]->n_eq
; ++j
) {
303 k
= isl_basic_set_alloc_equality(lp
);
304 isl_seq_clr(lp
->eq
[k
], 1+dim
*i
);
305 isl_seq_cpy(lp
->eq
[k
]+1+dim
*i
, set
->p
[i
]->eq
[j
], dim
);
306 isl_seq_clr(lp
->eq
[k
]+1+dim
*(i
+1), dim
*(set
->n
-i
-1));
309 for (j
= 0; j
< set
->p
[i
]->n_ineq
; ++j
) {
310 k
= isl_basic_set_alloc_inequality(lp
);
311 isl_seq_clr(lp
->ineq
[k
], 1+dim
*i
);
312 isl_seq_cpy(lp
->ineq
[k
]+1+dim
*i
, set
->p
[i
]->ineq
[j
], dim
);
313 isl_seq_clr(lp
->ineq
[k
]+1+dim
*(i
+1), dim
*(set
->n
-i
-1));
319 /* Given a facet "facet" of the convex hull of "set" and a facet "ridge"
320 * of that facet, compute the other facet of the convex hull that contains
323 * We first transform the set such that the facet constraint becomes
327 * I.e., the facet lies in
331 * and on that facet, the constraint that defines the ridge is
335 * (This transformation is not strictly needed, all that is needed is
336 * that the ridge contains the origin.)
338 * Since the ridge contains the origin, the cone of the convex hull
339 * will be of the form
344 * with this second constraint defining the new facet.
345 * The constant a is obtained by settting x_1 in the cone of the
346 * convex hull to 1 and minimizing x_2.
347 * Now, each element in the cone of the convex hull is the sum
348 * of elements in the cones of the basic sets.
349 * If a_i is the dilation factor of basic set i, then the problem
350 * we need to solve is
363 * the constraints of each (transformed) basic set.
364 * If a = n/d, then the constraint defining the new facet (in the transformed
367 * -n x_1 + d x_2 >= 0
369 * In the original space, we need to take the same combination of the
370 * corresponding constraints "facet" and "ridge".
372 * If a = -infty = "-1/0", then we just return the original facet constraint.
373 * This means that the facet is unbounded, but has a bounded intersection
374 * with the union of sets.
376 isl_int
*isl_set_wrap_facet(__isl_keep isl_set
*set
,
377 isl_int
*facet
, isl_int
*ridge
)
380 struct isl_mat
*T
= NULL
;
381 struct isl_basic_set
*lp
= NULL
;
383 enum isl_lp_result res
;
387 set
= isl_set_copy(set
);
388 set
= isl_set_set_rational(set
);
390 dim
= 1 + isl_set_n_dim(set
);
391 T
= isl_mat_alloc(set
->ctx
, 3, dim
);
394 isl_int_set_si(T
->row
[0][0], 1);
395 isl_seq_clr(T
->row
[0]+1, dim
- 1);
396 isl_seq_cpy(T
->row
[1], facet
, dim
);
397 isl_seq_cpy(T
->row
[2], ridge
, dim
);
398 T
= isl_mat_right_inverse(T
);
399 set
= isl_set_preimage(set
, T
);
403 lp
= wrap_constraints(set
);
404 obj
= isl_vec_alloc(set
->ctx
, 1 + dim
*set
->n
);
407 isl_int_set_si(obj
->block
.data
[0], 0);
408 for (i
= 0; i
< set
->n
; ++i
) {
409 isl_seq_clr(obj
->block
.data
+ 1 + dim
*i
, 2);
410 isl_int_set_si(obj
->block
.data
[1 + dim
*i
+2], 1);
411 isl_seq_clr(obj
->block
.data
+ 1 + dim
*i
+3, dim
-3);
415 res
= isl_basic_set_solve_lp(lp
, 0,
416 obj
->block
.data
, set
->ctx
->one
, &num
, &den
, NULL
);
417 if (res
== isl_lp_ok
) {
418 isl_int_neg(num
, num
);
419 isl_seq_combine(facet
, num
, facet
, den
, ridge
, dim
);
424 isl_basic_set_free(lp
);
426 isl_assert(set
->ctx
, res
== isl_lp_ok
|| res
== isl_lp_unbounded
,
430 isl_basic_set_free(lp
);
436 /* Compute the constraint of a facet of "set".
438 * We first compute the intersection with a bounding constraint
439 * that is orthogonal to one of the coordinate axes.
440 * If the affine hull of this intersection has only one equality,
441 * we have found a facet.
442 * Otherwise, we wrap the current bounding constraint around
443 * one of the equalities of the face (one that is not equal to
444 * the current bounding constraint).
445 * This process continues until we have found a facet.
446 * The dimension of the intersection increases by at least
447 * one on each iteration, so termination is guaranteed.
449 static __isl_give isl_mat
*initial_facet_constraint(__isl_keep isl_set
*set
)
451 struct isl_set
*slice
= NULL
;
452 struct isl_basic_set
*face
= NULL
;
453 struct isl_mat
*m
, *U
, *Q
;
455 unsigned dim
= isl_set_n_dim(set
);
459 isl_assert(set
->ctx
, set
->n
> 0, goto error
);
460 bounds
= isl_mat_alloc(set
->ctx
, 1, 1 + dim
);
464 isl_seq_clr(bounds
->row
[0], dim
);
465 isl_int_set_si(bounds
->row
[0][1 + dim
- 1], 1);
466 is_bound
= uset_is_bound(set
, bounds
->row
[0], 1 + dim
);
467 isl_assert(set
->ctx
, is_bound
== 1, goto error
);
468 isl_seq_normalize(set
->ctx
, bounds
->row
[0], 1 + dim
);
472 slice
= isl_set_copy(set
);
473 slice
= isl_set_add_basic_set_equality(slice
, bounds
->row
[0]);
474 face
= isl_set_affine_hull(slice
);
477 if (face
->n_eq
== 1) {
478 isl_basic_set_free(face
);
481 for (i
= 0; i
< face
->n_eq
; ++i
)
482 if (!isl_seq_eq(bounds
->row
[0], face
->eq
[i
], 1 + dim
) &&
483 !isl_seq_is_neg(bounds
->row
[0],
484 face
->eq
[i
], 1 + dim
))
486 isl_assert(set
->ctx
, i
< face
->n_eq
, goto error
);
487 if (!isl_set_wrap_facet(set
, bounds
->row
[0], face
->eq
[i
]))
489 isl_seq_normalize(set
->ctx
, bounds
->row
[0], bounds
->n_col
);
490 isl_basic_set_free(face
);
495 isl_basic_set_free(face
);
496 isl_mat_free(bounds
);
500 /* Given the bounding constraint "c" of a facet of the convex hull of "set",
501 * compute a hyperplane description of the facet, i.e., compute the facets
504 * We compute an affine transformation that transforms the constraint
513 * by computing the right inverse U of a matrix that starts with the rows
526 * Since z_1 is zero, we can drop this variable as well as the corresponding
527 * column of U to obtain
535 * with Q' equal to Q, but without the corresponding row.
536 * After computing the facets of the facet in the z' space,
537 * we convert them back to the x space through Q.
539 static struct isl_basic_set
*compute_facet(struct isl_set
*set
, isl_int
*c
)
541 struct isl_mat
*m
, *U
, *Q
;
542 struct isl_basic_set
*facet
= NULL
;
547 set
= isl_set_copy(set
);
548 dim
= isl_set_n_dim(set
);
549 m
= isl_mat_alloc(set
->ctx
, 2, 1 + dim
);
552 isl_int_set_si(m
->row
[0][0], 1);
553 isl_seq_clr(m
->row
[0]+1, dim
);
554 isl_seq_cpy(m
->row
[1], c
, 1+dim
);
555 U
= isl_mat_right_inverse(m
);
556 Q
= isl_mat_right_inverse(isl_mat_copy(U
));
557 U
= isl_mat_drop_cols(U
, 1, 1);
558 Q
= isl_mat_drop_rows(Q
, 1, 1);
559 set
= isl_set_preimage(set
, U
);
560 facet
= uset_convex_hull_wrap_bounded(set
);
561 facet
= isl_basic_set_preimage(facet
, Q
);
562 isl_assert(ctx
, facet
->n_eq
== 0, goto error
);
565 isl_basic_set_free(facet
);
570 /* Given an initial facet constraint, compute the remaining facets.
571 * We do this by running through all facets found so far and computing
572 * the adjacent facets through wrapping, adding those facets that we
573 * hadn't already found before.
575 * For each facet we have found so far, we first compute its facets
576 * in the resulting convex hull. That is, we compute the ridges
577 * of the resulting convex hull contained in the facet.
578 * We also compute the corresponding facet in the current approximation
579 * of the convex hull. There is no need to wrap around the ridges
580 * in this facet since that would result in a facet that is already
581 * present in the current approximation.
583 * This function can still be significantly optimized by checking which of
584 * the facets of the basic sets are also facets of the convex hull and
585 * using all the facets so far to help in constructing the facets of the
588 * using the technique in section "3.1 Ridge Generation" of
589 * "Extended Convex Hull" by Fukuda et al.
591 static struct isl_basic_set
*extend(struct isl_basic_set
*hull
,
596 struct isl_basic_set
*facet
= NULL
;
597 struct isl_basic_set
*hull_facet
= NULL
;
603 isl_assert(set
->ctx
, set
->n
> 0, goto error
);
605 dim
= isl_set_n_dim(set
);
607 for (i
= 0; i
< hull
->n_ineq
; ++i
) {
608 facet
= compute_facet(set
, hull
->ineq
[i
]);
609 facet
= isl_basic_set_add_equality(facet
, hull
->ineq
[i
]);
610 facet
= isl_basic_set_gauss(facet
, NULL
);
611 facet
= isl_basic_set_normalize_constraints(facet
);
612 hull_facet
= isl_basic_set_copy(hull
);
613 hull_facet
= isl_basic_set_add_equality(hull_facet
, hull
->ineq
[i
]);
614 hull_facet
= isl_basic_set_gauss(hull_facet
, NULL
);
615 hull_facet
= isl_basic_set_normalize_constraints(hull_facet
);
618 hull
= isl_basic_set_cow(hull
);
619 hull
= isl_basic_set_extend_dim(hull
,
620 isl_dim_copy(hull
->dim
), 0, 0, facet
->n_ineq
);
621 for (j
= 0; j
< facet
->n_ineq
; ++j
) {
622 for (f
= 0; f
< hull_facet
->n_ineq
; ++f
)
623 if (isl_seq_eq(facet
->ineq
[j
],
624 hull_facet
->ineq
[f
], 1 + dim
))
626 if (f
< hull_facet
->n_ineq
)
628 k
= isl_basic_set_alloc_inequality(hull
);
631 isl_seq_cpy(hull
->ineq
[k
], hull
->ineq
[i
], 1+dim
);
632 if (!isl_set_wrap_facet(set
, hull
->ineq
[k
], facet
->ineq
[j
]))
635 isl_basic_set_free(hull_facet
);
636 isl_basic_set_free(facet
);
638 hull
= isl_basic_set_simplify(hull
);
639 hull
= isl_basic_set_finalize(hull
);
642 isl_basic_set_free(hull_facet
);
643 isl_basic_set_free(facet
);
644 isl_basic_set_free(hull
);
648 /* Special case for computing the convex hull of a one dimensional set.
649 * We simply collect the lower and upper bounds of each basic set
650 * and the biggest of those.
652 static struct isl_basic_set
*convex_hull_1d(struct isl_set
*set
)
654 struct isl_mat
*c
= NULL
;
655 isl_int
*lower
= NULL
;
656 isl_int
*upper
= NULL
;
659 struct isl_basic_set
*hull
;
661 for (i
= 0; i
< set
->n
; ++i
) {
662 set
->p
[i
] = isl_basic_set_simplify(set
->p
[i
]);
666 set
= isl_set_remove_empty_parts(set
);
669 isl_assert(set
->ctx
, set
->n
> 0, goto error
);
670 c
= isl_mat_alloc(set
->ctx
, 2, 2);
674 if (set
->p
[0]->n_eq
> 0) {
675 isl_assert(set
->ctx
, set
->p
[0]->n_eq
== 1, goto error
);
678 if (isl_int_is_pos(set
->p
[0]->eq
[0][1])) {
679 isl_seq_cpy(lower
, set
->p
[0]->eq
[0], 2);
680 isl_seq_neg(upper
, set
->p
[0]->eq
[0], 2);
682 isl_seq_neg(lower
, set
->p
[0]->eq
[0], 2);
683 isl_seq_cpy(upper
, set
->p
[0]->eq
[0], 2);
686 for (j
= 0; j
< set
->p
[0]->n_ineq
; ++j
) {
687 if (isl_int_is_pos(set
->p
[0]->ineq
[j
][1])) {
689 isl_seq_cpy(lower
, set
->p
[0]->ineq
[j
], 2);
692 isl_seq_cpy(upper
, set
->p
[0]->ineq
[j
], 2);
699 for (i
= 0; i
< set
->n
; ++i
) {
700 struct isl_basic_set
*bset
= set
->p
[i
];
704 for (j
= 0; j
< bset
->n_eq
; ++j
) {
708 isl_int_mul(a
, lower
[0], bset
->eq
[j
][1]);
709 isl_int_mul(b
, lower
[1], bset
->eq
[j
][0]);
710 if (isl_int_lt(a
, b
) && isl_int_is_pos(bset
->eq
[j
][1]))
711 isl_seq_cpy(lower
, bset
->eq
[j
], 2);
712 if (isl_int_gt(a
, b
) && isl_int_is_neg(bset
->eq
[j
][1]))
713 isl_seq_neg(lower
, bset
->eq
[j
], 2);
716 isl_int_mul(a
, upper
[0], bset
->eq
[j
][1]);
717 isl_int_mul(b
, upper
[1], bset
->eq
[j
][0]);
718 if (isl_int_lt(a
, b
) && isl_int_is_pos(bset
->eq
[j
][1]))
719 isl_seq_neg(upper
, bset
->eq
[j
], 2);
720 if (isl_int_gt(a
, b
) && isl_int_is_neg(bset
->eq
[j
][1]))
721 isl_seq_cpy(upper
, bset
->eq
[j
], 2);
724 for (j
= 0; j
< bset
->n_ineq
; ++j
) {
725 if (isl_int_is_pos(bset
->ineq
[j
][1]))
727 if (isl_int_is_neg(bset
->ineq
[j
][1]))
729 if (lower
&& isl_int_is_pos(bset
->ineq
[j
][1])) {
730 isl_int_mul(a
, lower
[0], bset
->ineq
[j
][1]);
731 isl_int_mul(b
, lower
[1], bset
->ineq
[j
][0]);
732 if (isl_int_lt(a
, b
))
733 isl_seq_cpy(lower
, bset
->ineq
[j
], 2);
735 if (upper
&& isl_int_is_neg(bset
->ineq
[j
][1])) {
736 isl_int_mul(a
, upper
[0], bset
->ineq
[j
][1]);
737 isl_int_mul(b
, upper
[1], bset
->ineq
[j
][0]);
738 if (isl_int_gt(a
, b
))
739 isl_seq_cpy(upper
, bset
->ineq
[j
], 2);
750 hull
= isl_basic_set_alloc(set
->ctx
, 0, 1, 0, 0, 2);
751 hull
= isl_basic_set_set_rational(hull
);
755 k
= isl_basic_set_alloc_inequality(hull
);
756 isl_seq_cpy(hull
->ineq
[k
], lower
, 2);
759 k
= isl_basic_set_alloc_inequality(hull
);
760 isl_seq_cpy(hull
->ineq
[k
], upper
, 2);
762 hull
= isl_basic_set_finalize(hull
);
772 /* Project out final n dimensions using Fourier-Motzkin */
773 static struct isl_set
*set_project_out(struct isl_ctx
*ctx
,
774 struct isl_set
*set
, unsigned n
)
776 return isl_set_remove_dims(set
, isl_set_n_dim(set
) - n
, n
);
779 static struct isl_basic_set
*convex_hull_0d(struct isl_set
*set
)
781 struct isl_basic_set
*convex_hull
;
786 if (isl_set_is_empty(set
))
787 convex_hull
= isl_basic_set_empty(isl_dim_copy(set
->dim
));
789 convex_hull
= isl_basic_set_universe(isl_dim_copy(set
->dim
));
794 /* Compute the convex hull of a pair of basic sets without any parameters or
795 * integer divisions using Fourier-Motzkin elimination.
796 * The convex hull is the set of all points that can be written as
797 * the sum of points from both basic sets (in homogeneous coordinates).
798 * We set up the constraints in a space with dimensions for each of
799 * the three sets and then project out the dimensions corresponding
800 * to the two original basic sets, retaining only those corresponding
801 * to the convex hull.
803 static struct isl_basic_set
*convex_hull_pair_elim(struct isl_basic_set
*bset1
,
804 struct isl_basic_set
*bset2
)
807 struct isl_basic_set
*bset
[2];
808 struct isl_basic_set
*hull
= NULL
;
811 if (!bset1
|| !bset2
)
814 dim
= isl_basic_set_n_dim(bset1
);
815 hull
= isl_basic_set_alloc(bset1
->ctx
, 0, 2 + 3 * dim
, 0,
816 1 + dim
+ bset1
->n_eq
+ bset2
->n_eq
,
817 2 + bset1
->n_ineq
+ bset2
->n_ineq
);
820 for (i
= 0; i
< 2; ++i
) {
821 for (j
= 0; j
< bset
[i
]->n_eq
; ++j
) {
822 k
= isl_basic_set_alloc_equality(hull
);
825 isl_seq_clr(hull
->eq
[k
], (i
+1) * (1+dim
));
826 isl_seq_clr(hull
->eq
[k
]+(i
+2)*(1+dim
), (1-i
)*(1+dim
));
827 isl_seq_cpy(hull
->eq
[k
]+(i
+1)*(1+dim
), bset
[i
]->eq
[j
],
830 for (j
= 0; j
< bset
[i
]->n_ineq
; ++j
) {
831 k
= isl_basic_set_alloc_inequality(hull
);
834 isl_seq_clr(hull
->ineq
[k
], (i
+1) * (1+dim
));
835 isl_seq_clr(hull
->ineq
[k
]+(i
+2)*(1+dim
), (1-i
)*(1+dim
));
836 isl_seq_cpy(hull
->ineq
[k
]+(i
+1)*(1+dim
),
837 bset
[i
]->ineq
[j
], 1+dim
);
839 k
= isl_basic_set_alloc_inequality(hull
);
842 isl_seq_clr(hull
->ineq
[k
], 1+2+3*dim
);
843 isl_int_set_si(hull
->ineq
[k
][(i
+1)*(1+dim
)], 1);
845 for (j
= 0; j
< 1+dim
; ++j
) {
846 k
= isl_basic_set_alloc_equality(hull
);
849 isl_seq_clr(hull
->eq
[k
], 1+2+3*dim
);
850 isl_int_set_si(hull
->eq
[k
][j
], -1);
851 isl_int_set_si(hull
->eq
[k
][1+dim
+j
], 1);
852 isl_int_set_si(hull
->eq
[k
][2*(1+dim
)+j
], 1);
854 hull
= isl_basic_set_set_rational(hull
);
855 hull
= isl_basic_set_remove_dims(hull
, dim
, 2*(1+dim
));
856 hull
= isl_basic_set_convex_hull(hull
);
857 isl_basic_set_free(bset1
);
858 isl_basic_set_free(bset2
);
861 isl_basic_set_free(bset1
);
862 isl_basic_set_free(bset2
);
863 isl_basic_set_free(hull
);
867 static int isl_basic_set_is_bounded(struct isl_basic_set
*bset
)
874 if (isl_basic_set_fast_is_empty(bset
))
877 tab
= isl_tab_from_recession_cone(bset
);
878 bounded
= isl_tab_cone_is_bounded(tab
);
883 int isl_set_is_bounded(__isl_keep isl_set
*set
)
887 for (i
= 0; i
< set
->n
; ++i
) {
888 int bounded
= isl_basic_set_is_bounded(set
->p
[i
]);
889 if (!bounded
|| bounded
< 0)
895 /* Compute the lineality space of the convex hull of bset1 and bset2.
897 * We first compute the intersection of the recession cone of bset1
898 * with the negative of the recession cone of bset2 and then compute
899 * the linear hull of the resulting cone.
901 static struct isl_basic_set
*induced_lineality_space(
902 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
905 struct isl_basic_set
*lin
= NULL
;
908 if (!bset1
|| !bset2
)
911 dim
= isl_basic_set_total_dim(bset1
);
912 lin
= isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset1
), 0,
913 bset1
->n_eq
+ bset2
->n_eq
,
914 bset1
->n_ineq
+ bset2
->n_ineq
);
915 lin
= isl_basic_set_set_rational(lin
);
918 for (i
= 0; i
< bset1
->n_eq
; ++i
) {
919 k
= isl_basic_set_alloc_equality(lin
);
922 isl_int_set_si(lin
->eq
[k
][0], 0);
923 isl_seq_cpy(lin
->eq
[k
] + 1, bset1
->eq
[i
] + 1, dim
);
925 for (i
= 0; i
< bset1
->n_ineq
; ++i
) {
926 k
= isl_basic_set_alloc_inequality(lin
);
929 isl_int_set_si(lin
->ineq
[k
][0], 0);
930 isl_seq_cpy(lin
->ineq
[k
] + 1, bset1
->ineq
[i
] + 1, dim
);
932 for (i
= 0; i
< bset2
->n_eq
; ++i
) {
933 k
= isl_basic_set_alloc_equality(lin
);
936 isl_int_set_si(lin
->eq
[k
][0], 0);
937 isl_seq_neg(lin
->eq
[k
] + 1, bset2
->eq
[i
] + 1, dim
);
939 for (i
= 0; i
< bset2
->n_ineq
; ++i
) {
940 k
= isl_basic_set_alloc_inequality(lin
);
943 isl_int_set_si(lin
->ineq
[k
][0], 0);
944 isl_seq_neg(lin
->ineq
[k
] + 1, bset2
->ineq
[i
] + 1, dim
);
947 isl_basic_set_free(bset1
);
948 isl_basic_set_free(bset2
);
949 return isl_basic_set_affine_hull(lin
);
951 isl_basic_set_free(lin
);
952 isl_basic_set_free(bset1
);
953 isl_basic_set_free(bset2
);
957 static struct isl_basic_set
*uset_convex_hull(struct isl_set
*set
);
959 /* Given a set and a linear space "lin" of dimension n > 0,
960 * project the linear space from the set, compute the convex hull
961 * and then map the set back to the original space.
967 * describe the linear space. We first compute the Hermite normal
968 * form H = M U of M = H Q, to obtain
972 * The last n rows of H will be zero, so the last n variables of x' = Q x
973 * are the one we want to project out. We do this by transforming each
974 * basic set A x >= b to A U x' >= b and then removing the last n dimensions.
975 * After computing the convex hull in x'_1, i.e., A' x'_1 >= b',
976 * we transform the hull back to the original space as A' Q_1 x >= b',
977 * with Q_1 all but the last n rows of Q.
979 static struct isl_basic_set
*modulo_lineality(struct isl_set
*set
,
980 struct isl_basic_set
*lin
)
982 unsigned total
= isl_basic_set_total_dim(lin
);
984 struct isl_basic_set
*hull
;
985 struct isl_mat
*M
, *U
, *Q
;
989 lin_dim
= total
- lin
->n_eq
;
990 M
= isl_mat_sub_alloc(set
->ctx
, lin
->eq
, 0, lin
->n_eq
, 1, total
);
991 M
= isl_mat_left_hermite(M
, 0, &U
, &Q
);
995 isl_basic_set_free(lin
);
997 Q
= isl_mat_drop_rows(Q
, Q
->n_row
- lin_dim
, lin_dim
);
999 U
= isl_mat_lin_to_aff(U
);
1000 Q
= isl_mat_lin_to_aff(Q
);
1002 set
= isl_set_preimage(set
, U
);
1003 set
= isl_set_remove_dims(set
, total
- lin_dim
, lin_dim
);
1004 hull
= uset_convex_hull(set
);
1005 hull
= isl_basic_set_preimage(hull
, Q
);
1009 isl_basic_set_free(lin
);
1014 /* Given two polyhedra with as constraints h_{ij} x >= 0 in homegeneous space,
1015 * set up an LP for solving
1017 * \sum_j \alpha_{1j} h_{1j} = \sum_j \alpha_{2j} h_{2j}
1019 * \alpha{i0} corresponds to the (implicit) positivity constraint 1 >= 0
1020 * The next \alpha{ij} correspond to the equalities and come in pairs.
1021 * The final \alpha{ij} correspond to the inequalities.
1023 static struct isl_basic_set
*valid_direction_lp(
1024 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
1026 struct isl_dim
*dim
;
1027 struct isl_basic_set
*lp
;
1032 if (!bset1
|| !bset2
)
1034 d
= 1 + isl_basic_set_total_dim(bset1
);
1036 2 * bset1
->n_eq
+ bset1
->n_ineq
+ 2 * bset2
->n_eq
+ bset2
->n_ineq
;
1037 dim
= isl_dim_set_alloc(bset1
->ctx
, 0, n
);
1038 lp
= isl_basic_set_alloc_dim(dim
, 0, d
, n
);
1041 for (i
= 0; i
< n
; ++i
) {
1042 k
= isl_basic_set_alloc_inequality(lp
);
1045 isl_seq_clr(lp
->ineq
[k
] + 1, n
);
1046 isl_int_set_si(lp
->ineq
[k
][0], -1);
1047 isl_int_set_si(lp
->ineq
[k
][1 + i
], 1);
1049 for (i
= 0; i
< d
; ++i
) {
1050 k
= isl_basic_set_alloc_equality(lp
);
1054 isl_int_set_si(lp
->eq
[k
][n
++], 0);
1055 /* positivity constraint 1 >= 0 */
1056 isl_int_set_si(lp
->eq
[k
][n
++], i
== 0);
1057 for (j
= 0; j
< bset1
->n_eq
; ++j
) {
1058 isl_int_set(lp
->eq
[k
][n
++], bset1
->eq
[j
][i
]);
1059 isl_int_neg(lp
->eq
[k
][n
++], bset1
->eq
[j
][i
]);
1061 for (j
= 0; j
< bset1
->n_ineq
; ++j
)
1062 isl_int_set(lp
->eq
[k
][n
++], bset1
->ineq
[j
][i
]);
1063 /* positivity constraint 1 >= 0 */
1064 isl_int_set_si(lp
->eq
[k
][n
++], -(i
== 0));
1065 for (j
= 0; j
< bset2
->n_eq
; ++j
) {
1066 isl_int_neg(lp
->eq
[k
][n
++], bset2
->eq
[j
][i
]);
1067 isl_int_set(lp
->eq
[k
][n
++], bset2
->eq
[j
][i
]);
1069 for (j
= 0; j
< bset2
->n_ineq
; ++j
)
1070 isl_int_neg(lp
->eq
[k
][n
++], bset2
->ineq
[j
][i
]);
1072 lp
= isl_basic_set_gauss(lp
, NULL
);
1073 isl_basic_set_free(bset1
);
1074 isl_basic_set_free(bset2
);
1077 isl_basic_set_free(bset1
);
1078 isl_basic_set_free(bset2
);
1082 /* Compute a vector s in the homogeneous space such that <s, r> > 0
1083 * for all rays in the homogeneous space of the two cones that correspond
1084 * to the input polyhedra bset1 and bset2.
1086 * We compute s as a vector that satisfies
1088 * s = \sum_j \alpha_{ij} h_{ij} for i = 1,2 (*)
1090 * with h_{ij} the normals of the facets of polyhedron i
1091 * (including the "positivity constraint" 1 >= 0) and \alpha_{ij}
1092 * strictly positive numbers. For simplicity we impose \alpha_{ij} >= 1.
1093 * We first set up an LP with as variables the \alpha{ij}.
1094 * In this formulation, for each polyhedron i,
1095 * the first constraint is the positivity constraint, followed by pairs
1096 * of variables for the equalities, followed by variables for the inequalities.
1097 * We then simply pick a feasible solution and compute s using (*).
1099 * Note that we simply pick any valid direction and make no attempt
1100 * to pick a "good" or even the "best" valid direction.
1102 static struct isl_vec
*valid_direction(
1103 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
1105 struct isl_basic_set
*lp
;
1106 struct isl_tab
*tab
;
1107 struct isl_vec
*sample
= NULL
;
1108 struct isl_vec
*dir
;
1113 if (!bset1
|| !bset2
)
1115 lp
= valid_direction_lp(isl_basic_set_copy(bset1
),
1116 isl_basic_set_copy(bset2
));
1117 tab
= isl_tab_from_basic_set(lp
);
1118 sample
= isl_tab_get_sample_value(tab
);
1120 isl_basic_set_free(lp
);
1123 d
= isl_basic_set_total_dim(bset1
);
1124 dir
= isl_vec_alloc(bset1
->ctx
, 1 + d
);
1127 isl_seq_clr(dir
->block
.data
+ 1, dir
->size
- 1);
1129 /* positivity constraint 1 >= 0 */
1130 isl_int_set(dir
->block
.data
[0], sample
->block
.data
[n
++]);
1131 for (i
= 0; i
< bset1
->n_eq
; ++i
) {
1132 isl_int_sub(sample
->block
.data
[n
],
1133 sample
->block
.data
[n
], sample
->block
.data
[n
+1]);
1134 isl_seq_combine(dir
->block
.data
,
1135 bset1
->ctx
->one
, dir
->block
.data
,
1136 sample
->block
.data
[n
], bset1
->eq
[i
], 1 + d
);
1140 for (i
= 0; i
< bset1
->n_ineq
; ++i
)
1141 isl_seq_combine(dir
->block
.data
,
1142 bset1
->ctx
->one
, dir
->block
.data
,
1143 sample
->block
.data
[n
++], bset1
->ineq
[i
], 1 + d
);
1144 isl_vec_free(sample
);
1145 isl_seq_normalize(bset1
->ctx
, dir
->el
, dir
->size
);
1146 isl_basic_set_free(bset1
);
1147 isl_basic_set_free(bset2
);
1150 isl_vec_free(sample
);
1151 isl_basic_set_free(bset1
);
1152 isl_basic_set_free(bset2
);
1156 /* Given a polyhedron b_i + A_i x >= 0 and a map T = S^{-1},
1157 * compute b_i' + A_i' x' >= 0, with
1159 * [ b_i A_i ] [ y' ] [ y' ]
1160 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1162 * In particular, add the "positivity constraint" and then perform
1165 static struct isl_basic_set
*homogeneous_map(struct isl_basic_set
*bset
,
1172 bset
= isl_basic_set_extend_constraints(bset
, 0, 1);
1173 k
= isl_basic_set_alloc_inequality(bset
);
1176 isl_seq_clr(bset
->ineq
[k
] + 1, isl_basic_set_total_dim(bset
));
1177 isl_int_set_si(bset
->ineq
[k
][0], 1);
1178 bset
= isl_basic_set_preimage(bset
, T
);
1182 isl_basic_set_free(bset
);
1186 /* Compute the convex hull of a pair of basic sets without any parameters or
1187 * integer divisions, where the convex hull is known to be pointed,
1188 * but the basic sets may be unbounded.
1190 * We turn this problem into the computation of a convex hull of a pair
1191 * _bounded_ polyhedra by "changing the direction of the homogeneous
1192 * dimension". This idea is due to Matthias Koeppe.
1194 * Consider the cones in homogeneous space that correspond to the
1195 * input polyhedra. The rays of these cones are also rays of the
1196 * polyhedra if the coordinate that corresponds to the homogeneous
1197 * dimension is zero. That is, if the inner product of the rays
1198 * with the homogeneous direction is zero.
1199 * The cones in the homogeneous space can also be considered to
1200 * correspond to other pairs of polyhedra by chosing a different
1201 * homogeneous direction. To ensure that both of these polyhedra
1202 * are bounded, we need to make sure that all rays of the cones
1203 * correspond to vertices and not to rays.
1204 * Let s be a direction such that <s, r> > 0 for all rays r of both cones.
1205 * Then using s as a homogeneous direction, we obtain a pair of polytopes.
1206 * The vector s is computed in valid_direction.
1208 * Note that we need to consider _all_ rays of the cones and not just
1209 * the rays that correspond to rays in the polyhedra. If we were to
1210 * only consider those rays and turn them into vertices, then we
1211 * may inadvertently turn some vertices into rays.
1213 * The standard homogeneous direction is the unit vector in the 0th coordinate.
1214 * We therefore transform the two polyhedra such that the selected
1215 * direction is mapped onto this standard direction and then proceed
1216 * with the normal computation.
1217 * Let S be a non-singular square matrix with s as its first row,
1218 * then we want to map the polyhedra to the space
1220 * [ y' ] [ y ] [ y ] [ y' ]
1221 * [ x' ] = S [ x ] i.e., [ x ] = S^{-1} [ x' ]
1223 * We take S to be the unimodular completion of s to limit the growth
1224 * of the coefficients in the following computations.
1226 * Let b_i + A_i x >= 0 be the constraints of polyhedron i.
1227 * We first move to the homogeneous dimension
1229 * b_i y + A_i x >= 0 [ b_i A_i ] [ y ] [ 0 ]
1230 * y >= 0 or [ 1 0 ] [ x ] >= [ 0 ]
1232 * Then we change directoin
1234 * [ b_i A_i ] [ y' ] [ y' ]
1235 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1237 * Then we compute the convex hull of the polytopes b_i' + A_i' x' >= 0
1238 * resulting in b' + A' x' >= 0, which we then convert back
1241 * [ b' A' ] S [ x ] >= 0 or [ b A ] [ x ] >= 0
1243 * The polyhedron b + A x >= 0 is then the convex hull of the input polyhedra.
1245 static struct isl_basic_set
*convex_hull_pair_pointed(
1246 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
1248 struct isl_ctx
*ctx
= NULL
;
1249 struct isl_vec
*dir
= NULL
;
1250 struct isl_mat
*T
= NULL
;
1251 struct isl_mat
*T2
= NULL
;
1252 struct isl_basic_set
*hull
;
1253 struct isl_set
*set
;
1255 if (!bset1
|| !bset2
)
1258 dir
= valid_direction(isl_basic_set_copy(bset1
),
1259 isl_basic_set_copy(bset2
));
1262 T
= isl_mat_alloc(bset1
->ctx
, dir
->size
, dir
->size
);
1265 isl_seq_cpy(T
->row
[0], dir
->block
.data
, dir
->size
);
1266 T
= isl_mat_unimodular_complete(T
, 1);
1267 T2
= isl_mat_right_inverse(isl_mat_copy(T
));
1269 bset1
= homogeneous_map(bset1
, isl_mat_copy(T2
));
1270 bset2
= homogeneous_map(bset2
, T2
);
1271 set
= isl_set_alloc_dim(isl_basic_set_get_dim(bset1
), 2, 0);
1272 set
= isl_set_add_basic_set(set
, bset1
);
1273 set
= isl_set_add_basic_set(set
, bset2
);
1274 hull
= uset_convex_hull(set
);
1275 hull
= isl_basic_set_preimage(hull
, T
);
1282 isl_basic_set_free(bset1
);
1283 isl_basic_set_free(bset2
);
1287 static struct isl_basic_set
*uset_convex_hull_wrap(struct isl_set
*set
);
1288 static struct isl_basic_set
*modulo_affine_hull(
1289 struct isl_set
*set
, struct isl_basic_set
*affine_hull
);
1291 /* Compute the convex hull of a pair of basic sets without any parameters or
1292 * integer divisions.
1294 * This function is called from uset_convex_hull_unbounded, which
1295 * means that the complete convex hull is unbounded. Some pairs
1296 * of basic sets may still be bounded, though.
1297 * They may even lie inside a lower dimensional space, in which
1298 * case they need to be handled inside their affine hull since
1299 * the main algorithm assumes that the result is full-dimensional.
1301 * If the convex hull of the two basic sets would have a non-trivial
1302 * lineality space, we first project out this lineality space.
1304 static struct isl_basic_set
*convex_hull_pair(struct isl_basic_set
*bset1
,
1305 struct isl_basic_set
*bset2
)
1307 isl_basic_set
*lin
, *aff
;
1308 int bounded1
, bounded2
;
1310 aff
= isl_set_affine_hull(isl_basic_set_union(isl_basic_set_copy(bset1
),
1311 isl_basic_set_copy(bset2
)));
1315 return modulo_affine_hull(isl_basic_set_union(bset1
, bset2
), aff
);
1316 isl_basic_set_free(aff
);
1318 bounded1
= isl_basic_set_is_bounded(bset1
);
1319 bounded2
= isl_basic_set_is_bounded(bset2
);
1321 if (bounded1
< 0 || bounded2
< 0)
1324 if (bounded1
&& bounded2
)
1325 uset_convex_hull_wrap(isl_basic_set_union(bset1
, bset2
));
1327 if (bounded1
|| bounded2
)
1328 return convex_hull_pair_pointed(bset1
, bset2
);
1330 lin
= induced_lineality_space(isl_basic_set_copy(bset1
),
1331 isl_basic_set_copy(bset2
));
1334 if (isl_basic_set_is_universe(lin
)) {
1335 isl_basic_set_free(bset1
);
1336 isl_basic_set_free(bset2
);
1339 if (lin
->n_eq
< isl_basic_set_total_dim(lin
)) {
1340 struct isl_set
*set
;
1341 set
= isl_set_alloc_dim(isl_basic_set_get_dim(bset1
), 2, 0);
1342 set
= isl_set_add_basic_set(set
, bset1
);
1343 set
= isl_set_add_basic_set(set
, bset2
);
1344 return modulo_lineality(set
, lin
);
1346 isl_basic_set_free(lin
);
1348 return convex_hull_pair_pointed(bset1
, bset2
);
1350 isl_basic_set_free(bset1
);
1351 isl_basic_set_free(bset2
);
1355 /* Compute the lineality space of a basic set.
1356 * We currently do not allow the basic set to have any divs.
1357 * We basically just drop the constants and turn every inequality
1360 struct isl_basic_set
*isl_basic_set_lineality_space(struct isl_basic_set
*bset
)
1363 struct isl_basic_set
*lin
= NULL
;
1368 isl_assert(bset
->ctx
, bset
->n_div
== 0, goto error
);
1369 dim
= isl_basic_set_total_dim(bset
);
1371 lin
= isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset
), 0, dim
, 0);
1374 for (i
= 0; i
< bset
->n_eq
; ++i
) {
1375 k
= isl_basic_set_alloc_equality(lin
);
1378 isl_int_set_si(lin
->eq
[k
][0], 0);
1379 isl_seq_cpy(lin
->eq
[k
] + 1, bset
->eq
[i
] + 1, dim
);
1381 lin
= isl_basic_set_gauss(lin
, NULL
);
1384 for (i
= 0; i
< bset
->n_ineq
&& lin
->n_eq
< dim
; ++i
) {
1385 k
= isl_basic_set_alloc_equality(lin
);
1388 isl_int_set_si(lin
->eq
[k
][0], 0);
1389 isl_seq_cpy(lin
->eq
[k
] + 1, bset
->ineq
[i
] + 1, dim
);
1390 lin
= isl_basic_set_gauss(lin
, NULL
);
1394 isl_basic_set_free(bset
);
1397 isl_basic_set_free(lin
);
1398 isl_basic_set_free(bset
);
1402 /* Compute the (linear) hull of the lineality spaces of the basic sets in the
1403 * "underlying" set "set".
1405 static struct isl_basic_set
*uset_combined_lineality_space(struct isl_set
*set
)
1408 struct isl_set
*lin
= NULL
;
1413 struct isl_dim
*dim
= isl_set_get_dim(set
);
1415 return isl_basic_set_empty(dim
);
1418 lin
= isl_set_alloc_dim(isl_set_get_dim(set
), set
->n
, 0);
1419 for (i
= 0; i
< set
->n
; ++i
)
1420 lin
= isl_set_add_basic_set(lin
,
1421 isl_basic_set_lineality_space(isl_basic_set_copy(set
->p
[i
])));
1423 return isl_set_affine_hull(lin
);
1426 /* Compute the convex hull of a set without any parameters or
1427 * integer divisions.
1428 * In each step, we combined two basic sets until only one
1429 * basic set is left.
1430 * The input basic sets are assumed not to have a non-trivial
1431 * lineality space. If any of the intermediate results has
1432 * a non-trivial lineality space, it is projected out.
1434 static struct isl_basic_set
*uset_convex_hull_unbounded(struct isl_set
*set
)
1436 struct isl_basic_set
*convex_hull
= NULL
;
1438 convex_hull
= isl_set_copy_basic_set(set
);
1439 set
= isl_set_drop_basic_set(set
, convex_hull
);
1442 while (set
->n
> 0) {
1443 struct isl_basic_set
*t
;
1444 t
= isl_set_copy_basic_set(set
);
1447 set
= isl_set_drop_basic_set(set
, t
);
1450 convex_hull
= convex_hull_pair(convex_hull
, t
);
1453 t
= isl_basic_set_lineality_space(isl_basic_set_copy(convex_hull
));
1456 if (isl_basic_set_is_universe(t
)) {
1457 isl_basic_set_free(convex_hull
);
1461 if (t
->n_eq
< isl_basic_set_total_dim(t
)) {
1462 set
= isl_set_add_basic_set(set
, convex_hull
);
1463 return modulo_lineality(set
, t
);
1465 isl_basic_set_free(t
);
1471 isl_basic_set_free(convex_hull
);
1475 /* Compute an initial hull for wrapping containing a single initial
1477 * This function assumes that the given set is bounded.
1479 static struct isl_basic_set
*initial_hull(struct isl_basic_set
*hull
,
1480 struct isl_set
*set
)
1482 struct isl_mat
*bounds
= NULL
;
1488 bounds
= initial_facet_constraint(set
);
1491 k
= isl_basic_set_alloc_inequality(hull
);
1494 dim
= isl_set_n_dim(set
);
1495 isl_assert(set
->ctx
, 1 + dim
== bounds
->n_col
, goto error
);
1496 isl_seq_cpy(hull
->ineq
[k
], bounds
->row
[0], bounds
->n_col
);
1497 isl_mat_free(bounds
);
1501 isl_basic_set_free(hull
);
1502 isl_mat_free(bounds
);
1506 struct max_constraint
{
1512 static int max_constraint_equal(const void *entry
, const void *val
)
1514 struct max_constraint
*a
= (struct max_constraint
*)entry
;
1515 isl_int
*b
= (isl_int
*)val
;
1517 return isl_seq_eq(a
->c
->row
[0] + 1, b
, a
->c
->n_col
- 1);
1520 static void update_constraint(struct isl_ctx
*ctx
, struct isl_hash_table
*table
,
1521 isl_int
*con
, unsigned len
, int n
, int ineq
)
1523 struct isl_hash_table_entry
*entry
;
1524 struct max_constraint
*c
;
1527 c_hash
= isl_seq_get_hash(con
+ 1, len
);
1528 entry
= isl_hash_table_find(ctx
, table
, c_hash
, max_constraint_equal
,
1534 isl_hash_table_remove(ctx
, table
, entry
);
1538 if (isl_int_gt(c
->c
->row
[0][0], con
[0]))
1540 if (isl_int_eq(c
->c
->row
[0][0], con
[0])) {
1545 c
->c
= isl_mat_cow(c
->c
);
1546 isl_int_set(c
->c
->row
[0][0], con
[0]);
1550 /* Check whether the constraint hash table "table" constains the constraint
1553 static int has_constraint(struct isl_ctx
*ctx
, struct isl_hash_table
*table
,
1554 isl_int
*con
, unsigned len
, int n
)
1556 struct isl_hash_table_entry
*entry
;
1557 struct max_constraint
*c
;
1560 c_hash
= isl_seq_get_hash(con
+ 1, len
);
1561 entry
= isl_hash_table_find(ctx
, table
, c_hash
, max_constraint_equal
,
1568 return isl_int_eq(c
->c
->row
[0][0], con
[0]);
1571 /* Check for inequality constraints of a basic set without equalities
1572 * such that the same or more stringent copies of the constraint appear
1573 * in all of the basic sets. Such constraints are necessarily facet
1574 * constraints of the convex hull.
1576 * If the resulting basic set is by chance identical to one of
1577 * the basic sets in "set", then we know that this basic set contains
1578 * all other basic sets and is therefore the convex hull of set.
1579 * In this case we set *is_hull to 1.
1581 static struct isl_basic_set
*common_constraints(struct isl_basic_set
*hull
,
1582 struct isl_set
*set
, int *is_hull
)
1585 int min_constraints
;
1587 struct max_constraint
*constraints
= NULL
;
1588 struct isl_hash_table
*table
= NULL
;
1593 for (i
= 0; i
< set
->n
; ++i
)
1594 if (set
->p
[i
]->n_eq
== 0)
1598 min_constraints
= set
->p
[i
]->n_ineq
;
1600 for (i
= best
+ 1; i
< set
->n
; ++i
) {
1601 if (set
->p
[i
]->n_eq
!= 0)
1603 if (set
->p
[i
]->n_ineq
>= min_constraints
)
1605 min_constraints
= set
->p
[i
]->n_ineq
;
1608 constraints
= isl_calloc_array(hull
->ctx
, struct max_constraint
,
1612 table
= isl_alloc_type(hull
->ctx
, struct isl_hash_table
);
1613 if (isl_hash_table_init(hull
->ctx
, table
, min_constraints
))
1616 total
= isl_dim_total(set
->dim
);
1617 for (i
= 0; i
< set
->p
[best
]->n_ineq
; ++i
) {
1618 constraints
[i
].c
= isl_mat_sub_alloc(hull
->ctx
,
1619 set
->p
[best
]->ineq
+ i
, 0, 1, 0, 1 + total
);
1620 if (!constraints
[i
].c
)
1622 constraints
[i
].ineq
= 1;
1624 for (i
= 0; i
< min_constraints
; ++i
) {
1625 struct isl_hash_table_entry
*entry
;
1627 c_hash
= isl_seq_get_hash(constraints
[i
].c
->row
[0] + 1, total
);
1628 entry
= isl_hash_table_find(hull
->ctx
, table
, c_hash
,
1629 max_constraint_equal
, constraints
[i
].c
->row
[0] + 1, 1);
1632 isl_assert(hull
->ctx
, !entry
->data
, goto error
);
1633 entry
->data
= &constraints
[i
];
1637 for (s
= 0; s
< set
->n
; ++s
) {
1641 for (i
= 0; i
< set
->p
[s
]->n_eq
; ++i
) {
1642 isl_int
*eq
= set
->p
[s
]->eq
[i
];
1643 for (j
= 0; j
< 2; ++j
) {
1644 isl_seq_neg(eq
, eq
, 1 + total
);
1645 update_constraint(hull
->ctx
, table
,
1649 for (i
= 0; i
< set
->p
[s
]->n_ineq
; ++i
) {
1650 isl_int
*ineq
= set
->p
[s
]->ineq
[i
];
1651 update_constraint(hull
->ctx
, table
, ineq
, total
, n
,
1652 set
->p
[s
]->n_eq
== 0);
1657 for (i
= 0; i
< min_constraints
; ++i
) {
1658 if (constraints
[i
].count
< n
)
1660 if (!constraints
[i
].ineq
)
1662 j
= isl_basic_set_alloc_inequality(hull
);
1665 isl_seq_cpy(hull
->ineq
[j
], constraints
[i
].c
->row
[0], 1 + total
);
1668 for (s
= 0; s
< set
->n
; ++s
) {
1669 if (set
->p
[s
]->n_eq
)
1671 if (set
->p
[s
]->n_ineq
!= hull
->n_ineq
)
1673 for (i
= 0; i
< set
->p
[s
]->n_ineq
; ++i
) {
1674 isl_int
*ineq
= set
->p
[s
]->ineq
[i
];
1675 if (!has_constraint(hull
->ctx
, table
, ineq
, total
, n
))
1678 if (i
== set
->p
[s
]->n_ineq
)
1682 isl_hash_table_clear(table
);
1683 for (i
= 0; i
< min_constraints
; ++i
)
1684 isl_mat_free(constraints
[i
].c
);
1689 isl_hash_table_clear(table
);
1692 for (i
= 0; i
< min_constraints
; ++i
)
1693 isl_mat_free(constraints
[i
].c
);
1698 /* Create a template for the convex hull of "set" and fill it up
1699 * obvious facet constraints, if any. If the result happens to
1700 * be the convex hull of "set" then *is_hull is set to 1.
1702 static struct isl_basic_set
*proto_hull(struct isl_set
*set
, int *is_hull
)
1704 struct isl_basic_set
*hull
;
1709 for (i
= 0; i
< set
->n
; ++i
) {
1710 n_ineq
+= set
->p
[i
]->n_eq
;
1711 n_ineq
+= set
->p
[i
]->n_ineq
;
1713 hull
= isl_basic_set_alloc_dim(isl_dim_copy(set
->dim
), 0, 0, n_ineq
);
1714 hull
= isl_basic_set_set_rational(hull
);
1717 return common_constraints(hull
, set
, is_hull
);
1720 static struct isl_basic_set
*uset_convex_hull_wrap(struct isl_set
*set
)
1722 struct isl_basic_set
*hull
;
1725 hull
= proto_hull(set
, &is_hull
);
1726 if (hull
&& !is_hull
) {
1727 if (hull
->n_ineq
== 0)
1728 hull
= initial_hull(hull
, set
);
1729 hull
= extend(hull
, set
);
1736 /* Compute the convex hull of a set without any parameters or
1737 * integer divisions. Depending on whether the set is bounded,
1738 * we pass control to the wrapping based convex hull or
1739 * the Fourier-Motzkin elimination based convex hull.
1740 * We also handle a few special cases before checking the boundedness.
1742 static struct isl_basic_set
*uset_convex_hull(struct isl_set
*set
)
1744 struct isl_basic_set
*convex_hull
= NULL
;
1745 struct isl_basic_set
*lin
;
1747 if (isl_set_n_dim(set
) == 0)
1748 return convex_hull_0d(set
);
1750 set
= isl_set_coalesce(set
);
1751 set
= isl_set_set_rational(set
);
1758 convex_hull
= isl_basic_set_copy(set
->p
[0]);
1762 if (isl_set_n_dim(set
) == 1)
1763 return convex_hull_1d(set
);
1765 if (isl_set_is_bounded(set
))
1766 return uset_convex_hull_wrap(set
);
1768 lin
= uset_combined_lineality_space(isl_set_copy(set
));
1771 if (isl_basic_set_is_universe(lin
)) {
1775 if (lin
->n_eq
< isl_basic_set_total_dim(lin
))
1776 return modulo_lineality(set
, lin
);
1777 isl_basic_set_free(lin
);
1779 return uset_convex_hull_unbounded(set
);
1782 isl_basic_set_free(convex_hull
);
1786 /* This is the core procedure, where "set" is a "pure" set, i.e.,
1787 * without parameters or divs and where the convex hull of set is
1788 * known to be full-dimensional.
1790 static struct isl_basic_set
*uset_convex_hull_wrap_bounded(struct isl_set
*set
)
1792 struct isl_basic_set
*convex_hull
= NULL
;
1794 if (isl_set_n_dim(set
) == 0) {
1795 convex_hull
= isl_basic_set_universe(isl_dim_copy(set
->dim
));
1797 convex_hull
= isl_basic_set_set_rational(convex_hull
);
1801 set
= isl_set_set_rational(set
);
1805 set
= isl_set_coalesce(set
);
1809 convex_hull
= isl_basic_set_copy(set
->p
[0]);
1813 if (isl_set_n_dim(set
) == 1)
1814 return convex_hull_1d(set
);
1816 return uset_convex_hull_wrap(set
);
1822 /* Compute the convex hull of set "set" with affine hull "affine_hull",
1823 * We first remove the equalities (transforming the set), compute the
1824 * convex hull of the transformed set and then add the equalities back
1825 * (after performing the inverse transformation.
1827 static struct isl_basic_set
*modulo_affine_hull(
1828 struct isl_set
*set
, struct isl_basic_set
*affine_hull
)
1832 struct isl_basic_set
*dummy
;
1833 struct isl_basic_set
*convex_hull
;
1835 dummy
= isl_basic_set_remove_equalities(
1836 isl_basic_set_copy(affine_hull
), &T
, &T2
);
1839 isl_basic_set_free(dummy
);
1840 set
= isl_set_preimage(set
, T
);
1841 convex_hull
= uset_convex_hull(set
);
1842 convex_hull
= isl_basic_set_preimage(convex_hull
, T2
);
1843 convex_hull
= isl_basic_set_intersect(convex_hull
, affine_hull
);
1846 isl_basic_set_free(affine_hull
);
1851 /* Compute the convex hull of a map.
1853 * The implementation was inspired by "Extended Convex Hull" by Fukuda et al.,
1854 * specifically, the wrapping of facets to obtain new facets.
1856 struct isl_basic_map
*isl_map_convex_hull(struct isl_map
*map
)
1858 struct isl_basic_set
*bset
;
1859 struct isl_basic_map
*model
= NULL
;
1860 struct isl_basic_set
*affine_hull
= NULL
;
1861 struct isl_basic_map
*convex_hull
= NULL
;
1862 struct isl_set
*set
= NULL
;
1863 struct isl_ctx
*ctx
;
1870 convex_hull
= isl_basic_map_empty_like_map(map
);
1875 map
= isl_map_detect_equalities(map
);
1876 map
= isl_map_align_divs(map
);
1877 model
= isl_basic_map_copy(map
->p
[0]);
1878 set
= isl_map_underlying_set(map
);
1882 affine_hull
= isl_set_affine_hull(isl_set_copy(set
));
1885 if (affine_hull
->n_eq
!= 0)
1886 bset
= modulo_affine_hull(set
, affine_hull
);
1888 isl_basic_set_free(affine_hull
);
1889 bset
= uset_convex_hull(set
);
1892 convex_hull
= isl_basic_map_overlying_set(bset
, model
);
1894 ISL_F_SET(convex_hull
, ISL_BASIC_MAP_NO_IMPLICIT
);
1895 ISL_F_SET(convex_hull
, ISL_BASIC_MAP_ALL_EQUALITIES
);
1896 ISL_F_CLR(convex_hull
, ISL_BASIC_MAP_RATIONAL
);
1900 isl_basic_map_free(model
);
1904 struct isl_basic_set
*isl_set_convex_hull(struct isl_set
*set
)
1906 return (struct isl_basic_set
*)
1907 isl_map_convex_hull((struct isl_map
*)set
);
1910 struct sh_data_entry
{
1911 struct isl_hash_table
*table
;
1912 struct isl_tab
*tab
;
1915 /* Holds the data needed during the simple hull computation.
1917 * n the number of basic sets in the original set
1918 * hull_table a hash table of already computed constraints
1919 * in the simple hull
1920 * p for each basic set,
1921 * table a hash table of the constraints
1922 * tab the tableau corresponding to the basic set
1925 struct isl_ctx
*ctx
;
1927 struct isl_hash_table
*hull_table
;
1928 struct sh_data_entry p
[1];
1931 static void sh_data_free(struct sh_data
*data
)
1937 isl_hash_table_free(data
->ctx
, data
->hull_table
);
1938 for (i
= 0; i
< data
->n
; ++i
) {
1939 isl_hash_table_free(data
->ctx
, data
->p
[i
].table
);
1940 isl_tab_free(data
->p
[i
].tab
);
1945 struct ineq_cmp_data
{
1950 static int has_ineq(const void *entry
, const void *val
)
1952 isl_int
*row
= (isl_int
*)entry
;
1953 struct ineq_cmp_data
*v
= (struct ineq_cmp_data
*)val
;
1955 return isl_seq_eq(row
+ 1, v
->p
+ 1, v
->len
) ||
1956 isl_seq_is_neg(row
+ 1, v
->p
+ 1, v
->len
);
1959 static int hash_ineq(struct isl_ctx
*ctx
, struct isl_hash_table
*table
,
1960 isl_int
*ineq
, unsigned len
)
1963 struct ineq_cmp_data v
;
1964 struct isl_hash_table_entry
*entry
;
1968 c_hash
= isl_seq_get_hash(ineq
+ 1, len
);
1969 entry
= isl_hash_table_find(ctx
, table
, c_hash
, has_ineq
, &v
, 1);
1976 /* Fill hash table "table" with the constraints of "bset".
1977 * Equalities are added as two inequalities.
1978 * The value in the hash table is a pointer to the (in)equality of "bset".
1980 static int hash_basic_set(struct isl_hash_table
*table
,
1981 struct isl_basic_set
*bset
)
1984 unsigned dim
= isl_basic_set_total_dim(bset
);
1986 for (i
= 0; i
< bset
->n_eq
; ++i
) {
1987 for (j
= 0; j
< 2; ++j
) {
1988 isl_seq_neg(bset
->eq
[i
], bset
->eq
[i
], 1 + dim
);
1989 if (hash_ineq(bset
->ctx
, table
, bset
->eq
[i
], dim
) < 0)
1993 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
1994 if (hash_ineq(bset
->ctx
, table
, bset
->ineq
[i
], dim
) < 0)
2000 static struct sh_data
*sh_data_alloc(struct isl_set
*set
, unsigned n_ineq
)
2002 struct sh_data
*data
;
2005 data
= isl_calloc(set
->ctx
, struct sh_data
,
2006 sizeof(struct sh_data
) +
2007 (set
->n
- 1) * sizeof(struct sh_data_entry
));
2010 data
->ctx
= set
->ctx
;
2012 data
->hull_table
= isl_hash_table_alloc(set
->ctx
, n_ineq
);
2013 if (!data
->hull_table
)
2015 for (i
= 0; i
< set
->n
; ++i
) {
2016 data
->p
[i
].table
= isl_hash_table_alloc(set
->ctx
,
2017 2 * set
->p
[i
]->n_eq
+ set
->p
[i
]->n_ineq
);
2018 if (!data
->p
[i
].table
)
2020 if (hash_basic_set(data
->p
[i
].table
, set
->p
[i
]) < 0)
2029 /* Check if inequality "ineq" is a bound for basic set "j" or if
2030 * it can be relaxed (by increasing the constant term) to become
2031 * a bound for that basic set. In the latter case, the constant
2033 * Return 1 if "ineq" is a bound
2034 * 0 if "ineq" may attain arbitrarily small values on basic set "j"
2035 * -1 if some error occurred
2037 static int is_bound(struct sh_data
*data
, struct isl_set
*set
, int j
,
2040 enum isl_lp_result res
;
2043 if (!data
->p
[j
].tab
) {
2044 data
->p
[j
].tab
= isl_tab_from_basic_set(set
->p
[j
]);
2045 if (!data
->p
[j
].tab
)
2051 res
= isl_tab_min(data
->p
[j
].tab
, ineq
, data
->ctx
->one
,
2053 if (res
== isl_lp_ok
&& isl_int_is_neg(opt
))
2054 isl_int_sub(ineq
[0], ineq
[0], opt
);
2058 return (res
== isl_lp_ok
|| res
== isl_lp_empty
) ? 1 :
2059 res
== isl_lp_unbounded
? 0 : -1;
2062 /* Check if inequality "ineq" from basic set "i" can be relaxed to
2063 * become a bound on the whole set. If so, add the (relaxed) inequality
2066 * We first check if "hull" already contains a translate of the inequality.
2067 * If so, we are done.
2068 * Then, we check if any of the previous basic sets contains a translate
2069 * of the inequality. If so, then we have already considered this
2070 * inequality and we are done.
2071 * Otherwise, for each basic set other than "i", we check if the inequality
2072 * is a bound on the basic set.
2073 * For previous basic sets, we know that they do not contain a translate
2074 * of the inequality, so we directly call is_bound.
2075 * For following basic sets, we first check if a translate of the
2076 * inequality appears in its description and if so directly update
2077 * the inequality accordingly.
2079 static struct isl_basic_set
*add_bound(struct isl_basic_set
*hull
,
2080 struct sh_data
*data
, struct isl_set
*set
, int i
, isl_int
*ineq
)
2083 struct ineq_cmp_data v
;
2084 struct isl_hash_table_entry
*entry
;
2090 v
.len
= isl_basic_set_total_dim(hull
);
2092 c_hash
= isl_seq_get_hash(ineq
+ 1, v
.len
);
2094 entry
= isl_hash_table_find(hull
->ctx
, data
->hull_table
, c_hash
,
2099 for (j
= 0; j
< i
; ++j
) {
2100 entry
= isl_hash_table_find(hull
->ctx
, data
->p
[j
].table
,
2101 c_hash
, has_ineq
, &v
, 0);
2108 k
= isl_basic_set_alloc_inequality(hull
);
2109 isl_seq_cpy(hull
->ineq
[k
], ineq
, 1 + v
.len
);
2113 for (j
= 0; j
< i
; ++j
) {
2115 bound
= is_bound(data
, set
, j
, hull
->ineq
[k
]);
2122 isl_basic_set_free_inequality(hull
, 1);
2126 for (j
= i
+ 1; j
< set
->n
; ++j
) {
2129 entry
= isl_hash_table_find(hull
->ctx
, data
->p
[j
].table
,
2130 c_hash
, has_ineq
, &v
, 0);
2132 ineq_j
= entry
->data
;
2133 neg
= isl_seq_is_neg(ineq_j
+ 1,
2134 hull
->ineq
[k
] + 1, v
.len
);
2136 isl_int_neg(ineq_j
[0], ineq_j
[0]);
2137 if (isl_int_gt(ineq_j
[0], hull
->ineq
[k
][0]))
2138 isl_int_set(hull
->ineq
[k
][0], ineq_j
[0]);
2140 isl_int_neg(ineq_j
[0], ineq_j
[0]);
2143 bound
= is_bound(data
, set
, j
, hull
->ineq
[k
]);
2150 isl_basic_set_free_inequality(hull
, 1);
2154 entry
= isl_hash_table_find(hull
->ctx
, data
->hull_table
, c_hash
,
2158 entry
->data
= hull
->ineq
[k
];
2162 isl_basic_set_free(hull
);
2166 /* Check if any inequality from basic set "i" can be relaxed to
2167 * become a bound on the whole set. If so, add the (relaxed) inequality
2170 static struct isl_basic_set
*add_bounds(struct isl_basic_set
*bset
,
2171 struct sh_data
*data
, struct isl_set
*set
, int i
)
2174 unsigned dim
= isl_basic_set_total_dim(bset
);
2176 for (j
= 0; j
< set
->p
[i
]->n_eq
; ++j
) {
2177 for (k
= 0; k
< 2; ++k
) {
2178 isl_seq_neg(set
->p
[i
]->eq
[j
], set
->p
[i
]->eq
[j
], 1+dim
);
2179 bset
= add_bound(bset
, data
, set
, i
, set
->p
[i
]->eq
[j
]);
2182 for (j
= 0; j
< set
->p
[i
]->n_ineq
; ++j
)
2183 bset
= add_bound(bset
, data
, set
, i
, set
->p
[i
]->ineq
[j
]);
2187 /* Compute a superset of the convex hull of set that is described
2188 * by only translates of the constraints in the constituents of set.
2190 static struct isl_basic_set
*uset_simple_hull(struct isl_set
*set
)
2192 struct sh_data
*data
= NULL
;
2193 struct isl_basic_set
*hull
= NULL
;
2201 for (i
= 0; i
< set
->n
; ++i
) {
2204 n_ineq
+= 2 * set
->p
[i
]->n_eq
+ set
->p
[i
]->n_ineq
;
2207 hull
= isl_basic_set_alloc_dim(isl_dim_copy(set
->dim
), 0, 0, n_ineq
);
2211 data
= sh_data_alloc(set
, n_ineq
);
2215 for (i
= 0; i
< set
->n
; ++i
)
2216 hull
= add_bounds(hull
, data
, set
, i
);
2224 isl_basic_set_free(hull
);
2229 /* Compute a superset of the convex hull of map that is described
2230 * by only translates of the constraints in the constituents of map.
2232 struct isl_basic_map
*isl_map_simple_hull(struct isl_map
*map
)
2234 struct isl_set
*set
= NULL
;
2235 struct isl_basic_map
*model
= NULL
;
2236 struct isl_basic_map
*hull
;
2237 struct isl_basic_map
*affine_hull
;
2238 struct isl_basic_set
*bset
= NULL
;
2243 hull
= isl_basic_map_empty_like_map(map
);
2248 hull
= isl_basic_map_copy(map
->p
[0]);
2253 map
= isl_map_detect_equalities(map
);
2254 affine_hull
= isl_map_affine_hull(isl_map_copy(map
));
2255 map
= isl_map_align_divs(map
);
2256 model
= isl_basic_map_copy(map
->p
[0]);
2258 set
= isl_map_underlying_set(map
);
2260 bset
= uset_simple_hull(set
);
2262 hull
= isl_basic_map_overlying_set(bset
, model
);
2264 hull
= isl_basic_map_intersect(hull
, affine_hull
);
2265 hull
= isl_basic_map_convex_hull(hull
);
2266 ISL_F_SET(hull
, ISL_BASIC_MAP_NO_IMPLICIT
);
2267 ISL_F_SET(hull
, ISL_BASIC_MAP_ALL_EQUALITIES
);
2272 struct isl_basic_set
*isl_set_simple_hull(struct isl_set
*set
)
2274 return (struct isl_basic_set
*)
2275 isl_map_simple_hull((struct isl_map
*)set
);
2278 /* Given a set "set", return parametric bounds on the dimension "dim".
2280 static struct isl_basic_set
*set_bounds(struct isl_set
*set
, int dim
)
2282 unsigned set_dim
= isl_set_dim(set
, isl_dim_set
);
2283 set
= isl_set_copy(set
);
2284 set
= isl_set_eliminate_dims(set
, dim
+ 1, set_dim
- (dim
+ 1));
2285 set
= isl_set_eliminate_dims(set
, 0, dim
);
2286 return isl_set_convex_hull(set
);
2289 /* Computes a "simple hull" and then check if each dimension in the
2290 * resulting hull is bounded by a symbolic constant. If not, the
2291 * hull is intersected with the corresponding bounds on the whole set.
2293 struct isl_basic_set
*isl_set_bounded_simple_hull(struct isl_set
*set
)
2296 struct isl_basic_set
*hull
;
2297 unsigned nparam
, left
;
2298 int removed_divs
= 0;
2300 hull
= isl_set_simple_hull(isl_set_copy(set
));
2304 nparam
= isl_basic_set_dim(hull
, isl_dim_param
);
2305 for (i
= 0; i
< isl_basic_set_dim(hull
, isl_dim_set
); ++i
) {
2306 int lower
= 0, upper
= 0;
2307 struct isl_basic_set
*bounds
;
2309 left
= isl_basic_set_total_dim(hull
) - nparam
- i
- 1;
2310 for (j
= 0; j
< hull
->n_eq
; ++j
) {
2311 if (isl_int_is_zero(hull
->eq
[j
][1 + nparam
+ i
]))
2313 if (isl_seq_first_non_zero(hull
->eq
[j
]+1+nparam
+i
+1,
2320 for (j
= 0; j
< hull
->n_ineq
; ++j
) {
2321 if (isl_int_is_zero(hull
->ineq
[j
][1 + nparam
+ i
]))
2323 if (isl_seq_first_non_zero(hull
->ineq
[j
]+1+nparam
+i
+1,
2325 isl_seq_first_non_zero(hull
->ineq
[j
]+1+nparam
,
2328 if (isl_int_is_pos(hull
->ineq
[j
][1 + nparam
+ i
]))
2339 if (!removed_divs
) {
2340 set
= isl_set_remove_divs(set
);
2345 bounds
= set_bounds(set
, i
);
2346 hull
= isl_basic_set_intersect(hull
, bounds
);