3 C<isl> is a thread-safe C library for manipulating
4 sets and relations of integer points bounded by affine constraints.
5 The descriptions of the sets and relations may involve
6 both parameters and existentially quantified variables.
7 All computations are performed in exact integer arithmetic
9 The C<isl> library offers functionality that is similar
10 to that offered by the C<Omega> and C<Omega+> libraries,
11 but the underlying algorithms are in most cases completely different.
13 The library is by no means complete and some fairly basic
14 functionality is still missing.
15 Still, even in its current form, the library has been successfully
16 used as a backend polyhedral library for the polyhedral
17 scanner C<CLooG> and as part of an equivalence checker of
18 static affine programs.
19 For bug reports, feature requests and questions,
20 visit the the discussion group at
21 L<http://groups.google.com/group/isl-development>.
23 =head2 Backward Incompatible Changes
25 =head3 Changes since isl-0.02
29 =item * The old printing functions have been deprecated
30 and replaced by C<isl_printer> functions, see L<Input and Output>.
32 =item * Most functions related to dependence analysis have acquired
33 an extra C<must> argument. To obtain the old behavior, this argument
34 should be given the value 1. See L<Dependence Analysis>.
38 =head3 Changes since isl-0.03
42 =item * The function C<isl_pw_qpolynomial_fold_add> has been
43 renamed to C<isl_pw_qpolynomial_fold_fold>.
44 Similarly, C<isl_union_pw_qpolynomial_fold_add> has been
45 renamed to C<isl_union_pw_qpolynomial_fold_fold>.
51 The source of C<isl> can be obtained either as a tarball
52 or from the git repository. Both are available from
53 L<http://freshmeat.net/projects/isl/>.
54 The installation process depends on how you obtained
57 =head2 Installation from the git repository
61 =item 1 Clone or update the repository
63 The first time the source is obtained, you need to clone
66 git clone git://repo.or.cz/isl.git
68 To obtain updates, you need to pull in the latest changes
72 =item 2 Generate C<configure>
78 After performing the above steps, continue
79 with the L<Common installation instructions>.
81 =head2 Common installation instructions
87 Building C<isl> requires C<GMP>, including its headers files.
88 Your distribution may not provide these header files by default
89 and you may need to install a package called C<gmp-devel> or something
90 similar. Alternatively, C<GMP> can be built from
91 source, available from L<http://gmplib.org/>.
95 C<isl> uses the standard C<autoconf> C<configure> script.
100 optionally followed by some configure options.
101 A complete list of options can be obtained by running
105 Below we discuss some of the more common options.
107 C<isl> can optionally use C<piplib>, but no
108 C<piplib> functionality is currently used by default.
109 The C<--with-piplib> option can
110 be used to specify which C<piplib>
111 library to use, either an installed version (C<system>),
112 an externally built version (C<build>)
113 or no version (C<no>). The option C<build> is mostly useful
114 in C<configure> scripts of larger projects that bundle both C<isl>
121 Installation prefix for C<isl>
123 =item C<--with-gmp-prefix>
125 Installation prefix for C<GMP> (architecture-independent files).
127 =item C<--with-gmp-exec-prefix>
129 Installation prefix for C<GMP> (architecture-dependent files).
131 =item C<--with-piplib>
133 Which copy of C<piplib> to use, either C<no> (default), C<system> or C<build>.
135 =item C<--with-piplib-prefix>
137 Installation prefix for C<system> C<piplib> (architecture-independent files).
139 =item C<--with-piplib-exec-prefix>
141 Installation prefix for C<system> C<piplib> (architecture-dependent files).
143 =item C<--with-piplib-builddir>
145 Location where C<build> C<piplib> was built.
153 =item 4 Install (optional)
161 =head2 Initialization
163 All manipulations of integer sets and relations occur within
164 the context of an C<isl_ctx>.
165 A given C<isl_ctx> can only be used within a single thread.
166 All arguments of a function are required to have been allocated
167 within the same context.
168 There are currently no functions available for moving an object
169 from one C<isl_ctx> to another C<isl_ctx>. This means that
170 there is currently no way of safely moving an object from one
171 thread to another, unless the whole C<isl_ctx> is moved.
173 An C<isl_ctx> can be allocated using C<isl_ctx_alloc> and
174 freed using C<isl_ctx_free>.
175 All objects allocated within an C<isl_ctx> should be freed
176 before the C<isl_ctx> itself is freed.
178 isl_ctx *isl_ctx_alloc();
179 void isl_ctx_free(isl_ctx *ctx);
183 All operations on integers, mainly the coefficients
184 of the constraints describing the sets and relations,
185 are performed in exact integer arithmetic using C<GMP>.
186 However, to allow future versions of C<isl> to optionally
187 support fixed integer arithmetic, all calls to C<GMP>
188 are wrapped inside C<isl> specific macros.
189 The basic type is C<isl_int> and the following operations
190 are available on this type.
191 The meanings of these operations are essentially the same
192 as their C<GMP> C<mpz_> counterparts.
193 As always with C<GMP> types, C<isl_int>s need to be
194 initialized with C<isl_int_init> before they can be used
195 and they need to be released with C<isl_int_clear>
200 =item isl_int_init(i)
202 =item isl_int_clear(i)
204 =item isl_int_set(r,i)
206 =item isl_int_set_si(r,i)
208 =item isl_int_abs(r,i)
210 =item isl_int_neg(r,i)
212 =item isl_int_swap(i,j)
214 =item isl_int_swap_or_set(i,j)
216 =item isl_int_add_ui(r,i,j)
218 =item isl_int_sub_ui(r,i,j)
220 =item isl_int_add(r,i,j)
222 =item isl_int_sub(r,i,j)
224 =item isl_int_mul(r,i,j)
226 =item isl_int_mul_ui(r,i,j)
228 =item isl_int_addmul(r,i,j)
230 =item isl_int_submul(r,i,j)
232 =item isl_int_gcd(r,i,j)
234 =item isl_int_lcm(r,i,j)
236 =item isl_int_divexact(r,i,j)
238 =item isl_int_cdiv_q(r,i,j)
240 =item isl_int_fdiv_q(r,i,j)
242 =item isl_int_fdiv_r(r,i,j)
244 =item isl_int_fdiv_q_ui(r,i,j)
246 =item isl_int_read(r,s)
248 =item isl_int_print(out,i,width)
252 =item isl_int_cmp(i,j)
254 =item isl_int_cmp_si(i,si)
256 =item isl_int_eq(i,j)
258 =item isl_int_ne(i,j)
260 =item isl_int_lt(i,j)
262 =item isl_int_le(i,j)
264 =item isl_int_gt(i,j)
266 =item isl_int_ge(i,j)
268 =item isl_int_abs_eq(i,j)
270 =item isl_int_abs_ne(i,j)
272 =item isl_int_abs_lt(i,j)
274 =item isl_int_abs_gt(i,j)
276 =item isl_int_abs_ge(i,j)
278 =item isl_int_is_zero(i)
280 =item isl_int_is_one(i)
282 =item isl_int_is_negone(i)
284 =item isl_int_is_pos(i)
286 =item isl_int_is_neg(i)
288 =item isl_int_is_nonpos(i)
290 =item isl_int_is_nonneg(i)
292 =item isl_int_is_divisible_by(i,j)
296 =head2 Sets and Relations
298 C<isl> uses six types of objects for representing sets and relations,
299 C<isl_basic_set>, C<isl_basic_map>, C<isl_set>, C<isl_map>,
300 C<isl_union_set> and C<isl_union_map>.
301 C<isl_basic_set> and C<isl_basic_map> represent sets and relations that
302 can be described as a conjunction of affine constraints, while
303 C<isl_set> and C<isl_map> represent unions of
304 C<isl_basic_set>s and C<isl_basic_map>s, respectively.
305 However, all C<isl_basic_set>s or C<isl_basic_map>s in the union need
306 to have the same dimension. C<isl_union_set>s and C<isl_union_map>s
307 represent unions of C<isl_set>s or C<isl_map>s of I<different> dimensions,
308 where dimensions with different space names
309 (see L<Dimension Specifications>) are considered different as well.
310 The difference between sets and relations (maps) is that sets have
311 one set of variables, while relations have two sets of variables,
312 input variables and output variables.
314 =head2 Memory Management
316 Since a high-level operation on sets and/or relations usually involves
317 several substeps and since the user is usually not interested in
318 the intermediate results, most functions that return a new object
319 will also release all the objects passed as arguments.
320 If the user still wants to use one or more of these arguments
321 after the function call, she should pass along a copy of the
322 object rather than the object itself.
323 The user is then responsible for make sure that the original
324 object gets used somewhere else or is explicitly freed.
326 The arguments and return values of all documents functions are
327 annotated to make clear which arguments are released and which
328 arguments are preserved. In particular, the following annotations
335 C<__isl_give> means that a new object is returned.
336 The user should make sure that the returned pointer is
337 used exactly once as a value for an C<__isl_take> argument.
338 In between, it can be used as a value for as many
339 C<__isl_keep> arguments as the user likes.
340 There is one exception, and that is the case where the
341 pointer returned is C<NULL>. Is this case, the user
342 is free to use it as an C<__isl_take> argument or not.
346 C<__isl_take> means that the object the argument points to
347 is taken over by the function and may no longer be used
348 by the user as an argument to any other function.
349 The pointer value must be one returned by a function
350 returning an C<__isl_give> pointer.
351 If the user passes in a C<NULL> value, then this will
352 be treated as an error in the sense that the function will
353 not perform its usual operation. However, it will still
354 make sure that all the the other C<__isl_take> arguments
359 C<__isl_keep> means that the function will only use the object
360 temporarily. After the function has finished, the user
361 can still use it as an argument to other functions.
362 A C<NULL> value will be treated in the same way as
363 a C<NULL> value for an C<__isl_take> argument.
367 =head2 Dimension Specifications
369 Whenever a new set or relation is created from scratch,
370 its dimension needs to be specified using an C<isl_dim>.
373 __isl_give isl_dim *isl_dim_alloc(isl_ctx *ctx,
374 unsigned nparam, unsigned n_in, unsigned n_out);
375 __isl_give isl_dim *isl_dim_set_alloc(isl_ctx *ctx,
376 unsigned nparam, unsigned dim);
377 __isl_give isl_dim *isl_dim_copy(__isl_keep isl_dim *dim);
378 void isl_dim_free(__isl_take isl_dim *dim);
379 unsigned isl_dim_size(__isl_keep isl_dim *dim,
380 enum isl_dim_type type);
382 The dimension specification used for creating a set
383 needs to be created using C<isl_dim_set_alloc>, while
384 that for creating a relation
385 needs to be created using C<isl_dim_alloc>.
386 C<isl_dim_size> can be used
387 to find out the number of dimensions of each type in
388 a dimension specification, where type may be
389 C<isl_dim_param>, C<isl_dim_in> (only for relations),
390 C<isl_dim_out> (only for relations), C<isl_dim_set>
391 (only for sets) or C<isl_dim_all>.
393 It is often useful to create objects that live in the
394 same space as some other object. This can be accomplished
395 by creating the new objects
396 (see L<Creating New Sets and Relations> or
397 L<Creating New (Piecewise) Quasipolynomials>) based on the dimension
398 specification of the original object.
401 __isl_give isl_dim *isl_basic_set_get_dim(
402 __isl_keep isl_basic_set *bset);
403 __isl_give isl_dim *isl_set_get_dim(__isl_keep isl_set *set);
405 #include <isl_union_set.h>
406 __isl_give isl_dim *isl_union_set_get_dim(
407 __isl_keep isl_union_set *uset);
410 __isl_give isl_dim *isl_basic_map_get_dim(
411 __isl_keep isl_basic_map *bmap);
412 __isl_give isl_dim *isl_map_get_dim(__isl_keep isl_map *map);
414 #include <isl_union_map.h>
415 __isl_give isl_dim *isl_union_map_get_dim(
416 __isl_keep isl_union_map *umap);
418 #include <isl_polynomial.h>
419 __isl_give isl_dim *isl_qpolynomial_get_dim(
420 __isl_keep isl_qpolynomial *qp);
421 __isl_give isl_dim *isl_pw_qpolynomial_get_dim(
422 __isl_keep isl_pw_qpolynomial *pwqp);
423 __isl_give isl_dim *isl_union_pw_qpolynomial_get_dim(
424 __isl_keep isl_union_pw_qpolynomial *upwqp);
425 __isl_give isl_dim *isl_union_pw_qpolynomial_fold_get_dim(
426 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
428 The names of the individual dimensions may be set or read off
429 using the following functions.
432 __isl_give isl_dim *isl_dim_set_name(__isl_take isl_dim *dim,
433 enum isl_dim_type type, unsigned pos,
434 __isl_keep const char *name);
435 __isl_keep const char *isl_dim_get_name(__isl_keep isl_dim *dim,
436 enum isl_dim_type type, unsigned pos);
438 Note that C<isl_dim_get_name> returns a pointer to some internal
439 data structure, so the result can only be used while the
440 corresponding C<isl_dim> is alive.
441 Also note that every function that operates on two sets or relations
442 requires that both arguments have the same parameters. This also
443 means that if one of the arguments has named parameters, then the
444 other needs to have named parameters too and the names need to match.
445 Pairs of C<isl_union_set> and/or C<isl_union_map> arguments may
446 have different parameters (as long as they are named), in which case
447 the result will have as parameters the union of the parameters of
450 The names of entire spaces may be set or read off
451 using the following functions.
454 __isl_give isl_dim *isl_dim_set_tuple_name(
455 __isl_take isl_dim *dim,
456 enum isl_dim_type type, const char *s);
457 const char *isl_dim_get_tuple_name(__isl_keep isl_dim *dim,
458 enum isl_dim_type type);
460 The C<dim> argument needs to be one of C<isl_dim_in>, C<isl_dim_out>
461 or C<isl_dim_set>. As with C<isl_dim_get_name>,
462 the C<isl_dim_get_tuple_name> function returns a pointer to some internal
464 Binary operations require the corresponding spaces of their arguments
465 to have the same name.
467 Spaces can be nested. In particular, the domain of a set or
468 the domain or range of a relation can be a nested relation.
469 The following functions can be used to construct and deconstruct
470 such nested dimension specifications.
473 int isl_dim_is_wrapping(__isl_keep isl_dim *dim);
474 __isl_give isl_dim *isl_dim_wrap(__isl_take isl_dim *dim);
475 __isl_give isl_dim *isl_dim_unwrap(__isl_take isl_dim *dim);
477 The input to C<isl_dim_is_wrapping> and C<isl_dim_unwrap> should
478 be the dimension specification of a set, while that of
479 C<isl_dim_wrap> should be the dimension specification of a relation.
480 Conversely, the output of C<isl_dim_unwrap> is the dimension specification
481 of a relation, while that of C<isl_dim_wrap> is the dimension specification
484 Dimension specifications can be created from other dimension
485 specifications using the following functions.
487 __isl_give isl_dim *isl_dim_domain(__isl_take isl_dim *dim);
488 __isl_give isl_dim *isl_dim_from_domain(__isl_take isl_dim *dim);
489 __isl_give isl_dim *isl_dim_range(__isl_take isl_dim *dim);
490 __isl_give isl_dim *isl_dim_from_range(__isl_take isl_dim *dim);
491 __isl_give isl_dim *isl_dim_reverse(__isl_take isl_dim *dim);
492 __isl_give isl_dim *isl_dim_join(__isl_take isl_dim *left,
493 __isl_take isl_dim *right);
494 __isl_give isl_dim *isl_dim_insert(__isl_take isl_dim *dim,
495 enum isl_dim_type type, unsigned pos, unsigned n);
496 __isl_give isl_dim *isl_dim_add(__isl_take isl_dim *dim,
497 enum isl_dim_type type, unsigned n);
498 __isl_give isl_dim *isl_dim_drop(__isl_take isl_dim *dim,
499 enum isl_dim_type type, unsigned first, unsigned n);
501 Note that if dimensions are added or removed from a space, then
502 the name and the internal structure are lost.
504 =head2 Input and Output
506 C<isl> supports its own input/output format, which is similar
507 to the C<Omega> format, but also supports the C<PolyLib> format
512 The C<isl> format is similar to that of C<Omega>, but has a different
513 syntax for describing the parameters and allows for the definition
514 of an existentially quantified variable as the integer division
515 of an affine expression.
516 For example, the set of integers C<i> between C<0> and C<n>
517 such that C<i % 10 <= 6> can be described as
519 [n] -> { [i] : exists (a = [i/10] : 0 <= i and i <= n and
522 A set or relation can have several disjuncts, separated
523 by the keyword C<or>. Each disjunct is either a conjunction
524 of constraints or a projection (C<exists>) of a conjunction
525 of constraints. The constraints are separated by the keyword
528 =head3 C<PolyLib> format
530 If the represented set is a union, then the first line
531 contains a single number representing the number of disjuncts.
532 Otherwise, a line containing the number C<1> is optional.
534 Each disjunct is represented by a matrix of constraints.
535 The first line contains two numbers representing
536 the number of rows and columns,
537 where the number of rows is equal to the number of constraints
538 and the number of columns is equal to two plus the number of variables.
539 The following lines contain the actual rows of the constraint matrix.
540 In each row, the first column indicates whether the constraint
541 is an equality (C<0>) or inequality (C<1>). The final column
542 corresponds to the constant term.
544 If the set is parametric, then the coefficients of the parameters
545 appear in the last columns before the constant column.
546 The coefficients of any existentially quantified variables appear
547 between those of the set variables and those of the parameters.
552 __isl_give isl_basic_set *isl_basic_set_read_from_file(
553 isl_ctx *ctx, FILE *input, int nparam);
554 __isl_give isl_basic_set *isl_basic_set_read_from_str(
555 isl_ctx *ctx, const char *str, int nparam);
556 __isl_give isl_set *isl_set_read_from_file(isl_ctx *ctx,
557 FILE *input, int nparam);
558 __isl_give isl_set *isl_set_read_from_str(isl_ctx *ctx,
559 const char *str, int nparam);
562 __isl_give isl_basic_map *isl_basic_map_read_from_file(
563 isl_ctx *ctx, FILE *input, int nparam);
564 __isl_give isl_basic_map *isl_basic_map_read_from_str(
565 isl_ctx *ctx, const char *str, int nparam);
566 __isl_give isl_map *isl_map_read_from_file(
567 struct isl_ctx *ctx, FILE *input, int nparam);
568 __isl_give isl_map *isl_map_read_from_str(isl_ctx *ctx,
569 const char *str, int nparam);
571 The input format is autodetected and may be either the C<PolyLib> format
572 or the C<isl> format.
573 C<nparam> specifies how many of the final columns in
574 the C<PolyLib> format correspond to parameters.
575 If input is given in the C<isl> format, then the number
576 of parameters needs to be equal to C<nparam>.
577 If C<nparam> is negative, then any number of parameters
578 is accepted in the C<isl> format and zero parameters
579 are assumed in the C<PolyLib> format.
583 Before anything can be printed, an C<isl_printer> needs to
586 __isl_give isl_printer *isl_printer_to_file(isl_ctx *ctx,
588 __isl_give isl_printer *isl_printer_to_str(isl_ctx *ctx);
589 void isl_printer_free(__isl_take isl_printer *printer);
590 __isl_give char *isl_printer_get_str(
591 __isl_keep isl_printer *printer);
593 The behavior of the printer can be modified in various ways
595 __isl_give isl_printer *isl_printer_set_output_format(
596 __isl_take isl_printer *p, int output_format);
597 __isl_give isl_printer *isl_printer_set_indent(
598 __isl_take isl_printer *p, int indent);
599 __isl_give isl_printer *isl_printer_set_prefix(
600 __isl_take isl_printer *p, const char *prefix);
601 __isl_give isl_printer *isl_printer_set_suffix(
602 __isl_take isl_printer *p, const char *suffix);
604 The C<output_format> may be either C<ISL_FORMAT_ISL>, C<ISL_FORMAT_OMEGA>
605 or C<ISL_FORMAT_POLYLIB> and defaults to C<ISL_FORMAT_ISL>.
606 Each line in the output is indented by C<indent> spaces
607 (default: 0), prefixed by C<prefix> and suffixed by C<suffix>.
608 In the C<PolyLib> format output,
609 the coefficients of the existentially quantified variables
610 appear between those of the set variables and those
613 To actually print something, use
616 __isl_give isl_printer *isl_printer_print_basic_set(
617 __isl_take isl_printer *printer,
618 __isl_keep isl_basic_set *bset);
619 __isl_give isl_printer *isl_printer_print_set(
620 __isl_take isl_printer *printer,
621 __isl_keep isl_set *set);
624 __isl_give isl_printer *isl_printer_print_basic_map(
625 __isl_take isl_printer *printer,
626 __isl_keep isl_basic_map *bmap);
627 __isl_give isl_printer *isl_printer_print_map(
628 __isl_take isl_printer *printer,
629 __isl_keep isl_map *map);
631 #include <isl_union_set.h>
632 __isl_give isl_printer *isl_printer_print_union_set(
633 __isl_take isl_printer *p,
634 __isl_keep isl_union_set *uset);
636 #include <isl_union_map.h>
637 __isl_give isl_printer *isl_printer_print_union_map(
638 __isl_take isl_printer *p,
639 __isl_keep isl_union_map *umap);
641 When called on a file printer, the following function flushes
642 the file. When called on a string printer, the buffer is cleared.
644 __isl_give isl_printer *isl_printer_flush(
645 __isl_take isl_printer *p);
647 =head2 Creating New Sets and Relations
649 C<isl> has functions for creating some standard sets and relations.
653 =item * Empty sets and relations
655 __isl_give isl_basic_set *isl_basic_set_empty(
656 __isl_take isl_dim *dim);
657 __isl_give isl_basic_map *isl_basic_map_empty(
658 __isl_take isl_dim *dim);
659 __isl_give isl_set *isl_set_empty(
660 __isl_take isl_dim *dim);
661 __isl_give isl_map *isl_map_empty(
662 __isl_take isl_dim *dim);
663 __isl_give isl_union_set *isl_union_set_empty(
664 __isl_take isl_dim *dim);
665 __isl_give isl_union_map *isl_union_map_empty(
666 __isl_take isl_dim *dim);
668 For C<isl_union_set>s and C<isl_union_map>s, the dimensions specification
669 is only used to specify the parameters.
671 =item * Universe sets and relations
673 __isl_give isl_basic_set *isl_basic_set_universe(
674 __isl_take isl_dim *dim);
675 __isl_give isl_basic_map *isl_basic_map_universe(
676 __isl_take isl_dim *dim);
677 __isl_give isl_set *isl_set_universe(
678 __isl_take isl_dim *dim);
679 __isl_give isl_map *isl_map_universe(
680 __isl_take isl_dim *dim);
682 =item * Identity relations
684 __isl_give isl_basic_map *isl_basic_map_identity(
685 __isl_take isl_dim *set_dim);
686 __isl_give isl_map *isl_map_identity(
687 __isl_take isl_dim *set_dim);
689 These functions take a dimension specification for a B<set>
690 and return an identity relation between two such sets.
692 =item * Lexicographic order
694 __isl_give isl_map *isl_map_lex_lt(
695 __isl_take isl_dim *set_dim);
696 __isl_give isl_map *isl_map_lex_le(
697 __isl_take isl_dim *set_dim);
698 __isl_give isl_map *isl_map_lex_gt(
699 __isl_take isl_dim *set_dim);
700 __isl_give isl_map *isl_map_lex_ge(
701 __isl_take isl_dim *set_dim);
702 __isl_give isl_map *isl_map_lex_lt_first(
703 __isl_take isl_dim *dim, unsigned n);
704 __isl_give isl_map *isl_map_lex_le_first(
705 __isl_take isl_dim *dim, unsigned n);
706 __isl_give isl_map *isl_map_lex_gt_first(
707 __isl_take isl_dim *dim, unsigned n);
708 __isl_give isl_map *isl_map_lex_ge_first(
709 __isl_take isl_dim *dim, unsigned n);
711 The first four functions take a dimension specification for a B<set>
712 and return relations that express that the elements in the domain
713 are lexicographically less
714 (C<isl_map_lex_lt>), less or equal (C<isl_map_lex_le>),
715 greater (C<isl_map_lex_gt>) or greater or equal (C<isl_map_lex_ge>)
716 than the elements in the range.
717 The last four functions take a dimension specification for a map
718 and return relations that express that the first C<n> dimensions
719 in the domain are lexicographically less
720 (C<isl_map_lex_lt_first>), less or equal (C<isl_map_lex_le_first>),
721 greater (C<isl_map_lex_gt_first>) or greater or equal (C<isl_map_lex_ge_first>)
722 than the first C<n> dimensions in the range.
726 A basic set or relation can be converted to a set or relation
727 using the following functions.
729 __isl_give isl_set *isl_set_from_basic_set(
730 __isl_take isl_basic_set *bset);
731 __isl_give isl_map *isl_map_from_basic_map(
732 __isl_take isl_basic_map *bmap);
734 Sets and relations can be converted to union sets and relations
735 using the following functions.
737 __isl_give isl_union_map *isl_union_map_from_map(
738 __isl_take isl_map *map);
739 __isl_give isl_union_set *isl_union_set_from_set(
740 __isl_take isl_set *set);
742 Sets and relations can be copied and freed again using the following
745 __isl_give isl_basic_set *isl_basic_set_copy(
746 __isl_keep isl_basic_set *bset);
747 __isl_give isl_set *isl_set_copy(__isl_keep isl_set *set);
748 __isl_give isl_union_set *isl_union_set_copy(
749 __isl_keep isl_union_set *uset);
750 __isl_give isl_basic_map *isl_basic_map_copy(
751 __isl_keep isl_basic_map *bmap);
752 __isl_give isl_map *isl_map_copy(__isl_keep isl_map *map);
753 __isl_give isl_union_map *isl_union_map_copy(
754 __isl_keep isl_union_map *umap);
755 void isl_basic_set_free(__isl_take isl_basic_set *bset);
756 void isl_set_free(__isl_take isl_set *set);
757 void isl_union_set_free(__isl_take isl_union_set *uset);
758 void isl_basic_map_free(__isl_take isl_basic_map *bmap);
759 void isl_map_free(__isl_take isl_map *map);
760 void isl_union_map_free(__isl_take isl_union_map *umap);
762 Other sets and relations can be constructed by starting
763 from a universe set or relation, adding equality and/or
764 inequality constraints and then projecting out the
765 existentially quantified variables, if any.
766 Constraints can be constructed, manipulated and
767 added to basic sets and relations using the following functions.
769 #include <isl_constraint.h>
770 __isl_give isl_constraint *isl_equality_alloc(
771 __isl_take isl_dim *dim);
772 __isl_give isl_constraint *isl_inequality_alloc(
773 __isl_take isl_dim *dim);
774 void isl_constraint_set_constant(
775 __isl_keep isl_constraint *constraint, isl_int v);
776 void isl_constraint_set_coefficient(
777 __isl_keep isl_constraint *constraint,
778 enum isl_dim_type type, int pos, isl_int v);
779 __isl_give isl_basic_map *isl_basic_map_add_constraint(
780 __isl_take isl_basic_map *bmap,
781 __isl_take isl_constraint *constraint);
782 __isl_give isl_basic_set *isl_basic_set_add_constraint(
783 __isl_take isl_basic_set *bset,
784 __isl_take isl_constraint *constraint);
786 For example, to create a set containing the even integers
787 between 10 and 42, you would use the following code.
791 struct isl_constraint *c;
792 struct isl_basic_set *bset;
795 dim = isl_dim_set_alloc(ctx, 0, 2);
796 bset = isl_basic_set_universe(isl_dim_copy(dim));
798 c = isl_equality_alloc(isl_dim_copy(dim));
799 isl_int_set_si(v, -1);
800 isl_constraint_set_coefficient(c, isl_dim_set, 0, v);
801 isl_int_set_si(v, 2);
802 isl_constraint_set_coefficient(c, isl_dim_set, 1, v);
803 bset = isl_basic_set_add_constraint(bset, c);
805 c = isl_inequality_alloc(isl_dim_copy(dim));
806 isl_int_set_si(v, -10);
807 isl_constraint_set_constant(c, v);
808 isl_int_set_si(v, 1);
809 isl_constraint_set_coefficient(c, isl_dim_set, 0, v);
810 bset = isl_basic_set_add_constraint(bset, c);
812 c = isl_inequality_alloc(dim);
813 isl_int_set_si(v, 42);
814 isl_constraint_set_constant(c, v);
815 isl_int_set_si(v, -1);
816 isl_constraint_set_coefficient(c, isl_dim_set, 0, v);
817 bset = isl_basic_set_add_constraint(bset, c);
819 bset = isl_basic_set_project_out(bset, isl_dim_set, 1, 1);
825 struct isl_basic_set *bset;
826 bset = isl_basic_set_read_from_str(ctx,
827 "{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}", -1);
829 A basic set or relation can also be constructed from two matrices
830 describing the equalities and the inequalities.
832 __isl_give isl_basic_set *isl_basic_set_from_constraint_matrices(
833 __isl_take isl_dim *dim,
834 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
835 enum isl_dim_type c1,
836 enum isl_dim_type c2, enum isl_dim_type c3,
837 enum isl_dim_type c4);
838 __isl_give isl_basic_map *isl_basic_map_from_constraint_matrices(
839 __isl_take isl_dim *dim,
840 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
841 enum isl_dim_type c1,
842 enum isl_dim_type c2, enum isl_dim_type c3,
843 enum isl_dim_type c4, enum isl_dim_type c5);
845 The C<isl_dim_type> arguments indicate the order in which
846 different kinds of variables appear in the input matrices
847 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
848 C<isl_dim_set> and C<isl_dim_div> for sets and
849 of C<isl_dim_cst>, C<isl_dim_param>,
850 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div> for relations.
852 =head2 Inspecting Sets and Relations
854 Usually, the user should not have to care about the actual constraints
855 of the sets and maps, but should instead apply the abstract operations
856 explained in the following sections.
857 Occasionally, however, it may be required to inspect the individual
858 coefficients of the constraints. This section explains how to do so.
859 In these cases, it may also be useful to have C<isl> compute
860 an explicit representation of the existentially quantified variables.
862 __isl_give isl_set *isl_set_compute_divs(
863 __isl_take isl_set *set);
864 __isl_give isl_map *isl_map_compute_divs(
865 __isl_take isl_map *map);
866 __isl_give isl_union_set *isl_union_set_compute_divs(
867 __isl_take isl_union_set *uset);
868 __isl_give isl_union_map *isl_union_map_compute_divs(
869 __isl_take isl_union_map *umap);
871 This explicit representation defines the existentially quantified
872 variables as integer divisions of the other variables, possibly
873 including earlier existentially quantified variables.
874 An explicitly represented existentially quantified variable therefore
875 has a unique value when the values of the other variables are known.
876 If, furthermore, the same existentials, i.e., existentials
877 with the same explicit representations, should appear in the
878 same order in each of the disjuncts of a set or map, then the user should call
879 either of the following functions.
881 __isl_give isl_set *isl_set_align_divs(
882 __isl_take isl_set *set);
883 __isl_give isl_map *isl_map_align_divs(
884 __isl_take isl_map *map);
886 Alternatively, the existentially quantified variables can be removed
887 using the following functions, which compute an overapproximation.
889 __isl_give isl_basic_set *isl_basic_set_remove_divs(
890 __isl_take isl_basic_set *bset);
891 __isl_give isl_basic_map *isl_basic_map_remove_divs(
892 __isl_take isl_basic_map *bmap);
893 __isl_give isl_set *isl_set_remove_divs(
894 __isl_take isl_set *set);
896 To iterate over all the sets or maps in a union set or map, use
898 int isl_union_set_foreach_set(__isl_keep isl_union_set *uset,
899 int (*fn)(__isl_take isl_set *set, void *user),
901 int isl_union_map_foreach_map(__isl_keep isl_union_map *umap,
902 int (*fn)(__isl_take isl_map *map, void *user),
905 The number of sets or maps in a union set or map can be obtained
908 int isl_union_set_n_set(__isl_keep isl_union_set *uset);
909 int isl_union_map_n_map(__isl_keep isl_union_map *umap);
911 To extract the set or map from a union with a given dimension
914 __isl_give isl_set *isl_union_set_extract_set(
915 __isl_keep isl_union_set *uset,
916 __isl_take isl_dim *dim);
917 __isl_give isl_map *isl_union_map_extract_map(
918 __isl_keep isl_union_map *umap,
919 __isl_take isl_dim *dim);
921 To iterate over all the basic sets or maps in a set or map, use
923 int isl_set_foreach_basic_set(__isl_keep isl_set *set,
924 int (*fn)(__isl_take isl_basic_set *bset, void *user),
926 int isl_map_foreach_basic_map(__isl_keep isl_map *map,
927 int (*fn)(__isl_take isl_basic_map *bmap, void *user),
930 The callback function C<fn> should return 0 if successful and
931 -1 if an error occurs. In the latter case, or if any other error
932 occurs, the above functions will return -1.
934 It should be noted that C<isl> does not guarantee that
935 the basic sets or maps passed to C<fn> are disjoint.
936 If this is required, then the user should call one of
937 the following functions first.
939 __isl_give isl_set *isl_set_make_disjoint(
940 __isl_take isl_set *set);
941 __isl_give isl_map *isl_map_make_disjoint(
942 __isl_take isl_map *map);
944 The number of basic sets in a set can be obtained
947 int isl_set_n_basic_set(__isl_keep isl_set *set);
949 To iterate over the constraints of a basic set or map, use
951 #include <isl_constraint.h>
953 int isl_basic_map_foreach_constraint(
954 __isl_keep isl_basic_map *bmap,
955 int (*fn)(__isl_take isl_constraint *c, void *user),
957 void isl_constraint_free(struct isl_constraint *c);
959 Again, the callback function C<fn> should return 0 if successful and
960 -1 if an error occurs. In the latter case, or if any other error
961 occurs, the above functions will return -1.
962 The constraint C<c> represents either an equality or an inequality.
963 Use the following function to find out whether a constraint
964 represents an equality. If not, it represents an inequality.
966 int isl_constraint_is_equality(
967 __isl_keep isl_constraint *constraint);
969 The coefficients of the constraints can be inspected using
970 the following functions.
972 void isl_constraint_get_constant(
973 __isl_keep isl_constraint *constraint, isl_int *v);
974 void isl_constraint_get_coefficient(
975 __isl_keep isl_constraint *constraint,
976 enum isl_dim_type type, int pos, isl_int *v);
978 The explicit representations of the existentially quantified
979 variables can be inspected using the following functions.
980 Note that the user is only allowed to use these functions
981 if the inspected set or map is the result of a call
982 to C<isl_set_compute_divs> or C<isl_map_compute_divs>.
984 __isl_give isl_div *isl_constraint_div(
985 __isl_keep isl_constraint *constraint, int pos);
986 void isl_div_get_constant(__isl_keep isl_div *div,
988 void isl_div_get_denominator(__isl_keep isl_div *div,
990 void isl_div_get_coefficient(__isl_keep isl_div *div,
991 enum isl_dim_type type, int pos, isl_int *v);
993 To obtain the constraints of a basic map in matrix
994 form, use the following functions.
996 __isl_give isl_mat *isl_basic_map_equalities_matrix(
997 __isl_keep isl_basic_map *bmap,
998 enum isl_dim_type c1,
999 enum isl_dim_type c2, enum isl_dim_type c3,
1000 enum isl_dim_type c4, enum isl_dim_type c5);
1001 __isl_give isl_mat *isl_basic_map_inequalities_matrix(
1002 __isl_keep isl_basic_map *bmap,
1003 enum isl_dim_type c1,
1004 enum isl_dim_type c2, enum isl_dim_type c3,
1005 enum isl_dim_type c4, enum isl_dim_type c5);
1007 The C<isl_dim_type> arguments dictate the order in which
1008 different kinds of variables appear in the resulting matrix
1009 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
1010 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div>.
1012 The names of the domain and range spaces of a set or relation can be
1013 read off using the following functions.
1015 const char *isl_set_get_tuple_name(
1016 __isl_keep isl_set *set);
1017 const char *isl_basic_map_get_tuple_name(
1018 __isl_keep isl_basic_map *bmap,
1019 enum isl_dim_type type);
1020 const char *isl_map_get_tuple_name(
1021 __isl_keep isl_map *map,
1022 enum isl_dim_type type);
1024 As with C<isl_dim_get_tuple_name>, the value returned points to
1025 an internal data structure.
1026 The names of individual dimensions can be read off using
1027 the following functions.
1029 const char *isl_set_get_dim_name(
1030 __isl_keep isl_set *set,
1031 enum isl_dim_type type, unsigned pos);
1032 const char *isl_map_get_dim_name(
1033 __isl_keep isl_map *map,
1034 enum isl_dim_type type, unsigned pos);
1036 These functions are mostly useful to obtain the names
1041 =head3 Unary Properties
1047 The following functions test whether the given set or relation
1048 contains any integer points. The ``fast'' variants do not perform
1049 any computations, but simply check if the given set or relation
1050 is already known to be empty.
1052 int isl_basic_set_fast_is_empty(__isl_keep isl_basic_set *bset);
1053 int isl_basic_set_is_empty(__isl_keep isl_basic_set *bset);
1054 int isl_set_is_empty(__isl_keep isl_set *set);
1055 int isl_union_set_is_empty(__isl_keep isl_union_set *uset);
1056 int isl_basic_map_fast_is_empty(__isl_keep isl_basic_map *bmap);
1057 int isl_basic_map_is_empty(__isl_keep isl_basic_map *bmap);
1058 int isl_map_fast_is_empty(__isl_keep isl_map *map);
1059 int isl_map_is_empty(__isl_keep isl_map *map);
1060 int isl_union_map_is_empty(__isl_keep isl_union_map *umap);
1062 =item * Universality
1064 int isl_basic_set_is_universe(__isl_keep isl_basic_set *bset);
1065 int isl_basic_map_is_universe(__isl_keep isl_basic_map *bmap);
1066 int isl_set_fast_is_universe(__isl_keep isl_set *set);
1068 =item * Single-valuedness
1070 int isl_map_is_single_valued(__isl_keep isl_map *map);
1074 int isl_map_is_bijective(__isl_keep isl_map *map);
1078 The followning functions check whether the domain of the given
1079 (basic) set is a wrapped relation.
1081 int isl_basic_set_is_wrapping(
1082 __isl_keep isl_basic_set *bset);
1083 int isl_set_is_wrapping(__isl_keep isl_set *set);
1087 =head3 Binary Properties
1093 int isl_set_fast_is_equal(__isl_keep isl_set *set1,
1094 __isl_keep isl_set *set2);
1095 int isl_set_is_equal(__isl_keep isl_set *set1,
1096 __isl_keep isl_set *set2);
1097 int isl_basic_map_is_equal(
1098 __isl_keep isl_basic_map *bmap1,
1099 __isl_keep isl_basic_map *bmap2);
1100 int isl_map_is_equal(__isl_keep isl_map *map1,
1101 __isl_keep isl_map *map2);
1102 int isl_map_fast_is_equal(__isl_keep isl_map *map1,
1103 __isl_keep isl_map *map2);
1104 int isl_union_map_is_equal(
1105 __isl_keep isl_union_map *umap1,
1106 __isl_keep isl_union_map *umap2);
1108 =item * Disjointness
1110 int isl_set_fast_is_disjoint(__isl_keep isl_set *set1,
1111 __isl_keep isl_set *set2);
1115 int isl_set_is_subset(__isl_keep isl_set *set1,
1116 __isl_keep isl_set *set2);
1117 int isl_set_is_strict_subset(
1118 __isl_keep isl_set *set1,
1119 __isl_keep isl_set *set2);
1120 int isl_basic_map_is_subset(
1121 __isl_keep isl_basic_map *bmap1,
1122 __isl_keep isl_basic_map *bmap2);
1123 int isl_basic_map_is_strict_subset(
1124 __isl_keep isl_basic_map *bmap1,
1125 __isl_keep isl_basic_map *bmap2);
1126 int isl_map_is_subset(
1127 __isl_keep isl_map *map1,
1128 __isl_keep isl_map *map2);
1129 int isl_map_is_strict_subset(
1130 __isl_keep isl_map *map1,
1131 __isl_keep isl_map *map2);
1132 int isl_union_map_is_subset(
1133 __isl_keep isl_union_map *umap1,
1134 __isl_keep isl_union_map *umap2);
1135 int isl_union_map_is_strict_subset(
1136 __isl_keep isl_union_map *umap1,
1137 __isl_keep isl_union_map *umap2);
1141 =head2 Unary Operations
1147 __isl_give isl_set *isl_set_complement(
1148 __isl_take isl_set *set);
1152 __isl_give isl_basic_map *isl_basic_map_reverse(
1153 __isl_take isl_basic_map *bmap);
1154 __isl_give isl_map *isl_map_reverse(
1155 __isl_take isl_map *map);
1156 __isl_give isl_union_map *isl_union_map_reverse(
1157 __isl_take isl_union_map *umap);
1161 __isl_give isl_basic_set *isl_basic_set_project_out(
1162 __isl_take isl_basic_set *bset,
1163 enum isl_dim_type type, unsigned first, unsigned n);
1164 __isl_give isl_basic_map *isl_basic_map_project_out(
1165 __isl_take isl_basic_map *bmap,
1166 enum isl_dim_type type, unsigned first, unsigned n);
1167 __isl_give isl_set *isl_set_project_out(__isl_take isl_set *set,
1168 enum isl_dim_type type, unsigned first, unsigned n);
1169 __isl_give isl_map *isl_map_project_out(__isl_take isl_map *map,
1170 enum isl_dim_type type, unsigned first, unsigned n);
1171 __isl_give isl_basic_set *isl_basic_map_domain(
1172 __isl_take isl_basic_map *bmap);
1173 __isl_give isl_basic_set *isl_basic_map_range(
1174 __isl_take isl_basic_map *bmap);
1175 __isl_give isl_set *isl_map_domain(
1176 __isl_take isl_map *bmap);
1177 __isl_give isl_set *isl_map_range(
1178 __isl_take isl_map *map);
1179 __isl_give isl_union_set *isl_union_map_domain(
1180 __isl_take isl_union_map *umap);
1181 __isl_give isl_union_set *isl_union_map_range(
1182 __isl_take isl_union_map *umap);
1184 __isl_give isl_basic_map *isl_basic_map_domain_map(
1185 __isl_take isl_basic_map *bmap);
1186 __isl_give isl_basic_map *isl_basic_map_range_map(
1187 __isl_take isl_basic_map *bmap);
1188 __isl_give isl_map *isl_map_domain_map(__isl_take isl_map *map);
1189 __isl_give isl_map *isl_map_range_map(__isl_take isl_map *map);
1190 __isl_give isl_union_map *isl_union_map_domain_map(
1191 __isl_take isl_union_map *umap);
1192 __isl_give isl_union_map *isl_union_map_range_map(
1193 __isl_take isl_union_map *umap);
1195 The functions above construct a (basic, regular or union) relation
1196 that maps (a wrapped version of) the input relation to its domain or range.
1200 __isl_give isl_basic_set *isl_basic_map_deltas(
1201 __isl_take isl_basic_map *bmap);
1202 __isl_give isl_set *isl_map_deltas(__isl_take isl_map *map);
1203 __isl_give isl_union_set *isl_union_map_deltas(
1204 __isl_take isl_union_map *umap);
1206 These functions return a (basic) set containing the differences
1207 between image elements and corresponding domain elements in the input.
1211 Simplify the representation of a set or relation by trying
1212 to combine pairs of basic sets or relations into a single
1213 basic set or relation.
1215 __isl_give isl_set *isl_set_coalesce(__isl_take isl_set *set);
1216 __isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map);
1217 __isl_give isl_union_set *isl_union_set_coalesce(
1218 __isl_take isl_union_set *uset);
1219 __isl_give isl_union_map *isl_union_map_coalesce(
1220 __isl_take isl_union_map *umap);
1224 __isl_give isl_basic_set *isl_set_convex_hull(
1225 __isl_take isl_set *set);
1226 __isl_give isl_basic_map *isl_map_convex_hull(
1227 __isl_take isl_map *map);
1229 If the input set or relation has any existentially quantified
1230 variables, then the result of these operations is currently undefined.
1234 __isl_give isl_basic_set *isl_set_simple_hull(
1235 __isl_take isl_set *set);
1236 __isl_give isl_basic_map *isl_map_simple_hull(
1237 __isl_take isl_map *map);
1239 These functions compute a single basic set or relation
1240 that contains the whole input set or relation.
1241 In particular, the output is described by translates
1242 of the constraints describing the basic sets or relations in the input.
1246 (See \autoref{s:simple hull}.)
1252 __isl_give isl_basic_set *isl_basic_set_affine_hull(
1253 __isl_take isl_basic_set *bset);
1254 __isl_give isl_basic_set *isl_set_affine_hull(
1255 __isl_take isl_set *set);
1256 __isl_give isl_union_set *isl_union_set_affine_hull(
1257 __isl_take isl_union_set *uset);
1258 __isl_give isl_basic_map *isl_basic_map_affine_hull(
1259 __isl_take isl_basic_map *bmap);
1260 __isl_give isl_basic_map *isl_map_affine_hull(
1261 __isl_take isl_map *map);
1262 __isl_give isl_union_map *isl_union_map_affine_hull(
1263 __isl_take isl_union_map *umap);
1265 In case of union sets and relations, the affine hull is computed
1270 __isl_give isl_map *isl_map_power(__isl_take isl_map *map,
1271 unsigned param, int *exact);
1273 Compute a parametric representation for all positive powers I<k> of C<map>.
1274 The power I<k> is equated to the parameter at position C<param>.
1275 The result may be an overapproximation. If the result is exact,
1276 then C<*exact> is set to C<1>.
1277 The current implementation only produces exact results for particular
1278 cases of piecewise translations (i.e., piecewise uniform dependences).
1280 =item * Transitive closure
1282 __isl_give isl_map *isl_map_transitive_closure(
1283 __isl_take isl_map *map, int *exact);
1284 __isl_give isl_union_map *isl_union_map_transitive_closure(
1285 __isl_take isl_union_map *umap, int *exact);
1287 Compute the transitive closure of C<map>.
1288 The result may be an overapproximation. If the result is known to be exact,
1289 then C<*exact> is set to C<1>.
1290 The current implementation only produces exact results for particular
1291 cases of piecewise translations (i.e., piecewise uniform dependences).
1293 =item * Reaching path lengths
1295 __isl_give isl_map *isl_map_reaching_path_lengths(
1296 __isl_take isl_map *map, int *exact);
1298 Compute a relation that maps each element in the range of C<map>
1299 to the lengths of all paths composed of edges in C<map> that
1300 end up in the given element.
1301 The result may be an overapproximation. If the result is known to be exact,
1302 then C<*exact> is set to C<1>.
1303 To compute the I<maximal> path length, the resulting relation
1304 should be postprocessed by C<isl_map_lexmax>.
1305 In particular, if the input relation is a dependence relation
1306 (mapping sources to sinks), then the maximal path length corresponds
1307 to the free schedule.
1308 Note, however, that C<isl_map_lexmax> expects the maximum to be
1309 finite, so if the path lengths are unbounded (possibly due to
1310 the overapproximation), then you will get an error message.
1314 __isl_give isl_basic_set *isl_basic_map_wrap(
1315 __isl_take isl_basic_map *bmap);
1316 __isl_give isl_set *isl_map_wrap(
1317 __isl_take isl_map *map);
1318 __isl_give isl_union_set *isl_union_map_wrap(
1319 __isl_take isl_union_map *umap);
1320 __isl_give isl_basic_map *isl_basic_set_unwrap(
1321 __isl_take isl_basic_set *bset);
1322 __isl_give isl_map *isl_set_unwrap(
1323 __isl_take isl_set *set);
1324 __isl_give isl_union_map *isl_union_set_unwrap(
1325 __isl_take isl_union_set *uset);
1327 =item * Dimension manipulation
1329 __isl_give isl_set *isl_set_add_dims(
1330 __isl_take isl_set *set,
1331 enum isl_dim_type type, unsigned n);
1332 __isl_give isl_map *isl_map_add_dims(
1333 __isl_take isl_map *map,
1334 enum isl_dim_type type, unsigned n);
1336 It is usually not advisable to directly change the (input or output)
1337 space of a set or a relation as this removes the name and the internal
1338 structure of the space. However, the above functions can be useful
1339 to add new parameters.
1343 =head2 Binary Operations
1345 The two arguments of a binary operation not only need to live
1346 in the same C<isl_ctx>, they currently also need to have
1347 the same (number of) parameters.
1349 =head3 Basic Operations
1353 =item * Intersection
1355 __isl_give isl_basic_set *isl_basic_set_intersect(
1356 __isl_take isl_basic_set *bset1,
1357 __isl_take isl_basic_set *bset2);
1358 __isl_give isl_set *isl_set_intersect(
1359 __isl_take isl_set *set1,
1360 __isl_take isl_set *set2);
1361 __isl_give isl_union_set *isl_union_set_intersect(
1362 __isl_take isl_union_set *uset1,
1363 __isl_take isl_union_set *uset2);
1364 __isl_give isl_basic_map *isl_basic_map_intersect_domain(
1365 __isl_take isl_basic_map *bmap,
1366 __isl_take isl_basic_set *bset);
1367 __isl_give isl_basic_map *isl_basic_map_intersect_range(
1368 __isl_take isl_basic_map *bmap,
1369 __isl_take isl_basic_set *bset);
1370 __isl_give isl_basic_map *isl_basic_map_intersect(
1371 __isl_take isl_basic_map *bmap1,
1372 __isl_take isl_basic_map *bmap2);
1373 __isl_give isl_map *isl_map_intersect_domain(
1374 __isl_take isl_map *map,
1375 __isl_take isl_set *set);
1376 __isl_give isl_map *isl_map_intersect_range(
1377 __isl_take isl_map *map,
1378 __isl_take isl_set *set);
1379 __isl_give isl_map *isl_map_intersect(
1380 __isl_take isl_map *map1,
1381 __isl_take isl_map *map2);
1382 __isl_give isl_union_map *isl_union_map_intersect_domain(
1383 __isl_take isl_union_map *umap,
1384 __isl_take isl_union_set *uset);
1385 __isl_give isl_union_map *isl_union_map_intersect(
1386 __isl_take isl_union_map *umap1,
1387 __isl_take isl_union_map *umap2);
1391 __isl_give isl_set *isl_basic_set_union(
1392 __isl_take isl_basic_set *bset1,
1393 __isl_take isl_basic_set *bset2);
1394 __isl_give isl_map *isl_basic_map_union(
1395 __isl_take isl_basic_map *bmap1,
1396 __isl_take isl_basic_map *bmap2);
1397 __isl_give isl_set *isl_set_union(
1398 __isl_take isl_set *set1,
1399 __isl_take isl_set *set2);
1400 __isl_give isl_map *isl_map_union(
1401 __isl_take isl_map *map1,
1402 __isl_take isl_map *map2);
1403 __isl_give isl_union_set *isl_union_set_union(
1404 __isl_take isl_union_set *uset1,
1405 __isl_take isl_union_set *uset2);
1406 __isl_give isl_union_map *isl_union_map_union(
1407 __isl_take isl_union_map *umap1,
1408 __isl_take isl_union_map *umap2);
1410 =item * Set difference
1412 __isl_give isl_set *isl_set_subtract(
1413 __isl_take isl_set *set1,
1414 __isl_take isl_set *set2);
1415 __isl_give isl_map *isl_map_subtract(
1416 __isl_take isl_map *map1,
1417 __isl_take isl_map *map2);
1418 __isl_give isl_union_set *isl_union_set_subtract(
1419 __isl_take isl_union_set *uset1,
1420 __isl_take isl_union_set *uset2);
1421 __isl_give isl_union_map *isl_union_map_subtract(
1422 __isl_take isl_union_map *umap1,
1423 __isl_take isl_union_map *umap2);
1427 __isl_give isl_basic_set *isl_basic_set_apply(
1428 __isl_take isl_basic_set *bset,
1429 __isl_take isl_basic_map *bmap);
1430 __isl_give isl_set *isl_set_apply(
1431 __isl_take isl_set *set,
1432 __isl_take isl_map *map);
1433 __isl_give isl_union_set *isl_union_set_apply(
1434 __isl_take isl_union_set *uset,
1435 __isl_take isl_union_map *umap);
1436 __isl_give isl_basic_map *isl_basic_map_apply_domain(
1437 __isl_take isl_basic_map *bmap1,
1438 __isl_take isl_basic_map *bmap2);
1439 __isl_give isl_basic_map *isl_basic_map_apply_range(
1440 __isl_take isl_basic_map *bmap1,
1441 __isl_take isl_basic_map *bmap2);
1442 __isl_give isl_map *isl_map_apply_domain(
1443 __isl_take isl_map *map1,
1444 __isl_take isl_map *map2);
1445 __isl_give isl_union_map *isl_union_map_apply_domain(
1446 __isl_take isl_union_map *umap1,
1447 __isl_take isl_union_map *umap2);
1448 __isl_give isl_map *isl_map_apply_range(
1449 __isl_take isl_map *map1,
1450 __isl_take isl_map *map2);
1451 __isl_give isl_union_map *isl_union_map_apply_range(
1452 __isl_take isl_union_map *umap1,
1453 __isl_take isl_union_map *umap2);
1455 =item * Simplification
1457 __isl_give isl_basic_set *isl_basic_set_gist(
1458 __isl_take isl_basic_set *bset,
1459 __isl_take isl_basic_set *context);
1460 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
1461 __isl_take isl_set *context);
1462 __isl_give isl_union_set *isl_union_set_gist(
1463 __isl_take isl_union_set *uset,
1464 __isl_take isl_union_set *context);
1465 __isl_give isl_basic_map *isl_basic_map_gist(
1466 __isl_take isl_basic_map *bmap,
1467 __isl_take isl_basic_map *context);
1468 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
1469 __isl_take isl_map *context);
1470 __isl_give isl_union_map *isl_union_map_gist(
1471 __isl_take isl_union_map *umap,
1472 __isl_take isl_union_map *context);
1474 The gist operation returns a set or relation that has the
1475 same intersection with the context as the input set or relation.
1476 Any implicit equality in the intersection is made explicit in the result,
1477 while all inequalities that are redundant with respect to the intersection
1479 In case of union sets and relations, the gist operation is performed
1484 =head3 Lexicographic Optimization
1486 Given a (basic) set C<set> (or C<bset>) and a zero-dimensional domain C<dom>,
1487 the following functions
1488 compute a set that contains the lexicographic minimum or maximum
1489 of the elements in C<set> (or C<bset>) for those values of the parameters
1490 that satisfy C<dom>.
1491 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
1492 that contains the parameter values in C<dom> for which C<set> (or C<bset>)
1494 In other words, the union of the parameter values
1495 for which the result is non-empty and of C<*empty>
1498 __isl_give isl_set *isl_basic_set_partial_lexmin(
1499 __isl_take isl_basic_set *bset,
1500 __isl_take isl_basic_set *dom,
1501 __isl_give isl_set **empty);
1502 __isl_give isl_set *isl_basic_set_partial_lexmax(
1503 __isl_take isl_basic_set *bset,
1504 __isl_take isl_basic_set *dom,
1505 __isl_give isl_set **empty);
1506 __isl_give isl_set *isl_set_partial_lexmin(
1507 __isl_take isl_set *set, __isl_take isl_set *dom,
1508 __isl_give isl_set **empty);
1509 __isl_give isl_set *isl_set_partial_lexmax(
1510 __isl_take isl_set *set, __isl_take isl_set *dom,
1511 __isl_give isl_set **empty);
1513 Given a (basic) set C<set> (or C<bset>), the following functions simply
1514 return a set containing the lexicographic minimum or maximum
1515 of the elements in C<set> (or C<bset>).
1516 In case of union sets, the optimum is computed per space.
1518 __isl_give isl_set *isl_basic_set_lexmin(
1519 __isl_take isl_basic_set *bset);
1520 __isl_give isl_set *isl_basic_set_lexmax(
1521 __isl_take isl_basic_set *bset);
1522 __isl_give isl_set *isl_set_lexmin(
1523 __isl_take isl_set *set);
1524 __isl_give isl_set *isl_set_lexmax(
1525 __isl_take isl_set *set);
1526 __isl_give isl_union_set *isl_union_set_lexmin(
1527 __isl_take isl_union_set *uset);
1528 __isl_give isl_union_set *isl_union_set_lexmax(
1529 __isl_take isl_union_set *uset);
1531 Given a (basic) relation C<map> (or C<bmap>) and a domain C<dom>,
1532 the following functions
1533 compute a relation that maps each element of C<dom>
1534 to the single lexicographic minimum or maximum
1535 of the elements that are associated to that same
1536 element in C<map> (or C<bmap>).
1537 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
1538 that contains the elements in C<dom> that do not map
1539 to any elements in C<map> (or C<bmap>).
1540 In other words, the union of the domain of the result and of C<*empty>
1543 __isl_give isl_map *isl_basic_map_partial_lexmax(
1544 __isl_take isl_basic_map *bmap,
1545 __isl_take isl_basic_set *dom,
1546 __isl_give isl_set **empty);
1547 __isl_give isl_map *isl_basic_map_partial_lexmin(
1548 __isl_take isl_basic_map *bmap,
1549 __isl_take isl_basic_set *dom,
1550 __isl_give isl_set **empty);
1551 __isl_give isl_map *isl_map_partial_lexmax(
1552 __isl_take isl_map *map, __isl_take isl_set *dom,
1553 __isl_give isl_set **empty);
1554 __isl_give isl_map *isl_map_partial_lexmin(
1555 __isl_take isl_map *map, __isl_take isl_set *dom,
1556 __isl_give isl_set **empty);
1558 Given a (basic) map C<map> (or C<bmap>), the following functions simply
1559 return a map mapping each element in the domain of
1560 C<map> (or C<bmap>) to the lexicographic minimum or maximum
1561 of all elements associated to that element.
1562 In case of union relations, the optimum is computed per space.
1564 __isl_give isl_map *isl_basic_map_lexmin(
1565 __isl_take isl_basic_map *bmap);
1566 __isl_give isl_map *isl_basic_map_lexmax(
1567 __isl_take isl_basic_map *bmap);
1568 __isl_give isl_map *isl_map_lexmin(
1569 __isl_take isl_map *map);
1570 __isl_give isl_map *isl_map_lexmax(
1571 __isl_take isl_map *map);
1572 __isl_give isl_union_map *isl_union_map_lexmin(
1573 __isl_take isl_union_map *umap);
1574 __isl_give isl_union_map *isl_union_map_lexmax(
1575 __isl_take isl_union_map *umap);
1579 Matrices can be created, copied and freed using the following functions.
1581 #include <isl_mat.h>
1582 __isl_give isl_mat *isl_mat_alloc(struct isl_ctx *ctx,
1583 unsigned n_row, unsigned n_col);
1584 __isl_give isl_mat *isl_mat_copy(__isl_keep isl_mat *mat);
1585 void isl_mat_free(__isl_take isl_mat *mat);
1587 Note that the elements of a newly created matrix may have arbitrary values.
1588 The elements can be changed and inspected using the following functions.
1590 int isl_mat_rows(__isl_keep isl_mat *mat);
1591 int isl_mat_cols(__isl_keep isl_mat *mat);
1592 int isl_mat_get_element(__isl_keep isl_mat *mat,
1593 int row, int col, isl_int *v);
1594 __isl_give isl_mat *isl_mat_set_element(__isl_take isl_mat *mat,
1595 int row, int col, isl_int v);
1597 C<isl_mat_get_element> will return a negative value if anything went wrong.
1598 In that case, the value of C<*v> is undefined.
1600 The following function can be used to compute the (right) inverse
1601 of a matrix, i.e., a matrix such that the product of the original
1602 and the inverse (in that order) is a multiple of the identity matrix.
1603 The input matrix is assumed to be of full row-rank.
1605 __isl_give isl_mat *isl_mat_right_inverse(__isl_take isl_mat *mat);
1607 The following function can be used to compute the (right) kernel
1608 (or null space) of a matrix, i.e., a matrix such that the product of
1609 the original and the kernel (in that order) is the zero matrix.
1611 __isl_give isl_mat *isl_mat_right_kernel(__isl_take isl_mat *mat);
1615 Points are elements of a set. They can be used to construct
1616 simple sets (boxes) or they can be used to represent the
1617 individual elements of a set.
1618 The zero point (the origin) can be created using
1620 __isl_give isl_point *isl_point_zero(__isl_take isl_dim *dim);
1622 The coordinates of a point can be inspected, set and changed
1625 void isl_point_get_coordinate(__isl_keep isl_point *pnt,
1626 enum isl_dim_type type, int pos, isl_int *v);
1627 __isl_give isl_point *isl_point_set_coordinate(
1628 __isl_take isl_point *pnt,
1629 enum isl_dim_type type, int pos, isl_int v);
1631 __isl_give isl_point *isl_point_add_ui(
1632 __isl_take isl_point *pnt,
1633 enum isl_dim_type type, int pos, unsigned val);
1634 __isl_give isl_point *isl_point_sub_ui(
1635 __isl_take isl_point *pnt,
1636 enum isl_dim_type type, int pos, unsigned val);
1638 Points can be copied or freed using
1640 __isl_give isl_point *isl_point_copy(
1641 __isl_keep isl_point *pnt);
1642 void isl_point_free(__isl_take isl_point *pnt);
1644 A singleton set can be created from a point using
1646 __isl_give isl_set *isl_set_from_point(
1647 __isl_take isl_point *pnt);
1649 and a box can be created from two opposite extremal points using
1651 __isl_give isl_set *isl_set_box_from_points(
1652 __isl_take isl_point *pnt1,
1653 __isl_take isl_point *pnt2);
1655 All elements of a B<bounded> (union) set can be enumerated using
1656 the following functions.
1658 int isl_set_foreach_point(__isl_keep isl_set *set,
1659 int (*fn)(__isl_take isl_point *pnt, void *user),
1661 int isl_union_set_foreach_point(__isl_keep isl_union_set *uset,
1662 int (*fn)(__isl_take isl_point *pnt, void *user),
1665 The function C<fn> is called for each integer point in
1666 C<set> with as second argument the last argument of
1667 the C<isl_set_foreach_point> call. The function C<fn>
1668 should return C<0> on success and C<-1> on failure.
1669 In the latter case, C<isl_set_foreach_point> will stop
1670 enumerating and return C<-1> as well.
1671 If the enumeration is performed successfully and to completion,
1672 then C<isl_set_foreach_point> returns C<0>.
1674 To obtain a single point of a set, use
1676 __isl_give isl_point *isl_set_sample_point(
1677 __isl_take isl_set *set);
1679 If C<set> does not contain any (integer) points, then the
1680 resulting point will be ``void'', a property that can be
1683 int isl_point_is_void(__isl_keep isl_point *pnt);
1685 =head2 Piecewise Quasipolynomials
1687 A piecewise quasipolynomial is a particular kind of function that maps
1688 a parametric point to a rational value.
1689 More specifically, a quasipolynomial is a polynomial expression in greatest
1690 integer parts of affine expressions of parameters and variables.
1691 A piecewise quasipolynomial is a subdivision of a given parametric
1692 domain into disjoint cells with a quasipolynomial associated to
1693 each cell. The value of the piecewise quasipolynomial at a given
1694 point is the value of the quasipolynomial associated to the cell
1695 that contains the point. Outside of the union of cells,
1696 the value is assumed to be zero.
1697 For example, the piecewise quasipolynomial
1699 [n] -> { [x] -> ((1 + n) - x) : x <= n and x >= 0 }
1701 maps C<x> to C<1 + n - x> for values of C<x> between C<0> and C<n>.
1702 A given piecewise quasipolynomial has a fixed domain dimension.
1703 Union piecewise quasipolynomials are used to contain piecewise quasipolynomials
1704 defined over different domains.
1705 Piecewise quasipolynomials are mainly used by the C<barvinok>
1706 library for representing the number of elements in a parametric set or map.
1707 For example, the piecewise quasipolynomial above represents
1708 the number of points in the map
1710 [n] -> { [x] -> [y] : x,y >= 0 and 0 <= x + y <= n }
1712 =head3 Printing (Piecewise) Quasipolynomials
1714 Quasipolynomials and piecewise quasipolynomials can be printed
1715 using the following functions.
1717 __isl_give isl_printer *isl_printer_print_qpolynomial(
1718 __isl_take isl_printer *p,
1719 __isl_keep isl_qpolynomial *qp);
1721 __isl_give isl_printer *isl_printer_print_pw_qpolynomial(
1722 __isl_take isl_printer *p,
1723 __isl_keep isl_pw_qpolynomial *pwqp);
1725 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial(
1726 __isl_take isl_printer *p,
1727 __isl_keep isl_union_pw_qpolynomial *upwqp);
1729 The output format of the printer
1730 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
1731 For C<isl_printer_print_union_pw_qpolynomial>, only C<ISL_FORMAT_ISL>
1733 In case of printing in C<ISL_FORMAT_C>, the user may want
1734 to set the names of all dimensions
1736 __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(
1737 __isl_take isl_qpolynomial *qp,
1738 enum isl_dim_type type, unsigned pos,
1740 __isl_give isl_pw_qpolynomial *
1741 isl_pw_qpolynomial_set_dim_name(
1742 __isl_take isl_pw_qpolynomial *pwqp,
1743 enum isl_dim_type type, unsigned pos,
1746 =head3 Creating New (Piecewise) Quasipolynomials
1748 Some simple quasipolynomials can be created using the following functions.
1749 More complicated quasipolynomials can be created by applying
1750 operations such as addition and multiplication
1751 on the resulting quasipolynomials
1753 __isl_give isl_qpolynomial *isl_qpolynomial_zero(
1754 __isl_take isl_dim *dim);
1755 __isl_give isl_qpolynomial *isl_qpolynomial_one(
1756 __isl_take isl_dim *dim);
1757 __isl_give isl_qpolynomial *isl_qpolynomial_infty(
1758 __isl_take isl_dim *dim);
1759 __isl_give isl_qpolynomial *isl_qpolynomial_neginfty(
1760 __isl_take isl_dim *dim);
1761 __isl_give isl_qpolynomial *isl_qpolynomial_nan(
1762 __isl_take isl_dim *dim);
1763 __isl_give isl_qpolynomial *isl_qpolynomial_rat_cst(
1764 __isl_take isl_dim *dim,
1765 const isl_int n, const isl_int d);
1766 __isl_give isl_qpolynomial *isl_qpolynomial_div(
1767 __isl_take isl_div *div);
1768 __isl_give isl_qpolynomial *isl_qpolynomial_var(
1769 __isl_take isl_dim *dim,
1770 enum isl_dim_type type, unsigned pos);
1772 The zero piecewise quasipolynomial or a piecewise quasipolynomial
1773 with a single cell can be created using the following functions.
1774 Multiple of these single cell piecewise quasipolynomials can
1775 be combined to create more complicated piecewise quasipolynomials.
1777 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_zero(
1778 __isl_take isl_dim *dim);
1779 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_alloc(
1780 __isl_take isl_set *set,
1781 __isl_take isl_qpolynomial *qp);
1783 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_zero(
1784 __isl_take isl_dim *dim);
1785 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_from_pw_qpolynomial(
1786 __isl_take isl_pw_qpolynomial *pwqp);
1787 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add_pw_qpolynomial(
1788 __isl_take isl_union_pw_qpolynomial *upwqp,
1789 __isl_take isl_pw_qpolynomial *pwqp);
1791 Quasipolynomials can be copied and freed again using the following
1794 __isl_give isl_qpolynomial *isl_qpolynomial_copy(
1795 __isl_keep isl_qpolynomial *qp);
1796 void isl_qpolynomial_free(__isl_take isl_qpolynomial *qp);
1798 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_copy(
1799 __isl_keep isl_pw_qpolynomial *pwqp);
1800 void isl_pw_qpolynomial_free(
1801 __isl_take isl_pw_qpolynomial *pwqp);
1803 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_copy(
1804 __isl_keep isl_union_pw_qpolynomial *upwqp);
1805 void isl_union_pw_qpolynomial_free(
1806 __isl_take isl_union_pw_qpolynomial *upwqp);
1808 =head3 Inspecting (Piecewise) Quasipolynomials
1810 To iterate over all piecewise quasipolynomials in a union
1811 piecewise quasipolynomial, use the following function
1813 int isl_union_pw_qpolynomial_foreach_pw_qpolynomial(
1814 __isl_keep isl_union_pw_qpolynomial *upwqp,
1815 int (*fn)(__isl_take isl_pw_qpolynomial *pwqp, void *user),
1818 To extract the piecewise quasipolynomial from a union with a given dimension
1821 __isl_give isl_pw_qpolynomial *
1822 isl_union_pw_qpolynomial_extract_pw_qpolynomial(
1823 __isl_keep isl_union_pw_qpolynomial *upwqp,
1824 __isl_take isl_dim *dim);
1826 To iterate over the cells in a piecewise quasipolynomial,
1827 use either of the following two functions
1829 int isl_pw_qpolynomial_foreach_piece(
1830 __isl_keep isl_pw_qpolynomial *pwqp,
1831 int (*fn)(__isl_take isl_set *set,
1832 __isl_take isl_qpolynomial *qp,
1833 void *user), void *user);
1834 int isl_pw_qpolynomial_foreach_lifted_piece(
1835 __isl_keep isl_pw_qpolynomial *pwqp,
1836 int (*fn)(__isl_take isl_set *set,
1837 __isl_take isl_qpolynomial *qp,
1838 void *user), void *user);
1840 As usual, the function C<fn> should return C<0> on success
1841 and C<-1> on failure. The difference between
1842 C<isl_pw_qpolynomial_foreach_piece> and
1843 C<isl_pw_qpolynomial_foreach_lifted_piece> is that
1844 C<isl_pw_qpolynomial_foreach_lifted_piece> will first
1845 compute unique representations for all existentially quantified
1846 variables and then turn these existentially quantified variables
1847 into extra set variables, adapting the associated quasipolynomial
1848 accordingly. This means that the C<set> passed to C<fn>
1849 will not have any existentially quantified variables, but that
1850 the dimensions of the sets may be different for different
1851 invocations of C<fn>.
1853 To iterate over all terms in a quasipolynomial,
1856 int isl_qpolynomial_foreach_term(
1857 __isl_keep isl_qpolynomial *qp,
1858 int (*fn)(__isl_take isl_term *term,
1859 void *user), void *user);
1861 The terms themselves can be inspected and freed using
1864 unsigned isl_term_dim(__isl_keep isl_term *term,
1865 enum isl_dim_type type);
1866 void isl_term_get_num(__isl_keep isl_term *term,
1868 void isl_term_get_den(__isl_keep isl_term *term,
1870 int isl_term_get_exp(__isl_keep isl_term *term,
1871 enum isl_dim_type type, unsigned pos);
1872 __isl_give isl_div *isl_term_get_div(
1873 __isl_keep isl_term *term, unsigned pos);
1874 void isl_term_free(__isl_take isl_term *term);
1876 Each term is a product of parameters, set variables and
1877 integer divisions. The function C<isl_term_get_exp>
1878 returns the exponent of a given dimensions in the given term.
1879 The C<isl_int>s in the arguments of C<isl_term_get_num>
1880 and C<isl_term_get_den> need to have been initialized
1881 using C<isl_int_init> before calling these functions.
1883 =head3 Properties of (Piecewise) Quasipolynomials
1885 To check whether a quasipolynomial is actually a constant,
1886 use the following function.
1888 int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp,
1889 isl_int *n, isl_int *d);
1891 If C<qp> is a constant and if C<n> and C<d> are not C<NULL>
1892 then the numerator and denominator of the constant
1893 are returned in C<*n> and C<*d>, respectively.
1895 =head3 Operations on (Piecewise) Quasipolynomials
1897 __isl_give isl_qpolynomial *isl_qpolynomial_neg(
1898 __isl_take isl_qpolynomial *qp);
1899 __isl_give isl_qpolynomial *isl_qpolynomial_add(
1900 __isl_take isl_qpolynomial *qp1,
1901 __isl_take isl_qpolynomial *qp2);
1902 __isl_give isl_qpolynomial *isl_qpolynomial_sub(
1903 __isl_take isl_qpolynomial *qp1,
1904 __isl_take isl_qpolynomial *qp2);
1905 __isl_give isl_qpolynomial *isl_qpolynomial_mul(
1906 __isl_take isl_qpolynomial *qp1,
1907 __isl_take isl_qpolynomial *qp2);
1909 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(
1910 __isl_take isl_pw_qpolynomial *pwqp1,
1911 __isl_take isl_pw_qpolynomial *pwqp2);
1912 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_sub(
1913 __isl_take isl_pw_qpolynomial *pwqp1,
1914 __isl_take isl_pw_qpolynomial *pwqp2);
1915 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_disjoint(
1916 __isl_take isl_pw_qpolynomial *pwqp1,
1917 __isl_take isl_pw_qpolynomial *pwqp2);
1918 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_neg(
1919 __isl_take isl_pw_qpolynomial *pwqp);
1920 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
1921 __isl_take isl_pw_qpolynomial *pwqp1,
1922 __isl_take isl_pw_qpolynomial *pwqp2);
1924 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add(
1925 __isl_take isl_union_pw_qpolynomial *upwqp1,
1926 __isl_take isl_union_pw_qpolynomial *upwqp2);
1927 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_sub(
1928 __isl_take isl_union_pw_qpolynomial *upwqp1,
1929 __isl_take isl_union_pw_qpolynomial *upwqp2);
1930 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(
1931 __isl_take isl_union_pw_qpolynomial *upwqp1,
1932 __isl_take isl_union_pw_qpolynomial *upwqp2);
1934 __isl_give isl_qpolynomial *isl_pw_qpolynomial_eval(
1935 __isl_take isl_pw_qpolynomial *pwqp,
1936 __isl_take isl_point *pnt);
1938 __isl_give isl_qpolynomial *isl_union_pw_qpolynomial_eval(
1939 __isl_take isl_union_pw_qpolynomial *upwqp,
1940 __isl_take isl_point *pnt);
1942 __isl_give isl_set *isl_pw_qpolynomial_domain(
1943 __isl_take isl_pw_qpolynomial *pwqp);
1944 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_intersect_domain(
1945 __isl_take isl_pw_qpolynomial *pwpq,
1946 __isl_take isl_set *set);
1948 __isl_give isl_union_set *isl_union_pw_qpolynomial_domain(
1949 __isl_take isl_union_pw_qpolynomial *upwqp);
1950 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_intersect_domain(
1951 __isl_take isl_union_pw_qpolynomial *upwpq,
1952 __isl_take isl_union_set *uset);
1954 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_coalesce(
1955 __isl_take isl_union_pw_qpolynomial *upwqp);
1957 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist(
1958 __isl_take isl_pw_qpolynomial *pwqp,
1959 __isl_take isl_set *context);
1961 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_gist(
1962 __isl_take isl_union_pw_qpolynomial *upwqp,
1963 __isl_take isl_union_set *context);
1965 The gist operation applies the gist operation to each of
1966 the cells in the domain of the input piecewise quasipolynomial.
1967 In future, the operation will also exploit the context
1968 to simplify the quasipolynomials associated to each cell.
1970 =head2 Bounds on Piecewise Quasipolynomials and Piecewise Quasipolynomial Reductions
1972 A piecewise quasipolynomial reduction is a piecewise
1973 reduction (or fold) of quasipolynomials.
1974 In particular, the reduction can be maximum or a minimum.
1975 The objects are mainly used to represent the result of
1976 an upper or lower bound on a quasipolynomial over its domain,
1977 i.e., as the result of the following function.
1979 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_bound(
1980 __isl_take isl_pw_qpolynomial *pwqp,
1981 enum isl_fold type, int *tight);
1983 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_bound(
1984 __isl_take isl_union_pw_qpolynomial *upwqp,
1985 enum isl_fold type, int *tight);
1987 The C<type> argument may be either C<isl_fold_min> or C<isl_fold_max>.
1988 If C<tight> is not C<NULL>, then C<*tight> is set to C<1>
1989 is the returned bound is known be tight, i.e., for each value
1990 of the parameters there is at least
1991 one element in the domain that reaches the bound.
1992 If the domain of C<pwqp> is not wrapping, then the bound is computed
1993 over all elements in that domain and the result has a purely parametric
1994 domain. If the domain of C<pwqp> is wrapping, then the bound is
1995 computed over the range of the wrapped relation. The domain of the
1996 wrapped relation becomes the domain of the result.
1998 A (piecewise) quasipolynomial reduction can be copied or freed using the
1999 following functions.
2001 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_copy(
2002 __isl_keep isl_qpolynomial_fold *fold);
2003 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_copy(
2004 __isl_keep isl_pw_qpolynomial_fold *pwf);
2005 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_copy(
2006 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
2007 void isl_qpolynomial_fold_free(
2008 __isl_take isl_qpolynomial_fold *fold);
2009 void isl_pw_qpolynomial_fold_free(
2010 __isl_take isl_pw_qpolynomial_fold *pwf);
2011 void isl_union_pw_qpolynomial_fold_free(
2012 __isl_take isl_union_pw_qpolynomial_fold *upwf);
2014 =head3 Printing Piecewise Quasipolynomial Reductions
2016 Piecewise quasipolynomial reductions can be printed
2017 using the following function.
2019 __isl_give isl_printer *isl_printer_print_pw_qpolynomial_fold(
2020 __isl_take isl_printer *p,
2021 __isl_keep isl_pw_qpolynomial_fold *pwf);
2022 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial_fold(
2023 __isl_take isl_printer *p,
2024 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
2026 For C<isl_printer_print_pw_qpolynomial_fold>,
2027 output format of the printer
2028 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
2029 For C<isl_printer_print_union_pw_qpolynomial_fold>,
2030 output format of the printer
2031 needs to be set to either C<ISL_FORMAT_ISL>.
2033 =head3 Inspecting (Piecewise) Quasipolynomial Reductions
2035 To iterate over all piecewise quasipolynomial reductions in a union
2036 piecewise quasipolynomial reduction, use the following function
2038 int isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold(
2039 __isl_keep isl_union_pw_qpolynomial_fold *upwf,
2040 int (*fn)(__isl_take isl_pw_qpolynomial_fold *pwf,
2041 void *user), void *user);
2043 To iterate over the cells in a piecewise quasipolynomial reduction,
2044 use either of the following two functions
2046 int isl_pw_qpolynomial_fold_foreach_piece(
2047 __isl_keep isl_pw_qpolynomial_fold *pwf,
2048 int (*fn)(__isl_take isl_set *set,
2049 __isl_take isl_qpolynomial_fold *fold,
2050 void *user), void *user);
2051 int isl_pw_qpolynomial_fold_foreach_lifted_piece(
2052 __isl_keep isl_pw_qpolynomial_fold *pwf,
2053 int (*fn)(__isl_take isl_set *set,
2054 __isl_take isl_qpolynomial_fold *fold,
2055 void *user), void *user);
2057 See L<Inspecting (Piecewise) Quasipolynomials> for an explanation
2058 of the difference between these two functions.
2060 To iterate over all quasipolynomials in a reduction, use
2062 int isl_qpolynomial_fold_foreach_qpolynomial(
2063 __isl_keep isl_qpolynomial_fold *fold,
2064 int (*fn)(__isl_take isl_qpolynomial *qp,
2065 void *user), void *user);
2067 =head3 Operations on Piecewise Quasipolynomial Reductions
2069 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_fold(
2070 __isl_take isl_pw_qpolynomial_fold *pwf1,
2071 __isl_take isl_pw_qpolynomial_fold *pwf2);
2073 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_fold(
2074 __isl_take isl_union_pw_qpolynomial_fold *upwf1,
2075 __isl_take isl_union_pw_qpolynomial_fold *upwf2);
2077 __isl_give isl_qpolynomial *isl_pw_qpolynomial_fold_eval(
2078 __isl_take isl_pw_qpolynomial_fold *pwf,
2079 __isl_take isl_point *pnt);
2081 __isl_give isl_qpolynomial *isl_union_pw_qpolynomial_fold_eval(
2082 __isl_take isl_union_pw_qpolynomial_fold *upwf,
2083 __isl_take isl_point *pnt);
2085 __isl_give isl_union_set *isl_union_pw_qpolynomial_fold_domain(
2086 __isl_take isl_union_pw_qpolynomial_fold *upwf);
2087 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_intersect_domain(
2088 __isl_take isl_union_pw_qpolynomial_fold *upwf,
2089 __isl_take isl_union_set *uset);
2091 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_coalesce(
2092 __isl_take isl_pw_qpolynomial_fold *pwf);
2094 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_coalesce(
2095 __isl_take isl_union_pw_qpolynomial_fold *upwf);
2097 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_gist(
2098 __isl_take isl_pw_qpolynomial_fold *pwf,
2099 __isl_take isl_set *context);
2101 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_gist(
2102 __isl_take isl_union_pw_qpolynomial_fold *upwf,
2103 __isl_take isl_union_set *context);
2105 The gist operation applies the gist operation to each of
2106 the cells in the domain of the input piecewise quasipolynomial reduction.
2107 In future, the operation will also exploit the context
2108 to simplify the quasipolynomial reductions associated to each cell.
2110 __isl_give isl_pw_qpolynomial_fold *
2111 isl_map_apply_pw_qpolynomial_fold(
2112 __isl_take isl_map *map,
2113 __isl_take isl_pw_qpolynomial_fold *pwf,
2115 __isl_give isl_union_pw_qpolynomial_fold *
2116 isl_union_map_apply_union_pw_qpolynomial_fold(
2117 __isl_take isl_union_map *umap,
2118 __isl_take isl_union_pw_qpolynomial_fold *upwf,
2122 compose the given map with the given piecewise quasipolynomial reduction.
2123 That is, compute a bound (of the same type as C<pwf> or C<upwf> itself)
2124 over all elements in the intersection of the range of the map
2125 and the domain of the piecewise quasipolynomial reduction
2126 as a function of an element in the domain of the map.
2128 =head2 Dependence Analysis
2130 C<isl> contains specialized functionality for performing
2131 array dataflow analysis. That is, given a I<sink> access relation
2132 and a collection of possible I<source> access relations,
2133 C<isl> can compute relations that describe
2134 for each iteration of the sink access, which iteration
2135 of which of the source access relations was the last
2136 to access the same data element before the given iteration
2138 To compute standard flow dependences, the sink should be
2139 a read, while the sources should be writes.
2140 If any of the source accesses are marked as being I<may>
2141 accesses, then there will be a dependence to the last
2142 I<must> access B<and> to any I<may> access that follows
2143 this last I<must> access.
2144 In particular, if I<all> sources are I<may> accesses,
2145 then memory based dependence analysis is performed.
2146 If, on the other hand, all sources are I<must> accesses,
2147 then value based dependence analysis is performed.
2149 #include <isl_flow.h>
2151 typedef int (*isl_access_level_before)(void *first, void *second);
2153 __isl_give isl_access_info *isl_access_info_alloc(
2154 __isl_take isl_map *sink,
2155 void *sink_user, isl_access_level_before fn,
2157 __isl_give isl_access_info *isl_access_info_add_source(
2158 __isl_take isl_access_info *acc,
2159 __isl_take isl_map *source, int must,
2161 void isl_access_info_free(__isl_take isl_access_info *acc);
2163 __isl_give isl_flow *isl_access_info_compute_flow(
2164 __isl_take isl_access_info *acc);
2166 int isl_flow_foreach(__isl_keep isl_flow *deps,
2167 int (*fn)(__isl_take isl_map *dep, int must,
2168 void *dep_user, void *user),
2170 __isl_give isl_set *isl_flow_get_no_source(
2171 __isl_keep isl_flow *deps, int must);
2172 void isl_flow_free(__isl_take isl_flow *deps);
2174 The function C<isl_access_info_compute_flow> performs the actual
2175 dependence analysis. The other functions are used to construct
2176 the input for this function or to read off the output.
2178 The input is collected in an C<isl_access_info>, which can
2179 be created through a call to C<isl_access_info_alloc>.
2180 The arguments to this functions are the sink access relation
2181 C<sink>, a token C<sink_user> used to identify the sink
2182 access to the user, a callback function for specifying the
2183 relative order of source and sink accesses, and the number
2184 of source access relations that will be added.
2185 The callback function has type C<int (*)(void *first, void *second)>.
2186 The function is called with two user supplied tokens identifying
2187 either a source or the sink and it should return the shared nesting
2188 level and the relative order of the two accesses.
2189 In particular, let I<n> be the number of loops shared by
2190 the two accesses. If C<first> precedes C<second> textually,
2191 then the function should return I<2 * n + 1>; otherwise,
2192 it should return I<2 * n>.
2193 The sources can be added to the C<isl_access_info> by performing
2194 (at most) C<max_source> calls to C<isl_access_info_add_source>.
2195 C<must> indicates whether the source is a I<must> access
2196 or a I<may> access. Note that a multi-valued access relation
2197 should only be marked I<must> if every iteration in the domain
2198 of the relation accesses I<all> elements in its image.
2199 The C<source_user> token is again used to identify
2200 the source access. The range of the source access relation
2201 C<source> should have the same dimension as the range
2202 of the sink access relation.
2203 The C<isl_access_info_free> function should usually not be
2204 called explicitly, because it is called implicitly by
2205 C<isl_access_info_compute_flow>.
2207 The result of the dependence analysis is collected in an
2208 C<isl_flow>. There may be elements in the domain of
2209 the sink access for which no preceding source access could be
2210 found or for which all preceding sources are I<may> accesses.
2211 The sets of these elements can be obtained through
2212 calls to C<isl_flow_get_no_source>, the first with C<must> set
2213 and the second with C<must> unset.
2214 In the case of standard flow dependence analysis,
2215 with the sink a read and the sources I<must> writes,
2216 the first set corresponds to the reads from uninitialized
2217 array elements and the second set is empty.
2218 The actual flow dependences can be extracted using
2219 C<isl_flow_foreach>. This function will call the user-specified
2220 callback function C<fn> for each B<non-empty> dependence between
2221 a source and the sink. The callback function is called
2222 with four arguments, the actual flow dependence relation
2223 mapping source iterations to sink iterations, a boolean that
2224 indicates whether it is a I<must> or I<may> dependence, a token
2225 identifying the source and an additional C<void *> with value
2226 equal to the third argument of the C<isl_flow_foreach> call.
2227 A dependence is marked I<must> if it originates from a I<must>
2228 source and if it is not followed by any I<may> sources.
2230 After finishing with an C<isl_flow>, the user should call
2231 C<isl_flow_free> to free all associated memory.
2233 A higher-level interface to dependence analysis is provided
2234 by the following function.
2236 #include <isl_flow.h>
2238 int isl_union_map_compute_flow(__isl_take isl_union_map *sink,
2239 __isl_take isl_union_map *must_source,
2240 __isl_take isl_union_map *may_source,
2241 __isl_take isl_union_map *schedule,
2242 __isl_give isl_union_map **must_dep,
2243 __isl_give isl_union_map **may_dep,
2244 __isl_give isl_union_set **must_no_source,
2245 __isl_give isl_union_set **may_no_source);
2247 The arrays are identified by the tuple names of the ranges
2248 of the accesses. The iteration domains by the tuple names
2249 of the domains of the accesses and of the schedule.
2250 The relative order of the iteration domains is given by the
2251 schedule. Any of C<must_dep>, C<may_dep>, C<must_no_source>
2252 or C<may_no_source> may be C<NULL>, but a C<NULL> value for
2253 any of the other arguments is treated as an error.
2255 =head2 Parametric Vertex Enumeration
2257 The parametric vertex enumeration described in this section
2258 is mainly intended to be used internally and by the C<barvinok>
2261 #include <isl_vertices.h>
2262 __isl_give isl_vertices *isl_basic_set_compute_vertices(
2263 __isl_keep isl_basic_set *bset);
2265 The function C<isl_basic_set_compute_vertices> performs the
2266 actual computation of the parametric vertices and the chamber
2267 decomposition and store the result in an C<isl_vertices> object.
2268 This information can be queried by either iterating over all
2269 the vertices or iterating over all the chambers or cells
2270 and then iterating over all vertices that are active on the chamber.
2272 int isl_vertices_foreach_vertex(
2273 __isl_keep isl_vertices *vertices,
2274 int (*fn)(__isl_take isl_vertex *vertex, void *user),
2277 int isl_vertices_foreach_cell(
2278 __isl_keep isl_vertices *vertices,
2279 int (*fn)(__isl_take isl_cell *cell, void *user),
2281 int isl_cell_foreach_vertex(__isl_keep isl_cell *cell,
2282 int (*fn)(__isl_take isl_vertex *vertex, void *user),
2285 Other operations that can be performed on an C<isl_vertices> object are
2288 isl_ctx *isl_vertices_get_ctx(
2289 __isl_keep isl_vertices *vertices);
2290 int isl_vertices_get_n_vertices(
2291 __isl_keep isl_vertices *vertices);
2292 void isl_vertices_free(__isl_take isl_vertices *vertices);
2294 Vertices can be inspected and destroyed using the following functions.
2296 isl_ctx *isl_vertex_get_ctx(__isl_keep isl_vertex *vertex);
2297 int isl_vertex_get_id(__isl_keep isl_vertex *vertex);
2298 __isl_give isl_basic_set *isl_vertex_get_domain(
2299 __isl_keep isl_vertex *vertex);
2300 __isl_give isl_basic_set *isl_vertex_get_expr(
2301 __isl_keep isl_vertex *vertex);
2302 void isl_vertex_free(__isl_take isl_vertex *vertex);
2304 C<isl_vertex_get_expr> returns a singleton parametric set describing
2305 the vertex, while C<isl_vertex_get_domain> returns the activity domain
2307 Note that C<isl_vertex_get_domain> and C<isl_vertex_get_expr> return
2308 B<rational> basic sets, so they should mainly be used for inspection
2309 and should not be mixed with integer sets.
2311 Chambers can be inspected and destroyed using the following functions.
2313 isl_ctx *isl_cell_get_ctx(__isl_keep isl_cell *cell);
2314 __isl_give isl_basic_set *isl_cell_get_domain(
2315 __isl_keep isl_cell *cell);
2316 void isl_cell_free(__isl_take isl_cell *cell);
2320 Although C<isl> is mainly meant to be used as a library,
2321 it also contains some basic applications that use some
2322 of the functionality of C<isl>.
2323 The input may be specified in either the L<isl format>
2324 or the L<PolyLib format>.
2326 =head2 C<isl_polyhedron_sample>
2328 C<isl_polyhedron_sample> takes a polyhedron as input and prints
2329 an integer element of the polyhedron, if there is any.
2330 The first column in the output is the denominator and is always
2331 equal to 1. If the polyhedron contains no integer points,
2332 then a vector of length zero is printed.
2336 C<isl_pip> takes the same input as the C<example> program
2337 from the C<piplib> distribution, i.e., a set of constraints
2338 on the parameters, a line containing only -1 and finally a set
2339 of constraints on a parametric polyhedron.
2340 The coefficients of the parameters appear in the last columns
2341 (but before the final constant column).
2342 The output is the lexicographic minimum of the parametric polyhedron.
2343 As C<isl> currently does not have its own output format, the output
2344 is just a dump of the internal state.
2346 =head2 C<isl_polyhedron_minimize>
2348 C<isl_polyhedron_minimize> computes the minimum of some linear
2349 or affine objective function over the integer points in a polyhedron.
2350 If an affine objective function
2351 is given, then the constant should appear in the last column.
2353 =head2 C<isl_polytope_scan>
2355 Given a polytope, C<isl_polytope_scan> prints
2356 all integer points in the polytope.
2358 =head1 C<isl-polylib>
2360 The C<isl-polylib> library provides the following functions for converting
2361 between C<isl> objects and C<PolyLib> objects.
2362 The library is distributed separately for licensing reasons.
2364 #include <isl_set_polylib.h>
2365 __isl_give isl_basic_set *isl_basic_set_new_from_polylib(
2366 Polyhedron *P, __isl_take isl_dim *dim);
2367 Polyhedron *isl_basic_set_to_polylib(
2368 __isl_keep isl_basic_set *bset);
2369 __isl_give isl_set *isl_set_new_from_polylib(Polyhedron *D,
2370 __isl_take isl_dim *dim);
2371 Polyhedron *isl_set_to_polylib(__isl_keep isl_set *set);
2373 #include <isl_map_polylib.h>
2374 __isl_give isl_basic_map *isl_basic_map_new_from_polylib(
2375 Polyhedron *P, __isl_take isl_dim *dim);
2376 __isl_give isl_map *isl_map_new_from_polylib(Polyhedron *D,
2377 __isl_take isl_dim *dim);
2378 Polyhedron *isl_basic_map_to_polylib(
2379 __isl_keep isl_basic_map *bmap);
2380 Polyhedron *isl_map_to_polylib(__isl_keep isl_map *map);