add isl_basic_set_lexmax
[isl.git] / basis_reduction_templ.c
blob7d6e2e771d618d0eef96011a3e70e0556a6ca06a
1 #include <stdlib.h>
2 #include "isl_basis_reduction.h"
4 static void save_alpha(GBR_LP *lp, int first, int n, GBR_type *alpha)
6 int i;
8 for (i = 0; i < n; ++i)
9 GBR_lp_get_alpha(lp, first + i, &alpha[i]);
12 /* Compute a reduced basis for the set represented by the tableau "tab".
13 * tab->basis, must be initialized by the calling function to an affine
14 * unimodular basis, is updated to reflect the reduced basis.
15 * The first tab->n_zero rows of the basis (ignoring the constant row)
16 * are assumed to correspond to equalities and are left untouched.
17 * tab->n_zero is updated to reflect any additional equalities that
18 * have been detected in the first rows of the new basis.
19 * The final tab->n_unbounded rows of the basis are assumed to correspond
20 * to unbounded directions and are also left untouched.
21 * In particular this means that the remaining rows are assumed to
22 * correspond to bounded directions.
24 * This function implements the algorithm described in
25 * "An Implementation of the Generalized Basis Reduction Algorithm
26 * for Integer Programming" of Cook el al. to compute a reduced basis.
27 * We use \epsilon = 1/4.
29 * If ctx->opt->gbr_only_first is set, the user is only interested
30 * in the first direction. In this case we stop the basis reduction when
31 * the width in the first direction becomes smaller than 2.
33 struct isl_tab *isl_tab_compute_reduced_basis(struct isl_tab *tab)
35 unsigned dim;
36 struct isl_ctx *ctx;
37 struct isl_mat *B;
38 int unbounded;
39 int i;
40 GBR_LP *lp = NULL;
41 GBR_type F_old, alpha, F_new;
42 int row;
43 isl_int tmp;
44 struct isl_vec *b_tmp;
45 GBR_type *F = NULL;
46 GBR_type *alpha_buffer[2] = { NULL, NULL };
47 GBR_type *alpha_saved;
48 GBR_type F_saved;
49 int use_saved = 0;
50 isl_int mu[2];
51 GBR_type mu_F[2];
52 GBR_type two;
53 GBR_type one;
54 int empty = 0;
55 int fixed = 0;
56 int fixed_saved = 0;
57 int mu_fixed[2];
58 int n_bounded;
59 int gbr_only_first;
61 if (!tab)
62 return NULL;
64 if (tab->empty)
65 return tab;
67 ctx = tab->mat->ctx;
68 gbr_only_first = ctx->opt->gbr_only_first;
69 dim = tab->n_var;
70 B = tab->basis;
71 if (!B)
72 return tab;
74 n_bounded = dim - tab->n_unbounded;
75 if (n_bounded <= tab->n_zero + 1)
76 return tab;
78 isl_int_init(tmp);
79 isl_int_init(mu[0]);
80 isl_int_init(mu[1]);
82 GBR_init(alpha);
83 GBR_init(F_old);
84 GBR_init(F_new);
85 GBR_init(F_saved);
86 GBR_init(mu_F[0]);
87 GBR_init(mu_F[1]);
88 GBR_init(two);
89 GBR_init(one);
91 b_tmp = isl_vec_alloc(ctx, dim);
92 if (!b_tmp)
93 goto error;
95 F = isl_alloc_array(ctx, GBR_type, n_bounded);
96 alpha_buffer[0] = isl_alloc_array(ctx, GBR_type, n_bounded);
97 alpha_buffer[1] = isl_alloc_array(ctx, GBR_type, n_bounded);
98 alpha_saved = alpha_buffer[0];
100 if (!F || !alpha_buffer[0] || !alpha_buffer[1])
101 goto error;
103 for (i = 0; i < n_bounded; ++i) {
104 GBR_init(F[i]);
105 GBR_init(alpha_buffer[0][i]);
106 GBR_init(alpha_buffer[1][i]);
109 GBR_set_ui(two, 2);
110 GBR_set_ui(one, 1);
112 lp = GBR_lp_init(tab);
113 if (!lp)
114 goto error;
116 i = tab->n_zero;
118 GBR_lp_set_obj(lp, B->row[1+i]+1, dim);
119 ctx->stats->gbr_solved_lps++;
120 unbounded = GBR_lp_solve(lp);
121 isl_assert(ctx, !unbounded, goto error);
122 GBR_lp_get_obj_val(lp, &F[i]);
124 if (GBR_lt(F[i], one)) {
125 if (!GBR_is_zero(F[i])) {
126 empty = GBR_lp_cut(lp, B->row[1+i]+1);
127 if (empty)
128 goto done;
129 GBR_set_ui(F[i], 0);
131 tab->n_zero++;
134 do {
135 if (i+1 == tab->n_zero) {
136 GBR_lp_set_obj(lp, B->row[1+i+1]+1, dim);
137 ctx->stats->gbr_solved_lps++;
138 unbounded = GBR_lp_solve(lp);
139 isl_assert(ctx, !unbounded, goto error);
140 GBR_lp_get_obj_val(lp, &F_new);
141 fixed = GBR_lp_is_fixed(lp);
142 GBR_set_ui(alpha, 0);
143 } else
144 if (use_saved) {
145 row = GBR_lp_next_row(lp);
146 GBR_set(F_new, F_saved);
147 fixed = fixed_saved;
148 GBR_set(alpha, alpha_saved[i]);
149 } else {
150 row = GBR_lp_add_row(lp, B->row[1+i]+1, dim);
151 GBR_lp_set_obj(lp, B->row[1+i+1]+1, dim);
152 ctx->stats->gbr_solved_lps++;
153 unbounded = GBR_lp_solve(lp);
154 isl_assert(ctx, !unbounded, goto error);
155 GBR_lp_get_obj_val(lp, &F_new);
156 fixed = GBR_lp_is_fixed(lp);
158 GBR_lp_get_alpha(lp, row, &alpha);
160 if (i > 0)
161 save_alpha(lp, row-i, i, alpha_saved);
163 if (GBR_lp_del_row(lp) < 0)
164 goto error;
166 GBR_set(F[i+1], F_new);
168 GBR_floor(mu[0], alpha);
169 GBR_ceil(mu[1], alpha);
171 if (isl_int_eq(mu[0], mu[1]))
172 isl_int_set(tmp, mu[0]);
173 else {
174 int j;
176 for (j = 0; j <= 1; ++j) {
177 isl_int_set(tmp, mu[j]);
178 isl_seq_combine(b_tmp->el,
179 ctx->one, B->row[1+i+1]+1,
180 tmp, B->row[1+i]+1, dim);
181 GBR_lp_set_obj(lp, b_tmp->el, dim);
182 ctx->stats->gbr_solved_lps++;
183 unbounded = GBR_lp_solve(lp);
184 isl_assert(ctx, !unbounded, goto error);
185 GBR_lp_get_obj_val(lp, &mu_F[j]);
186 mu_fixed[j] = GBR_lp_is_fixed(lp);
187 if (i > 0)
188 save_alpha(lp, row-i, i, alpha_buffer[j]);
191 if (GBR_lt(mu_F[0], mu_F[1]))
192 j = 0;
193 else
194 j = 1;
196 isl_int_set(tmp, mu[j]);
197 GBR_set(F_new, mu_F[j]);
198 fixed = mu_fixed[j];
199 alpha_saved = alpha_buffer[j];
201 isl_seq_combine(B->row[1+i+1]+1, ctx->one, B->row[1+i+1]+1,
202 tmp, B->row[1+i]+1, dim);
204 if (i+1 == tab->n_zero && fixed) {
205 if (!GBR_is_zero(F[i+1])) {
206 empty = GBR_lp_cut(lp, B->row[1+i+1]+1);
207 if (empty)
208 goto done;
209 GBR_set_ui(F[i+1], 0);
211 tab->n_zero++;
214 GBR_set(F_old, F[i]);
216 use_saved = 0;
217 /* mu_F[0] = 4 * F_new; mu_F[1] = 3 * F_old */
218 GBR_set_ui(mu_F[0], 4);
219 GBR_mul(mu_F[0], mu_F[0], F_new);
220 GBR_set_ui(mu_F[1], 3);
221 GBR_mul(mu_F[1], mu_F[1], F_old);
222 if (GBR_lt(mu_F[0], mu_F[1])) {
223 B = isl_mat_swap_rows(B, 1 + i, 1 + i + 1);
224 if (i > tab->n_zero) {
225 use_saved = 1;
226 GBR_set(F_saved, F_new);
227 fixed_saved = fixed;
228 if (GBR_lp_del_row(lp) < 0)
229 goto error;
230 --i;
231 } else {
232 GBR_set(F[tab->n_zero], F_new);
233 if (gbr_only_first && GBR_lt(F[tab->n_zero], two))
234 break;
236 if (fixed) {
237 if (!GBR_is_zero(F[tab->n_zero])) {
238 empty = GBR_lp_cut(lp, B->row[1+tab->n_zero]+1);
239 if (empty)
240 goto done;
241 GBR_set_ui(F[tab->n_zero], 0);
243 tab->n_zero++;
246 } else {
247 GBR_lp_add_row(lp, B->row[1+i]+1, dim);
248 ++i;
250 } while (i < n_bounded - 1);
252 if (0) {
253 done:
254 if (empty < 0) {
255 error:
256 isl_mat_free(B);
257 B = NULL;
261 GBR_lp_delete(lp);
263 if (alpha_buffer[1])
264 for (i = 0; i < n_bounded; ++i) {
265 GBR_clear(F[i]);
266 GBR_clear(alpha_buffer[0][i]);
267 GBR_clear(alpha_buffer[1][i]);
269 free(F);
270 free(alpha_buffer[0]);
271 free(alpha_buffer[1]);
273 isl_vec_free(b_tmp);
275 GBR_clear(alpha);
276 GBR_clear(F_old);
277 GBR_clear(F_new);
278 GBR_clear(F_saved);
279 GBR_clear(mu_F[0]);
280 GBR_clear(mu_F[1]);
281 GBR_clear(two);
282 GBR_clear(one);
284 isl_int_clear(tmp);
285 isl_int_clear(mu[0]);
286 isl_int_clear(mu[1]);
288 tab->basis = B;
290 return tab;
293 struct isl_mat *isl_basic_set_reduced_basis(struct isl_basic_set *bset)
295 struct isl_mat *basis;
296 struct isl_tab *tab;
298 isl_assert(bset->ctx, bset->n_eq == 0, return NULL);
300 tab = isl_tab_from_basic_set(bset);
301 tab->basis = isl_mat_identity(bset->ctx, 1 + tab->n_var);
302 tab = isl_tab_compute_reduced_basis(tab);
303 if (!tab)
304 return NULL;
306 basis = isl_mat_copy(tab->basis);
308 isl_tab_free(tab);
310 return basis;