2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
15 #include "isl_map_private.h"
16 #include "isl_equalities.h"
17 #include "isl_sample.h"
20 struct isl_basic_map
*isl_basic_map_implicit_equalities(
21 struct isl_basic_map
*bmap
)
28 bmap
= isl_basic_map_gauss(bmap
, NULL
);
29 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
31 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_NO_IMPLICIT
))
33 if (bmap
->n_ineq
<= 1)
36 tab
= isl_tab_from_basic_map(bmap
);
37 tab
= isl_tab_detect_implicit_equalities(tab
);
38 bmap
= isl_basic_map_update_from_tab(bmap
, tab
);
40 bmap
= isl_basic_map_gauss(bmap
, NULL
);
41 ISL_F_SET(bmap
, ISL_BASIC_MAP_NO_IMPLICIT
);
45 struct isl_basic_set
*isl_basic_set_implicit_equalities(
46 struct isl_basic_set
*bset
)
48 return (struct isl_basic_set
*)
49 isl_basic_map_implicit_equalities((struct isl_basic_map
*)bset
);
52 struct isl_map
*isl_map_implicit_equalities(struct isl_map
*map
)
59 for (i
= 0; i
< map
->n
; ++i
) {
60 map
->p
[i
] = isl_basic_map_implicit_equalities(map
->p
[i
]);
71 /* Make eq[row][col] of both bmaps equal so we can add the row
72 * add the column to the common matrix.
73 * Note that because of the echelon form, the columns of row row
74 * after column col are zero.
76 static void set_common_multiple(
77 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
,
78 unsigned row
, unsigned col
)
82 if (isl_int_eq(bset1
->eq
[row
][col
], bset2
->eq
[row
][col
]))
87 isl_int_lcm(m
, bset1
->eq
[row
][col
], bset2
->eq
[row
][col
]);
88 isl_int_divexact(c
, m
, bset1
->eq
[row
][col
]);
89 isl_seq_scale(bset1
->eq
[row
], bset1
->eq
[row
], c
, col
+1);
90 isl_int_divexact(c
, m
, bset2
->eq
[row
][col
]);
91 isl_seq_scale(bset2
->eq
[row
], bset2
->eq
[row
], c
, col
+1);
96 /* Delete a given equality, moving all the following equalities one up.
98 static void delete_row(struct isl_basic_set
*bset
, unsigned row
)
105 for (r
= row
; r
< bset
->n_eq
; ++r
)
106 bset
->eq
[r
] = bset
->eq
[r
+1];
107 bset
->eq
[bset
->n_eq
] = t
;
110 /* Make first row entries in column col of bset1 identical to
111 * those of bset2, using the fact that entry bset1->eq[row][col]=a
112 * is non-zero. Initially, these elements of bset1 are all zero.
113 * For each row i < row, we set
114 * A[i] = a * A[i] + B[i][col] * A[row]
117 * A[i][col] = B[i][col] = a * old(B[i][col])
119 static void construct_column(
120 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
,
121 unsigned row
, unsigned col
)
130 total
= 1 + isl_basic_set_n_dim(bset1
);
131 for (r
= 0; r
< row
; ++r
) {
132 if (isl_int_is_zero(bset2
->eq
[r
][col
]))
134 isl_int_gcd(b
, bset2
->eq
[r
][col
], bset1
->eq
[row
][col
]);
135 isl_int_divexact(a
, bset1
->eq
[row
][col
], b
);
136 isl_int_divexact(b
, bset2
->eq
[r
][col
], b
);
137 isl_seq_combine(bset1
->eq
[r
], a
, bset1
->eq
[r
],
138 b
, bset1
->eq
[row
], total
);
139 isl_seq_scale(bset2
->eq
[r
], bset2
->eq
[r
], a
, total
);
143 delete_row(bset1
, row
);
146 /* Make first row entries in column col of bset1 identical to
147 * those of bset2, using only these entries of the two matrices.
148 * Let t be the last row with different entries.
149 * For each row i < t, we set
150 * A[i] = (A[t][col]-B[t][col]) * A[i] + (B[i][col]-A[i][col) * A[t]
151 * B[i] = (A[t][col]-B[t][col]) * B[i] + (B[i][col]-A[i][col) * B[t]
153 * A[i][col] = B[i][col] = old(A[t][col]*B[i][col]-A[i][col]*B[t][col])
155 static int transform_column(
156 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
,
157 unsigned row
, unsigned col
)
163 for (t
= row
-1; t
>= 0; --t
)
164 if (isl_int_ne(bset1
->eq
[t
][col
], bset2
->eq
[t
][col
]))
169 total
= 1 + isl_basic_set_n_dim(bset1
);
173 isl_int_sub(b
, bset1
->eq
[t
][col
], bset2
->eq
[t
][col
]);
174 for (i
= 0; i
< t
; ++i
) {
175 isl_int_sub(a
, bset2
->eq
[i
][col
], bset1
->eq
[i
][col
]);
176 isl_int_gcd(g
, a
, b
);
177 isl_int_divexact(a
, a
, g
);
178 isl_int_divexact(g
, b
, g
);
179 isl_seq_combine(bset1
->eq
[i
], g
, bset1
->eq
[i
], a
, bset1
->eq
[t
],
181 isl_seq_combine(bset2
->eq
[i
], g
, bset2
->eq
[i
], a
, bset2
->eq
[t
],
187 delete_row(bset1
, t
);
188 delete_row(bset2
, t
);
192 /* The implementation is based on Section 5.2 of Michael Karr,
193 * "Affine Relationships Among Variables of a Program",
194 * except that the echelon form we use starts from the last column
195 * and that we are dealing with integer coefficients.
197 static struct isl_basic_set
*affine_hull(
198 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
204 total
= 1 + isl_basic_set_n_dim(bset1
);
207 for (col
= total
-1; col
>= 0; --col
) {
208 int is_zero1
= row
>= bset1
->n_eq
||
209 isl_int_is_zero(bset1
->eq
[row
][col
]);
210 int is_zero2
= row
>= bset2
->n_eq
||
211 isl_int_is_zero(bset2
->eq
[row
][col
]);
212 if (!is_zero1
&& !is_zero2
) {
213 set_common_multiple(bset1
, bset2
, row
, col
);
215 } else if (!is_zero1
&& is_zero2
) {
216 construct_column(bset1
, bset2
, row
, col
);
217 } else if (is_zero1
&& !is_zero2
) {
218 construct_column(bset2
, bset1
, row
, col
);
220 if (transform_column(bset1
, bset2
, row
, col
))
224 isl_basic_set_free(bset2
);
225 isl_assert(bset1
->ctx
, row
== bset1
->n_eq
, goto error
);
226 bset1
= isl_basic_set_normalize_constraints(bset1
);
229 isl_basic_set_free(bset1
);
233 /* Find an integer point in the set represented by "tab"
234 * that lies outside of the equality "eq" e(x) = 0.
235 * If "up" is true, look for a point satisfying e(x) - 1 >= 0.
236 * Otherwise, look for a point satisfying -e(x) - 1 >= 0 (i.e., e(x) <= -1).
237 * The point, if found, is returned.
238 * If no point can be found, a zero-length vector is returned.
240 * Before solving an ILP problem, we first check if simply
241 * adding the normal of the constraint to one of the known
242 * integer points in the basic set represented by "tab"
243 * yields another point inside the basic set.
245 * The caller of this function ensures that the tableau is bounded or
246 * that tab->basis and tab->n_unbounded have been set appropriately.
248 static struct isl_vec
*outside_point(struct isl_tab
*tab
, isl_int
*eq
, int up
)
251 struct isl_vec
*sample
= NULL
;
252 struct isl_tab_undo
*snap
;
260 sample
= isl_vec_alloc(ctx
, 1 + dim
);
263 isl_int_set_si(sample
->el
[0], 1);
264 isl_seq_combine(sample
->el
+ 1,
265 ctx
->one
, tab
->bmap
->sample
->el
+ 1,
266 up
? ctx
->one
: ctx
->negone
, eq
+ 1, dim
);
267 if (isl_basic_map_contains(tab
->bmap
, sample
))
269 isl_vec_free(sample
);
272 snap
= isl_tab_snap(tab
);
275 isl_seq_neg(eq
, eq
, 1 + dim
);
276 isl_int_sub_ui(eq
[0], eq
[0], 1);
278 if (isl_tab_extend_cons(tab
, 1) < 0)
280 if (isl_tab_add_ineq(tab
, eq
) < 0)
283 sample
= isl_tab_sample(tab
);
285 isl_int_add_ui(eq
[0], eq
[0], 1);
287 isl_seq_neg(eq
, eq
, 1 + dim
);
289 if (isl_tab_rollback(tab
, snap
) < 0)
294 isl_vec_free(sample
);
298 struct isl_basic_set
*isl_basic_set_recession_cone(struct isl_basic_set
*bset
)
302 bset
= isl_basic_set_cow(bset
);
305 isl_assert(bset
->ctx
, bset
->n_div
== 0, goto error
);
307 for (i
= 0; i
< bset
->n_eq
; ++i
)
308 isl_int_set_si(bset
->eq
[i
][0], 0);
310 for (i
= 0; i
< bset
->n_ineq
; ++i
)
311 isl_int_set_si(bset
->ineq
[i
][0], 0);
313 ISL_F_CLR(bset
, ISL_BASIC_SET_NO_IMPLICIT
);
314 return isl_basic_set_implicit_equalities(bset
);
316 isl_basic_set_free(bset
);
320 __isl_give isl_set
*isl_set_recession_cone(__isl_take isl_set
*set
)
329 set
= isl_set_remove_divs(set
);
330 set
= isl_set_cow(set
);
334 for (i
= 0; i
< set
->n
; ++i
) {
335 set
->p
[i
] = isl_basic_set_recession_cone(set
->p
[i
]);
346 /* Extend an initial (under-)approximation of the affine hull of basic
347 * set represented by the tableau "tab"
348 * by looking for points that do not satisfy one of the equalities
349 * in the current approximation and adding them to that approximation
350 * until no such points can be found any more.
352 * The caller of this function ensures that "tab" is bounded or
353 * that tab->basis and tab->n_unbounded have been set appropriately.
355 static struct isl_basic_set
*extend_affine_hull(struct isl_tab
*tab
,
356 struct isl_basic_set
*hull
)
366 if (isl_tab_extend_cons(tab
, 2 * dim
+ 1) < 0)
369 for (i
= 0; i
< dim
; ++i
) {
370 struct isl_vec
*sample
;
371 struct isl_basic_set
*point
;
372 for (j
= 0; j
< hull
->n_eq
; ++j
) {
373 sample
= outside_point(tab
, hull
->eq
[j
], 1);
376 if (sample
->size
> 0)
378 isl_vec_free(sample
);
379 sample
= outside_point(tab
, hull
->eq
[j
], 0);
382 if (sample
->size
> 0)
384 isl_vec_free(sample
);
386 tab
= isl_tab_add_eq(tab
, hull
->eq
[j
]);
393 tab
= isl_tab_add_sample(tab
, isl_vec_copy(sample
));
396 point
= isl_basic_set_from_vec(sample
);
397 hull
= affine_hull(hull
, point
);
402 isl_basic_set_free(hull
);
406 /* Drop all constraints in bset that involve any of the dimensions
407 * first to first+n-1.
409 static struct isl_basic_set
*drop_constraints_involving
410 (struct isl_basic_set
*bset
, unsigned first
, unsigned n
)
417 bset
= isl_basic_set_cow(bset
);
419 for (i
= bset
->n_eq
- 1; i
>= 0; --i
) {
420 if (isl_seq_first_non_zero(bset
->eq
[i
] + 1 + first
, n
) == -1)
422 isl_basic_set_drop_equality(bset
, i
);
425 for (i
= bset
->n_ineq
- 1; i
>= 0; --i
) {
426 if (isl_seq_first_non_zero(bset
->ineq
[i
] + 1 + first
, n
) == -1)
428 isl_basic_set_drop_inequality(bset
, i
);
434 /* Look for all equalities satisfied by the integer points in bset,
435 * which is assumed to be bounded.
437 * The equalities are obtained by successively looking for
438 * a point that is affinely independent of the points found so far.
439 * In particular, for each equality satisfied by the points so far,
440 * we check if there is any point on a hyperplane parallel to the
441 * corresponding hyperplane shifted by at least one (in either direction).
443 static struct isl_basic_set
*uset_affine_hull_bounded(struct isl_basic_set
*bset
)
445 struct isl_vec
*sample
= NULL
;
446 struct isl_basic_set
*hull
;
447 struct isl_tab
*tab
= NULL
;
450 if (isl_basic_set_fast_is_empty(bset
))
453 dim
= isl_basic_set_n_dim(bset
);
455 if (bset
->sample
&& bset
->sample
->size
== 1 + dim
) {
456 int contains
= isl_basic_set_contains(bset
, bset
->sample
);
462 sample
= isl_vec_copy(bset
->sample
);
464 isl_vec_free(bset
->sample
);
469 tab
= isl_tab_from_basic_set(bset
);
474 isl_vec_free(sample
);
475 return isl_basic_set_set_to_empty(bset
);
477 if (isl_tab_track_bset(tab
, isl_basic_set_copy(bset
)) < 0)
481 struct isl_tab_undo
*snap
;
482 snap
= isl_tab_snap(tab
);
483 sample
= isl_tab_sample(tab
);
484 if (isl_tab_rollback(tab
, snap
) < 0)
486 isl_vec_free(tab
->bmap
->sample
);
487 tab
->bmap
->sample
= isl_vec_copy(sample
);
492 if (sample
->size
== 0) {
494 isl_vec_free(sample
);
495 return isl_basic_set_set_to_empty(bset
);
498 hull
= isl_basic_set_from_vec(sample
);
500 isl_basic_set_free(bset
);
501 hull
= extend_affine_hull(tab
, hull
);
506 isl_vec_free(sample
);
508 isl_basic_set_free(bset
);
512 /* Given an unbounded tableau and an integer point satisfying the tableau,
513 * construct an intial affine hull containing the recession cone
514 * shifted to the given point.
516 * The unbounded directions are taken from the last rows of the basis,
517 * which is assumed to have been initialized appropriately.
519 static __isl_give isl_basic_set
*initial_hull(struct isl_tab
*tab
,
520 __isl_take isl_vec
*vec
)
524 struct isl_basic_set
*bset
= NULL
;
531 isl_assert(ctx
, vec
->size
!= 0, goto error
);
533 bset
= isl_basic_set_alloc(ctx
, 0, vec
->size
- 1, 0, vec
->size
- 1, 0);
536 dim
= isl_basic_set_n_dim(bset
) - tab
->n_unbounded
;
537 for (i
= 0; i
< dim
; ++i
) {
538 k
= isl_basic_set_alloc_equality(bset
);
541 isl_seq_cpy(bset
->eq
[k
] + 1, tab
->basis
->row
[1 + i
] + 1,
543 isl_seq_inner_product(bset
->eq
[k
] + 1, vec
->el
+1,
544 vec
->size
- 1, &bset
->eq
[k
][0]);
545 isl_int_neg(bset
->eq
[k
][0], bset
->eq
[k
][0]);
548 bset
= isl_basic_set_gauss(bset
, NULL
);
552 isl_basic_set_free(bset
);
557 /* Given a tableau of a set and a tableau of the corresponding
558 * recession cone, detect and add all equalities to the tableau.
559 * If the tableau is bounded, then we can simply keep the
560 * tableau in its state after the return from extend_affine_hull.
561 * However, if the tableau is unbounded, then
562 * isl_tab_set_initial_basis_with_cone will add some additional
563 * constraints to the tableau that have to be removed again.
564 * In this case, we therefore rollback to the state before
565 * any constraints were added and then add the eqaulities back in.
567 struct isl_tab
*isl_tab_detect_equalities(struct isl_tab
*tab
,
568 struct isl_tab
*tab_cone
)
571 struct isl_vec
*sample
;
572 struct isl_basic_set
*hull
;
573 struct isl_tab_undo
*snap
;
575 if (!tab
|| !tab_cone
)
578 snap
= isl_tab_snap(tab
);
580 isl_mat_free(tab
->basis
);
583 isl_assert(tab
->mat
->ctx
, tab
->bmap
, goto error
);
584 isl_assert(tab
->mat
->ctx
, tab
->samples
, goto error
);
585 isl_assert(tab
->mat
->ctx
, tab
->samples
->n_col
== 1 + tab
->n_var
, goto error
);
586 isl_assert(tab
->mat
->ctx
, tab
->n_sample
> tab
->n_outside
, goto error
);
588 if (isl_tab_set_initial_basis_with_cone(tab
, tab_cone
) < 0)
591 sample
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_var
);
595 isl_seq_cpy(sample
->el
, tab
->samples
->row
[tab
->n_outside
], sample
->size
);
597 isl_vec_free(tab
->bmap
->sample
);
598 tab
->bmap
->sample
= isl_vec_copy(sample
);
600 if (tab
->n_unbounded
== 0)
601 hull
= isl_basic_set_from_vec(isl_vec_copy(sample
));
603 hull
= initial_hull(tab
, isl_vec_copy(sample
));
605 for (j
= tab
->n_outside
+ 1; j
< tab
->n_sample
; ++j
) {
606 isl_seq_cpy(sample
->el
, tab
->samples
->row
[j
], sample
->size
);
607 hull
= affine_hull(hull
,
608 isl_basic_set_from_vec(isl_vec_copy(sample
)));
611 isl_vec_free(sample
);
613 hull
= extend_affine_hull(tab
, hull
);
617 if (tab
->n_unbounded
== 0) {
618 isl_basic_set_free(hull
);
622 if (isl_tab_rollback(tab
, snap
) < 0)
625 if (hull
->n_eq
> tab
->n_zero
) {
626 for (j
= 0; j
< hull
->n_eq
; ++j
) {
627 isl_seq_normalize(tab
->mat
->ctx
, hull
->eq
[j
], 1 + tab
->n_var
);
628 tab
= isl_tab_add_eq(tab
, hull
->eq
[j
]);
632 isl_basic_set_free(hull
);
640 /* Compute the affine hull of "bset", where "cone" is the recession cone
643 * We first compute a unimodular transformation that puts the unbounded
644 * directions in the last dimensions. In particular, we take a transformation
645 * that maps all equalities to equalities (in HNF) on the first dimensions.
646 * Let x be the original dimensions and y the transformed, with y_1 bounded
649 * [ y_1 ] [ y_1 ] [ Q_1 ]
650 * x = U [ y_2 ] [ y_2 ] = [ Q_2 ] x
652 * Let's call the input basic set S. We compute S' = preimage(S, U)
653 * and drop the final dimensions including any constraints involving them.
654 * This results in set S''.
655 * Then we compute the affine hull A'' of S''.
656 * Let F y_1 >= g be the constraint system of A''. In the transformed
657 * space the y_2 are unbounded, so we can add them back without any constraints,
661 * [ F 0 ] [ y_2 ] >= g
664 * [ F 0 ] [ Q_2 ] x >= g
668 * The affine hull in the original space is then obtained as
669 * A = preimage(A'', Q_1).
671 static struct isl_basic_set
*affine_hull_with_cone(struct isl_basic_set
*bset
,
672 struct isl_basic_set
*cone
)
676 struct isl_basic_set
*hull
;
677 struct isl_mat
*M
, *U
, *Q
;
682 total
= isl_basic_set_total_dim(cone
);
683 cone_dim
= total
- cone
->n_eq
;
685 M
= isl_mat_sub_alloc(bset
->ctx
, cone
->eq
, 0, cone
->n_eq
, 1, total
);
686 M
= isl_mat_left_hermite(M
, 0, &U
, &Q
);
691 U
= isl_mat_lin_to_aff(U
);
692 bset
= isl_basic_set_preimage(bset
, isl_mat_copy(U
));
694 bset
= drop_constraints_involving(bset
, total
- cone_dim
, cone_dim
);
695 bset
= isl_basic_set_drop_dims(bset
, total
- cone_dim
, cone_dim
);
697 Q
= isl_mat_lin_to_aff(Q
);
698 Q
= isl_mat_drop_rows(Q
, 1 + total
- cone_dim
, cone_dim
);
700 if (bset
&& bset
->sample
&& bset
->sample
->size
== 1 + total
)
701 bset
->sample
= isl_mat_vec_product(isl_mat_copy(Q
), bset
->sample
);
703 hull
= uset_affine_hull_bounded(bset
);
708 struct isl_vec
*sample
= isl_vec_copy(hull
->sample
);
709 U
= isl_mat_drop_cols(U
, 1 + total
- cone_dim
, cone_dim
);
710 if (sample
&& sample
->size
> 0)
711 sample
= isl_mat_vec_product(U
, sample
);
714 hull
= isl_basic_set_preimage(hull
, Q
);
715 isl_vec_free(hull
->sample
);
716 hull
->sample
= sample
;
719 isl_basic_set_free(cone
);
723 isl_basic_set_free(bset
);
724 isl_basic_set_free(cone
);
728 /* Look for all equalities satisfied by the integer points in bset,
729 * which is assumed not to have any explicit equalities.
731 * The equalities are obtained by successively looking for
732 * a point that is affinely independent of the points found so far.
733 * In particular, for each equality satisfied by the points so far,
734 * we check if there is any point on a hyperplane parallel to the
735 * corresponding hyperplane shifted by at least one (in either direction).
737 * Before looking for any outside points, we first compute the recession
738 * cone. The directions of this recession cone will always be part
739 * of the affine hull, so there is no need for looking for any points
740 * in these directions.
741 * In particular, if the recession cone is full-dimensional, then
742 * the affine hull is simply the whole universe.
744 static struct isl_basic_set
*uset_affine_hull(struct isl_basic_set
*bset
)
746 struct isl_basic_set
*cone
;
748 if (isl_basic_set_fast_is_empty(bset
))
751 cone
= isl_basic_set_recession_cone(isl_basic_set_copy(bset
));
754 if (cone
->n_eq
== 0) {
755 struct isl_basic_set
*hull
;
756 isl_basic_set_free(cone
);
757 hull
= isl_basic_set_universe_like(bset
);
758 isl_basic_set_free(bset
);
762 if (cone
->n_eq
< isl_basic_set_total_dim(cone
))
763 return affine_hull_with_cone(bset
, cone
);
765 isl_basic_set_free(cone
);
766 return uset_affine_hull_bounded(bset
);
768 isl_basic_set_free(bset
);
772 /* Look for all equalities satisfied by the integer points in bmap
773 * that are independent of the equalities already explicitly available
776 * We first remove all equalities already explicitly available,
777 * then look for additional equalities in the reduced space
778 * and then transform the result to the original space.
779 * The original equalities are _not_ added to this set. This is
780 * the responsibility of the calling function.
781 * The resulting basic set has all meaning about the dimensions removed.
782 * In particular, dimensions that correspond to existential variables
783 * in bmap and that are found to be fixed are not removed.
785 static struct isl_basic_set
*equalities_in_underlying_set(
786 struct isl_basic_map
*bmap
)
788 struct isl_mat
*T1
= NULL
;
789 struct isl_mat
*T2
= NULL
;
790 struct isl_basic_set
*bset
= NULL
;
791 struct isl_basic_set
*hull
= NULL
;
793 bset
= isl_basic_map_underlying_set(bmap
);
797 bset
= isl_basic_set_remove_equalities(bset
, &T1
, &T2
);
801 hull
= uset_affine_hull(bset
);
808 struct isl_vec
*sample
= isl_vec_copy(hull
->sample
);
809 if (sample
&& sample
->size
> 0)
810 sample
= isl_mat_vec_product(T1
, sample
);
813 hull
= isl_basic_set_preimage(hull
, T2
);
814 isl_vec_free(hull
->sample
);
815 hull
->sample
= sample
;
821 isl_basic_set_free(bset
);
822 isl_basic_set_free(hull
);
826 /* Detect and make explicit all equalities satisfied by the (integer)
829 struct isl_basic_map
*isl_basic_map_detect_equalities(
830 struct isl_basic_map
*bmap
)
833 struct isl_basic_set
*hull
= NULL
;
837 if (bmap
->n_ineq
== 0)
839 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
841 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_ALL_EQUALITIES
))
843 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
844 return isl_basic_map_implicit_equalities(bmap
);
846 hull
= equalities_in_underlying_set(isl_basic_map_copy(bmap
));
849 if (ISL_F_ISSET(hull
, ISL_BASIC_SET_EMPTY
)) {
850 isl_basic_set_free(hull
);
851 return isl_basic_map_set_to_empty(bmap
);
853 bmap
= isl_basic_map_extend_dim(bmap
, isl_dim_copy(bmap
->dim
), 0,
855 for (i
= 0; i
< hull
->n_eq
; ++i
) {
856 j
= isl_basic_map_alloc_equality(bmap
);
859 isl_seq_cpy(bmap
->eq
[j
], hull
->eq
[i
],
860 1 + isl_basic_set_total_dim(hull
));
862 isl_vec_free(bmap
->sample
);
863 bmap
->sample
= isl_vec_copy(hull
->sample
);
864 isl_basic_set_free(hull
);
865 ISL_F_SET(bmap
, ISL_BASIC_MAP_NO_IMPLICIT
| ISL_BASIC_MAP_ALL_EQUALITIES
);
866 bmap
= isl_basic_map_simplify(bmap
);
867 return isl_basic_map_finalize(bmap
);
869 isl_basic_set_free(hull
);
870 isl_basic_map_free(bmap
);
874 __isl_give isl_basic_set
*isl_basic_set_detect_equalities(
875 __isl_take isl_basic_set
*bset
)
877 return (isl_basic_set
*)
878 isl_basic_map_detect_equalities((isl_basic_map
*)bset
);
881 struct isl_map
*isl_map_detect_equalities(struct isl_map
*map
)
883 struct isl_basic_map
*bmap
;
889 for (i
= 0; i
< map
->n
; ++i
) {
890 bmap
= isl_basic_map_copy(map
->p
[i
]);
891 bmap
= isl_basic_map_detect_equalities(bmap
);
894 isl_basic_map_free(map
->p
[i
]);
904 __isl_give isl_set
*isl_set_detect_equalities(__isl_take isl_set
*set
)
906 return (isl_set
*)isl_map_detect_equalities((isl_map
*)set
);
909 /* After computing the rational affine hull (by detecting the implicit
910 * equalities), we compute the additional equalities satisfied by
911 * the integer points (if any) and add the original equalities back in.
913 struct isl_basic_map
*isl_basic_map_affine_hull(struct isl_basic_map
*bmap
)
915 bmap
= isl_basic_map_detect_equalities(bmap
);
916 bmap
= isl_basic_map_cow(bmap
);
917 isl_basic_map_free_inequality(bmap
, bmap
->n_ineq
);
921 struct isl_basic_set
*isl_basic_set_affine_hull(struct isl_basic_set
*bset
)
923 return (struct isl_basic_set
*)
924 isl_basic_map_affine_hull((struct isl_basic_map
*)bset
);
927 struct isl_basic_map
*isl_map_affine_hull(struct isl_map
*map
)
930 struct isl_basic_map
*model
= NULL
;
931 struct isl_basic_map
*hull
= NULL
;
934 map
= isl_map_detect_equalities(map
);
935 map
= isl_map_align_divs(map
);
941 hull
= isl_basic_map_empty_like_map(map
);
946 model
= isl_basic_map_copy(map
->p
[0]);
947 set
= isl_map_underlying_set(map
);
948 set
= isl_set_cow(set
);
952 for (i
= 0; i
< set
->n
; ++i
) {
953 set
->p
[i
] = isl_basic_set_cow(set
->p
[i
]);
954 set
->p
[i
] = isl_basic_set_affine_hull(set
->p
[i
]);
955 set
->p
[i
] = isl_basic_set_gauss(set
->p
[i
], NULL
);
959 set
= isl_set_remove_empty_parts(set
);
961 hull
= isl_basic_map_empty_like(model
);
962 isl_basic_map_free(model
);
964 struct isl_basic_set
*bset
;
966 set
->p
[0] = affine_hull(set
->p
[0], set
->p
[--set
->n
]);
970 bset
= isl_basic_set_copy(set
->p
[0]);
971 hull
= isl_basic_map_overlying_set(bset
, model
);
974 hull
= isl_basic_map_simplify(hull
);
975 return isl_basic_map_finalize(hull
);
977 isl_basic_map_free(model
);
982 struct isl_basic_set
*isl_set_affine_hull(struct isl_set
*set
)
984 return (struct isl_basic_set
*)
985 isl_map_affine_hull((struct isl_map
*)set
);