2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
12 #include "isl_map_private.h"
16 /* Given a map that represents a path with the length of the path
17 * encoded as the difference between the last output coordindate
18 * and the last input coordinate, set this length to either
19 * exactly "length" (if "exactly" is set) or at least "length"
20 * (if "exactly" is not set).
22 static __isl_give isl_map
*set_path_length(__isl_take isl_map
*map
,
23 int exactly
, int length
)
26 struct isl_basic_map
*bmap
;
35 dim
= isl_map_get_dim(map
);
36 d
= isl_dim_size(dim
, isl_dim_in
);
37 nparam
= isl_dim_size(dim
, isl_dim_param
);
38 bmap
= isl_basic_map_alloc_dim(dim
, 0, 1, 1);
40 k
= isl_basic_map_alloc_equality(bmap
);
43 k
= isl_basic_map_alloc_inequality(bmap
);
48 isl_seq_clr(c
, 1 + isl_basic_map_total_dim(bmap
));
49 isl_int_set_si(c
[0], -length
);
50 isl_int_set_si(c
[1 + nparam
+ d
- 1], -1);
51 isl_int_set_si(c
[1 + nparam
+ d
+ d
- 1], 1);
53 bmap
= isl_basic_map_finalize(bmap
);
54 map
= isl_map_intersect(map
, isl_map_from_basic_map(bmap
));
58 isl_basic_map_free(bmap
);
63 /* Check whether the overapproximation of the power of "map" is exactly
64 * the power of "map". Let R be "map" and A_k the overapproximation.
65 * The approximation is exact if
68 * A_k = A_{k-1} \circ R k >= 2
70 * Since A_k is known to be an overapproximation, we only need to check
73 * A_k \subset A_{k-1} \circ R k >= 2
75 * In practice, "app" has an extra input and output coordinate
76 * to encode the length of the path. So, we first need to add
77 * this coordinate to "map" and set the length of the path to
80 static int check_power_exactness(__isl_take isl_map
*map
,
81 __isl_take isl_map
*app
)
87 map
= isl_map_add(map
, isl_dim_in
, 1);
88 map
= isl_map_add(map
, isl_dim_out
, 1);
89 map
= set_path_length(map
, 1, 1);
91 app_1
= set_path_length(isl_map_copy(app
), 1, 1);
93 exact
= isl_map_is_subset(app_1
, map
);
96 if (!exact
|| exact
< 0) {
102 app_1
= set_path_length(isl_map_copy(app
), 0, 1);
103 app_2
= set_path_length(app
, 0, 2);
104 app_1
= isl_map_apply_range(map
, app_1
);
106 exact
= isl_map_is_subset(app_2
, app_1
);
114 /* Check whether the overapproximation of the power of "map" is exactly
115 * the power of "map", possibly after projecting out the power (if "project"
118 * If "project" is set and if "steps" can only result in acyclic paths,
121 * A = R \cup (A \circ R)
123 * where A is the overapproximation with the power projected out, i.e.,
124 * an overapproximation of the transitive closure.
125 * More specifically, since A is known to be an overapproximation, we check
127 * A \subset R \cup (A \circ R)
129 * Otherwise, we check if the power is exact.
131 * Note that "app" has an extra input and output coordinate to encode
132 * the length of the part. If we are only interested in the transitive
133 * closure, then we can simply project out these coordinates first.
135 static int check_exactness(__isl_take isl_map
*map
, __isl_take isl_map
*app
,
143 return check_power_exactness(map
, app
);
145 d
= isl_map_dim(map
, isl_dim_in
);
146 app
= set_path_length(app
, 0, 1);
147 app
= isl_map_project_out(app
, isl_dim_in
, d
, 1);
148 app
= isl_map_project_out(app
, isl_dim_out
, d
, 1);
150 test
= isl_map_apply_range(isl_map_copy(map
), isl_map_copy(app
));
151 test
= isl_map_union(test
, isl_map_copy(map
));
153 exact
= isl_map_is_subset(app
, test
);
164 * The transitive closure implementation is based on the paper
165 * "Computing the Transitive Closure of a Union of Affine Integer
166 * Tuple Relations" by Anna Beletska, Denis Barthou, Wlodzimierz Bielecki and
170 /* Given a set of n offsets v_i (the rows of "steps"), construct a relation
171 * of the given dimension specification (Z^{n+1} -> Z^{n+1})
172 * that maps an element x to any element that can be reached
173 * by taking a non-negative number of steps along any of
174 * the extended offsets v'_i = [v_i 1].
177 * { [x] -> [y] : exists k_i >= 0, y = x + \sum_i k_i v'_i }
179 * For any element in this relation, the number of steps taken
180 * is equal to the difference in the final coordinates.
182 static __isl_give isl_map
*path_along_steps(__isl_take isl_dim
*dim
,
183 __isl_keep isl_mat
*steps
)
186 struct isl_basic_map
*path
= NULL
;
194 d
= isl_dim_size(dim
, isl_dim_in
);
196 nparam
= isl_dim_size(dim
, isl_dim_param
);
198 path
= isl_basic_map_alloc_dim(isl_dim_copy(dim
), n
, d
, n
);
200 for (i
= 0; i
< n
; ++i
) {
201 k
= isl_basic_map_alloc_div(path
);
204 isl_assert(steps
->ctx
, i
== k
, goto error
);
205 isl_int_set_si(path
->div
[k
][0], 0);
208 for (i
= 0; i
< d
; ++i
) {
209 k
= isl_basic_map_alloc_equality(path
);
212 isl_seq_clr(path
->eq
[k
], 1 + isl_basic_map_total_dim(path
));
213 isl_int_set_si(path
->eq
[k
][1 + nparam
+ i
], 1);
214 isl_int_set_si(path
->eq
[k
][1 + nparam
+ d
+ i
], -1);
216 for (j
= 0; j
< n
; ++j
)
217 isl_int_set_si(path
->eq
[k
][1 + nparam
+ 2 * d
+ j
], 1);
219 for (j
= 0; j
< n
; ++j
)
220 isl_int_set(path
->eq
[k
][1 + nparam
+ 2 * d
+ j
],
224 for (i
= 0; i
< n
; ++i
) {
225 k
= isl_basic_map_alloc_inequality(path
);
228 isl_seq_clr(path
->ineq
[k
], 1 + isl_basic_map_total_dim(path
));
229 isl_int_set_si(path
->ineq
[k
][1 + nparam
+ 2 * d
+ i
], 1);
234 path
= isl_basic_map_simplify(path
);
235 path
= isl_basic_map_finalize(path
);
236 return isl_map_from_basic_map(path
);
239 isl_basic_map_free(path
);
248 /* Check whether the parametric constant term of constraint c is never
249 * positive in "bset".
251 static int parametric_constant_never_positive(__isl_keep isl_basic_set
*bset
,
252 isl_int
*c
, int *div_purity
)
261 n_div
= isl_basic_set_dim(bset
, isl_dim_div
);
262 d
= isl_basic_set_dim(bset
, isl_dim_set
);
263 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
265 bset
= isl_basic_set_copy(bset
);
266 bset
= isl_basic_set_cow(bset
);
267 bset
= isl_basic_set_extend_constraints(bset
, 0, 1);
268 k
= isl_basic_set_alloc_inequality(bset
);
271 isl_seq_clr(bset
->ineq
[k
], 1 + isl_basic_set_total_dim(bset
));
272 isl_seq_cpy(bset
->ineq
[k
], c
, 1 + nparam
);
273 for (i
= 0; i
< n_div
; ++i
) {
274 if (div_purity
[i
] != PURE_PARAM
)
276 isl_int_set(bset
->ineq
[k
][1 + nparam
+ d
+ i
],
277 c
[1 + nparam
+ d
+ i
]);
279 isl_int_sub_ui(bset
->ineq
[k
][0], bset
->ineq
[k
][0], 1);
280 empty
= isl_basic_set_is_empty(bset
);
281 isl_basic_set_free(bset
);
285 isl_basic_set_free(bset
);
289 /* Return PURE_PARAM if only the coefficients of the parameters are non-zero.
290 * Return PURE_VAR if only the coefficients of the set variables are non-zero.
291 * Return MIXED if only the coefficients of the parameters and the set
292 * variables are non-zero and if moreover the parametric constant
293 * can never attain positive values.
294 * Return IMPURE otherwise.
296 static int purity(__isl_keep isl_basic_set
*bset
, isl_int
*c
, int *div_purity
,
306 n_div
= isl_basic_set_dim(bset
, isl_dim_div
);
307 d
= isl_basic_set_dim(bset
, isl_dim_set
);
308 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
310 for (i
= 0; i
< n_div
; ++i
) {
311 if (isl_int_is_zero(c
[1 + nparam
+ d
+ i
]))
313 switch (div_purity
[i
]) {
314 case PURE_PARAM
: p
= 1; break;
315 case PURE_VAR
: v
= 1; break;
316 default: return IMPURE
;
319 if (!p
&& isl_seq_first_non_zero(c
+ 1, nparam
) == -1)
321 if (!v
&& isl_seq_first_non_zero(c
+ 1 + nparam
, d
) == -1)
324 empty
= parametric_constant_never_positive(bset
, c
, div_purity
);
325 if (eq
&& empty
>= 0 && !empty
) {
326 isl_seq_neg(c
, c
, 1 + nparam
+ d
+ n_div
);
327 empty
= parametric_constant_never_positive(bset
, c
, div_purity
);
330 return empty
< 0 ? -1 : empty
? MIXED
: IMPURE
;
333 /* Return an array of integers indicating the type of each div in bset.
334 * If the div is (recursively) defined in terms of only the parameters,
335 * then the type is PURE_PARAM.
336 * If the div is (recursively) defined in terms of only the set variables,
337 * then the type is PURE_VAR.
338 * Otherwise, the type is IMPURE.
340 static __isl_give
int *get_div_purity(__isl_keep isl_basic_set
*bset
)
351 n_div
= isl_basic_set_dim(bset
, isl_dim_div
);
352 d
= isl_basic_set_dim(bset
, isl_dim_set
);
353 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
355 div_purity
= isl_alloc_array(bset
->ctx
, int, n_div
);
359 for (i
= 0; i
< bset
->n_div
; ++i
) {
361 if (isl_int_is_zero(bset
->div
[i
][0])) {
362 div_purity
[i
] = IMPURE
;
365 if (isl_seq_first_non_zero(bset
->div
[i
] + 2, nparam
) != -1)
367 if (isl_seq_first_non_zero(bset
->div
[i
] + 2 + nparam
, d
) != -1)
369 for (j
= 0; j
< i
; ++j
) {
370 if (isl_int_is_zero(bset
->div
[i
][2 + nparam
+ d
+ j
]))
372 switch (div_purity
[j
]) {
373 case PURE_PARAM
: p
= 1; break;
374 case PURE_VAR
: v
= 1; break;
375 default: p
= v
= 1; break;
378 div_purity
[i
] = v
? p
? IMPURE
: PURE_VAR
: PURE_PARAM
;
384 /* Given a path with the as yet unconstrained length at position "pos",
385 * check if setting the length to zero results in only the identity
388 int empty_path_is_identity(__isl_keep isl_basic_map
*path
, unsigned pos
)
390 isl_basic_map
*test
= NULL
;
391 isl_basic_map
*id
= NULL
;
395 test
= isl_basic_map_copy(path
);
396 test
= isl_basic_map_extend_constraints(test
, 1, 0);
397 k
= isl_basic_map_alloc_equality(test
);
400 isl_seq_clr(test
->eq
[k
], 1 + isl_basic_map_total_dim(test
));
401 isl_int_set_si(test
->eq
[k
][pos
], 1);
402 id
= isl_basic_map_identity(isl_dim_domain(isl_basic_map_get_dim(path
)));
403 is_id
= isl_basic_map_is_equal(test
, id
);
404 isl_basic_map_free(test
);
405 isl_basic_map_free(id
);
408 isl_basic_map_free(test
);
412 __isl_give isl_basic_map
*add_delta_constraints(__isl_take isl_basic_map
*path
,
413 __isl_keep isl_basic_set
*delta
, unsigned off
, unsigned nparam
,
414 unsigned d
, int *div_purity
, int eq
)
417 int n
= eq
? delta
->n_eq
: delta
->n_ineq
;
418 isl_int
**delta_c
= eq
? delta
->eq
: delta
->ineq
;
421 n_div
= isl_basic_set_dim(delta
, isl_dim_div
);
423 for (i
= 0; i
< n
; ++i
) {
425 int p
= purity(delta
, delta_c
[i
], div_purity
, eq
);
430 if (eq
&& p
!= MIXED
) {
431 k
= isl_basic_map_alloc_equality(path
);
432 path_c
= path
->eq
[k
];
434 k
= isl_basic_map_alloc_inequality(path
);
435 path_c
= path
->ineq
[k
];
439 isl_seq_clr(path_c
, 1 + isl_basic_map_total_dim(path
));
441 isl_seq_cpy(path_c
+ off
,
442 delta_c
[i
] + 1 + nparam
, d
);
443 isl_int_set(path_c
[off
+ d
], delta_c
[i
][0]);
444 } else if (p
== PURE_PARAM
) {
445 isl_seq_cpy(path_c
, delta_c
[i
], 1 + nparam
);
447 isl_seq_cpy(path_c
+ off
,
448 delta_c
[i
] + 1 + nparam
, d
);
449 isl_seq_cpy(path_c
, delta_c
[i
], 1 + nparam
);
451 isl_seq_cpy(path_c
+ off
- n_div
,
452 delta_c
[i
] + 1 + nparam
+ d
, n_div
);
457 isl_basic_map_free(path
);
461 /* Given a set of offsets "delta", construct a relation of the
462 * given dimension specification (Z^{n+1} -> Z^{n+1}) that
463 * is an overapproximation of the relations that
464 * maps an element x to any element that can be reached
465 * by taking a non-negative number of steps along any of
466 * the elements in "delta".
467 * That is, construct an approximation of
469 * { [x] -> [y] : exists f \in \delta, k \in Z :
470 * y = x + k [f, 1] and k >= 0 }
472 * For any element in this relation, the number of steps taken
473 * is equal to the difference in the final coordinates.
475 * In particular, let delta be defined as
477 * \delta = [p] -> { [x] : A x + a >= and B p + b >= 0 and
478 * C x + C'p + c >= 0 and
479 * D x + D'p + d >= 0 }
481 * where the constraints C x + C'p + c >= 0 are such that the parametric
482 * constant term of each constraint j, "C_j x + C'_j p + c_j",
483 * can never attain positive values, then the relation is constructed as
485 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
486 * A f + k a >= 0 and B p + b >= 0 and
487 * C f + C'p + c >= 0 and k >= 1 }
488 * union { [x] -> [x] }
490 * If the zero-length paths happen to correspond exactly to the identity
491 * mapping, then we return
493 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
494 * A f + k a >= 0 and B p + b >= 0 and
495 * C f + C'p + c >= 0 and k >= 0 }
499 * Existentially quantified variables in \delta are handled by
500 * classifying them as independent of the parameters, purely
501 * parameter dependent and others. Constraints containing
502 * any of the other existentially quantified variables are removed.
503 * This is safe, but leads to an additional overapproximation.
505 static __isl_give isl_map
*path_along_delta(__isl_take isl_dim
*dim
,
506 __isl_take isl_basic_set
*delta
)
508 isl_basic_map
*path
= NULL
;
515 int *div_purity
= NULL
;
519 n_div
= isl_basic_set_dim(delta
, isl_dim_div
);
520 d
= isl_basic_set_dim(delta
, isl_dim_set
);
521 nparam
= isl_basic_set_dim(delta
, isl_dim_param
);
522 path
= isl_basic_map_alloc_dim(isl_dim_copy(dim
), n_div
+ d
+ 1,
523 d
+ 1 + delta
->n_eq
, delta
->n_eq
+ delta
->n_ineq
+ 1);
524 off
= 1 + nparam
+ 2 * (d
+ 1) + n_div
;
526 for (i
= 0; i
< n_div
+ d
+ 1; ++i
) {
527 k
= isl_basic_map_alloc_div(path
);
530 isl_int_set_si(path
->div
[k
][0], 0);
533 for (i
= 0; i
< d
+ 1; ++i
) {
534 k
= isl_basic_map_alloc_equality(path
);
537 isl_seq_clr(path
->eq
[k
], 1 + isl_basic_map_total_dim(path
));
538 isl_int_set_si(path
->eq
[k
][1 + nparam
+ i
], 1);
539 isl_int_set_si(path
->eq
[k
][1 + nparam
+ d
+ 1 + i
], -1);
540 isl_int_set_si(path
->eq
[k
][off
+ i
], 1);
543 div_purity
= get_div_purity(delta
);
547 path
= add_delta_constraints(path
, delta
, off
, nparam
, d
, div_purity
, 1);
548 path
= add_delta_constraints(path
, delta
, off
, nparam
, d
, div_purity
, 0);
550 is_id
= empty_path_is_identity(path
, off
+ d
);
554 k
= isl_basic_map_alloc_inequality(path
);
557 isl_seq_clr(path
->ineq
[k
], 1 + isl_basic_map_total_dim(path
));
559 isl_int_set_si(path
->ineq
[k
][0], -1);
560 isl_int_set_si(path
->ineq
[k
][off
+ d
], 1);
563 isl_basic_set_free(delta
);
564 path
= isl_basic_map_finalize(path
);
567 return isl_map_from_basic_map(path
);
569 return isl_basic_map_union(path
,
570 isl_basic_map_identity(isl_dim_domain(dim
)));
574 isl_basic_set_free(delta
);
575 isl_basic_map_free(path
);
579 /* Given a dimenion specification Z^{n+1} -> Z^{n+1} and a parameter "param",
580 * construct a map that equates the parameter to the difference
581 * in the final coordinates and imposes that this difference is positive.
584 * { [x,x_s] -> [y,y_s] : k = y_s - x_s > 0 }
586 static __isl_give isl_map
*equate_parameter_to_length(__isl_take isl_dim
*dim
,
589 struct isl_basic_map
*bmap
;
594 d
= isl_dim_size(dim
, isl_dim_in
);
595 nparam
= isl_dim_size(dim
, isl_dim_param
);
596 bmap
= isl_basic_map_alloc_dim(dim
, 0, 1, 1);
597 k
= isl_basic_map_alloc_equality(bmap
);
600 isl_seq_clr(bmap
->eq
[k
], 1 + isl_basic_map_total_dim(bmap
));
601 isl_int_set_si(bmap
->eq
[k
][1 + param
], -1);
602 isl_int_set_si(bmap
->eq
[k
][1 + nparam
+ d
- 1], -1);
603 isl_int_set_si(bmap
->eq
[k
][1 + nparam
+ d
+ d
- 1], 1);
605 k
= isl_basic_map_alloc_inequality(bmap
);
608 isl_seq_clr(bmap
->ineq
[k
], 1 + isl_basic_map_total_dim(bmap
));
609 isl_int_set_si(bmap
->ineq
[k
][1 + param
], 1);
610 isl_int_set_si(bmap
->ineq
[k
][0], -1);
612 bmap
= isl_basic_map_finalize(bmap
);
613 return isl_map_from_basic_map(bmap
);
615 isl_basic_map_free(bmap
);
619 /* Check whether "path" is acyclic, where the last coordinates of domain
620 * and range of path encode the number of steps taken.
621 * That is, check whether
623 * { d | d = y - x and (x,y) in path }
625 * does not contain any element with positive last coordinate (positive length)
626 * and zero remaining coordinates (cycle).
628 static int is_acyclic(__isl_take isl_map
*path
)
633 struct isl_set
*delta
;
635 delta
= isl_map_deltas(path
);
636 dim
= isl_set_dim(delta
, isl_dim_set
);
637 for (i
= 0; i
< dim
; ++i
) {
639 delta
= isl_set_lower_bound_si(delta
, isl_dim_set
, i
, 1);
641 delta
= isl_set_fix_si(delta
, isl_dim_set
, i
, 0);
644 acyclic
= isl_set_is_empty(delta
);
650 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
651 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
652 * construct a map that is an overapproximation of the map
653 * that takes an element from the space D \times Z to another
654 * element from the same space, such that the first n coordinates of the
655 * difference between them is a sum of differences between images
656 * and pre-images in one of the R_i and such that the last coordinate
657 * is equal to the number of steps taken.
660 * \Delta_i = { y - x | (x, y) in R_i }
662 * then the constructed map is an overapproximation of
664 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
665 * d = (\sum_i k_i \delta_i, \sum_i k_i) }
667 * The elements of the singleton \Delta_i's are collected as the
668 * rows of the steps matrix. For all these \Delta_i's together,
669 * a single path is constructed.
670 * For each of the other \Delta_i's, we compute an overapproximation
671 * of the paths along elements of \Delta_i.
672 * Since each of these paths performs an addition, composition is
673 * symmetric and we can simply compose all resulting paths in any order.
675 static __isl_give isl_map
*construct_extended_path(__isl_take isl_dim
*dim
,
676 __isl_keep isl_map
*map
, int *project
)
678 struct isl_mat
*steps
= NULL
;
679 struct isl_map
*path
= NULL
;
683 d
= isl_map_dim(map
, isl_dim_in
);
685 path
= isl_map_identity(isl_dim_domain(isl_dim_copy(dim
)));
687 steps
= isl_mat_alloc(map
->ctx
, map
->n
, d
);
692 for (i
= 0; i
< map
->n
; ++i
) {
693 struct isl_basic_set
*delta
;
695 delta
= isl_basic_map_deltas(isl_basic_map_copy(map
->p
[i
]));
697 for (j
= 0; j
< d
; ++j
) {
700 fixed
= isl_basic_set_fast_dim_is_fixed(delta
, j
,
703 isl_basic_set_free(delta
);
712 path
= isl_map_apply_range(path
,
713 path_along_delta(isl_dim_copy(dim
), delta
));
714 path
= isl_map_coalesce(path
);
716 isl_basic_set_free(delta
);
723 path
= isl_map_apply_range(path
,
724 path_along_steps(isl_dim_copy(dim
), steps
));
727 if (project
&& *project
) {
728 *project
= is_acyclic(isl_map_copy(path
));
743 static int isl_set_overlaps(__isl_keep isl_set
*set1
, __isl_keep isl_set
*set2
)
748 i
= isl_set_intersect(isl_set_copy(set1
), isl_set_copy(set2
));
749 no_overlap
= isl_set_is_empty(i
);
752 return no_overlap
< 0 ? -1 : !no_overlap
;
755 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
756 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
757 * construct a map that is an overapproximation of the map
758 * that takes an element from the dom R \times Z to an
759 * element from ran R \times Z, such that the first n coordinates of the
760 * difference between them is a sum of differences between images
761 * and pre-images in one of the R_i and such that the last coordinate
762 * is equal to the number of steps taken.
765 * \Delta_i = { y - x | (x, y) in R_i }
767 * then the constructed map is an overapproximation of
769 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
770 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
771 * x in dom R and x + d in ran R and
774 static __isl_give isl_map
*construct_component(__isl_take isl_dim
*dim
,
775 __isl_keep isl_map
*map
, int *exact
, int project
)
777 struct isl_set
*domain
= NULL
;
778 struct isl_set
*range
= NULL
;
779 struct isl_map
*app
= NULL
;
780 struct isl_map
*path
= NULL
;
782 domain
= isl_map_domain(isl_map_copy(map
));
783 domain
= isl_set_coalesce(domain
);
784 range
= isl_map_range(isl_map_copy(map
));
785 range
= isl_set_coalesce(range
);
786 if (!isl_set_overlaps(domain
, range
)) {
787 isl_set_free(domain
);
791 map
= isl_map_copy(map
);
792 map
= isl_map_add(map
, isl_dim_in
, 1);
793 map
= isl_map_add(map
, isl_dim_out
, 1);
794 map
= set_path_length(map
, 1, 1);
797 app
= isl_map_from_domain_and_range(domain
, range
);
798 app
= isl_map_add(app
, isl_dim_in
, 1);
799 app
= isl_map_add(app
, isl_dim_out
, 1);
801 path
= construct_extended_path(isl_dim_copy(dim
), map
,
802 exact
&& *exact
? &project
: NULL
);
803 app
= isl_map_intersect(app
, path
);
805 if (exact
&& *exact
&&
806 (*exact
= check_exactness(isl_map_copy(map
), isl_map_copy(app
),
811 app
= set_path_length(app
, 0, 1);
819 /* Call construct_component and, if "project" is set, project out
820 * the final coordinates.
822 static __isl_give isl_map
*construct_projected_component(
823 __isl_take isl_dim
*dim
,
824 __isl_keep isl_map
*map
, int *exact
, int project
)
831 d
= isl_dim_size(dim
, isl_dim_in
);
833 app
= construct_component(dim
, map
, exact
, project
);
835 app
= isl_map_project_out(app
, isl_dim_in
, d
- 1, 1);
836 app
= isl_map_project_out(app
, isl_dim_out
, d
- 1, 1);
841 /* Compute an extended version, i.e., with path lengths, of
842 * an overapproximation of the transitive closure of "bmap"
843 * with path lengths greater than or equal to zero and with
844 * domain and range equal to "dom".
846 static __isl_give isl_map
*q_closure(__isl_take isl_dim
*dim
,
847 __isl_take isl_set
*dom
, __isl_keep isl_basic_map
*bmap
, int *exact
)
854 dom
= isl_set_add(dom
, isl_dim_set
, 1);
855 app
= isl_map_from_domain_and_range(dom
, isl_set_copy(dom
));
856 map
= isl_map_from_basic_map(isl_basic_map_copy(bmap
));
857 path
= construct_extended_path(dim
, map
, &project
);
858 app
= isl_map_intersect(app
, path
);
860 if ((*exact
= check_exactness(map
, isl_map_copy(app
), project
)) < 0)
869 /* Check whether qc has any elements of length at least one
870 * with domain and/or range outside of dom and ran.
872 static int has_spurious_elements(__isl_keep isl_map
*qc
,
873 __isl_keep isl_set
*dom
, __isl_keep isl_set
*ran
)
879 if (!qc
|| !dom
|| !ran
)
882 d
= isl_map_dim(qc
, isl_dim_in
);
884 qc
= isl_map_copy(qc
);
885 qc
= set_path_length(qc
, 0, 1);
886 qc
= isl_map_project_out(qc
, isl_dim_in
, d
- 1, 1);
887 qc
= isl_map_project_out(qc
, isl_dim_out
, d
- 1, 1);
889 s
= isl_map_domain(isl_map_copy(qc
));
890 subset
= isl_set_is_subset(s
, dom
);
899 s
= isl_map_range(qc
);
900 subset
= isl_set_is_subset(s
, ran
);
903 return subset
< 0 ? -1 : !subset
;
912 /* For each basic map in "map", except i, check whether it combines
913 * with the transitive closure that is reflexive on C combines
914 * to the left and to the right.
918 * dom map_j \subseteq C
920 * then right[j] is set to 1. Otherwise, if
922 * ran map_i \cap dom map_j = \emptyset
924 * then right[j] is set to 0. Otherwise, composing to the right
927 * Similar, for composing to the left, we have if
929 * ran map_j \subseteq C
931 * then left[j] is set to 1. Otherwise, if
933 * dom map_i \cap ran map_j = \emptyset
935 * then left[j] is set to 0. Otherwise, composing to the left
938 * The return value is or'd with LEFT if composing to the left
939 * is possible and with RIGHT if composing to the right is possible.
941 static int composability(__isl_keep isl_set
*C
, int i
,
942 isl_set
**dom
, isl_set
**ran
, int *left
, int *right
,
943 __isl_keep isl_map
*map
)
949 for (j
= 0; j
< map
->n
&& ok
; ++j
) {
950 int overlaps
, subset
;
956 dom
[j
] = isl_set_from_basic_set(
957 isl_basic_map_domain(
958 isl_basic_map_copy(map
->p
[j
])));
961 overlaps
= isl_set_overlaps(ran
[i
], dom
[j
]);
967 subset
= isl_set_is_subset(dom
[j
], C
);
979 ran
[j
] = isl_set_from_basic_set(
981 isl_basic_map_copy(map
->p
[j
])));
984 overlaps
= isl_set_overlaps(dom
[i
], ran
[j
]);
990 subset
= isl_set_is_subset(ran
[j
], C
);
1004 /* Return a map that is a union of the basic maps in "map", except i,
1005 * composed to left and right with qc based on the entries of "left"
1008 static __isl_give isl_map
*compose(__isl_keep isl_map
*map
, int i
,
1009 __isl_take isl_map
*qc
, int *left
, int *right
)
1014 comp
= isl_map_empty(isl_map_get_dim(map
));
1015 for (j
= 0; j
< map
->n
; ++j
) {
1021 map_j
= isl_map_from_basic_map(isl_basic_map_copy(map
->p
[j
]));
1022 if (left
&& left
[j
])
1023 map_j
= isl_map_apply_range(map_j
, isl_map_copy(qc
));
1024 if (right
&& right
[j
])
1025 map_j
= isl_map_apply_range(isl_map_copy(qc
), map_j
);
1026 comp
= isl_map_union(comp
, map_j
);
1029 comp
= isl_map_compute_divs(comp
);
1030 comp
= isl_map_coalesce(comp
);
1037 /* Compute the transitive closure of "map" incrementally by
1044 * map_i^+ \cup ((id \cup map_i^) \circ qc^+)
1048 * map_i^+ \cup (qc^+ \circ (id \cup map_i^))
1050 * depending on whether left or right are NULL.
1052 static __isl_give isl_map
*compute_incremental(
1053 __isl_take isl_dim
*dim
, __isl_keep isl_map
*map
,
1054 int i
, __isl_take isl_map
*qc
, int *left
, int *right
, int *exact
)
1058 isl_map
*rtc
= NULL
;
1062 isl_assert(map
->ctx
, left
|| right
, goto error
);
1064 map_i
= isl_map_from_basic_map(isl_basic_map_copy(map
->p
[i
]));
1065 tc
= construct_projected_component(isl_dim_copy(dim
), map_i
,
1067 isl_map_free(map_i
);
1070 qc
= isl_map_transitive_closure(qc
, exact
);
1076 return isl_map_universe(isl_map_get_dim(map
));
1079 if (!left
|| !right
)
1080 rtc
= isl_map_union(isl_map_copy(tc
),
1081 isl_map_identity(isl_dim_domain(isl_map_get_dim(tc
))));
1083 qc
= isl_map_apply_range(rtc
, qc
);
1085 qc
= isl_map_apply_range(qc
, rtc
);
1086 qc
= isl_map_union(tc
, qc
);
1097 /* Given a map "map", try to find a basic map such that
1098 * map^+ can be computed as
1100 * map^+ = map_i^+ \cup
1101 * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
1103 * with C the simple hull of the domain and range of the input map.
1104 * map_i^ \cup Id_C is computed by allowing the path lengths to be zero
1105 * and by intersecting domain and range with C.
1106 * Of course, we need to check that this is actually equal to map_i^ \cup Id_C.
1107 * Also, we only use the incremental computation if all the transitive
1108 * closures are exact and if the number of basic maps in the union,
1109 * after computing the integer divisions, is smaller than the number
1110 * of basic maps in the input map.
1112 static int incemental_on_entire_domain(__isl_keep isl_dim
*dim
,
1113 __isl_keep isl_map
*map
,
1114 isl_set
**dom
, isl_set
**ran
, int *left
, int *right
,
1115 __isl_give isl_map
**res
)
1123 C
= isl_set_union(isl_map_domain(isl_map_copy(map
)),
1124 isl_map_range(isl_map_copy(map
)));
1125 C
= isl_set_from_basic_set(isl_set_simple_hull(C
));
1133 d
= isl_map_dim(map
, isl_dim_in
);
1135 for (i
= 0; i
< map
->n
; ++i
) {
1137 int exact_i
, spurious
;
1139 dom
[i
] = isl_set_from_basic_set(isl_basic_map_domain(
1140 isl_basic_map_copy(map
->p
[i
])));
1141 ran
[i
] = isl_set_from_basic_set(isl_basic_map_range(
1142 isl_basic_map_copy(map
->p
[i
])));
1143 qc
= q_closure(isl_dim_copy(dim
), isl_set_copy(C
),
1144 map
->p
[i
], &exact_i
);
1151 spurious
= has_spurious_elements(qc
, dom
[i
], ran
[i
]);
1158 qc
= isl_map_project_out(qc
, isl_dim_in
, d
, 1);
1159 qc
= isl_map_project_out(qc
, isl_dim_out
, d
, 1);
1160 qc
= isl_map_compute_divs(qc
);
1161 for (j
= 0; j
< map
->n
; ++j
)
1162 left
[j
] = right
[j
] = 1;
1163 qc
= compose(map
, i
, qc
, left
, right
);
1166 if (qc
->n
>= map
->n
) {
1170 *res
= compute_incremental(isl_dim_copy(dim
), map
, i
, qc
,
1171 left
, right
, &exact_i
);
1182 return *res
!= NULL
;
1188 /* Try and compute the transitive closure of "map" as
1190 * map^+ = map_i^+ \cup
1191 * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
1193 * with C either the simple hull of the domain and range of the entire
1194 * map or the simple hull of domain and range of map_i.
1196 static __isl_give isl_map
*incremental_closure(__isl_take isl_dim
*dim
,
1197 __isl_keep isl_map
*map
, int *exact
, int project
)
1200 isl_set
**dom
= NULL
;
1201 isl_set
**ran
= NULL
;
1206 isl_map
*res
= NULL
;
1209 return construct_projected_component(dim
, map
, exact
, project
);
1214 return construct_projected_component(dim
, map
, exact
, project
);
1216 d
= isl_map_dim(map
, isl_dim_in
);
1218 dom
= isl_calloc_array(map
->ctx
, isl_set
*, map
->n
);
1219 ran
= isl_calloc_array(map
->ctx
, isl_set
*, map
->n
);
1220 left
= isl_calloc_array(map
->ctx
, int, map
->n
);
1221 right
= isl_calloc_array(map
->ctx
, int, map
->n
);
1222 if (!ran
|| !dom
|| !left
|| !right
)
1225 if (incemental_on_entire_domain(dim
, map
, dom
, ran
, left
, right
, &res
) < 0)
1228 for (i
= 0; !res
&& i
< map
->n
; ++i
) {
1230 int exact_i
, spurious
, comp
;
1232 dom
[i
] = isl_set_from_basic_set(
1233 isl_basic_map_domain(
1234 isl_basic_map_copy(map
->p
[i
])));
1238 ran
[i
] = isl_set_from_basic_set(
1239 isl_basic_map_range(
1240 isl_basic_map_copy(map
->p
[i
])));
1243 C
= isl_set_union(isl_set_copy(dom
[i
]),
1244 isl_set_copy(ran
[i
]));
1245 C
= isl_set_from_basic_set(isl_set_simple_hull(C
));
1252 comp
= composability(C
, i
, dom
, ran
, left
, right
, map
);
1253 if (!comp
|| comp
< 0) {
1259 qc
= q_closure(isl_dim_copy(dim
), C
, map
->p
[i
], &exact_i
);
1266 spurious
= has_spurious_elements(qc
, dom
[i
], ran
[i
]);
1273 qc
= isl_map_project_out(qc
, isl_dim_in
, d
, 1);
1274 qc
= isl_map_project_out(qc
, isl_dim_out
, d
, 1);
1275 qc
= isl_map_compute_divs(qc
);
1276 qc
= compose(map
, i
, qc
, (comp
& LEFT
) ? left
: NULL
,
1277 (comp
& RIGHT
) ? right
: NULL
);
1280 if (qc
->n
>= map
->n
) {
1284 res
= compute_incremental(isl_dim_copy(dim
), map
, i
, qc
,
1285 (comp
& LEFT
) ? left
: NULL
,
1286 (comp
& RIGHT
) ? right
: NULL
, &exact_i
);
1295 for (i
= 0; i
< map
->n
; ++i
) {
1296 isl_set_free(dom
[i
]);
1297 isl_set_free(ran
[i
]);
1309 return construct_projected_component(dim
, map
, exact
, project
);
1312 for (i
= 0; i
< map
->n
; ++i
)
1313 isl_set_free(dom
[i
]);
1316 for (i
= 0; i
< map
->n
; ++i
)
1317 isl_set_free(ran
[i
]);
1325 /* Given an array of sets "set", add "dom" at position "pos"
1326 * and search for elements at earlier positions that overlap with "dom".
1327 * If any can be found, then merge all of them, together with "dom", into
1328 * a single set and assign the union to the first in the array,
1329 * which becomes the new group leader for all groups involved in the merge.
1330 * During the search, we only consider group leaders, i.e., those with
1331 * group[i] = i, as the other sets have already been combined
1332 * with one of the group leaders.
1334 static int merge(isl_set
**set
, int *group
, __isl_take isl_set
*dom
, int pos
)
1339 set
[pos
] = isl_set_copy(dom
);
1341 for (i
= pos
- 1; i
>= 0; --i
) {
1347 o
= isl_set_overlaps(set
[i
], dom
);
1353 set
[i
] = isl_set_union(set
[i
], set
[group
[pos
]]);
1356 set
[group
[pos
]] = NULL
;
1357 group
[group
[pos
]] = i
;
1368 /* Given a partition of the domains and ranges of the basic maps in "map",
1369 * apply the Floyd-Warshall algorithm with the elements in the partition
1372 * In particular, there are "n" elements in the partition and "group" is
1373 * an array of length 2 * map->n with entries in [0,n-1].
1375 * We first construct a matrix of relations based on the partition information,
1376 * apply Floyd-Warshall on this matrix of relations and then take the
1377 * union of all entries in the matrix as the final result.
1379 * The algorithm iterates over all vertices. In each step, the whole
1380 * matrix is updated to include all paths that go to the current vertex,
1381 * possibly stay there a while (including passing through earlier vertices)
1382 * and then come back. At the start of each iteration, the diagonal
1383 * element corresponding to the current vertex is replaced by its
1384 * transitive closure to account for all indirect paths that stay
1385 * in the current vertex.
1387 static __isl_give isl_map
*floyd_warshall_with_groups(__isl_take isl_dim
*dim
,
1388 __isl_keep isl_map
*map
, int *exact
, int project
, int *group
, int n
)
1392 isl_map
***grid
= NULL
;
1400 return incremental_closure(dim
, map
, exact
, project
);
1403 grid
= isl_calloc_array(map
->ctx
, isl_map
**, n
);
1406 for (i
= 0; i
< n
; ++i
) {
1407 grid
[i
] = isl_calloc_array(map
->ctx
, isl_map
*, n
);
1410 for (j
= 0; j
< n
; ++j
)
1411 grid
[i
][j
] = isl_map_empty(isl_map_get_dim(map
));
1414 for (k
= 0; k
< map
->n
; ++k
) {
1416 j
= group
[2 * k
+ 1];
1417 grid
[i
][j
] = isl_map_union(grid
[i
][j
],
1418 isl_map_from_basic_map(
1419 isl_basic_map_copy(map
->p
[k
])));
1422 for (r
= 0; r
< n
; ++r
) {
1424 grid
[r
][r
] = isl_map_transitive_closure(grid
[r
][r
],
1425 (exact
&& *exact
) ? &r_exact
: NULL
);
1426 if (exact
&& *exact
&& !r_exact
)
1429 for (p
= 0; p
< n
; ++p
)
1430 for (q
= 0; q
< n
; ++q
) {
1432 if (p
== r
&& q
== r
)
1434 loop
= isl_map_apply_range(
1435 isl_map_copy(grid
[p
][r
]),
1436 isl_map_copy(grid
[r
][q
]));
1437 grid
[p
][q
] = isl_map_union(grid
[p
][q
], loop
);
1438 loop
= isl_map_apply_range(
1439 isl_map_copy(grid
[p
][r
]),
1440 isl_map_apply_range(
1441 isl_map_copy(grid
[r
][r
]),
1442 isl_map_copy(grid
[r
][q
])));
1443 grid
[p
][q
] = isl_map_union(grid
[p
][q
], loop
);
1444 grid
[p
][q
] = isl_map_coalesce(grid
[p
][q
]);
1448 app
= isl_map_empty(isl_map_get_dim(map
));
1450 for (i
= 0; i
< n
; ++i
) {
1451 for (j
= 0; j
< n
; ++j
)
1452 app
= isl_map_union(app
, grid
[i
][j
]);
1463 for (i
= 0; i
< n
; ++i
) {
1466 for (j
= 0; j
< n
; ++j
)
1467 isl_map_free(grid
[i
][j
]);
1476 /* Check if the domains and ranges of the basic maps in "map" can
1477 * be partitioned, and if so, apply Floyd-Warshall on the elements
1478 * of the partition. Note that we can only apply this algorithm
1479 * if we want to compute the transitive closure, i.e., when "project"
1480 * is set. If we want to compute the power, we need to keep track
1481 * of the lengths and the recursive calls inside the Floyd-Warshall
1482 * would result in non-linear lengths.
1484 * To find the partition, we simply consider all of the domains
1485 * and ranges in turn and combine those that overlap.
1486 * "set" contains the partition elements and "group" indicates
1487 * to which partition element a given domain or range belongs.
1488 * The domain of basic map i corresponds to element 2 * i in these arrays,
1489 * while the domain corresponds to element 2 * i + 1.
1490 * During the construction group[k] is either equal to k,
1491 * in which case set[k] contains the union of all the domains and
1492 * ranges in the corresponding group, or is equal to some l < k,
1493 * with l another domain or range in the same group.
1495 static __isl_give isl_map
*floyd_warshall(__isl_take isl_dim
*dim
,
1496 __isl_keep isl_map
*map
, int *exact
, int project
)
1499 isl_set
**set
= NULL
;
1505 if (!project
|| map
->n
<= 1)
1506 return incremental_closure(dim
, map
, exact
, project
);
1508 set
= isl_calloc_array(map
->ctx
, isl_set
*, 2 * map
->n
);
1509 group
= isl_alloc_array(map
->ctx
, int, 2 * map
->n
);
1514 for (i
= 0; i
< map
->n
; ++i
) {
1516 dom
= isl_set_from_basic_set(isl_basic_map_domain(
1517 isl_basic_map_copy(map
->p
[i
])));
1518 if (merge(set
, group
, dom
, 2 * i
) < 0)
1520 dom
= isl_set_from_basic_set(isl_basic_map_range(
1521 isl_basic_map_copy(map
->p
[i
])));
1522 if (merge(set
, group
, dom
, 2 * i
+ 1) < 0)
1527 for (i
= 0; i
< 2 * map
->n
; ++i
)
1531 group
[i
] = group
[group
[i
]];
1533 for (i
= 0; i
< 2 * map
->n
; ++i
)
1534 isl_set_free(set
[i
]);
1538 return floyd_warshall_with_groups(dim
, map
, exact
, project
, group
, n
);
1540 for (i
= 0; i
< 2 * map
->n
; ++i
)
1541 isl_set_free(set
[i
]);
1548 /* Structure for representing the nodes in the graph being traversed
1549 * using Tarjan's algorithm.
1550 * index represents the order in which nodes are visited.
1551 * min_index is the index of the root of a (sub)component.
1552 * on_stack indicates whether the node is currently on the stack.
1554 struct basic_map_sort_node
{
1559 /* Structure for representing the graph being traversed
1560 * using Tarjan's algorithm.
1561 * len is the number of nodes
1562 * node is an array of nodes
1563 * stack contains the nodes on the path from the root to the current node
1564 * sp is the stack pointer
1565 * index is the index of the last node visited
1566 * order contains the elements of the components separated by -1
1567 * op represents the current position in order
1569 struct basic_map_sort
{
1571 struct basic_map_sort_node
*node
;
1579 static void basic_map_sort_free(struct basic_map_sort
*s
)
1589 static struct basic_map_sort
*basic_map_sort_alloc(struct isl_ctx
*ctx
, int len
)
1591 struct basic_map_sort
*s
;
1594 s
= isl_calloc_type(ctx
, struct basic_map_sort
);
1598 s
->node
= isl_alloc_array(ctx
, struct basic_map_sort_node
, len
);
1601 for (i
= 0; i
< len
; ++i
)
1602 s
->node
[i
].index
= -1;
1603 s
->stack
= isl_alloc_array(ctx
, int, len
);
1606 s
->order
= isl_alloc_array(ctx
, int, 2 * len
);
1616 basic_map_sort_free(s
);
1620 /* Check whether in the computation of the transitive closure
1621 * "bmap1" (R_1) should follow (or be part of the same component as)
1624 * That is check whether
1632 * If so, then there is no reason for R_1 to immediately follow R_2
1635 static int basic_map_follows(__isl_keep isl_basic_map
*bmap1
,
1636 __isl_keep isl_basic_map
*bmap2
)
1638 struct isl_map
*map12
= NULL
;
1639 struct isl_map
*map21
= NULL
;
1642 map21
= isl_map_from_basic_map(
1643 isl_basic_map_apply_range(
1644 isl_basic_map_copy(bmap2
),
1645 isl_basic_map_copy(bmap1
)));
1646 subset
= isl_map_is_empty(map21
);
1650 isl_map_free(map21
);
1654 map12
= isl_map_from_basic_map(
1655 isl_basic_map_apply_range(
1656 isl_basic_map_copy(bmap1
),
1657 isl_basic_map_copy(bmap2
)));
1659 subset
= isl_map_is_subset(map21
, map12
);
1661 isl_map_free(map12
);
1662 isl_map_free(map21
);
1664 return subset
< 0 ? -1 : !subset
;
1666 isl_map_free(map21
);
1670 /* Perform Tarjan's algorithm for computing the strongly connected components
1671 * in the graph with the disjuncts of "map" as vertices and with an
1672 * edge between any pair of disjuncts such that the first has
1673 * to be applied after the second.
1675 static int power_components_tarjan(struct basic_map_sort
*s
,
1676 __isl_keep isl_map
*map
, int i
)
1680 s
->node
[i
].index
= s
->index
;
1681 s
->node
[i
].min_index
= s
->index
;
1682 s
->node
[i
].on_stack
= 1;
1684 s
->stack
[s
->sp
++] = i
;
1686 for (j
= s
->len
- 1; j
>= 0; --j
) {
1691 if (s
->node
[j
].index
>= 0 &&
1692 (!s
->node
[j
].on_stack
||
1693 s
->node
[j
].index
> s
->node
[i
].min_index
))
1696 f
= basic_map_follows(map
->p
[i
], map
->p
[j
]);
1702 if (s
->node
[j
].index
< 0) {
1703 power_components_tarjan(s
, map
, j
);
1704 if (s
->node
[j
].min_index
< s
->node
[i
].min_index
)
1705 s
->node
[i
].min_index
= s
->node
[j
].min_index
;
1706 } else if (s
->node
[j
].index
< s
->node
[i
].min_index
)
1707 s
->node
[i
].min_index
= s
->node
[j
].index
;
1710 if (s
->node
[i
].index
!= s
->node
[i
].min_index
)
1714 j
= s
->stack
[--s
->sp
];
1715 s
->node
[j
].on_stack
= 0;
1716 s
->order
[s
->op
++] = j
;
1718 s
->order
[s
->op
++] = -1;
1723 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
1724 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
1725 * construct a map that is an overapproximation of the map
1726 * that takes an element from the dom R \times Z to an
1727 * element from ran R \times Z, such that the first n coordinates of the
1728 * difference between them is a sum of differences between images
1729 * and pre-images in one of the R_i and such that the last coordinate
1730 * is equal to the number of steps taken.
1731 * If "project" is set, then these final coordinates are not included,
1732 * i.e., a relation of type Z^n -> Z^n is returned.
1735 * \Delta_i = { y - x | (x, y) in R_i }
1737 * then the constructed map is an overapproximation of
1739 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1740 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
1741 * x in dom R and x + d in ran R }
1745 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1746 * d = (\sum_i k_i \delta_i) and
1747 * x in dom R and x + d in ran R }
1749 * if "project" is set.
1751 * We first split the map into strongly connected components, perform
1752 * the above on each component and then join the results in the correct
1753 * order, at each join also taking in the union of both arguments
1754 * to allow for paths that do not go through one of the two arguments.
1756 static __isl_give isl_map
*construct_power_components(__isl_take isl_dim
*dim
,
1757 __isl_keep isl_map
*map
, int *exact
, int project
)
1760 struct isl_map
*path
= NULL
;
1761 struct basic_map_sort
*s
= NULL
;
1766 return floyd_warshall(dim
, map
, exact
, project
);
1768 s
= basic_map_sort_alloc(map
->ctx
, map
->n
);
1771 for (i
= map
->n
- 1; i
>= 0; --i
) {
1772 if (s
->node
[i
].index
>= 0)
1774 if (power_components_tarjan(s
, map
, i
) < 0)
1781 path
= isl_map_empty(isl_map_get_dim(map
));
1783 path
= isl_map_empty(isl_dim_copy(dim
));
1785 struct isl_map
*comp
;
1786 isl_map
*path_comp
, *path_comb
;
1787 comp
= isl_map_alloc_dim(isl_map_get_dim(map
), n
, 0);
1788 while (s
->order
[i
] != -1) {
1789 comp
= isl_map_add_basic_map(comp
,
1790 isl_basic_map_copy(map
->p
[s
->order
[i
]]));
1794 path_comp
= floyd_warshall(isl_dim_copy(dim
),
1795 comp
, exact
, project
);
1796 path_comb
= isl_map_apply_range(isl_map_copy(path
),
1797 isl_map_copy(path_comp
));
1798 path
= isl_map_union(path
, path_comp
);
1799 path
= isl_map_union(path
, path_comb
);
1804 basic_map_sort_free(s
);
1809 basic_map_sort_free(s
);
1814 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D,
1815 * construct a map that is an overapproximation of the map
1816 * that takes an element from the space D to another
1817 * element from the same space, such that the difference between
1818 * them is a strictly positive sum of differences between images
1819 * and pre-images in one of the R_i.
1820 * The number of differences in the sum is equated to parameter "param".
1823 * \Delta_i = { y - x | (x, y) in R_i }
1825 * then the constructed map is an overapproximation of
1827 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1828 * d = \sum_i k_i \delta_i and k = \sum_i k_i > 0 }
1831 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1832 * d = \sum_i k_i \delta_i and \sum_i k_i > 0 }
1834 * if "project" is set.
1836 * If "project" is not set, then
1837 * we first construct an extended mapping with an extra coordinate
1838 * that indicates the number of steps taken. In particular,
1839 * the difference in the last coordinate is equal to the number
1840 * of steps taken to move from a domain element to the corresponding
1842 * In the final step, this difference is equated to the parameter "param"
1843 * and made positive. The extra coordinates are subsequently projected out.
1845 static __isl_give isl_map
*construct_power(__isl_keep isl_map
*map
,
1846 unsigned param
, int *exact
, int project
)
1848 struct isl_map
*app
= NULL
;
1849 struct isl_map
*diff
;
1850 struct isl_dim
*dim
= NULL
;
1856 dim
= isl_map_get_dim(map
);
1858 d
= isl_dim_size(dim
, isl_dim_in
);
1859 dim
= isl_dim_add(dim
, isl_dim_in
, 1);
1860 dim
= isl_dim_add(dim
, isl_dim_out
, 1);
1862 app
= construct_power_components(isl_dim_copy(dim
), map
,
1868 diff
= equate_parameter_to_length(dim
, param
);
1869 app
= isl_map_intersect(app
, diff
);
1870 app
= isl_map_project_out(app
, isl_dim_in
, d
, 1);
1871 app
= isl_map_project_out(app
, isl_dim_out
, d
, 1);
1877 /* Compute the positive powers of "map", or an overapproximation.
1878 * The power is given by parameter "param". If the result is exact,
1879 * then *exact is set to 1.
1881 * If project is set, then we are actually interested in the transitive
1882 * closure, so we can use a more relaxed exactness check.
1883 * The lengths of the paths are also projected out instead of being
1884 * equated to "param" (which is then ignored in this case).
1886 static __isl_give isl_map
*map_power(__isl_take isl_map
*map
, unsigned param
,
1887 int *exact
, int project
)
1889 struct isl_map
*app
= NULL
;
1897 if (isl_map_fast_is_empty(map
))
1900 isl_assert(map
->ctx
, project
|| param
< isl_map_dim(map
, isl_dim_param
),
1902 isl_assert(map
->ctx
,
1903 isl_map_dim(map
, isl_dim_in
) == isl_map_dim(map
, isl_dim_out
),
1906 app
= construct_power(map
, param
, exact
, project
);
1916 /* Compute the positive powers of "map", or an overapproximation.
1917 * The power is given by parameter "param". If the result is exact,
1918 * then *exact is set to 1.
1920 __isl_give isl_map
*isl_map_power(__isl_take isl_map
*map
, unsigned param
,
1923 map
= isl_map_compute_divs(map
);
1924 map
= isl_map_coalesce(map
);
1925 return map_power(map
, param
, exact
, 0);
1928 /* Check whether equality i of bset is a pure stride constraint
1929 * on a single dimensions, i.e., of the form
1933 * with k a constant and e an existentially quantified variable.
1935 static int is_eq_stride(__isl_keep isl_basic_set
*bset
, int i
)
1947 if (!isl_int_is_zero(bset
->eq
[i
][0]))
1950 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
1951 d
= isl_basic_set_dim(bset
, isl_dim_set
);
1952 n_div
= isl_basic_set_dim(bset
, isl_dim_div
);
1954 if (isl_seq_first_non_zero(bset
->eq
[i
] + 1, nparam
) != -1)
1956 pos1
= isl_seq_first_non_zero(bset
->eq
[i
] + 1 + nparam
, d
);
1959 if (isl_seq_first_non_zero(bset
->eq
[i
] + 1 + nparam
+ pos1
+ 1,
1960 d
- pos1
- 1) != -1)
1963 pos2
= isl_seq_first_non_zero(bset
->eq
[i
] + 1 + nparam
+ d
, n_div
);
1966 if (isl_seq_first_non_zero(bset
->eq
[i
] + 1 + nparam
+ d
+ pos2
+ 1,
1967 n_div
- pos2
- 1) != -1)
1969 if (!isl_int_is_one(bset
->eq
[i
][1 + nparam
+ pos1
]) &&
1970 !isl_int_is_negone(bset
->eq
[i
][1 + nparam
+ pos1
]))
1976 /* Given a map, compute the smallest superset of this map that is of the form
1978 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
1980 * (where p ranges over the (non-parametric) dimensions),
1981 * compute the transitive closure of this map, i.e.,
1983 * { i -> j : exists k > 0:
1984 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
1986 * and intersect domain and range of this transitive closure with
1987 * the given domain and range.
1989 * If with_id is set, then try to include as much of the identity mapping
1990 * as possible, by computing
1992 * { i -> j : exists k >= 0:
1993 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
1995 * instead (i.e., allow k = 0).
1997 * In practice, we compute the difference set
1999 * delta = { j - i | i -> j in map },
2001 * look for stride constraint on the individual dimensions and compute
2002 * (constant) lower and upper bounds for each individual dimension,
2003 * adding a constraint for each bound not equal to infinity.
2005 static __isl_give isl_map
*box_closure_on_domain(__isl_take isl_map
*map
,
2006 __isl_take isl_set
*dom
, __isl_take isl_set
*ran
, int with_id
)
2015 isl_map
*app
= NULL
;
2016 isl_basic_set
*aff
= NULL
;
2017 isl_basic_map
*bmap
= NULL
;
2018 isl_vec
*obj
= NULL
;
2023 delta
= isl_map_deltas(isl_map_copy(map
));
2025 aff
= isl_set_affine_hull(isl_set_copy(delta
));
2028 dim
= isl_map_get_dim(map
);
2029 d
= isl_dim_size(dim
, isl_dim_in
);
2030 nparam
= isl_dim_size(dim
, isl_dim_param
);
2031 total
= isl_dim_total(dim
);
2032 bmap
= isl_basic_map_alloc_dim(dim
,
2033 aff
->n_div
+ 1, aff
->n_div
, 2 * d
+ 1);
2034 for (i
= 0; i
< aff
->n_div
+ 1; ++i
) {
2035 k
= isl_basic_map_alloc_div(bmap
);
2038 isl_int_set_si(bmap
->div
[k
][0], 0);
2040 for (i
= 0; i
< aff
->n_eq
; ++i
) {
2041 if (!is_eq_stride(aff
, i
))
2043 k
= isl_basic_map_alloc_equality(bmap
);
2046 isl_seq_clr(bmap
->eq
[k
], 1 + nparam
);
2047 isl_seq_cpy(bmap
->eq
[k
] + 1 + nparam
+ d
,
2048 aff
->eq
[i
] + 1 + nparam
, d
);
2049 isl_seq_neg(bmap
->eq
[k
] + 1 + nparam
,
2050 aff
->eq
[i
] + 1 + nparam
, d
);
2051 isl_seq_cpy(bmap
->eq
[k
] + 1 + nparam
+ 2 * d
,
2052 aff
->eq
[i
] + 1 + nparam
+ d
, aff
->n_div
);
2053 isl_int_set_si(bmap
->eq
[k
][1 + total
+ aff
->n_div
], 0);
2055 obj
= isl_vec_alloc(map
->ctx
, 1 + nparam
+ d
);
2058 isl_seq_clr(obj
->el
, 1 + nparam
+ d
);
2059 for (i
= 0; i
< d
; ++ i
) {
2060 enum isl_lp_result res
;
2062 isl_int_set_si(obj
->el
[1 + nparam
+ i
], 1);
2064 res
= isl_set_solve_lp(delta
, 0, obj
->el
, map
->ctx
->one
, &opt
,
2066 if (res
== isl_lp_error
)
2068 if (res
== isl_lp_ok
) {
2069 k
= isl_basic_map_alloc_inequality(bmap
);
2072 isl_seq_clr(bmap
->ineq
[k
],
2073 1 + nparam
+ 2 * d
+ bmap
->n_div
);
2074 isl_int_set_si(bmap
->ineq
[k
][1 + nparam
+ i
], -1);
2075 isl_int_set_si(bmap
->ineq
[k
][1 + nparam
+ d
+ i
], 1);
2076 isl_int_neg(bmap
->ineq
[k
][1 + nparam
+ 2 * d
+ aff
->n_div
], opt
);
2079 res
= isl_set_solve_lp(delta
, 1, obj
->el
, map
->ctx
->one
, &opt
,
2081 if (res
== isl_lp_error
)
2083 if (res
== isl_lp_ok
) {
2084 k
= isl_basic_map_alloc_inequality(bmap
);
2087 isl_seq_clr(bmap
->ineq
[k
],
2088 1 + nparam
+ 2 * d
+ bmap
->n_div
);
2089 isl_int_set_si(bmap
->ineq
[k
][1 + nparam
+ i
], 1);
2090 isl_int_set_si(bmap
->ineq
[k
][1 + nparam
+ d
+ i
], -1);
2091 isl_int_set(bmap
->ineq
[k
][1 + nparam
+ 2 * d
+ aff
->n_div
], opt
);
2094 isl_int_set_si(obj
->el
[1 + nparam
+ i
], 0);
2096 k
= isl_basic_map_alloc_inequality(bmap
);
2099 isl_seq_clr(bmap
->ineq
[k
],
2100 1 + nparam
+ 2 * d
+ bmap
->n_div
);
2102 isl_int_set_si(bmap
->ineq
[k
][0], -1);
2103 isl_int_set_si(bmap
->ineq
[k
][1 + nparam
+ 2 * d
+ aff
->n_div
], 1);
2105 app
= isl_map_from_domain_and_range(dom
, ran
);
2108 isl_basic_set_free(aff
);
2110 bmap
= isl_basic_map_finalize(bmap
);
2111 isl_set_free(delta
);
2114 map
= isl_map_from_basic_map(bmap
);
2115 map
= isl_map_intersect(map
, app
);
2120 isl_basic_map_free(bmap
);
2121 isl_basic_set_free(aff
);
2125 isl_set_free(delta
);
2130 /* Given a map, compute the smallest superset of this map that is of the form
2132 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2134 * (where p ranges over the (non-parametric) dimensions),
2135 * compute the transitive closure of this map, i.e.,
2137 * { i -> j : exists k > 0:
2138 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2140 * and intersect domain and range of this transitive closure with
2141 * domain and range of the original map.
2143 static __isl_give isl_map
*box_closure(__isl_take isl_map
*map
)
2148 domain
= isl_map_domain(isl_map_copy(map
));
2149 domain
= isl_set_coalesce(domain
);
2150 range
= isl_map_range(isl_map_copy(map
));
2151 range
= isl_set_coalesce(range
);
2153 return box_closure_on_domain(map
, domain
, range
, 0);
2156 /* Given a map, compute the smallest superset of this map that is of the form
2158 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2160 * (where p ranges over the (non-parametric) dimensions),
2161 * compute the transitive and partially reflexive closure of this map, i.e.,
2163 * { i -> j : exists k >= 0:
2164 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2166 * and intersect domain and range of this transitive closure with
2169 static __isl_give isl_map
*box_closure_with_identity(__isl_take isl_map
*map
,
2170 __isl_take isl_set
*dom
)
2172 return box_closure_on_domain(map
, dom
, isl_set_copy(dom
), 1);
2175 /* Check whether app is the transitive closure of map.
2176 * In particular, check that app is acyclic and, if so,
2179 * app \subset (map \cup (map \circ app))
2181 static int check_exactness_omega(__isl_keep isl_map
*map
,
2182 __isl_keep isl_map
*app
)
2186 int is_empty
, is_exact
;
2190 delta
= isl_map_deltas(isl_map_copy(app
));
2191 d
= isl_set_dim(delta
, isl_dim_set
);
2192 for (i
= 0; i
< d
; ++i
)
2193 delta
= isl_set_fix_si(delta
, isl_dim_set
, i
, 0);
2194 is_empty
= isl_set_is_empty(delta
);
2195 isl_set_free(delta
);
2201 test
= isl_map_apply_range(isl_map_copy(app
), isl_map_copy(map
));
2202 test
= isl_map_union(test
, isl_map_copy(map
));
2203 is_exact
= isl_map_is_subset(app
, test
);
2209 /* Check if basic map M_i can be combined with all the other
2210 * basic maps such that
2214 * can be computed as
2216 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
2218 * In particular, check if we can compute a compact representation
2221 * M_i^* \circ M_j \circ M_i^*
2224 * Let M_i^? be an extension of M_i^+ that allows paths
2225 * of length zero, i.e., the result of box_closure(., 1).
2226 * The criterion, as proposed by Kelly et al., is that
2227 * id = M_i^? - M_i^+ can be represented as a basic map
2230 * id \circ M_j \circ id = M_j
2234 * If this function returns 1, then tc and qc are set to
2235 * M_i^+ and M_i^?, respectively.
2237 static int can_be_split_off(__isl_keep isl_map
*map
, int i
,
2238 __isl_give isl_map
**tc
, __isl_give isl_map
**qc
)
2240 isl_map
*map_i
, *id
= NULL
;
2247 C
= isl_set_union(isl_map_domain(isl_map_copy(map
)),
2248 isl_map_range(isl_map_copy(map
)));
2249 C
= isl_set_from_basic_set(isl_set_simple_hull(C
));
2253 map_i
= isl_map_from_basic_map(isl_basic_map_copy(map
->p
[i
]));
2254 *tc
= box_closure(isl_map_copy(map_i
));
2255 *qc
= box_closure_with_identity(map_i
, C
);
2256 id
= isl_map_subtract(isl_map_copy(*qc
), isl_map_copy(*tc
));
2260 if (id
->n
!= 1 || (*qc
)->n
!= 1)
2263 for (j
= 0; j
< map
->n
; ++j
) {
2264 isl_map
*map_j
, *test
;
2269 map_j
= isl_map_from_basic_map(
2270 isl_basic_map_copy(map
->p
[j
]));
2271 test
= isl_map_apply_range(isl_map_copy(id
),
2272 isl_map_copy(map_j
));
2273 test
= isl_map_apply_range(test
, isl_map_copy(id
));
2274 is_ok
= isl_map_is_equal(test
, map_j
);
2275 isl_map_free(map_j
);
2303 static __isl_give isl_map
*box_closure_with_check(__isl_take isl_map
*map
,
2308 app
= box_closure(isl_map_copy(map
));
2310 *exact
= check_exactness_omega(map
, app
);
2316 /* Compute an overapproximation of the transitive closure of "map"
2317 * using a variation of the algorithm from
2318 * "Transitive Closure of Infinite Graphs and its Applications"
2321 * We first check whether we can can split of any basic map M_i and
2328 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
2330 * using a recursive call on the remaining map.
2332 * If not, we simply call box_closure on the whole map.
2334 static __isl_give isl_map
*transitive_closure_omega(__isl_take isl_map
*map
,
2344 return box_closure_with_check(map
, exact
);
2346 for (i
= 0; i
< map
->n
; ++i
) {
2349 ok
= can_be_split_off(map
, i
, &tc
, &qc
);
2355 app
= isl_map_alloc_dim(isl_map_get_dim(map
), map
->n
- 1, 0);
2357 for (j
= 0; j
< map
->n
; ++j
) {
2360 app
= isl_map_add_basic_map(app
,
2361 isl_basic_map_copy(map
->p
[j
]));
2364 app
= isl_map_apply_range(isl_map_copy(qc
), app
);
2365 app
= isl_map_apply_range(app
, qc
);
2367 app
= isl_map_union(tc
, transitive_closure_omega(app
, NULL
));
2368 exact_i
= check_exactness_omega(map
, app
);
2380 return box_closure_with_check(map
, exact
);
2386 int isl_map_is_transitively_closed(__isl_keep isl_map
*map
)
2391 map2
= isl_map_apply_range(isl_map_copy(map
), isl_map_copy(map
));
2392 closed
= isl_map_is_subset(map2
, map
);
2398 /* Compute the transitive closure of "map", or an overapproximation.
2399 * If the result is exact, then *exact is set to 1.
2400 * Simply use map_power to compute the powers of map, but tell
2401 * it to project out the lengths of the paths instead of equating
2402 * the length to a parameter.
2404 __isl_give isl_map
*isl_map_transitive_closure(__isl_take isl_map
*map
,
2413 if (map
->ctx
->opt
->closure
== ISL_CLOSURE_OMEGA
)
2414 return transitive_closure_omega(map
, exact
);
2416 map
= isl_map_compute_divs(map
);
2417 map
= isl_map_coalesce(map
);
2418 closed
= isl_map_is_transitively_closed(map
);
2427 param
= isl_map_dim(map
, isl_dim_param
);
2428 map
= map_power(map
, param
, exact
, 1);