isl 0.07
[isl.git] / isl_schedule.c
blob320db6c26232c8b5c9852b360215e46b07801478
1 /*
2 * Copyright 2011 INRIA Saclay
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
8 * 91893 Orsay, France
9 */
11 #include <isl_ctx_private.h>
12 #include <isl_map_private.h>
13 #include <isl_dim_private.h>
14 #include <isl/hash.h>
15 #include <isl/constraint.h>
16 #include <isl/schedule.h>
17 #include <isl_mat_private.h>
18 #include <isl/set.h>
19 #include <isl/seq.h>
20 #include <isl_tab.h>
21 #include <isl_dim_map.h>
22 #include <isl_hmap_map_basic_set.h>
23 #include <isl_qsort.h>
24 #include <isl_schedule_private.h>
25 #include <isl_band_private.h>
26 #include <isl_list_private.h>
29 * The scheduling algorithm implemented in this file was inspired by
30 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
31 * Parallelization and Locality Optimization in the Polyhedral Model".
35 /* Internal information about a node that is used during the construction
36 * of a schedule.
37 * dim represents the space in which the domain lives
38 * sched is a matrix representation of the schedule being constructed
39 * for this node
40 * sched_map is an isl_map representation of the same (partial) schedule
41 * sched_map may be NULL
42 * rank is the number of linearly independent rows in the linear part
43 * of sched
44 * the columns of cmap represent a change of basis for the schedule
45 * coefficients; the first rank columns span the linear part of
46 * the schedule rows
47 * start is the first variable in the LP problem in the sequences that
48 * represents the schedule coefficients of this node
49 * nvar is the dimension of the domain
50 * nparam is the number of parameters or 0 if we are not constructing
51 * a parametric schedule
53 * scc is the index of SCC (or WCC) this node belongs to
55 * band contains the band index for each of the rows of the schedule.
56 * band_id is used to differentiate between separate bands at the same
57 * level within the same parent band, i.e., bands that are separated
58 * by the parent band or bands that are independent of each other.
59 * zero contains a boolean for each of the rows of the schedule,
60 * indicating whether the corresponding scheduling dimension results
61 * in zero dependence distances within its band and with respect
62 * to the proximity edges.
64 * index, min_index and on_stack are used during the SCC detection
65 * index represents the order in which nodes are visited.
66 * min_index is the index of the root of a (sub)component.
67 * on_stack indicates whether the node is currently on the stack.
69 struct isl_sched_node {
70 isl_dim *dim;
71 isl_mat *sched;
72 isl_map *sched_map;
73 int rank;
74 isl_mat *cmap;
75 int start;
76 int nvar;
77 int nparam;
79 int scc;
81 int *band;
82 int *band_id;
83 int *zero;
85 /* scc detection */
86 int index;
87 int min_index;
88 int on_stack;
91 static int node_has_dim(const void *entry, const void *val)
93 struct isl_sched_node *node = (struct isl_sched_node *)entry;
94 isl_dim *dim = (isl_dim *)val;
96 return isl_dim_equal(node->dim, dim);
99 /* An edge in the dependence graph. An edge may be used to
100 * ensure validity of the generated schedule, to minimize the dependence
101 * distance or both
103 * map is the dependence relation
104 * src is the source node
105 * dst is the sink node
106 * validity is set if the edge is used to ensure correctness
107 * proximity is set if the edge is used to minimize dependence distances
109 * For validity edges, start and end mark the sequence of inequality
110 * constraints in the LP problem that encode the validity constraint
111 * corresponding to this edge.
113 struct isl_sched_edge {
114 isl_map *map;
116 struct isl_sched_node *src;
117 struct isl_sched_node *dst;
119 int validity;
120 int proximity;
122 int start;
123 int end;
126 /* Internal information about the dependence graph used during
127 * the construction of the schedule.
129 * intra_hmap is a cache, mapping dependence relations to their dual,
130 * for dependences from a node to itself
131 * inter_hmap is a cache, mapping dependence relations to their dual,
132 * for dependences between distinct nodes
134 * n is the number of nodes
135 * node is the list of nodes
136 * maxvar is the maximal number of variables over all nodes
137 * n_row is the current (maximal) number of linearly independent
138 * rows in the node schedules
139 * n_total_row is the current number of rows in the node schedules
140 * n_band is the current number of completed bands
141 * band_start is the starting row in the node schedules of the current band
142 * root is set if this graph is the original dependence graph,
143 * without any splitting
145 * sorted contains a list of node indices sorted according to the
146 * SCC to which a node belongs
148 * n_edge is the number of edges
149 * edge is the list of edges
150 * edge_table contains pointers into the edge array, hashed on the source
151 * and sink spaces; the table only contains edges that represent
152 * validity constraints (and that may or may not also represent proximity
153 * constraints)
155 * node_table contains pointers into the node array, hashed on the space
157 * region contains a list of variable sequences that should be non-trivial
159 * lp contains the (I)LP problem used to obtain new schedule rows
161 * src_scc and dst_scc are the source and sink SCCs of an edge with
162 * conflicting constraints
164 * scc, sp, index and stack are used during the detection of SCCs
165 * scc is the number of the next SCC
166 * stack contains the nodes on the path from the root to the current node
167 * sp is the stack pointer
168 * index is the index of the last node visited
170 struct isl_sched_graph {
171 isl_hmap_map_basic_set *intra_hmap;
172 isl_hmap_map_basic_set *inter_hmap;
174 struct isl_sched_node *node;
175 int n;
176 int maxvar;
177 int n_row;
179 int *sorted;
181 int n_band;
182 int n_total_row;
183 int band_start;
185 int root;
187 struct isl_sched_edge *edge;
188 int n_edge;
189 struct isl_hash_table *edge_table;
191 struct isl_hash_table *node_table;
192 struct isl_region *region;
194 isl_basic_set *lp;
196 int src_scc;
197 int dst_scc;
199 /* scc detection */
200 int scc;
201 int sp;
202 int index;
203 int *stack;
206 /* Initialize node_table based on the list of nodes.
208 static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph)
210 int i;
212 graph->node_table = isl_hash_table_alloc(ctx, graph->n);
213 if (!graph->node_table)
214 return -1;
216 for (i = 0; i < graph->n; ++i) {
217 struct isl_hash_table_entry *entry;
218 uint32_t hash;
220 hash = isl_dim_get_hash(graph->node[i].dim);
221 entry = isl_hash_table_find(ctx, graph->node_table, hash,
222 &node_has_dim,
223 graph->node[i].dim, 1);
224 if (!entry)
225 return -1;
226 entry->data = &graph->node[i];
229 return 0;
232 /* Return a pointer to the node that lives within the given space,
233 * or NULL if there is no such node.
235 static struct isl_sched_node *graph_find_node(isl_ctx *ctx,
236 struct isl_sched_graph *graph, __isl_keep isl_dim *dim)
238 struct isl_hash_table_entry *entry;
239 uint32_t hash;
241 hash = isl_dim_get_hash(dim);
242 entry = isl_hash_table_find(ctx, graph->node_table, hash,
243 &node_has_dim, dim, 0);
245 return entry ? entry->data : NULL;
248 static int edge_has_src_and_dst(const void *entry, const void *val)
250 const struct isl_sched_edge *edge = entry;
251 const struct isl_sched_edge *temp = val;
253 return edge->src == temp->src && edge->dst == temp->dst;
256 /* Initialize edge_table based on the list of edges.
257 * Only edges with validity set are added to the table.
259 static int graph_init_edge_table(isl_ctx *ctx, struct isl_sched_graph *graph)
261 int i;
263 graph->edge_table = isl_hash_table_alloc(ctx, graph->n_edge);
264 if (!graph->edge_table)
265 return -1;
267 for (i = 0; i < graph->n_edge; ++i) {
268 struct isl_hash_table_entry *entry;
269 uint32_t hash;
271 if (!graph->edge[i].validity)
272 continue;
274 hash = isl_hash_init();
275 hash = isl_hash_builtin(hash, graph->edge[i].src);
276 hash = isl_hash_builtin(hash, graph->edge[i].dst);
277 entry = isl_hash_table_find(ctx, graph->edge_table, hash,
278 &edge_has_src_and_dst,
279 &graph->edge[i], 1);
280 if (!entry)
281 return -1;
282 entry->data = &graph->edge[i];
285 return 0;
288 /* Check whether the dependence graph has a (validity) edge
289 * between the given two nodes.
291 static int graph_has_edge(struct isl_sched_graph *graph,
292 struct isl_sched_node *src, struct isl_sched_node *dst)
294 isl_ctx *ctx = isl_dim_get_ctx(src->dim);
295 struct isl_hash_table_entry *entry;
296 uint32_t hash;
297 struct isl_sched_edge temp = { .src = src, .dst = dst };
298 struct isl_sched_edge *edge;
299 int empty;
301 hash = isl_hash_init();
302 hash = isl_hash_builtin(hash, temp.src);
303 hash = isl_hash_builtin(hash, temp.dst);
304 entry = isl_hash_table_find(ctx, graph->edge_table, hash,
305 &edge_has_src_and_dst, &temp, 0);
306 if (!entry)
307 return 0;
309 edge = entry->data;
310 empty = isl_map_plain_is_empty(edge->map);
311 if (empty < 0)
312 return -1;
314 return !empty;
317 static int graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph,
318 int n_node, int n_edge)
320 int i;
322 graph->n = n_node;
323 graph->n_edge = n_edge;
324 graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n);
325 graph->sorted = isl_calloc_array(ctx, int, graph->n);
326 graph->region = isl_alloc_array(ctx, struct isl_region, graph->n);
327 graph->stack = isl_alloc_array(ctx, int, graph->n);
328 graph->edge = isl_calloc_array(ctx,
329 struct isl_sched_edge, graph->n_edge);
331 graph->intra_hmap = isl_hmap_map_basic_set_alloc(ctx, 2 * n_edge);
332 graph->inter_hmap = isl_hmap_map_basic_set_alloc(ctx, 2 * n_edge);
334 if (!graph->node || !graph->region || !graph->stack || !graph->edge ||
335 !graph->sorted)
336 return -1;
338 for(i = 0; i < graph->n; ++i)
339 graph->sorted[i] = i;
341 return 0;
344 static void graph_free(isl_ctx *ctx, struct isl_sched_graph *graph)
346 int i;
348 isl_hmap_map_basic_set_free(ctx, graph->intra_hmap);
349 isl_hmap_map_basic_set_free(ctx, graph->inter_hmap);
351 for (i = 0; i < graph->n; ++i) {
352 isl_dim_free(graph->node[i].dim);
353 isl_mat_free(graph->node[i].sched);
354 isl_map_free(graph->node[i].sched_map);
355 isl_mat_free(graph->node[i].cmap);
356 if (graph->root) {
357 free(graph->node[i].band);
358 free(graph->node[i].band_id);
359 free(graph->node[i].zero);
362 free(graph->node);
363 free(graph->sorted);
364 for (i = 0; i < graph->n_edge; ++i)
365 isl_map_free(graph->edge[i].map);
366 free(graph->edge);
367 free(graph->region);
368 free(graph->stack);
369 isl_hash_table_free(ctx, graph->edge_table);
370 isl_hash_table_free(ctx, graph->node_table);
371 isl_basic_set_free(graph->lp);
374 /* Add a new node to the graph representing the given set.
376 static int extract_node(__isl_take isl_set *set, void *user)
378 int nvar, nparam;
379 isl_ctx *ctx;
380 isl_dim *dim;
381 isl_mat *sched;
382 struct isl_sched_graph *graph = user;
383 int *band, *band_id, *zero;
385 ctx = isl_set_get_ctx(set);
386 dim = isl_set_get_dim(set);
387 isl_set_free(set);
388 nvar = isl_dim_size(dim, isl_dim_set);
389 nparam = isl_dim_size(dim, isl_dim_param);
390 if (!ctx->opt->schedule_parametric)
391 nparam = 0;
392 sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar);
393 graph->node[graph->n].dim = dim;
394 graph->node[graph->n].nvar = nvar;
395 graph->node[graph->n].nparam = nparam;
396 graph->node[graph->n].sched = sched;
397 graph->node[graph->n].sched_map = NULL;
398 band = isl_alloc_array(ctx, int, graph->n_edge + nvar);
399 graph->node[graph->n].band = band;
400 band_id = isl_calloc_array(ctx, int, graph->n_edge + nvar);
401 graph->node[graph->n].band_id = band_id;
402 zero = isl_calloc_array(ctx, int, graph->n_edge + nvar);
403 graph->node[graph->n].zero = zero;
404 graph->n++;
406 if (!sched || !band || !band_id || !zero)
407 return -1;
409 return 0;
412 /* Add a new edge to the graph based on the given map.
413 * Edges are first extracted from the validity dependences,
414 * from which the edge_table is constructed.
415 * Afterwards, the proximity dependences are added. If a proximity
416 * dependence relation happens to be identical to one of the
417 * validity dependence relations added before, then we don't create
418 * a new edge, but instead mark the original edge as also representing
419 * a proximity dependence.
421 static int extract_edge(__isl_take isl_map *map, void *user)
423 isl_ctx *ctx = isl_map_get_ctx(map);
424 struct isl_sched_graph *graph = user;
425 struct isl_sched_node *src, *dst;
426 isl_dim *dim;
428 dim = isl_dim_domain(isl_map_get_dim(map));
429 src = graph_find_node(ctx, graph, dim);
430 isl_dim_free(dim);
431 dim = isl_dim_range(isl_map_get_dim(map));
432 dst = graph_find_node(ctx, graph, dim);
433 isl_dim_free(dim);
435 if (!src || !dst) {
436 isl_map_free(map);
437 return 0;
440 graph->edge[graph->n_edge].src = src;
441 graph->edge[graph->n_edge].dst = dst;
442 graph->edge[graph->n_edge].map = map;
443 graph->edge[graph->n_edge].validity = !graph->edge_table;
444 graph->edge[graph->n_edge].proximity = !!graph->edge_table;
445 graph->n_edge++;
447 if (graph->edge_table) {
448 uint32_t hash;
449 struct isl_hash_table_entry *entry;
450 struct isl_sched_edge *edge;
451 int is_equal;
453 hash = isl_hash_init();
454 hash = isl_hash_builtin(hash, src);
455 hash = isl_hash_builtin(hash, dst);
456 entry = isl_hash_table_find(ctx, graph->edge_table, hash,
457 &edge_has_src_and_dst,
458 &graph->edge[graph->n_edge - 1], 0);
459 if (!entry)
460 return 0;
461 edge = entry->data;
462 is_equal = isl_map_plain_is_equal(map, edge->map);
463 if (is_equal < 0)
464 return -1;
465 if (!is_equal)
466 return 0;
468 graph->n_edge--;
469 edge->proximity = 1;
470 isl_map_free(map);
473 return 0;
476 /* Check whether there is a validity dependence from src to dst,
477 * forcing dst to follow src.
479 static int node_follows(struct isl_sched_graph *graph,
480 struct isl_sched_node *dst, struct isl_sched_node *src)
482 return graph_has_edge(graph, src, dst);
485 /* Perform Tarjan's algorithm for computing the strongly connected components
486 * in the dependence graph (only validity edges).
487 * If directed is not set, we consider the graph to be undirected and
488 * we effectively compute the (weakly) connected components.
490 static int detect_sccs_tarjan(struct isl_sched_graph *g, int i, int directed)
492 int j;
494 g->node[i].index = g->index;
495 g->node[i].min_index = g->index;
496 g->node[i].on_stack = 1;
497 g->index++;
498 g->stack[g->sp++] = i;
500 for (j = g->n - 1; j >= 0; --j) {
501 int f;
503 if (j == i)
504 continue;
505 if (g->node[j].index >= 0 &&
506 (!g->node[j].on_stack ||
507 g->node[j].index > g->node[i].min_index))
508 continue;
510 f = node_follows(g, &g->node[i], &g->node[j]);
511 if (f < 0)
512 return -1;
513 if (!f && !directed) {
514 f = node_follows(g, &g->node[j], &g->node[i]);
515 if (f < 0)
516 return -1;
518 if (!f)
519 continue;
520 if (g->node[j].index < 0) {
521 detect_sccs_tarjan(g, j, directed);
522 if (g->node[j].min_index < g->node[i].min_index)
523 g->node[i].min_index = g->node[j].min_index;
524 } else if (g->node[j].index < g->node[i].min_index)
525 g->node[i].min_index = g->node[j].index;
528 if (g->node[i].index != g->node[i].min_index)
529 return 0;
531 do {
532 j = g->stack[--g->sp];
533 g->node[j].on_stack = 0;
534 g->node[j].scc = g->scc;
535 } while (j != i);
536 g->scc++;
538 return 0;
541 static int detect_ccs(struct isl_sched_graph *graph, int directed)
543 int i;
545 graph->index = 0;
546 graph->sp = 0;
547 graph->scc = 0;
548 for (i = graph->n - 1; i >= 0; --i)
549 graph->node[i].index = -1;
551 for (i = graph->n - 1; i >= 0; --i) {
552 if (graph->node[i].index >= 0)
553 continue;
554 if (detect_sccs_tarjan(graph, i, directed) < 0)
555 return -1;
558 return 0;
561 /* Apply Tarjan's algorithm to detect the strongly connected components
562 * in the dependence graph.
564 static int detect_sccs(struct isl_sched_graph *graph)
566 return detect_ccs(graph, 1);
569 /* Apply Tarjan's algorithm to detect the (weakly) connected components
570 * in the dependence graph.
572 static int detect_wccs(struct isl_sched_graph *graph)
574 return detect_ccs(graph, 0);
577 static int cmp_scc(const void *a, const void *b, void *data)
579 struct isl_sched_graph *graph = data;
580 const int *i1 = a;
581 const int *i2 = b;
583 return graph->node[*i1].scc - graph->node[*i2].scc;
586 /* Sort the elements of graph->sorted according to the corresponding SCCs.
588 static void sort_sccs(struct isl_sched_graph *graph)
590 isl_quicksort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph);
593 /* Given a dependence relation R from a node to itself,
594 * construct the set of coefficients of valid constraints for elements
595 * in that dependence relation.
596 * In particular, the result contains tuples of coefficients
597 * c_0, c_n, c_x such that
599 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
601 * or, equivalently,
603 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
605 * We choose here to compute the dual of delta R.
606 * Alternatively, we could have computed the dual of R, resulting
607 * in a set of tuples c_0, c_n, c_x, c_y, and then
608 * plugged in (c_0, c_n, c_x, -c_x).
610 static __isl_give isl_basic_set *intra_coefficients(
611 struct isl_sched_graph *graph, __isl_take isl_map *map)
613 isl_ctx *ctx = isl_map_get_ctx(map);
614 isl_set *delta;
615 isl_basic_set *coef;
617 if (isl_hmap_map_basic_set_has(ctx, graph->intra_hmap, map))
618 return isl_hmap_map_basic_set_get(ctx, graph->intra_hmap, map);
620 delta = isl_set_remove_divs(isl_map_deltas(isl_map_copy(map)));
621 coef = isl_set_coefficients(delta);
622 isl_hmap_map_basic_set_set(ctx, graph->intra_hmap, map,
623 isl_basic_set_copy(coef));
625 return coef;
628 /* Given a dependence relation R, * construct the set of coefficients
629 * of valid constraints for elements in that dependence relation.
630 * In particular, the result contains tuples of coefficients
631 * c_0, c_n, c_x, c_y such that
633 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
636 static __isl_give isl_basic_set *inter_coefficients(
637 struct isl_sched_graph *graph, __isl_take isl_map *map)
639 isl_ctx *ctx = isl_map_get_ctx(map);
640 isl_set *set;
641 isl_basic_set *coef;
643 if (isl_hmap_map_basic_set_has(ctx, graph->inter_hmap, map))
644 return isl_hmap_map_basic_set_get(ctx, graph->inter_hmap, map);
646 set = isl_map_wrap(isl_map_remove_divs(isl_map_copy(map)));
647 coef = isl_set_coefficients(set);
648 isl_hmap_map_basic_set_set(ctx, graph->inter_hmap, map,
649 isl_basic_set_copy(coef));
651 return coef;
654 /* Add constraints to graph->lp that force validity for the given
655 * dependence from a node i to itself.
656 * That is, add constraints that enforce
658 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
659 * = c_i_x (y - x) >= 0
661 * for each (x,y) in R.
662 * We obtain general constraints on coefficients (c_0, c_n, c_x)
663 * of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-),
664 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
665 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
667 * Actually, we do not construct constraints for the c_i_x themselves,
668 * but for the coefficients of c_i_x written as a linear combination
669 * of the columns in node->cmap.
671 static int add_intra_validity_constraints(struct isl_sched_graph *graph,
672 struct isl_sched_edge *edge)
674 unsigned total;
675 isl_map *map = isl_map_copy(edge->map);
676 isl_ctx *ctx = isl_map_get_ctx(map);
677 isl_dim *dim;
678 isl_dim_map *dim_map;
679 isl_basic_set *coef;
680 struct isl_sched_node *node = edge->src;
682 coef = intra_coefficients(graph, map);
684 dim = isl_dim_domain(isl_dim_unwrap(isl_basic_set_get_dim(coef)));
686 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
687 isl_dim_size(dim, isl_dim_set), isl_mat_copy(node->cmap));
689 total = isl_basic_set_total_dim(graph->lp);
690 dim_map = isl_dim_map_alloc(ctx, total);
691 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
692 isl_dim_size(dim, isl_dim_set), 1,
693 node->nvar, -1);
694 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
695 isl_dim_size(dim, isl_dim_set), 1,
696 node->nvar, 1);
697 graph->lp = isl_basic_set_extend_constraints(graph->lp,
698 coef->n_eq, coef->n_ineq);
699 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
700 coef, dim_map);
701 isl_dim_free(dim);
703 return 0;
706 /* Add constraints to graph->lp that force validity for the given
707 * dependence from node i to node j.
708 * That is, add constraints that enforce
710 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
712 * for each (x,y) in R.
713 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
714 * of valid constraints for R and then plug in
715 * (c_j_0 - c_i_0, c_j_n^+ - c_j_n^- - (c_i_n^+ - c_i_n^-),
716 * c_j_x^+ - c_j_x^- - (c_i_x^+ - c_i_x^-)),
717 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
718 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
720 * Actually, we do not construct constraints for the c_*_x themselves,
721 * but for the coefficients of c_*_x written as a linear combination
722 * of the columns in node->cmap.
724 static int add_inter_validity_constraints(struct isl_sched_graph *graph,
725 struct isl_sched_edge *edge)
727 unsigned total;
728 isl_map *map = isl_map_copy(edge->map);
729 isl_ctx *ctx = isl_map_get_ctx(map);
730 isl_dim *dim;
731 isl_dim_map *dim_map;
732 isl_basic_set *coef;
733 struct isl_sched_node *src = edge->src;
734 struct isl_sched_node *dst = edge->dst;
736 coef = inter_coefficients(graph, map);
738 dim = isl_dim_domain(isl_dim_unwrap(isl_basic_set_get_dim(coef)));
740 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
741 isl_dim_size(dim, isl_dim_set), isl_mat_copy(src->cmap));
742 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
743 isl_dim_size(dim, isl_dim_set) + src->nvar,
744 isl_mat_copy(dst->cmap));
746 total = isl_basic_set_total_dim(graph->lp);
747 dim_map = isl_dim_map_alloc(ctx, total);
749 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1);
750 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1);
751 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1);
752 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
753 isl_dim_size(dim, isl_dim_set) + src->nvar, 1,
754 dst->nvar, -1);
755 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
756 isl_dim_size(dim, isl_dim_set) + src->nvar, 1,
757 dst->nvar, 1);
759 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1);
760 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1);
761 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1);
762 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
763 isl_dim_size(dim, isl_dim_set), 1,
764 src->nvar, 1);
765 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
766 isl_dim_size(dim, isl_dim_set), 1,
767 src->nvar, -1);
769 edge->start = graph->lp->n_ineq;
770 graph->lp = isl_basic_set_extend_constraints(graph->lp,
771 coef->n_eq, coef->n_ineq);
772 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
773 coef, dim_map);
774 isl_dim_free(dim);
775 edge->end = graph->lp->n_ineq;
777 return 0;
780 /* Add constraints to graph->lp that bound the dependence distance for the given
781 * dependence from a node i to itself.
782 * If s = 1, we add the constraint
784 * c_i_x (y - x) <= m_0 + m_n n
786 * or
788 * -c_i_x (y - x) + m_0 + m_n n >= 0
790 * for each (x,y) in R.
791 * If s = -1, we add the constraint
793 * -c_i_x (y - x) <= m_0 + m_n n
795 * or
797 * c_i_x (y - x) + m_0 + m_n n >= 0
799 * for each (x,y) in R.
800 * We obtain general constraints on coefficients (c_0, c_n, c_x)
801 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
802 * with each coefficient (except m_0) represented as a pair of non-negative
803 * coefficients.
805 * Actually, we do not construct constraints for the c_i_x themselves,
806 * but for the coefficients of c_i_x written as a linear combination
807 * of the columns in node->cmap.
809 static int add_intra_proximity_constraints(struct isl_sched_graph *graph,
810 struct isl_sched_edge *edge, int s)
812 unsigned total;
813 unsigned nparam;
814 isl_map *map = isl_map_copy(edge->map);
815 isl_ctx *ctx = isl_map_get_ctx(map);
816 isl_dim *dim;
817 isl_dim_map *dim_map;
818 isl_basic_set *coef;
819 struct isl_sched_node *node = edge->src;
821 coef = intra_coefficients(graph, map);
823 dim = isl_dim_domain(isl_dim_unwrap(isl_basic_set_get_dim(coef)));
825 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
826 isl_dim_size(dim, isl_dim_set), isl_mat_copy(node->cmap));
828 nparam = isl_dim_size(node->dim, isl_dim_param);
829 total = isl_basic_set_total_dim(graph->lp);
830 dim_map = isl_dim_map_alloc(ctx, total);
831 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
832 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
833 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
834 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
835 isl_dim_size(dim, isl_dim_set), 1,
836 node->nvar, s);
837 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
838 isl_dim_size(dim, isl_dim_set), 1,
839 node->nvar, -s);
840 graph->lp = isl_basic_set_extend_constraints(graph->lp,
841 coef->n_eq, coef->n_ineq);
842 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
843 coef, dim_map);
844 isl_dim_free(dim);
846 return 0;
849 /* Add constraints to graph->lp that bound the dependence distance for the given
850 * dependence from node i to node j.
851 * If s = 1, we add the constraint
853 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
854 * <= m_0 + m_n n
856 * or
858 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
859 * m_0 + m_n n >= 0
861 * for each (x,y) in R.
862 * If s = -1, we add the constraint
864 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
865 * <= m_0 + m_n n
867 * or
869 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
870 * m_0 + m_n n >= 0
872 * for each (x,y) in R.
873 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
874 * of valid constraints for R and then plug in
875 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
876 * -s*c_j_x+s*c_i_x)
877 * with each coefficient (except m_0, c_j_0 and c_i_0)
878 * represented as a pair of non-negative coefficients.
880 * Actually, we do not construct constraints for the c_*_x themselves,
881 * but for the coefficients of c_*_x written as a linear combination
882 * of the columns in node->cmap.
884 static int add_inter_proximity_constraints(struct isl_sched_graph *graph,
885 struct isl_sched_edge *edge, int s)
887 unsigned total;
888 unsigned nparam;
889 isl_map *map = isl_map_copy(edge->map);
890 isl_ctx *ctx = isl_map_get_ctx(map);
891 isl_dim *dim;
892 isl_dim_map *dim_map;
893 isl_basic_set *coef;
894 struct isl_sched_node *src = edge->src;
895 struct isl_sched_node *dst = edge->dst;
897 coef = inter_coefficients(graph, map);
899 dim = isl_dim_domain(isl_dim_unwrap(isl_basic_set_get_dim(coef)));
901 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
902 isl_dim_size(dim, isl_dim_set), isl_mat_copy(src->cmap));
903 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
904 isl_dim_size(dim, isl_dim_set) + src->nvar,
905 isl_mat_copy(dst->cmap));
907 nparam = isl_dim_size(src->dim, isl_dim_param);
908 total = isl_basic_set_total_dim(graph->lp);
909 dim_map = isl_dim_map_alloc(ctx, total);
911 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
912 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
913 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
915 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, -s);
916 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, s);
917 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, -s);
918 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
919 isl_dim_size(dim, isl_dim_set) + src->nvar, 1,
920 dst->nvar, s);
921 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
922 isl_dim_size(dim, isl_dim_set) + src->nvar, 1,
923 dst->nvar, -s);
925 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, s);
926 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, -s);
927 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, s);
928 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
929 isl_dim_size(dim, isl_dim_set), 1,
930 src->nvar, -s);
931 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
932 isl_dim_size(dim, isl_dim_set), 1,
933 src->nvar, s);
935 graph->lp = isl_basic_set_extend_constraints(graph->lp,
936 coef->n_eq, coef->n_ineq);
937 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
938 coef, dim_map);
939 isl_dim_free(dim);
941 return 0;
944 static int add_all_validity_constraints(struct isl_sched_graph *graph)
946 int i;
948 for (i = 0; i < graph->n_edge; ++i) {
949 struct isl_sched_edge *edge= &graph->edge[i];
950 if (!edge->validity)
951 continue;
952 if (edge->src != edge->dst)
953 continue;
954 if (add_intra_validity_constraints(graph, edge) < 0)
955 return -1;
958 for (i = 0; i < graph->n_edge; ++i) {
959 struct isl_sched_edge *edge = &graph->edge[i];
960 if (!edge->validity)
961 continue;
962 if (edge->src == edge->dst)
963 continue;
964 if (add_inter_validity_constraints(graph, edge) < 0)
965 return -1;
968 return 0;
971 /* Add constraints to graph->lp that bound the dependence distance
972 * for all dependence relations.
973 * If a given proximity dependence is identical to a validity
974 * dependence, then the dependence distance is already bounded
975 * from below (by zero), so we only need to bound the distance
976 * from above.
977 * Otherwise, we need to bound the distance both from above and from below.
979 static int add_all_proximity_constraints(struct isl_sched_graph *graph)
981 int i;
983 for (i = 0; i < graph->n_edge; ++i) {
984 struct isl_sched_edge *edge= &graph->edge[i];
985 if (!edge->proximity)
986 continue;
987 if (edge->src == edge->dst &&
988 add_intra_proximity_constraints(graph, edge, 1) < 0)
989 return -1;
990 if (edge->src != edge->dst &&
991 add_inter_proximity_constraints(graph, edge, 1) < 0)
992 return -1;
993 if (edge->validity)
994 continue;
995 if (edge->src == edge->dst &&
996 add_intra_proximity_constraints(graph, edge, -1) < 0)
997 return -1;
998 if (edge->src != edge->dst &&
999 add_inter_proximity_constraints(graph, edge, -1) < 0)
1000 return -1;
1003 return 0;
1006 /* Compute a basis for the rows in the linear part of the schedule
1007 * and extend this basis to a full basis. The remaining rows
1008 * can then be used to force linear independence from the rows
1009 * in the schedule.
1011 * In particular, given the schedule rows S, we compute
1013 * S = H Q
1015 * with H the Hermite normal form of S. That is, all but the
1016 * first rank columns of Q are zero and so each row in S is
1017 * a linear combination of the first rank rows of Q.
1018 * The matrix Q is then transposed because we will write the
1019 * coefficients of the next schedule row as a column vector s
1020 * and express this s as a linear combination s = Q c of the
1021 * computed basis.
1023 static int node_update_cmap(struct isl_sched_node *node)
1025 isl_mat *H, *Q;
1026 int n_row = isl_mat_rows(node->sched);
1028 H = isl_mat_sub_alloc(node->sched, 0, n_row,
1029 1 + node->nparam, node->nvar);
1031 H = isl_mat_left_hermite(H, 0, NULL, &Q);
1032 isl_mat_free(node->cmap);
1033 node->cmap = isl_mat_transpose(Q);
1034 node->rank = isl_mat_initial_non_zero_cols(H);
1035 isl_mat_free(H);
1037 if (!node->cmap || node->rank < 0)
1038 return -1;
1039 return 0;
1042 /* Count the number of equality and inequality constraints
1043 * that will be added. If once is set, then we count
1044 * each edge exactly once. Otherwise, we count as follows
1045 * validity -> 1 (>= 0)
1046 * validity+proximity -> 2 (>= 0 and upper bound)
1047 * proximity -> 2 (lower and upper bound)
1049 static int count_constraints(struct isl_sched_graph *graph,
1050 int *n_eq, int *n_ineq, int once)
1052 int i;
1053 isl_basic_set *coef;
1055 *n_eq = *n_ineq = 0;
1056 for (i = 0; i < graph->n_edge; ++i) {
1057 struct isl_sched_edge *edge= &graph->edge[i];
1058 isl_map *map = isl_map_copy(edge->map);
1059 int f = once ? 1 : edge->proximity ? 2 : 1;
1061 if (edge->src == edge->dst)
1062 coef = intra_coefficients(graph, map);
1063 else
1064 coef = inter_coefficients(graph, map);
1065 if (!coef)
1066 return -1;
1067 *n_eq += f * coef->n_eq;
1068 *n_ineq += f * coef->n_ineq;
1069 isl_basic_set_free(coef);
1072 return 0;
1075 /* Construct an ILP problem for finding schedule coefficients
1076 * that result in non-negative, but small dependence distances
1077 * over all dependences.
1078 * In particular, the dependence distances over proximity edges
1079 * are bounded by m_0 + m_n n and we compute schedule coefficients
1080 * with small values (preferably zero) of m_n and m_0.
1082 * All variables of the ILP are non-negative. The actual coefficients
1083 * may be negative, so each coefficient is represented as the difference
1084 * of two non-negative variables. The negative part always appears
1085 * immediately before the positive part.
1086 * Other than that, the variables have the following order
1088 * - sum of positive and negative parts of m_n coefficients
1089 * - m_0
1090 * - sum of positive and negative parts of all c_n coefficients
1091 * (unconstrained when computing non-parametric schedules)
1092 * - sum of positive and negative parts of all c_x coefficients
1093 * - positive and negative parts of m_n coefficients
1094 * - for each node
1095 * - c_i_0
1096 * - positive and negative parts of c_i_n (if parametric)
1097 * - positive and negative parts of c_i_x
1099 * The c_i_x are not represented directly, but through the columns of
1100 * node->cmap. That is, the computed values are for variable t_i_x
1101 * such that c_i_x = Q t_i_x with Q equal to node->cmap.
1103 * The constraints are those from the edges plus two or three equalities
1104 * to express the sums.
1106 * If force_zero is set, then we add equalities to ensure that
1107 * the sum of the m_n coefficients and m_0 are both zero.
1109 static int setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
1110 int force_zero)
1112 int i, j;
1113 int k;
1114 unsigned nparam;
1115 unsigned total;
1116 isl_dim *dim;
1117 int parametric;
1118 int param_pos;
1119 int n_eq, n_ineq;
1121 parametric = ctx->opt->schedule_parametric;
1122 nparam = isl_dim_size(graph->node[0].dim, isl_dim_param);
1123 param_pos = 4;
1124 total = param_pos + 2 * nparam;
1125 for (i = 0; i < graph->n; ++i) {
1126 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
1127 if (node_update_cmap(node) < 0)
1128 return -1;
1129 node->start = total;
1130 total += 1 + 2 * (node->nparam + node->nvar);
1133 if (count_constraints(graph, &n_eq, &n_ineq, 0) < 0)
1134 return -1;
1136 dim = isl_dim_set_alloc(ctx, 0, total);
1137 isl_basic_set_free(graph->lp);
1138 n_eq += 2 + parametric + force_zero;
1139 graph->lp = isl_basic_set_alloc_dim(dim, 0, n_eq, n_ineq);
1141 k = isl_basic_set_alloc_equality(graph->lp);
1142 if (k < 0)
1143 return -1;
1144 isl_seq_clr(graph->lp->eq[k], 1 + total);
1145 if (!force_zero)
1146 isl_int_set_si(graph->lp->eq[k][1], -1);
1147 for (i = 0; i < 2 * nparam; ++i)
1148 isl_int_set_si(graph->lp->eq[k][1 + param_pos + i], 1);
1150 if (force_zero) {
1151 k = isl_basic_set_alloc_equality(graph->lp);
1152 if (k < 0)
1153 return -1;
1154 isl_seq_clr(graph->lp->eq[k], 1 + total);
1155 isl_int_set_si(graph->lp->eq[k][2], -1);
1158 if (parametric) {
1159 k = isl_basic_set_alloc_equality(graph->lp);
1160 if (k < 0)
1161 return -1;
1162 isl_seq_clr(graph->lp->eq[k], 1 + total);
1163 isl_int_set_si(graph->lp->eq[k][3], -1);
1164 for (i = 0; i < graph->n; ++i) {
1165 int pos = 1 + graph->node[i].start + 1;
1167 for (j = 0; j < 2 * graph->node[i].nparam; ++j)
1168 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
1172 k = isl_basic_set_alloc_equality(graph->lp);
1173 if (k < 0)
1174 return -1;
1175 isl_seq_clr(graph->lp->eq[k], 1 + total);
1176 isl_int_set_si(graph->lp->eq[k][4], -1);
1177 for (i = 0; i < graph->n; ++i) {
1178 struct isl_sched_node *node = &graph->node[i];
1179 int pos = 1 + node->start + 1 + 2 * node->nparam;
1181 for (j = 0; j < 2 * node->nvar; ++j)
1182 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
1185 if (add_all_validity_constraints(graph) < 0)
1186 return -1;
1187 if (add_all_proximity_constraints(graph) < 0)
1188 return -1;
1190 return 0;
1193 /* Analyze the conflicting constraint found by
1194 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
1195 * constraint of one of the edges between distinct nodes, living, moreover
1196 * in distinct SCCs, then record the source and sink SCC as this may
1197 * be a good place to cut between SCCs.
1199 static int check_conflict(int con, void *user)
1201 int i;
1202 struct isl_sched_graph *graph = user;
1204 if (graph->src_scc >= 0)
1205 return 0;
1207 con -= graph->lp->n_eq;
1209 if (con >= graph->lp->n_ineq)
1210 return 0;
1212 for (i = 0; i < graph->n_edge; ++i) {
1213 if (!graph->edge[i].validity)
1214 continue;
1215 if (graph->edge[i].src == graph->edge[i].dst)
1216 continue;
1217 if (graph->edge[i].src->scc == graph->edge[i].dst->scc)
1218 continue;
1219 if (graph->edge[i].start > con)
1220 continue;
1221 if (graph->edge[i].end <= con)
1222 continue;
1223 graph->src_scc = graph->edge[i].src->scc;
1224 graph->dst_scc = graph->edge[i].dst->scc;
1227 return 0;
1230 /* Check whether the next schedule row of the given node needs to be
1231 * non-trivial. Lower-dimensional domains may have some trivial rows,
1232 * but as soon as the number of remaining required non-trivial rows
1233 * is as large as the number or remaining rows to be computed,
1234 * all remaining rows need to be non-trivial.
1236 static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node)
1238 return node->nvar - node->rank >= graph->maxvar - graph->n_row;
1241 /* Solve the ILP problem constructed in setup_lp.
1242 * For each node such that all the remaining rows of its schedule
1243 * need to be non-trivial, we construct a non-triviality region.
1244 * This region imposes that the next row is independent of previous rows.
1245 * In particular the coefficients c_i_x are represented by t_i_x
1246 * variables with c_i_x = Q t_i_x and Q a unimodular matrix such that
1247 * its first columns span the rows of the previously computed part
1248 * of the schedule. The non-triviality region enforces that at least
1249 * one of the remaining components of t_i_x is non-zero, i.e.,
1250 * that the new schedule row depends on at least one of the remaining
1251 * columns of Q.
1253 static __isl_give isl_vec *solve_lp(struct isl_sched_graph *graph)
1255 int i;
1256 isl_vec *sol;
1257 isl_basic_set *lp;
1259 for (i = 0; i < graph->n; ++i) {
1260 struct isl_sched_node *node = &graph->node[i];
1261 int skip = node->rank;
1262 graph->region[i].pos = node->start + 1 + 2*(node->nparam+skip);
1263 if (needs_row(graph, node))
1264 graph->region[i].len = 2 * (node->nvar - skip);
1265 else
1266 graph->region[i].len = 0;
1268 lp = isl_basic_set_copy(graph->lp);
1269 sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n,
1270 graph->region, &check_conflict, graph);
1271 return sol;
1274 /* Update the schedules of all nodes based on the given solution
1275 * of the LP problem.
1276 * The new row is added to the current band.
1277 * All possibly negative coefficients are encoded as a difference
1278 * of two non-negative variables, so we need to perform the subtraction
1279 * here. Moreover, if use_cmap is set, then the solution does
1280 * not refer to the actual coefficients c_i_x, but instead to variables
1281 * t_i_x such that c_i_x = Q t_i_x and Q is equal to node->cmap.
1282 * In this case, we then also need to perform this multiplication
1283 * to obtain the values of c_i_x.
1285 * If check_zero is set, then the first two coordinates of sol are
1286 * assumed to correspond to the dependence distance. If these two
1287 * coordinates are zero, then the corresponding scheduling dimension
1288 * is marked as being zero distance.
1290 static int update_schedule(struct isl_sched_graph *graph,
1291 __isl_take isl_vec *sol, int use_cmap, int check_zero)
1293 int i, j;
1294 int zero = 0;
1295 isl_vec *csol = NULL;
1297 if (!sol)
1298 goto error;
1299 if (sol->size == 0)
1300 isl_die(sol->ctx, isl_error_internal,
1301 "no solution found", goto error);
1303 if (check_zero)
1304 zero = isl_int_is_zero(sol->el[1]) &&
1305 isl_int_is_zero(sol->el[2]);
1307 for (i = 0; i < graph->n; ++i) {
1308 struct isl_sched_node *node = &graph->node[i];
1309 int pos = node->start;
1310 int row = isl_mat_rows(node->sched);
1312 isl_vec_free(csol);
1313 csol = isl_vec_alloc(sol->ctx, node->nvar);
1314 if (!csol)
1315 goto error;
1317 isl_map_free(node->sched_map);
1318 node->sched_map = NULL;
1319 node->sched = isl_mat_add_rows(node->sched, 1);
1320 if (!node->sched)
1321 goto error;
1322 node->sched = isl_mat_set_element(node->sched, row, 0,
1323 sol->el[1 + pos]);
1324 for (j = 0; j < node->nparam + node->nvar; ++j)
1325 isl_int_sub(sol->el[1 + pos + 1 + 2 * j + 1],
1326 sol->el[1 + pos + 1 + 2 * j + 1],
1327 sol->el[1 + pos + 1 + 2 * j]);
1328 for (j = 0; j < node->nparam; ++j)
1329 node->sched = isl_mat_set_element(node->sched,
1330 row, 1 + j, sol->el[1+pos+1+2*j+1]);
1331 for (j = 0; j < node->nvar; ++j)
1332 isl_int_set(csol->el[j],
1333 sol->el[1+pos+1+2*(node->nparam+j)+1]);
1334 if (use_cmap)
1335 csol = isl_mat_vec_product(isl_mat_copy(node->cmap),
1336 csol);
1337 if (!csol)
1338 goto error;
1339 for (j = 0; j < node->nvar; ++j)
1340 node->sched = isl_mat_set_element(node->sched,
1341 row, 1 + node->nparam + j, csol->el[j]);
1342 node->band[graph->n_total_row] = graph->n_band;
1343 node->zero[graph->n_total_row] = zero;
1345 isl_vec_free(sol);
1346 isl_vec_free(csol);
1348 graph->n_row++;
1349 graph->n_total_row++;
1351 return 0;
1352 error:
1353 isl_vec_free(sol);
1354 isl_vec_free(csol);
1355 return -1;
1358 /* Convert node->sched into a map and return this map.
1359 * We simply add equality constraints that express each output variable
1360 * as the affine combination of parameters and input variables specified
1361 * by the schedule matrix.
1363 * The result is cached in node->sched_map, which needs to be released
1364 * whenever node->sched is updated.
1366 static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node)
1368 int i, j;
1369 isl_dim *dim;
1370 isl_basic_map *bmap;
1371 isl_constraint *c;
1372 int nrow, ncol;
1373 isl_int v;
1375 if (node->sched_map)
1376 return isl_map_copy(node->sched_map);
1378 nrow = isl_mat_rows(node->sched);
1379 ncol = isl_mat_cols(node->sched) - 1;
1380 dim = isl_dim_from_domain(isl_dim_copy(node->dim));
1381 dim = isl_dim_add(dim, isl_dim_out, nrow);
1382 bmap = isl_basic_map_universe(isl_dim_copy(dim));
1384 isl_int_init(v);
1386 for (i = 0; i < nrow; ++i) {
1387 c = isl_equality_alloc(isl_dim_copy(dim));
1388 isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1389 isl_mat_get_element(node->sched, i, 0, &v);
1390 isl_constraint_set_constant(c, v);
1391 for (j = 0; j < node->nparam; ++j) {
1392 isl_mat_get_element(node->sched, i, 1 + j, &v);
1393 isl_constraint_set_coefficient(c, isl_dim_param, j, v);
1395 for (j = 0; j < node->nvar; ++j) {
1396 isl_mat_get_element(node->sched,
1397 i, 1 + node->nparam + j, &v);
1398 isl_constraint_set_coefficient(c, isl_dim_in, j, v);
1400 bmap = isl_basic_map_add_constraint(bmap, c);
1403 isl_int_clear(v);
1405 isl_dim_free(dim);
1407 node->sched_map = isl_map_from_basic_map(bmap);
1408 return isl_map_copy(node->sched_map);
1411 /* Update the given dependence relation based on the current schedule.
1412 * That is, intersect the dependence relation with a map expressing
1413 * that source and sink are executed within the same iteration of
1414 * the current schedule.
1415 * This is not the most efficient way, but this shouldn't be a critical
1416 * operation.
1418 static __isl_give isl_map *specialize(__isl_take isl_map *map,
1419 struct isl_sched_node *src, struct isl_sched_node *dst)
1421 isl_map *src_sched, *dst_sched, *id;
1423 src_sched = node_extract_schedule(src);
1424 dst_sched = node_extract_schedule(dst);
1425 id = isl_map_apply_range(src_sched, isl_map_reverse(dst_sched));
1426 return isl_map_intersect(map, id);
1429 /* Update the dependence relations of all edges based on the current schedule.
1430 * If a dependence is carried completely by the current schedule, then
1431 * it is removed and edge_table is updated accordingly.
1433 static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph)
1435 int i;
1436 int reset_table = 0;
1438 for (i = graph->n_edge - 1; i >= 0; --i) {
1439 struct isl_sched_edge *edge = &graph->edge[i];
1440 edge->map = specialize(edge->map, edge->src, edge->dst);
1441 if (!edge->map)
1442 return -1;
1444 if (isl_map_plain_is_empty(edge->map)) {
1445 reset_table = 1;
1446 isl_map_free(edge->map);
1447 if (i != graph->n_edge - 1)
1448 graph->edge[i] = graph->edge[graph->n_edge - 1];
1449 graph->n_edge--;
1453 if (reset_table) {
1454 isl_hash_table_free(ctx, graph->edge_table);
1455 graph->edge_table = NULL;
1456 return graph_init_edge_table(ctx, graph);
1459 return 0;
1462 static void next_band(struct isl_sched_graph *graph)
1464 graph->band_start = graph->n_total_row;
1465 graph->n_band++;
1468 /* Topologically sort statements mapped to same schedule iteration
1469 * and add a row to the schedule corresponding to this order.
1471 static int sort_statements(isl_ctx *ctx, struct isl_sched_graph *graph)
1473 int i, j;
1475 if (graph->n <= 1)
1476 return 0;
1478 if (update_edges(ctx, graph) < 0)
1479 return -1;
1481 if (graph->n_edge == 0)
1482 return 0;
1484 if (detect_sccs(graph) < 0)
1485 return -1;
1487 for (i = 0; i < graph->n; ++i) {
1488 struct isl_sched_node *node = &graph->node[i];
1489 int row = isl_mat_rows(node->sched);
1490 int cols = isl_mat_cols(node->sched);
1492 isl_map_free(node->sched_map);
1493 node->sched_map = NULL;
1494 node->sched = isl_mat_add_rows(node->sched, 1);
1495 if (!node->sched)
1496 return -1;
1497 node->sched = isl_mat_set_element_si(node->sched, row, 0,
1498 node->scc);
1499 for (j = 1; j < cols; ++j)
1500 node->sched = isl_mat_set_element_si(node->sched,
1501 row, j, 0);
1502 node->band[graph->n_total_row] = graph->n_band;
1505 graph->n_total_row++;
1506 next_band(graph);
1508 return 0;
1511 /* Construct an isl_schedule based on the computed schedule stored
1512 * in graph and with parameters specified by dim.
1514 static __isl_give isl_schedule *extract_schedule(struct isl_sched_graph *graph,
1515 __isl_take isl_dim *dim)
1517 int i;
1518 isl_ctx *ctx;
1519 isl_schedule *sched = NULL;
1521 if (!dim)
1522 return NULL;
1524 ctx = isl_dim_get_ctx(dim);
1525 sched = isl_calloc(ctx, struct isl_schedule,
1526 sizeof(struct isl_schedule) +
1527 (graph->n - 1) * sizeof(struct isl_schedule_node));
1528 if (!sched)
1529 goto error;
1531 sched->ref = 1;
1532 sched->n = graph->n;
1533 sched->n_band = graph->n_band;
1534 sched->n_total_row = graph->n_total_row;
1536 for (i = 0; i < sched->n; ++i) {
1537 int r, b;
1538 int *band_end, *band_id, *zero;
1540 band_end = isl_alloc_array(ctx, int, graph->n_band);
1541 band_id = isl_alloc_array(ctx, int, graph->n_band);
1542 zero = isl_alloc_array(ctx, int, graph->n_total_row);
1543 sched->node[i].sched = node_extract_schedule(&graph->node[i]);
1544 sched->node[i].band_end = band_end;
1545 sched->node[i].band_id = band_id;
1546 sched->node[i].zero = zero;
1547 if (!band_end || !band_id || !zero)
1548 goto error;
1550 for (r = 0; r < graph->n_total_row; ++r)
1551 zero[r] = graph->node[i].zero[r];
1552 for (r = b = 0; r < graph->n_total_row; ++r) {
1553 if (graph->node[i].band[r] == b)
1554 continue;
1555 band_end[b++] = r;
1556 if (graph->node[i].band[r] == -1)
1557 break;
1559 if (r == graph->n_total_row)
1560 band_end[b++] = r;
1561 sched->node[i].n_band = b;
1562 for (--b; b >= 0; --b)
1563 band_id[b] = graph->node[i].band_id[b];
1566 sched->dim = dim;
1568 return sched;
1569 error:
1570 isl_dim_free(dim);
1571 isl_schedule_free(sched);
1572 return NULL;
1575 /* Copy nodes that satisfy node_pred from the src dependence graph
1576 * to the dst dependence graph.
1578 static int copy_nodes(struct isl_sched_graph *dst, struct isl_sched_graph *src,
1579 int (*node_pred)(struct isl_sched_node *node, int data), int data)
1581 int i;
1583 dst->n = 0;
1584 for (i = 0; i < src->n; ++i) {
1585 if (!node_pred(&src->node[i], data))
1586 continue;
1587 dst->node[dst->n].dim = isl_dim_copy(src->node[i].dim);
1588 dst->node[dst->n].nvar = src->node[i].nvar;
1589 dst->node[dst->n].nparam = src->node[i].nparam;
1590 dst->node[dst->n].sched = isl_mat_copy(src->node[i].sched);
1591 dst->node[dst->n].sched_map =
1592 isl_map_copy(src->node[i].sched_map);
1593 dst->node[dst->n].band = src->node[i].band;
1594 dst->node[dst->n].band_id = src->node[i].band_id;
1595 dst->node[dst->n].zero = src->node[i].zero;
1596 dst->n++;
1599 return 0;
1602 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
1603 * to the dst dependence graph.
1605 static int copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst,
1606 struct isl_sched_graph *src,
1607 int (*edge_pred)(struct isl_sched_edge *edge, int data), int data)
1609 int i;
1611 dst->n_edge = 0;
1612 for (i = 0; i < src->n_edge; ++i) {
1613 struct isl_sched_edge *edge = &src->edge[i];
1614 isl_map *map;
1616 if (!edge_pred(edge, data))
1617 continue;
1619 if (isl_map_plain_is_empty(edge->map))
1620 continue;
1622 map = isl_map_copy(edge->map);
1624 dst->edge[dst->n_edge].src =
1625 graph_find_node(ctx, dst, edge->src->dim);
1626 dst->edge[dst->n_edge].dst =
1627 graph_find_node(ctx, dst, edge->dst->dim);
1628 dst->edge[dst->n_edge].map = map;
1629 dst->edge[dst->n_edge].validity = edge->validity;
1630 dst->edge[dst->n_edge].proximity = edge->proximity;
1631 dst->n_edge++;
1634 return 0;
1637 /* Given a "src" dependence graph that contains the nodes from "dst"
1638 * that satisfy node_pred, copy the schedule computed in "src"
1639 * for those nodes back to "dst".
1641 static int copy_schedule(struct isl_sched_graph *dst,
1642 struct isl_sched_graph *src,
1643 int (*node_pred)(struct isl_sched_node *node, int data), int data)
1645 int i;
1647 src->n = 0;
1648 for (i = 0; i < dst->n; ++i) {
1649 if (!node_pred(&dst->node[i], data))
1650 continue;
1651 isl_mat_free(dst->node[i].sched);
1652 isl_map_free(dst->node[i].sched_map);
1653 dst->node[i].sched = isl_mat_copy(src->node[src->n].sched);
1654 dst->node[i].sched_map =
1655 isl_map_copy(src->node[src->n].sched_map);
1656 src->n++;
1659 dst->n_total_row = src->n_total_row;
1660 dst->n_band = src->n_band;
1662 return 0;
1665 /* Compute the maximal number of variables over all nodes.
1666 * This is the maximal number of linearly independent schedule
1667 * rows that we need to compute.
1668 * Just in case we end up in a part of the dependence graph
1669 * with only lower-dimensional domains, we make sure we will
1670 * compute the required amount of extra linearly independent rows.
1672 static int compute_maxvar(struct isl_sched_graph *graph)
1674 int i;
1676 graph->maxvar = 0;
1677 for (i = 0; i < graph->n; ++i) {
1678 struct isl_sched_node *node = &graph->node[i];
1679 int nvar;
1681 if (node_update_cmap(node) < 0)
1682 return -1;
1683 nvar = node->nvar + graph->n_row - node->rank;
1684 if (nvar > graph->maxvar)
1685 graph->maxvar = nvar;
1688 return 0;
1691 static int compute_schedule(isl_ctx *ctx, struct isl_sched_graph *graph);
1692 static int compute_schedule_wcc(isl_ctx *ctx, struct isl_sched_graph *graph);
1694 /* Compute a schedule for a subgraph of "graph". In particular, for
1695 * the graph composed of nodes that satisfy node_pred and edges that
1696 * that satisfy edge_pred. The caller should precompute the number
1697 * of nodes and edges that satisfy these predicates and pass them along
1698 * as "n" and "n_edge".
1699 * If the subgraph is known to consist of a single component, then wcc should
1700 * be set and then we call compute_schedule_wcc on the constructed subgraph.
1701 * Otherwise, we call compute_schedule, which will check whether the subgraph
1702 * is connected.
1704 static int compute_sub_schedule(isl_ctx *ctx,
1705 struct isl_sched_graph *graph, int n, int n_edge,
1706 int (*node_pred)(struct isl_sched_node *node, int data),
1707 int (*edge_pred)(struct isl_sched_edge *edge, int data),
1708 int data, int wcc)
1710 struct isl_sched_graph split = { 0 };
1712 if (graph_alloc(ctx, &split, n, n_edge) < 0)
1713 goto error;
1714 if (copy_nodes(&split, graph, node_pred, data) < 0)
1715 goto error;
1716 if (graph_init_table(ctx, &split) < 0)
1717 goto error;
1718 if (copy_edges(ctx, &split, graph, edge_pred, data) < 0)
1719 goto error;
1720 if (graph_init_edge_table(ctx, &split) < 0)
1721 goto error;
1722 split.n_row = graph->n_row;
1723 split.n_total_row = graph->n_total_row;
1724 split.n_band = graph->n_band;
1725 split.band_start = graph->band_start;
1727 if (wcc && compute_schedule_wcc(ctx, &split) < 0)
1728 goto error;
1729 if (!wcc && compute_schedule(ctx, &split) < 0)
1730 goto error;
1732 copy_schedule(graph, &split, node_pred, data);
1734 graph_free(ctx, &split);
1735 return 0;
1736 error:
1737 graph_free(ctx, &split);
1738 return -1;
1741 static int node_scc_exactly(struct isl_sched_node *node, int scc)
1743 return node->scc == scc;
1746 static int node_scc_at_most(struct isl_sched_node *node, int scc)
1748 return node->scc <= scc;
1751 static int node_scc_at_least(struct isl_sched_node *node, int scc)
1753 return node->scc >= scc;
1756 static int edge_src_scc_exactly(struct isl_sched_edge *edge, int scc)
1758 return edge->src->scc == scc;
1761 static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc)
1763 return edge->dst->scc <= scc;
1766 static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc)
1768 return edge->src->scc >= scc;
1771 /* Pad the schedules of all nodes with zero rows such that in the end
1772 * they all have graph->n_total_row rows.
1773 * The extra rows don't belong to any band, so they get assigned band number -1.
1775 static int pad_schedule(struct isl_sched_graph *graph)
1777 int i, j;
1779 for (i = 0; i < graph->n; ++i) {
1780 struct isl_sched_node *node = &graph->node[i];
1781 int row = isl_mat_rows(node->sched);
1782 if (graph->n_total_row > row) {
1783 isl_map_free(node->sched_map);
1784 node->sched_map = NULL;
1786 node->sched = isl_mat_add_zero_rows(node->sched,
1787 graph->n_total_row - row);
1788 if (!node->sched)
1789 return -1;
1790 for (j = row; j < graph->n_total_row; ++j)
1791 node->band[j] = -1;
1794 return 0;
1797 /* Split the current graph into two parts and compute a schedule for each
1798 * part individually. In particular, one part consists of all SCCs up
1799 * to and including graph->src_scc, while the other part contains the other
1800 * SCCS.
1802 * The split is enforced in the schedule by constant rows with two different
1803 * values (0 and 1). These constant rows replace the previously computed rows
1804 * in the current band.
1805 * It would be possible to reuse them as the first rows in the next
1806 * band, but recomputing them may result in better rows as we are looking
1807 * at a smaller part of the dependence graph.
1809 * The band_id of the second group is set to n, where n is the number
1810 * of nodes in the first group. This ensures that the band_ids over
1811 * the two groups remain disjoint, even if either or both of the two
1812 * groups contain independent components.
1814 static int compute_split_schedule(isl_ctx *ctx, struct isl_sched_graph *graph)
1816 int i, j, n, e1, e2;
1817 int n_total_row, orig_total_row;
1818 int n_band, orig_band;
1819 int drop;
1821 drop = graph->n_total_row - graph->band_start;
1822 graph->n_total_row -= drop;
1823 graph->n_row -= drop;
1825 n = 0;
1826 for (i = 0; i < graph->n; ++i) {
1827 struct isl_sched_node *node = &graph->node[i];
1828 int row = isl_mat_rows(node->sched) - drop;
1829 int cols = isl_mat_cols(node->sched);
1830 int before = node->scc <= graph->src_scc;
1832 if (before)
1833 n++;
1835 isl_map_free(node->sched_map);
1836 node->sched_map = NULL;
1837 node->sched = isl_mat_drop_rows(node->sched,
1838 graph->band_start, drop);
1839 node->sched = isl_mat_add_rows(node->sched, 1);
1840 if (!node->sched)
1841 return -1;
1842 node->sched = isl_mat_set_element_si(node->sched, row, 0,
1843 !before);
1844 for (j = 1; j < cols; ++j)
1845 node->sched = isl_mat_set_element_si(node->sched,
1846 row, j, 0);
1847 node->band[graph->n_total_row] = graph->n_band;
1850 e1 = e2 = 0;
1851 for (i = 0; i < graph->n_edge; ++i) {
1852 if (graph->edge[i].dst->scc <= graph->src_scc)
1853 e1++;
1854 if (graph->edge[i].src->scc > graph->src_scc)
1855 e2++;
1858 graph->n_total_row++;
1859 next_band(graph);
1861 for (i = 0; i < graph->n; ++i) {
1862 struct isl_sched_node *node = &graph->node[i];
1863 if (node->scc > graph->src_scc)
1864 node->band_id[graph->n_band] = n;
1867 orig_total_row = graph->n_total_row;
1868 orig_band = graph->n_band;
1869 if (compute_sub_schedule(ctx, graph, n, e1,
1870 &node_scc_at_most, &edge_dst_scc_at_most,
1871 graph->src_scc, 0) < 0)
1872 return -1;
1873 n_total_row = graph->n_total_row;
1874 graph->n_total_row = orig_total_row;
1875 n_band = graph->n_band;
1876 graph->n_band = orig_band;
1877 if (compute_sub_schedule(ctx, graph, graph->n - n, e2,
1878 &node_scc_at_least, &edge_src_scc_at_least,
1879 graph->src_scc + 1, 0) < 0)
1880 return -1;
1881 if (n_total_row > graph->n_total_row)
1882 graph->n_total_row = n_total_row;
1883 if (n_band > graph->n_band)
1884 graph->n_band = n_band;
1886 return pad_schedule(graph);
1889 /* Compute the next band of the schedule after updating the dependence
1890 * relations based on the the current schedule.
1892 static int compute_next_band(isl_ctx *ctx, struct isl_sched_graph *graph)
1894 if (update_edges(ctx, graph) < 0)
1895 return -1;
1896 next_band(graph);
1898 return compute_schedule(ctx, graph);
1901 /* Add constraints to graph->lp that force the dependence of edge i
1902 * to be respected and attempt to carry it, where edge i is one from
1903 * a node j to itself.
1904 * That is, add constraints that enforce
1906 * (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x)
1907 * = c_j_x (y - x) >= e_i
1909 * for each (x,y) in R.
1910 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1911 * of valid constraints for (y - x) and then plug in (-e_i, 0, c_j_x),
1912 * with each coefficient in c_j_x represented as a pair of non-negative
1913 * coefficients.
1915 static int add_intra_constraints(struct isl_sched_graph *graph, int i)
1917 unsigned total;
1918 struct isl_sched_edge *edge= &graph->edge[i];
1919 isl_map *map = isl_map_copy(edge->map);
1920 isl_ctx *ctx = isl_map_get_ctx(map);
1921 isl_dim *dim;
1922 isl_dim_map *dim_map;
1923 isl_basic_set *coef;
1924 struct isl_sched_node *node = edge->src;
1926 coef = intra_coefficients(graph, map);
1928 dim = isl_dim_domain(isl_dim_unwrap(isl_basic_set_get_dim(coef)));
1930 total = isl_basic_set_total_dim(graph->lp);
1931 dim_map = isl_dim_map_alloc(ctx, total);
1932 isl_dim_map_range(dim_map, 3 + i, 0, 0, 0, 1, -1);
1933 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
1934 isl_dim_size(dim, isl_dim_set), 1,
1935 node->nvar, -1);
1936 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
1937 isl_dim_size(dim, isl_dim_set), 1,
1938 node->nvar, 1);
1939 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1940 coef->n_eq, coef->n_ineq);
1941 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1942 coef, dim_map);
1943 isl_dim_free(dim);
1945 return 0;
1948 /* Add constraints to graph->lp that force the dependence of edge i
1949 * to be respected and attempt to carry it, where edge i is one from
1950 * node j to node k.
1951 * That is, add constraints that enforce
1953 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
1955 * for each (x,y) in R.
1956 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1957 * of valid constraints for R and then plug in
1958 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, c_k_x - c_j_x)
1959 * with each coefficient (except e_i, c_k_0 and c_j_0)
1960 * represented as a pair of non-negative coefficients.
1962 static int add_inter_constraints(struct isl_sched_graph *graph, int i)
1964 unsigned total;
1965 struct isl_sched_edge *edge= &graph->edge[i];
1966 isl_map *map = isl_map_copy(edge->map);
1967 isl_ctx *ctx = isl_map_get_ctx(map);
1968 isl_dim *dim;
1969 isl_dim_map *dim_map;
1970 isl_basic_set *coef;
1971 struct isl_sched_node *src = edge->src;
1972 struct isl_sched_node *dst = edge->dst;
1974 coef = inter_coefficients(graph, map);
1976 dim = isl_dim_domain(isl_dim_unwrap(isl_basic_set_get_dim(coef)));
1978 total = isl_basic_set_total_dim(graph->lp);
1979 dim_map = isl_dim_map_alloc(ctx, total);
1981 isl_dim_map_range(dim_map, 3 + i, 0, 0, 0, 1, -1);
1983 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1);
1984 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1);
1985 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1);
1986 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
1987 isl_dim_size(dim, isl_dim_set) + src->nvar, 1,
1988 dst->nvar, -1);
1989 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
1990 isl_dim_size(dim, isl_dim_set) + src->nvar, 1,
1991 dst->nvar, 1);
1993 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1);
1994 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1);
1995 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1);
1996 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
1997 isl_dim_size(dim, isl_dim_set), 1,
1998 src->nvar, 1);
1999 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
2000 isl_dim_size(dim, isl_dim_set), 1,
2001 src->nvar, -1);
2003 graph->lp = isl_basic_set_extend_constraints(graph->lp,
2004 coef->n_eq, coef->n_ineq);
2005 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
2006 coef, dim_map);
2007 isl_dim_free(dim);
2009 return 0;
2012 /* Add constraints to graph->lp that force all dependence
2013 * to be respected and attempt to carry it.
2015 static int add_all_constraints(struct isl_sched_graph *graph)
2017 int i;
2019 for (i = 0; i < graph->n_edge; ++i) {
2020 struct isl_sched_edge *edge= &graph->edge[i];
2021 if (edge->src == edge->dst &&
2022 add_intra_constraints(graph, i) < 0)
2023 return -1;
2024 if (edge->src != edge->dst &&
2025 add_inter_constraints(graph, i) < 0)
2026 return -1;
2029 return 0;
2032 /* Construct an LP problem for finding schedule coefficients
2033 * such that the schedule carries as many dependences as possible.
2034 * In particular, for each dependence i, we bound the dependence distance
2035 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
2036 * of all e_i's. Dependence with e_i = 0 in the solution are simply
2037 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
2039 * All variables of the LP are non-negative. The actual coefficients
2040 * may be negative, so each coefficient is represented as the difference
2041 * of two non-negative variables. The negative part always appears
2042 * immediately before the positive part.
2043 * Other than that, the variables have the following order
2045 * - sum of (1 - e_i) over all edges
2046 * - sum of positive and negative parts of all c_n coefficients
2047 * (unconstrained when computing non-parametric schedules)
2048 * - sum of positive and negative parts of all c_x coefficients
2049 * - for each edge
2050 * - e_i
2051 * - for each node
2052 * - c_i_0
2053 * - positive and negative parts of c_i_n (if parametric)
2054 * - positive and negative parts of c_i_x
2056 * The constraints are those from the edges plus three equalities
2057 * to express the sums and n_edge inequalities to express e_i <= 1.
2059 static int setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph)
2061 int i, j;
2062 int k;
2063 isl_dim *dim;
2064 unsigned total;
2065 int n_eq, n_ineq;
2067 total = 3 + graph->n_edge;
2068 for (i = 0; i < graph->n; ++i) {
2069 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
2070 node->start = total;
2071 total += 1 + 2 * (node->nparam + node->nvar);
2074 if (count_constraints(graph, &n_eq, &n_ineq, 1) < 0)
2075 return -1;
2077 dim = isl_dim_set_alloc(ctx, 0, total);
2078 isl_basic_set_free(graph->lp);
2079 n_eq += 3;
2080 n_ineq += graph->n_edge;
2081 graph->lp = isl_basic_set_alloc_dim(dim, 0, n_eq, n_ineq);
2082 graph->lp = isl_basic_set_set_rational(graph->lp);
2084 k = isl_basic_set_alloc_equality(graph->lp);
2085 if (k < 0)
2086 return -1;
2087 isl_seq_clr(graph->lp->eq[k], 1 + total);
2088 isl_int_set_si(graph->lp->eq[k][0], -graph->n_edge);
2089 isl_int_set_si(graph->lp->eq[k][1], 1);
2090 for (i = 0; i < graph->n_edge; ++i)
2091 isl_int_set_si(graph->lp->eq[k][4 + i], 1);
2093 k = isl_basic_set_alloc_equality(graph->lp);
2094 if (k < 0)
2095 return -1;
2096 isl_seq_clr(graph->lp->eq[k], 1 + total);
2097 isl_int_set_si(graph->lp->eq[k][2], -1);
2098 for (i = 0; i < graph->n; ++i) {
2099 int pos = 1 + graph->node[i].start + 1;
2101 for (j = 0; j < 2 * graph->node[i].nparam; ++j)
2102 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2105 k = isl_basic_set_alloc_equality(graph->lp);
2106 if (k < 0)
2107 return -1;
2108 isl_seq_clr(graph->lp->eq[k], 1 + total);
2109 isl_int_set_si(graph->lp->eq[k][3], -1);
2110 for (i = 0; i < graph->n; ++i) {
2111 struct isl_sched_node *node = &graph->node[i];
2112 int pos = 1 + node->start + 1 + 2 * node->nparam;
2114 for (j = 0; j < 2 * node->nvar; ++j)
2115 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2118 for (i = 0; i < graph->n_edge; ++i) {
2119 k = isl_basic_set_alloc_inequality(graph->lp);
2120 if (k < 0)
2121 return -1;
2122 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2123 isl_int_set_si(graph->lp->ineq[k][4 + i], -1);
2124 isl_int_set_si(graph->lp->ineq[k][0], 1);
2127 if (add_all_constraints(graph) < 0)
2128 return -1;
2130 return 0;
2133 /* If the schedule_split_parallel option is set and if the linear
2134 * parts of the scheduling rows for all nodes in the graphs are the same,
2135 * then split off the constant term from the linear part.
2136 * The constant term is then placed in a separate band and
2137 * the linear part is simplified.
2139 static int split_parallel(isl_ctx *ctx, struct isl_sched_graph *graph)
2141 int i;
2142 int equal = 1;
2143 int row, cols;
2144 struct isl_sched_node *node0;
2146 if (!ctx->opt->schedule_split_parallel)
2147 return 0;
2148 if (graph->n <= 1)
2149 return 0;
2151 node0 = &graph->node[0];
2152 row = isl_mat_rows(node0->sched) - 1;
2153 cols = isl_mat_cols(node0->sched);
2154 for (i = 1; i < graph->n; ++i) {
2155 struct isl_sched_node *node = &graph->node[i];
2157 if (!isl_seq_eq(node0->sched->row[row] + 1,
2158 node->sched->row[row] + 1, cols - 1))
2159 return 0;
2160 if (equal &&
2161 isl_int_ne(node0->sched->row[row][0],
2162 node->sched->row[row][0]))
2163 equal = 0;
2165 if (equal)
2166 return 0;
2168 next_band(graph);
2170 for (i = 0; i < graph->n; ++i) {
2171 struct isl_sched_node *node = &graph->node[i];
2173 isl_map_free(node->sched_map);
2174 node->sched_map = NULL;
2175 node->sched = isl_mat_add_zero_rows(node->sched, 1);
2176 if (!node->sched)
2177 return -1;
2178 isl_int_set(node->sched->row[row + 1][0],
2179 node->sched->row[row][0]);
2180 isl_int_set_si(node->sched->row[row][0], 0);
2181 node->sched = isl_mat_normalize_row(node->sched, row);
2182 if (!node->sched)
2183 return -1;
2184 node->band[graph->n_total_row] = graph->n_band;
2187 graph->n_total_row++;
2189 return 0;
2192 /* Construct a schedule row for each node such that as many dependences
2193 * as possible are carried and then continue with the next band.
2195 static int carry_dependences(isl_ctx *ctx, struct isl_sched_graph *graph)
2197 isl_vec *sol;
2198 isl_basic_set *lp;
2200 if (setup_carry_lp(ctx, graph) < 0)
2201 return -1;
2203 lp = isl_basic_set_copy(graph->lp);
2204 sol = isl_tab_basic_set_non_neg_lexmin(lp);
2205 if (!sol)
2206 return -1;
2208 if (sol->size == 0) {
2209 isl_vec_free(sol);
2210 isl_die(ctx, isl_error_internal,
2211 "error in schedule construction", return -1);
2214 if (isl_int_cmp_si(sol->el[1], graph->n_edge) >= 0) {
2215 isl_vec_free(sol);
2216 isl_die(ctx, isl_error_unknown,
2217 "unable to carry dependences", return -1);
2220 if (update_schedule(graph, sol, 0, 0) < 0)
2221 return -1;
2223 if (split_parallel(ctx, graph) < 0)
2224 return -1;
2226 return compute_next_band(ctx, graph);
2229 /* Compute a schedule for a connected dependence graph.
2230 * We try to find a sequence of as many schedule rows as possible that result
2231 * in non-negative dependence distances (independent of the previous rows
2232 * in the sequence, i.e., such that the sequence is tilable).
2233 * If we can't find any more rows we either
2234 * - split between SCCs and start over (assuming we found an interesting
2235 * pair of SCCs between which to split)
2236 * - continue with the next band (assuming the current band has at least
2237 * one row)
2238 * - try to carry as many dependences as possible and continue with the next
2239 * band
2241 * If we manage to complete the schedule, we finish off by topologically
2242 * sorting the statements based on the remaining dependences.
2244 * If ctx->opt->schedule_outer_zero_distance is set, then we force the
2245 * outermost dimension in the current band to be zero distance. If this
2246 * turns out to be impossible, we fall back on the general scheme above
2247 * and try to carry as many dependences as possible.
2249 static int compute_schedule_wcc(isl_ctx *ctx, struct isl_sched_graph *graph)
2251 int force_zero = 0;
2253 if (detect_sccs(graph) < 0)
2254 return -1;
2255 sort_sccs(graph);
2257 if (compute_maxvar(graph) < 0)
2258 return -1;
2260 if (ctx->opt->schedule_outer_zero_distance)
2261 force_zero = 1;
2263 while (graph->n_row < graph->maxvar) {
2264 isl_vec *sol;
2266 graph->src_scc = -1;
2267 graph->dst_scc = -1;
2269 if (setup_lp(ctx, graph, force_zero) < 0)
2270 return -1;
2271 sol = solve_lp(graph);
2272 if (!sol)
2273 return -1;
2274 if (sol->size == 0) {
2275 isl_vec_free(sol);
2276 if (!ctx->opt->schedule_maximize_band_depth &&
2277 graph->n_total_row > graph->band_start)
2278 return compute_next_band(ctx, graph);
2279 if (graph->src_scc >= 0)
2280 return compute_split_schedule(ctx, graph);
2281 if (graph->n_total_row > graph->band_start)
2282 return compute_next_band(ctx, graph);
2283 return carry_dependences(ctx, graph);
2285 if (update_schedule(graph, sol, 1, 1) < 0)
2286 return -1;
2287 force_zero = 0;
2290 if (graph->n_total_row > graph->band_start)
2291 next_band(graph);
2292 return sort_statements(ctx, graph);
2295 /* Compute a schedule for each component (identified by node->scc)
2296 * of the dependence graph separately and then combine the results.
2298 * The band_id is adjusted such that each component has a separate id.
2299 * Note that the band_id may have already been set to a value different
2300 * from zero by compute_split_schedule.
2302 static int compute_component_schedule(isl_ctx *ctx,
2303 struct isl_sched_graph *graph)
2305 int wcc, i;
2306 int n, n_edge;
2307 int n_total_row, orig_total_row;
2308 int n_band, orig_band;
2310 n_total_row = 0;
2311 orig_total_row = graph->n_total_row;
2312 n_band = 0;
2313 orig_band = graph->n_band;
2314 for (i = 0; i < graph->n; ++i)
2315 graph->node[i].band_id[graph->n_band] += graph->node[i].scc;
2316 for (wcc = 0; wcc < graph->scc; ++wcc) {
2317 n = 0;
2318 for (i = 0; i < graph->n; ++i)
2319 if (graph->node[i].scc == wcc)
2320 n++;
2321 n_edge = 0;
2322 for (i = 0; i < graph->n_edge; ++i)
2323 if (graph->edge[i].src->scc == wcc)
2324 n_edge++;
2326 if (compute_sub_schedule(ctx, graph, n, n_edge,
2327 &node_scc_exactly,
2328 &edge_src_scc_exactly, wcc, 1) < 0)
2329 return -1;
2330 if (graph->n_total_row > n_total_row)
2331 n_total_row = graph->n_total_row;
2332 graph->n_total_row = orig_total_row;
2333 if (graph->n_band > n_band)
2334 n_band = graph->n_band;
2335 graph->n_band = orig_band;
2338 graph->n_total_row = n_total_row;
2339 graph->n_band = n_band;
2341 return pad_schedule(graph);
2344 /* Compute a schedule for the given dependence graph.
2345 * We first check if the graph is connected (through validity dependences)
2346 * and if so compute a schedule for each component separately.
2348 static int compute_schedule(isl_ctx *ctx, struct isl_sched_graph *graph)
2350 if (detect_wccs(graph) < 0)
2351 return -1;
2353 if (graph->scc > 1)
2354 return compute_component_schedule(ctx, graph);
2356 return compute_schedule_wcc(ctx, graph);
2359 /* Compute a schedule for the given union of domains that respects
2360 * all the validity dependences and tries to minimize the dependence
2361 * distances over the proximity dependences.
2363 __isl_give isl_schedule *isl_union_set_compute_schedule(
2364 __isl_take isl_union_set *domain,
2365 __isl_take isl_union_map *validity,
2366 __isl_take isl_union_map *proximity)
2368 isl_ctx *ctx = isl_union_set_get_ctx(domain);
2369 isl_dim *dim;
2370 struct isl_sched_graph graph = { 0 };
2371 isl_schedule *sched;
2373 domain = isl_union_set_align_params(domain,
2374 isl_union_map_get_dim(validity));
2375 domain = isl_union_set_align_params(domain,
2376 isl_union_map_get_dim(proximity));
2377 dim = isl_union_set_get_dim(domain);
2378 validity = isl_union_map_align_params(validity, isl_dim_copy(dim));
2379 proximity = isl_union_map_align_params(proximity, dim);
2381 if (!domain)
2382 goto error;
2384 graph.n = isl_union_set_n_set(domain);
2385 if (graph.n == 0)
2386 goto empty;
2387 if (graph_alloc(ctx, &graph, graph.n,
2388 isl_union_map_n_map(validity) + isl_union_map_n_map(proximity)) < 0)
2389 goto error;
2390 graph.root = 1;
2391 graph.n = 0;
2392 if (isl_union_set_foreach_set(domain, &extract_node, &graph) < 0)
2393 goto error;
2394 if (graph_init_table(ctx, &graph) < 0)
2395 goto error;
2396 graph.n_edge = 0;
2397 if (isl_union_map_foreach_map(validity, &extract_edge, &graph) < 0)
2398 goto error;
2399 if (graph_init_edge_table(ctx, &graph) < 0)
2400 goto error;
2401 if (isl_union_map_foreach_map(proximity, &extract_edge, &graph) < 0)
2402 goto error;
2404 if (compute_schedule(ctx, &graph) < 0)
2405 goto error;
2407 empty:
2408 sched = extract_schedule(&graph, isl_union_set_get_dim(domain));
2410 graph_free(ctx, &graph);
2411 isl_union_set_free(domain);
2412 isl_union_map_free(validity);
2413 isl_union_map_free(proximity);
2415 return sched;
2416 error:
2417 graph_free(ctx, &graph);
2418 isl_union_set_free(domain);
2419 isl_union_map_free(validity);
2420 isl_union_map_free(proximity);
2421 return NULL;
2424 void *isl_schedule_free(__isl_take isl_schedule *sched)
2426 int i;
2427 if (!sched)
2428 return NULL;
2430 if (--sched->ref > 0)
2431 return NULL;
2433 for (i = 0; i < sched->n; ++i) {
2434 isl_map_free(sched->node[i].sched);
2435 free(sched->node[i].band_end);
2436 free(sched->node[i].band_id);
2437 free(sched->node[i].zero);
2439 isl_dim_free(sched->dim);
2440 isl_band_list_free(sched->band_forest);
2441 free(sched);
2442 return NULL;
2445 isl_ctx *isl_schedule_get_ctx(__isl_keep isl_schedule *schedule)
2447 return schedule ? isl_dim_get_ctx(schedule->dim) : NULL;
2450 __isl_give isl_union_map *isl_schedule_get_map(__isl_keep isl_schedule *sched)
2452 int i;
2453 isl_union_map *umap;
2455 if (!sched)
2456 return NULL;
2458 umap = isl_union_map_empty(isl_dim_copy(sched->dim));
2459 for (i = 0; i < sched->n; ++i)
2460 umap = isl_union_map_add_map(umap,
2461 isl_map_copy(sched->node[i].sched));
2463 return umap;
2466 static __isl_give isl_band_list *construct_band_list(
2467 __isl_keep isl_schedule *schedule, __isl_keep isl_band *parent,
2468 int band_nr, int *parent_active, int n_active);
2470 /* Construct an isl_band structure for the band in the given schedule
2471 * with sequence number band_nr for the n_active nodes marked by active.
2472 * If the nodes don't have a band with the given sequence number,
2473 * then a band without members is created.
2475 * Because of the way the schedule is constructed, we know that
2476 * the position of the band inside the schedule of a node is the same
2477 * for all active nodes.
2479 static __isl_give isl_band *construct_band(__isl_keep isl_schedule *schedule,
2480 __isl_keep isl_band *parent,
2481 int band_nr, int *active, int n_active)
2483 int i, j;
2484 isl_ctx *ctx = isl_schedule_get_ctx(schedule);
2485 isl_band *band;
2486 unsigned start, end;
2488 band = isl_calloc_type(ctx, isl_band);
2489 if (!band)
2490 return NULL;
2492 band->ref = 1;
2493 band->schedule = schedule;
2494 band->parent = parent;
2496 for (i = 0; i < schedule->n; ++i)
2497 if (active[i] && schedule->node[i].n_band > band_nr + 1)
2498 break;
2500 if (i < schedule->n) {
2501 band->children = construct_band_list(schedule, band,
2502 band_nr + 1, active, n_active);
2503 if (!band->children)
2504 goto error;
2507 for (i = 0; i < schedule->n; ++i)
2508 if (active[i])
2509 break;
2511 if (i >= schedule->n)
2512 isl_die(ctx, isl_error_internal,
2513 "band without active statements", goto error);
2515 start = band_nr ? schedule->node[i].band_end[band_nr - 1] : 0;
2516 end = band_nr < schedule->node[i].n_band ?
2517 schedule->node[i].band_end[band_nr] : start;
2518 band->n = end - start;
2520 band->zero = isl_alloc_array(ctx, int, band->n);
2521 if (!band->zero)
2522 goto error;
2524 for (j = 0; j < band->n; ++j)
2525 band->zero[j] = schedule->node[i].zero[start + j];
2527 band->map = isl_union_map_empty(isl_dim_copy(schedule->dim));
2528 for (i = 0; i < schedule->n; ++i) {
2529 isl_map *map;
2530 unsigned n_out;
2532 if (!active[i])
2533 continue;
2535 map = isl_map_copy(schedule->node[i].sched);
2536 n_out = isl_map_dim(map, isl_dim_out);
2537 map = isl_map_project_out(map, isl_dim_out, end, n_out - end);
2538 map = isl_map_project_out(map, isl_dim_out, 0, start);
2539 band->map = isl_union_map_union(band->map,
2540 isl_union_map_from_map(map));
2542 if (!band->map)
2543 goto error;
2545 return band;
2546 error:
2547 isl_band_free(band);
2548 return NULL;
2551 /* Construct a list of bands that start at the same position (with
2552 * sequence number band_nr) in the schedules of the nodes that
2553 * were active in the parent band.
2555 * A separate isl_band structure is created for each band_id
2556 * and for each node that does not have a band with sequence
2557 * number band_nr. In the latter case, a band without members
2558 * is created.
2559 * This ensures that if a band has any children, then each node
2560 * that was active in the band is active in exactly one of the children.
2562 static __isl_give isl_band_list *construct_band_list(
2563 __isl_keep isl_schedule *schedule, __isl_keep isl_band *parent,
2564 int band_nr, int *parent_active, int n_active)
2566 int i, j;
2567 isl_ctx *ctx = isl_schedule_get_ctx(schedule);
2568 int *active;
2569 int n_band;
2570 isl_band_list *list;
2572 n_band = 0;
2573 for (i = 0; i < n_active; ++i) {
2574 for (j = 0; j < schedule->n; ++j) {
2575 if (!parent_active[j])
2576 continue;
2577 if (schedule->node[j].n_band <= band_nr)
2578 continue;
2579 if (schedule->node[j].band_id[band_nr] == i) {
2580 n_band++;
2581 break;
2585 for (j = 0; j < schedule->n; ++j)
2586 if (schedule->node[j].n_band <= band_nr)
2587 n_band++;
2589 if (n_band == 1) {
2590 isl_band *band;
2591 list = isl_band_list_alloc(ctx, n_band);
2592 band = construct_band(schedule, parent, band_nr,
2593 parent_active, n_active);
2594 return isl_band_list_add(list, band);
2597 active = isl_alloc_array(ctx, int, schedule->n);
2598 if (!active)
2599 return NULL;
2601 list = isl_band_list_alloc(ctx, n_band);
2603 for (i = 0; i < n_active; ++i) {
2604 int n = 0;
2605 isl_band *band;
2607 for (j = 0; j < schedule->n; ++j) {
2608 active[j] = parent_active[j] &&
2609 schedule->node[j].n_band > band_nr &&
2610 schedule->node[j].band_id[band_nr] == i;
2611 if (active[j])
2612 n++;
2614 if (n == 0)
2615 continue;
2617 band = construct_band(schedule, parent, band_nr, active, n);
2619 list = isl_band_list_add(list, band);
2621 for (i = 0; i < schedule->n; ++i) {
2622 isl_band *band;
2623 if (!parent_active[i])
2624 continue;
2625 if (schedule->node[i].n_band > band_nr)
2626 continue;
2627 for (j = 0; j < schedule->n; ++j)
2628 active[j] = j == i;
2629 band = construct_band(schedule, parent, band_nr, active, 1);
2630 list = isl_band_list_add(list, band);
2633 free(active);
2635 return list;
2638 /* Construct a band forest representation of the schedule and
2639 * return the list of roots.
2641 static __isl_give isl_band_list *construct_forest(
2642 __isl_keep isl_schedule *schedule)
2644 int i;
2645 isl_ctx *ctx = isl_schedule_get_ctx(schedule);
2646 isl_band_list *forest;
2647 int *active;
2649 active = isl_alloc_array(ctx, int, schedule->n);
2650 if (!active)
2651 return NULL;
2653 for (i = 0; i < schedule->n; ++i)
2654 active[i] = 1;
2656 forest = construct_band_list(schedule, NULL, 0, active, schedule->n);
2658 free(active);
2660 return forest;
2663 /* Return the roots of a band forest representation of the schedule.
2665 __isl_give isl_band_list *isl_schedule_get_band_forest(
2666 __isl_keep isl_schedule *schedule)
2668 if (!schedule)
2669 return NULL;
2670 if (!schedule->band_forest)
2671 schedule->band_forest = construct_forest(schedule);
2672 return isl_band_list_dup(schedule->band_forest);
2675 static __isl_give isl_printer *print_band_list(__isl_take isl_printer *p,
2676 __isl_keep isl_band_list *list);
2678 static __isl_give isl_printer *print_band(__isl_take isl_printer *p,
2679 __isl_keep isl_band *band)
2681 isl_band_list *children;
2683 p = isl_printer_start_line(p);
2684 p = isl_printer_print_union_map(p, band->map);
2685 p = isl_printer_end_line(p);
2687 if (!isl_band_has_children(band))
2688 return p;
2690 children = isl_band_get_children(band);
2692 p = isl_printer_indent(p, 4);
2693 p = print_band_list(p, children);
2694 p = isl_printer_indent(p, -4);
2696 isl_band_list_free(children);
2698 return p;
2701 static __isl_give isl_printer *print_band_list(__isl_take isl_printer *p,
2702 __isl_keep isl_band_list *list)
2704 int i, n;
2706 n = isl_band_list_n_band(list);
2707 for (i = 0; i < n; ++i) {
2708 isl_band *band;
2709 band = isl_band_list_get_band(list, i);
2710 p = print_band(p, band);
2711 isl_band_free(band);
2714 return p;
2717 __isl_give isl_printer *isl_printer_print_schedule(__isl_take isl_printer *p,
2718 __isl_keep isl_schedule *schedule)
2720 isl_band_list *forest;
2722 forest = isl_schedule_get_band_forest(schedule);
2724 p = print_band_list(p, forest);
2726 isl_band_list_free(forest);
2728 return p;
2731 void isl_schedule_dump(__isl_keep isl_schedule *schedule)
2733 isl_printer *printer;
2735 if (!schedule)
2736 return;
2738 printer = isl_printer_to_file(isl_schedule_get_ctx(schedule), stderr);
2739 printer = isl_printer_print_schedule(printer, schedule);
2741 isl_printer_free(printer);