add isl_multi_union_pw_aff_from_multi_aff
[isl.git] / isl_tab.c
blob66d64bf7e3b25c3e32abaa4b53d4afde02616fcb
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2013 Ecole Normale Superieure
4 * Copyright 2014 INRIA Rocquencourt
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, K.U.Leuven, Departement
9 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
11 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
12 * B.P. 105 - 78153 Le Chesnay, France
15 #include <isl_ctx_private.h>
16 #include <isl_mat_private.h>
17 #include <isl_vec_private.h>
18 #include "isl_map_private.h"
19 #include "isl_tab.h"
20 #include <isl_seq.h>
21 #include <isl_config.h>
24 * The implementation of tableaus in this file was inspired by Section 8
25 * of David Detlefs, Greg Nelson and James B. Saxe, "Simplify: a theorem
26 * prover for program checking".
29 struct isl_tab *isl_tab_alloc(struct isl_ctx *ctx,
30 unsigned n_row, unsigned n_var, unsigned M)
32 int i;
33 struct isl_tab *tab;
34 unsigned off = 2 + M;
36 tab = isl_calloc_type(ctx, struct isl_tab);
37 if (!tab)
38 return NULL;
39 tab->mat = isl_mat_alloc(ctx, n_row, off + n_var);
40 if (!tab->mat)
41 goto error;
42 tab->var = isl_alloc_array(ctx, struct isl_tab_var, n_var);
43 if (n_var && !tab->var)
44 goto error;
45 tab->con = isl_alloc_array(ctx, struct isl_tab_var, n_row);
46 if (n_row && !tab->con)
47 goto error;
48 tab->col_var = isl_alloc_array(ctx, int, n_var);
49 if (n_var && !tab->col_var)
50 goto error;
51 tab->row_var = isl_alloc_array(ctx, int, n_row);
52 if (n_row && !tab->row_var)
53 goto error;
54 for (i = 0; i < n_var; ++i) {
55 tab->var[i].index = i;
56 tab->var[i].is_row = 0;
57 tab->var[i].is_nonneg = 0;
58 tab->var[i].is_zero = 0;
59 tab->var[i].is_redundant = 0;
60 tab->var[i].frozen = 0;
61 tab->var[i].negated = 0;
62 tab->col_var[i] = i;
64 tab->n_row = 0;
65 tab->n_con = 0;
66 tab->n_eq = 0;
67 tab->max_con = n_row;
68 tab->n_col = n_var;
69 tab->n_var = n_var;
70 tab->max_var = n_var;
71 tab->n_param = 0;
72 tab->n_div = 0;
73 tab->n_dead = 0;
74 tab->n_redundant = 0;
75 tab->strict_redundant = 0;
76 tab->need_undo = 0;
77 tab->rational = 0;
78 tab->empty = 0;
79 tab->in_undo = 0;
80 tab->M = M;
81 tab->cone = 0;
82 tab->bottom.type = isl_tab_undo_bottom;
83 tab->bottom.next = NULL;
84 tab->top = &tab->bottom;
86 tab->n_zero = 0;
87 tab->n_unbounded = 0;
88 tab->basis = NULL;
90 return tab;
91 error:
92 isl_tab_free(tab);
93 return NULL;
96 isl_ctx *isl_tab_get_ctx(struct isl_tab *tab)
98 return tab ? isl_mat_get_ctx(tab->mat) : NULL;
101 int isl_tab_extend_cons(struct isl_tab *tab, unsigned n_new)
103 unsigned off;
105 if (!tab)
106 return -1;
108 off = 2 + tab->M;
110 if (tab->max_con < tab->n_con + n_new) {
111 struct isl_tab_var *con;
113 con = isl_realloc_array(tab->mat->ctx, tab->con,
114 struct isl_tab_var, tab->max_con + n_new);
115 if (!con)
116 return -1;
117 tab->con = con;
118 tab->max_con += n_new;
120 if (tab->mat->n_row < tab->n_row + n_new) {
121 int *row_var;
123 tab->mat = isl_mat_extend(tab->mat,
124 tab->n_row + n_new, off + tab->n_col);
125 if (!tab->mat)
126 return -1;
127 row_var = isl_realloc_array(tab->mat->ctx, tab->row_var,
128 int, tab->mat->n_row);
129 if (!row_var)
130 return -1;
131 tab->row_var = row_var;
132 if (tab->row_sign) {
133 enum isl_tab_row_sign *s;
134 s = isl_realloc_array(tab->mat->ctx, tab->row_sign,
135 enum isl_tab_row_sign, tab->mat->n_row);
136 if (!s)
137 return -1;
138 tab->row_sign = s;
141 return 0;
144 /* Make room for at least n_new extra variables.
145 * Return -1 if anything went wrong.
147 int isl_tab_extend_vars(struct isl_tab *tab, unsigned n_new)
149 struct isl_tab_var *var;
150 unsigned off = 2 + tab->M;
152 if (tab->max_var < tab->n_var + n_new) {
153 var = isl_realloc_array(tab->mat->ctx, tab->var,
154 struct isl_tab_var, tab->n_var + n_new);
155 if (!var)
156 return -1;
157 tab->var = var;
158 tab->max_var += n_new;
161 if (tab->mat->n_col < off + tab->n_col + n_new) {
162 int *p;
164 tab->mat = isl_mat_extend(tab->mat,
165 tab->mat->n_row, off + tab->n_col + n_new);
166 if (!tab->mat)
167 return -1;
168 p = isl_realloc_array(tab->mat->ctx, tab->col_var,
169 int, tab->n_col + n_new);
170 if (!p)
171 return -1;
172 tab->col_var = p;
175 return 0;
178 static void free_undo_record(struct isl_tab_undo *undo)
180 switch (undo->type) {
181 case isl_tab_undo_saved_basis:
182 free(undo->u.col_var);
183 break;
184 default:;
186 free(undo);
189 static void free_undo(struct isl_tab *tab)
191 struct isl_tab_undo *undo, *next;
193 for (undo = tab->top; undo && undo != &tab->bottom; undo = next) {
194 next = undo->next;
195 free_undo_record(undo);
197 tab->top = undo;
200 void isl_tab_free(struct isl_tab *tab)
202 if (!tab)
203 return;
204 free_undo(tab);
205 isl_mat_free(tab->mat);
206 isl_vec_free(tab->dual);
207 isl_basic_map_free(tab->bmap);
208 free(tab->var);
209 free(tab->con);
210 free(tab->row_var);
211 free(tab->col_var);
212 free(tab->row_sign);
213 isl_mat_free(tab->samples);
214 free(tab->sample_index);
215 isl_mat_free(tab->basis);
216 free(tab);
219 struct isl_tab *isl_tab_dup(struct isl_tab *tab)
221 int i;
222 struct isl_tab *dup;
223 unsigned off;
225 if (!tab)
226 return NULL;
228 off = 2 + tab->M;
229 dup = isl_calloc_type(tab->mat->ctx, struct isl_tab);
230 if (!dup)
231 return NULL;
232 dup->mat = isl_mat_dup(tab->mat);
233 if (!dup->mat)
234 goto error;
235 dup->var = isl_alloc_array(tab->mat->ctx, struct isl_tab_var, tab->max_var);
236 if (tab->max_var && !dup->var)
237 goto error;
238 for (i = 0; i < tab->n_var; ++i)
239 dup->var[i] = tab->var[i];
240 dup->con = isl_alloc_array(tab->mat->ctx, struct isl_tab_var, tab->max_con);
241 if (tab->max_con && !dup->con)
242 goto error;
243 for (i = 0; i < tab->n_con; ++i)
244 dup->con[i] = tab->con[i];
245 dup->col_var = isl_alloc_array(tab->mat->ctx, int, tab->mat->n_col - off);
246 if ((tab->mat->n_col - off) && !dup->col_var)
247 goto error;
248 for (i = 0; i < tab->n_col; ++i)
249 dup->col_var[i] = tab->col_var[i];
250 dup->row_var = isl_alloc_array(tab->mat->ctx, int, tab->mat->n_row);
251 if (tab->mat->n_row && !dup->row_var)
252 goto error;
253 for (i = 0; i < tab->n_row; ++i)
254 dup->row_var[i] = tab->row_var[i];
255 if (tab->row_sign) {
256 dup->row_sign = isl_alloc_array(tab->mat->ctx, enum isl_tab_row_sign,
257 tab->mat->n_row);
258 if (tab->mat->n_row && !dup->row_sign)
259 goto error;
260 for (i = 0; i < tab->n_row; ++i)
261 dup->row_sign[i] = tab->row_sign[i];
263 if (tab->samples) {
264 dup->samples = isl_mat_dup(tab->samples);
265 if (!dup->samples)
266 goto error;
267 dup->sample_index = isl_alloc_array(tab->mat->ctx, int,
268 tab->samples->n_row);
269 if (tab->samples->n_row && !dup->sample_index)
270 goto error;
271 dup->n_sample = tab->n_sample;
272 dup->n_outside = tab->n_outside;
274 dup->n_row = tab->n_row;
275 dup->n_con = tab->n_con;
276 dup->n_eq = tab->n_eq;
277 dup->max_con = tab->max_con;
278 dup->n_col = tab->n_col;
279 dup->n_var = tab->n_var;
280 dup->max_var = tab->max_var;
281 dup->n_param = tab->n_param;
282 dup->n_div = tab->n_div;
283 dup->n_dead = tab->n_dead;
284 dup->n_redundant = tab->n_redundant;
285 dup->rational = tab->rational;
286 dup->empty = tab->empty;
287 dup->strict_redundant = 0;
288 dup->need_undo = 0;
289 dup->in_undo = 0;
290 dup->M = tab->M;
291 tab->cone = tab->cone;
292 dup->bottom.type = isl_tab_undo_bottom;
293 dup->bottom.next = NULL;
294 dup->top = &dup->bottom;
296 dup->n_zero = tab->n_zero;
297 dup->n_unbounded = tab->n_unbounded;
298 dup->basis = isl_mat_dup(tab->basis);
300 return dup;
301 error:
302 isl_tab_free(dup);
303 return NULL;
306 /* Construct the coefficient matrix of the product tableau
307 * of two tableaus.
308 * mat{1,2} is the coefficient matrix of tableau {1,2}
309 * row{1,2} is the number of rows in tableau {1,2}
310 * col{1,2} is the number of columns in tableau {1,2}
311 * off is the offset to the coefficient column (skipping the
312 * denominator, the constant term and the big parameter if any)
313 * r{1,2} is the number of redundant rows in tableau {1,2}
314 * d{1,2} is the number of dead columns in tableau {1,2}
316 * The order of the rows and columns in the result is as explained
317 * in isl_tab_product.
319 static struct isl_mat *tab_mat_product(struct isl_mat *mat1,
320 struct isl_mat *mat2, unsigned row1, unsigned row2,
321 unsigned col1, unsigned col2,
322 unsigned off, unsigned r1, unsigned r2, unsigned d1, unsigned d2)
324 int i;
325 struct isl_mat *prod;
326 unsigned n;
328 prod = isl_mat_alloc(mat1->ctx, mat1->n_row + mat2->n_row,
329 off + col1 + col2);
330 if (!prod)
331 return NULL;
333 n = 0;
334 for (i = 0; i < r1; ++i) {
335 isl_seq_cpy(prod->row[n + i], mat1->row[i], off + d1);
336 isl_seq_clr(prod->row[n + i] + off + d1, d2);
337 isl_seq_cpy(prod->row[n + i] + off + d1 + d2,
338 mat1->row[i] + off + d1, col1 - d1);
339 isl_seq_clr(prod->row[n + i] + off + col1 + d1, col2 - d2);
342 n += r1;
343 for (i = 0; i < r2; ++i) {
344 isl_seq_cpy(prod->row[n + i], mat2->row[i], off);
345 isl_seq_clr(prod->row[n + i] + off, d1);
346 isl_seq_cpy(prod->row[n + i] + off + d1,
347 mat2->row[i] + off, d2);
348 isl_seq_clr(prod->row[n + i] + off + d1 + d2, col1 - d1);
349 isl_seq_cpy(prod->row[n + i] + off + col1 + d1,
350 mat2->row[i] + off + d2, col2 - d2);
353 n += r2;
354 for (i = 0; i < row1 - r1; ++i) {
355 isl_seq_cpy(prod->row[n + i], mat1->row[r1 + i], off + d1);
356 isl_seq_clr(prod->row[n + i] + off + d1, d2);
357 isl_seq_cpy(prod->row[n + i] + off + d1 + d2,
358 mat1->row[r1 + i] + off + d1, col1 - d1);
359 isl_seq_clr(prod->row[n + i] + off + col1 + d1, col2 - d2);
362 n += row1 - r1;
363 for (i = 0; i < row2 - r2; ++i) {
364 isl_seq_cpy(prod->row[n + i], mat2->row[r2 + i], off);
365 isl_seq_clr(prod->row[n + i] + off, d1);
366 isl_seq_cpy(prod->row[n + i] + off + d1,
367 mat2->row[r2 + i] + off, d2);
368 isl_seq_clr(prod->row[n + i] + off + d1 + d2, col1 - d1);
369 isl_seq_cpy(prod->row[n + i] + off + col1 + d1,
370 mat2->row[r2 + i] + off + d2, col2 - d2);
373 return prod;
376 /* Update the row or column index of a variable that corresponds
377 * to a variable in the first input tableau.
379 static void update_index1(struct isl_tab_var *var,
380 unsigned r1, unsigned r2, unsigned d1, unsigned d2)
382 if (var->index == -1)
383 return;
384 if (var->is_row && var->index >= r1)
385 var->index += r2;
386 if (!var->is_row && var->index >= d1)
387 var->index += d2;
390 /* Update the row or column index of a variable that corresponds
391 * to a variable in the second input tableau.
393 static void update_index2(struct isl_tab_var *var,
394 unsigned row1, unsigned col1,
395 unsigned r1, unsigned r2, unsigned d1, unsigned d2)
397 if (var->index == -1)
398 return;
399 if (var->is_row) {
400 if (var->index < r2)
401 var->index += r1;
402 else
403 var->index += row1;
404 } else {
405 if (var->index < d2)
406 var->index += d1;
407 else
408 var->index += col1;
412 /* Create a tableau that represents the Cartesian product of the sets
413 * represented by tableaus tab1 and tab2.
414 * The order of the rows in the product is
415 * - redundant rows of tab1
416 * - redundant rows of tab2
417 * - non-redundant rows of tab1
418 * - non-redundant rows of tab2
419 * The order of the columns is
420 * - denominator
421 * - constant term
422 * - coefficient of big parameter, if any
423 * - dead columns of tab1
424 * - dead columns of tab2
425 * - live columns of tab1
426 * - live columns of tab2
427 * The order of the variables and the constraints is a concatenation
428 * of order in the two input tableaus.
430 struct isl_tab *isl_tab_product(struct isl_tab *tab1, struct isl_tab *tab2)
432 int i;
433 struct isl_tab *prod;
434 unsigned off;
435 unsigned r1, r2, d1, d2;
437 if (!tab1 || !tab2)
438 return NULL;
440 isl_assert(tab1->mat->ctx, tab1->M == tab2->M, return NULL);
441 isl_assert(tab1->mat->ctx, tab1->rational == tab2->rational, return NULL);
442 isl_assert(tab1->mat->ctx, tab1->cone == tab2->cone, return NULL);
443 isl_assert(tab1->mat->ctx, !tab1->row_sign, return NULL);
444 isl_assert(tab1->mat->ctx, !tab2->row_sign, return NULL);
445 isl_assert(tab1->mat->ctx, tab1->n_param == 0, return NULL);
446 isl_assert(tab1->mat->ctx, tab2->n_param == 0, return NULL);
447 isl_assert(tab1->mat->ctx, tab1->n_div == 0, return NULL);
448 isl_assert(tab1->mat->ctx, tab2->n_div == 0, return NULL);
450 off = 2 + tab1->M;
451 r1 = tab1->n_redundant;
452 r2 = tab2->n_redundant;
453 d1 = tab1->n_dead;
454 d2 = tab2->n_dead;
455 prod = isl_calloc_type(tab1->mat->ctx, struct isl_tab);
456 if (!prod)
457 return NULL;
458 prod->mat = tab_mat_product(tab1->mat, tab2->mat,
459 tab1->n_row, tab2->n_row,
460 tab1->n_col, tab2->n_col, off, r1, r2, d1, d2);
461 if (!prod->mat)
462 goto error;
463 prod->var = isl_alloc_array(tab1->mat->ctx, struct isl_tab_var,
464 tab1->max_var + tab2->max_var);
465 if ((tab1->max_var + tab2->max_var) && !prod->var)
466 goto error;
467 for (i = 0; i < tab1->n_var; ++i) {
468 prod->var[i] = tab1->var[i];
469 update_index1(&prod->var[i], r1, r2, d1, d2);
471 for (i = 0; i < tab2->n_var; ++i) {
472 prod->var[tab1->n_var + i] = tab2->var[i];
473 update_index2(&prod->var[tab1->n_var + i],
474 tab1->n_row, tab1->n_col,
475 r1, r2, d1, d2);
477 prod->con = isl_alloc_array(tab1->mat->ctx, struct isl_tab_var,
478 tab1->max_con + tab2->max_con);
479 if ((tab1->max_con + tab2->max_con) && !prod->con)
480 goto error;
481 for (i = 0; i < tab1->n_con; ++i) {
482 prod->con[i] = tab1->con[i];
483 update_index1(&prod->con[i], r1, r2, d1, d2);
485 for (i = 0; i < tab2->n_con; ++i) {
486 prod->con[tab1->n_con + i] = tab2->con[i];
487 update_index2(&prod->con[tab1->n_con + i],
488 tab1->n_row, tab1->n_col,
489 r1, r2, d1, d2);
491 prod->col_var = isl_alloc_array(tab1->mat->ctx, int,
492 tab1->n_col + tab2->n_col);
493 if ((tab1->n_col + tab2->n_col) && !prod->col_var)
494 goto error;
495 for (i = 0; i < tab1->n_col; ++i) {
496 int pos = i < d1 ? i : i + d2;
497 prod->col_var[pos] = tab1->col_var[i];
499 for (i = 0; i < tab2->n_col; ++i) {
500 int pos = i < d2 ? d1 + i : tab1->n_col + i;
501 int t = tab2->col_var[i];
502 if (t >= 0)
503 t += tab1->n_var;
504 else
505 t -= tab1->n_con;
506 prod->col_var[pos] = t;
508 prod->row_var = isl_alloc_array(tab1->mat->ctx, int,
509 tab1->mat->n_row + tab2->mat->n_row);
510 if ((tab1->mat->n_row + tab2->mat->n_row) && !prod->row_var)
511 goto error;
512 for (i = 0; i < tab1->n_row; ++i) {
513 int pos = i < r1 ? i : i + r2;
514 prod->row_var[pos] = tab1->row_var[i];
516 for (i = 0; i < tab2->n_row; ++i) {
517 int pos = i < r2 ? r1 + i : tab1->n_row + i;
518 int t = tab2->row_var[i];
519 if (t >= 0)
520 t += tab1->n_var;
521 else
522 t -= tab1->n_con;
523 prod->row_var[pos] = t;
525 prod->samples = NULL;
526 prod->sample_index = NULL;
527 prod->n_row = tab1->n_row + tab2->n_row;
528 prod->n_con = tab1->n_con + tab2->n_con;
529 prod->n_eq = 0;
530 prod->max_con = tab1->max_con + tab2->max_con;
531 prod->n_col = tab1->n_col + tab2->n_col;
532 prod->n_var = tab1->n_var + tab2->n_var;
533 prod->max_var = tab1->max_var + tab2->max_var;
534 prod->n_param = 0;
535 prod->n_div = 0;
536 prod->n_dead = tab1->n_dead + tab2->n_dead;
537 prod->n_redundant = tab1->n_redundant + tab2->n_redundant;
538 prod->rational = tab1->rational;
539 prod->empty = tab1->empty || tab2->empty;
540 prod->strict_redundant = tab1->strict_redundant || tab2->strict_redundant;
541 prod->need_undo = 0;
542 prod->in_undo = 0;
543 prod->M = tab1->M;
544 prod->cone = tab1->cone;
545 prod->bottom.type = isl_tab_undo_bottom;
546 prod->bottom.next = NULL;
547 prod->top = &prod->bottom;
549 prod->n_zero = 0;
550 prod->n_unbounded = 0;
551 prod->basis = NULL;
553 return prod;
554 error:
555 isl_tab_free(prod);
556 return NULL;
559 static struct isl_tab_var *var_from_index(struct isl_tab *tab, int i)
561 if (i >= 0)
562 return &tab->var[i];
563 else
564 return &tab->con[~i];
567 struct isl_tab_var *isl_tab_var_from_row(struct isl_tab *tab, int i)
569 return var_from_index(tab, tab->row_var[i]);
572 static struct isl_tab_var *var_from_col(struct isl_tab *tab, int i)
574 return var_from_index(tab, tab->col_var[i]);
577 /* Check if there are any upper bounds on column variable "var",
578 * i.e., non-negative rows where var appears with a negative coefficient.
579 * Return 1 if there are no such bounds.
581 static int max_is_manifestly_unbounded(struct isl_tab *tab,
582 struct isl_tab_var *var)
584 int i;
585 unsigned off = 2 + tab->M;
587 if (var->is_row)
588 return 0;
589 for (i = tab->n_redundant; i < tab->n_row; ++i) {
590 if (!isl_int_is_neg(tab->mat->row[i][off + var->index]))
591 continue;
592 if (isl_tab_var_from_row(tab, i)->is_nonneg)
593 return 0;
595 return 1;
598 /* Check if there are any lower bounds on column variable "var",
599 * i.e., non-negative rows where var appears with a positive coefficient.
600 * Return 1 if there are no such bounds.
602 static int min_is_manifestly_unbounded(struct isl_tab *tab,
603 struct isl_tab_var *var)
605 int i;
606 unsigned off = 2 + tab->M;
608 if (var->is_row)
609 return 0;
610 for (i = tab->n_redundant; i < tab->n_row; ++i) {
611 if (!isl_int_is_pos(tab->mat->row[i][off + var->index]))
612 continue;
613 if (isl_tab_var_from_row(tab, i)->is_nonneg)
614 return 0;
616 return 1;
619 static int row_cmp(struct isl_tab *tab, int r1, int r2, int c, isl_int t)
621 unsigned off = 2 + tab->M;
623 if (tab->M) {
624 int s;
625 isl_int_mul(t, tab->mat->row[r1][2], tab->mat->row[r2][off+c]);
626 isl_int_submul(t, tab->mat->row[r2][2], tab->mat->row[r1][off+c]);
627 s = isl_int_sgn(t);
628 if (s)
629 return s;
631 isl_int_mul(t, tab->mat->row[r1][1], tab->mat->row[r2][off + c]);
632 isl_int_submul(t, tab->mat->row[r2][1], tab->mat->row[r1][off + c]);
633 return isl_int_sgn(t);
636 /* Given the index of a column "c", return the index of a row
637 * that can be used to pivot the column in, with either an increase
638 * (sgn > 0) or a decrease (sgn < 0) of the corresponding variable.
639 * If "var" is not NULL, then the row returned will be different from
640 * the one associated with "var".
642 * Each row in the tableau is of the form
644 * x_r = a_r0 + \sum_i a_ri x_i
646 * Only rows with x_r >= 0 and with the sign of a_ri opposite to "sgn"
647 * impose any limit on the increase or decrease in the value of x_c
648 * and this bound is equal to a_r0 / |a_rc|. We are therefore looking
649 * for the row with the smallest (most stringent) such bound.
650 * Note that the common denominator of each row drops out of the fraction.
651 * To check if row j has a smaller bound than row r, i.e.,
652 * a_j0 / |a_jc| < a_r0 / |a_rc| or a_j0 |a_rc| < a_r0 |a_jc|,
653 * we check if -sign(a_jc) (a_j0 a_rc - a_r0 a_jc) < 0,
654 * where -sign(a_jc) is equal to "sgn".
656 static int pivot_row(struct isl_tab *tab,
657 struct isl_tab_var *var, int sgn, int c)
659 int j, r, tsgn;
660 isl_int t;
661 unsigned off = 2 + tab->M;
663 isl_int_init(t);
664 r = -1;
665 for (j = tab->n_redundant; j < tab->n_row; ++j) {
666 if (var && j == var->index)
667 continue;
668 if (!isl_tab_var_from_row(tab, j)->is_nonneg)
669 continue;
670 if (sgn * isl_int_sgn(tab->mat->row[j][off + c]) >= 0)
671 continue;
672 if (r < 0) {
673 r = j;
674 continue;
676 tsgn = sgn * row_cmp(tab, r, j, c, t);
677 if (tsgn < 0 || (tsgn == 0 &&
678 tab->row_var[j] < tab->row_var[r]))
679 r = j;
681 isl_int_clear(t);
682 return r;
685 /* Find a pivot (row and col) that will increase (sgn > 0) or decrease
686 * (sgn < 0) the value of row variable var.
687 * If not NULL, then skip_var is a row variable that should be ignored
688 * while looking for a pivot row. It is usually equal to var.
690 * As the given row in the tableau is of the form
692 * x_r = a_r0 + \sum_i a_ri x_i
694 * we need to find a column such that the sign of a_ri is equal to "sgn"
695 * (such that an increase in x_i will have the desired effect) or a
696 * column with a variable that may attain negative values.
697 * If a_ri is positive, then we need to move x_i in the same direction
698 * to obtain the desired effect. Otherwise, x_i has to move in the
699 * opposite direction.
701 static void find_pivot(struct isl_tab *tab,
702 struct isl_tab_var *var, struct isl_tab_var *skip_var,
703 int sgn, int *row, int *col)
705 int j, r, c;
706 isl_int *tr;
708 *row = *col = -1;
710 isl_assert(tab->mat->ctx, var->is_row, return);
711 tr = tab->mat->row[var->index] + 2 + tab->M;
713 c = -1;
714 for (j = tab->n_dead; j < tab->n_col; ++j) {
715 if (isl_int_is_zero(tr[j]))
716 continue;
717 if (isl_int_sgn(tr[j]) != sgn &&
718 var_from_col(tab, j)->is_nonneg)
719 continue;
720 if (c < 0 || tab->col_var[j] < tab->col_var[c])
721 c = j;
723 if (c < 0)
724 return;
726 sgn *= isl_int_sgn(tr[c]);
727 r = pivot_row(tab, skip_var, sgn, c);
728 *row = r < 0 ? var->index : r;
729 *col = c;
732 /* Return 1 if row "row" represents an obviously redundant inequality.
733 * This means
734 * - it represents an inequality or a variable
735 * - that is the sum of a non-negative sample value and a positive
736 * combination of zero or more non-negative constraints.
738 int isl_tab_row_is_redundant(struct isl_tab *tab, int row)
740 int i;
741 unsigned off = 2 + tab->M;
743 if (tab->row_var[row] < 0 && !isl_tab_var_from_row(tab, row)->is_nonneg)
744 return 0;
746 if (isl_int_is_neg(tab->mat->row[row][1]))
747 return 0;
748 if (tab->strict_redundant && isl_int_is_zero(tab->mat->row[row][1]))
749 return 0;
750 if (tab->M && isl_int_is_neg(tab->mat->row[row][2]))
751 return 0;
753 for (i = tab->n_dead; i < tab->n_col; ++i) {
754 if (isl_int_is_zero(tab->mat->row[row][off + i]))
755 continue;
756 if (tab->col_var[i] >= 0)
757 return 0;
758 if (isl_int_is_neg(tab->mat->row[row][off + i]))
759 return 0;
760 if (!var_from_col(tab, i)->is_nonneg)
761 return 0;
763 return 1;
766 static void swap_rows(struct isl_tab *tab, int row1, int row2)
768 int t;
769 enum isl_tab_row_sign s;
771 t = tab->row_var[row1];
772 tab->row_var[row1] = tab->row_var[row2];
773 tab->row_var[row2] = t;
774 isl_tab_var_from_row(tab, row1)->index = row1;
775 isl_tab_var_from_row(tab, row2)->index = row2;
776 tab->mat = isl_mat_swap_rows(tab->mat, row1, row2);
778 if (!tab->row_sign)
779 return;
780 s = tab->row_sign[row1];
781 tab->row_sign[row1] = tab->row_sign[row2];
782 tab->row_sign[row2] = s;
785 static int push_union(struct isl_tab *tab,
786 enum isl_tab_undo_type type, union isl_tab_undo_val u) WARN_UNUSED;
787 static int push_union(struct isl_tab *tab,
788 enum isl_tab_undo_type type, union isl_tab_undo_val u)
790 struct isl_tab_undo *undo;
792 if (!tab)
793 return -1;
794 if (!tab->need_undo)
795 return 0;
797 undo = isl_alloc_type(tab->mat->ctx, struct isl_tab_undo);
798 if (!undo)
799 return -1;
800 undo->type = type;
801 undo->u = u;
802 undo->next = tab->top;
803 tab->top = undo;
805 return 0;
808 int isl_tab_push_var(struct isl_tab *tab,
809 enum isl_tab_undo_type type, struct isl_tab_var *var)
811 union isl_tab_undo_val u;
812 if (var->is_row)
813 u.var_index = tab->row_var[var->index];
814 else
815 u.var_index = tab->col_var[var->index];
816 return push_union(tab, type, u);
819 int isl_tab_push(struct isl_tab *tab, enum isl_tab_undo_type type)
821 union isl_tab_undo_val u = { 0 };
822 return push_union(tab, type, u);
825 /* Push a record on the undo stack describing the current basic
826 * variables, so that the this state can be restored during rollback.
828 int isl_tab_push_basis(struct isl_tab *tab)
830 int i;
831 union isl_tab_undo_val u;
833 u.col_var = isl_alloc_array(tab->mat->ctx, int, tab->n_col);
834 if (tab->n_col && !u.col_var)
835 return -1;
836 for (i = 0; i < tab->n_col; ++i)
837 u.col_var[i] = tab->col_var[i];
838 return push_union(tab, isl_tab_undo_saved_basis, u);
841 int isl_tab_push_callback(struct isl_tab *tab, struct isl_tab_callback *callback)
843 union isl_tab_undo_val u;
844 u.callback = callback;
845 return push_union(tab, isl_tab_undo_callback, u);
848 struct isl_tab *isl_tab_init_samples(struct isl_tab *tab)
850 if (!tab)
851 return NULL;
853 tab->n_sample = 0;
854 tab->n_outside = 0;
855 tab->samples = isl_mat_alloc(tab->mat->ctx, 1, 1 + tab->n_var);
856 if (!tab->samples)
857 goto error;
858 tab->sample_index = isl_alloc_array(tab->mat->ctx, int, 1);
859 if (!tab->sample_index)
860 goto error;
861 return tab;
862 error:
863 isl_tab_free(tab);
864 return NULL;
867 int isl_tab_add_sample(struct isl_tab *tab, __isl_take isl_vec *sample)
869 if (!tab || !sample)
870 goto error;
872 if (tab->n_sample + 1 > tab->samples->n_row) {
873 int *t = isl_realloc_array(tab->mat->ctx,
874 tab->sample_index, int, tab->n_sample + 1);
875 if (!t)
876 goto error;
877 tab->sample_index = t;
880 tab->samples = isl_mat_extend(tab->samples,
881 tab->n_sample + 1, tab->samples->n_col);
882 if (!tab->samples)
883 goto error;
885 isl_seq_cpy(tab->samples->row[tab->n_sample], sample->el, sample->size);
886 isl_vec_free(sample);
887 tab->sample_index[tab->n_sample] = tab->n_sample;
888 tab->n_sample++;
890 return 0;
891 error:
892 isl_vec_free(sample);
893 return -1;
896 struct isl_tab *isl_tab_drop_sample(struct isl_tab *tab, int s)
898 if (s != tab->n_outside) {
899 int t = tab->sample_index[tab->n_outside];
900 tab->sample_index[tab->n_outside] = tab->sample_index[s];
901 tab->sample_index[s] = t;
902 isl_mat_swap_rows(tab->samples, tab->n_outside, s);
904 tab->n_outside++;
905 if (isl_tab_push(tab, isl_tab_undo_drop_sample) < 0) {
906 isl_tab_free(tab);
907 return NULL;
910 return tab;
913 /* Record the current number of samples so that we can remove newer
914 * samples during a rollback.
916 int isl_tab_save_samples(struct isl_tab *tab)
918 union isl_tab_undo_val u;
920 if (!tab)
921 return -1;
923 u.n = tab->n_sample;
924 return push_union(tab, isl_tab_undo_saved_samples, u);
927 /* Mark row with index "row" as being redundant.
928 * If we may need to undo the operation or if the row represents
929 * a variable of the original problem, the row is kept,
930 * but no longer considered when looking for a pivot row.
931 * Otherwise, the row is simply removed.
933 * The row may be interchanged with some other row. If it
934 * is interchanged with a later row, return 1. Otherwise return 0.
935 * If the rows are checked in order in the calling function,
936 * then a return value of 1 means that the row with the given
937 * row number may now contain a different row that hasn't been checked yet.
939 int isl_tab_mark_redundant(struct isl_tab *tab, int row)
941 struct isl_tab_var *var = isl_tab_var_from_row(tab, row);
942 var->is_redundant = 1;
943 isl_assert(tab->mat->ctx, row >= tab->n_redundant, return -1);
944 if (tab->preserve || tab->need_undo || tab->row_var[row] >= 0) {
945 if (tab->row_var[row] >= 0 && !var->is_nonneg) {
946 var->is_nonneg = 1;
947 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, var) < 0)
948 return -1;
950 if (row != tab->n_redundant)
951 swap_rows(tab, row, tab->n_redundant);
952 tab->n_redundant++;
953 return isl_tab_push_var(tab, isl_tab_undo_redundant, var);
954 } else {
955 if (row != tab->n_row - 1)
956 swap_rows(tab, row, tab->n_row - 1);
957 isl_tab_var_from_row(tab, tab->n_row - 1)->index = -1;
958 tab->n_row--;
959 return 1;
963 /* Mark "tab" as a rational tableau.
964 * If it wasn't marked as a rational tableau already and if we may
965 * need to undo changes, then arrange for the marking to be undone
966 * during the undo.
968 int isl_tab_mark_rational(struct isl_tab *tab)
970 if (!tab)
971 return -1;
972 if (!tab->rational && tab->need_undo)
973 if (isl_tab_push(tab, isl_tab_undo_rational) < 0)
974 return -1;
975 tab->rational = 1;
976 return 0;
979 int isl_tab_mark_empty(struct isl_tab *tab)
981 if (!tab)
982 return -1;
983 if (!tab->empty && tab->need_undo)
984 if (isl_tab_push(tab, isl_tab_undo_empty) < 0)
985 return -1;
986 tab->empty = 1;
987 return 0;
990 int isl_tab_freeze_constraint(struct isl_tab *tab, int con)
992 struct isl_tab_var *var;
994 if (!tab)
995 return -1;
997 var = &tab->con[con];
998 if (var->frozen)
999 return 0;
1000 if (var->index < 0)
1001 return 0;
1002 var->frozen = 1;
1004 if (tab->need_undo)
1005 return isl_tab_push_var(tab, isl_tab_undo_freeze, var);
1007 return 0;
1010 /* Update the rows signs after a pivot of "row" and "col", with "row_sgn"
1011 * the original sign of the pivot element.
1012 * We only keep track of row signs during PILP solving and in this case
1013 * we only pivot a row with negative sign (meaning the value is always
1014 * non-positive) using a positive pivot element.
1016 * For each row j, the new value of the parametric constant is equal to
1018 * a_j0 - a_jc a_r0/a_rc
1020 * where a_j0 is the original parametric constant, a_rc is the pivot element,
1021 * a_r0 is the parametric constant of the pivot row and a_jc is the
1022 * pivot column entry of the row j.
1023 * Since a_r0 is non-positive and a_rc is positive, the sign of row j
1024 * remains the same if a_jc has the same sign as the row j or if
1025 * a_jc is zero. In all other cases, we reset the sign to "unknown".
1027 static void update_row_sign(struct isl_tab *tab, int row, int col, int row_sgn)
1029 int i;
1030 struct isl_mat *mat = tab->mat;
1031 unsigned off = 2 + tab->M;
1033 if (!tab->row_sign)
1034 return;
1036 if (tab->row_sign[row] == 0)
1037 return;
1038 isl_assert(mat->ctx, row_sgn > 0, return);
1039 isl_assert(mat->ctx, tab->row_sign[row] == isl_tab_row_neg, return);
1040 tab->row_sign[row] = isl_tab_row_pos;
1041 for (i = 0; i < tab->n_row; ++i) {
1042 int s;
1043 if (i == row)
1044 continue;
1045 s = isl_int_sgn(mat->row[i][off + col]);
1046 if (!s)
1047 continue;
1048 if (!tab->row_sign[i])
1049 continue;
1050 if (s < 0 && tab->row_sign[i] == isl_tab_row_neg)
1051 continue;
1052 if (s > 0 && tab->row_sign[i] == isl_tab_row_pos)
1053 continue;
1054 tab->row_sign[i] = isl_tab_row_unknown;
1058 /* Given a row number "row" and a column number "col", pivot the tableau
1059 * such that the associated variables are interchanged.
1060 * The given row in the tableau expresses
1062 * x_r = a_r0 + \sum_i a_ri x_i
1064 * or
1066 * x_c = 1/a_rc x_r - a_r0/a_rc + sum_{i \ne r} -a_ri/a_rc
1068 * Substituting this equality into the other rows
1070 * x_j = a_j0 + \sum_i a_ji x_i
1072 * with a_jc \ne 0, we obtain
1074 * x_j = a_jc/a_rc x_r + a_j0 - a_jc a_r0/a_rc + sum a_ji - a_jc a_ri/a_rc
1076 * The tableau
1078 * n_rc/d_r n_ri/d_r
1079 * n_jc/d_j n_ji/d_j
1081 * where i is any other column and j is any other row,
1082 * is therefore transformed into
1084 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1085 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1087 * The transformation is performed along the following steps
1089 * d_r/n_rc n_ri/n_rc
1090 * n_jc/d_j n_ji/d_j
1092 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1093 * n_jc/d_j n_ji/d_j
1095 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1096 * n_jc/(|n_rc| d_j) n_ji/(|n_rc| d_j)
1098 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1099 * n_jc/(|n_rc| d_j) (n_ji |n_rc|)/(|n_rc| d_j)
1101 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1102 * n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1104 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1105 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1108 int isl_tab_pivot(struct isl_tab *tab, int row, int col)
1110 int i, j;
1111 int sgn;
1112 int t;
1113 isl_ctx *ctx;
1114 struct isl_mat *mat = tab->mat;
1115 struct isl_tab_var *var;
1116 unsigned off = 2 + tab->M;
1118 ctx = isl_tab_get_ctx(tab);
1119 if (isl_ctx_next_operation(ctx) < 0)
1120 return -1;
1122 isl_int_swap(mat->row[row][0], mat->row[row][off + col]);
1123 sgn = isl_int_sgn(mat->row[row][0]);
1124 if (sgn < 0) {
1125 isl_int_neg(mat->row[row][0], mat->row[row][0]);
1126 isl_int_neg(mat->row[row][off + col], mat->row[row][off + col]);
1127 } else
1128 for (j = 0; j < off - 1 + tab->n_col; ++j) {
1129 if (j == off - 1 + col)
1130 continue;
1131 isl_int_neg(mat->row[row][1 + j], mat->row[row][1 + j]);
1133 if (!isl_int_is_one(mat->row[row][0]))
1134 isl_seq_normalize(mat->ctx, mat->row[row], off + tab->n_col);
1135 for (i = 0; i < tab->n_row; ++i) {
1136 if (i == row)
1137 continue;
1138 if (isl_int_is_zero(mat->row[i][off + col]))
1139 continue;
1140 isl_int_mul(mat->row[i][0], mat->row[i][0], mat->row[row][0]);
1141 for (j = 0; j < off - 1 + tab->n_col; ++j) {
1142 if (j == off - 1 + col)
1143 continue;
1144 isl_int_mul(mat->row[i][1 + j],
1145 mat->row[i][1 + j], mat->row[row][0]);
1146 isl_int_addmul(mat->row[i][1 + j],
1147 mat->row[i][off + col], mat->row[row][1 + j]);
1149 isl_int_mul(mat->row[i][off + col],
1150 mat->row[i][off + col], mat->row[row][off + col]);
1151 if (!isl_int_is_one(mat->row[i][0]))
1152 isl_seq_normalize(mat->ctx, mat->row[i], off + tab->n_col);
1154 t = tab->row_var[row];
1155 tab->row_var[row] = tab->col_var[col];
1156 tab->col_var[col] = t;
1157 var = isl_tab_var_from_row(tab, row);
1158 var->is_row = 1;
1159 var->index = row;
1160 var = var_from_col(tab, col);
1161 var->is_row = 0;
1162 var->index = col;
1163 update_row_sign(tab, row, col, sgn);
1164 if (tab->in_undo)
1165 return 0;
1166 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1167 if (isl_int_is_zero(mat->row[i][off + col]))
1168 continue;
1169 if (!isl_tab_var_from_row(tab, i)->frozen &&
1170 isl_tab_row_is_redundant(tab, i)) {
1171 int redo = isl_tab_mark_redundant(tab, i);
1172 if (redo < 0)
1173 return -1;
1174 if (redo)
1175 --i;
1178 return 0;
1181 /* If "var" represents a column variable, then pivot is up (sgn > 0)
1182 * or down (sgn < 0) to a row. The variable is assumed not to be
1183 * unbounded in the specified direction.
1184 * If sgn = 0, then the variable is unbounded in both directions,
1185 * and we pivot with any row we can find.
1187 static int to_row(struct isl_tab *tab, struct isl_tab_var *var, int sign) WARN_UNUSED;
1188 static int to_row(struct isl_tab *tab, struct isl_tab_var *var, int sign)
1190 int r;
1191 unsigned off = 2 + tab->M;
1193 if (var->is_row)
1194 return 0;
1196 if (sign == 0) {
1197 for (r = tab->n_redundant; r < tab->n_row; ++r)
1198 if (!isl_int_is_zero(tab->mat->row[r][off+var->index]))
1199 break;
1200 isl_assert(tab->mat->ctx, r < tab->n_row, return -1);
1201 } else {
1202 r = pivot_row(tab, NULL, sign, var->index);
1203 isl_assert(tab->mat->ctx, r >= 0, return -1);
1206 return isl_tab_pivot(tab, r, var->index);
1209 /* Check whether all variables that are marked as non-negative
1210 * also have a non-negative sample value. This function is not
1211 * called from the current code but is useful during debugging.
1213 static void check_table(struct isl_tab *tab) __attribute__ ((unused));
1214 static void check_table(struct isl_tab *tab)
1216 int i;
1218 if (tab->empty)
1219 return;
1220 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1221 struct isl_tab_var *var;
1222 var = isl_tab_var_from_row(tab, i);
1223 if (!var->is_nonneg)
1224 continue;
1225 if (tab->M) {
1226 isl_assert(tab->mat->ctx,
1227 !isl_int_is_neg(tab->mat->row[i][2]), abort());
1228 if (isl_int_is_pos(tab->mat->row[i][2]))
1229 continue;
1231 isl_assert(tab->mat->ctx, !isl_int_is_neg(tab->mat->row[i][1]),
1232 abort());
1236 /* Return the sign of the maximal value of "var".
1237 * If the sign is not negative, then on return from this function,
1238 * the sample value will also be non-negative.
1240 * If "var" is manifestly unbounded wrt positive values, we are done.
1241 * Otherwise, we pivot the variable up to a row if needed
1242 * Then we continue pivoting down until either
1243 * - no more down pivots can be performed
1244 * - the sample value is positive
1245 * - the variable is pivoted into a manifestly unbounded column
1247 static int sign_of_max(struct isl_tab *tab, struct isl_tab_var *var)
1249 int row, col;
1251 if (max_is_manifestly_unbounded(tab, var))
1252 return 1;
1253 if (to_row(tab, var, 1) < 0)
1254 return -2;
1255 while (!isl_int_is_pos(tab->mat->row[var->index][1])) {
1256 find_pivot(tab, var, var, 1, &row, &col);
1257 if (row == -1)
1258 return isl_int_sgn(tab->mat->row[var->index][1]);
1259 if (isl_tab_pivot(tab, row, col) < 0)
1260 return -2;
1261 if (!var->is_row) /* manifestly unbounded */
1262 return 1;
1264 return 1;
1267 int isl_tab_sign_of_max(struct isl_tab *tab, int con)
1269 struct isl_tab_var *var;
1271 if (!tab)
1272 return -2;
1274 var = &tab->con[con];
1275 isl_assert(tab->mat->ctx, !var->is_redundant, return -2);
1276 isl_assert(tab->mat->ctx, !var->is_zero, return -2);
1278 return sign_of_max(tab, var);
1281 static int row_is_neg(struct isl_tab *tab, int row)
1283 if (!tab->M)
1284 return isl_int_is_neg(tab->mat->row[row][1]);
1285 if (isl_int_is_pos(tab->mat->row[row][2]))
1286 return 0;
1287 if (isl_int_is_neg(tab->mat->row[row][2]))
1288 return 1;
1289 return isl_int_is_neg(tab->mat->row[row][1]);
1292 static int row_sgn(struct isl_tab *tab, int row)
1294 if (!tab->M)
1295 return isl_int_sgn(tab->mat->row[row][1]);
1296 if (!isl_int_is_zero(tab->mat->row[row][2]))
1297 return isl_int_sgn(tab->mat->row[row][2]);
1298 else
1299 return isl_int_sgn(tab->mat->row[row][1]);
1302 /* Perform pivots until the row variable "var" has a non-negative
1303 * sample value or until no more upward pivots can be performed.
1304 * Return the sign of the sample value after the pivots have been
1305 * performed.
1307 static int restore_row(struct isl_tab *tab, struct isl_tab_var *var)
1309 int row, col;
1311 while (row_is_neg(tab, var->index)) {
1312 find_pivot(tab, var, var, 1, &row, &col);
1313 if (row == -1)
1314 break;
1315 if (isl_tab_pivot(tab, row, col) < 0)
1316 return -2;
1317 if (!var->is_row) /* manifestly unbounded */
1318 return 1;
1320 return row_sgn(tab, var->index);
1323 /* Perform pivots until we are sure that the row variable "var"
1324 * can attain non-negative values. After return from this
1325 * function, "var" is still a row variable, but its sample
1326 * value may not be non-negative, even if the function returns 1.
1328 static int at_least_zero(struct isl_tab *tab, struct isl_tab_var *var)
1330 int row, col;
1332 while (isl_int_is_neg(tab->mat->row[var->index][1])) {
1333 find_pivot(tab, var, var, 1, &row, &col);
1334 if (row == -1)
1335 break;
1336 if (row == var->index) /* manifestly unbounded */
1337 return 1;
1338 if (isl_tab_pivot(tab, row, col) < 0)
1339 return -1;
1341 return !isl_int_is_neg(tab->mat->row[var->index][1]);
1344 /* Return a negative value if "var" can attain negative values.
1345 * Return a non-negative value otherwise.
1347 * If "var" is manifestly unbounded wrt negative values, we are done.
1348 * Otherwise, if var is in a column, we can pivot it down to a row.
1349 * Then we continue pivoting down until either
1350 * - the pivot would result in a manifestly unbounded column
1351 * => we don't perform the pivot, but simply return -1
1352 * - no more down pivots can be performed
1353 * - the sample value is negative
1354 * If the sample value becomes negative and the variable is supposed
1355 * to be nonnegative, then we undo the last pivot.
1356 * However, if the last pivot has made the pivoting variable
1357 * obviously redundant, then it may have moved to another row.
1358 * In that case we look for upward pivots until we reach a non-negative
1359 * value again.
1361 static int sign_of_min(struct isl_tab *tab, struct isl_tab_var *var)
1363 int row, col;
1364 struct isl_tab_var *pivot_var = NULL;
1366 if (min_is_manifestly_unbounded(tab, var))
1367 return -1;
1368 if (!var->is_row) {
1369 col = var->index;
1370 row = pivot_row(tab, NULL, -1, col);
1371 pivot_var = var_from_col(tab, col);
1372 if (isl_tab_pivot(tab, row, col) < 0)
1373 return -2;
1374 if (var->is_redundant)
1375 return 0;
1376 if (isl_int_is_neg(tab->mat->row[var->index][1])) {
1377 if (var->is_nonneg) {
1378 if (!pivot_var->is_redundant &&
1379 pivot_var->index == row) {
1380 if (isl_tab_pivot(tab, row, col) < 0)
1381 return -2;
1382 } else
1383 if (restore_row(tab, var) < -1)
1384 return -2;
1386 return -1;
1389 if (var->is_redundant)
1390 return 0;
1391 while (!isl_int_is_neg(tab->mat->row[var->index][1])) {
1392 find_pivot(tab, var, var, -1, &row, &col);
1393 if (row == var->index)
1394 return -1;
1395 if (row == -1)
1396 return isl_int_sgn(tab->mat->row[var->index][1]);
1397 pivot_var = var_from_col(tab, col);
1398 if (isl_tab_pivot(tab, row, col) < 0)
1399 return -2;
1400 if (var->is_redundant)
1401 return 0;
1403 if (pivot_var && var->is_nonneg) {
1404 /* pivot back to non-negative value */
1405 if (!pivot_var->is_redundant && pivot_var->index == row) {
1406 if (isl_tab_pivot(tab, row, col) < 0)
1407 return -2;
1408 } else
1409 if (restore_row(tab, var) < -1)
1410 return -2;
1412 return -1;
1415 static int row_at_most_neg_one(struct isl_tab *tab, int row)
1417 if (tab->M) {
1418 if (isl_int_is_pos(tab->mat->row[row][2]))
1419 return 0;
1420 if (isl_int_is_neg(tab->mat->row[row][2]))
1421 return 1;
1423 return isl_int_is_neg(tab->mat->row[row][1]) &&
1424 isl_int_abs_ge(tab->mat->row[row][1],
1425 tab->mat->row[row][0]);
1428 /* Return 1 if "var" can attain values <= -1.
1429 * Return 0 otherwise.
1431 * If the variable "var" is supposed to be non-negative (is_nonneg is set),
1432 * then the sample value of "var" is assumed to be non-negative when the
1433 * the function is called. If 1 is returned then the constraint
1434 * is not redundant and the sample value is made non-negative again before
1435 * the function returns.
1437 int isl_tab_min_at_most_neg_one(struct isl_tab *tab, struct isl_tab_var *var)
1439 int row, col;
1440 struct isl_tab_var *pivot_var;
1442 if (min_is_manifestly_unbounded(tab, var))
1443 return 1;
1444 if (!var->is_row) {
1445 col = var->index;
1446 row = pivot_row(tab, NULL, -1, col);
1447 pivot_var = var_from_col(tab, col);
1448 if (isl_tab_pivot(tab, row, col) < 0)
1449 return -1;
1450 if (var->is_redundant)
1451 return 0;
1452 if (row_at_most_neg_one(tab, var->index)) {
1453 if (var->is_nonneg) {
1454 if (!pivot_var->is_redundant &&
1455 pivot_var->index == row) {
1456 if (isl_tab_pivot(tab, row, col) < 0)
1457 return -1;
1458 } else
1459 if (restore_row(tab, var) < -1)
1460 return -1;
1462 return 1;
1465 if (var->is_redundant)
1466 return 0;
1467 do {
1468 find_pivot(tab, var, var, -1, &row, &col);
1469 if (row == var->index) {
1470 if (var->is_nonneg && restore_row(tab, var) < -1)
1471 return -1;
1472 return 1;
1474 if (row == -1)
1475 return 0;
1476 pivot_var = var_from_col(tab, col);
1477 if (isl_tab_pivot(tab, row, col) < 0)
1478 return -1;
1479 if (var->is_redundant)
1480 return 0;
1481 } while (!row_at_most_neg_one(tab, var->index));
1482 if (var->is_nonneg) {
1483 /* pivot back to non-negative value */
1484 if (!pivot_var->is_redundant && pivot_var->index == row)
1485 if (isl_tab_pivot(tab, row, col) < 0)
1486 return -1;
1487 if (restore_row(tab, var) < -1)
1488 return -1;
1490 return 1;
1493 /* Return 1 if "var" can attain values >= 1.
1494 * Return 0 otherwise.
1496 static int at_least_one(struct isl_tab *tab, struct isl_tab_var *var)
1498 int row, col;
1499 isl_int *r;
1501 if (max_is_manifestly_unbounded(tab, var))
1502 return 1;
1503 if (to_row(tab, var, 1) < 0)
1504 return -1;
1505 r = tab->mat->row[var->index];
1506 while (isl_int_lt(r[1], r[0])) {
1507 find_pivot(tab, var, var, 1, &row, &col);
1508 if (row == -1)
1509 return isl_int_ge(r[1], r[0]);
1510 if (row == var->index) /* manifestly unbounded */
1511 return 1;
1512 if (isl_tab_pivot(tab, row, col) < 0)
1513 return -1;
1515 return 1;
1518 static void swap_cols(struct isl_tab *tab, int col1, int col2)
1520 int t;
1521 unsigned off = 2 + tab->M;
1522 t = tab->col_var[col1];
1523 tab->col_var[col1] = tab->col_var[col2];
1524 tab->col_var[col2] = t;
1525 var_from_col(tab, col1)->index = col1;
1526 var_from_col(tab, col2)->index = col2;
1527 tab->mat = isl_mat_swap_cols(tab->mat, off + col1, off + col2);
1530 /* Mark column with index "col" as representing a zero variable.
1531 * If we may need to undo the operation the column is kept,
1532 * but no longer considered.
1533 * Otherwise, the column is simply removed.
1535 * The column may be interchanged with some other column. If it
1536 * is interchanged with a later column, return 1. Otherwise return 0.
1537 * If the columns are checked in order in the calling function,
1538 * then a return value of 1 means that the column with the given
1539 * column number may now contain a different column that
1540 * hasn't been checked yet.
1542 int isl_tab_kill_col(struct isl_tab *tab, int col)
1544 var_from_col(tab, col)->is_zero = 1;
1545 if (tab->need_undo) {
1546 if (isl_tab_push_var(tab, isl_tab_undo_zero,
1547 var_from_col(tab, col)) < 0)
1548 return -1;
1549 if (col != tab->n_dead)
1550 swap_cols(tab, col, tab->n_dead);
1551 tab->n_dead++;
1552 return 0;
1553 } else {
1554 if (col != tab->n_col - 1)
1555 swap_cols(tab, col, tab->n_col - 1);
1556 var_from_col(tab, tab->n_col - 1)->index = -1;
1557 tab->n_col--;
1558 return 1;
1562 static int row_is_manifestly_non_integral(struct isl_tab *tab, int row)
1564 unsigned off = 2 + tab->M;
1566 if (tab->M && !isl_int_eq(tab->mat->row[row][2],
1567 tab->mat->row[row][0]))
1568 return 0;
1569 if (isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
1570 tab->n_col - tab->n_dead) != -1)
1571 return 0;
1573 return !isl_int_is_divisible_by(tab->mat->row[row][1],
1574 tab->mat->row[row][0]);
1577 /* For integer tableaus, check if any of the coordinates are stuck
1578 * at a non-integral value.
1580 static int tab_is_manifestly_empty(struct isl_tab *tab)
1582 int i;
1584 if (tab->empty)
1585 return 1;
1586 if (tab->rational)
1587 return 0;
1589 for (i = 0; i < tab->n_var; ++i) {
1590 if (!tab->var[i].is_row)
1591 continue;
1592 if (row_is_manifestly_non_integral(tab, tab->var[i].index))
1593 return 1;
1596 return 0;
1599 /* Row variable "var" is non-negative and cannot attain any values
1600 * larger than zero. This means that the coefficients of the unrestricted
1601 * column variables are zero and that the coefficients of the non-negative
1602 * column variables are zero or negative.
1603 * Each of the non-negative variables with a negative coefficient can
1604 * then also be written as the negative sum of non-negative variables
1605 * and must therefore also be zero.
1607 static int close_row(struct isl_tab *tab, struct isl_tab_var *var) WARN_UNUSED;
1608 static int close_row(struct isl_tab *tab, struct isl_tab_var *var)
1610 int j;
1611 struct isl_mat *mat = tab->mat;
1612 unsigned off = 2 + tab->M;
1614 isl_assert(tab->mat->ctx, var->is_nonneg, return -1);
1615 var->is_zero = 1;
1616 if (tab->need_undo)
1617 if (isl_tab_push_var(tab, isl_tab_undo_zero, var) < 0)
1618 return -1;
1619 for (j = tab->n_dead; j < tab->n_col; ++j) {
1620 int recheck;
1621 if (isl_int_is_zero(mat->row[var->index][off + j]))
1622 continue;
1623 isl_assert(tab->mat->ctx,
1624 isl_int_is_neg(mat->row[var->index][off + j]), return -1);
1625 recheck = isl_tab_kill_col(tab, j);
1626 if (recheck < 0)
1627 return -1;
1628 if (recheck)
1629 --j;
1631 if (isl_tab_mark_redundant(tab, var->index) < 0)
1632 return -1;
1633 if (tab_is_manifestly_empty(tab) && isl_tab_mark_empty(tab) < 0)
1634 return -1;
1635 return 0;
1638 /* Add a constraint to the tableau and allocate a row for it.
1639 * Return the index into the constraint array "con".
1641 int isl_tab_allocate_con(struct isl_tab *tab)
1643 int r;
1645 isl_assert(tab->mat->ctx, tab->n_row < tab->mat->n_row, return -1);
1646 isl_assert(tab->mat->ctx, tab->n_con < tab->max_con, return -1);
1648 r = tab->n_con;
1649 tab->con[r].index = tab->n_row;
1650 tab->con[r].is_row = 1;
1651 tab->con[r].is_nonneg = 0;
1652 tab->con[r].is_zero = 0;
1653 tab->con[r].is_redundant = 0;
1654 tab->con[r].frozen = 0;
1655 tab->con[r].negated = 0;
1656 tab->row_var[tab->n_row] = ~r;
1658 tab->n_row++;
1659 tab->n_con++;
1660 if (isl_tab_push_var(tab, isl_tab_undo_allocate, &tab->con[r]) < 0)
1661 return -1;
1663 return r;
1666 /* Move the entries in tab->var up one position, starting at "first",
1667 * creating room for an extra entry at position "first".
1668 * Since some of the entries of tab->row_var and tab->col_var contain
1669 * indices into this array, they have to be updated accordingly.
1671 static int var_insert_entry(struct isl_tab *tab, int first)
1673 int i;
1675 if (tab->n_var >= tab->max_var)
1676 isl_die(isl_tab_get_ctx(tab), isl_error_internal,
1677 "not enough room for new variable", return -1);
1678 if (first > tab->n_var)
1679 isl_die(isl_tab_get_ctx(tab), isl_error_internal,
1680 "invalid initial position", return -1);
1682 for (i = tab->n_var - 1; i >= first; --i) {
1683 tab->var[i + 1] = tab->var[i];
1684 if (tab->var[i + 1].is_row)
1685 tab->row_var[tab->var[i + 1].index]++;
1686 else
1687 tab->col_var[tab->var[i + 1].index]++;
1690 tab->n_var++;
1692 return 0;
1695 /* Drop the entry at position "first" in tab->var, moving all
1696 * subsequent entries down.
1697 * Since some of the entries of tab->row_var and tab->col_var contain
1698 * indices into this array, they have to be updated accordingly.
1700 static int var_drop_entry(struct isl_tab *tab, int first)
1702 int i;
1704 if (first >= tab->n_var)
1705 isl_die(isl_tab_get_ctx(tab), isl_error_internal,
1706 "invalid initial position", return -1);
1708 tab->n_var--;
1710 for (i = first; i < tab->n_var; ++i) {
1711 tab->var[i] = tab->var[i + 1];
1712 if (tab->var[i + 1].is_row)
1713 tab->row_var[tab->var[i].index]--;
1714 else
1715 tab->col_var[tab->var[i].index]--;
1718 return 0;
1721 /* Add a variable to the tableau at position "r" and allocate a column for it.
1722 * Return the index into the variable array "var", i.e., "r",
1723 * or -1 on error.
1725 int isl_tab_insert_var(struct isl_tab *tab, int r)
1727 int i;
1728 unsigned off = 2 + tab->M;
1730 isl_assert(tab->mat->ctx, tab->n_col < tab->mat->n_col, return -1);
1732 if (var_insert_entry(tab, r) < 0)
1733 return -1;
1735 tab->var[r].index = tab->n_col;
1736 tab->var[r].is_row = 0;
1737 tab->var[r].is_nonneg = 0;
1738 tab->var[r].is_zero = 0;
1739 tab->var[r].is_redundant = 0;
1740 tab->var[r].frozen = 0;
1741 tab->var[r].negated = 0;
1742 tab->col_var[tab->n_col] = r;
1744 for (i = 0; i < tab->n_row; ++i)
1745 isl_int_set_si(tab->mat->row[i][off + tab->n_col], 0);
1747 tab->n_col++;
1748 if (isl_tab_push_var(tab, isl_tab_undo_allocate, &tab->var[r]) < 0)
1749 return -1;
1751 return r;
1754 /* Add a variable to the tableau and allocate a column for it.
1755 * Return the index into the variable array "var".
1757 int isl_tab_allocate_var(struct isl_tab *tab)
1759 if (!tab)
1760 return -1;
1762 return isl_tab_insert_var(tab, tab->n_var);
1765 /* Add a row to the tableau. The row is given as an affine combination
1766 * of the original variables and needs to be expressed in terms of the
1767 * column variables.
1769 * We add each term in turn.
1770 * If r = n/d_r is the current sum and we need to add k x, then
1771 * if x is a column variable, we increase the numerator of
1772 * this column by k d_r
1773 * if x = f/d_x is a row variable, then the new representation of r is
1775 * n k f d_x/g n + d_r/g k f m/d_r n + m/d_g k f
1776 * --- + --- = ------------------- = -------------------
1777 * d_r d_r d_r d_x/g m
1779 * with g the gcd of d_r and d_x and m the lcm of d_r and d_x.
1781 * If tab->M is set, then, internally, each variable x is represented
1782 * as x' - M. We then also need no subtract k d_r from the coefficient of M.
1784 int isl_tab_add_row(struct isl_tab *tab, isl_int *line)
1786 int i;
1787 int r;
1788 isl_int *row;
1789 isl_int a, b;
1790 unsigned off = 2 + tab->M;
1792 r = isl_tab_allocate_con(tab);
1793 if (r < 0)
1794 return -1;
1796 isl_int_init(a);
1797 isl_int_init(b);
1798 row = tab->mat->row[tab->con[r].index];
1799 isl_int_set_si(row[0], 1);
1800 isl_int_set(row[1], line[0]);
1801 isl_seq_clr(row + 2, tab->M + tab->n_col);
1802 for (i = 0; i < tab->n_var; ++i) {
1803 if (tab->var[i].is_zero)
1804 continue;
1805 if (tab->var[i].is_row) {
1806 isl_int_lcm(a,
1807 row[0], tab->mat->row[tab->var[i].index][0]);
1808 isl_int_swap(a, row[0]);
1809 isl_int_divexact(a, row[0], a);
1810 isl_int_divexact(b,
1811 row[0], tab->mat->row[tab->var[i].index][0]);
1812 isl_int_mul(b, b, line[1 + i]);
1813 isl_seq_combine(row + 1, a, row + 1,
1814 b, tab->mat->row[tab->var[i].index] + 1,
1815 1 + tab->M + tab->n_col);
1816 } else
1817 isl_int_addmul(row[off + tab->var[i].index],
1818 line[1 + i], row[0]);
1819 if (tab->M && i >= tab->n_param && i < tab->n_var - tab->n_div)
1820 isl_int_submul(row[2], line[1 + i], row[0]);
1822 isl_seq_normalize(tab->mat->ctx, row, off + tab->n_col);
1823 isl_int_clear(a);
1824 isl_int_clear(b);
1826 if (tab->row_sign)
1827 tab->row_sign[tab->con[r].index] = isl_tab_row_unknown;
1829 return r;
1832 static int drop_row(struct isl_tab *tab, int row)
1834 isl_assert(tab->mat->ctx, ~tab->row_var[row] == tab->n_con - 1, return -1);
1835 if (row != tab->n_row - 1)
1836 swap_rows(tab, row, tab->n_row - 1);
1837 tab->n_row--;
1838 tab->n_con--;
1839 return 0;
1842 /* Drop the variable in column "col".
1844 static int drop_col(struct isl_tab *tab, int col)
1846 if (var_drop_entry(tab, tab->col_var[col]) < 0)
1847 return -1;
1848 if (col != tab->n_col - 1)
1849 swap_cols(tab, col, tab->n_col - 1);
1850 tab->n_col--;
1851 return 0;
1854 /* Add inequality "ineq" and check if it conflicts with the
1855 * previously added constraints or if it is obviously redundant.
1857 int isl_tab_add_ineq(struct isl_tab *tab, isl_int *ineq)
1859 int r;
1860 int sgn;
1861 isl_int cst;
1863 if (!tab)
1864 return -1;
1865 if (tab->bmap) {
1866 struct isl_basic_map *bmap = tab->bmap;
1868 isl_assert(tab->mat->ctx, tab->n_eq == bmap->n_eq, return -1);
1869 isl_assert(tab->mat->ctx,
1870 tab->n_con == bmap->n_eq + bmap->n_ineq, return -1);
1871 tab->bmap = isl_basic_map_add_ineq(tab->bmap, ineq);
1872 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1873 return -1;
1874 if (!tab->bmap)
1875 return -1;
1877 if (tab->cone) {
1878 isl_int_init(cst);
1879 isl_int_swap(ineq[0], cst);
1881 r = isl_tab_add_row(tab, ineq);
1882 if (tab->cone) {
1883 isl_int_swap(ineq[0], cst);
1884 isl_int_clear(cst);
1886 if (r < 0)
1887 return -1;
1888 tab->con[r].is_nonneg = 1;
1889 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1890 return -1;
1891 if (isl_tab_row_is_redundant(tab, tab->con[r].index)) {
1892 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1893 return -1;
1894 return 0;
1897 sgn = restore_row(tab, &tab->con[r]);
1898 if (sgn < -1)
1899 return -1;
1900 if (sgn < 0)
1901 return isl_tab_mark_empty(tab);
1902 if (tab->con[r].is_row && isl_tab_row_is_redundant(tab, tab->con[r].index))
1903 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1904 return -1;
1905 return 0;
1908 /* Pivot a non-negative variable down until it reaches the value zero
1909 * and then pivot the variable into a column position.
1911 static int to_col(struct isl_tab *tab, struct isl_tab_var *var) WARN_UNUSED;
1912 static int to_col(struct isl_tab *tab, struct isl_tab_var *var)
1914 int i;
1915 int row, col;
1916 unsigned off = 2 + tab->M;
1918 if (!var->is_row)
1919 return 0;
1921 while (isl_int_is_pos(tab->mat->row[var->index][1])) {
1922 find_pivot(tab, var, NULL, -1, &row, &col);
1923 isl_assert(tab->mat->ctx, row != -1, return -1);
1924 if (isl_tab_pivot(tab, row, col) < 0)
1925 return -1;
1926 if (!var->is_row)
1927 return 0;
1930 for (i = tab->n_dead; i < tab->n_col; ++i)
1931 if (!isl_int_is_zero(tab->mat->row[var->index][off + i]))
1932 break;
1934 isl_assert(tab->mat->ctx, i < tab->n_col, return -1);
1935 if (isl_tab_pivot(tab, var->index, i) < 0)
1936 return -1;
1938 return 0;
1941 /* We assume Gaussian elimination has been performed on the equalities.
1942 * The equalities can therefore never conflict.
1943 * Adding the equalities is currently only really useful for a later call
1944 * to isl_tab_ineq_type.
1946 static struct isl_tab *add_eq(struct isl_tab *tab, isl_int *eq)
1948 int i;
1949 int r;
1951 if (!tab)
1952 return NULL;
1953 r = isl_tab_add_row(tab, eq);
1954 if (r < 0)
1955 goto error;
1957 r = tab->con[r].index;
1958 i = isl_seq_first_non_zero(tab->mat->row[r] + 2 + tab->M + tab->n_dead,
1959 tab->n_col - tab->n_dead);
1960 isl_assert(tab->mat->ctx, i >= 0, goto error);
1961 i += tab->n_dead;
1962 if (isl_tab_pivot(tab, r, i) < 0)
1963 goto error;
1964 if (isl_tab_kill_col(tab, i) < 0)
1965 goto error;
1966 tab->n_eq++;
1968 return tab;
1969 error:
1970 isl_tab_free(tab);
1971 return NULL;
1974 static int row_is_manifestly_zero(struct isl_tab *tab, int row)
1976 unsigned off = 2 + tab->M;
1978 if (!isl_int_is_zero(tab->mat->row[row][1]))
1979 return 0;
1980 if (tab->M && !isl_int_is_zero(tab->mat->row[row][2]))
1981 return 0;
1982 return isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
1983 tab->n_col - tab->n_dead) == -1;
1986 /* Add an equality that is known to be valid for the given tableau.
1988 int isl_tab_add_valid_eq(struct isl_tab *tab, isl_int *eq)
1990 struct isl_tab_var *var;
1991 int r;
1993 if (!tab)
1994 return -1;
1995 r = isl_tab_add_row(tab, eq);
1996 if (r < 0)
1997 return -1;
1999 var = &tab->con[r];
2000 r = var->index;
2001 if (row_is_manifestly_zero(tab, r)) {
2002 var->is_zero = 1;
2003 if (isl_tab_mark_redundant(tab, r) < 0)
2004 return -1;
2005 return 0;
2008 if (isl_int_is_neg(tab->mat->row[r][1])) {
2009 isl_seq_neg(tab->mat->row[r] + 1, tab->mat->row[r] + 1,
2010 1 + tab->n_col);
2011 var->negated = 1;
2013 var->is_nonneg = 1;
2014 if (to_col(tab, var) < 0)
2015 return -1;
2016 var->is_nonneg = 0;
2017 if (isl_tab_kill_col(tab, var->index) < 0)
2018 return -1;
2020 return 0;
2023 static int add_zero_row(struct isl_tab *tab)
2025 int r;
2026 isl_int *row;
2028 r = isl_tab_allocate_con(tab);
2029 if (r < 0)
2030 return -1;
2032 row = tab->mat->row[tab->con[r].index];
2033 isl_seq_clr(row + 1, 1 + tab->M + tab->n_col);
2034 isl_int_set_si(row[0], 1);
2036 return r;
2039 /* Add equality "eq" and check if it conflicts with the
2040 * previously added constraints or if it is obviously redundant.
2042 int isl_tab_add_eq(struct isl_tab *tab, isl_int *eq)
2044 struct isl_tab_undo *snap = NULL;
2045 struct isl_tab_var *var;
2046 int r;
2047 int row;
2048 int sgn;
2049 isl_int cst;
2051 if (!tab)
2052 return -1;
2053 isl_assert(tab->mat->ctx, !tab->M, return -1);
2055 if (tab->need_undo)
2056 snap = isl_tab_snap(tab);
2058 if (tab->cone) {
2059 isl_int_init(cst);
2060 isl_int_swap(eq[0], cst);
2062 r = isl_tab_add_row(tab, eq);
2063 if (tab->cone) {
2064 isl_int_swap(eq[0], cst);
2065 isl_int_clear(cst);
2067 if (r < 0)
2068 return -1;
2070 var = &tab->con[r];
2071 row = var->index;
2072 if (row_is_manifestly_zero(tab, row)) {
2073 if (snap)
2074 return isl_tab_rollback(tab, snap);
2075 return drop_row(tab, row);
2078 if (tab->bmap) {
2079 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
2080 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
2081 return -1;
2082 isl_seq_neg(eq, eq, 1 + tab->n_var);
2083 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
2084 isl_seq_neg(eq, eq, 1 + tab->n_var);
2085 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
2086 return -1;
2087 if (!tab->bmap)
2088 return -1;
2089 if (add_zero_row(tab) < 0)
2090 return -1;
2093 sgn = isl_int_sgn(tab->mat->row[row][1]);
2095 if (sgn > 0) {
2096 isl_seq_neg(tab->mat->row[row] + 1, tab->mat->row[row] + 1,
2097 1 + tab->n_col);
2098 var->negated = 1;
2099 sgn = -1;
2102 if (sgn < 0) {
2103 sgn = sign_of_max(tab, var);
2104 if (sgn < -1)
2105 return -1;
2106 if (sgn < 0) {
2107 if (isl_tab_mark_empty(tab) < 0)
2108 return -1;
2109 return 0;
2113 var->is_nonneg = 1;
2114 if (to_col(tab, var) < 0)
2115 return -1;
2116 var->is_nonneg = 0;
2117 if (isl_tab_kill_col(tab, var->index) < 0)
2118 return -1;
2120 return 0;
2123 /* Construct and return an inequality that expresses an upper bound
2124 * on the given div.
2125 * In particular, if the div is given by
2127 * d = floor(e/m)
2129 * then the inequality expresses
2131 * m d <= e
2133 static struct isl_vec *ineq_for_div(struct isl_basic_map *bmap, unsigned div)
2135 unsigned total;
2136 unsigned div_pos;
2137 struct isl_vec *ineq;
2139 if (!bmap)
2140 return NULL;
2142 total = isl_basic_map_total_dim(bmap);
2143 div_pos = 1 + total - bmap->n_div + div;
2145 ineq = isl_vec_alloc(bmap->ctx, 1 + total);
2146 if (!ineq)
2147 return NULL;
2149 isl_seq_cpy(ineq->el, bmap->div[div] + 1, 1 + total);
2150 isl_int_neg(ineq->el[div_pos], bmap->div[div][0]);
2151 return ineq;
2154 /* For a div d = floor(f/m), add the constraints
2156 * f - m d >= 0
2157 * -(f-(m-1)) + m d >= 0
2159 * Note that the second constraint is the negation of
2161 * f - m d >= m
2163 * If add_ineq is not NULL, then this function is used
2164 * instead of isl_tab_add_ineq to effectively add the inequalities.
2166 static int add_div_constraints(struct isl_tab *tab, unsigned div,
2167 int (*add_ineq)(void *user, isl_int *), void *user)
2169 unsigned total;
2170 unsigned div_pos;
2171 struct isl_vec *ineq;
2173 total = isl_basic_map_total_dim(tab->bmap);
2174 div_pos = 1 + total - tab->bmap->n_div + div;
2176 ineq = ineq_for_div(tab->bmap, div);
2177 if (!ineq)
2178 goto error;
2180 if (add_ineq) {
2181 if (add_ineq(user, ineq->el) < 0)
2182 goto error;
2183 } else {
2184 if (isl_tab_add_ineq(tab, ineq->el) < 0)
2185 goto error;
2188 isl_seq_neg(ineq->el, tab->bmap->div[div] + 1, 1 + total);
2189 isl_int_set(ineq->el[div_pos], tab->bmap->div[div][0]);
2190 isl_int_add(ineq->el[0], ineq->el[0], ineq->el[div_pos]);
2191 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
2193 if (add_ineq) {
2194 if (add_ineq(user, ineq->el) < 0)
2195 goto error;
2196 } else {
2197 if (isl_tab_add_ineq(tab, ineq->el) < 0)
2198 goto error;
2201 isl_vec_free(ineq);
2203 return 0;
2204 error:
2205 isl_vec_free(ineq);
2206 return -1;
2209 /* Check whether the div described by "div" is obviously non-negative.
2210 * If we are using a big parameter, then we will encode the div
2211 * as div' = M + div, which is always non-negative.
2212 * Otherwise, we check whether div is a non-negative affine combination
2213 * of non-negative variables.
2215 static int div_is_nonneg(struct isl_tab *tab, __isl_keep isl_vec *div)
2217 int i;
2219 if (tab->M)
2220 return 1;
2222 if (isl_int_is_neg(div->el[1]))
2223 return 0;
2225 for (i = 0; i < tab->n_var; ++i) {
2226 if (isl_int_is_neg(div->el[2 + i]))
2227 return 0;
2228 if (isl_int_is_zero(div->el[2 + i]))
2229 continue;
2230 if (!tab->var[i].is_nonneg)
2231 return 0;
2234 return 1;
2237 /* Add an extra div, prescribed by "div" to the tableau and
2238 * the associated bmap (which is assumed to be non-NULL).
2240 * If add_ineq is not NULL, then this function is used instead
2241 * of isl_tab_add_ineq to add the div constraints.
2242 * This complication is needed because the code in isl_tab_pip
2243 * wants to perform some extra processing when an inequality
2244 * is added to the tableau.
2246 int isl_tab_add_div(struct isl_tab *tab, __isl_keep isl_vec *div,
2247 int (*add_ineq)(void *user, isl_int *), void *user)
2249 int r;
2250 int k;
2251 int nonneg;
2253 if (!tab || !div)
2254 return -1;
2256 isl_assert(tab->mat->ctx, tab->bmap, return -1);
2258 nonneg = div_is_nonneg(tab, div);
2260 if (isl_tab_extend_cons(tab, 3) < 0)
2261 return -1;
2262 if (isl_tab_extend_vars(tab, 1) < 0)
2263 return -1;
2264 r = isl_tab_allocate_var(tab);
2265 if (r < 0)
2266 return -1;
2268 if (nonneg)
2269 tab->var[r].is_nonneg = 1;
2271 tab->bmap = isl_basic_map_extend_space(tab->bmap,
2272 isl_basic_map_get_space(tab->bmap), 1, 0, 2);
2273 k = isl_basic_map_alloc_div(tab->bmap);
2274 if (k < 0)
2275 return -1;
2276 isl_seq_cpy(tab->bmap->div[k], div->el, div->size);
2277 if (isl_tab_push(tab, isl_tab_undo_bmap_div) < 0)
2278 return -1;
2280 if (add_div_constraints(tab, k, add_ineq, user) < 0)
2281 return -1;
2283 return r;
2286 /* If "track" is set, then we want to keep track of all constraints in tab
2287 * in its bmap field. This field is initialized from a copy of "bmap",
2288 * so we need to make sure that all constraints in "bmap" also appear
2289 * in the constructed tab.
2291 __isl_give struct isl_tab *isl_tab_from_basic_map(
2292 __isl_keep isl_basic_map *bmap, int track)
2294 int i;
2295 struct isl_tab *tab;
2297 if (!bmap)
2298 return NULL;
2299 tab = isl_tab_alloc(bmap->ctx,
2300 isl_basic_map_total_dim(bmap) + bmap->n_ineq + 1,
2301 isl_basic_map_total_dim(bmap), 0);
2302 if (!tab)
2303 return NULL;
2304 tab->preserve = track;
2305 tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
2306 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) {
2307 if (isl_tab_mark_empty(tab) < 0)
2308 goto error;
2309 goto done;
2311 for (i = 0; i < bmap->n_eq; ++i) {
2312 tab = add_eq(tab, bmap->eq[i]);
2313 if (!tab)
2314 return tab;
2316 for (i = 0; i < bmap->n_ineq; ++i) {
2317 if (isl_tab_add_ineq(tab, bmap->ineq[i]) < 0)
2318 goto error;
2319 if (tab->empty)
2320 goto done;
2322 done:
2323 if (track && isl_tab_track_bmap(tab, isl_basic_map_copy(bmap)) < 0)
2324 goto error;
2325 return tab;
2326 error:
2327 isl_tab_free(tab);
2328 return NULL;
2331 __isl_give struct isl_tab *isl_tab_from_basic_set(
2332 __isl_keep isl_basic_set *bset, int track)
2334 return isl_tab_from_basic_map(bset, track);
2337 /* Construct a tableau corresponding to the recession cone of "bset".
2339 struct isl_tab *isl_tab_from_recession_cone(__isl_keep isl_basic_set *bset,
2340 int parametric)
2342 isl_int cst;
2343 int i;
2344 struct isl_tab *tab;
2345 unsigned offset = 0;
2347 if (!bset)
2348 return NULL;
2349 if (parametric)
2350 offset = isl_basic_set_dim(bset, isl_dim_param);
2351 tab = isl_tab_alloc(bset->ctx, bset->n_eq + bset->n_ineq,
2352 isl_basic_set_total_dim(bset) - offset, 0);
2353 if (!tab)
2354 return NULL;
2355 tab->rational = ISL_F_ISSET(bset, ISL_BASIC_SET_RATIONAL);
2356 tab->cone = 1;
2358 isl_int_init(cst);
2359 for (i = 0; i < bset->n_eq; ++i) {
2360 isl_int_swap(bset->eq[i][offset], cst);
2361 if (offset > 0) {
2362 if (isl_tab_add_eq(tab, bset->eq[i] + offset) < 0)
2363 goto error;
2364 } else
2365 tab = add_eq(tab, bset->eq[i]);
2366 isl_int_swap(bset->eq[i][offset], cst);
2367 if (!tab)
2368 goto done;
2370 for (i = 0; i < bset->n_ineq; ++i) {
2371 int r;
2372 isl_int_swap(bset->ineq[i][offset], cst);
2373 r = isl_tab_add_row(tab, bset->ineq[i] + offset);
2374 isl_int_swap(bset->ineq[i][offset], cst);
2375 if (r < 0)
2376 goto error;
2377 tab->con[r].is_nonneg = 1;
2378 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
2379 goto error;
2381 done:
2382 isl_int_clear(cst);
2383 return tab;
2384 error:
2385 isl_int_clear(cst);
2386 isl_tab_free(tab);
2387 return NULL;
2390 /* Assuming "tab" is the tableau of a cone, check if the cone is
2391 * bounded, i.e., if it is empty or only contains the origin.
2393 int isl_tab_cone_is_bounded(struct isl_tab *tab)
2395 int i;
2397 if (!tab)
2398 return -1;
2399 if (tab->empty)
2400 return 1;
2401 if (tab->n_dead == tab->n_col)
2402 return 1;
2404 for (;;) {
2405 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2406 struct isl_tab_var *var;
2407 int sgn;
2408 var = isl_tab_var_from_row(tab, i);
2409 if (!var->is_nonneg)
2410 continue;
2411 sgn = sign_of_max(tab, var);
2412 if (sgn < -1)
2413 return -1;
2414 if (sgn != 0)
2415 return 0;
2416 if (close_row(tab, var) < 0)
2417 return -1;
2418 break;
2420 if (tab->n_dead == tab->n_col)
2421 return 1;
2422 if (i == tab->n_row)
2423 return 0;
2427 int isl_tab_sample_is_integer(struct isl_tab *tab)
2429 int i;
2431 if (!tab)
2432 return -1;
2434 for (i = 0; i < tab->n_var; ++i) {
2435 int row;
2436 if (!tab->var[i].is_row)
2437 continue;
2438 row = tab->var[i].index;
2439 if (!isl_int_is_divisible_by(tab->mat->row[row][1],
2440 tab->mat->row[row][0]))
2441 return 0;
2443 return 1;
2446 static struct isl_vec *extract_integer_sample(struct isl_tab *tab)
2448 int i;
2449 struct isl_vec *vec;
2451 vec = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
2452 if (!vec)
2453 return NULL;
2455 isl_int_set_si(vec->block.data[0], 1);
2456 for (i = 0; i < tab->n_var; ++i) {
2457 if (!tab->var[i].is_row)
2458 isl_int_set_si(vec->block.data[1 + i], 0);
2459 else {
2460 int row = tab->var[i].index;
2461 isl_int_divexact(vec->block.data[1 + i],
2462 tab->mat->row[row][1], tab->mat->row[row][0]);
2466 return vec;
2469 struct isl_vec *isl_tab_get_sample_value(struct isl_tab *tab)
2471 int i;
2472 struct isl_vec *vec;
2473 isl_int m;
2475 if (!tab)
2476 return NULL;
2478 vec = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
2479 if (!vec)
2480 return NULL;
2482 isl_int_init(m);
2484 isl_int_set_si(vec->block.data[0], 1);
2485 for (i = 0; i < tab->n_var; ++i) {
2486 int row;
2487 if (!tab->var[i].is_row) {
2488 isl_int_set_si(vec->block.data[1 + i], 0);
2489 continue;
2491 row = tab->var[i].index;
2492 isl_int_gcd(m, vec->block.data[0], tab->mat->row[row][0]);
2493 isl_int_divexact(m, tab->mat->row[row][0], m);
2494 isl_seq_scale(vec->block.data, vec->block.data, m, 1 + i);
2495 isl_int_divexact(m, vec->block.data[0], tab->mat->row[row][0]);
2496 isl_int_mul(vec->block.data[1 + i], m, tab->mat->row[row][1]);
2498 vec = isl_vec_normalize(vec);
2500 isl_int_clear(m);
2501 return vec;
2504 /* Update "bmap" based on the results of the tableau "tab".
2505 * In particular, implicit equalities are made explicit, redundant constraints
2506 * are removed and if the sample value happens to be integer, it is stored
2507 * in "bmap" (unless "bmap" already had an integer sample).
2509 * The tableau is assumed to have been created from "bmap" using
2510 * isl_tab_from_basic_map.
2512 struct isl_basic_map *isl_basic_map_update_from_tab(struct isl_basic_map *bmap,
2513 struct isl_tab *tab)
2515 int i;
2516 unsigned n_eq;
2518 if (!bmap)
2519 return NULL;
2520 if (!tab)
2521 return bmap;
2523 n_eq = tab->n_eq;
2524 if (tab->empty)
2525 bmap = isl_basic_map_set_to_empty(bmap);
2526 else
2527 for (i = bmap->n_ineq - 1; i >= 0; --i) {
2528 if (isl_tab_is_equality(tab, n_eq + i))
2529 isl_basic_map_inequality_to_equality(bmap, i);
2530 else if (isl_tab_is_redundant(tab, n_eq + i))
2531 isl_basic_map_drop_inequality(bmap, i);
2533 if (bmap->n_eq != n_eq)
2534 isl_basic_map_gauss(bmap, NULL);
2535 if (!tab->rational &&
2536 !bmap->sample && isl_tab_sample_is_integer(tab))
2537 bmap->sample = extract_integer_sample(tab);
2538 return bmap;
2541 struct isl_basic_set *isl_basic_set_update_from_tab(struct isl_basic_set *bset,
2542 struct isl_tab *tab)
2544 return (struct isl_basic_set *)isl_basic_map_update_from_tab(
2545 (struct isl_basic_map *)bset, tab);
2548 /* Given a non-negative variable "var", add a new non-negative variable
2549 * that is the opposite of "var", ensuring that var can only attain the
2550 * value zero.
2551 * If var = n/d is a row variable, then the new variable = -n/d.
2552 * If var is a column variables, then the new variable = -var.
2553 * If the new variable cannot attain non-negative values, then
2554 * the resulting tableau is empty.
2555 * Otherwise, we know the value will be zero and we close the row.
2557 static int cut_to_hyperplane(struct isl_tab *tab, struct isl_tab_var *var)
2559 unsigned r;
2560 isl_int *row;
2561 int sgn;
2562 unsigned off = 2 + tab->M;
2564 if (var->is_zero)
2565 return 0;
2566 isl_assert(tab->mat->ctx, !var->is_redundant, return -1);
2567 isl_assert(tab->mat->ctx, var->is_nonneg, return -1);
2569 if (isl_tab_extend_cons(tab, 1) < 0)
2570 return -1;
2572 r = tab->n_con;
2573 tab->con[r].index = tab->n_row;
2574 tab->con[r].is_row = 1;
2575 tab->con[r].is_nonneg = 0;
2576 tab->con[r].is_zero = 0;
2577 tab->con[r].is_redundant = 0;
2578 tab->con[r].frozen = 0;
2579 tab->con[r].negated = 0;
2580 tab->row_var[tab->n_row] = ~r;
2581 row = tab->mat->row[tab->n_row];
2583 if (var->is_row) {
2584 isl_int_set(row[0], tab->mat->row[var->index][0]);
2585 isl_seq_neg(row + 1,
2586 tab->mat->row[var->index] + 1, 1 + tab->n_col);
2587 } else {
2588 isl_int_set_si(row[0], 1);
2589 isl_seq_clr(row + 1, 1 + tab->n_col);
2590 isl_int_set_si(row[off + var->index], -1);
2593 tab->n_row++;
2594 tab->n_con++;
2595 if (isl_tab_push_var(tab, isl_tab_undo_allocate, &tab->con[r]) < 0)
2596 return -1;
2598 sgn = sign_of_max(tab, &tab->con[r]);
2599 if (sgn < -1)
2600 return -1;
2601 if (sgn < 0) {
2602 if (isl_tab_mark_empty(tab) < 0)
2603 return -1;
2604 return 0;
2606 tab->con[r].is_nonneg = 1;
2607 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
2608 return -1;
2609 /* sgn == 0 */
2610 if (close_row(tab, &tab->con[r]) < 0)
2611 return -1;
2613 return 0;
2616 /* Given a tableau "tab" and an inequality constraint "con" of the tableau,
2617 * relax the inequality by one. That is, the inequality r >= 0 is replaced
2618 * by r' = r + 1 >= 0.
2619 * If r is a row variable, we simply increase the constant term by one
2620 * (taking into account the denominator).
2621 * If r is a column variable, then we need to modify each row that
2622 * refers to r = r' - 1 by substituting this equality, effectively
2623 * subtracting the coefficient of the column from the constant.
2624 * We should only do this if the minimum is manifestly unbounded,
2625 * however. Otherwise, we may end up with negative sample values
2626 * for non-negative variables.
2627 * So, if r is a column variable with a minimum that is not
2628 * manifestly unbounded, then we need to move it to a row.
2629 * However, the sample value of this row may be negative,
2630 * even after the relaxation, so we need to restore it.
2631 * We therefore prefer to pivot a column up to a row, if possible.
2633 int isl_tab_relax(struct isl_tab *tab, int con)
2635 struct isl_tab_var *var;
2637 if (!tab)
2638 return -1;
2640 var = &tab->con[con];
2642 if (var->is_row && (var->index < 0 || var->index < tab->n_redundant))
2643 isl_die(tab->mat->ctx, isl_error_invalid,
2644 "cannot relax redundant constraint", return -1);
2645 if (!var->is_row && (var->index < 0 || var->index < tab->n_dead))
2646 isl_die(tab->mat->ctx, isl_error_invalid,
2647 "cannot relax dead constraint", return -1);
2649 if (!var->is_row && !max_is_manifestly_unbounded(tab, var))
2650 if (to_row(tab, var, 1) < 0)
2651 return -1;
2652 if (!var->is_row && !min_is_manifestly_unbounded(tab, var))
2653 if (to_row(tab, var, -1) < 0)
2654 return -1;
2656 if (var->is_row) {
2657 isl_int_add(tab->mat->row[var->index][1],
2658 tab->mat->row[var->index][1], tab->mat->row[var->index][0]);
2659 if (restore_row(tab, var) < 0)
2660 return -1;
2661 } else {
2662 int i;
2663 unsigned off = 2 + tab->M;
2665 for (i = 0; i < tab->n_row; ++i) {
2666 if (isl_int_is_zero(tab->mat->row[i][off + var->index]))
2667 continue;
2668 isl_int_sub(tab->mat->row[i][1], tab->mat->row[i][1],
2669 tab->mat->row[i][off + var->index]);
2674 if (isl_tab_push_var(tab, isl_tab_undo_relax, var) < 0)
2675 return -1;
2677 return 0;
2680 /* Replace the variable v at position "pos" in the tableau "tab"
2681 * by v' = v + shift.
2683 * If the variable is in a column, then we first check if we can
2684 * simply plug in v = v' - shift. The effect on a row with
2685 * coefficient f/d for variable v is that the constant term c/d
2686 * is replaced by (c - f * shift)/d. If shift is positive and
2687 * f is negative for each row that needs to remain non-negative,
2688 * then this is clearly safe. In other words, if the minimum of v
2689 * is manifestly unbounded, then we can keep v in a column position.
2690 * Otherwise, we can pivot it down to a row.
2691 * Similarly, if shift is negative, we need to check if the maximum
2692 * of is manifestly unbounded.
2694 * If the variable is in a row (from the start or after pivoting),
2695 * then the constant term c/d is replaced by (c + d * shift)/d.
2697 int isl_tab_shift_var(struct isl_tab *tab, int pos, isl_int shift)
2699 struct isl_tab_var *var;
2701 if (!tab)
2702 return -1;
2703 if (isl_int_is_zero(shift))
2704 return 0;
2706 var = &tab->var[pos];
2707 if (!var->is_row) {
2708 if (isl_int_is_neg(shift)) {
2709 if (!max_is_manifestly_unbounded(tab, var))
2710 if (to_row(tab, var, 1) < 0)
2711 return -1;
2712 } else {
2713 if (!min_is_manifestly_unbounded(tab, var))
2714 if (to_row(tab, var, -1) < 0)
2715 return -1;
2719 if (var->is_row) {
2720 isl_int_addmul(tab->mat->row[var->index][1],
2721 shift, tab->mat->row[var->index][0]);
2722 } else {
2723 int i;
2724 unsigned off = 2 + tab->M;
2726 for (i = 0; i < tab->n_row; ++i) {
2727 if (isl_int_is_zero(tab->mat->row[i][off + var->index]))
2728 continue;
2729 isl_int_submul(tab->mat->row[i][1],
2730 shift, tab->mat->row[i][off + var->index]);
2735 return 0;
2738 /* Remove the sign constraint from constraint "con".
2740 * If the constraint variable was originally marked non-negative,
2741 * then we make sure we mark it non-negative again during rollback.
2743 int isl_tab_unrestrict(struct isl_tab *tab, int con)
2745 struct isl_tab_var *var;
2747 if (!tab)
2748 return -1;
2750 var = &tab->con[con];
2751 if (!var->is_nonneg)
2752 return 0;
2754 var->is_nonneg = 0;
2755 if (isl_tab_push_var(tab, isl_tab_undo_unrestrict, var) < 0)
2756 return -1;
2758 return 0;
2761 int isl_tab_select_facet(struct isl_tab *tab, int con)
2763 if (!tab)
2764 return -1;
2766 return cut_to_hyperplane(tab, &tab->con[con]);
2769 static int may_be_equality(struct isl_tab *tab, int row)
2771 return tab->rational ? isl_int_is_zero(tab->mat->row[row][1])
2772 : isl_int_lt(tab->mat->row[row][1],
2773 tab->mat->row[row][0]);
2776 /* Check for (near) equalities among the constraints.
2777 * A constraint is an equality if it is non-negative and if
2778 * its maximal value is either
2779 * - zero (in case of rational tableaus), or
2780 * - strictly less than 1 (in case of integer tableaus)
2782 * We first mark all non-redundant and non-dead variables that
2783 * are not frozen and not obviously not an equality.
2784 * Then we iterate over all marked variables if they can attain
2785 * any values larger than zero or at least one.
2786 * If the maximal value is zero, we mark any column variables
2787 * that appear in the row as being zero and mark the row as being redundant.
2788 * Otherwise, if the maximal value is strictly less than one (and the
2789 * tableau is integer), then we restrict the value to being zero
2790 * by adding an opposite non-negative variable.
2792 int isl_tab_detect_implicit_equalities(struct isl_tab *tab)
2794 int i;
2795 unsigned n_marked;
2797 if (!tab)
2798 return -1;
2799 if (tab->empty)
2800 return 0;
2801 if (tab->n_dead == tab->n_col)
2802 return 0;
2804 n_marked = 0;
2805 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2806 struct isl_tab_var *var = isl_tab_var_from_row(tab, i);
2807 var->marked = !var->frozen && var->is_nonneg &&
2808 may_be_equality(tab, i);
2809 if (var->marked)
2810 n_marked++;
2812 for (i = tab->n_dead; i < tab->n_col; ++i) {
2813 struct isl_tab_var *var = var_from_col(tab, i);
2814 var->marked = !var->frozen && var->is_nonneg;
2815 if (var->marked)
2816 n_marked++;
2818 while (n_marked) {
2819 struct isl_tab_var *var;
2820 int sgn;
2821 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2822 var = isl_tab_var_from_row(tab, i);
2823 if (var->marked)
2824 break;
2826 if (i == tab->n_row) {
2827 for (i = tab->n_dead; i < tab->n_col; ++i) {
2828 var = var_from_col(tab, i);
2829 if (var->marked)
2830 break;
2832 if (i == tab->n_col)
2833 break;
2835 var->marked = 0;
2836 n_marked--;
2837 sgn = sign_of_max(tab, var);
2838 if (sgn < 0)
2839 return -1;
2840 if (sgn == 0) {
2841 if (close_row(tab, var) < 0)
2842 return -1;
2843 } else if (!tab->rational && !at_least_one(tab, var)) {
2844 if (cut_to_hyperplane(tab, var) < 0)
2845 return -1;
2846 return isl_tab_detect_implicit_equalities(tab);
2848 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2849 var = isl_tab_var_from_row(tab, i);
2850 if (!var->marked)
2851 continue;
2852 if (may_be_equality(tab, i))
2853 continue;
2854 var->marked = 0;
2855 n_marked--;
2859 return 0;
2862 /* Update the element of row_var or col_var that corresponds to
2863 * constraint tab->con[i] to a move from position "old" to position "i".
2865 static int update_con_after_move(struct isl_tab *tab, int i, int old)
2867 int *p;
2868 int index;
2870 index = tab->con[i].index;
2871 if (index == -1)
2872 return 0;
2873 p = tab->con[i].is_row ? tab->row_var : tab->col_var;
2874 if (p[index] != ~old)
2875 isl_die(tab->mat->ctx, isl_error_internal,
2876 "broken internal state", return -1);
2877 p[index] = ~i;
2879 return 0;
2882 /* Rotate the "n" constraints starting at "first" to the right,
2883 * putting the last constraint in the position of the first constraint.
2885 static int rotate_constraints(struct isl_tab *tab, int first, int n)
2887 int i, last;
2888 struct isl_tab_var var;
2890 if (n <= 1)
2891 return 0;
2893 last = first + n - 1;
2894 var = tab->con[last];
2895 for (i = last; i > first; --i) {
2896 tab->con[i] = tab->con[i - 1];
2897 if (update_con_after_move(tab, i, i - 1) < 0)
2898 return -1;
2900 tab->con[first] = var;
2901 if (update_con_after_move(tab, first, last) < 0)
2902 return -1;
2904 return 0;
2907 /* Make the equalities that are implicit in "bmap" but that have been
2908 * detected in the corresponding "tab" explicit in "bmap" and update
2909 * "tab" to reflect the new order of the constraints.
2911 * In particular, if inequality i is an implicit equality then
2912 * isl_basic_map_inequality_to_equality will move the inequality
2913 * in front of the other equality and it will move the last inequality
2914 * in the position of inequality i.
2915 * In the tableau, the inequalities of "bmap" are stored after the equalities
2916 * and so the original order
2918 * E E E E E A A A I B B B B L
2920 * is changed into
2922 * I E E E E E A A A L B B B B
2924 * where I is the implicit equality, the E are equalities,
2925 * the A inequalities before I, the B inequalities after I and
2926 * L the last inequality.
2927 * We therefore need to rotate to the right two sets of constraints,
2928 * those up to and including I and those after I.
2930 * If "tab" contains any constraints that are not in "bmap" then they
2931 * appear after those in "bmap" and they should be left untouched.
2933 * Note that this function leaves "bmap" in a temporary state
2934 * as it does not call isl_basic_map_gauss. Calling this function
2935 * is the responsibility of the caller.
2937 __isl_give isl_basic_map *isl_tab_make_equalities_explicit(struct isl_tab *tab,
2938 __isl_take isl_basic_map *bmap)
2940 int i;
2942 if (!tab || !bmap)
2943 return isl_basic_map_free(bmap);
2944 if (tab->empty)
2945 return bmap;
2947 for (i = bmap->n_ineq - 1; i >= 0; --i) {
2948 if (!isl_tab_is_equality(tab, bmap->n_eq + i))
2949 continue;
2950 isl_basic_map_inequality_to_equality(bmap, i);
2951 if (rotate_constraints(tab, 0, tab->n_eq + i + 1) < 0)
2952 return isl_basic_map_free(bmap);
2953 if (rotate_constraints(tab, tab->n_eq + i + 1,
2954 bmap->n_ineq - i) < 0)
2955 return isl_basic_map_free(bmap);
2956 tab->n_eq++;
2959 return bmap;
2962 static int con_is_redundant(struct isl_tab *tab, struct isl_tab_var *var)
2964 if (!tab)
2965 return -1;
2966 if (tab->rational) {
2967 int sgn = sign_of_min(tab, var);
2968 if (sgn < -1)
2969 return -1;
2970 return sgn >= 0;
2971 } else {
2972 int irred = isl_tab_min_at_most_neg_one(tab, var);
2973 if (irred < 0)
2974 return -1;
2975 return !irred;
2979 /* Check for (near) redundant constraints.
2980 * A constraint is redundant if it is non-negative and if
2981 * its minimal value (temporarily ignoring the non-negativity) is either
2982 * - zero (in case of rational tableaus), or
2983 * - strictly larger than -1 (in case of integer tableaus)
2985 * We first mark all non-redundant and non-dead variables that
2986 * are not frozen and not obviously negatively unbounded.
2987 * Then we iterate over all marked variables if they can attain
2988 * any values smaller than zero or at most negative one.
2989 * If not, we mark the row as being redundant (assuming it hasn't
2990 * been detected as being obviously redundant in the mean time).
2992 int isl_tab_detect_redundant(struct isl_tab *tab)
2994 int i;
2995 unsigned n_marked;
2997 if (!tab)
2998 return -1;
2999 if (tab->empty)
3000 return 0;
3001 if (tab->n_redundant == tab->n_row)
3002 return 0;
3004 n_marked = 0;
3005 for (i = tab->n_redundant; i < tab->n_row; ++i) {
3006 struct isl_tab_var *var = isl_tab_var_from_row(tab, i);
3007 var->marked = !var->frozen && var->is_nonneg;
3008 if (var->marked)
3009 n_marked++;
3011 for (i = tab->n_dead; i < tab->n_col; ++i) {
3012 struct isl_tab_var *var = var_from_col(tab, i);
3013 var->marked = !var->frozen && var->is_nonneg &&
3014 !min_is_manifestly_unbounded(tab, var);
3015 if (var->marked)
3016 n_marked++;
3018 while (n_marked) {
3019 struct isl_tab_var *var;
3020 int red;
3021 for (i = tab->n_redundant; i < tab->n_row; ++i) {
3022 var = isl_tab_var_from_row(tab, i);
3023 if (var->marked)
3024 break;
3026 if (i == tab->n_row) {
3027 for (i = tab->n_dead; i < tab->n_col; ++i) {
3028 var = var_from_col(tab, i);
3029 if (var->marked)
3030 break;
3032 if (i == tab->n_col)
3033 break;
3035 var->marked = 0;
3036 n_marked--;
3037 red = con_is_redundant(tab, var);
3038 if (red < 0)
3039 return -1;
3040 if (red && !var->is_redundant)
3041 if (isl_tab_mark_redundant(tab, var->index) < 0)
3042 return -1;
3043 for (i = tab->n_dead; i < tab->n_col; ++i) {
3044 var = var_from_col(tab, i);
3045 if (!var->marked)
3046 continue;
3047 if (!min_is_manifestly_unbounded(tab, var))
3048 continue;
3049 var->marked = 0;
3050 n_marked--;
3054 return 0;
3057 int isl_tab_is_equality(struct isl_tab *tab, int con)
3059 int row;
3060 unsigned off;
3062 if (!tab)
3063 return -1;
3064 if (tab->con[con].is_zero)
3065 return 1;
3066 if (tab->con[con].is_redundant)
3067 return 0;
3068 if (!tab->con[con].is_row)
3069 return tab->con[con].index < tab->n_dead;
3071 row = tab->con[con].index;
3073 off = 2 + tab->M;
3074 return isl_int_is_zero(tab->mat->row[row][1]) &&
3075 (!tab->M || isl_int_is_zero(tab->mat->row[row][2])) &&
3076 isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
3077 tab->n_col - tab->n_dead) == -1;
3080 /* Return the minimal value of the affine expression "f" with denominator
3081 * "denom" in *opt, *opt_denom, assuming the tableau is not empty and
3082 * the expression cannot attain arbitrarily small values.
3083 * If opt_denom is NULL, then *opt is rounded up to the nearest integer.
3084 * The return value reflects the nature of the result (empty, unbounded,
3085 * minimal value returned in *opt).
3087 enum isl_lp_result isl_tab_min(struct isl_tab *tab,
3088 isl_int *f, isl_int denom, isl_int *opt, isl_int *opt_denom,
3089 unsigned flags)
3091 int r;
3092 enum isl_lp_result res = isl_lp_ok;
3093 struct isl_tab_var *var;
3094 struct isl_tab_undo *snap;
3096 if (!tab)
3097 return isl_lp_error;
3099 if (tab->empty)
3100 return isl_lp_empty;
3102 snap = isl_tab_snap(tab);
3103 r = isl_tab_add_row(tab, f);
3104 if (r < 0)
3105 return isl_lp_error;
3106 var = &tab->con[r];
3107 for (;;) {
3108 int row, col;
3109 find_pivot(tab, var, var, -1, &row, &col);
3110 if (row == var->index) {
3111 res = isl_lp_unbounded;
3112 break;
3114 if (row == -1)
3115 break;
3116 if (isl_tab_pivot(tab, row, col) < 0)
3117 return isl_lp_error;
3119 isl_int_mul(tab->mat->row[var->index][0],
3120 tab->mat->row[var->index][0], denom);
3121 if (ISL_FL_ISSET(flags, ISL_TAB_SAVE_DUAL)) {
3122 int i;
3124 isl_vec_free(tab->dual);
3125 tab->dual = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_con);
3126 if (!tab->dual)
3127 return isl_lp_error;
3128 isl_int_set(tab->dual->el[0], tab->mat->row[var->index][0]);
3129 for (i = 0; i < tab->n_con; ++i) {
3130 int pos;
3131 if (tab->con[i].is_row) {
3132 isl_int_set_si(tab->dual->el[1 + i], 0);
3133 continue;
3135 pos = 2 + tab->M + tab->con[i].index;
3136 if (tab->con[i].negated)
3137 isl_int_neg(tab->dual->el[1 + i],
3138 tab->mat->row[var->index][pos]);
3139 else
3140 isl_int_set(tab->dual->el[1 + i],
3141 tab->mat->row[var->index][pos]);
3144 if (opt && res == isl_lp_ok) {
3145 if (opt_denom) {
3146 isl_int_set(*opt, tab->mat->row[var->index][1]);
3147 isl_int_set(*opt_denom, tab->mat->row[var->index][0]);
3148 } else
3149 isl_int_cdiv_q(*opt, tab->mat->row[var->index][1],
3150 tab->mat->row[var->index][0]);
3152 if (isl_tab_rollback(tab, snap) < 0)
3153 return isl_lp_error;
3154 return res;
3157 int isl_tab_is_redundant(struct isl_tab *tab, int con)
3159 if (!tab)
3160 return -1;
3161 if (tab->con[con].is_zero)
3162 return 0;
3163 if (tab->con[con].is_redundant)
3164 return 1;
3165 return tab->con[con].is_row && tab->con[con].index < tab->n_redundant;
3168 /* Take a snapshot of the tableau that can be restored by s call to
3169 * isl_tab_rollback.
3171 struct isl_tab_undo *isl_tab_snap(struct isl_tab *tab)
3173 if (!tab)
3174 return NULL;
3175 tab->need_undo = 1;
3176 return tab->top;
3179 /* Undo the operation performed by isl_tab_relax.
3181 static int unrelax(struct isl_tab *tab, struct isl_tab_var *var) WARN_UNUSED;
3182 static int unrelax(struct isl_tab *tab, struct isl_tab_var *var)
3184 unsigned off = 2 + tab->M;
3186 if (!var->is_row && !max_is_manifestly_unbounded(tab, var))
3187 if (to_row(tab, var, 1) < 0)
3188 return -1;
3190 if (var->is_row) {
3191 isl_int_sub(tab->mat->row[var->index][1],
3192 tab->mat->row[var->index][1], tab->mat->row[var->index][0]);
3193 if (var->is_nonneg) {
3194 int sgn = restore_row(tab, var);
3195 isl_assert(tab->mat->ctx, sgn >= 0, return -1);
3197 } else {
3198 int i;
3200 for (i = 0; i < tab->n_row; ++i) {
3201 if (isl_int_is_zero(tab->mat->row[i][off + var->index]))
3202 continue;
3203 isl_int_add(tab->mat->row[i][1], tab->mat->row[i][1],
3204 tab->mat->row[i][off + var->index]);
3209 return 0;
3212 /* Undo the operation performed by isl_tab_unrestrict.
3214 * In particular, mark the variable as being non-negative and make
3215 * sure the sample value respects this constraint.
3217 static int ununrestrict(struct isl_tab *tab, struct isl_tab_var *var)
3219 var->is_nonneg = 1;
3221 if (var->is_row && restore_row(tab, var) < -1)
3222 return -1;
3224 return 0;
3227 static int perform_undo_var(struct isl_tab *tab, struct isl_tab_undo *undo) WARN_UNUSED;
3228 static int perform_undo_var(struct isl_tab *tab, struct isl_tab_undo *undo)
3230 struct isl_tab_var *var = var_from_index(tab, undo->u.var_index);
3231 switch (undo->type) {
3232 case isl_tab_undo_nonneg:
3233 var->is_nonneg = 0;
3234 break;
3235 case isl_tab_undo_redundant:
3236 var->is_redundant = 0;
3237 tab->n_redundant--;
3238 restore_row(tab, isl_tab_var_from_row(tab, tab->n_redundant));
3239 break;
3240 case isl_tab_undo_freeze:
3241 var->frozen = 0;
3242 break;
3243 case isl_tab_undo_zero:
3244 var->is_zero = 0;
3245 if (!var->is_row)
3246 tab->n_dead--;
3247 break;
3248 case isl_tab_undo_allocate:
3249 if (undo->u.var_index >= 0) {
3250 isl_assert(tab->mat->ctx, !var->is_row, return -1);
3251 return drop_col(tab, var->index);
3253 if (!var->is_row) {
3254 if (!max_is_manifestly_unbounded(tab, var)) {
3255 if (to_row(tab, var, 1) < 0)
3256 return -1;
3257 } else if (!min_is_manifestly_unbounded(tab, var)) {
3258 if (to_row(tab, var, -1) < 0)
3259 return -1;
3260 } else
3261 if (to_row(tab, var, 0) < 0)
3262 return -1;
3264 return drop_row(tab, var->index);
3265 case isl_tab_undo_relax:
3266 return unrelax(tab, var);
3267 case isl_tab_undo_unrestrict:
3268 return ununrestrict(tab, var);
3269 default:
3270 isl_die(tab->mat->ctx, isl_error_internal,
3271 "perform_undo_var called on invalid undo record",
3272 return -1);
3275 return 0;
3278 /* Restore the tableau to the state where the basic variables
3279 * are those in "col_var".
3280 * We first construct a list of variables that are currently in
3281 * the basis, but shouldn't. Then we iterate over all variables
3282 * that should be in the basis and for each one that is currently
3283 * not in the basis, we exchange it with one of the elements of the
3284 * list constructed before.
3285 * We can always find an appropriate variable to pivot with because
3286 * the current basis is mapped to the old basis by a non-singular
3287 * matrix and so we can never end up with a zero row.
3289 static int restore_basis(struct isl_tab *tab, int *col_var)
3291 int i, j;
3292 int n_extra = 0;
3293 int *extra = NULL; /* current columns that contain bad stuff */
3294 unsigned off = 2 + tab->M;
3296 extra = isl_alloc_array(tab->mat->ctx, int, tab->n_col);
3297 if (tab->n_col && !extra)
3298 goto error;
3299 for (i = 0; i < tab->n_col; ++i) {
3300 for (j = 0; j < tab->n_col; ++j)
3301 if (tab->col_var[i] == col_var[j])
3302 break;
3303 if (j < tab->n_col)
3304 continue;
3305 extra[n_extra++] = i;
3307 for (i = 0; i < tab->n_col && n_extra > 0; ++i) {
3308 struct isl_tab_var *var;
3309 int row;
3311 for (j = 0; j < tab->n_col; ++j)
3312 if (col_var[i] == tab->col_var[j])
3313 break;
3314 if (j < tab->n_col)
3315 continue;
3316 var = var_from_index(tab, col_var[i]);
3317 row = var->index;
3318 for (j = 0; j < n_extra; ++j)
3319 if (!isl_int_is_zero(tab->mat->row[row][off+extra[j]]))
3320 break;
3321 isl_assert(tab->mat->ctx, j < n_extra, goto error);
3322 if (isl_tab_pivot(tab, row, extra[j]) < 0)
3323 goto error;
3324 extra[j] = extra[--n_extra];
3327 free(extra);
3328 return 0;
3329 error:
3330 free(extra);
3331 return -1;
3334 /* Remove all samples with index n or greater, i.e., those samples
3335 * that were added since we saved this number of samples in
3336 * isl_tab_save_samples.
3338 static void drop_samples_since(struct isl_tab *tab, int n)
3340 int i;
3342 for (i = tab->n_sample - 1; i >= 0 && tab->n_sample > n; --i) {
3343 if (tab->sample_index[i] < n)
3344 continue;
3346 if (i != tab->n_sample - 1) {
3347 int t = tab->sample_index[tab->n_sample-1];
3348 tab->sample_index[tab->n_sample-1] = tab->sample_index[i];
3349 tab->sample_index[i] = t;
3350 isl_mat_swap_rows(tab->samples, tab->n_sample-1, i);
3352 tab->n_sample--;
3356 static int perform_undo(struct isl_tab *tab, struct isl_tab_undo *undo) WARN_UNUSED;
3357 static int perform_undo(struct isl_tab *tab, struct isl_tab_undo *undo)
3359 switch (undo->type) {
3360 case isl_tab_undo_rational:
3361 tab->rational = 0;
3362 break;
3363 case isl_tab_undo_empty:
3364 tab->empty = 0;
3365 break;
3366 case isl_tab_undo_nonneg:
3367 case isl_tab_undo_redundant:
3368 case isl_tab_undo_freeze:
3369 case isl_tab_undo_zero:
3370 case isl_tab_undo_allocate:
3371 case isl_tab_undo_relax:
3372 case isl_tab_undo_unrestrict:
3373 return perform_undo_var(tab, undo);
3374 case isl_tab_undo_bmap_eq:
3375 return isl_basic_map_free_equality(tab->bmap, 1);
3376 case isl_tab_undo_bmap_ineq:
3377 return isl_basic_map_free_inequality(tab->bmap, 1);
3378 case isl_tab_undo_bmap_div:
3379 if (isl_basic_map_free_div(tab->bmap, 1) < 0)
3380 return -1;
3381 if (tab->samples)
3382 tab->samples->n_col--;
3383 break;
3384 case isl_tab_undo_saved_basis:
3385 if (restore_basis(tab, undo->u.col_var) < 0)
3386 return -1;
3387 break;
3388 case isl_tab_undo_drop_sample:
3389 tab->n_outside--;
3390 break;
3391 case isl_tab_undo_saved_samples:
3392 drop_samples_since(tab, undo->u.n);
3393 break;
3394 case isl_tab_undo_callback:
3395 return undo->u.callback->run(undo->u.callback);
3396 default:
3397 isl_assert(tab->mat->ctx, 0, return -1);
3399 return 0;
3402 /* Return the tableau to the state it was in when the snapshot "snap"
3403 * was taken.
3405 int isl_tab_rollback(struct isl_tab *tab, struct isl_tab_undo *snap)
3407 struct isl_tab_undo *undo, *next;
3409 if (!tab)
3410 return -1;
3412 tab->in_undo = 1;
3413 for (undo = tab->top; undo && undo != &tab->bottom; undo = next) {
3414 next = undo->next;
3415 if (undo == snap)
3416 break;
3417 if (perform_undo(tab, undo) < 0) {
3418 tab->top = undo;
3419 free_undo(tab);
3420 tab->in_undo = 0;
3421 return -1;
3423 free_undo_record(undo);
3425 tab->in_undo = 0;
3426 tab->top = undo;
3427 if (!undo)
3428 return -1;
3429 return 0;
3432 /* The given row "row" represents an inequality violated by all
3433 * points in the tableau. Check for some special cases of such
3434 * separating constraints.
3435 * In particular, if the row has been reduced to the constant -1,
3436 * then we know the inequality is adjacent (but opposite) to
3437 * an equality in the tableau.
3438 * If the row has been reduced to r = c*(-1 -r'), with r' an inequality
3439 * of the tableau and c a positive constant, then the inequality
3440 * is adjacent (but opposite) to the inequality r'.
3442 static enum isl_ineq_type separation_type(struct isl_tab *tab, unsigned row)
3444 int pos;
3445 unsigned off = 2 + tab->M;
3447 if (tab->rational)
3448 return isl_ineq_separate;
3450 if (!isl_int_is_one(tab->mat->row[row][0]))
3451 return isl_ineq_separate;
3453 pos = isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
3454 tab->n_col - tab->n_dead);
3455 if (pos == -1) {
3456 if (isl_int_is_negone(tab->mat->row[row][1]))
3457 return isl_ineq_adj_eq;
3458 else
3459 return isl_ineq_separate;
3462 if (!isl_int_eq(tab->mat->row[row][1],
3463 tab->mat->row[row][off + tab->n_dead + pos]))
3464 return isl_ineq_separate;
3466 pos = isl_seq_first_non_zero(
3467 tab->mat->row[row] + off + tab->n_dead + pos + 1,
3468 tab->n_col - tab->n_dead - pos - 1);
3470 return pos == -1 ? isl_ineq_adj_ineq : isl_ineq_separate;
3473 /* Check the effect of inequality "ineq" on the tableau "tab".
3474 * The result may be
3475 * isl_ineq_redundant: satisfied by all points in the tableau
3476 * isl_ineq_separate: satisfied by no point in the tableau
3477 * isl_ineq_cut: satisfied by some by not all points
3478 * isl_ineq_adj_eq: adjacent to an equality
3479 * isl_ineq_adj_ineq: adjacent to an inequality.
3481 enum isl_ineq_type isl_tab_ineq_type(struct isl_tab *tab, isl_int *ineq)
3483 enum isl_ineq_type type = isl_ineq_error;
3484 struct isl_tab_undo *snap = NULL;
3485 int con;
3486 int row;
3488 if (!tab)
3489 return isl_ineq_error;
3491 if (isl_tab_extend_cons(tab, 1) < 0)
3492 return isl_ineq_error;
3494 snap = isl_tab_snap(tab);
3496 con = isl_tab_add_row(tab, ineq);
3497 if (con < 0)
3498 goto error;
3500 row = tab->con[con].index;
3501 if (isl_tab_row_is_redundant(tab, row))
3502 type = isl_ineq_redundant;
3503 else if (isl_int_is_neg(tab->mat->row[row][1]) &&
3504 (tab->rational ||
3505 isl_int_abs_ge(tab->mat->row[row][1],
3506 tab->mat->row[row][0]))) {
3507 int nonneg = at_least_zero(tab, &tab->con[con]);
3508 if (nonneg < 0)
3509 goto error;
3510 if (nonneg)
3511 type = isl_ineq_cut;
3512 else
3513 type = separation_type(tab, row);
3514 } else {
3515 int red = con_is_redundant(tab, &tab->con[con]);
3516 if (red < 0)
3517 goto error;
3518 if (!red)
3519 type = isl_ineq_cut;
3520 else
3521 type = isl_ineq_redundant;
3524 if (isl_tab_rollback(tab, snap))
3525 return isl_ineq_error;
3526 return type;
3527 error:
3528 return isl_ineq_error;
3531 int isl_tab_track_bmap(struct isl_tab *tab, __isl_take isl_basic_map *bmap)
3533 bmap = isl_basic_map_cow(bmap);
3534 if (!tab || !bmap)
3535 goto error;
3537 if (tab->empty) {
3538 bmap = isl_basic_map_set_to_empty(bmap);
3539 if (!bmap)
3540 goto error;
3541 tab->bmap = bmap;
3542 return 0;
3545 isl_assert(tab->mat->ctx, tab->n_eq == bmap->n_eq, goto error);
3546 isl_assert(tab->mat->ctx,
3547 tab->n_con == bmap->n_eq + bmap->n_ineq, goto error);
3549 tab->bmap = bmap;
3551 return 0;
3552 error:
3553 isl_basic_map_free(bmap);
3554 return -1;
3557 int isl_tab_track_bset(struct isl_tab *tab, __isl_take isl_basic_set *bset)
3559 return isl_tab_track_bmap(tab, (isl_basic_map *)bset);
3562 __isl_keep isl_basic_set *isl_tab_peek_bset(struct isl_tab *tab)
3564 if (!tab)
3565 return NULL;
3567 return (isl_basic_set *)tab->bmap;
3570 static void isl_tab_print_internal(__isl_keep struct isl_tab *tab,
3571 FILE *out, int indent)
3573 unsigned r, c;
3574 int i;
3576 if (!tab) {
3577 fprintf(out, "%*snull tab\n", indent, "");
3578 return;
3580 fprintf(out, "%*sn_redundant: %d, n_dead: %d", indent, "",
3581 tab->n_redundant, tab->n_dead);
3582 if (tab->rational)
3583 fprintf(out, ", rational");
3584 if (tab->empty)
3585 fprintf(out, ", empty");
3586 fprintf(out, "\n");
3587 fprintf(out, "%*s[", indent, "");
3588 for (i = 0; i < tab->n_var; ++i) {
3589 if (i)
3590 fprintf(out, (i == tab->n_param ||
3591 i == tab->n_var - tab->n_div) ? "; "
3592 : ", ");
3593 fprintf(out, "%c%d%s", tab->var[i].is_row ? 'r' : 'c',
3594 tab->var[i].index,
3595 tab->var[i].is_zero ? " [=0]" :
3596 tab->var[i].is_redundant ? " [R]" : "");
3598 fprintf(out, "]\n");
3599 fprintf(out, "%*s[", indent, "");
3600 for (i = 0; i < tab->n_con; ++i) {
3601 if (i)
3602 fprintf(out, ", ");
3603 fprintf(out, "%c%d%s", tab->con[i].is_row ? 'r' : 'c',
3604 tab->con[i].index,
3605 tab->con[i].is_zero ? " [=0]" :
3606 tab->con[i].is_redundant ? " [R]" : "");
3608 fprintf(out, "]\n");
3609 fprintf(out, "%*s[", indent, "");
3610 for (i = 0; i < tab->n_row; ++i) {
3611 const char *sign = "";
3612 if (i)
3613 fprintf(out, ", ");
3614 if (tab->row_sign) {
3615 if (tab->row_sign[i] == isl_tab_row_unknown)
3616 sign = "?";
3617 else if (tab->row_sign[i] == isl_tab_row_neg)
3618 sign = "-";
3619 else if (tab->row_sign[i] == isl_tab_row_pos)
3620 sign = "+";
3621 else
3622 sign = "+-";
3624 fprintf(out, "r%d: %d%s%s", i, tab->row_var[i],
3625 isl_tab_var_from_row(tab, i)->is_nonneg ? " [>=0]" : "", sign);
3627 fprintf(out, "]\n");
3628 fprintf(out, "%*s[", indent, "");
3629 for (i = 0; i < tab->n_col; ++i) {
3630 if (i)
3631 fprintf(out, ", ");
3632 fprintf(out, "c%d: %d%s", i, tab->col_var[i],
3633 var_from_col(tab, i)->is_nonneg ? " [>=0]" : "");
3635 fprintf(out, "]\n");
3636 r = tab->mat->n_row;
3637 tab->mat->n_row = tab->n_row;
3638 c = tab->mat->n_col;
3639 tab->mat->n_col = 2 + tab->M + tab->n_col;
3640 isl_mat_print_internal(tab->mat, out, indent);
3641 tab->mat->n_row = r;
3642 tab->mat->n_col = c;
3643 if (tab->bmap)
3644 isl_basic_map_print_internal(tab->bmap, out, indent);
3647 void isl_tab_dump(__isl_keep struct isl_tab *tab)
3649 isl_tab_print_internal(tab, stderr, 0);