update m4/ax_gcc_warn_unused_result.m4
[isl.git] / isl_scheduler.c
blob1d491b9a663a3ecc128808e46445e298c1d58eed
1 /*
2 * Copyright 2011 INRIA Saclay
3 * Copyright 2012-2014 Ecole Normale Superieure
4 * Copyright 2015-2016 Sven Verdoolaege
5 * Copyright 2016 INRIA Paris
6 * Copyright 2017 Sven Verdoolaege
8 * Use of this software is governed by the MIT license
10 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
11 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
12 * 91893 Orsay, France
13 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
14 * and Centre de Recherche Inria de Paris, 2 rue Simone Iff - Voie DQ12,
15 * CS 42112, 75589 Paris Cedex 12, France
18 #include <isl_ctx_private.h>
19 #include <isl_map_private.h>
20 #include <isl_space_private.h>
21 #include <isl_aff_private.h>
22 #include <isl/hash.h>
23 #include <isl/id.h>
24 #include <isl/constraint.h>
25 #include <isl/schedule.h>
26 #include <isl_schedule_constraints.h>
27 #include <isl/schedule_node.h>
28 #include <isl_mat_private.h>
29 #include <isl_vec_private.h>
30 #include <isl/set.h>
31 #include <isl_union_set_private.h>
32 #include <isl_seq.h>
33 #include <isl_tab.h>
34 #include <isl_dim_map.h>
35 #include <isl/map_to_basic_set.h>
36 #include <isl_sort.h>
37 #include <isl_options_private.h>
38 #include <isl_tarjan.h>
39 #include <isl_morph.h>
40 #include <isl/ilp.h>
41 #include <isl_val_private.h>
43 #include "isl_scheduler.h"
44 #include "isl_scheduler_clustering.h"
47 * The scheduling algorithm implemented in this file was inspired by
48 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
49 * Parallelization and Locality Optimization in the Polyhedral Model".
51 * For a detailed description of the variant implemented in isl,
52 * see Verdoolaege and Janssens, "Scheduling for PPCG" (2017).
56 static isl_bool node_has_tuples(const void *entry, const void *val)
58 struct isl_sched_node *node = (struct isl_sched_node *)entry;
59 isl_space *space = (isl_space *) val;
61 return isl_space_has_equal_tuples(node->space, space);
64 int isl_sched_node_scc_exactly(struct isl_sched_node *node, int scc)
66 return node->scc == scc;
69 static int node_scc_at_most(struct isl_sched_node *node, int scc)
71 return node->scc <= scc;
74 static int node_scc_at_least(struct isl_sched_node *node, int scc)
76 return node->scc >= scc;
79 /* Is "edge" marked as being of type "type"?
81 int isl_sched_edge_has_type(struct isl_sched_edge *edge,
82 enum isl_edge_type type)
84 return ISL_FL_ISSET(edge->types, 1 << type);
87 /* Mark "edge" as being of type "type".
89 static void set_type(struct isl_sched_edge *edge, enum isl_edge_type type)
91 ISL_FL_SET(edge->types, 1 << type);
94 /* No longer mark "edge" as being of type "type"?
96 static void clear_type(struct isl_sched_edge *edge, enum isl_edge_type type)
98 ISL_FL_CLR(edge->types, 1 << type);
101 /* Is "edge" marked as a validity edge?
103 static int is_validity(struct isl_sched_edge *edge)
105 return isl_sched_edge_has_type(edge, isl_edge_validity);
108 /* Mark "edge" as a validity edge.
110 static void set_validity(struct isl_sched_edge *edge)
112 set_type(edge, isl_edge_validity);
115 /* Is "edge" marked as a proximity edge?
117 int isl_sched_edge_is_proximity(struct isl_sched_edge *edge)
119 return isl_sched_edge_has_type(edge, isl_edge_proximity);
122 /* Is "edge" marked as a local edge?
124 static int is_local(struct isl_sched_edge *edge)
126 return isl_sched_edge_has_type(edge, isl_edge_local);
129 /* Mark "edge" as a local edge.
131 static void set_local(struct isl_sched_edge *edge)
133 set_type(edge, isl_edge_local);
136 /* No longer mark "edge" as a local edge.
138 static void clear_local(struct isl_sched_edge *edge)
140 clear_type(edge, isl_edge_local);
143 /* Is "edge" marked as a coincidence edge?
145 static int is_coincidence(struct isl_sched_edge *edge)
147 return isl_sched_edge_has_type(edge, isl_edge_coincidence);
150 /* Is "edge" marked as a condition edge?
152 int isl_sched_edge_is_condition(struct isl_sched_edge *edge)
154 return isl_sched_edge_has_type(edge, isl_edge_condition);
157 /* Is "edge" marked as a conditional validity edge?
159 int isl_sched_edge_is_conditional_validity(struct isl_sched_edge *edge)
161 return isl_sched_edge_has_type(edge, isl_edge_conditional_validity);
164 /* Is "edge" of a type that can appear multiple times between
165 * the same pair of nodes?
167 * Condition edges and conditional validity edges may have tagged
168 * dependence relations, in which case an edge is added for each
169 * pair of tags.
171 static int is_multi_edge_type(struct isl_sched_edge *edge)
173 return isl_sched_edge_is_condition(edge) ||
174 isl_sched_edge_is_conditional_validity(edge);
177 /* Initialize node_table based on the list of nodes.
179 static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph)
181 int i;
183 graph->node_table = isl_hash_table_alloc(ctx, graph->n);
184 if (!graph->node_table)
185 return -1;
187 for (i = 0; i < graph->n; ++i) {
188 struct isl_hash_table_entry *entry;
189 uint32_t hash;
191 hash = isl_space_get_tuple_hash(graph->node[i].space);
192 entry = isl_hash_table_find(ctx, graph->node_table, hash,
193 &node_has_tuples,
194 graph->node[i].space, 1);
195 if (!entry)
196 return -1;
197 entry->data = &graph->node[i];
200 return 0;
203 /* Return a pointer to the node that lives within the given space,
204 * an invalid node if there is no such node, or NULL in case of error.
206 struct isl_sched_node *isl_sched_graph_find_node(isl_ctx *ctx,
207 struct isl_sched_graph *graph, __isl_keep isl_space *space)
209 struct isl_hash_table_entry *entry;
210 uint32_t hash;
212 if (!space)
213 return NULL;
215 hash = isl_space_get_tuple_hash(space);
216 entry = isl_hash_table_find(ctx, graph->node_table, hash,
217 &node_has_tuples, space, 0);
218 if (!entry)
219 return NULL;
220 if (entry == isl_hash_table_entry_none)
221 return graph->node + graph->n;
223 return entry->data;
226 /* Is "node" a node in "graph"?
228 int isl_sched_graph_is_node(struct isl_sched_graph *graph,
229 struct isl_sched_node *node)
231 return node && node >= &graph->node[0] && node < &graph->node[graph->n];
234 static isl_bool edge_has_src_and_dst(const void *entry, const void *val)
236 const struct isl_sched_edge *edge = entry;
237 const struct isl_sched_edge *temp = val;
239 return isl_bool_ok(edge->src == temp->src && edge->dst == temp->dst);
242 /* Add the given edge to graph->edge_table[type].
244 static isl_stat graph_edge_table_add(isl_ctx *ctx,
245 struct isl_sched_graph *graph, enum isl_edge_type type,
246 struct isl_sched_edge *edge)
248 struct isl_hash_table_entry *entry;
249 uint32_t hash;
251 hash = isl_hash_init();
252 hash = isl_hash_builtin(hash, edge->src);
253 hash = isl_hash_builtin(hash, edge->dst);
254 entry = isl_hash_table_find(ctx, graph->edge_table[type], hash,
255 &edge_has_src_and_dst, edge, 1);
256 if (!entry)
257 return isl_stat_error;
258 entry->data = edge;
260 return isl_stat_ok;
263 /* Add "edge" to all relevant edge tables.
264 * That is, for every type of the edge, add it to the corresponding table.
266 static isl_stat graph_edge_tables_add(isl_ctx *ctx,
267 struct isl_sched_graph *graph, struct isl_sched_edge *edge)
269 enum isl_edge_type t;
271 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
272 if (!isl_sched_edge_has_type(edge, t))
273 continue;
274 if (graph_edge_table_add(ctx, graph, t, edge) < 0)
275 return isl_stat_error;
278 return isl_stat_ok;
281 /* Allocate the edge_tables based on the maximal number of edges of
282 * each type.
284 static int graph_init_edge_tables(isl_ctx *ctx, struct isl_sched_graph *graph)
286 int i;
288 for (i = 0; i <= isl_edge_last; ++i) {
289 graph->edge_table[i] = isl_hash_table_alloc(ctx,
290 graph->max_edge[i]);
291 if (!graph->edge_table[i])
292 return -1;
295 return 0;
298 /* If graph->edge_table[type] contains an edge from the given source
299 * to the given destination, then return the hash table entry of this edge.
300 * Otherwise, return NULL.
302 static struct isl_hash_table_entry *graph_find_edge_entry(
303 struct isl_sched_graph *graph,
304 enum isl_edge_type type,
305 struct isl_sched_node *src, struct isl_sched_node *dst)
307 isl_ctx *ctx = isl_space_get_ctx(src->space);
308 uint32_t hash;
309 struct isl_sched_edge temp = { .src = src, .dst = dst };
311 hash = isl_hash_init();
312 hash = isl_hash_builtin(hash, temp.src);
313 hash = isl_hash_builtin(hash, temp.dst);
314 return isl_hash_table_find(ctx, graph->edge_table[type], hash,
315 &edge_has_src_and_dst, &temp, 0);
319 /* If graph->edge_table[type] contains an edge from the given source
320 * to the given destination, then return this edge.
321 * Return "none" if no such edge can be found.
322 * Return NULL on error.
324 static struct isl_sched_edge *graph_find_edge(struct isl_sched_graph *graph,
325 enum isl_edge_type type,
326 struct isl_sched_node *src, struct isl_sched_node *dst,
327 struct isl_sched_edge *none)
329 struct isl_hash_table_entry *entry;
331 entry = graph_find_edge_entry(graph, type, src, dst);
332 if (!entry)
333 return NULL;
334 if (entry == isl_hash_table_entry_none)
335 return none;
337 return entry->data;
340 /* Check whether the dependence graph has an edge of the given type
341 * between the given two nodes.
343 static isl_bool graph_has_edge(struct isl_sched_graph *graph,
344 enum isl_edge_type type,
345 struct isl_sched_node *src, struct isl_sched_node *dst)
347 struct isl_sched_edge dummy;
348 struct isl_sched_edge *edge;
349 isl_bool empty;
351 edge = graph_find_edge(graph, type, src, dst, &dummy);
352 if (!edge)
353 return isl_bool_error;
354 if (edge == &dummy)
355 return isl_bool_false;
357 empty = isl_map_plain_is_empty(edge->map);
359 return isl_bool_not(empty);
362 /* Look for any edge with the same src, dst and map fields as "model".
364 * Return the matching edge if one can be found.
365 * Return "model" if no matching edge is found.
366 * Return NULL on error.
368 static struct isl_sched_edge *graph_find_matching_edge(
369 struct isl_sched_graph *graph, struct isl_sched_edge *model)
371 enum isl_edge_type i;
372 struct isl_sched_edge *edge;
374 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
375 int is_equal;
377 edge = graph_find_edge(graph, i, model->src, model->dst, model);
378 if (!edge)
379 return NULL;
380 if (edge == model)
381 continue;
382 is_equal = isl_map_plain_is_equal(model->map, edge->map);
383 if (is_equal < 0)
384 return NULL;
385 if (is_equal)
386 return edge;
389 return model;
392 /* Remove the given edge from all the edge_tables that refer to it.
394 static isl_stat graph_remove_edge(struct isl_sched_graph *graph,
395 struct isl_sched_edge *edge)
397 isl_ctx *ctx = isl_map_get_ctx(edge->map);
398 enum isl_edge_type i;
400 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
401 struct isl_hash_table_entry *entry;
403 entry = graph_find_edge_entry(graph, i, edge->src, edge->dst);
404 if (!entry)
405 return isl_stat_error;
406 if (entry == isl_hash_table_entry_none)
407 continue;
408 if (entry->data != edge)
409 continue;
410 isl_hash_table_remove(ctx, graph->edge_table[i], entry);
413 return isl_stat_ok;
416 /* Check whether the dependence graph has any edge
417 * between the given two nodes.
419 static isl_bool graph_has_any_edge(struct isl_sched_graph *graph,
420 struct isl_sched_node *src, struct isl_sched_node *dst)
422 enum isl_edge_type i;
423 isl_bool r;
425 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
426 r = graph_has_edge(graph, i, src, dst);
427 if (r < 0 || r)
428 return r;
431 return r;
434 /* Check whether the dependence graph has a validity edge
435 * between the given two nodes.
437 * Conditional validity edges are essentially validity edges that
438 * can be ignored if the corresponding condition edges are iteration private.
439 * Here, we are only checking for the presence of validity
440 * edges, so we need to consider the conditional validity edges too.
441 * In particular, this function is used during the detection
442 * of strongly connected components and we cannot ignore
443 * conditional validity edges during this detection.
445 isl_bool isl_sched_graph_has_validity_edge(struct isl_sched_graph *graph,
446 struct isl_sched_node *src, struct isl_sched_node *dst)
448 isl_bool r;
450 r = graph_has_edge(graph, isl_edge_validity, src, dst);
451 if (r < 0 || r)
452 return r;
454 return graph_has_edge(graph, isl_edge_conditional_validity, src, dst);
457 /* Perform all the required memory allocations for a schedule graph "graph"
458 * with "n_node" nodes and "n_edge" edge and initialize the corresponding
459 * fields.
461 static isl_stat graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph,
462 int n_node, int n_edge)
464 int i;
466 graph->n = n_node;
467 graph->n_edge = n_edge;
468 graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n);
469 graph->sorted = isl_calloc_array(ctx, int, graph->n);
470 graph->region = isl_alloc_array(ctx,
471 struct isl_trivial_region, graph->n);
472 graph->edge = isl_calloc_array(ctx,
473 struct isl_sched_edge, graph->n_edge);
475 graph->intra_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
476 graph->intra_hmap_param = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
477 graph->inter_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
479 if (!graph->node || !graph->region || (graph->n_edge && !graph->edge) ||
480 !graph->sorted)
481 return isl_stat_error;
483 for(i = 0; i < graph->n; ++i)
484 graph->sorted[i] = i;
486 return isl_stat_ok;
489 /* Free the memory associated to node "node" in "graph".
490 * The "coincident" field is shared by nodes in a graph and its subgraph.
491 * It therefore only needs to be freed for the original dependence graph,
492 * i.e., one that is not the result of splitting.
494 static void clear_node(struct isl_sched_graph *graph,
495 struct isl_sched_node *node)
497 isl_space_free(node->space);
498 isl_set_free(node->hull);
499 isl_multi_aff_free(node->compress);
500 isl_pw_multi_aff_free(node->decompress);
501 isl_mat_free(node->sched);
502 isl_map_free(node->sched_map);
503 isl_mat_free(node->indep);
504 isl_mat_free(node->vmap);
505 if (graph->root == graph)
506 free(node->coincident);
507 isl_multi_val_free(node->sizes);
508 isl_basic_set_free(node->bounds);
509 isl_vec_free(node->max);
512 void isl_sched_graph_free(isl_ctx *ctx, struct isl_sched_graph *graph)
514 int i;
516 isl_map_to_basic_set_free(graph->intra_hmap);
517 isl_map_to_basic_set_free(graph->intra_hmap_param);
518 isl_map_to_basic_set_free(graph->inter_hmap);
520 if (graph->node)
521 for (i = 0; i < graph->n; ++i)
522 clear_node(graph, &graph->node[i]);
523 free(graph->node);
524 free(graph->sorted);
525 if (graph->edge)
526 for (i = 0; i < graph->n_edge; ++i) {
527 isl_map_free(graph->edge[i].map);
528 isl_union_map_free(graph->edge[i].tagged_condition);
529 isl_union_map_free(graph->edge[i].tagged_validity);
531 free(graph->edge);
532 free(graph->region);
533 for (i = 0; i <= isl_edge_last; ++i)
534 isl_hash_table_free(ctx, graph->edge_table[i]);
535 isl_hash_table_free(ctx, graph->node_table);
536 isl_basic_set_free(graph->lp);
539 /* For each "set" on which this function is called, increment
540 * graph->n by one and update graph->maxvar.
542 static isl_stat init_n_maxvar(__isl_take isl_set *set, void *user)
544 struct isl_sched_graph *graph = user;
545 isl_size nvar = isl_set_dim(set, isl_dim_set);
547 graph->n++;
548 if (nvar > graph->maxvar)
549 graph->maxvar = nvar;
551 isl_set_free(set);
553 if (nvar < 0)
554 return isl_stat_error;
555 return isl_stat_ok;
558 /* Compute the number of rows that should be allocated for the schedule.
559 * In particular, we need one row for each variable or one row
560 * for each basic map in the dependences.
561 * Note that it is practically impossible to exhaust both
562 * the number of dependences and the number of variables.
564 static isl_stat compute_max_row(struct isl_sched_graph *graph,
565 __isl_keep isl_schedule_constraints *sc)
567 int n_edge;
568 isl_stat r;
569 isl_union_set *domain;
571 graph->n = 0;
572 graph->maxvar = 0;
573 domain = isl_schedule_constraints_get_domain(sc);
574 r = isl_union_set_foreach_set(domain, &init_n_maxvar, graph);
575 isl_union_set_free(domain);
576 if (r < 0)
577 return isl_stat_error;
578 n_edge = isl_schedule_constraints_n_basic_map(sc);
579 if (n_edge < 0)
580 return isl_stat_error;
581 graph->max_row = n_edge + graph->maxvar;
583 return isl_stat_ok;
586 /* Does "bset" have any defining equalities for its set variables?
588 static isl_bool has_any_defining_equality(__isl_keep isl_basic_set *bset)
590 int i;
591 isl_size n;
593 n = isl_basic_set_dim(bset, isl_dim_set);
594 if (n < 0)
595 return isl_bool_error;
597 for (i = 0; i < n; ++i) {
598 isl_bool has;
600 has = isl_basic_set_has_defining_equality(bset, isl_dim_set, i,
601 NULL);
602 if (has < 0 || has)
603 return has;
606 return isl_bool_false;
609 /* Set the entries of node->max to the value of the schedule_max_coefficient
610 * option, if set.
612 static isl_stat set_max_coefficient(isl_ctx *ctx, struct isl_sched_node *node)
614 int max;
616 max = isl_options_get_schedule_max_coefficient(ctx);
617 if (max == -1)
618 return isl_stat_ok;
620 node->max = isl_vec_alloc(ctx, node->nvar);
621 node->max = isl_vec_set_si(node->max, max);
622 if (!node->max)
623 return isl_stat_error;
625 return isl_stat_ok;
628 /* Set the entries of node->max to the minimum of the schedule_max_coefficient
629 * option (if set) and half of the minimum of the sizes in the other
630 * dimensions. Round up when computing the half such that
631 * if the minimum of the sizes is one, half of the size is taken to be one
632 * rather than zero.
633 * If the global minimum is unbounded (i.e., if both
634 * the schedule_max_coefficient is not set and the sizes in the other
635 * dimensions are unbounded), then store a negative value.
636 * If the schedule coefficient is close to the size of the instance set
637 * in another dimension, then the schedule may represent a loop
638 * coalescing transformation (especially if the coefficient
639 * in that other dimension is one). Forcing the coefficient to be
640 * smaller than or equal to half the minimal size should avoid this
641 * situation.
643 static isl_stat compute_max_coefficient(isl_ctx *ctx,
644 struct isl_sched_node *node)
646 int max;
647 int i, j;
648 isl_vec *v;
650 max = isl_options_get_schedule_max_coefficient(ctx);
651 v = isl_vec_alloc(ctx, node->nvar);
652 if (!v)
653 return isl_stat_error;
655 for (i = 0; i < node->nvar; ++i) {
656 isl_int_set_si(v->el[i], max);
657 isl_int_mul_si(v->el[i], v->el[i], 2);
660 for (i = 0; i < node->nvar; ++i) {
661 isl_val *size;
663 size = isl_multi_val_get_val(node->sizes, i);
664 if (!size)
665 goto error;
666 if (!isl_val_is_int(size)) {
667 isl_val_free(size);
668 continue;
670 for (j = 0; j < node->nvar; ++j) {
671 if (j == i)
672 continue;
673 if (isl_int_is_neg(v->el[j]) ||
674 isl_int_gt(v->el[j], size->n))
675 isl_int_set(v->el[j], size->n);
677 isl_val_free(size);
680 for (i = 0; i < node->nvar; ++i)
681 isl_int_cdiv_q_ui(v->el[i], v->el[i], 2);
683 node->max = v;
684 return isl_stat_ok;
685 error:
686 isl_vec_free(v);
687 return isl_stat_error;
690 /* Construct an identifier for node "node", which will represent "set".
691 * The name of the identifier is either "compressed" or
692 * "compressed_<name>", with <name> the name of the space of "set".
693 * The user pointer of the identifier points to "node".
695 static __isl_give isl_id *construct_compressed_id(__isl_keep isl_set *set,
696 struct isl_sched_node *node)
698 isl_bool has_name;
699 isl_ctx *ctx;
700 isl_id *id;
701 isl_printer *p;
702 const char *name;
703 char *id_name;
705 has_name = isl_set_has_tuple_name(set);
706 if (has_name < 0)
707 return NULL;
709 ctx = isl_set_get_ctx(set);
710 if (!has_name)
711 return isl_id_alloc(ctx, "compressed", node);
713 p = isl_printer_to_str(ctx);
714 name = isl_set_get_tuple_name(set);
715 p = isl_printer_print_str(p, "compressed_");
716 p = isl_printer_print_str(p, name);
717 id_name = isl_printer_get_str(p);
718 isl_printer_free(p);
720 id = isl_id_alloc(ctx, id_name, node);
721 free(id_name);
723 return id;
726 /* Construct a map that isolates the variable in position "pos" in "set".
728 * That is, construct
730 * [i_0, ..., i_pos-1, i_pos+1, ...] -> [i_pos]
732 static __isl_give isl_map *isolate(__isl_take isl_set *set, int pos)
734 isl_map *map;
736 map = isl_set_project_onto_map(set, isl_dim_set, pos, 1);
737 map = isl_map_project_out(map, isl_dim_in, pos, 1);
738 return map;
741 /* Compute and return the size of "set" in dimension "dim".
742 * The size is taken to be the difference in values for that variable
743 * for fixed values of the other variables.
744 * This assumes that "set" is convex.
745 * In particular, the variable is first isolated from the other variables
746 * in the range of a map
748 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [i_dim]
750 * and then duplicated
752 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [[i_dim] -> [i_dim']]
754 * The shared variables are then projected out and the maximal value
755 * of i_dim' - i_dim is computed.
757 static __isl_give isl_val *compute_size(__isl_take isl_set *set, int dim)
759 isl_map *map;
760 isl_local_space *ls;
761 isl_aff *obj;
762 isl_val *v;
764 map = isolate(set, dim);
765 map = isl_map_range_product(map, isl_map_copy(map));
766 map = isl_set_unwrap(isl_map_range(map));
767 set = isl_map_deltas(map);
768 ls = isl_local_space_from_space(isl_set_get_space(set));
769 obj = isl_aff_var_on_domain(ls, isl_dim_set, 0);
770 v = isl_set_max_val(set, obj);
771 isl_aff_free(obj);
772 isl_set_free(set);
774 return v;
777 /* Perform a compression on "node" where "hull" represents the constraints
778 * that were used to derive the compression, while "compress" and
779 * "decompress" map the original space to the compressed space and
780 * vice versa.
782 * If "node" was not compressed already, then simply store
783 * the compression information.
784 * Otherwise the "original" space is actually the result
785 * of a previous compression, which is then combined
786 * with the present compression.
788 * The dimensionality of the compressed domain is also adjusted.
789 * Other information, such as the sizes and the maximal coefficient values,
790 * has not been computed yet and therefore does not need to be adjusted.
792 static isl_stat compress_node(struct isl_sched_node *node,
793 __isl_take isl_set *hull, __isl_take isl_multi_aff *compress,
794 __isl_take isl_pw_multi_aff *decompress)
796 node->nvar = isl_multi_aff_dim(compress, isl_dim_out);
797 if (!node->compressed) {
798 node->compressed = 1;
799 node->hull = hull;
800 node->compress = compress;
801 node->decompress = decompress;
802 } else {
803 hull = isl_set_preimage_multi_aff(hull,
804 isl_multi_aff_copy(node->compress));
805 node->hull = isl_set_intersect(node->hull, hull);
806 node->compress = isl_multi_aff_pullback_multi_aff(
807 compress, node->compress);
808 node->decompress = isl_pw_multi_aff_pullback_pw_multi_aff(
809 node->decompress, decompress);
812 if (!node->hull || !node->compress || !node->decompress)
813 return isl_stat_error;
815 return isl_stat_ok;
818 /* Given that dimension "pos" in "set" has a fixed value
819 * in terms of the other dimensions, (further) compress "node"
820 * by projecting out this dimension.
821 * "set" may be the result of a previous compression.
822 * "uncompressed" is the original domain (without compression).
824 * The compression function simply projects out the dimension.
825 * The decompression function adds back the dimension
826 * in the right position as an expression of the other dimensions
827 * derived from "set".
828 * As in extract_node, the compressed space has an identifier
829 * that references "node" such that each compressed space is unique and
830 * such that the node can be recovered from the compressed space.
832 * The constraint removed through the compression is added to the "hull"
833 * such that only edges that relate to the original domains
834 * are taken into account.
835 * In particular, it is obtained by composing compression and decompression and
836 * taking the relation among the variables in the range.
838 static isl_stat project_out_fixed(struct isl_sched_node *node,
839 __isl_keep isl_set *uncompressed, __isl_take isl_set *set, int pos)
841 isl_id *id;
842 isl_space *space;
843 isl_set *domain;
844 isl_map *map;
845 isl_multi_aff *compress;
846 isl_pw_multi_aff *decompress, *pma;
847 isl_multi_pw_aff *mpa;
848 isl_set *hull;
850 map = isolate(isl_set_copy(set), pos);
851 pma = isl_pw_multi_aff_from_map(map);
852 domain = isl_pw_multi_aff_domain(isl_pw_multi_aff_copy(pma));
853 pma = isl_pw_multi_aff_gist(pma, domain);
854 space = isl_pw_multi_aff_get_domain_space(pma);
855 mpa = isl_multi_pw_aff_identity(isl_space_map_from_set(space));
856 mpa = isl_multi_pw_aff_range_splice(mpa, pos,
857 isl_multi_pw_aff_from_pw_multi_aff(pma));
858 decompress = isl_pw_multi_aff_from_multi_pw_aff(mpa);
859 space = isl_set_get_space(set);
860 compress = isl_multi_aff_project_out_map(space, isl_dim_set, pos, 1);
861 id = construct_compressed_id(uncompressed, node);
862 compress = isl_multi_aff_set_tuple_id(compress, isl_dim_out, id);
863 space = isl_space_reverse(isl_multi_aff_get_space(compress));
864 decompress = isl_pw_multi_aff_reset_space(decompress, space);
865 pma = isl_pw_multi_aff_pullback_multi_aff(
866 isl_pw_multi_aff_copy(decompress), isl_multi_aff_copy(compress));
867 hull = isl_map_range(isl_map_from_pw_multi_aff(pma));
869 isl_set_free(set);
871 return compress_node(node, hull, compress, decompress);
874 /* Compute the size of the compressed domain in each dimension and
875 * store the results in node->sizes.
876 * "uncompressed" is the original domain (without compression).
878 * First compress the domain if needed and then compute the size
879 * in each direction.
880 * If the domain is not convex, then the sizes are computed
881 * on a convex superset in order to avoid picking up sizes
882 * that are valid for the individual disjuncts, but not for
883 * the domain as a whole.
885 * If any of the sizes turns out to be zero, then this means
886 * that this dimension has a fixed value in terms of
887 * the other dimensions. Perform an (extra) compression
888 * to remove this dimension.
890 static isl_stat compute_sizes(struct isl_sched_node *node,
891 __isl_keep isl_set *uncompressed)
893 int j;
894 isl_size n;
895 isl_multi_val *mv;
896 isl_set *set = isl_set_copy(uncompressed);
898 if (node->compressed)
899 set = isl_set_preimage_pw_multi_aff(set,
900 isl_pw_multi_aff_copy(node->decompress));
901 set = isl_set_from_basic_set(isl_set_simple_hull(set));
902 mv = isl_multi_val_zero(isl_set_get_space(set));
903 n = isl_set_dim(set, isl_dim_set);
904 if (n < 0)
905 mv = isl_multi_val_free(mv);
906 for (j = 0; j < n; ++j) {
907 isl_bool is_zero;
908 isl_val *v;
910 v = compute_size(isl_set_copy(set), j);
911 is_zero = isl_val_is_zero(v);
912 mv = isl_multi_val_set_val(mv, j, v);
913 if (is_zero >= 0 && is_zero) {
914 isl_multi_val_free(mv);
915 if (project_out_fixed(node, uncompressed, set, j) < 0)
916 return isl_stat_error;
917 return compute_sizes(node, uncompressed);
920 node->sizes = mv;
921 isl_set_free(set);
922 if (!node->sizes)
923 return isl_stat_error;
924 return isl_stat_ok;
927 /* Compute the size of the instance set "set" of "node", after compression,
928 * as well as bounds on the corresponding coefficients, if needed.
930 * The sizes are needed when the schedule_treat_coalescing option is set.
931 * The bounds are needed when the schedule_treat_coalescing option or
932 * the schedule_max_coefficient option is set.
934 * If the schedule_treat_coalescing option is not set, then at most
935 * the bounds need to be set and this is done in set_max_coefficient.
936 * Otherwise, compute the size of the compressed domain
937 * in each direction and store the results in node->size.
938 * Finally, set the bounds on the coefficients based on the sizes
939 * and the schedule_max_coefficient option in compute_max_coefficient.
941 static isl_stat compute_sizes_and_max(isl_ctx *ctx, struct isl_sched_node *node,
942 __isl_take isl_set *set)
944 isl_stat r;
946 if (!isl_options_get_schedule_treat_coalescing(ctx)) {
947 isl_set_free(set);
948 return set_max_coefficient(ctx, node);
951 r = compute_sizes(node, set);
952 isl_set_free(set);
953 if (r < 0)
954 return isl_stat_error;
955 return compute_max_coefficient(ctx, node);
958 /* Add a new node to the graph representing the given instance set.
959 * "nvar" is the (possibly compressed) number of variables and
960 * may be smaller than then number of set variables in "set"
961 * if "compressed" is set.
962 * If "compressed" is set, then "hull" represents the constraints
963 * that were used to derive the compression, while "compress" and
964 * "decompress" map the original space to the compressed space and
965 * vice versa.
966 * If "compressed" is not set, then "hull", "compress" and "decompress"
967 * should be NULL.
969 * Compute the size of the instance set and bounds on the coefficients,
970 * if needed.
972 static isl_stat add_node(struct isl_sched_graph *graph,
973 __isl_take isl_set *set, int nvar, int compressed,
974 __isl_take isl_set *hull, __isl_take isl_multi_aff *compress,
975 __isl_take isl_pw_multi_aff *decompress)
977 isl_size nparam;
978 isl_ctx *ctx;
979 isl_mat *sched;
980 isl_space *space;
981 int *coincident;
982 struct isl_sched_node *node;
984 nparam = isl_set_dim(set, isl_dim_param);
985 if (nparam < 0)
986 goto error;
988 ctx = isl_set_get_ctx(set);
989 if (!ctx->opt->schedule_parametric)
990 nparam = 0;
991 sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar);
992 node = &graph->node[graph->n];
993 graph->n++;
994 space = isl_set_get_space(set);
995 node->space = space;
996 node->nvar = nvar;
997 node->nparam = nparam;
998 node->sched = sched;
999 node->sched_map = NULL;
1000 coincident = isl_calloc_array(ctx, int, graph->max_row);
1001 node->coincident = coincident;
1002 node->compressed = compressed;
1003 node->hull = hull;
1004 node->compress = compress;
1005 node->decompress = decompress;
1006 if (compute_sizes_and_max(ctx, node, set) < 0)
1007 return isl_stat_error;
1009 if (!space || !sched || (graph->max_row && !coincident))
1010 return isl_stat_error;
1011 if (compressed && (!hull || !compress || !decompress))
1012 return isl_stat_error;
1014 return isl_stat_ok;
1015 error:
1016 isl_set_free(set);
1017 isl_set_free(hull);
1018 isl_multi_aff_free(compress);
1019 isl_pw_multi_aff_free(decompress);
1020 return isl_stat_error;
1023 /* Add a new node to the graph representing the given set.
1025 * If any of the set variables is defined by an equality, then
1026 * we perform variable compression such that we can perform
1027 * the scheduling on the compressed domain.
1028 * In this case, an identifier is used that references the new node
1029 * such that each compressed space is unique and
1030 * such that the node can be recovered from the compressed space.
1032 static isl_stat extract_node(__isl_take isl_set *set, void *user)
1034 isl_size nvar;
1035 isl_bool has_equality;
1036 isl_id *id;
1037 isl_basic_set *hull;
1038 isl_set *hull_set;
1039 isl_morph *morph;
1040 isl_multi_aff *compress, *decompress_ma;
1041 isl_pw_multi_aff *decompress;
1042 struct isl_sched_graph *graph = user;
1044 hull = isl_set_affine_hull(isl_set_copy(set));
1045 hull = isl_basic_set_remove_divs(hull);
1046 nvar = isl_set_dim(set, isl_dim_set);
1047 has_equality = has_any_defining_equality(hull);
1049 if (nvar < 0 || has_equality < 0)
1050 goto error;
1051 if (!has_equality) {
1052 isl_basic_set_free(hull);
1053 return add_node(graph, set, nvar, 0, NULL, NULL, NULL);
1056 id = construct_compressed_id(set, &graph->node[graph->n]);
1057 morph = isl_basic_set_variable_compression_with_id(hull, id);
1058 isl_id_free(id);
1059 nvar = isl_morph_ran_dim(morph, isl_dim_set);
1060 if (nvar < 0)
1061 set = isl_set_free(set);
1062 compress = isl_morph_get_var_multi_aff(morph);
1063 morph = isl_morph_inverse(morph);
1064 decompress_ma = isl_morph_get_var_multi_aff(morph);
1065 decompress = isl_pw_multi_aff_from_multi_aff(decompress_ma);
1066 isl_morph_free(morph);
1068 hull_set = isl_set_from_basic_set(hull);
1069 return add_node(graph, set, nvar, 1, hull_set, compress, decompress);
1070 error:
1071 isl_basic_set_free(hull);
1072 isl_set_free(set);
1073 return isl_stat_error;
1076 struct isl_extract_edge_data {
1077 enum isl_edge_type type;
1078 struct isl_sched_graph *graph;
1081 /* Merge edge2 into edge1, freeing the contents of edge2.
1082 * Return 0 on success and -1 on failure.
1084 * edge1 and edge2 are assumed to have the same value for the map field.
1086 static int merge_edge(struct isl_sched_edge *edge1,
1087 struct isl_sched_edge *edge2)
1089 edge1->types |= edge2->types;
1090 isl_map_free(edge2->map);
1092 if (isl_sched_edge_is_condition(edge2)) {
1093 if (!edge1->tagged_condition)
1094 edge1->tagged_condition = edge2->tagged_condition;
1095 else
1096 edge1->tagged_condition =
1097 isl_union_map_union(edge1->tagged_condition,
1098 edge2->tagged_condition);
1101 if (isl_sched_edge_is_conditional_validity(edge2)) {
1102 if (!edge1->tagged_validity)
1103 edge1->tagged_validity = edge2->tagged_validity;
1104 else
1105 edge1->tagged_validity =
1106 isl_union_map_union(edge1->tagged_validity,
1107 edge2->tagged_validity);
1110 if (isl_sched_edge_is_condition(edge2) && !edge1->tagged_condition)
1111 return -1;
1112 if (isl_sched_edge_is_conditional_validity(edge2) &&
1113 !edge1->tagged_validity)
1114 return -1;
1116 return 0;
1119 /* Insert dummy tags in domain and range of "map".
1121 * In particular, if "map" is of the form
1123 * A -> B
1125 * then return
1127 * [A -> dummy_tag] -> [B -> dummy_tag]
1129 * where the dummy_tags are identical and equal to any dummy tags
1130 * introduced by any other call to this function.
1132 static __isl_give isl_map *insert_dummy_tags(__isl_take isl_map *map)
1134 static char dummy;
1135 isl_ctx *ctx;
1136 isl_id *id;
1137 isl_space *space;
1138 isl_set *domain, *range;
1140 ctx = isl_map_get_ctx(map);
1142 id = isl_id_alloc(ctx, NULL, &dummy);
1143 space = isl_space_params(isl_map_get_space(map));
1144 space = isl_space_set_from_params(space);
1145 space = isl_space_set_tuple_id(space, isl_dim_set, id);
1146 space = isl_space_map_from_set(space);
1148 domain = isl_map_wrap(map);
1149 range = isl_map_wrap(isl_map_universe(space));
1150 map = isl_map_from_domain_and_range(domain, range);
1151 map = isl_map_zip(map);
1153 return map;
1156 /* Given that at least one of "src" or "dst" is compressed, return
1157 * a map between the spaces of these nodes restricted to the affine
1158 * hull that was used in the compression.
1160 static __isl_give isl_map *extract_hull(struct isl_sched_node *src,
1161 struct isl_sched_node *dst)
1163 isl_set *dom, *ran;
1165 if (src->compressed)
1166 dom = isl_set_copy(src->hull);
1167 else
1168 dom = isl_set_universe(isl_space_copy(src->space));
1169 if (dst->compressed)
1170 ran = isl_set_copy(dst->hull);
1171 else
1172 ran = isl_set_universe(isl_space_copy(dst->space));
1174 return isl_map_from_domain_and_range(dom, ran);
1177 /* Intersect the domains of the nested relations in domain and range
1178 * of "tagged" with "map".
1180 static __isl_give isl_map *map_intersect_domains(__isl_take isl_map *tagged,
1181 __isl_keep isl_map *map)
1183 isl_set *set;
1185 tagged = isl_map_zip(tagged);
1186 set = isl_map_wrap(isl_map_copy(map));
1187 tagged = isl_map_intersect_domain(tagged, set);
1188 tagged = isl_map_zip(tagged);
1189 return tagged;
1192 /* Return a pointer to the node that lives in the domain space of "map",
1193 * an invalid node if there is no such node, or NULL in case of error.
1195 static struct isl_sched_node *find_domain_node(isl_ctx *ctx,
1196 struct isl_sched_graph *graph, __isl_keep isl_map *map)
1198 struct isl_sched_node *node;
1199 isl_space *space;
1201 space = isl_space_domain(isl_map_get_space(map));
1202 node = isl_sched_graph_find_node(ctx, graph, space);
1203 isl_space_free(space);
1205 return node;
1208 /* Return a pointer to the node that lives in the range space of "map",
1209 * an invalid node if there is no such node, or NULL in case of error.
1211 static struct isl_sched_node *find_range_node(isl_ctx *ctx,
1212 struct isl_sched_graph *graph, __isl_keep isl_map *map)
1214 struct isl_sched_node *node;
1215 isl_space *space;
1217 space = isl_space_range(isl_map_get_space(map));
1218 node = isl_sched_graph_find_node(ctx, graph, space);
1219 isl_space_free(space);
1221 return node;
1224 /* Refrain from adding a new edge based on "map".
1225 * Instead, just free the map.
1226 * "tagged" is either a copy of "map" with additional tags or NULL.
1228 static isl_stat skip_edge(__isl_take isl_map *map, __isl_take isl_map *tagged)
1230 isl_map_free(map);
1231 isl_map_free(tagged);
1233 return isl_stat_ok;
1236 /* Add a new edge to the graph based on the given map
1237 * and add it to data->graph->edge_table[data->type].
1238 * If a dependence relation of a given type happens to be identical
1239 * to one of the dependence relations of a type that was added before,
1240 * then we don't create a new edge, but instead mark the original edge
1241 * as also representing a dependence of the current type.
1243 * Edges of type isl_edge_condition or isl_edge_conditional_validity
1244 * may be specified as "tagged" dependence relations. That is, "map"
1245 * may contain elements (i -> a) -> (j -> b), where i -> j denotes
1246 * the dependence on iterations and a and b are tags.
1247 * edge->map is set to the relation containing the elements i -> j,
1248 * while edge->tagged_condition and edge->tagged_validity contain
1249 * the union of all the "map" relations
1250 * for which extract_edge is called that result in the same edge->map.
1252 * If the source or the destination node is compressed, then
1253 * intersect both "map" and "tagged" with the constraints that
1254 * were used to construct the compression.
1255 * This ensures that there are no schedule constraints defined
1256 * outside of these domains, while the scheduler no longer has
1257 * any control over those outside parts.
1259 static isl_stat extract_edge(__isl_take isl_map *map, void *user)
1261 isl_bool empty;
1262 isl_ctx *ctx = isl_map_get_ctx(map);
1263 struct isl_extract_edge_data *data = user;
1264 struct isl_sched_graph *graph = data->graph;
1265 struct isl_sched_node *src, *dst;
1266 struct isl_sched_edge *edge;
1267 isl_map *tagged = NULL;
1269 if (data->type == isl_edge_condition ||
1270 data->type == isl_edge_conditional_validity) {
1271 if (isl_map_can_zip(map)) {
1272 tagged = isl_map_copy(map);
1273 map = isl_set_unwrap(isl_map_domain(isl_map_zip(map)));
1274 } else {
1275 tagged = insert_dummy_tags(isl_map_copy(map));
1279 src = find_domain_node(ctx, graph, map);
1280 dst = find_range_node(ctx, graph, map);
1282 if (!src || !dst)
1283 goto error;
1284 if (!isl_sched_graph_is_node(graph, src) ||
1285 !isl_sched_graph_is_node(graph, dst))
1286 return skip_edge(map, tagged);
1288 if (src->compressed || dst->compressed) {
1289 isl_map *hull;
1290 hull = extract_hull(src, dst);
1291 if (tagged)
1292 tagged = map_intersect_domains(tagged, hull);
1293 map = isl_map_intersect(map, hull);
1296 empty = isl_map_plain_is_empty(map);
1297 if (empty < 0)
1298 goto error;
1299 if (empty)
1300 return skip_edge(map, tagged);
1302 graph->edge[graph->n_edge].src = src;
1303 graph->edge[graph->n_edge].dst = dst;
1304 graph->edge[graph->n_edge].map = map;
1305 graph->edge[graph->n_edge].types = 0;
1306 graph->edge[graph->n_edge].tagged_condition = NULL;
1307 graph->edge[graph->n_edge].tagged_validity = NULL;
1308 set_type(&graph->edge[graph->n_edge], data->type);
1309 if (data->type == isl_edge_condition)
1310 graph->edge[graph->n_edge].tagged_condition =
1311 isl_union_map_from_map(tagged);
1312 if (data->type == isl_edge_conditional_validity)
1313 graph->edge[graph->n_edge].tagged_validity =
1314 isl_union_map_from_map(tagged);
1316 edge = graph_find_matching_edge(graph, &graph->edge[graph->n_edge]);
1317 if (!edge) {
1318 graph->n_edge++;
1319 return isl_stat_error;
1321 if (edge == &graph->edge[graph->n_edge])
1322 return graph_edge_table_add(ctx, graph, data->type,
1323 &graph->edge[graph->n_edge++]);
1325 if (merge_edge(edge, &graph->edge[graph->n_edge]) < 0)
1326 return isl_stat_error;
1328 return graph_edge_table_add(ctx, graph, data->type, edge);
1329 error:
1330 isl_map_free(map);
1331 isl_map_free(tagged);
1332 return isl_stat_error;
1335 /* Initialize the schedule graph "graph" from the schedule constraints "sc".
1337 * The context is included in the domain before the nodes of
1338 * the graphs are extracted in order to be able to exploit
1339 * any possible additional equalities.
1340 * Note that this intersection is only performed locally here.
1342 isl_stat isl_sched_graph_init(struct isl_sched_graph *graph,
1343 __isl_keep isl_schedule_constraints *sc)
1345 isl_ctx *ctx;
1346 isl_union_set *domain;
1347 isl_union_map *c;
1348 struct isl_extract_edge_data data;
1349 enum isl_edge_type i;
1350 isl_stat r;
1351 isl_size n;
1353 if (!sc)
1354 return isl_stat_error;
1356 ctx = isl_schedule_constraints_get_ctx(sc);
1358 domain = isl_schedule_constraints_get_domain(sc);
1359 n = isl_union_set_n_set(domain);
1360 graph->n = n;
1361 isl_union_set_free(domain);
1362 if (n < 0)
1363 return isl_stat_error;
1365 n = isl_schedule_constraints_n_map(sc);
1366 if (n < 0 || graph_alloc(ctx, graph, graph->n, n) < 0)
1367 return isl_stat_error;
1369 if (compute_max_row(graph, sc) < 0)
1370 return isl_stat_error;
1371 graph->root = graph;
1372 graph->n = 0;
1373 domain = isl_schedule_constraints_get_domain(sc);
1374 domain = isl_union_set_intersect_params(domain,
1375 isl_schedule_constraints_get_context(sc));
1376 r = isl_union_set_foreach_set(domain, &extract_node, graph);
1377 isl_union_set_free(domain);
1378 if (r < 0)
1379 return isl_stat_error;
1380 if (graph_init_table(ctx, graph) < 0)
1381 return isl_stat_error;
1382 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
1383 isl_size n;
1385 c = isl_schedule_constraints_get(sc, i);
1386 n = isl_union_map_n_map(c);
1387 graph->max_edge[i] = n;
1388 isl_union_map_free(c);
1389 if (n < 0)
1390 return isl_stat_error;
1392 if (graph_init_edge_tables(ctx, graph) < 0)
1393 return isl_stat_error;
1394 graph->n_edge = 0;
1395 data.graph = graph;
1396 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
1397 isl_stat r;
1399 data.type = i;
1400 c = isl_schedule_constraints_get(sc, i);
1401 r = isl_union_map_foreach_map(c, &extract_edge, &data);
1402 isl_union_map_free(c);
1403 if (r < 0)
1404 return isl_stat_error;
1407 return isl_stat_ok;
1410 /* Check whether there is any dependence from node[j] to node[i]
1411 * or from node[i] to node[j].
1413 static isl_bool node_follows_weak(int i, int j, void *user)
1415 isl_bool f;
1416 struct isl_sched_graph *graph = user;
1418 f = graph_has_any_edge(graph, &graph->node[j], &graph->node[i]);
1419 if (f < 0 || f)
1420 return f;
1421 return graph_has_any_edge(graph, &graph->node[i], &graph->node[j]);
1424 /* Check whether there is a (conditional) validity dependence from node[j]
1425 * to node[i], forcing node[i] to follow node[j].
1427 static isl_bool node_follows_strong(int i, int j, void *user)
1429 struct isl_sched_graph *graph = user;
1431 return isl_sched_graph_has_validity_edge(graph, &graph->node[j],
1432 &graph->node[i]);
1435 /* Use Tarjan's algorithm for computing the strongly connected components
1436 * in the dependence graph only considering those edges defined by "follows".
1438 isl_stat isl_sched_graph_detect_ccs(isl_ctx *ctx,
1439 struct isl_sched_graph *graph,
1440 isl_bool (*follows)(int i, int j, void *user))
1442 int i, n;
1443 struct isl_tarjan_graph *g = NULL;
1445 g = isl_tarjan_graph_init(ctx, graph->n, follows, graph);
1446 if (!g)
1447 return isl_stat_error;
1449 graph->scc = 0;
1450 i = 0;
1451 n = graph->n;
1452 while (n) {
1453 while (g->order[i] != -1) {
1454 graph->node[g->order[i]].scc = graph->scc;
1455 --n;
1456 ++i;
1458 ++i;
1459 graph->scc++;
1462 isl_tarjan_graph_free(g);
1464 return isl_stat_ok;
1467 /* Apply Tarjan's algorithm to detect the strongly connected components
1468 * in the dependence graph.
1469 * Only consider the (conditional) validity dependences and clear "weak".
1471 static isl_stat detect_sccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1473 graph->weak = 0;
1474 return isl_sched_graph_detect_ccs(ctx, graph, &node_follows_strong);
1477 /* Apply Tarjan's algorithm to detect the (weakly) connected components
1478 * in the dependence graph.
1479 * Consider all dependences and set "weak".
1481 static isl_stat detect_wccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1483 graph->weak = 1;
1484 return isl_sched_graph_detect_ccs(ctx, graph, &node_follows_weak);
1487 static int cmp_scc(const void *a, const void *b, void *data)
1489 struct isl_sched_graph *graph = data;
1490 const int *i1 = a;
1491 const int *i2 = b;
1493 return graph->node[*i1].scc - graph->node[*i2].scc;
1496 /* Sort the elements of graph->sorted according to the corresponding SCCs.
1498 static int sort_sccs(struct isl_sched_graph *graph)
1500 return isl_sort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph);
1503 /* Return a non-parametric set in the compressed space of "node" that is
1504 * bounded by the size in each direction
1506 * { [x] : -S_i <= x_i <= S_i }
1508 * If S_i is infinity in direction i, then there are no constraints
1509 * in that direction.
1511 * Cache the result in node->bounds.
1513 static __isl_give isl_basic_set *get_size_bounds(struct isl_sched_node *node)
1515 isl_space *space;
1516 isl_basic_set *bounds;
1517 int i;
1519 if (node->bounds)
1520 return isl_basic_set_copy(node->bounds);
1522 if (node->compressed)
1523 space = isl_pw_multi_aff_get_domain_space(node->decompress);
1524 else
1525 space = isl_space_copy(node->space);
1526 space = isl_space_drop_all_params(space);
1527 bounds = isl_basic_set_universe(space);
1529 for (i = 0; i < node->nvar; ++i) {
1530 isl_val *size;
1532 size = isl_multi_val_get_val(node->sizes, i);
1533 if (!size)
1534 return isl_basic_set_free(bounds);
1535 if (!isl_val_is_int(size)) {
1536 isl_val_free(size);
1537 continue;
1539 bounds = isl_basic_set_upper_bound_val(bounds, isl_dim_set, i,
1540 isl_val_copy(size));
1541 bounds = isl_basic_set_lower_bound_val(bounds, isl_dim_set, i,
1542 isl_val_neg(size));
1545 node->bounds = isl_basic_set_copy(bounds);
1546 return bounds;
1549 /* Compress the dependence relation "map", if needed, i.e.,
1550 * when the source node "src" and/or the destination node "dst"
1551 * has been compressed.
1553 static __isl_give isl_map *compress(__isl_take isl_map *map,
1554 struct isl_sched_node *src, struct isl_sched_node *dst)
1556 if (src->compressed)
1557 map = isl_map_preimage_domain_pw_multi_aff(map,
1558 isl_pw_multi_aff_copy(src->decompress));
1559 if (dst->compressed)
1560 map = isl_map_preimage_range_pw_multi_aff(map,
1561 isl_pw_multi_aff_copy(dst->decompress));
1562 return map;
1565 /* Drop some constraints from "delta" that could be exploited
1566 * to construct loop coalescing schedules.
1567 * In particular, drop those constraint that bound the difference
1568 * to the size of the domain.
1569 * First project out the parameters to improve the effectiveness.
1571 static __isl_give isl_set *drop_coalescing_constraints(
1572 __isl_take isl_set *delta, struct isl_sched_node *node)
1574 isl_size nparam;
1575 isl_basic_set *bounds;
1577 nparam = isl_set_dim(delta, isl_dim_param);
1578 if (nparam < 0)
1579 return isl_set_free(delta);
1581 bounds = get_size_bounds(node);
1583 delta = isl_set_project_out(delta, isl_dim_param, 0, nparam);
1584 delta = isl_set_remove_divs(delta);
1585 delta = isl_set_plain_gist_basic_set(delta, bounds);
1586 return delta;
1589 /* Given a dependence relation R from "node" to itself,
1590 * construct the set of coefficients of valid constraints for elements
1591 * in that dependence relation.
1592 * In particular, the result contains tuples of coefficients
1593 * c_0, c_n, c_x such that
1595 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
1597 * or, equivalently,
1599 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
1601 * We choose here to compute the dual of delta R.
1602 * Alternatively, we could have computed the dual of R, resulting
1603 * in a set of tuples c_0, c_n, c_x, c_y, and then
1604 * plugged in (c_0, c_n, c_x, -c_x).
1606 * If "need_param" is set, then the resulting coefficients effectively
1607 * include coefficients for the parameters c_n. Otherwise, they may
1608 * have been projected out already.
1609 * Since the constraints may be different for these two cases,
1610 * they are stored in separate caches.
1611 * In particular, if no parameter coefficients are required and
1612 * the schedule_treat_coalescing option is set, then the parameters
1613 * are projected out and some constraints that could be exploited
1614 * to construct coalescing schedules are removed before the dual
1615 * is computed.
1617 * If "node" has been compressed, then the dependence relation
1618 * is also compressed before the set of coefficients is computed.
1620 static __isl_give isl_basic_set *intra_coefficients(
1621 struct isl_sched_graph *graph, struct isl_sched_node *node,
1622 __isl_take isl_map *map, int need_param)
1624 isl_ctx *ctx;
1625 isl_set *delta;
1626 isl_map *key;
1627 isl_basic_set *coef;
1628 isl_maybe_isl_basic_set m;
1629 isl_map_to_basic_set **hmap = &graph->intra_hmap;
1630 int treat;
1632 if (!map)
1633 return NULL;
1635 ctx = isl_map_get_ctx(map);
1636 treat = !need_param && isl_options_get_schedule_treat_coalescing(ctx);
1637 if (!treat)
1638 hmap = &graph->intra_hmap_param;
1639 m = isl_map_to_basic_set_try_get(*hmap, map);
1640 if (m.valid < 0 || m.valid) {
1641 isl_map_free(map);
1642 return m.value;
1645 key = isl_map_copy(map);
1646 map = compress(map, node, node);
1647 delta = isl_map_deltas(map);
1648 if (treat)
1649 delta = drop_coalescing_constraints(delta, node);
1650 delta = isl_set_remove_divs(delta);
1651 coef = isl_set_coefficients(delta);
1652 *hmap = isl_map_to_basic_set_set(*hmap, key, isl_basic_set_copy(coef));
1654 return coef;
1657 /* Given a dependence relation R, construct the set of coefficients
1658 * of valid constraints for elements in that dependence relation.
1659 * In particular, the result contains tuples of coefficients
1660 * c_0, c_n, c_x, c_y such that
1662 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
1664 * If the source or destination nodes of "edge" have been compressed,
1665 * then the dependence relation is also compressed before
1666 * the set of coefficients is computed.
1668 static __isl_give isl_basic_set *inter_coefficients(
1669 struct isl_sched_graph *graph, struct isl_sched_edge *edge,
1670 __isl_take isl_map *map)
1672 isl_set *set;
1673 isl_map *key;
1674 isl_basic_set *coef;
1675 isl_maybe_isl_basic_set m;
1677 m = isl_map_to_basic_set_try_get(graph->inter_hmap, map);
1678 if (m.valid < 0 || m.valid) {
1679 isl_map_free(map);
1680 return m.value;
1683 key = isl_map_copy(map);
1684 map = compress(map, edge->src, edge->dst);
1685 set = isl_map_wrap(isl_map_remove_divs(map));
1686 coef = isl_set_coefficients(set);
1687 graph->inter_hmap = isl_map_to_basic_set_set(graph->inter_hmap, key,
1688 isl_basic_set_copy(coef));
1690 return coef;
1693 /* Return the position of the coefficients of the variables in
1694 * the coefficients constraints "coef".
1696 * The space of "coef" is of the form
1698 * { coefficients[[cst, params] -> S] }
1700 * Return the position of S.
1702 static isl_size coef_var_offset(__isl_keep isl_basic_set *coef)
1704 isl_size offset;
1705 isl_space *space;
1707 space = isl_space_unwrap(isl_basic_set_get_space(coef));
1708 offset = isl_space_dim(space, isl_dim_in);
1709 isl_space_free(space);
1711 return offset;
1714 /* Return the offset of the coefficient of the constant term of "node"
1715 * within the (I)LP.
1717 * Within each node, the coefficients have the following order:
1718 * - positive and negative parts of c_i_x
1719 * - c_i_n (if parametric)
1720 * - c_i_0
1722 static int node_cst_coef_offset(struct isl_sched_node *node)
1724 return node->start + 2 * node->nvar + node->nparam;
1727 /* Return the offset of the coefficients of the parameters of "node"
1728 * within the (I)LP.
1730 * Within each node, the coefficients have the following order:
1731 * - positive and negative parts of c_i_x
1732 * - c_i_n (if parametric)
1733 * - c_i_0
1735 static int node_par_coef_offset(struct isl_sched_node *node)
1737 return node->start + 2 * node->nvar;
1740 /* Return the offset of the coefficients of the variables of "node"
1741 * within the (I)LP.
1743 * Within each node, the coefficients have the following order:
1744 * - positive and negative parts of c_i_x
1745 * - c_i_n (if parametric)
1746 * - c_i_0
1748 static int node_var_coef_offset(struct isl_sched_node *node)
1750 return node->start;
1753 /* Return the position of the pair of variables encoding
1754 * coefficient "i" of "node".
1756 * The order of these variable pairs is the opposite of
1757 * that of the coefficients, with 2 variables per coefficient.
1759 static int node_var_coef_pos(struct isl_sched_node *node, int i)
1761 return node_var_coef_offset(node) + 2 * (node->nvar - 1 - i);
1764 /* Construct an isl_dim_map for mapping constraints on coefficients
1765 * for "node" to the corresponding positions in graph->lp.
1766 * "offset" is the offset of the coefficients for the variables
1767 * in the input constraints.
1768 * "s" is the sign of the mapping.
1770 * The input constraints are given in terms of the coefficients
1771 * (c_0, c_x) or (c_0, c_n, c_x).
1772 * The mapping produced by this function essentially plugs in
1773 * (0, c_i_x^+ - c_i_x^-) if s = 1 and
1774 * (0, -c_i_x^+ + c_i_x^-) if s = -1 or
1775 * (0, 0, c_i_x^+ - c_i_x^-) if s = 1 and
1776 * (0, 0, -c_i_x^+ + c_i_x^-) if s = -1.
1777 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1778 * Furthermore, the order of these pairs is the opposite of that
1779 * of the corresponding coefficients.
1781 * The caller can extend the mapping to also map the other coefficients
1782 * (and therefore not plug in 0).
1784 static __isl_give isl_dim_map *intra_dim_map(isl_ctx *ctx,
1785 struct isl_sched_graph *graph, struct isl_sched_node *node,
1786 int offset, int s)
1788 int pos;
1789 isl_size total;
1790 isl_dim_map *dim_map;
1792 total = isl_basic_set_dim(graph->lp, isl_dim_all);
1793 if (!node || total < 0)
1794 return NULL;
1796 pos = node_var_coef_pos(node, 0);
1797 dim_map = isl_dim_map_alloc(ctx, total);
1798 isl_dim_map_range(dim_map, pos, -2, offset, 1, node->nvar, -s);
1799 isl_dim_map_range(dim_map, pos + 1, -2, offset, 1, node->nvar, s);
1801 return dim_map;
1804 /* Construct an isl_dim_map for mapping constraints on coefficients
1805 * for "src" (node i) and "dst" (node j) to the corresponding positions
1806 * in graph->lp.
1807 * "offset" is the offset of the coefficients for the variables of "src"
1808 * in the input constraints.
1809 * "s" is the sign of the mapping.
1811 * The input constraints are given in terms of the coefficients
1812 * (c_0, c_n, c_x, c_y).
1813 * The mapping produced by this function essentially plugs in
1814 * (c_j_0 - c_i_0, c_j_n - c_i_n,
1815 * -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-) if s = 1 and
1816 * (-c_j_0 + c_i_0, -c_j_n + c_i_n,
1817 * c_i_x^+ - c_i_x^-, -(c_j_x^+ - c_j_x^-)) if s = -1.
1818 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1819 * Furthermore, the order of these pairs is the opposite of that
1820 * of the corresponding coefficients.
1822 * The caller can further extend the mapping.
1824 static __isl_give isl_dim_map *inter_dim_map(isl_ctx *ctx,
1825 struct isl_sched_graph *graph, struct isl_sched_node *src,
1826 struct isl_sched_node *dst, int offset, int s)
1828 int pos;
1829 isl_size total;
1830 isl_dim_map *dim_map;
1832 total = isl_basic_set_dim(graph->lp, isl_dim_all);
1833 if (!src || !dst || total < 0)
1834 return NULL;
1836 dim_map = isl_dim_map_alloc(ctx, total);
1838 pos = node_cst_coef_offset(dst);
1839 isl_dim_map_range(dim_map, pos, 0, 0, 0, 1, s);
1840 pos = node_par_coef_offset(dst);
1841 isl_dim_map_range(dim_map, pos, 1, 1, 1, dst->nparam, s);
1842 pos = node_var_coef_pos(dst, 0);
1843 isl_dim_map_range(dim_map, pos, -2, offset + src->nvar, 1,
1844 dst->nvar, -s);
1845 isl_dim_map_range(dim_map, pos + 1, -2, offset + src->nvar, 1,
1846 dst->nvar, s);
1848 pos = node_cst_coef_offset(src);
1849 isl_dim_map_range(dim_map, pos, 0, 0, 0, 1, -s);
1850 pos = node_par_coef_offset(src);
1851 isl_dim_map_range(dim_map, pos, 1, 1, 1, src->nparam, -s);
1852 pos = node_var_coef_pos(src, 0);
1853 isl_dim_map_range(dim_map, pos, -2, offset, 1, src->nvar, s);
1854 isl_dim_map_range(dim_map, pos + 1, -2, offset, 1, src->nvar, -s);
1856 return dim_map;
1859 /* Add the constraints from "src" to "dst" using "dim_map",
1860 * after making sure there is enough room in "dst" for the extra constraints.
1862 static __isl_give isl_basic_set *add_constraints_dim_map(
1863 __isl_take isl_basic_set *dst, __isl_take isl_basic_set *src,
1864 __isl_take isl_dim_map *dim_map)
1866 isl_size n_eq, n_ineq;
1868 n_eq = isl_basic_set_n_equality(src);
1869 n_ineq = isl_basic_set_n_inequality(src);
1870 if (n_eq < 0 || n_ineq < 0)
1871 dst = isl_basic_set_free(dst);
1872 dst = isl_basic_set_extend_constraints(dst, n_eq, n_ineq);
1873 dst = isl_basic_set_add_constraints_dim_map(dst, src, dim_map);
1874 return dst;
1877 /* Add constraints to graph->lp that force validity for the given
1878 * dependence from a node i to itself.
1879 * That is, add constraints that enforce
1881 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
1882 * = c_i_x (y - x) >= 0
1884 * for each (x,y) in R.
1885 * We obtain general constraints on coefficients (c_0, c_x)
1886 * of valid constraints for (y - x) and then plug in (0, c_i_x^+ - c_i_x^-),
1887 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
1888 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1889 * Note that the result of intra_coefficients may also contain
1890 * parameter coefficients c_n, in which case 0 is plugged in for them as well.
1892 static isl_stat add_intra_validity_constraints(struct isl_sched_graph *graph,
1893 struct isl_sched_edge *edge)
1895 isl_size offset;
1896 isl_map *map = isl_map_copy(edge->map);
1897 isl_ctx *ctx = isl_map_get_ctx(map);
1898 isl_dim_map *dim_map;
1899 isl_basic_set *coef;
1900 struct isl_sched_node *node = edge->src;
1902 coef = intra_coefficients(graph, node, map, 0);
1904 offset = coef_var_offset(coef);
1905 if (offset < 0)
1906 coef = isl_basic_set_free(coef);
1907 if (!coef)
1908 return isl_stat_error;
1910 dim_map = intra_dim_map(ctx, graph, node, offset, 1);
1911 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
1913 return isl_stat_ok;
1916 /* Add constraints to graph->lp that force validity for the given
1917 * dependence from node i to node j.
1918 * That is, add constraints that enforce
1920 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
1922 * for each (x,y) in R.
1923 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1924 * of valid constraints for R and then plug in
1925 * (c_j_0 - c_i_0, c_j_n - c_i_n, -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-),
1926 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
1927 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1929 static isl_stat add_inter_validity_constraints(struct isl_sched_graph *graph,
1930 struct isl_sched_edge *edge)
1932 isl_size offset;
1933 isl_map *map;
1934 isl_ctx *ctx;
1935 isl_dim_map *dim_map;
1936 isl_basic_set *coef;
1937 struct isl_sched_node *src = edge->src;
1938 struct isl_sched_node *dst = edge->dst;
1940 if (!graph->lp)
1941 return isl_stat_error;
1943 map = isl_map_copy(edge->map);
1944 ctx = isl_map_get_ctx(map);
1945 coef = inter_coefficients(graph, edge, map);
1947 offset = coef_var_offset(coef);
1948 if (offset < 0)
1949 coef = isl_basic_set_free(coef);
1950 if (!coef)
1951 return isl_stat_error;
1953 dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1);
1955 edge->start = graph->lp->n_ineq;
1956 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
1957 if (!graph->lp)
1958 return isl_stat_error;
1959 edge->end = graph->lp->n_ineq;
1961 return isl_stat_ok;
1964 /* Add constraints to graph->lp that bound the dependence distance for the given
1965 * dependence from a node i to itself.
1966 * If s = 1, we add the constraint
1968 * c_i_x (y - x) <= m_0 + m_n n
1970 * or
1972 * -c_i_x (y - x) + m_0 + m_n n >= 0
1974 * for each (x,y) in R.
1975 * If s = -1, we add the constraint
1977 * -c_i_x (y - x) <= m_0 + m_n n
1979 * or
1981 * c_i_x (y - x) + m_0 + m_n n >= 0
1983 * for each (x,y) in R.
1984 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1985 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
1986 * with each coefficient (except m_0) represented as a pair of non-negative
1987 * coefficients.
1990 * If "local" is set, then we add constraints
1992 * c_i_x (y - x) <= 0
1994 * or
1996 * -c_i_x (y - x) <= 0
1998 * instead, forcing the dependence distance to be (less than or) equal to 0.
1999 * That is, we plug in (0, 0, -s * c_i_x),
2000 * intra_coefficients is not required to have c_n in its result when
2001 * "local" is set. If they are missing, then (0, -s * c_i_x) is plugged in.
2002 * Note that dependences marked local are treated as validity constraints
2003 * by add_all_validity_constraints and therefore also have
2004 * their distances bounded by 0 from below.
2006 static isl_stat add_intra_proximity_constraints(struct isl_sched_graph *graph,
2007 struct isl_sched_edge *edge, int s, int local)
2009 isl_size offset;
2010 isl_size nparam;
2011 isl_map *map = isl_map_copy(edge->map);
2012 isl_ctx *ctx = isl_map_get_ctx(map);
2013 isl_dim_map *dim_map;
2014 isl_basic_set *coef;
2015 struct isl_sched_node *node = edge->src;
2017 coef = intra_coefficients(graph, node, map, !local);
2018 nparam = isl_space_dim(node->space, isl_dim_param);
2020 offset = coef_var_offset(coef);
2021 if (nparam < 0 || offset < 0)
2022 coef = isl_basic_set_free(coef);
2023 if (!coef)
2024 return isl_stat_error;
2026 dim_map = intra_dim_map(ctx, graph, node, offset, -s);
2028 if (!local) {
2029 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
2030 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
2031 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
2033 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
2035 return isl_stat_ok;
2038 /* Add constraints to graph->lp that bound the dependence distance for the given
2039 * dependence from node i to node j.
2040 * If s = 1, we add the constraint
2042 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
2043 * <= m_0 + m_n n
2045 * or
2047 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
2048 * m_0 + m_n n >= 0
2050 * for each (x,y) in R.
2051 * If s = -1, we add the constraint
2053 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
2054 * <= m_0 + m_n n
2056 * or
2058 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
2059 * m_0 + m_n n >= 0
2061 * for each (x,y) in R.
2062 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
2063 * of valid constraints for R and then plug in
2064 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
2065 * s*c_i_x, -s*c_j_x)
2066 * with each coefficient (except m_0, c_*_0 and c_*_n)
2067 * represented as a pair of non-negative coefficients.
2070 * If "local" is set (and s = 1), then we add constraints
2072 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
2074 * or
2076 * -((c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x)) >= 0
2078 * instead, forcing the dependence distance to be (less than or) equal to 0.
2079 * That is, we plug in
2080 * (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, s*c_i_x, -s*c_j_x).
2081 * Note that dependences marked local are treated as validity constraints
2082 * by add_all_validity_constraints and therefore also have
2083 * their distances bounded by 0 from below.
2085 static isl_stat add_inter_proximity_constraints(struct isl_sched_graph *graph,
2086 struct isl_sched_edge *edge, int s, int local)
2088 isl_size offset;
2089 isl_size nparam;
2090 isl_map *map = isl_map_copy(edge->map);
2091 isl_ctx *ctx = isl_map_get_ctx(map);
2092 isl_dim_map *dim_map;
2093 isl_basic_set *coef;
2094 struct isl_sched_node *src = edge->src;
2095 struct isl_sched_node *dst = edge->dst;
2097 coef = inter_coefficients(graph, edge, map);
2098 nparam = isl_space_dim(src->space, isl_dim_param);
2100 offset = coef_var_offset(coef);
2101 if (nparam < 0 || offset < 0)
2102 coef = isl_basic_set_free(coef);
2103 if (!coef)
2104 return isl_stat_error;
2106 dim_map = inter_dim_map(ctx, graph, src, dst, offset, -s);
2108 if (!local) {
2109 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
2110 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
2111 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
2114 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
2116 return isl_stat_ok;
2119 /* Should the distance over "edge" be forced to zero?
2120 * That is, is it marked as a local edge?
2121 * If "use_coincidence" is set, then coincidence edges are treated
2122 * as local edges.
2124 static int force_zero(struct isl_sched_edge *edge, int use_coincidence)
2126 return is_local(edge) || (use_coincidence && is_coincidence(edge));
2129 /* Add all validity constraints to graph->lp.
2131 * An edge that is forced to be local needs to have its dependence
2132 * distances equal to zero. We take care of bounding them by 0 from below
2133 * here. add_all_proximity_constraints takes care of bounding them by 0
2134 * from above.
2136 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2137 * Otherwise, we ignore them.
2139 static int add_all_validity_constraints(struct isl_sched_graph *graph,
2140 int use_coincidence)
2142 int i;
2144 for (i = 0; i < graph->n_edge; ++i) {
2145 struct isl_sched_edge *edge = &graph->edge[i];
2146 int zero;
2148 zero = force_zero(edge, use_coincidence);
2149 if (!is_validity(edge) && !zero)
2150 continue;
2151 if (edge->src != edge->dst)
2152 continue;
2153 if (add_intra_validity_constraints(graph, edge) < 0)
2154 return -1;
2157 for (i = 0; i < graph->n_edge; ++i) {
2158 struct isl_sched_edge *edge = &graph->edge[i];
2159 int zero;
2161 zero = force_zero(edge, use_coincidence);
2162 if (!is_validity(edge) && !zero)
2163 continue;
2164 if (edge->src == edge->dst)
2165 continue;
2166 if (add_inter_validity_constraints(graph, edge) < 0)
2167 return -1;
2170 return 0;
2173 /* Add constraints to graph->lp that bound the dependence distance
2174 * for all dependence relations.
2175 * If a given proximity dependence is identical to a validity
2176 * dependence, then the dependence distance is already bounded
2177 * from below (by zero), so we only need to bound the distance
2178 * from above. (This includes the case of "local" dependences
2179 * which are treated as validity dependence by add_all_validity_constraints.)
2180 * Otherwise, we need to bound the distance both from above and from below.
2182 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2183 * Otherwise, we ignore them.
2185 static int add_all_proximity_constraints(struct isl_sched_graph *graph,
2186 int use_coincidence)
2188 int i;
2190 for (i = 0; i < graph->n_edge; ++i) {
2191 struct isl_sched_edge *edge = &graph->edge[i];
2192 int zero;
2194 zero = force_zero(edge, use_coincidence);
2195 if (!isl_sched_edge_is_proximity(edge) && !zero)
2196 continue;
2197 if (edge->src == edge->dst &&
2198 add_intra_proximity_constraints(graph, edge, 1, zero) < 0)
2199 return -1;
2200 if (edge->src != edge->dst &&
2201 add_inter_proximity_constraints(graph, edge, 1, zero) < 0)
2202 return -1;
2203 if (is_validity(edge) || zero)
2204 continue;
2205 if (edge->src == edge->dst &&
2206 add_intra_proximity_constraints(graph, edge, -1, 0) < 0)
2207 return -1;
2208 if (edge->src != edge->dst &&
2209 add_inter_proximity_constraints(graph, edge, -1, 0) < 0)
2210 return -1;
2213 return 0;
2216 /* Normalize the rows of "indep" such that all rows are lexicographically
2217 * positive and such that each row contains as many final zeros as possible,
2218 * given the choice for the previous rows.
2219 * Do this by performing elementary row operations.
2221 static __isl_give isl_mat *normalize_independent(__isl_take isl_mat *indep)
2223 indep = isl_mat_reverse_gauss(indep);
2224 indep = isl_mat_lexnonneg_rows(indep);
2225 return indep;
2228 /* Extract the linear part of the current schedule for node "node".
2230 static __isl_give isl_mat *extract_linear_schedule(struct isl_sched_node *node)
2232 isl_size n_row = isl_mat_rows(node->sched);
2234 if (n_row < 0)
2235 return NULL;
2236 return isl_mat_sub_alloc(node->sched, 0, n_row,
2237 1 + node->nparam, node->nvar);
2240 /* Compute a basis for the rows in the linear part of the schedule
2241 * and extend this basis to a full basis. The remaining rows
2242 * can then be used to force linear independence from the rows
2243 * in the schedule.
2245 * In particular, given the schedule rows S, we compute
2247 * S = H Q
2248 * S U = H
2250 * with H the Hermite normal form of S. That is, all but the
2251 * first rank columns of H are zero and so each row in S is
2252 * a linear combination of the first rank rows of Q.
2253 * The matrix Q can be used as a variable transformation
2254 * that isolates the directions of S in the first rank rows.
2255 * Transposing S U = H yields
2257 * U^T S^T = H^T
2259 * with all but the first rank rows of H^T zero.
2260 * The last rows of U^T are therefore linear combinations
2261 * of schedule coefficients that are all zero on schedule
2262 * coefficients that are linearly dependent on the rows of S.
2263 * At least one of these combinations is non-zero on
2264 * linearly independent schedule coefficients.
2265 * The rows are normalized to involve as few of the last
2266 * coefficients as possible and to have a positive initial value.
2268 isl_stat isl_sched_node_update_vmap(struct isl_sched_node *node)
2270 isl_mat *H, *U, *Q;
2272 H = extract_linear_schedule(node);
2274 H = isl_mat_left_hermite(H, 0, &U, &Q);
2275 isl_mat_free(node->indep);
2276 isl_mat_free(node->vmap);
2277 node->vmap = Q;
2278 node->indep = isl_mat_transpose(U);
2279 node->rank = isl_mat_initial_non_zero_cols(H);
2280 node->indep = isl_mat_drop_rows(node->indep, 0, node->rank);
2281 node->indep = normalize_independent(node->indep);
2282 isl_mat_free(H);
2284 if (!node->indep || !node->vmap || node->rank < 0)
2285 return isl_stat_error;
2286 return isl_stat_ok;
2289 /* Is "edge" marked as a validity or a conditional validity edge?
2291 static int is_any_validity(struct isl_sched_edge *edge)
2293 return is_validity(edge) ||
2294 isl_sched_edge_is_conditional_validity(edge);
2297 /* How many times should we count the constraints in "edge"?
2299 * We count as follows
2300 * validity -> 1 (>= 0)
2301 * validity+proximity -> 2 (>= 0 and upper bound)
2302 * proximity -> 2 (lower and upper bound)
2303 * local(+any) -> 2 (>= 0 and <= 0)
2305 * If an edge is only marked conditional_validity then it counts
2306 * as zero since it is only checked afterwards.
2308 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2309 * Otherwise, we ignore them.
2311 static int edge_multiplicity(struct isl_sched_edge *edge, int use_coincidence)
2313 if (isl_sched_edge_is_proximity(edge) ||
2314 force_zero(edge, use_coincidence))
2315 return 2;
2316 if (is_validity(edge))
2317 return 1;
2318 return 0;
2321 /* How many times should the constraints in "edge" be counted
2322 * as a parametric intra-node constraint?
2324 * Only proximity edges that are not forced zero need
2325 * coefficient constraints that include coefficients for parameters.
2326 * If the edge is also a validity edge, then only
2327 * an upper bound is introduced. Otherwise, both lower and upper bounds
2328 * are introduced.
2330 static int parametric_intra_edge_multiplicity(struct isl_sched_edge *edge,
2331 int use_coincidence)
2333 if (edge->src != edge->dst)
2334 return 0;
2335 if (!isl_sched_edge_is_proximity(edge))
2336 return 0;
2337 if (force_zero(edge, use_coincidence))
2338 return 0;
2339 if (is_validity(edge))
2340 return 1;
2341 else
2342 return 2;
2345 /* Add "f" times the number of equality and inequality constraints of "bset"
2346 * to "n_eq" and "n_ineq" and free "bset".
2348 static isl_stat update_count(__isl_take isl_basic_set *bset,
2349 int f, int *n_eq, int *n_ineq)
2351 isl_size eq, ineq;
2353 eq = isl_basic_set_n_equality(bset);
2354 ineq = isl_basic_set_n_inequality(bset);
2355 isl_basic_set_free(bset);
2357 if (eq < 0 || ineq < 0)
2358 return isl_stat_error;
2360 *n_eq += eq;
2361 *n_ineq += ineq;
2363 return isl_stat_ok;
2366 /* Count the number of equality and inequality constraints
2367 * that will be added for the given map.
2369 * The edges that require parameter coefficients are counted separately.
2371 * "use_coincidence" is set if we should take into account coincidence edges.
2373 static isl_stat count_map_constraints(struct isl_sched_graph *graph,
2374 struct isl_sched_edge *edge, __isl_take isl_map *map,
2375 int *n_eq, int *n_ineq, int use_coincidence)
2377 isl_map *copy;
2378 isl_basic_set *coef;
2379 int f = edge_multiplicity(edge, use_coincidence);
2380 int fp = parametric_intra_edge_multiplicity(edge, use_coincidence);
2382 if (f == 0) {
2383 isl_map_free(map);
2384 return isl_stat_ok;
2387 if (edge->src != edge->dst) {
2388 coef = inter_coefficients(graph, edge, map);
2389 return update_count(coef, f, n_eq, n_ineq);
2392 if (fp > 0) {
2393 copy = isl_map_copy(map);
2394 coef = intra_coefficients(graph, edge->src, copy, 1);
2395 if (update_count(coef, fp, n_eq, n_ineq) < 0)
2396 goto error;
2399 if (f > fp) {
2400 copy = isl_map_copy(map);
2401 coef = intra_coefficients(graph, edge->src, copy, 0);
2402 if (update_count(coef, f - fp, n_eq, n_ineq) < 0)
2403 goto error;
2406 isl_map_free(map);
2407 return isl_stat_ok;
2408 error:
2409 isl_map_free(map);
2410 return isl_stat_error;
2413 /* Count the number of equality and inequality constraints
2414 * that will be added to the main lp problem.
2415 * We count as follows
2416 * validity -> 1 (>= 0)
2417 * validity+proximity -> 2 (>= 0 and upper bound)
2418 * proximity -> 2 (lower and upper bound)
2419 * local(+any) -> 2 (>= 0 and <= 0)
2421 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2422 * Otherwise, we ignore them.
2424 static int count_constraints(struct isl_sched_graph *graph,
2425 int *n_eq, int *n_ineq, int use_coincidence)
2427 int i;
2429 *n_eq = *n_ineq = 0;
2430 for (i = 0; i < graph->n_edge; ++i) {
2431 struct isl_sched_edge *edge = &graph->edge[i];
2432 isl_map *map = isl_map_copy(edge->map);
2434 if (count_map_constraints(graph, edge, map, n_eq, n_ineq,
2435 use_coincidence) < 0)
2436 return -1;
2439 return 0;
2442 /* Count the number of constraints that will be added by
2443 * add_bound_constant_constraints to bound the values of the constant terms
2444 * and increment *n_eq and *n_ineq accordingly.
2446 * In practice, add_bound_constant_constraints only adds inequalities.
2448 static isl_stat count_bound_constant_constraints(isl_ctx *ctx,
2449 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
2451 if (isl_options_get_schedule_max_constant_term(ctx) == -1)
2452 return isl_stat_ok;
2454 *n_ineq += graph->n;
2456 return isl_stat_ok;
2459 /* Add constraints to bound the values of the constant terms in the schedule,
2460 * if requested by the user.
2462 * The maximal value of the constant terms is defined by the option
2463 * "schedule_max_constant_term".
2465 static isl_stat add_bound_constant_constraints(isl_ctx *ctx,
2466 struct isl_sched_graph *graph)
2468 int i, k;
2469 int max;
2470 isl_size total;
2472 max = isl_options_get_schedule_max_constant_term(ctx);
2473 if (max == -1)
2474 return isl_stat_ok;
2476 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2477 if (total < 0)
2478 return isl_stat_error;
2480 for (i = 0; i < graph->n; ++i) {
2481 struct isl_sched_node *node = &graph->node[i];
2482 int pos;
2484 k = isl_basic_set_alloc_inequality(graph->lp);
2485 if (k < 0)
2486 return isl_stat_error;
2487 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2488 pos = node_cst_coef_offset(node);
2489 isl_int_set_si(graph->lp->ineq[k][1 + pos], -1);
2490 isl_int_set_si(graph->lp->ineq[k][0], max);
2493 return isl_stat_ok;
2496 /* Count the number of constraints that will be added by
2497 * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
2498 * accordingly.
2500 * In practice, add_bound_coefficient_constraints only adds inequalities.
2502 static int count_bound_coefficient_constraints(isl_ctx *ctx,
2503 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
2505 int i;
2507 if (isl_options_get_schedule_max_coefficient(ctx) == -1 &&
2508 !isl_options_get_schedule_treat_coalescing(ctx))
2509 return 0;
2511 for (i = 0; i < graph->n; ++i)
2512 *n_ineq += graph->node[i].nparam + 2 * graph->node[i].nvar;
2514 return 0;
2517 /* Add constraints to graph->lp that bound the values of
2518 * the parameter schedule coefficients of "node" to "max" and
2519 * the variable schedule coefficients to the corresponding entry
2520 * in node->max.
2521 * In either case, a negative value means that no bound needs to be imposed.
2523 * For parameter coefficients, this amounts to adding a constraint
2525 * c_n <= max
2527 * i.e.,
2529 * -c_n + max >= 0
2531 * The variables coefficients are, however, not represented directly.
2532 * Instead, the variable coefficients c_x are written as differences
2533 * c_x = c_x^+ - c_x^-.
2534 * That is,
2536 * -max_i <= c_x_i <= max_i
2538 * is encoded as
2540 * -max_i <= c_x_i^+ - c_x_i^- <= max_i
2542 * or
2544 * -(c_x_i^+ - c_x_i^-) + max_i >= 0
2545 * c_x_i^+ - c_x_i^- + max_i >= 0
2547 static isl_stat node_add_coefficient_constraints(isl_ctx *ctx,
2548 struct isl_sched_graph *graph, struct isl_sched_node *node, int max)
2550 int i, j, k;
2551 isl_size total;
2552 isl_vec *ineq;
2554 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2555 if (total < 0)
2556 return isl_stat_error;
2558 for (j = 0; j < node->nparam; ++j) {
2559 int dim;
2561 if (max < 0)
2562 continue;
2564 k = isl_basic_set_alloc_inequality(graph->lp);
2565 if (k < 0)
2566 return isl_stat_error;
2567 dim = 1 + node_par_coef_offset(node) + j;
2568 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2569 isl_int_set_si(graph->lp->ineq[k][dim], -1);
2570 isl_int_set_si(graph->lp->ineq[k][0], max);
2573 ineq = isl_vec_alloc(ctx, 1 + total);
2574 ineq = isl_vec_clr(ineq);
2575 if (!ineq)
2576 return isl_stat_error;
2577 for (i = 0; i < node->nvar; ++i) {
2578 int pos = 1 + node_var_coef_pos(node, i);
2580 if (isl_int_is_neg(node->max->el[i]))
2581 continue;
2583 isl_int_set_si(ineq->el[pos], 1);
2584 isl_int_set_si(ineq->el[pos + 1], -1);
2585 isl_int_set(ineq->el[0], node->max->el[i]);
2587 k = isl_basic_set_alloc_inequality(graph->lp);
2588 if (k < 0)
2589 goto error;
2590 isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total);
2592 isl_seq_neg(ineq->el + pos, ineq->el + pos, 2);
2593 k = isl_basic_set_alloc_inequality(graph->lp);
2594 if (k < 0)
2595 goto error;
2596 isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total);
2598 isl_seq_clr(ineq->el + pos, 2);
2600 isl_vec_free(ineq);
2602 return isl_stat_ok;
2603 error:
2604 isl_vec_free(ineq);
2605 return isl_stat_error;
2608 /* Add constraints that bound the values of the variable and parameter
2609 * coefficients of the schedule.
2611 * The maximal value of the coefficients is defined by the option
2612 * 'schedule_max_coefficient' and the entries in node->max.
2613 * These latter entries are only set if either the schedule_max_coefficient
2614 * option or the schedule_treat_coalescing option is set.
2616 static isl_stat add_bound_coefficient_constraints(isl_ctx *ctx,
2617 struct isl_sched_graph *graph)
2619 int i;
2620 int max;
2622 max = isl_options_get_schedule_max_coefficient(ctx);
2624 if (max == -1 && !isl_options_get_schedule_treat_coalescing(ctx))
2625 return isl_stat_ok;
2627 for (i = 0; i < graph->n; ++i) {
2628 struct isl_sched_node *node = &graph->node[i];
2630 if (node_add_coefficient_constraints(ctx, graph, node, max) < 0)
2631 return isl_stat_error;
2634 return isl_stat_ok;
2637 /* Add a constraint to graph->lp that equates the value at position
2638 * "sum_pos" to the sum of the "n" values starting at "first".
2640 static isl_stat add_sum_constraint(struct isl_sched_graph *graph,
2641 int sum_pos, int first, int n)
2643 int i, k;
2644 isl_size total;
2646 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2647 if (total < 0)
2648 return isl_stat_error;
2650 k = isl_basic_set_alloc_equality(graph->lp);
2651 if (k < 0)
2652 return isl_stat_error;
2653 isl_seq_clr(graph->lp->eq[k], 1 + total);
2654 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2655 for (i = 0; i < n; ++i)
2656 isl_int_set_si(graph->lp->eq[k][1 + first + i], 1);
2658 return isl_stat_ok;
2661 /* Add a constraint to graph->lp that equates the value at position
2662 * "sum_pos" to the sum of the parameter coefficients of all nodes.
2664 static isl_stat add_param_sum_constraint(struct isl_sched_graph *graph,
2665 int sum_pos)
2667 int i, j, k;
2668 isl_size total;
2670 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2671 if (total < 0)
2672 return isl_stat_error;
2674 k = isl_basic_set_alloc_equality(graph->lp);
2675 if (k < 0)
2676 return isl_stat_error;
2677 isl_seq_clr(graph->lp->eq[k], 1 + total);
2678 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2679 for (i = 0; i < graph->n; ++i) {
2680 int pos = 1 + node_par_coef_offset(&graph->node[i]);
2682 for (j = 0; j < graph->node[i].nparam; ++j)
2683 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2686 return isl_stat_ok;
2689 /* Add a constraint to graph->lp that equates the value at position
2690 * "sum_pos" to the sum of the variable coefficients of all nodes.
2692 static isl_stat add_var_sum_constraint(struct isl_sched_graph *graph,
2693 int sum_pos)
2695 int i, j, k;
2696 isl_size total;
2698 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2699 if (total < 0)
2700 return isl_stat_error;
2702 k = isl_basic_set_alloc_equality(graph->lp);
2703 if (k < 0)
2704 return isl_stat_error;
2705 isl_seq_clr(graph->lp->eq[k], 1 + total);
2706 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2707 for (i = 0; i < graph->n; ++i) {
2708 struct isl_sched_node *node = &graph->node[i];
2709 int pos = 1 + node_var_coef_offset(node);
2711 for (j = 0; j < 2 * node->nvar; ++j)
2712 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2715 return isl_stat_ok;
2718 /* Construct an ILP problem for finding schedule coefficients
2719 * that result in non-negative, but small dependence distances
2720 * over all dependences.
2721 * In particular, the dependence distances over proximity edges
2722 * are bounded by m_0 + m_n n and we compute schedule coefficients
2723 * with small values (preferably zero) of m_n and m_0.
2725 * All variables of the ILP are non-negative. The actual coefficients
2726 * may be negative, so each coefficient is represented as the difference
2727 * of two non-negative variables. The negative part always appears
2728 * immediately before the positive part.
2729 * Other than that, the variables have the following order
2731 * - sum of positive and negative parts of m_n coefficients
2732 * - m_0
2733 * - sum of all c_n coefficients
2734 * (unconstrained when computing non-parametric schedules)
2735 * - sum of positive and negative parts of all c_x coefficients
2736 * - positive and negative parts of m_n coefficients
2737 * - for each node
2738 * - positive and negative parts of c_i_x, in opposite order
2739 * - c_i_n (if parametric)
2740 * - c_i_0
2742 * The constraints are those from the edges plus two or three equalities
2743 * to express the sums.
2745 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2746 * Otherwise, we ignore them.
2748 static isl_stat setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
2749 int use_coincidence)
2751 int i;
2752 isl_size nparam;
2753 unsigned total;
2754 isl_space *space;
2755 int parametric;
2756 int param_pos;
2757 int n_eq, n_ineq;
2759 parametric = ctx->opt->schedule_parametric;
2760 nparam = isl_space_dim(graph->node[0].space, isl_dim_param);
2761 if (nparam < 0)
2762 return isl_stat_error;
2763 param_pos = 4;
2764 total = param_pos + 2 * nparam;
2765 for (i = 0; i < graph->n; ++i) {
2766 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
2767 if (isl_sched_node_update_vmap(node) < 0)
2768 return isl_stat_error;
2769 node->start = total;
2770 total += 1 + node->nparam + 2 * node->nvar;
2773 if (count_constraints(graph, &n_eq, &n_ineq, use_coincidence) < 0)
2774 return isl_stat_error;
2775 if (count_bound_constant_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2776 return isl_stat_error;
2777 if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2778 return isl_stat_error;
2780 space = isl_space_set_alloc(ctx, 0, total);
2781 isl_basic_set_free(graph->lp);
2782 n_eq += 2 + parametric;
2784 graph->lp = isl_basic_set_alloc_space(space, 0, n_eq, n_ineq);
2786 if (add_sum_constraint(graph, 0, param_pos, 2 * nparam) < 0)
2787 return isl_stat_error;
2788 if (parametric && add_param_sum_constraint(graph, 2) < 0)
2789 return isl_stat_error;
2790 if (add_var_sum_constraint(graph, 3) < 0)
2791 return isl_stat_error;
2792 if (add_bound_constant_constraints(ctx, graph) < 0)
2793 return isl_stat_error;
2794 if (add_bound_coefficient_constraints(ctx, graph) < 0)
2795 return isl_stat_error;
2796 if (add_all_validity_constraints(graph, use_coincidence) < 0)
2797 return isl_stat_error;
2798 if (add_all_proximity_constraints(graph, use_coincidence) < 0)
2799 return isl_stat_error;
2801 return isl_stat_ok;
2804 /* Analyze the conflicting constraint found by
2805 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
2806 * constraint of one of the edges between distinct nodes, living, moreover
2807 * in distinct SCCs, then record the source and sink SCC as this may
2808 * be a good place to cut between SCCs.
2810 static int check_conflict(int con, void *user)
2812 int i;
2813 struct isl_sched_graph *graph = user;
2815 if (graph->src_scc >= 0)
2816 return 0;
2818 con -= graph->lp->n_eq;
2820 if (con >= graph->lp->n_ineq)
2821 return 0;
2823 for (i = 0; i < graph->n_edge; ++i) {
2824 if (!is_validity(&graph->edge[i]))
2825 continue;
2826 if (graph->edge[i].src == graph->edge[i].dst)
2827 continue;
2828 if (graph->edge[i].src->scc == graph->edge[i].dst->scc)
2829 continue;
2830 if (graph->edge[i].start > con)
2831 continue;
2832 if (graph->edge[i].end <= con)
2833 continue;
2834 graph->src_scc = graph->edge[i].src->scc;
2835 graph->dst_scc = graph->edge[i].dst->scc;
2838 return 0;
2841 /* Check whether the next schedule row of the given node needs to be
2842 * non-trivial. Lower-dimensional domains may have some trivial rows,
2843 * but as soon as the number of remaining required non-trivial rows
2844 * is as large as the number or remaining rows to be computed,
2845 * all remaining rows need to be non-trivial.
2847 static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node)
2849 return node->nvar - node->rank >= graph->maxvar - graph->n_row;
2852 /* Construct a non-triviality region with triviality directions
2853 * corresponding to the rows of "indep".
2854 * The rows of "indep" are expressed in terms of the schedule coefficients c_i,
2855 * while the triviality directions are expressed in terms of
2856 * pairs of non-negative variables c^+_i - c^-_i, with c^-_i appearing
2857 * before c^+_i. Furthermore,
2858 * the pairs of non-negative variables representing the coefficients
2859 * are stored in the opposite order.
2861 static __isl_give isl_mat *construct_trivial(__isl_keep isl_mat *indep)
2863 isl_ctx *ctx;
2864 isl_mat *mat;
2865 int i, j;
2866 isl_size n, n_var;
2868 n = isl_mat_rows(indep);
2869 n_var = isl_mat_cols(indep);
2870 if (n < 0 || n_var < 0)
2871 return NULL;
2873 ctx = isl_mat_get_ctx(indep);
2874 mat = isl_mat_alloc(ctx, n, 2 * n_var);
2875 if (!mat)
2876 return NULL;
2877 for (i = 0; i < n; ++i) {
2878 for (j = 0; j < n_var; ++j) {
2879 int nj = n_var - 1 - j;
2880 isl_int_neg(mat->row[i][2 * nj], indep->row[i][j]);
2881 isl_int_set(mat->row[i][2 * nj + 1], indep->row[i][j]);
2885 return mat;
2888 /* Solve the ILP problem constructed in setup_lp.
2889 * For each node such that all the remaining rows of its schedule
2890 * need to be non-trivial, we construct a non-triviality region.
2891 * This region imposes that the next row is independent of previous rows.
2892 * In particular, the non-triviality region enforces that at least
2893 * one of the linear combinations in the rows of node->indep is non-zero.
2895 static __isl_give isl_vec *solve_lp(isl_ctx *ctx, struct isl_sched_graph *graph)
2897 int i;
2898 isl_vec *sol;
2899 isl_basic_set *lp;
2901 for (i = 0; i < graph->n; ++i) {
2902 struct isl_sched_node *node = &graph->node[i];
2903 isl_mat *trivial;
2905 graph->region[i].pos = node_var_coef_offset(node);
2906 if (needs_row(graph, node))
2907 trivial = construct_trivial(node->indep);
2908 else
2909 trivial = isl_mat_zero(ctx, 0, 0);
2910 graph->region[i].trivial = trivial;
2912 lp = isl_basic_set_copy(graph->lp);
2913 sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n,
2914 graph->region, &check_conflict, graph);
2915 for (i = 0; i < graph->n; ++i)
2916 isl_mat_free(graph->region[i].trivial);
2917 return sol;
2920 /* Extract the coefficients for the variables of "node" from "sol".
2922 * Each schedule coefficient c_i_x is represented as the difference
2923 * between two non-negative variables c_i_x^+ - c_i_x^-.
2924 * The c_i_x^- appear before their c_i_x^+ counterpart.
2925 * Furthermore, the order of these pairs is the opposite of that
2926 * of the corresponding coefficients.
2928 * Return c_i_x = c_i_x^+ - c_i_x^-
2930 static __isl_give isl_vec *extract_var_coef(struct isl_sched_node *node,
2931 __isl_keep isl_vec *sol)
2933 int i;
2934 int pos;
2935 isl_vec *csol;
2937 if (!sol)
2938 return NULL;
2939 csol = isl_vec_alloc(isl_vec_get_ctx(sol), node->nvar);
2940 if (!csol)
2941 return NULL;
2943 pos = 1 + node_var_coef_offset(node);
2944 for (i = 0; i < node->nvar; ++i)
2945 isl_int_sub(csol->el[node->nvar - 1 - i],
2946 sol->el[pos + 2 * i + 1], sol->el[pos + 2 * i]);
2948 return csol;
2951 /* Update the schedules of all nodes based on the given solution
2952 * of the LP problem.
2953 * The new row is added to the current band.
2954 * All possibly negative coefficients are encoded as a difference
2955 * of two non-negative variables, so we need to perform the subtraction
2956 * here.
2958 * If coincident is set, then the caller guarantees that the new
2959 * row satisfies the coincidence constraints.
2961 static int update_schedule(struct isl_sched_graph *graph,
2962 __isl_take isl_vec *sol, int coincident)
2964 int i, j;
2965 isl_vec *csol = NULL;
2967 if (!sol)
2968 goto error;
2969 if (sol->size == 0)
2970 isl_die(sol->ctx, isl_error_internal,
2971 "no solution found", goto error);
2972 if (graph->n_total_row >= graph->max_row)
2973 isl_die(sol->ctx, isl_error_internal,
2974 "too many schedule rows", goto error);
2976 for (i = 0; i < graph->n; ++i) {
2977 struct isl_sched_node *node = &graph->node[i];
2978 int pos;
2979 isl_size row = isl_mat_rows(node->sched);
2981 isl_vec_free(csol);
2982 csol = extract_var_coef(node, sol);
2983 if (row < 0 || !csol)
2984 goto error;
2986 isl_map_free(node->sched_map);
2987 node->sched_map = NULL;
2988 node->sched = isl_mat_add_rows(node->sched, 1);
2989 if (!node->sched)
2990 goto error;
2991 pos = node_cst_coef_offset(node);
2992 node->sched = isl_mat_set_element(node->sched,
2993 row, 0, sol->el[1 + pos]);
2994 pos = node_par_coef_offset(node);
2995 for (j = 0; j < node->nparam; ++j)
2996 node->sched = isl_mat_set_element(node->sched,
2997 row, 1 + j, sol->el[1 + pos + j]);
2998 for (j = 0; j < node->nvar; ++j)
2999 node->sched = isl_mat_set_element(node->sched,
3000 row, 1 + node->nparam + j, csol->el[j]);
3001 node->coincident[graph->n_total_row] = coincident;
3003 isl_vec_free(sol);
3004 isl_vec_free(csol);
3006 graph->n_row++;
3007 graph->n_total_row++;
3009 return 0;
3010 error:
3011 isl_vec_free(sol);
3012 isl_vec_free(csol);
3013 return -1;
3016 /* Convert row "row" of node->sched into an isl_aff living in "ls"
3017 * and return this isl_aff.
3019 static __isl_give isl_aff *extract_schedule_row(__isl_take isl_local_space *ls,
3020 struct isl_sched_node *node, int row)
3022 int j;
3023 isl_int v;
3024 isl_aff *aff;
3026 isl_int_init(v);
3028 aff = isl_aff_zero_on_domain(ls);
3029 if (isl_mat_get_element(node->sched, row, 0, &v) < 0)
3030 goto error;
3031 aff = isl_aff_set_constant(aff, v);
3032 for (j = 0; j < node->nparam; ++j) {
3033 if (isl_mat_get_element(node->sched, row, 1 + j, &v) < 0)
3034 goto error;
3035 aff = isl_aff_set_coefficient(aff, isl_dim_param, j, v);
3037 for (j = 0; j < node->nvar; ++j) {
3038 if (isl_mat_get_element(node->sched, row,
3039 1 + node->nparam + j, &v) < 0)
3040 goto error;
3041 aff = isl_aff_set_coefficient(aff, isl_dim_in, j, v);
3044 isl_int_clear(v);
3046 return aff;
3047 error:
3048 isl_int_clear(v);
3049 isl_aff_free(aff);
3050 return NULL;
3053 /* Convert the "n" rows starting at "first" of node->sched into a multi_aff
3054 * and return this multi_aff.
3056 * The result is defined over the uncompressed node domain.
3058 __isl_give isl_multi_aff *isl_sched_node_extract_partial_schedule_multi_aff(
3059 struct isl_sched_node *node, int first, int n)
3061 int i;
3062 isl_space *space;
3063 isl_local_space *ls;
3064 isl_aff *aff;
3065 isl_multi_aff *ma;
3066 isl_size nrow;
3068 if (!node)
3069 return NULL;
3070 nrow = isl_mat_rows(node->sched);
3071 if (nrow < 0)
3072 return NULL;
3073 if (node->compressed)
3074 space = isl_pw_multi_aff_get_domain_space(node->decompress);
3075 else
3076 space = isl_space_copy(node->space);
3077 ls = isl_local_space_from_space(isl_space_copy(space));
3078 space = isl_space_from_domain(space);
3079 space = isl_space_add_dims(space, isl_dim_out, n);
3080 ma = isl_multi_aff_zero(space);
3082 for (i = first; i < first + n; ++i) {
3083 aff = extract_schedule_row(isl_local_space_copy(ls), node, i);
3084 ma = isl_multi_aff_set_aff(ma, i - first, aff);
3087 isl_local_space_free(ls);
3089 if (node->compressed)
3090 ma = isl_multi_aff_pullback_multi_aff(ma,
3091 isl_multi_aff_copy(node->compress));
3093 return ma;
3096 /* Convert node->sched into a multi_aff and return this multi_aff.
3098 * The result is defined over the uncompressed node domain.
3100 static __isl_give isl_multi_aff *node_extract_schedule_multi_aff(
3101 struct isl_sched_node *node)
3103 isl_size nrow;
3105 nrow = isl_mat_rows(node->sched);
3106 if (nrow < 0)
3107 return NULL;
3108 return isl_sched_node_extract_partial_schedule_multi_aff(node, 0, nrow);
3111 /* Convert node->sched into a map and return this map.
3113 * The result is cached in node->sched_map, which needs to be released
3114 * whenever node->sched is updated.
3115 * It is defined over the uncompressed node domain.
3117 static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node)
3119 if (!node->sched_map) {
3120 isl_multi_aff *ma;
3122 ma = node_extract_schedule_multi_aff(node);
3123 node->sched_map = isl_map_from_multi_aff(ma);
3126 return isl_map_copy(node->sched_map);
3129 /* Construct a map that can be used to update a dependence relation
3130 * based on the current schedule.
3131 * That is, construct a map expressing that source and sink
3132 * are executed within the same iteration of the current schedule.
3133 * This map can then be intersected with the dependence relation.
3134 * This is not the most efficient way, but this shouldn't be a critical
3135 * operation.
3137 static __isl_give isl_map *specializer(struct isl_sched_node *src,
3138 struct isl_sched_node *dst)
3140 isl_map *src_sched, *dst_sched;
3142 src_sched = node_extract_schedule(src);
3143 dst_sched = node_extract_schedule(dst);
3144 return isl_map_apply_range(src_sched, isl_map_reverse(dst_sched));
3147 /* Intersect the domains of the nested relations in domain and range
3148 * of "umap" with "map".
3150 static __isl_give isl_union_map *intersect_domains(
3151 __isl_take isl_union_map *umap, __isl_keep isl_map *map)
3153 isl_union_set *uset;
3155 umap = isl_union_map_zip(umap);
3156 uset = isl_union_set_from_set(isl_map_wrap(isl_map_copy(map)));
3157 umap = isl_union_map_intersect_domain(umap, uset);
3158 umap = isl_union_map_zip(umap);
3159 return umap;
3162 /* Update the dependence relation of the given edge based
3163 * on the current schedule.
3164 * If the dependence is carried completely by the current schedule, then
3165 * it is removed from the edge_tables. It is kept in the list of edges
3166 * as otherwise all edge_tables would have to be recomputed.
3168 * If the edge is of a type that can appear multiple times
3169 * between the same pair of nodes, then it is added to
3170 * the edge table (again). This prevents the situation
3171 * where none of these edges is referenced from the edge table
3172 * because the one that was referenced turned out to be empty and
3173 * was therefore removed from the table.
3175 static isl_stat update_edge(isl_ctx *ctx, struct isl_sched_graph *graph,
3176 struct isl_sched_edge *edge)
3178 int empty;
3179 isl_map *id;
3181 id = specializer(edge->src, edge->dst);
3182 edge->map = isl_map_intersect(edge->map, isl_map_copy(id));
3183 if (!edge->map)
3184 goto error;
3186 if (edge->tagged_condition) {
3187 edge->tagged_condition =
3188 intersect_domains(edge->tagged_condition, id);
3189 if (!edge->tagged_condition)
3190 goto error;
3192 if (edge->tagged_validity) {
3193 edge->tagged_validity =
3194 intersect_domains(edge->tagged_validity, id);
3195 if (!edge->tagged_validity)
3196 goto error;
3199 empty = isl_map_plain_is_empty(edge->map);
3200 if (empty < 0)
3201 goto error;
3202 if (empty) {
3203 if (graph_remove_edge(graph, edge) < 0)
3204 goto error;
3205 } else if (is_multi_edge_type(edge)) {
3206 if (graph_edge_tables_add(ctx, graph, edge) < 0)
3207 goto error;
3210 isl_map_free(id);
3211 return isl_stat_ok;
3212 error:
3213 isl_map_free(id);
3214 return isl_stat_error;
3217 /* Does the domain of "umap" intersect "uset"?
3219 static int domain_intersects(__isl_keep isl_union_map *umap,
3220 __isl_keep isl_union_set *uset)
3222 int empty;
3224 umap = isl_union_map_copy(umap);
3225 umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(uset));
3226 empty = isl_union_map_is_empty(umap);
3227 isl_union_map_free(umap);
3229 return empty < 0 ? -1 : !empty;
3232 /* Does the range of "umap" intersect "uset"?
3234 static int range_intersects(__isl_keep isl_union_map *umap,
3235 __isl_keep isl_union_set *uset)
3237 int empty;
3239 umap = isl_union_map_copy(umap);
3240 umap = isl_union_map_intersect_range(umap, isl_union_set_copy(uset));
3241 empty = isl_union_map_is_empty(umap);
3242 isl_union_map_free(umap);
3244 return empty < 0 ? -1 : !empty;
3247 /* Are the condition dependences of "edge" local with respect to
3248 * the current schedule?
3250 * That is, are domain and range of the condition dependences mapped
3251 * to the same point?
3253 * In other words, is the condition false?
3255 static int is_condition_false(struct isl_sched_edge *edge)
3257 isl_union_map *umap;
3258 isl_map *map, *sched, *test;
3259 int empty, local;
3261 empty = isl_union_map_is_empty(edge->tagged_condition);
3262 if (empty < 0 || empty)
3263 return empty;
3265 umap = isl_union_map_copy(edge->tagged_condition);
3266 umap = isl_union_map_zip(umap);
3267 umap = isl_union_set_unwrap(isl_union_map_domain(umap));
3268 map = isl_map_from_union_map(umap);
3270 sched = node_extract_schedule(edge->src);
3271 map = isl_map_apply_domain(map, sched);
3272 sched = node_extract_schedule(edge->dst);
3273 map = isl_map_apply_range(map, sched);
3275 test = isl_map_identity(isl_map_get_space(map));
3276 local = isl_map_is_subset(map, test);
3277 isl_map_free(map);
3278 isl_map_free(test);
3280 return local;
3283 /* For each conditional validity constraint that is adjacent
3284 * to a condition with domain in condition_source or range in condition_sink,
3285 * turn it into an unconditional validity constraint.
3287 static int unconditionalize_adjacent_validity(struct isl_sched_graph *graph,
3288 __isl_take isl_union_set *condition_source,
3289 __isl_take isl_union_set *condition_sink)
3291 int i;
3293 condition_source = isl_union_set_coalesce(condition_source);
3294 condition_sink = isl_union_set_coalesce(condition_sink);
3296 for (i = 0; i < graph->n_edge; ++i) {
3297 int adjacent;
3298 isl_union_map *validity;
3300 if (!isl_sched_edge_is_conditional_validity(&graph->edge[i]))
3301 continue;
3302 if (is_validity(&graph->edge[i]))
3303 continue;
3305 validity = graph->edge[i].tagged_validity;
3306 adjacent = domain_intersects(validity, condition_sink);
3307 if (adjacent >= 0 && !adjacent)
3308 adjacent = range_intersects(validity, condition_source);
3309 if (adjacent < 0)
3310 goto error;
3311 if (!adjacent)
3312 continue;
3314 set_validity(&graph->edge[i]);
3317 isl_union_set_free(condition_source);
3318 isl_union_set_free(condition_sink);
3319 return 0;
3320 error:
3321 isl_union_set_free(condition_source);
3322 isl_union_set_free(condition_sink);
3323 return -1;
3326 /* Update the dependence relations of all edges based on the current schedule
3327 * and enforce conditional validity constraints that are adjacent
3328 * to satisfied condition constraints.
3330 * First check if any of the condition constraints are satisfied
3331 * (i.e., not local to the outer schedule) and keep track of
3332 * their domain and range.
3333 * Then update all dependence relations (which removes the non-local
3334 * constraints).
3335 * Finally, if any condition constraints turned out to be satisfied,
3336 * then turn all adjacent conditional validity constraints into
3337 * unconditional validity constraints.
3339 static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph)
3341 int i;
3342 int any = 0;
3343 isl_union_set *source, *sink;
3345 source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
3346 sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
3347 for (i = 0; i < graph->n_edge; ++i) {
3348 int local;
3349 isl_union_set *uset;
3350 isl_union_map *umap;
3352 if (!isl_sched_edge_is_condition(&graph->edge[i]))
3353 continue;
3354 if (is_local(&graph->edge[i]))
3355 continue;
3356 local = is_condition_false(&graph->edge[i]);
3357 if (local < 0)
3358 goto error;
3359 if (local)
3360 continue;
3362 any = 1;
3364 umap = isl_union_map_copy(graph->edge[i].tagged_condition);
3365 uset = isl_union_map_domain(umap);
3366 source = isl_union_set_union(source, uset);
3368 umap = isl_union_map_copy(graph->edge[i].tagged_condition);
3369 uset = isl_union_map_range(umap);
3370 sink = isl_union_set_union(sink, uset);
3373 for (i = 0; i < graph->n_edge; ++i) {
3374 if (update_edge(ctx, graph, &graph->edge[i]) < 0)
3375 goto error;
3378 if (any)
3379 return unconditionalize_adjacent_validity(graph, source, sink);
3381 isl_union_set_free(source);
3382 isl_union_set_free(sink);
3383 return 0;
3384 error:
3385 isl_union_set_free(source);
3386 isl_union_set_free(sink);
3387 return -1;
3390 static void next_band(struct isl_sched_graph *graph)
3392 graph->band_start = graph->n_total_row;
3395 /* Return the union of the universe domains of the nodes in "graph"
3396 * that satisfy "pred".
3398 static __isl_give isl_union_set *isl_sched_graph_domain(isl_ctx *ctx,
3399 struct isl_sched_graph *graph,
3400 int (*pred)(struct isl_sched_node *node, int data), int data)
3402 int i;
3403 isl_set *set;
3404 isl_union_set *dom;
3406 for (i = 0; i < graph->n; ++i)
3407 if (pred(&graph->node[i], data))
3408 break;
3410 if (i >= graph->n)
3411 isl_die(ctx, isl_error_internal,
3412 "empty component", return NULL);
3414 set = isl_set_universe(isl_space_copy(graph->node[i].space));
3415 dom = isl_union_set_from_set(set);
3417 for (i = i + 1; i < graph->n; ++i) {
3418 if (!pred(&graph->node[i], data))
3419 continue;
3420 set = isl_set_universe(isl_space_copy(graph->node[i].space));
3421 dom = isl_union_set_union(dom, isl_union_set_from_set(set));
3424 return dom;
3427 /* Return a list of unions of universe domains, where each element
3428 * in the list corresponds to an SCC (or WCC) indexed by node->scc.
3430 __isl_give isl_union_set_list *isl_sched_graph_extract_sccs(isl_ctx *ctx,
3431 struct isl_sched_graph *graph)
3433 int i;
3434 isl_union_set_list *filters;
3436 filters = isl_union_set_list_alloc(ctx, graph->scc);
3437 for (i = 0; i < graph->scc; ++i) {
3438 isl_union_set *dom;
3440 dom = isl_sched_graph_domain(ctx, graph,
3441 &isl_sched_node_scc_exactly, i);
3442 filters = isl_union_set_list_add(filters, dom);
3445 return filters;
3448 /* Return a list of two unions of universe domains, one for the SCCs up
3449 * to and including graph->src_scc and another for the other SCCs.
3451 static __isl_give isl_union_set_list *extract_split(isl_ctx *ctx,
3452 struct isl_sched_graph *graph)
3454 isl_union_set *dom;
3455 isl_union_set_list *filters;
3457 filters = isl_union_set_list_alloc(ctx, 2);
3458 dom = isl_sched_graph_domain(ctx, graph,
3459 &node_scc_at_most, graph->src_scc);
3460 filters = isl_union_set_list_add(filters, dom);
3461 dom = isl_sched_graph_domain(ctx, graph,
3462 &node_scc_at_least, graph->src_scc + 1);
3463 filters = isl_union_set_list_add(filters, dom);
3465 return filters;
3468 /* Copy nodes that satisfy node_pred from the src dependence graph
3469 * to the dst dependence graph.
3471 static isl_stat copy_nodes(struct isl_sched_graph *dst,
3472 struct isl_sched_graph *src,
3473 int (*node_pred)(struct isl_sched_node *node, int data), int data)
3475 int i;
3477 dst->n = 0;
3478 for (i = 0; i < src->n; ++i) {
3479 int j;
3481 if (!node_pred(&src->node[i], data))
3482 continue;
3484 j = dst->n;
3485 dst->node[j].space = isl_space_copy(src->node[i].space);
3486 dst->node[j].compressed = src->node[i].compressed;
3487 dst->node[j].hull = isl_set_copy(src->node[i].hull);
3488 dst->node[j].compress =
3489 isl_multi_aff_copy(src->node[i].compress);
3490 dst->node[j].decompress =
3491 isl_pw_multi_aff_copy(src->node[i].decompress);
3492 dst->node[j].nvar = src->node[i].nvar;
3493 dst->node[j].nparam = src->node[i].nparam;
3494 dst->node[j].sched = isl_mat_copy(src->node[i].sched);
3495 dst->node[j].sched_map = isl_map_copy(src->node[i].sched_map);
3496 dst->node[j].coincident = src->node[i].coincident;
3497 dst->node[j].sizes = isl_multi_val_copy(src->node[i].sizes);
3498 dst->node[j].bounds = isl_basic_set_copy(src->node[i].bounds);
3499 dst->node[j].max = isl_vec_copy(src->node[i].max);
3500 dst->n++;
3502 if (!dst->node[j].space || !dst->node[j].sched)
3503 return isl_stat_error;
3504 if (dst->node[j].compressed &&
3505 (!dst->node[j].hull || !dst->node[j].compress ||
3506 !dst->node[j].decompress))
3507 return isl_stat_error;
3510 return isl_stat_ok;
3513 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
3514 * to the dst dependence graph.
3515 * If the source or destination node of the edge is not in the destination
3516 * graph, then it must be a backward proximity edge and it should simply
3517 * be ignored.
3519 static isl_stat copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst,
3520 struct isl_sched_graph *src,
3521 int (*edge_pred)(struct isl_sched_edge *edge, int data), int data)
3523 int i;
3525 dst->n_edge = 0;
3526 for (i = 0; i < src->n_edge; ++i) {
3527 struct isl_sched_edge *edge = &src->edge[i];
3528 isl_map *map;
3529 isl_union_map *tagged_condition;
3530 isl_union_map *tagged_validity;
3531 struct isl_sched_node *dst_src, *dst_dst;
3533 if (!edge_pred(edge, data))
3534 continue;
3536 if (isl_map_plain_is_empty(edge->map))
3537 continue;
3539 dst_src = isl_sched_graph_find_node(ctx, dst, edge->src->space);
3540 dst_dst = isl_sched_graph_find_node(ctx, dst, edge->dst->space);
3541 if (!dst_src || !dst_dst)
3542 return isl_stat_error;
3543 if (!isl_sched_graph_is_node(dst, dst_src) ||
3544 !isl_sched_graph_is_node(dst, dst_dst)) {
3545 if (is_validity(edge) ||
3546 isl_sched_edge_is_conditional_validity(edge))
3547 isl_die(ctx, isl_error_internal,
3548 "backward (conditional) validity edge",
3549 return isl_stat_error);
3550 continue;
3553 map = isl_map_copy(edge->map);
3554 tagged_condition = isl_union_map_copy(edge->tagged_condition);
3555 tagged_validity = isl_union_map_copy(edge->tagged_validity);
3557 dst->edge[dst->n_edge].src = dst_src;
3558 dst->edge[dst->n_edge].dst = dst_dst;
3559 dst->edge[dst->n_edge].map = map;
3560 dst->edge[dst->n_edge].tagged_condition = tagged_condition;
3561 dst->edge[dst->n_edge].tagged_validity = tagged_validity;
3562 dst->edge[dst->n_edge].types = edge->types;
3563 dst->n_edge++;
3565 if (edge->tagged_condition && !tagged_condition)
3566 return isl_stat_error;
3567 if (edge->tagged_validity && !tagged_validity)
3568 return isl_stat_error;
3570 if (graph_edge_tables_add(ctx, dst,
3571 &dst->edge[dst->n_edge - 1]) < 0)
3572 return isl_stat_error;
3575 return isl_stat_ok;
3578 /* Compute the maximal number of variables over all nodes.
3579 * This is the maximal number of linearly independent schedule
3580 * rows that we need to compute.
3581 * Just in case we end up in a part of the dependence graph
3582 * with only lower-dimensional domains, we make sure we will
3583 * compute the required amount of extra linearly independent rows.
3585 isl_stat isl_sched_graph_compute_maxvar(struct isl_sched_graph *graph)
3587 int i;
3589 graph->maxvar = 0;
3590 for (i = 0; i < graph->n; ++i) {
3591 struct isl_sched_node *node = &graph->node[i];
3592 int nvar;
3594 if (isl_sched_node_update_vmap(node) < 0)
3595 return isl_stat_error;
3596 nvar = node->nvar + graph->n_row - node->rank;
3597 if (nvar > graph->maxvar)
3598 graph->maxvar = nvar;
3601 return isl_stat_ok;
3604 /* Extract the subgraph of "graph" that consists of the nodes satisfying
3605 * "node_pred" and the edges satisfying "edge_pred" and store
3606 * the result in "sub".
3608 isl_stat isl_sched_graph_extract_sub_graph(isl_ctx *ctx,
3609 struct isl_sched_graph *graph,
3610 int (*node_pred)(struct isl_sched_node *node, int data),
3611 int (*edge_pred)(struct isl_sched_edge *edge, int data),
3612 int data, struct isl_sched_graph *sub)
3614 int i, n = 0, n_edge = 0;
3615 int t;
3617 for (i = 0; i < graph->n; ++i)
3618 if (node_pred(&graph->node[i], data))
3619 ++n;
3620 for (i = 0; i < graph->n_edge; ++i)
3621 if (edge_pred(&graph->edge[i], data))
3622 ++n_edge;
3623 if (graph_alloc(ctx, sub, n, n_edge) < 0)
3624 return isl_stat_error;
3625 sub->root = graph->root;
3626 if (copy_nodes(sub, graph, node_pred, data) < 0)
3627 return isl_stat_error;
3628 if (graph_init_table(ctx, sub) < 0)
3629 return isl_stat_error;
3630 for (t = 0; t <= isl_edge_last; ++t)
3631 sub->max_edge[t] = graph->max_edge[t];
3632 if (graph_init_edge_tables(ctx, sub) < 0)
3633 return isl_stat_error;
3634 if (copy_edges(ctx, sub, graph, edge_pred, data) < 0)
3635 return isl_stat_error;
3636 sub->n_row = graph->n_row;
3637 sub->max_row = graph->max_row;
3638 sub->n_total_row = graph->n_total_row;
3639 sub->band_start = graph->band_start;
3641 return isl_stat_ok;
3644 static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
3645 struct isl_sched_graph *graph);
3646 static __isl_give isl_schedule_node *compute_schedule_wcc(
3647 isl_schedule_node *node, struct isl_sched_graph *graph);
3649 /* Compute a schedule for a subgraph of "graph". In particular, for
3650 * the graph composed of nodes that satisfy node_pred and edges that
3651 * that satisfy edge_pred.
3652 * If the subgraph is known to consist of a single component, then wcc should
3653 * be set and then we call compute_schedule_wcc on the constructed subgraph.
3654 * Otherwise, we call compute_schedule, which will check whether the subgraph
3655 * is connected.
3657 * The schedule is inserted at "node" and the updated schedule node
3658 * is returned.
3660 static __isl_give isl_schedule_node *compute_sub_schedule(
3661 __isl_take isl_schedule_node *node, isl_ctx *ctx,
3662 struct isl_sched_graph *graph,
3663 int (*node_pred)(struct isl_sched_node *node, int data),
3664 int (*edge_pred)(struct isl_sched_edge *edge, int data),
3665 int data, int wcc)
3667 struct isl_sched_graph split = { 0 };
3669 if (isl_sched_graph_extract_sub_graph(ctx, graph, node_pred, edge_pred,
3670 data, &split) < 0)
3671 goto error;
3673 if (wcc)
3674 node = compute_schedule_wcc(node, &split);
3675 else
3676 node = compute_schedule(node, &split);
3678 isl_sched_graph_free(ctx, &split);
3679 return node;
3680 error:
3681 isl_sched_graph_free(ctx, &split);
3682 return isl_schedule_node_free(node);
3685 int isl_sched_edge_scc_exactly(struct isl_sched_edge *edge, int scc)
3687 return edge->src->scc == scc && edge->dst->scc == scc;
3690 static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc)
3692 return edge->dst->scc <= scc;
3695 static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc)
3697 return edge->src->scc >= scc;
3700 /* Reset the current band by dropping all its schedule rows.
3702 static isl_stat reset_band(struct isl_sched_graph *graph)
3704 int i;
3705 int drop;
3707 drop = graph->n_total_row - graph->band_start;
3708 graph->n_total_row -= drop;
3709 graph->n_row -= drop;
3711 for (i = 0; i < graph->n; ++i) {
3712 struct isl_sched_node *node = &graph->node[i];
3714 isl_map_free(node->sched_map);
3715 node->sched_map = NULL;
3717 node->sched = isl_mat_drop_rows(node->sched,
3718 graph->band_start, drop);
3720 if (!node->sched)
3721 return isl_stat_error;
3724 return isl_stat_ok;
3727 /* Split the current graph into two parts and compute a schedule for each
3728 * part individually. In particular, one part consists of all SCCs up
3729 * to and including graph->src_scc, while the other part contains the other
3730 * SCCs. The split is enforced by a sequence node inserted at position "node"
3731 * in the schedule tree. Return the updated schedule node.
3732 * If either of these two parts consists of a sequence, then it is spliced
3733 * into the sequence containing the two parts.
3735 * The current band is reset. It would be possible to reuse
3736 * the previously computed rows as the first rows in the next
3737 * band, but recomputing them may result in better rows as we are looking
3738 * at a smaller part of the dependence graph.
3740 static __isl_give isl_schedule_node *compute_split_schedule(
3741 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
3743 isl_ctx *ctx;
3744 isl_union_set_list *filters;
3746 if (!node)
3747 return NULL;
3749 if (reset_band(graph) < 0)
3750 return isl_schedule_node_free(node);
3752 next_band(graph);
3754 ctx = isl_schedule_node_get_ctx(node);
3755 filters = extract_split(ctx, graph);
3756 node = isl_schedule_node_insert_sequence(node, filters);
3757 node = isl_schedule_node_grandchild(node, 1, 0);
3759 node = compute_sub_schedule(node, ctx, graph,
3760 &node_scc_at_least, &edge_src_scc_at_least,
3761 graph->src_scc + 1, 0);
3762 node = isl_schedule_node_grandparent(node);
3763 node = isl_schedule_node_grandchild(node, 0, 0);
3764 node = compute_sub_schedule(node, ctx, graph,
3765 &node_scc_at_most, &edge_dst_scc_at_most,
3766 graph->src_scc, 0);
3767 node = isl_schedule_node_grandparent(node);
3769 node = isl_schedule_node_sequence_splice_children(node);
3771 return node;
3774 /* Insert a band node at position "node" in the schedule tree corresponding
3775 * to the current band in "graph". Mark the band node permutable
3776 * if "permutable" is set.
3777 * The partial schedules and the coincidence property are extracted
3778 * from the graph nodes.
3779 * Return the updated schedule node.
3781 static __isl_give isl_schedule_node *insert_current_band(
3782 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
3783 int permutable)
3785 int i;
3786 int start, end, n;
3787 isl_multi_aff *ma;
3788 isl_multi_pw_aff *mpa;
3789 isl_multi_union_pw_aff *mupa;
3791 if (!node)
3792 return NULL;
3794 if (graph->n < 1)
3795 isl_die(isl_schedule_node_get_ctx(node), isl_error_internal,
3796 "graph should have at least one node",
3797 return isl_schedule_node_free(node));
3799 start = graph->band_start;
3800 end = graph->n_total_row;
3801 n = end - start;
3803 ma = isl_sched_node_extract_partial_schedule_multi_aff(&graph->node[0],
3804 start, n);
3805 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3806 mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3808 for (i = 1; i < graph->n; ++i) {
3809 isl_multi_union_pw_aff *mupa_i;
3811 ma = isl_sched_node_extract_partial_schedule_multi_aff(
3812 &graph->node[i], start, n);
3813 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3814 mupa_i = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3815 mupa = isl_multi_union_pw_aff_union_add(mupa, mupa_i);
3817 node = isl_schedule_node_insert_partial_schedule(node, mupa);
3819 for (i = 0; i < n; ++i)
3820 node = isl_schedule_node_band_member_set_coincident(node, i,
3821 graph->node[0].coincident[start + i]);
3822 node = isl_schedule_node_band_set_permutable(node, permutable);
3824 return node;
3827 /* Update the dependence relations based on the current schedule,
3828 * add the current band to "node" and then continue with the computation
3829 * of the next band.
3830 * Return the updated schedule node.
3832 static __isl_give isl_schedule_node *compute_next_band(
3833 __isl_take isl_schedule_node *node,
3834 struct isl_sched_graph *graph, int permutable)
3836 isl_ctx *ctx;
3838 if (!node)
3839 return NULL;
3841 ctx = isl_schedule_node_get_ctx(node);
3842 if (update_edges(ctx, graph) < 0)
3843 return isl_schedule_node_free(node);
3844 node = insert_current_band(node, graph, permutable);
3845 next_band(graph);
3847 node = isl_schedule_node_child(node, 0);
3848 node = compute_schedule(node, graph);
3849 node = isl_schedule_node_parent(node);
3851 return node;
3854 /* Add the constraints "coef" derived from an edge from "node" to itself
3855 * to graph->lp in order to respect the dependences and to try and carry them.
3856 * "pos" is the sequence number of the edge that needs to be carried.
3857 * "coef" represents general constraints on coefficients (c_0, c_x)
3858 * of valid constraints for (y - x) with x and y instances of the node.
3860 * The constraints added to graph->lp need to enforce
3862 * (c_j_0 + c_j_x y) - (c_j_0 + c_j_x x)
3863 * = c_j_x (y - x) >= e_i
3865 * for each (x,y) in the dependence relation of the edge.
3866 * That is, (-e_i, c_j_x) needs to be plugged in for (c_0, c_x),
3867 * taking into account that each coefficient in c_j_x is represented
3868 * as a pair of non-negative coefficients.
3870 static isl_stat add_intra_constraints(struct isl_sched_graph *graph,
3871 struct isl_sched_node *node, __isl_take isl_basic_set *coef, int pos)
3873 isl_size offset;
3874 isl_ctx *ctx;
3875 isl_dim_map *dim_map;
3877 offset = coef_var_offset(coef);
3878 if (offset < 0)
3879 coef = isl_basic_set_free(coef);
3880 if (!coef)
3881 return isl_stat_error;
3883 ctx = isl_basic_set_get_ctx(coef);
3884 dim_map = intra_dim_map(ctx, graph, node, offset, 1);
3885 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
3886 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
3888 return isl_stat_ok;
3891 /* Add the constraints "coef" derived from an edge from "src" to "dst"
3892 * to graph->lp in order to respect the dependences and to try and carry them.
3893 * "pos" is the sequence number of the edge that needs to be carried or
3894 * -1 if no attempt should be made to carry the dependences.
3895 * "coef" represents general constraints on coefficients (c_0, c_n, c_x, c_y)
3896 * of valid constraints for (x, y) with x and y instances of "src" and "dst".
3898 * The constraints added to graph->lp need to enforce
3900 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
3902 * for each (x,y) in the dependence relation of the edge or
3904 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= 0
3906 * if pos is -1.
3907 * That is,
3908 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
3909 * or
3910 * (c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
3911 * needs to be plugged in for (c_0, c_n, c_x, c_y),
3912 * taking into account that each coefficient in c_j_x and c_k_x is represented
3913 * as a pair of non-negative coefficients.
3915 static isl_stat add_inter_constraints(struct isl_sched_graph *graph,
3916 struct isl_sched_node *src, struct isl_sched_node *dst,
3917 __isl_take isl_basic_set *coef, int pos)
3919 isl_size offset;
3920 isl_ctx *ctx;
3921 isl_dim_map *dim_map;
3923 offset = coef_var_offset(coef);
3924 if (offset < 0)
3925 coef = isl_basic_set_free(coef);
3926 if (!coef)
3927 return isl_stat_error;
3929 ctx = isl_basic_set_get_ctx(coef);
3930 dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1);
3931 if (pos >= 0)
3932 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
3933 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
3935 return isl_stat_ok;
3938 /* Data structure for keeping track of the data needed
3939 * to exploit non-trivial lineality spaces.
3941 * "any_non_trivial" is true if there are any non-trivial lineality spaces.
3942 * If "any_non_trivial" is not true, then "equivalent" and "mask" may be NULL.
3943 * "equivalent" connects instances to other instances on the same line(s).
3944 * "mask" contains the domain spaces of "equivalent".
3945 * Any instance set not in "mask" does not have a non-trivial lineality space.
3947 struct isl_exploit_lineality_data {
3948 isl_bool any_non_trivial;
3949 isl_union_map *equivalent;
3950 isl_union_set *mask;
3953 /* Data structure collecting information used during the construction
3954 * of an LP for carrying dependences.
3956 * "intra" is a sequence of coefficient constraints for intra-node edges.
3957 * "inter" is a sequence of coefficient constraints for inter-node edges.
3958 * "lineality" contains data used to exploit non-trivial lineality spaces.
3960 struct isl_carry {
3961 isl_basic_set_list *intra;
3962 isl_basic_set_list *inter;
3963 struct isl_exploit_lineality_data lineality;
3966 /* Free all the data stored in "carry".
3968 static void isl_carry_clear(struct isl_carry *carry)
3970 isl_basic_set_list_free(carry->intra);
3971 isl_basic_set_list_free(carry->inter);
3972 isl_union_map_free(carry->lineality.equivalent);
3973 isl_union_set_free(carry->lineality.mask);
3976 /* Return a pointer to the node in "graph" that lives in "space".
3977 * If the requested node has been compressed, then "space"
3978 * corresponds to the compressed space.
3979 * The graph is assumed to have such a node.
3980 * Return NULL in case of error.
3982 * First try and see if "space" is the space of an uncompressed node.
3983 * If so, return that node.
3984 * Otherwise, "space" was constructed by construct_compressed_id and
3985 * contains a user pointer pointing to the node in the tuple id.
3986 * However, this node belongs to the original dependence graph.
3987 * If "graph" is a subgraph of this original dependence graph,
3988 * then the node with the same space still needs to be looked up
3989 * in the current graph.
3991 static struct isl_sched_node *graph_find_compressed_node(isl_ctx *ctx,
3992 struct isl_sched_graph *graph, __isl_keep isl_space *space)
3994 isl_id *id;
3995 struct isl_sched_node *node;
3997 if (!space)
3998 return NULL;
4000 node = isl_sched_graph_find_node(ctx, graph, space);
4001 if (!node)
4002 return NULL;
4003 if (isl_sched_graph_is_node(graph, node))
4004 return node;
4006 id = isl_space_get_tuple_id(space, isl_dim_set);
4007 node = isl_id_get_user(id);
4008 isl_id_free(id);
4010 if (!node)
4011 return NULL;
4013 if (!isl_sched_graph_is_node(graph->root, node))
4014 isl_die(ctx, isl_error_internal,
4015 "space points to invalid node", return NULL);
4016 if (graph != graph->root)
4017 node = isl_sched_graph_find_node(ctx, graph, node->space);
4018 if (!isl_sched_graph_is_node(graph, node))
4019 isl_die(ctx, isl_error_internal,
4020 "unable to find node", return NULL);
4022 return node;
4025 /* Internal data structure for add_all_constraints.
4027 * "graph" is the schedule constraint graph for which an LP problem
4028 * is being constructed.
4029 * "carry_inter" indicates whether inter-node edges should be carried.
4030 * "pos" is the position of the next edge that needs to be carried.
4032 struct isl_add_all_constraints_data {
4033 isl_ctx *ctx;
4034 struct isl_sched_graph *graph;
4035 int carry_inter;
4036 int pos;
4039 /* Add the constraints "coef" derived from an edge from a node to itself
4040 * to data->graph->lp in order to respect the dependences and
4041 * to try and carry them.
4043 * The space of "coef" is of the form
4045 * coefficients[[c_cst] -> S[c_x]]
4047 * with S[c_x] the (compressed) space of the node.
4048 * Extract the node from the space and call add_intra_constraints.
4050 static isl_stat lp_add_intra(__isl_take isl_basic_set *coef, void *user)
4052 struct isl_add_all_constraints_data *data = user;
4053 isl_space *space;
4054 struct isl_sched_node *node;
4056 space = isl_basic_set_get_space(coef);
4057 space = isl_space_range(isl_space_unwrap(space));
4058 node = graph_find_compressed_node(data->ctx, data->graph, space);
4059 isl_space_free(space);
4060 return add_intra_constraints(data->graph, node, coef, data->pos++);
4063 /* Add the constraints "coef" derived from an edge from a node j
4064 * to a node k to data->graph->lp in order to respect the dependences and
4065 * to try and carry them (provided data->carry_inter is set).
4067 * The space of "coef" is of the form
4069 * coefficients[[c_cst, c_n] -> [S_j[c_x] -> S_k[c_y]]]
4071 * with S_j[c_x] and S_k[c_y] the (compressed) spaces of the nodes.
4072 * Extract the nodes from the space and call add_inter_constraints.
4074 static isl_stat lp_add_inter(__isl_take isl_basic_set *coef, void *user)
4076 struct isl_add_all_constraints_data *data = user;
4077 isl_space *space, *dom;
4078 struct isl_sched_node *src, *dst;
4079 int pos;
4081 space = isl_basic_set_get_space(coef);
4082 space = isl_space_unwrap(isl_space_range(isl_space_unwrap(space)));
4083 dom = isl_space_domain(isl_space_copy(space));
4084 src = graph_find_compressed_node(data->ctx, data->graph, dom);
4085 isl_space_free(dom);
4086 space = isl_space_range(space);
4087 dst = graph_find_compressed_node(data->ctx, data->graph, space);
4088 isl_space_free(space);
4090 pos = data->carry_inter ? data->pos++ : -1;
4091 return add_inter_constraints(data->graph, src, dst, coef, pos);
4094 /* Add constraints to graph->lp that force all (conditional) validity
4095 * dependences to be respected and attempt to carry them.
4096 * "intra" is the sequence of coefficient constraints for intra-node edges.
4097 * "inter" is the sequence of coefficient constraints for inter-node edges.
4098 * "carry_inter" indicates whether inter-node edges should be carried or
4099 * only respected.
4101 static isl_stat add_all_constraints(isl_ctx *ctx, struct isl_sched_graph *graph,
4102 __isl_keep isl_basic_set_list *intra,
4103 __isl_keep isl_basic_set_list *inter, int carry_inter)
4105 struct isl_add_all_constraints_data data = { ctx, graph, carry_inter };
4107 data.pos = 0;
4108 if (isl_basic_set_list_foreach(intra, &lp_add_intra, &data) < 0)
4109 return isl_stat_error;
4110 if (isl_basic_set_list_foreach(inter, &lp_add_inter, &data) < 0)
4111 return isl_stat_error;
4112 return isl_stat_ok;
4115 /* Internal data structure for count_all_constraints
4116 * for keeping track of the number of equality and inequality constraints.
4118 struct isl_sched_count {
4119 int n_eq;
4120 int n_ineq;
4123 /* Add the number of equality and inequality constraints of "bset"
4124 * to data->n_eq and data->n_ineq.
4126 static isl_stat bset_update_count(__isl_take isl_basic_set *bset, void *user)
4128 struct isl_sched_count *data = user;
4130 return update_count(bset, 1, &data->n_eq, &data->n_ineq);
4133 /* Count the number of equality and inequality constraints
4134 * that will be added to the carry_lp problem.
4135 * We count each edge exactly once.
4136 * "intra" is the sequence of coefficient constraints for intra-node edges.
4137 * "inter" is the sequence of coefficient constraints for inter-node edges.
4139 static isl_stat count_all_constraints(__isl_keep isl_basic_set_list *intra,
4140 __isl_keep isl_basic_set_list *inter, int *n_eq, int *n_ineq)
4142 struct isl_sched_count data;
4144 data.n_eq = data.n_ineq = 0;
4145 if (isl_basic_set_list_foreach(inter, &bset_update_count, &data) < 0)
4146 return isl_stat_error;
4147 if (isl_basic_set_list_foreach(intra, &bset_update_count, &data) < 0)
4148 return isl_stat_error;
4150 *n_eq = data.n_eq;
4151 *n_ineq = data.n_ineq;
4153 return isl_stat_ok;
4156 /* Construct an LP problem for finding schedule coefficients
4157 * such that the schedule carries as many validity dependences as possible.
4158 * In particular, for each dependence i, we bound the dependence distance
4159 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
4160 * of all e_i's. Dependences with e_i = 0 in the solution are simply
4161 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
4162 * "intra" is the sequence of coefficient constraints for intra-node edges.
4163 * "inter" is the sequence of coefficient constraints for inter-node edges.
4164 * "n_edge" is the total number of edges.
4165 * "carry_inter" indicates whether inter-node edges should be carried or
4166 * only respected. That is, if "carry_inter" is not set, then
4167 * no e_i variables are introduced for the inter-node edges.
4169 * All variables of the LP are non-negative. The actual coefficients
4170 * may be negative, so each coefficient is represented as the difference
4171 * of two non-negative variables. The negative part always appears
4172 * immediately before the positive part.
4173 * Other than that, the variables have the following order
4175 * - sum of (1 - e_i) over all edges
4176 * - sum of all c_n coefficients
4177 * (unconstrained when computing non-parametric schedules)
4178 * - sum of positive and negative parts of all c_x coefficients
4179 * - for each edge
4180 * - e_i
4181 * - for each node
4182 * - positive and negative parts of c_i_x, in opposite order
4183 * - c_i_n (if parametric)
4184 * - c_i_0
4186 * The constraints are those from the (validity) edges plus three equalities
4187 * to express the sums and n_edge inequalities to express e_i <= 1.
4189 static isl_stat setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
4190 int n_edge, __isl_keep isl_basic_set_list *intra,
4191 __isl_keep isl_basic_set_list *inter, int carry_inter)
4193 int i;
4194 int k;
4195 isl_space *space;
4196 unsigned total;
4197 int n_eq, n_ineq;
4199 total = 3 + n_edge;
4200 for (i = 0; i < graph->n; ++i) {
4201 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
4202 node->start = total;
4203 total += 1 + node->nparam + 2 * node->nvar;
4206 if (count_all_constraints(intra, inter, &n_eq, &n_ineq) < 0)
4207 return isl_stat_error;
4209 space = isl_space_set_alloc(ctx, 0, total);
4210 isl_basic_set_free(graph->lp);
4211 n_eq += 3;
4212 n_ineq += n_edge;
4213 graph->lp = isl_basic_set_alloc_space(space, 0, n_eq, n_ineq);
4214 graph->lp = isl_basic_set_set_rational(graph->lp);
4216 k = isl_basic_set_alloc_equality(graph->lp);
4217 if (k < 0)
4218 return isl_stat_error;
4219 isl_seq_clr(graph->lp->eq[k], 1 + total);
4220 isl_int_set_si(graph->lp->eq[k][0], -n_edge);
4221 isl_int_set_si(graph->lp->eq[k][1], 1);
4222 for (i = 0; i < n_edge; ++i)
4223 isl_int_set_si(graph->lp->eq[k][4 + i], 1);
4225 if (add_param_sum_constraint(graph, 1) < 0)
4226 return isl_stat_error;
4227 if (add_var_sum_constraint(graph, 2) < 0)
4228 return isl_stat_error;
4230 for (i = 0; i < n_edge; ++i) {
4231 k = isl_basic_set_alloc_inequality(graph->lp);
4232 if (k < 0)
4233 return isl_stat_error;
4234 isl_seq_clr(graph->lp->ineq[k], 1 + total);
4235 isl_int_set_si(graph->lp->ineq[k][4 + i], -1);
4236 isl_int_set_si(graph->lp->ineq[k][0], 1);
4239 if (add_all_constraints(ctx, graph, intra, inter, carry_inter) < 0)
4240 return isl_stat_error;
4242 return isl_stat_ok;
4245 static __isl_give isl_schedule_node *compute_component_schedule(
4246 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
4247 int wcc);
4249 /* If the schedule_split_scaled option is set and if the linear
4250 * parts of the scheduling rows for all nodes in the graphs have
4251 * a non-trivial common divisor, then remove this
4252 * common divisor from the linear part.
4253 * Otherwise, insert a band node directly and continue with
4254 * the construction of the schedule.
4256 * If a non-trivial common divisor is found, then
4257 * the linear part is reduced and the remainder is ignored.
4258 * The pieces of the graph that are assigned different remainders
4259 * form (groups of) strongly connected components within
4260 * the scaled down band. If needed, they can therefore
4261 * be ordered along this remainder in a sequence node.
4262 * However, this ordering is not enforced here in order to allow
4263 * the scheduler to combine some of the strongly connected components.
4265 static __isl_give isl_schedule_node *split_scaled(
4266 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
4268 int i;
4269 int row;
4270 isl_ctx *ctx;
4271 isl_int gcd, gcd_i;
4272 isl_size n_row;
4274 if (!node)
4275 return NULL;
4277 ctx = isl_schedule_node_get_ctx(node);
4278 if (!ctx->opt->schedule_split_scaled)
4279 return compute_next_band(node, graph, 0);
4280 if (graph->n <= 1)
4281 return compute_next_band(node, graph, 0);
4282 n_row = isl_mat_rows(graph->node[0].sched);
4283 if (n_row < 0)
4284 return isl_schedule_node_free(node);
4286 isl_int_init(gcd);
4287 isl_int_init(gcd_i);
4289 isl_int_set_si(gcd, 0);
4291 row = n_row - 1;
4293 for (i = 0; i < graph->n; ++i) {
4294 struct isl_sched_node *node = &graph->node[i];
4295 isl_size cols = isl_mat_cols(node->sched);
4297 if (cols < 0)
4298 break;
4299 isl_seq_gcd(node->sched->row[row] + 1, cols - 1, &gcd_i);
4300 isl_int_gcd(gcd, gcd, gcd_i);
4303 isl_int_clear(gcd_i);
4304 if (i < graph->n)
4305 goto error;
4307 if (isl_int_cmp_si(gcd, 1) <= 0) {
4308 isl_int_clear(gcd);
4309 return compute_next_band(node, graph, 0);
4312 for (i = 0; i < graph->n; ++i) {
4313 struct isl_sched_node *node = &graph->node[i];
4315 isl_int_fdiv_q(node->sched->row[row][0],
4316 node->sched->row[row][0], gcd);
4317 isl_int_mul(node->sched->row[row][0],
4318 node->sched->row[row][0], gcd);
4319 node->sched = isl_mat_scale_down_row(node->sched, row, gcd);
4320 if (!node->sched)
4321 goto error;
4324 isl_int_clear(gcd);
4326 return compute_next_band(node, graph, 0);
4327 error:
4328 isl_int_clear(gcd);
4329 return isl_schedule_node_free(node);
4332 /* Is the schedule row "sol" trivial on node "node"?
4333 * That is, is the solution zero on the dimensions linearly independent of
4334 * the previously found solutions?
4335 * Return 1 if the solution is trivial, 0 if it is not and -1 on error.
4337 * Each coefficient is represented as the difference between
4338 * two non-negative values in "sol".
4339 * We construct the schedule row s and check if it is linearly
4340 * independent of previously computed schedule rows
4341 * by computing T s, with T the linear combinations that are zero
4342 * on linearly dependent schedule rows.
4343 * If the result consists of all zeros, then the solution is trivial.
4345 static int is_trivial(struct isl_sched_node *node, __isl_keep isl_vec *sol)
4347 int trivial;
4348 isl_vec *node_sol;
4350 if (!sol)
4351 return -1;
4352 if (node->nvar == node->rank)
4353 return 0;
4355 node_sol = extract_var_coef(node, sol);
4356 node_sol = isl_mat_vec_product(isl_mat_copy(node->indep), node_sol);
4357 if (!node_sol)
4358 return -1;
4360 trivial = isl_seq_first_non_zero(node_sol->el,
4361 node->nvar - node->rank) == -1;
4363 isl_vec_free(node_sol);
4365 return trivial;
4368 /* Is the schedule row "sol" trivial on any node where it should
4369 * not be trivial?
4370 * Return 1 if any solution is trivial, 0 if they are not and -1 on error.
4372 static int is_any_trivial(struct isl_sched_graph *graph,
4373 __isl_keep isl_vec *sol)
4375 int i;
4377 for (i = 0; i < graph->n; ++i) {
4378 struct isl_sched_node *node = &graph->node[i];
4379 int trivial;
4381 if (!needs_row(graph, node))
4382 continue;
4383 trivial = is_trivial(node, sol);
4384 if (trivial < 0 || trivial)
4385 return trivial;
4388 return 0;
4391 /* Does the schedule represented by "sol" perform loop coalescing on "node"?
4392 * If so, return the position of the coalesced dimension.
4393 * Otherwise, return node->nvar or -1 on error.
4395 * In particular, look for pairs of coefficients c_i and c_j such that
4396 * |c_j/c_i| > ceil(size_i/2), i.e., |c_j| > |c_i * ceil(size_i/2)|.
4397 * If any such pair is found, then return i.
4398 * If size_i is infinity, then no check on c_i needs to be performed.
4400 static int find_node_coalescing(struct isl_sched_node *node,
4401 __isl_keep isl_vec *sol)
4403 int i, j;
4404 isl_int max;
4405 isl_vec *csol;
4407 if (node->nvar <= 1)
4408 return node->nvar;
4410 csol = extract_var_coef(node, sol);
4411 if (!csol)
4412 return -1;
4413 isl_int_init(max);
4414 for (i = 0; i < node->nvar; ++i) {
4415 isl_val *v;
4417 if (isl_int_is_zero(csol->el[i]))
4418 continue;
4419 v = isl_multi_val_get_val(node->sizes, i);
4420 if (!v)
4421 goto error;
4422 if (!isl_val_is_int(v)) {
4423 isl_val_free(v);
4424 continue;
4426 v = isl_val_div_ui(v, 2);
4427 v = isl_val_ceil(v);
4428 if (!v)
4429 goto error;
4430 isl_int_mul(max, v->n, csol->el[i]);
4431 isl_val_free(v);
4433 for (j = 0; j < node->nvar; ++j) {
4434 if (j == i)
4435 continue;
4436 if (isl_int_abs_gt(csol->el[j], max))
4437 break;
4439 if (j < node->nvar)
4440 break;
4443 isl_int_clear(max);
4444 isl_vec_free(csol);
4445 return i;
4446 error:
4447 isl_int_clear(max);
4448 isl_vec_free(csol);
4449 return -1;
4452 /* Force the schedule coefficient at position "pos" of "node" to be zero
4453 * in "tl".
4454 * The coefficient is encoded as the difference between two non-negative
4455 * variables. Force these two variables to have the same value.
4457 static __isl_give isl_tab_lexmin *zero_out_node_coef(
4458 __isl_take isl_tab_lexmin *tl, struct isl_sched_node *node, int pos)
4460 int dim;
4461 isl_ctx *ctx;
4462 isl_vec *eq;
4464 ctx = isl_space_get_ctx(node->space);
4465 dim = isl_tab_lexmin_dim(tl);
4466 if (dim < 0)
4467 return isl_tab_lexmin_free(tl);
4468 eq = isl_vec_alloc(ctx, 1 + dim);
4469 eq = isl_vec_clr(eq);
4470 if (!eq)
4471 return isl_tab_lexmin_free(tl);
4473 pos = 1 + node_var_coef_pos(node, pos);
4474 isl_int_set_si(eq->el[pos], 1);
4475 isl_int_set_si(eq->el[pos + 1], -1);
4476 tl = isl_tab_lexmin_add_eq(tl, eq->el);
4477 isl_vec_free(eq);
4479 return tl;
4482 /* Return the lexicographically smallest rational point in the basic set
4483 * from which "tl" was constructed, double checking that this input set
4484 * was not empty.
4486 static __isl_give isl_vec *non_empty_solution(__isl_keep isl_tab_lexmin *tl)
4488 isl_vec *sol;
4490 sol = isl_tab_lexmin_get_solution(tl);
4491 if (!sol)
4492 return NULL;
4493 if (sol->size == 0)
4494 isl_die(isl_vec_get_ctx(sol), isl_error_internal,
4495 "error in schedule construction",
4496 return isl_vec_free(sol));
4497 return sol;
4500 /* Does the solution "sol" of the LP problem constructed by setup_carry_lp
4501 * carry any of the "n_edge" groups of dependences?
4502 * The value in the first position is the sum of (1 - e_i) over all "n_edge"
4503 * edges, with 0 <= e_i <= 1 equal to 1 when the dependences represented
4504 * by the edge are carried by the solution.
4505 * If the sum of the (1 - e_i) is smaller than "n_edge" then at least
4506 * one of those is carried.
4508 * Note that despite the fact that the problem is solved using a rational
4509 * solver, the solution is guaranteed to be integral.
4510 * Specifically, the dependence distance lower bounds e_i (and therefore
4511 * also their sum) are integers. See Lemma 5 of [1].
4513 * Any potential denominator of the sum is cleared by this function.
4514 * The denominator is not relevant for any of the other elements
4515 * in the solution.
4517 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
4518 * Problem, Part II: Multi-Dimensional Time.
4519 * In Intl. Journal of Parallel Programming, 1992.
4521 static int carries_dependences(__isl_keep isl_vec *sol, int n_edge)
4523 isl_int_divexact(sol->el[1], sol->el[1], sol->el[0]);
4524 isl_int_set_si(sol->el[0], 1);
4525 return isl_int_cmp_si(sol->el[1], n_edge) < 0;
4528 /* Return the lexicographically smallest rational point in "lp",
4529 * assuming that all variables are non-negative and performing some
4530 * additional sanity checks.
4531 * If "want_integral" is set, then compute the lexicographically smallest
4532 * integer point instead.
4533 * In particular, "lp" should not be empty by construction.
4534 * Double check that this is the case.
4535 * If dependences are not carried for any of the "n_edge" edges,
4536 * then return an empty vector.
4538 * If the schedule_treat_coalescing option is set and
4539 * if the computed schedule performs loop coalescing on a given node,
4540 * i.e., if it is of the form
4542 * c_i i + c_j j + ...
4544 * with |c_j/c_i| >= size_i, then force the coefficient c_i to be zero
4545 * to cut out this solution. Repeat this process until no more loop
4546 * coalescing occurs or until no more dependences can be carried.
4547 * In the latter case, revert to the previously computed solution.
4549 * If the caller requests an integral solution and if coalescing should
4550 * be treated, then perform the coalescing treatment first as
4551 * an integral solution computed before coalescing treatment
4552 * would carry the same number of edges and would therefore probably
4553 * also be coalescing.
4555 * To allow the coalescing treatment to be performed first,
4556 * the initial solution is allowed to be rational and it is only
4557 * cut out (if needed) in the next iteration, if no coalescing measures
4558 * were taken.
4560 static __isl_give isl_vec *non_neg_lexmin(struct isl_sched_graph *graph,
4561 __isl_take isl_basic_set *lp, int n_edge, int want_integral)
4563 int i, pos, cut;
4564 isl_ctx *ctx;
4565 isl_tab_lexmin *tl;
4566 isl_vec *sol = NULL, *prev;
4567 int treat_coalescing;
4568 int try_again;
4570 if (!lp)
4571 return NULL;
4572 ctx = isl_basic_set_get_ctx(lp);
4573 treat_coalescing = isl_options_get_schedule_treat_coalescing(ctx);
4574 tl = isl_tab_lexmin_from_basic_set(lp);
4576 cut = 0;
4577 do {
4578 int integral;
4580 try_again = 0;
4581 if (cut)
4582 tl = isl_tab_lexmin_cut_to_integer(tl);
4583 prev = sol;
4584 sol = non_empty_solution(tl);
4585 if (!sol)
4586 goto error;
4588 integral = isl_int_is_one(sol->el[0]);
4589 if (!carries_dependences(sol, n_edge)) {
4590 if (!prev)
4591 prev = isl_vec_alloc(ctx, 0);
4592 isl_vec_free(sol);
4593 sol = prev;
4594 break;
4596 prev = isl_vec_free(prev);
4597 cut = want_integral && !integral;
4598 if (cut)
4599 try_again = 1;
4600 if (!treat_coalescing)
4601 continue;
4602 for (i = 0; i < graph->n; ++i) {
4603 struct isl_sched_node *node = &graph->node[i];
4605 pos = find_node_coalescing(node, sol);
4606 if (pos < 0)
4607 goto error;
4608 if (pos < node->nvar)
4609 break;
4611 if (i < graph->n) {
4612 try_again = 1;
4613 tl = zero_out_node_coef(tl, &graph->node[i], pos);
4614 cut = 0;
4616 } while (try_again);
4618 isl_tab_lexmin_free(tl);
4620 return sol;
4621 error:
4622 isl_tab_lexmin_free(tl);
4623 isl_vec_free(prev);
4624 isl_vec_free(sol);
4625 return NULL;
4628 /* If "edge" is an edge from a node to itself, then add the corresponding
4629 * dependence relation to "umap".
4630 * If "node" has been compressed, then the dependence relation
4631 * is also compressed first.
4633 static __isl_give isl_union_map *add_intra(__isl_take isl_union_map *umap,
4634 struct isl_sched_edge *edge)
4636 isl_map *map;
4637 struct isl_sched_node *node = edge->src;
4639 if (edge->src != edge->dst)
4640 return umap;
4642 map = isl_map_copy(edge->map);
4643 map = compress(map, node, node);
4644 umap = isl_union_map_add_map(umap, map);
4645 return umap;
4648 /* If "edge" is an edge from a node to another node, then add the corresponding
4649 * dependence relation to "umap".
4650 * If the source or destination nodes of "edge" have been compressed,
4651 * then the dependence relation is also compressed first.
4653 static __isl_give isl_union_map *add_inter(__isl_take isl_union_map *umap,
4654 struct isl_sched_edge *edge)
4656 isl_map *map;
4658 if (edge->src == edge->dst)
4659 return umap;
4661 map = isl_map_copy(edge->map);
4662 map = compress(map, edge->src, edge->dst);
4663 umap = isl_union_map_add_map(umap, map);
4664 return umap;
4667 /* Internal data structure used by union_drop_coalescing_constraints
4668 * to collect bounds on all relevant statements.
4670 * "graph" is the schedule constraint graph for which an LP problem
4671 * is being constructed.
4672 * "bounds" collects the bounds.
4674 struct isl_collect_bounds_data {
4675 isl_ctx *ctx;
4676 struct isl_sched_graph *graph;
4677 isl_union_set *bounds;
4680 /* Add the size bounds for the node with instance deltas in "set"
4681 * to data->bounds.
4683 static isl_stat collect_bounds(__isl_take isl_set *set, void *user)
4685 struct isl_collect_bounds_data *data = user;
4686 struct isl_sched_node *node;
4687 isl_space *space;
4688 isl_set *bounds;
4690 space = isl_set_get_space(set);
4691 isl_set_free(set);
4693 node = graph_find_compressed_node(data->ctx, data->graph, space);
4694 isl_space_free(space);
4696 bounds = isl_set_from_basic_set(get_size_bounds(node));
4697 data->bounds = isl_union_set_add_set(data->bounds, bounds);
4699 return isl_stat_ok;
4702 /* Drop some constraints from "delta" that could be exploited
4703 * to construct loop coalescing schedules.
4704 * In particular, drop those constraint that bound the difference
4705 * to the size of the domain.
4706 * Do this for each set/node in "delta" separately.
4707 * The parameters are assumed to have been projected out by the caller.
4709 static __isl_give isl_union_set *union_drop_coalescing_constraints(isl_ctx *ctx,
4710 struct isl_sched_graph *graph, __isl_take isl_union_set *delta)
4712 struct isl_collect_bounds_data data = { ctx, graph };
4714 data.bounds = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
4715 if (isl_union_set_foreach_set(delta, &collect_bounds, &data) < 0)
4716 data.bounds = isl_union_set_free(data.bounds);
4717 delta = isl_union_set_plain_gist(delta, data.bounds);
4719 return delta;
4722 /* Given a non-trivial lineality space "lineality", add the corresponding
4723 * universe set to data->mask and add a map from elements to
4724 * other elements along the lines in "lineality" to data->equivalent.
4725 * If this is the first time this function gets called
4726 * (data->any_non_trivial is still false), then set data->any_non_trivial and
4727 * initialize data->mask and data->equivalent.
4729 * In particular, if the lineality space is defined by equality constraints
4731 * E x = 0
4733 * then construct an affine mapping
4735 * f : x -> E x
4737 * and compute the equivalence relation of having the same image under f:
4739 * { x -> x' : E x = E x' }
4741 static isl_stat add_non_trivial_lineality(__isl_take isl_basic_set *lineality,
4742 struct isl_exploit_lineality_data *data)
4744 isl_mat *eq;
4745 isl_space *space;
4746 isl_set *univ;
4747 isl_multi_aff *ma;
4748 isl_multi_pw_aff *mpa;
4749 isl_map *map;
4750 isl_size n;
4752 if (isl_basic_set_check_no_locals(lineality) < 0)
4753 goto error;
4755 space = isl_basic_set_get_space(lineality);
4756 if (!data->any_non_trivial) {
4757 data->equivalent = isl_union_map_empty(isl_space_copy(space));
4758 data->mask = isl_union_set_empty(isl_space_copy(space));
4760 data->any_non_trivial = isl_bool_true;
4762 univ = isl_set_universe(isl_space_copy(space));
4763 data->mask = isl_union_set_add_set(data->mask, univ);
4765 eq = isl_basic_set_extract_equalities(lineality);
4766 n = isl_mat_rows(eq);
4767 if (n < 0)
4768 space = isl_space_free(space);
4769 eq = isl_mat_insert_zero_rows(eq, 0, 1);
4770 eq = isl_mat_set_element_si(eq, 0, 0, 1);
4771 space = isl_space_from_domain(space);
4772 space = isl_space_add_dims(space, isl_dim_out, n);
4773 ma = isl_multi_aff_from_aff_mat(space, eq);
4774 mpa = isl_multi_pw_aff_from_multi_aff(ma);
4775 map = isl_multi_pw_aff_eq_map(mpa, isl_multi_pw_aff_copy(mpa));
4776 data->equivalent = isl_union_map_add_map(data->equivalent, map);
4778 isl_basic_set_free(lineality);
4779 return isl_stat_ok;
4780 error:
4781 isl_basic_set_free(lineality);
4782 return isl_stat_error;
4785 /* Check if the lineality space "set" is non-trivial (i.e., is not just
4786 * the origin or, in other words, satisfies a number of equality constraints
4787 * that is smaller than the dimension of the set).
4788 * If so, extend data->mask and data->equivalent accordingly.
4790 * The input should not have any local variables already, but
4791 * isl_set_remove_divs is called to make sure it does not.
4793 static isl_stat add_lineality(__isl_take isl_set *set, void *user)
4795 struct isl_exploit_lineality_data *data = user;
4796 isl_basic_set *hull;
4797 isl_size dim;
4798 isl_size n_eq;
4800 set = isl_set_remove_divs(set);
4801 hull = isl_set_unshifted_simple_hull(set);
4802 dim = isl_basic_set_dim(hull, isl_dim_set);
4803 n_eq = isl_basic_set_n_equality(hull);
4804 if (dim < 0 || n_eq < 0)
4805 goto error;
4806 if (dim != n_eq)
4807 return add_non_trivial_lineality(hull, data);
4808 isl_basic_set_free(hull);
4809 return isl_stat_ok;
4810 error:
4811 isl_basic_set_free(hull);
4812 return isl_stat_error;
4815 /* Check if the difference set on intra-node schedule constraints "intra"
4816 * has any non-trivial lineality space.
4817 * If so, then extend the difference set to a difference set
4818 * on equivalent elements. That is, if "intra" is
4820 * { y - x : (x,y) \in V }
4822 * and elements are equivalent if they have the same image under f,
4823 * then return
4825 * { y' - x' : (x,y) \in V and f(x) = f(x') and f(y) = f(y') }
4827 * or, since f is linear,
4829 * { y' - x' : (x,y) \in V and f(y - x) = f(y' - x') }
4831 * The results of the search for non-trivial lineality spaces is stored
4832 * in "data".
4834 static __isl_give isl_union_set *exploit_intra_lineality(
4835 __isl_take isl_union_set *intra,
4836 struct isl_exploit_lineality_data *data)
4838 isl_union_set *lineality;
4839 isl_union_set *uset;
4841 data->any_non_trivial = isl_bool_false;
4842 lineality = isl_union_set_copy(intra);
4843 lineality = isl_union_set_combined_lineality_space(lineality);
4844 if (isl_union_set_foreach_set(lineality, &add_lineality, data) < 0)
4845 data->any_non_trivial = isl_bool_error;
4846 isl_union_set_free(lineality);
4848 if (data->any_non_trivial < 0)
4849 return isl_union_set_free(intra);
4850 if (!data->any_non_trivial)
4851 return intra;
4853 uset = isl_union_set_copy(intra);
4854 intra = isl_union_set_subtract(intra, isl_union_set_copy(data->mask));
4855 uset = isl_union_set_apply(uset, isl_union_map_copy(data->equivalent));
4856 intra = isl_union_set_union(intra, uset);
4858 intra = isl_union_set_remove_divs(intra);
4860 return intra;
4863 /* If the difference set on intra-node schedule constraints was found to have
4864 * any non-trivial lineality space by exploit_intra_lineality,
4865 * as recorded in "data", then extend the inter-node
4866 * schedule constraints "inter" to schedule constraints on equivalent elements.
4867 * That is, if "inter" is V and
4868 * elements are equivalent if they have the same image under f, then return
4870 * { (x', y') : (x,y) \in V and f(x) = f(x') and f(y) = f(y') }
4872 static __isl_give isl_union_map *exploit_inter_lineality(
4873 __isl_take isl_union_map *inter,
4874 struct isl_exploit_lineality_data *data)
4876 isl_union_map *umap;
4878 if (data->any_non_trivial < 0)
4879 return isl_union_map_free(inter);
4880 if (!data->any_non_trivial)
4881 return inter;
4883 umap = isl_union_map_copy(inter);
4884 inter = isl_union_map_subtract_range(inter,
4885 isl_union_set_copy(data->mask));
4886 umap = isl_union_map_apply_range(umap,
4887 isl_union_map_copy(data->equivalent));
4888 inter = isl_union_map_union(inter, umap);
4889 umap = isl_union_map_copy(inter);
4890 inter = isl_union_map_subtract_domain(inter,
4891 isl_union_set_copy(data->mask));
4892 umap = isl_union_map_apply_range(isl_union_map_copy(data->equivalent),
4893 umap);
4894 inter = isl_union_map_union(inter, umap);
4896 inter = isl_union_map_remove_divs(inter);
4898 return inter;
4901 /* For each (conditional) validity edge in "graph",
4902 * add the corresponding dependence relation using "add"
4903 * to a collection of dependence relations and return the result.
4904 * If "coincidence" is set, then coincidence edges are considered as well.
4906 static __isl_give isl_union_map *collect_validity(struct isl_sched_graph *graph,
4907 __isl_give isl_union_map *(*add)(__isl_take isl_union_map *umap,
4908 struct isl_sched_edge *edge), int coincidence)
4910 int i;
4911 isl_space *space;
4912 isl_union_map *umap;
4914 space = isl_space_copy(graph->node[0].space);
4915 umap = isl_union_map_empty(space);
4917 for (i = 0; i < graph->n_edge; ++i) {
4918 struct isl_sched_edge *edge = &graph->edge[i];
4920 if (!is_any_validity(edge) &&
4921 (!coincidence || !is_coincidence(edge)))
4922 continue;
4924 umap = add(umap, edge);
4927 return umap;
4930 /* For each dependence relation on a (conditional) validity edge
4931 * from a node to itself,
4932 * construct the set of coefficients of valid constraints for elements
4933 * in that dependence relation and collect the results.
4934 * If "coincidence" is set, then coincidence edges are considered as well.
4936 * In particular, for each dependence relation R, constraints
4937 * on coefficients (c_0, c_x) are constructed such that
4939 * c_0 + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
4941 * If the schedule_treat_coalescing option is set, then some constraints
4942 * that could be exploited to construct coalescing schedules
4943 * are removed before the dual is computed, but after the parameters
4944 * have been projected out.
4945 * The entire computation is essentially the same as that performed
4946 * by intra_coefficients, except that it operates on multiple
4947 * edges together and that the parameters are always projected out.
4949 * Additionally, exploit any non-trivial lineality space
4950 * in the difference set after removing coalescing constraints and
4951 * store the results of the non-trivial lineality space detection in "data".
4952 * The procedure is currently run unconditionally, but it is unlikely
4953 * to find any non-trivial lineality spaces if no coalescing constraints
4954 * have been removed.
4956 * Note that if a dependence relation is a union of basic maps,
4957 * then each basic map needs to be treated individually as it may only
4958 * be possible to carry the dependences expressed by some of those
4959 * basic maps and not all of them.
4960 * The collected validity constraints are therefore not coalesced and
4961 * it is assumed that they are not coalesced automatically.
4962 * Duplicate basic maps can be removed, however.
4963 * In particular, if the same basic map appears as a disjunct
4964 * in multiple edges, then it only needs to be carried once.
4966 static __isl_give isl_basic_set_list *collect_intra_validity(isl_ctx *ctx,
4967 struct isl_sched_graph *graph, int coincidence,
4968 struct isl_exploit_lineality_data *data)
4970 isl_union_map *intra;
4971 isl_union_set *delta;
4972 isl_basic_set_list *list;
4974 intra = collect_validity(graph, &add_intra, coincidence);
4975 delta = isl_union_map_deltas(intra);
4976 delta = isl_union_set_project_out_all_params(delta);
4977 delta = isl_union_set_remove_divs(delta);
4978 if (isl_options_get_schedule_treat_coalescing(ctx))
4979 delta = union_drop_coalescing_constraints(ctx, graph, delta);
4980 delta = exploit_intra_lineality(delta, data);
4981 list = isl_union_set_get_basic_set_list(delta);
4982 isl_union_set_free(delta);
4984 return isl_basic_set_list_coefficients(list);
4987 /* For each dependence relation on a (conditional) validity edge
4988 * from a node to some other node,
4989 * construct the set of coefficients of valid constraints for elements
4990 * in that dependence relation and collect the results.
4991 * If "coincidence" is set, then coincidence edges are considered as well.
4993 * In particular, for each dependence relation R, constraints
4994 * on coefficients (c_0, c_n, c_x, c_y) are constructed such that
4996 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
4998 * This computation is essentially the same as that performed
4999 * by inter_coefficients, except that it operates on multiple
5000 * edges together.
5002 * Additionally, exploit any non-trivial lineality space
5003 * that may have been discovered by collect_intra_validity
5004 * (as stored in "data").
5006 * Note that if a dependence relation is a union of basic maps,
5007 * then each basic map needs to be treated individually as it may only
5008 * be possible to carry the dependences expressed by some of those
5009 * basic maps and not all of them.
5010 * The collected validity constraints are therefore not coalesced and
5011 * it is assumed that they are not coalesced automatically.
5012 * Duplicate basic maps can be removed, however.
5013 * In particular, if the same basic map appears as a disjunct
5014 * in multiple edges, then it only needs to be carried once.
5016 static __isl_give isl_basic_set_list *collect_inter_validity(
5017 struct isl_sched_graph *graph, int coincidence,
5018 struct isl_exploit_lineality_data *data)
5020 isl_union_map *inter;
5021 isl_union_set *wrap;
5022 isl_basic_set_list *list;
5024 inter = collect_validity(graph, &add_inter, coincidence);
5025 inter = exploit_inter_lineality(inter, data);
5026 inter = isl_union_map_remove_divs(inter);
5027 wrap = isl_union_map_wrap(inter);
5028 list = isl_union_set_get_basic_set_list(wrap);
5029 isl_union_set_free(wrap);
5030 return isl_basic_set_list_coefficients(list);
5033 /* Construct an LP problem for finding schedule coefficients
5034 * such that the schedule carries as many of the "n_edge" groups of
5035 * dependences as possible based on the corresponding coefficient
5036 * constraints and return the lexicographically smallest non-trivial solution.
5037 * "intra" is the sequence of coefficient constraints for intra-node edges.
5038 * "inter" is the sequence of coefficient constraints for inter-node edges.
5039 * If "want_integral" is set, then compute an integral solution
5040 * for the coefficients rather than using the numerators
5041 * of a rational solution.
5042 * "carry_inter" indicates whether inter-node edges should be carried or
5043 * only respected.
5045 * If none of the "n_edge" groups can be carried
5046 * then return an empty vector.
5048 static __isl_give isl_vec *compute_carrying_sol_coef(isl_ctx *ctx,
5049 struct isl_sched_graph *graph, int n_edge,
5050 __isl_keep isl_basic_set_list *intra,
5051 __isl_keep isl_basic_set_list *inter, int want_integral,
5052 int carry_inter)
5054 isl_basic_set *lp;
5056 if (setup_carry_lp(ctx, graph, n_edge, intra, inter, carry_inter) < 0)
5057 return NULL;
5059 lp = isl_basic_set_copy(graph->lp);
5060 return non_neg_lexmin(graph, lp, n_edge, want_integral);
5063 /* Construct an LP problem for finding schedule coefficients
5064 * such that the schedule carries as many of the validity dependences
5065 * as possible and
5066 * return the lexicographically smallest non-trivial solution.
5067 * If "fallback" is set, then the carrying is performed as a fallback
5068 * for the Pluto-like scheduler.
5069 * If "coincidence" is set, then try and carry coincidence edges as well.
5071 * The variable "n_edge" stores the number of groups that should be carried.
5072 * If none of the "n_edge" groups can be carried
5073 * then return an empty vector.
5074 * If, moreover, "n_edge" is zero, then the LP problem does not even
5075 * need to be constructed.
5077 * If a fallback solution is being computed, then compute an integral solution
5078 * for the coefficients rather than using the numerators
5079 * of a rational solution.
5081 * If a fallback solution is being computed, if there are any intra-node
5082 * dependences, and if requested by the user, then first try
5083 * to only carry those intra-node dependences.
5084 * If this fails to carry any dependences, then try again
5085 * with the inter-node dependences included.
5087 static __isl_give isl_vec *compute_carrying_sol(isl_ctx *ctx,
5088 struct isl_sched_graph *graph, int fallback, int coincidence)
5090 isl_size n_intra, n_inter;
5091 int n_edge;
5092 struct isl_carry carry = { 0 };
5093 isl_vec *sol;
5095 carry.intra = collect_intra_validity(ctx, graph, coincidence,
5096 &carry.lineality);
5097 carry.inter = collect_inter_validity(graph, coincidence,
5098 &carry.lineality);
5099 n_intra = isl_basic_set_list_n_basic_set(carry.intra);
5100 n_inter = isl_basic_set_list_n_basic_set(carry.inter);
5101 if (n_intra < 0 || n_inter < 0)
5102 goto error;
5104 if (fallback && n_intra > 0 &&
5105 isl_options_get_schedule_carry_self_first(ctx)) {
5106 sol = compute_carrying_sol_coef(ctx, graph, n_intra,
5107 carry.intra, carry.inter, fallback, 0);
5108 if (!sol || sol->size != 0 || n_inter == 0) {
5109 isl_carry_clear(&carry);
5110 return sol;
5112 isl_vec_free(sol);
5115 n_edge = n_intra + n_inter;
5116 if (n_edge == 0) {
5117 isl_carry_clear(&carry);
5118 return isl_vec_alloc(ctx, 0);
5121 sol = compute_carrying_sol_coef(ctx, graph, n_edge,
5122 carry.intra, carry.inter, fallback, 1);
5123 isl_carry_clear(&carry);
5124 return sol;
5125 error:
5126 isl_carry_clear(&carry);
5127 return NULL;
5130 /* Construct a schedule row for each node such that as many validity dependences
5131 * as possible are carried and then continue with the next band.
5132 * If "fallback" is set, then the carrying is performed as a fallback
5133 * for the Pluto-like scheduler.
5134 * If "coincidence" is set, then try and carry coincidence edges as well.
5136 * If there are no validity dependences, then no dependence can be carried and
5137 * the procedure is guaranteed to fail. If there is more than one component,
5138 * then try computing a schedule on each component separately
5139 * to prevent or at least postpone this failure.
5141 * If a schedule row is computed, then check that dependences are carried
5142 * for at least one of the edges.
5144 * If the computed schedule row turns out to be trivial on one or
5145 * more nodes where it should not be trivial, then we throw it away
5146 * and try again on each component separately.
5148 * If there is only one component, then we accept the schedule row anyway,
5149 * but we do not consider it as a complete row and therefore do not
5150 * increment graph->n_row. Note that the ranks of the nodes that
5151 * do get a non-trivial schedule part will get updated regardless and
5152 * graph->maxvar is computed based on these ranks. The test for
5153 * whether more schedule rows are required in compute_schedule_wcc
5154 * is therefore not affected.
5156 * Insert a band corresponding to the schedule row at position "node"
5157 * of the schedule tree and continue with the construction of the schedule.
5158 * This insertion and the continued construction is performed by split_scaled
5159 * after optionally checking for non-trivial common divisors.
5161 static __isl_give isl_schedule_node *carry(__isl_take isl_schedule_node *node,
5162 struct isl_sched_graph *graph, int fallback, int coincidence)
5164 int trivial;
5165 isl_ctx *ctx;
5166 isl_vec *sol;
5168 if (!node)
5169 return NULL;
5171 ctx = isl_schedule_node_get_ctx(node);
5172 sol = compute_carrying_sol(ctx, graph, fallback, coincidence);
5173 if (!sol)
5174 return isl_schedule_node_free(node);
5175 if (sol->size == 0) {
5176 isl_vec_free(sol);
5177 if (graph->scc > 1)
5178 return compute_component_schedule(node, graph, 1);
5179 isl_die(ctx, isl_error_unknown, "unable to carry dependences",
5180 return isl_schedule_node_free(node));
5183 trivial = is_any_trivial(graph, sol);
5184 if (trivial < 0) {
5185 sol = isl_vec_free(sol);
5186 } else if (trivial && graph->scc > 1) {
5187 isl_vec_free(sol);
5188 return compute_component_schedule(node, graph, 1);
5191 if (update_schedule(graph, sol, 0) < 0)
5192 return isl_schedule_node_free(node);
5193 if (trivial)
5194 graph->n_row--;
5196 return split_scaled(node, graph);
5199 /* Construct a schedule row for each node such that as many validity dependences
5200 * as possible are carried and then continue with the next band.
5201 * Do so as a fallback for the Pluto-like scheduler.
5202 * If "coincidence" is set, then try and carry coincidence edges as well.
5204 static __isl_give isl_schedule_node *carry_fallback(
5205 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
5206 int coincidence)
5208 return carry(node, graph, 1, coincidence);
5211 /* Construct a schedule row for each node such that as many validity dependences
5212 * as possible are carried and then continue with the next band.
5213 * Do so for the case where the Feautrier scheduler was selected
5214 * by the user.
5216 static __isl_give isl_schedule_node *carry_feautrier(
5217 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
5219 return carry(node, graph, 0, 0);
5222 /* Construct a schedule row for each node such that as many validity dependences
5223 * as possible are carried and then continue with the next band.
5224 * Do so as a fallback for the Pluto-like scheduler.
5226 static __isl_give isl_schedule_node *carry_dependences(
5227 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
5229 return carry_fallback(node, graph, 0);
5232 /* Construct a schedule row for each node such that as many validity or
5233 * coincidence dependences as possible are carried and
5234 * then continue with the next band.
5235 * Do so as a fallback for the Pluto-like scheduler.
5237 static __isl_give isl_schedule_node *carry_coincidence(
5238 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
5240 return carry_fallback(node, graph, 1);
5243 /* Topologically sort statements mapped to the same schedule iteration
5244 * and add insert a sequence node in front of "node"
5245 * corresponding to this order.
5246 * If "initialized" is set, then it may be assumed that
5247 * isl_sched_graph_compute_maxvar
5248 * has been called on the current band. Otherwise, call
5249 * isl_sched_graph_compute_maxvar if and before carry_dependences gets called.
5251 * If it turns out to be impossible to sort the statements apart,
5252 * because different dependences impose different orderings
5253 * on the statements, then we extend the schedule such that
5254 * it carries at least one more dependence.
5256 static __isl_give isl_schedule_node *sort_statements(
5257 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
5258 int initialized)
5260 isl_ctx *ctx;
5261 isl_union_set_list *filters;
5263 if (!node)
5264 return NULL;
5266 ctx = isl_schedule_node_get_ctx(node);
5267 if (graph->n < 1)
5268 isl_die(ctx, isl_error_internal,
5269 "graph should have at least one node",
5270 return isl_schedule_node_free(node));
5272 if (graph->n == 1)
5273 return node;
5275 if (update_edges(ctx, graph) < 0)
5276 return isl_schedule_node_free(node);
5278 if (graph->n_edge == 0)
5279 return node;
5281 if (detect_sccs(ctx, graph) < 0)
5282 return isl_schedule_node_free(node);
5284 next_band(graph);
5285 if (graph->scc < graph->n) {
5286 if (!initialized && isl_sched_graph_compute_maxvar(graph) < 0)
5287 return isl_schedule_node_free(node);
5288 return carry_dependences(node, graph);
5291 filters = isl_sched_graph_extract_sccs(ctx, graph);
5292 node = isl_schedule_node_insert_sequence(node, filters);
5294 return node;
5297 /* Are there any (non-empty) (conditional) validity edges in the graph?
5299 static int has_validity_edges(struct isl_sched_graph *graph)
5301 int i;
5303 for (i = 0; i < graph->n_edge; ++i) {
5304 int empty;
5306 empty = isl_map_plain_is_empty(graph->edge[i].map);
5307 if (empty < 0)
5308 return -1;
5309 if (empty)
5310 continue;
5311 if (is_any_validity(&graph->edge[i]))
5312 return 1;
5315 return 0;
5318 /* Should we apply a Feautrier step?
5319 * That is, did the user request the Feautrier algorithm and are
5320 * there any validity dependences (left)?
5322 static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph)
5324 if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER)
5325 return 0;
5327 return has_validity_edges(graph);
5330 /* Compute a schedule for a connected dependence graph using Feautrier's
5331 * multi-dimensional scheduling algorithm and return the updated schedule node.
5333 * The original algorithm is described in [1].
5334 * The main idea is to minimize the number of scheduling dimensions, by
5335 * trying to satisfy as many dependences as possible per scheduling dimension.
5337 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
5338 * Problem, Part II: Multi-Dimensional Time.
5339 * In Intl. Journal of Parallel Programming, 1992.
5341 static __isl_give isl_schedule_node *compute_schedule_wcc_feautrier(
5342 isl_schedule_node *node, struct isl_sched_graph *graph)
5344 return carry_feautrier(node, graph);
5347 /* Turn off the "local" bit on all (condition) edges.
5349 static void clear_local_edges(struct isl_sched_graph *graph)
5351 int i;
5353 for (i = 0; i < graph->n_edge; ++i)
5354 if (isl_sched_edge_is_condition(&graph->edge[i]))
5355 clear_local(&graph->edge[i]);
5358 /* Does "graph" have both condition and conditional validity edges?
5360 static int need_condition_check(struct isl_sched_graph *graph)
5362 int i;
5363 int any_condition = 0;
5364 int any_conditional_validity = 0;
5366 for (i = 0; i < graph->n_edge; ++i) {
5367 if (isl_sched_edge_is_condition(&graph->edge[i]))
5368 any_condition = 1;
5369 if (isl_sched_edge_is_conditional_validity(&graph->edge[i]))
5370 any_conditional_validity = 1;
5373 return any_condition && any_conditional_validity;
5376 /* Does "graph" contain any coincidence edge?
5378 static int has_any_coincidence(struct isl_sched_graph *graph)
5380 int i;
5382 for (i = 0; i < graph->n_edge; ++i)
5383 if (is_coincidence(&graph->edge[i]))
5384 return 1;
5386 return 0;
5389 /* Extract the final schedule row as a map with the iteration domain
5390 * of "node" as domain.
5392 static __isl_give isl_map *final_row(struct isl_sched_node *node)
5394 isl_multi_aff *ma;
5395 isl_size n_row;
5397 n_row = isl_mat_rows(node->sched);
5398 if (n_row < 0)
5399 return NULL;
5400 ma = isl_sched_node_extract_partial_schedule_multi_aff(node,
5401 n_row - 1, 1);
5402 return isl_map_from_multi_aff(ma);
5405 /* Is the conditional validity dependence in the edge with index "edge_index"
5406 * violated by the latest (i.e., final) row of the schedule?
5407 * That is, is i scheduled after j
5408 * for any conditional validity dependence i -> j?
5410 static int is_violated(struct isl_sched_graph *graph, int edge_index)
5412 isl_map *src_sched, *dst_sched, *map;
5413 struct isl_sched_edge *edge = &graph->edge[edge_index];
5414 int empty;
5416 src_sched = final_row(edge->src);
5417 dst_sched = final_row(edge->dst);
5418 map = isl_map_copy(edge->map);
5419 map = isl_map_apply_domain(map, src_sched);
5420 map = isl_map_apply_range(map, dst_sched);
5421 map = isl_map_order_gt(map, isl_dim_in, 0, isl_dim_out, 0);
5422 empty = isl_map_is_empty(map);
5423 isl_map_free(map);
5425 if (empty < 0)
5426 return -1;
5428 return !empty;
5431 /* Does "graph" have any satisfied condition edges that
5432 * are adjacent to the conditional validity constraint with
5433 * domain "conditional_source" and range "conditional_sink"?
5435 * A satisfied condition is one that is not local.
5436 * If a condition was forced to be local already (i.e., marked as local)
5437 * then there is no need to check if it is in fact local.
5439 * Additionally, mark all adjacent condition edges found as local.
5441 static int has_adjacent_true_conditions(struct isl_sched_graph *graph,
5442 __isl_keep isl_union_set *conditional_source,
5443 __isl_keep isl_union_set *conditional_sink)
5445 int i;
5446 int any = 0;
5448 for (i = 0; i < graph->n_edge; ++i) {
5449 int adjacent, local;
5450 isl_union_map *condition;
5452 if (!isl_sched_edge_is_condition(&graph->edge[i]))
5453 continue;
5454 if (is_local(&graph->edge[i]))
5455 continue;
5457 condition = graph->edge[i].tagged_condition;
5458 adjacent = domain_intersects(condition, conditional_sink);
5459 if (adjacent >= 0 && !adjacent)
5460 adjacent = range_intersects(condition,
5461 conditional_source);
5462 if (adjacent < 0)
5463 return -1;
5464 if (!adjacent)
5465 continue;
5467 set_local(&graph->edge[i]);
5469 local = is_condition_false(&graph->edge[i]);
5470 if (local < 0)
5471 return -1;
5472 if (!local)
5473 any = 1;
5476 return any;
5479 /* Are there any violated conditional validity dependences with
5480 * adjacent condition dependences that are not local with respect
5481 * to the current schedule?
5482 * That is, is the conditional validity constraint violated?
5484 * Additionally, mark all those adjacent condition dependences as local.
5485 * We also mark those adjacent condition dependences that were not marked
5486 * as local before, but just happened to be local already. This ensures
5487 * that they remain local if the schedule is recomputed.
5489 * We first collect domain and range of all violated conditional validity
5490 * dependences and then check if there are any adjacent non-local
5491 * condition dependences.
5493 static int has_violated_conditional_constraint(isl_ctx *ctx,
5494 struct isl_sched_graph *graph)
5496 int i;
5497 int any = 0;
5498 isl_union_set *source, *sink;
5500 source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
5501 sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
5502 for (i = 0; i < graph->n_edge; ++i) {
5503 isl_union_set *uset;
5504 isl_union_map *umap;
5505 int violated;
5507 if (!isl_sched_edge_is_conditional_validity(&graph->edge[i]))
5508 continue;
5510 violated = is_violated(graph, i);
5511 if (violated < 0)
5512 goto error;
5513 if (!violated)
5514 continue;
5516 any = 1;
5518 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
5519 uset = isl_union_map_domain(umap);
5520 source = isl_union_set_union(source, uset);
5521 source = isl_union_set_coalesce(source);
5523 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
5524 uset = isl_union_map_range(umap);
5525 sink = isl_union_set_union(sink, uset);
5526 sink = isl_union_set_coalesce(sink);
5529 if (any)
5530 any = has_adjacent_true_conditions(graph, source, sink);
5532 isl_union_set_free(source);
5533 isl_union_set_free(sink);
5534 return any;
5535 error:
5536 isl_union_set_free(source);
5537 isl_union_set_free(sink);
5538 return -1;
5541 /* Examine the current band (the rows between graph->band_start and
5542 * graph->n_total_row), deciding whether to drop it or add it to "node"
5543 * and then continue with the computation of the next band, if any.
5544 * If "initialized" is set, then it may be assumed that
5545 * isl_sched_graph_compute_maxvar
5546 * has been called on the current band. Otherwise, call
5547 * isl_sched_graph_compute_maxvar if and before carry_dependences gets called.
5549 * The caller keeps looking for a new row as long as
5550 * graph->n_row < graph->maxvar. If the latest attempt to find
5551 * such a row failed (i.e., we still have graph->n_row < graph->maxvar),
5552 * then we either
5553 * - split between SCCs and start over (assuming we found an interesting
5554 * pair of SCCs between which to split)
5555 * - continue with the next band (assuming the current band has at least
5556 * one row)
5557 * - if there is more than one SCC left, then split along all SCCs
5558 * - if outer coincidence needs to be enforced, then try to carry as many
5559 * validity or coincidence dependences as possible and
5560 * continue with the next band
5561 * - try to carry as many validity dependences as possible and
5562 * continue with the next band
5563 * In each case, we first insert a band node in the schedule tree
5564 * if any rows have been computed.
5566 * If the caller managed to complete the schedule and the current band
5567 * is empty, then finish off by topologically
5568 * sorting the statements based on the remaining dependences.
5569 * If, on the other hand, the current band has at least one row,
5570 * then continue with the next band. Note that this next band
5571 * will necessarily be empty, but the graph may still be split up
5572 * into weakly connected components before arriving back here.
5574 __isl_give isl_schedule_node *isl_schedule_node_compute_finish_band(
5575 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
5576 int initialized)
5578 int empty;
5580 if (!node)
5581 return NULL;
5583 empty = graph->n_total_row == graph->band_start;
5584 if (graph->n_row < graph->maxvar) {
5585 isl_ctx *ctx;
5587 ctx = isl_schedule_node_get_ctx(node);
5588 if (!ctx->opt->schedule_maximize_band_depth && !empty)
5589 return compute_next_band(node, graph, 1);
5590 if (graph->src_scc >= 0)
5591 return compute_split_schedule(node, graph);
5592 if (!empty)
5593 return compute_next_band(node, graph, 1);
5594 if (graph->scc > 1)
5595 return compute_component_schedule(node, graph, 1);
5596 if (!initialized && isl_sched_graph_compute_maxvar(graph) < 0)
5597 return isl_schedule_node_free(node);
5598 if (isl_options_get_schedule_outer_coincidence(ctx))
5599 return carry_coincidence(node, graph);
5600 return carry_dependences(node, graph);
5603 if (!empty)
5604 return compute_next_band(node, graph, 1);
5605 return sort_statements(node, graph, initialized);
5608 /* Construct a band of schedule rows for a connected dependence graph.
5609 * The caller is responsible for determining the strongly connected
5610 * components and calling isl_sched_graph_compute_maxvar first.
5612 * We try to find a sequence of as many schedule rows as possible that result
5613 * in non-negative dependence distances (independent of the previous rows
5614 * in the sequence, i.e., such that the sequence is tilable), with as
5615 * many of the initial rows as possible satisfying the coincidence constraints.
5616 * The computation stops if we can't find any more rows or if we have found
5617 * all the rows we wanted to find.
5619 * If ctx->opt->schedule_outer_coincidence is set, then we force the
5620 * outermost dimension to satisfy the coincidence constraints. If this
5621 * turns out to be impossible, we fall back on the general scheme above
5622 * and try to carry as many dependences as possible.
5624 * If "graph" contains both condition and conditional validity dependences,
5625 * then we need to check that that the conditional schedule constraint
5626 * is satisfied, i.e., there are no violated conditional validity dependences
5627 * that are adjacent to any non-local condition dependences.
5628 * If there are, then we mark all those adjacent condition dependences
5629 * as local and recompute the current band. Those dependences that
5630 * are marked local will then be forced to be local.
5631 * The initial computation is performed with no dependences marked as local.
5632 * If we are lucky, then there will be no violated conditional validity
5633 * dependences adjacent to any non-local condition dependences.
5634 * Otherwise, we mark some additional condition dependences as local and
5635 * recompute. We continue this process until there are no violations left or
5636 * until we are no longer able to compute a schedule.
5637 * Since there are only a finite number of dependences,
5638 * there will only be a finite number of iterations.
5640 isl_stat isl_schedule_node_compute_wcc_band(isl_ctx *ctx,
5641 struct isl_sched_graph *graph)
5643 int has_coincidence;
5644 int use_coincidence;
5645 int force_coincidence = 0;
5646 int check_conditional;
5648 if (sort_sccs(graph) < 0)
5649 return isl_stat_error;
5651 clear_local_edges(graph);
5652 check_conditional = need_condition_check(graph);
5653 has_coincidence = has_any_coincidence(graph);
5655 if (ctx->opt->schedule_outer_coincidence)
5656 force_coincidence = 1;
5658 use_coincidence = has_coincidence;
5659 while (graph->n_row < graph->maxvar) {
5660 isl_vec *sol;
5661 int violated;
5662 int coincident;
5664 graph->src_scc = -1;
5665 graph->dst_scc = -1;
5667 if (setup_lp(ctx, graph, use_coincidence) < 0)
5668 return isl_stat_error;
5669 sol = solve_lp(ctx, graph);
5670 if (!sol)
5671 return isl_stat_error;
5672 if (sol->size == 0) {
5673 int empty = graph->n_total_row == graph->band_start;
5675 isl_vec_free(sol);
5676 if (use_coincidence && (!force_coincidence || !empty)) {
5677 use_coincidence = 0;
5678 continue;
5680 return isl_stat_ok;
5682 coincident = !has_coincidence || use_coincidence;
5683 if (update_schedule(graph, sol, coincident) < 0)
5684 return isl_stat_error;
5686 if (!check_conditional)
5687 continue;
5688 violated = has_violated_conditional_constraint(ctx, graph);
5689 if (violated < 0)
5690 return isl_stat_error;
5691 if (!violated)
5692 continue;
5693 if (reset_band(graph) < 0)
5694 return isl_stat_error;
5695 use_coincidence = has_coincidence;
5698 return isl_stat_ok;
5701 /* Compute a schedule for a connected dependence graph by considering
5702 * the graph as a whole and return the updated schedule node.
5704 * The actual schedule rows of the current band are computed by
5705 * isl_schedule_node_compute_wcc_band. isl_schedule_node_compute_finish_band
5706 * takes care of integrating the band into "node" and continuing
5707 * the computation.
5709 static __isl_give isl_schedule_node *compute_schedule_wcc_whole(
5710 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
5712 isl_ctx *ctx;
5714 if (!node)
5715 return NULL;
5717 ctx = isl_schedule_node_get_ctx(node);
5718 if (isl_schedule_node_compute_wcc_band(ctx, graph) < 0)
5719 return isl_schedule_node_free(node);
5721 return isl_schedule_node_compute_finish_band(node, graph, 1);
5724 /* Compute a schedule for a connected dependence graph and return
5725 * the updated schedule node.
5727 * If Feautrier's algorithm is selected, we first recursively try to satisfy
5728 * as many validity dependences as possible. When all validity dependences
5729 * are satisfied we extend the schedule to a full-dimensional schedule.
5731 * Call compute_schedule_wcc_whole or isl_schedule_node_compute_wcc_clustering
5732 * depending on whether the user has selected the option to try and
5733 * compute a schedule for the entire (weakly connected) component first.
5734 * If there is only a single strongly connected component (SCC), then
5735 * there is no point in trying to combine SCCs
5736 * in isl_schedule_node_compute_wcc_clustering, so compute_schedule_wcc_whole
5737 * is called instead.
5739 static __isl_give isl_schedule_node *compute_schedule_wcc(
5740 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
5742 isl_ctx *ctx;
5744 if (!node)
5745 return NULL;
5747 ctx = isl_schedule_node_get_ctx(node);
5748 if (detect_sccs(ctx, graph) < 0)
5749 return isl_schedule_node_free(node);
5751 if (isl_sched_graph_compute_maxvar(graph) < 0)
5752 return isl_schedule_node_free(node);
5754 if (need_feautrier_step(ctx, graph))
5755 return compute_schedule_wcc_feautrier(node, graph);
5757 if (graph->scc <= 1 || isl_options_get_schedule_whole_component(ctx))
5758 return compute_schedule_wcc_whole(node, graph);
5759 else
5760 return isl_schedule_node_compute_wcc_clustering(node, graph);
5763 /* Compute a schedule for each group of nodes identified by node->scc
5764 * separately and then combine them in a sequence node (or as set node
5765 * if graph->weak is set) inserted at position "node" of the schedule tree.
5766 * Return the updated schedule node.
5768 * If "wcc" is set then each of the groups belongs to a single
5769 * weakly connected component in the dependence graph so that
5770 * there is no need for compute_sub_schedule to look for weakly
5771 * connected components.
5773 * If a set node would be introduced and if the number of components
5774 * is equal to the number of nodes, then check if the schedule
5775 * is already complete. If so, a redundant set node would be introduced
5776 * (without any further descendants) stating that the statements
5777 * can be executed in arbitrary order, which is also expressed
5778 * by the absence of any node. Refrain from inserting any nodes
5779 * in this case and simply return.
5781 static __isl_give isl_schedule_node *compute_component_schedule(
5782 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
5783 int wcc)
5785 int component;
5786 isl_ctx *ctx;
5787 isl_union_set_list *filters;
5789 if (!node)
5790 return NULL;
5792 if (graph->weak && graph->scc == graph->n) {
5793 if (isl_sched_graph_compute_maxvar(graph) < 0)
5794 return isl_schedule_node_free(node);
5795 if (graph->n_row >= graph->maxvar)
5796 return node;
5799 ctx = isl_schedule_node_get_ctx(node);
5800 filters = isl_sched_graph_extract_sccs(ctx, graph);
5801 if (graph->weak)
5802 node = isl_schedule_node_insert_set(node, filters);
5803 else
5804 node = isl_schedule_node_insert_sequence(node, filters);
5806 for (component = 0; component < graph->scc; ++component) {
5807 node = isl_schedule_node_grandchild(node, component, 0);
5808 node = compute_sub_schedule(node, ctx, graph,
5809 &isl_sched_node_scc_exactly,
5810 &isl_sched_edge_scc_exactly,
5811 component, wcc);
5812 node = isl_schedule_node_grandparent(node);
5815 return node;
5818 /* Compute a schedule for the given dependence graph and insert it at "node".
5819 * Return the updated schedule node.
5821 * We first check if the graph is connected (through validity and conditional
5822 * validity dependences) and, if not, compute a schedule
5823 * for each component separately.
5824 * If the schedule_serialize_sccs option is set, then we check for strongly
5825 * connected components instead and compute a separate schedule for
5826 * each such strongly connected component.
5828 static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
5829 struct isl_sched_graph *graph)
5831 isl_ctx *ctx;
5833 if (!node)
5834 return NULL;
5836 ctx = isl_schedule_node_get_ctx(node);
5837 if (isl_options_get_schedule_serialize_sccs(ctx)) {
5838 if (detect_sccs(ctx, graph) < 0)
5839 return isl_schedule_node_free(node);
5840 } else {
5841 if (detect_wccs(ctx, graph) < 0)
5842 return isl_schedule_node_free(node);
5845 if (graph->scc > 1)
5846 return compute_component_schedule(node, graph, 1);
5848 return compute_schedule_wcc(node, graph);
5851 /* Compute a schedule on sc->domain that respects the given schedule
5852 * constraints.
5854 * In particular, the schedule respects all the validity dependences.
5855 * If the default isl scheduling algorithm is used, it tries to minimize
5856 * the dependence distances over the proximity dependences.
5857 * If Feautrier's scheduling algorithm is used, the proximity dependence
5858 * distances are only minimized during the extension to a full-dimensional
5859 * schedule.
5861 * If there are any condition and conditional validity dependences,
5862 * then the conditional validity dependences may be violated inside
5863 * a tilable band, provided they have no adjacent non-local
5864 * condition dependences.
5866 __isl_give isl_schedule *isl_schedule_constraints_compute_schedule(
5867 __isl_take isl_schedule_constraints *sc)
5869 isl_ctx *ctx = isl_schedule_constraints_get_ctx(sc);
5870 struct isl_sched_graph graph = { 0 };
5871 isl_schedule *sched;
5872 isl_schedule_node *node;
5873 isl_union_set *domain;
5874 isl_size n;
5876 sc = isl_schedule_constraints_align_params(sc);
5878 domain = isl_schedule_constraints_get_domain(sc);
5879 n = isl_union_set_n_set(domain);
5880 if (n == 0) {
5881 isl_schedule_constraints_free(sc);
5882 return isl_schedule_from_domain(domain);
5885 if (n < 0 || isl_sched_graph_init(&graph, sc) < 0)
5886 domain = isl_union_set_free(domain);
5888 node = isl_schedule_node_from_domain(domain);
5889 node = isl_schedule_node_child(node, 0);
5890 if (graph.n > 0)
5891 node = compute_schedule(node, &graph);
5892 sched = isl_schedule_node_get_schedule(node);
5893 isl_schedule_node_free(node);
5895 isl_sched_graph_free(ctx, &graph);
5896 isl_schedule_constraints_free(sc);
5898 return sched;
5901 /* Compute a schedule for the given union of domains that respects
5902 * all the validity dependences and minimizes
5903 * the dependence distances over the proximity dependences.
5905 * This function is kept for backward compatibility.
5907 __isl_give isl_schedule *isl_union_set_compute_schedule(
5908 __isl_take isl_union_set *domain,
5909 __isl_take isl_union_map *validity,
5910 __isl_take isl_union_map *proximity)
5912 isl_schedule_constraints *sc;
5914 sc = isl_schedule_constraints_on_domain(domain);
5915 sc = isl_schedule_constraints_set_validity(sc, validity);
5916 sc = isl_schedule_constraints_set_proximity(sc, proximity);
5918 return isl_schedule_constraints_compute_schedule(sc);