add isl_map_implicit_equalities
[isl.git] / isl_convex_hull.c
blob8db9ed33c14618a068ff14cd7f6118ea8fe00617
1 #include "isl_lp.h"
2 #include "isl_map.h"
3 #include "isl_map_private.h"
4 #include "isl_mat.h"
5 #include "isl_set.h"
6 #include "isl_seq.h"
7 #include "isl_equalities.h"
8 #include "isl_tab.h"
10 static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set);
12 static void swap_ineq(struct isl_basic_map *bmap, unsigned i, unsigned j)
14 isl_int *t;
16 if (i != j) {
17 t = bmap->ineq[i];
18 bmap->ineq[i] = bmap->ineq[j];
19 bmap->ineq[j] = t;
23 /* Return 1 if constraint c is redundant with respect to the constraints
24 * in bmap. If c is a lower [upper] bound in some variable and bmap
25 * does not have a lower [upper] bound in that variable, then c cannot
26 * be redundant and we do not need solve any lp.
28 int isl_basic_map_constraint_is_redundant(struct isl_basic_map **bmap,
29 isl_int *c, isl_int *opt_n, isl_int *opt_d)
31 enum isl_lp_result res;
32 unsigned total;
33 int i, j;
35 if (!bmap)
36 return -1;
38 total = isl_basic_map_total_dim(*bmap);
39 for (i = 0; i < total; ++i) {
40 int sign;
41 if (isl_int_is_zero(c[1+i]))
42 continue;
43 sign = isl_int_sgn(c[1+i]);
44 for (j = 0; j < (*bmap)->n_ineq; ++j)
45 if (sign == isl_int_sgn((*bmap)->ineq[j][1+i]))
46 break;
47 if (j == (*bmap)->n_ineq)
48 break;
50 if (i < total)
51 return 0;
53 res = isl_solve_lp(*bmap, 0, c, (*bmap)->ctx->one, opt_n, opt_d);
54 if (res == isl_lp_unbounded)
55 return 0;
56 if (res == isl_lp_error)
57 return -1;
58 if (res == isl_lp_empty) {
59 *bmap = isl_basic_map_set_to_empty(*bmap);
60 return 0;
62 return !isl_int_is_neg(*opt_n);
65 int isl_basic_set_constraint_is_redundant(struct isl_basic_set **bset,
66 isl_int *c, isl_int *opt_n, isl_int *opt_d)
68 return isl_basic_map_constraint_is_redundant(
69 (struct isl_basic_map **)bset, c, opt_n, opt_d);
72 /* Compute the convex hull of a basic map, by removing the redundant
73 * constraints. If the minimal value along the normal of a constraint
74 * is the same if the constraint is removed, then the constraint is redundant.
76 * Alternatively, we could have intersected the basic map with the
77 * corresponding equality and the checked if the dimension was that
78 * of a facet.
80 struct isl_basic_map *isl_basic_map_convex_hull(struct isl_basic_map *bmap)
82 struct isl_tab *tab;
84 if (!bmap)
85 return NULL;
87 bmap = isl_basic_map_gauss(bmap, NULL);
88 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
89 return bmap;
90 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_REDUNDANT))
91 return bmap;
92 if (bmap->n_ineq <= 1)
93 return bmap;
95 tab = isl_tab_from_basic_map(bmap);
96 tab = isl_tab_detect_equalities(bmap->ctx, tab);
97 tab = isl_tab_detect_redundant(bmap->ctx, tab);
98 bmap = isl_basic_map_update_from_tab(bmap, tab);
99 isl_tab_free(bmap->ctx, tab);
100 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
101 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_REDUNDANT);
102 return bmap;
105 struct isl_basic_set *isl_basic_set_convex_hull(struct isl_basic_set *bset)
107 return (struct isl_basic_set *)
108 isl_basic_map_convex_hull((struct isl_basic_map *)bset);
111 /* Check if the set set is bound in the direction of the affine
112 * constraint c and if so, set the constant term such that the
113 * resulting constraint is a bounding constraint for the set.
115 static int uset_is_bound(struct isl_ctx *ctx, struct isl_set *set,
116 isl_int *c, unsigned len)
118 int first;
119 int j;
120 isl_int opt;
121 isl_int opt_denom;
123 isl_int_init(opt);
124 isl_int_init(opt_denom);
125 first = 1;
126 for (j = 0; j < set->n; ++j) {
127 enum isl_lp_result res;
129 if (ISL_F_ISSET(set->p[j], ISL_BASIC_SET_EMPTY))
130 continue;
132 res = isl_solve_lp((struct isl_basic_map*)set->p[j],
133 0, c, ctx->one, &opt, &opt_denom);
134 if (res == isl_lp_unbounded)
135 break;
136 if (res == isl_lp_error)
137 goto error;
138 if (res == isl_lp_empty) {
139 set->p[j] = isl_basic_set_set_to_empty(set->p[j]);
140 if (!set->p[j])
141 goto error;
142 continue;
144 if (!isl_int_is_one(opt_denom))
145 isl_seq_scale(c, c, opt_denom, len);
146 if (first || isl_int_is_neg(opt))
147 isl_int_sub(c[0], c[0], opt);
148 first = 0;
150 isl_int_clear(opt);
151 isl_int_clear(opt_denom);
152 return j >= set->n;
153 error:
154 isl_int_clear(opt);
155 isl_int_clear(opt_denom);
156 return -1;
159 /* Check if "c" is a direction that is independent of the previously found "n"
160 * bounds in "dirs".
161 * If so, add it to the list, with the negative of the lower bound
162 * in the constant position, i.e., such that c corresponds to a bounding
163 * hyperplane (but not necessarily a facet).
164 * Assumes set "set" is bounded.
166 static int is_independent_bound(struct isl_ctx *ctx,
167 struct isl_set *set, isl_int *c,
168 struct isl_mat *dirs, int n)
170 int is_bound;
171 int i = 0;
173 isl_seq_cpy(dirs->row[n]+1, c+1, dirs->n_col-1);
174 if (n != 0) {
175 int pos = isl_seq_first_non_zero(dirs->row[n]+1, dirs->n_col-1);
176 if (pos < 0)
177 return 0;
178 for (i = 0; i < n; ++i) {
179 int pos_i;
180 pos_i = isl_seq_first_non_zero(dirs->row[i]+1, dirs->n_col-1);
181 if (pos_i < pos)
182 continue;
183 if (pos_i > pos)
184 break;
185 isl_seq_elim(dirs->row[n]+1, dirs->row[i]+1, pos,
186 dirs->n_col-1, NULL);
187 pos = isl_seq_first_non_zero(dirs->row[n]+1, dirs->n_col-1);
188 if (pos < 0)
189 return 0;
193 is_bound = uset_is_bound(ctx, set, dirs->row[n], dirs->n_col);
194 if (is_bound != 1)
195 return is_bound;
196 if (i < n) {
197 int k;
198 isl_int *t = dirs->row[n];
199 for (k = n; k > i; --k)
200 dirs->row[k] = dirs->row[k-1];
201 dirs->row[i] = t;
203 return 1;
206 /* Compute and return a maximal set of linearly independent bounds
207 * on the set "set", based on the constraints of the basic sets
208 * in "set".
210 static struct isl_mat *independent_bounds(struct isl_ctx *ctx,
211 struct isl_set *set)
213 int i, j, n;
214 struct isl_mat *dirs = NULL;
215 unsigned dim = isl_set_n_dim(set);
217 dirs = isl_mat_alloc(ctx, dim, 1+dim);
218 if (!dirs)
219 goto error;
221 n = 0;
222 for (i = 0; n < dim && i < set->n; ++i) {
223 int f;
224 struct isl_basic_set *bset = set->p[i];
226 for (j = 0; n < dim && j < bset->n_eq; ++j) {
227 f = is_independent_bound(ctx, set, bset->eq[j],
228 dirs, n);
229 if (f < 0)
230 goto error;
231 if (f)
232 ++n;
234 for (j = 0; n < dim && j < bset->n_ineq; ++j) {
235 f = is_independent_bound(ctx, set, bset->ineq[j],
236 dirs, n);
237 if (f < 0)
238 goto error;
239 if (f)
240 ++n;
243 dirs->n_row = n;
244 return dirs;
245 error:
246 isl_mat_free(ctx, dirs);
247 return NULL;
250 static struct isl_basic_set *isl_basic_set_set_rational(
251 struct isl_basic_set *bset)
253 if (!bset)
254 return NULL;
256 if (ISL_F_ISSET(bset, ISL_BASIC_MAP_RATIONAL))
257 return bset;
259 bset = isl_basic_set_cow(bset);
260 if (!bset)
261 return NULL;
263 ISL_F_SET(bset, ISL_BASIC_MAP_RATIONAL);
265 return isl_basic_set_finalize(bset);
268 static struct isl_set *isl_set_set_rational(struct isl_set *set)
270 int i;
272 set = isl_set_cow(set);
273 if (!set)
274 return NULL;
275 for (i = 0; i < set->n; ++i) {
276 set->p[i] = isl_basic_set_set_rational(set->p[i]);
277 if (!set->p[i])
278 goto error;
280 return set;
281 error:
282 isl_set_free(set);
283 return NULL;
286 static struct isl_basic_set *isl_basic_set_add_equality(struct isl_ctx *ctx,
287 struct isl_basic_set *bset, isl_int *c)
289 int i;
290 unsigned total;
291 unsigned dim;
293 if (ISL_F_ISSET(bset, ISL_BASIC_SET_EMPTY))
294 return bset;
296 isl_assert(ctx, isl_basic_set_n_param(bset) == 0, goto error);
297 isl_assert(ctx, bset->n_div == 0, goto error);
298 dim = isl_basic_set_n_dim(bset);
299 bset = isl_basic_set_cow(bset);
300 bset = isl_basic_set_extend(bset, 0, dim, 0, 1, 0);
301 i = isl_basic_set_alloc_equality(bset);
302 if (i < 0)
303 goto error;
304 isl_seq_cpy(bset->eq[i], c, 1 + dim);
305 return bset;
306 error:
307 isl_basic_set_free(bset);
308 return NULL;
311 static struct isl_set *isl_set_add_equality(struct isl_ctx *ctx,
312 struct isl_set *set, isl_int *c)
314 int i;
316 set = isl_set_cow(set);
317 if (!set)
318 return NULL;
319 for (i = 0; i < set->n; ++i) {
320 set->p[i] = isl_basic_set_add_equality(ctx, set->p[i], c);
321 if (!set->p[i])
322 goto error;
324 return set;
325 error:
326 isl_set_free(set);
327 return NULL;
330 /* Given a union of basic sets, construct the constraints for wrapping
331 * a facet around one of its ridges.
332 * In particular, if each of n the d-dimensional basic sets i in "set"
333 * contains the origin, satisfies the constraints x_1 >= 0 and x_2 >= 0
334 * and is defined by the constraints
335 * [ 1 ]
336 * A_i [ x ] >= 0
338 * then the resulting set is of dimension n*(1+d) and has as contraints
340 * [ a_i ]
341 * A_i [ x_i ] >= 0
343 * a_i >= 0
345 * \sum_i x_{i,1} = 1
347 static struct isl_basic_set *wrap_constraints(struct isl_set *set)
349 struct isl_basic_set *lp;
350 unsigned n_eq;
351 unsigned n_ineq;
352 int i, j, k;
353 unsigned dim, lp_dim;
355 if (!set)
356 return NULL;
358 dim = 1 + isl_set_n_dim(set);
359 n_eq = 1;
360 n_ineq = set->n;
361 for (i = 0; i < set->n; ++i) {
362 n_eq += set->p[i]->n_eq;
363 n_ineq += set->p[i]->n_ineq;
365 lp = isl_basic_set_alloc(set->ctx, 0, dim * set->n, 0, n_eq, n_ineq);
366 if (!lp)
367 return NULL;
368 lp_dim = isl_basic_set_n_dim(lp);
369 k = isl_basic_set_alloc_equality(lp);
370 isl_int_set_si(lp->eq[k][0], -1);
371 for (i = 0; i < set->n; ++i) {
372 isl_int_set_si(lp->eq[k][1+dim*i], 0);
373 isl_int_set_si(lp->eq[k][1+dim*i+1], 1);
374 isl_seq_clr(lp->eq[k]+1+dim*i+2, dim-2);
376 for (i = 0; i < set->n; ++i) {
377 k = isl_basic_set_alloc_inequality(lp);
378 isl_seq_clr(lp->ineq[k], 1+lp_dim);
379 isl_int_set_si(lp->ineq[k][1+dim*i], 1);
381 for (j = 0; j < set->p[i]->n_eq; ++j) {
382 k = isl_basic_set_alloc_equality(lp);
383 isl_seq_clr(lp->eq[k], 1+dim*i);
384 isl_seq_cpy(lp->eq[k]+1+dim*i, set->p[i]->eq[j], dim);
385 isl_seq_clr(lp->eq[k]+1+dim*(i+1), dim*(set->n-i-1));
388 for (j = 0; j < set->p[i]->n_ineq; ++j) {
389 k = isl_basic_set_alloc_inequality(lp);
390 isl_seq_clr(lp->ineq[k], 1+dim*i);
391 isl_seq_cpy(lp->ineq[k]+1+dim*i, set->p[i]->ineq[j], dim);
392 isl_seq_clr(lp->ineq[k]+1+dim*(i+1), dim*(set->n-i-1));
395 return lp;
398 /* Given a facet "facet" of the convex hull of "set" and a facet "ridge"
399 * of that facet, compute the other facet of the convex hull that contains
400 * the ridge.
402 * We first transform the set such that the facet constraint becomes
404 * x_1 >= 0
406 * I.e., the facet lies in
408 * x_1 = 0
410 * and on that facet, the constraint that defines the ridge is
412 * x_2 >= 0
414 * (This transformation is not strictly needed, all that is needed is
415 * that the ridge contains the origin.)
417 * Since the ridge contains the origin, the cone of the convex hull
418 * will be of the form
420 * x_1 >= 0
421 * x_2 >= a x_1
423 * with this second constraint defining the new facet.
424 * The constant a is obtained by settting x_1 in the cone of the
425 * convex hull to 1 and minimizing x_2.
426 * Now, each element in the cone of the convex hull is the sum
427 * of elements in the cones of the basic sets.
428 * If a_i is the dilation factor of basic set i, then the problem
429 * we need to solve is
431 * min \sum_i x_{i,2}
432 * st
433 * \sum_i x_{i,1} = 1
434 * a_i >= 0
435 * [ a_i ]
436 * A [ x_i ] >= 0
438 * with
439 * [ 1 ]
440 * A_i [ x_i ] >= 0
442 * the constraints of each (transformed) basic set.
443 * If a = n/d, then the constraint defining the new facet (in the transformed
444 * space) is
446 * -n x_1 + d x_2 >= 0
448 * In the original space, we need to take the same combination of the
449 * corresponding constraints "facet" and "ridge".
451 * If a = -infty = "-1/0", then we just return the original facet constraint.
452 * This means that the facet is unbounded, but has a bounded intersection
453 * with the union of sets.
455 static isl_int *wrap_facet(struct isl_set *set, isl_int *facet, isl_int *ridge)
457 int i;
458 struct isl_mat *T = NULL;
459 struct isl_basic_set *lp = NULL;
460 struct isl_vec *obj;
461 enum isl_lp_result res;
462 isl_int num, den;
463 unsigned dim;
465 set = isl_set_copy(set);
467 dim = 1 + isl_set_n_dim(set);
468 T = isl_mat_alloc(set->ctx, 3, dim);
469 if (!T)
470 goto error;
471 isl_int_set_si(T->row[0][0], 1);
472 isl_seq_clr(T->row[0]+1, dim - 1);
473 isl_seq_cpy(T->row[1], facet, dim);
474 isl_seq_cpy(T->row[2], ridge, dim);
475 T = isl_mat_right_inverse(set->ctx, T);
476 set = isl_set_preimage(set, T);
477 T = NULL;
478 if (!set)
479 goto error;
480 lp = wrap_constraints(set);
481 obj = isl_vec_alloc(set->ctx, 1 + dim*set->n);
482 if (!obj)
483 goto error;
484 isl_int_set_si(obj->block.data[0], 0);
485 for (i = 0; i < set->n; ++i) {
486 isl_seq_clr(obj->block.data + 1 + dim*i, 2);
487 isl_int_set_si(obj->block.data[1 + dim*i+2], 1);
488 isl_seq_clr(obj->block.data + 1 + dim*i+3, dim-3);
490 isl_int_init(num);
491 isl_int_init(den);
492 res = isl_solve_lp((struct isl_basic_map *)lp, 0,
493 obj->block.data, set->ctx->one, &num, &den);
494 if (res == isl_lp_ok) {
495 isl_int_neg(num, num);
496 isl_seq_combine(facet, num, facet, den, ridge, dim);
498 isl_int_clear(num);
499 isl_int_clear(den);
500 isl_vec_free(set->ctx, obj);
501 isl_basic_set_free(lp);
502 isl_set_free(set);
503 isl_assert(set->ctx, res == isl_lp_ok || res == isl_lp_unbounded,
504 return NULL);
505 return facet;
506 error:
507 isl_basic_set_free(lp);
508 isl_mat_free(set->ctx, T);
509 isl_set_free(set);
510 return NULL;
513 /* Given a set of d linearly independent bounding constraints of the
514 * convex hull of "set", compute the constraint of a facet of "set".
516 * We first compute the intersection with the first bounding hyperplane
517 * and remove the component corresponding to this hyperplane from
518 * other bounds (in homogeneous space).
519 * We then wrap around one of the remaining bounding constraints
520 * and continue the process until all bounding constraints have been
521 * taken into account.
522 * The resulting linear combination of the bounding constraints will
523 * correspond to a facet of the convex hull.
525 static struct isl_mat *initial_facet_constraint(struct isl_ctx *ctx,
526 struct isl_set *set, struct isl_mat *bounds)
528 struct isl_set *slice = NULL;
529 struct isl_basic_set *face = NULL;
530 struct isl_mat *m, *U, *Q;
531 int i;
532 unsigned dim = isl_set_n_dim(set);
534 isl_assert(ctx, set->n > 0, goto error);
535 isl_assert(ctx, bounds->n_row == dim, goto error);
537 while (bounds->n_row > 1) {
538 slice = isl_set_copy(set);
539 slice = isl_set_add_equality(ctx, slice, bounds->row[0]);
540 face = isl_set_affine_hull(slice);
541 if (!face)
542 goto error;
543 if (face->n_eq == 1) {
544 isl_basic_set_free(face);
545 break;
547 m = isl_mat_alloc(ctx, 1 + face->n_eq, 1 + dim);
548 if (!m)
549 goto error;
550 isl_int_set_si(m->row[0][0], 1);
551 isl_seq_clr(m->row[0]+1, dim);
552 for (i = 0; i < face->n_eq; ++i)
553 isl_seq_cpy(m->row[1 + i], face->eq[i], 1 + dim);
554 U = isl_mat_right_inverse(ctx, m);
555 Q = isl_mat_right_inverse(ctx, isl_mat_copy(ctx, U));
556 U = isl_mat_drop_cols(ctx, U, 1 + face->n_eq,
557 dim - face->n_eq);
558 Q = isl_mat_drop_rows(ctx, Q, 1 + face->n_eq,
559 dim - face->n_eq);
560 U = isl_mat_drop_cols(ctx, U, 0, 1);
561 Q = isl_mat_drop_rows(ctx, Q, 0, 1);
562 bounds = isl_mat_product(ctx, bounds, U);
563 bounds = isl_mat_product(ctx, bounds, Q);
564 while (isl_seq_first_non_zero(bounds->row[bounds->n_row-1],
565 bounds->n_col) == -1) {
566 bounds->n_row--;
567 isl_assert(ctx, bounds->n_row > 1, goto error);
569 if (!wrap_facet(set, bounds->row[0],
570 bounds->row[bounds->n_row-1]))
571 goto error;
572 isl_basic_set_free(face);
573 bounds->n_row--;
575 return bounds;
576 error:
577 isl_basic_set_free(face);
578 isl_mat_free(ctx, bounds);
579 return NULL;
582 /* Given the bounding constraint "c" of a facet of the convex hull of "set",
583 * compute a hyperplane description of the facet, i.e., compute the facets
584 * of the facet.
586 * We compute an affine transformation that transforms the constraint
588 * [ 1 ]
589 * c [ x ] = 0
591 * to the constraint
593 * z_1 = 0
595 * by computing the right inverse U of a matrix that starts with the rows
597 * [ 1 0 ]
598 * [ c ]
600 * Then
601 * [ 1 ] [ 1 ]
602 * [ x ] = U [ z ]
603 * and
604 * [ 1 ] [ 1 ]
605 * [ z ] = Q [ x ]
607 * with Q = U^{-1}
608 * Since z_1 is zero, we can drop this variable as well as the corresponding
609 * column of U to obtain
611 * [ 1 ] [ 1 ]
612 * [ x ] = U' [ z' ]
613 * and
614 * [ 1 ] [ 1 ]
615 * [ z' ] = Q' [ x ]
617 * with Q' equal to Q, but without the corresponding row.
618 * After computing the facets of the facet in the z' space,
619 * we convert them back to the x space through Q.
621 static struct isl_basic_set *compute_facet(struct isl_set *set, isl_int *c)
623 struct isl_mat *m, *U, *Q;
624 struct isl_basic_set *facet = NULL;
625 struct isl_ctx *ctx;
626 unsigned dim;
628 ctx = set->ctx;
629 set = isl_set_copy(set);
630 dim = isl_set_n_dim(set);
631 m = isl_mat_alloc(set->ctx, 2, 1 + dim);
632 if (!m)
633 goto error;
634 isl_int_set_si(m->row[0][0], 1);
635 isl_seq_clr(m->row[0]+1, dim);
636 isl_seq_cpy(m->row[1], c, 1+dim);
637 U = isl_mat_right_inverse(set->ctx, m);
638 Q = isl_mat_right_inverse(set->ctx, isl_mat_copy(set->ctx, U));
639 U = isl_mat_drop_cols(set->ctx, U, 1, 1);
640 Q = isl_mat_drop_rows(set->ctx, Q, 1, 1);
641 set = isl_set_preimage(set, U);
642 facet = uset_convex_hull_wrap_bounded(set);
643 facet = isl_basic_set_preimage(facet, Q);
644 isl_assert(ctx, facet->n_eq == 0, goto error);
645 return facet;
646 error:
647 isl_basic_set_free(facet);
648 isl_set_free(set);
649 return NULL;
652 /* Given an initial facet constraint, compute the remaining facets.
653 * We do this by running through all facets found so far and computing
654 * the adjacent facets through wrapping, adding those facets that we
655 * hadn't already found before.
657 * For each facet we have found so far, we first compute its facets
658 * in the resulting convex hull. That is, we compute the ridges
659 * of the resulting convex hull contained in the facet.
660 * We also compute the corresponding facet in the current approximation
661 * of the convex hull. There is no need to wrap around the ridges
662 * in this facet since that would result in a facet that is already
663 * present in the current approximation.
665 * This function can still be significantly optimized by checking which of
666 * the facets of the basic sets are also facets of the convex hull and
667 * using all the facets so far to help in constructing the facets of the
668 * facets
669 * and/or
670 * using the technique in section "3.1 Ridge Generation" of
671 * "Extended Convex Hull" by Fukuda et al.
673 static struct isl_basic_set *extend(struct isl_basic_set *hull,
674 struct isl_set *set)
676 int i, j, f;
677 int k;
678 struct isl_basic_set *facet = NULL;
679 struct isl_basic_set *hull_facet = NULL;
680 unsigned total;
681 unsigned dim;
683 isl_assert(set->ctx, set->n > 0, goto error);
685 dim = isl_set_n_dim(set);
687 for (i = 0; i < hull->n_ineq; ++i) {
688 facet = compute_facet(set, hull->ineq[i]);
689 facet = isl_basic_set_add_equality(facet->ctx, facet, hull->ineq[i]);
690 facet = isl_basic_set_gauss(facet, NULL);
691 facet = isl_basic_set_normalize_constraints(facet);
692 hull_facet = isl_basic_set_copy(hull);
693 hull_facet = isl_basic_set_add_equality(hull_facet->ctx, hull_facet, hull->ineq[i]);
694 hull_facet = isl_basic_set_gauss(hull_facet, NULL);
695 hull_facet = isl_basic_set_normalize_constraints(hull_facet);
696 if (!facet)
697 goto error;
698 hull = isl_basic_set_cow(hull);
699 hull = isl_basic_set_extend_dim(hull,
700 isl_dim_copy(hull->dim), 0, 0, facet->n_ineq);
701 for (j = 0; j < facet->n_ineq; ++j) {
702 for (f = 0; f < hull_facet->n_ineq; ++f)
703 if (isl_seq_eq(facet->ineq[j],
704 hull_facet->ineq[f], 1 + dim))
705 break;
706 if (f < hull_facet->n_ineq)
707 continue;
708 k = isl_basic_set_alloc_inequality(hull);
709 if (k < 0)
710 goto error;
711 isl_seq_cpy(hull->ineq[k], hull->ineq[i], 1+dim);
712 if (!wrap_facet(set, hull->ineq[k], facet->ineq[j]))
713 goto error;
715 isl_basic_set_free(hull_facet);
716 isl_basic_set_free(facet);
718 hull = isl_basic_set_simplify(hull);
719 hull = isl_basic_set_finalize(hull);
720 return hull;
721 error:
722 isl_basic_set_free(hull_facet);
723 isl_basic_set_free(facet);
724 isl_basic_set_free(hull);
725 return NULL;
728 /* Special case for computing the convex hull of a one dimensional set.
729 * We simply collect the lower and upper bounds of each basic set
730 * and the biggest of those.
732 static struct isl_basic_set *convex_hull_1d(struct isl_ctx *ctx,
733 struct isl_set *set)
735 struct isl_mat *c = NULL;
736 isl_int *lower = NULL;
737 isl_int *upper = NULL;
738 int i, j, k;
739 isl_int a, b;
740 struct isl_basic_set *hull;
742 for (i = 0; i < set->n; ++i) {
743 set->p[i] = isl_basic_set_simplify(set->p[i]);
744 if (!set->p[i])
745 goto error;
747 set = isl_set_remove_empty_parts(set);
748 if (!set)
749 goto error;
750 isl_assert(ctx, set->n > 0, goto error);
751 c = isl_mat_alloc(ctx, 2, 2);
752 if (!c)
753 goto error;
755 if (set->p[0]->n_eq > 0) {
756 isl_assert(ctx, set->p[0]->n_eq == 1, goto error);
757 lower = c->row[0];
758 upper = c->row[1];
759 if (isl_int_is_pos(set->p[0]->eq[0][1])) {
760 isl_seq_cpy(lower, set->p[0]->eq[0], 2);
761 isl_seq_neg(upper, set->p[0]->eq[0], 2);
762 } else {
763 isl_seq_neg(lower, set->p[0]->eq[0], 2);
764 isl_seq_cpy(upper, set->p[0]->eq[0], 2);
766 } else {
767 for (j = 0; j < set->p[0]->n_ineq; ++j) {
768 if (isl_int_is_pos(set->p[0]->ineq[j][1])) {
769 lower = c->row[0];
770 isl_seq_cpy(lower, set->p[0]->ineq[j], 2);
771 } else {
772 upper = c->row[1];
773 isl_seq_cpy(upper, set->p[0]->ineq[j], 2);
778 isl_int_init(a);
779 isl_int_init(b);
780 for (i = 0; i < set->n; ++i) {
781 struct isl_basic_set *bset = set->p[i];
782 int has_lower = 0;
783 int has_upper = 0;
785 for (j = 0; j < bset->n_eq; ++j) {
786 has_lower = 1;
787 has_upper = 1;
788 if (lower) {
789 isl_int_mul(a, lower[0], bset->eq[j][1]);
790 isl_int_mul(b, lower[1], bset->eq[j][0]);
791 if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
792 isl_seq_cpy(lower, bset->eq[j], 2);
793 if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
794 isl_seq_neg(lower, bset->eq[j], 2);
796 if (upper) {
797 isl_int_mul(a, upper[0], bset->eq[j][1]);
798 isl_int_mul(b, upper[1], bset->eq[j][0]);
799 if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
800 isl_seq_neg(upper, bset->eq[j], 2);
801 if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
802 isl_seq_cpy(upper, bset->eq[j], 2);
805 for (j = 0; j < bset->n_ineq; ++j) {
806 if (isl_int_is_pos(bset->ineq[j][1]))
807 has_lower = 1;
808 if (isl_int_is_neg(bset->ineq[j][1]))
809 has_upper = 1;
810 if (lower && isl_int_is_pos(bset->ineq[j][1])) {
811 isl_int_mul(a, lower[0], bset->ineq[j][1]);
812 isl_int_mul(b, lower[1], bset->ineq[j][0]);
813 if (isl_int_lt(a, b))
814 isl_seq_cpy(lower, bset->ineq[j], 2);
816 if (upper && isl_int_is_neg(bset->ineq[j][1])) {
817 isl_int_mul(a, upper[0], bset->ineq[j][1]);
818 isl_int_mul(b, upper[1], bset->ineq[j][0]);
819 if (isl_int_gt(a, b))
820 isl_seq_cpy(upper, bset->ineq[j], 2);
823 if (!has_lower)
824 lower = NULL;
825 if (!has_upper)
826 upper = NULL;
828 isl_int_clear(a);
829 isl_int_clear(b);
831 hull = isl_basic_set_alloc(ctx, 0, 1, 0, 0, 2);
832 hull = isl_basic_set_set_rational(hull);
833 if (!hull)
834 goto error;
835 if (lower) {
836 k = isl_basic_set_alloc_inequality(hull);
837 isl_seq_cpy(hull->ineq[k], lower, 2);
839 if (upper) {
840 k = isl_basic_set_alloc_inequality(hull);
841 isl_seq_cpy(hull->ineq[k], upper, 2);
843 hull = isl_basic_set_finalize(hull);
844 isl_set_free(set);
845 isl_mat_free(ctx, c);
846 return hull;
847 error:
848 isl_set_free(set);
849 isl_mat_free(ctx, c);
850 return NULL;
853 /* Project out final n dimensions using Fourier-Motzkin */
854 static struct isl_set *set_project_out(struct isl_ctx *ctx,
855 struct isl_set *set, unsigned n)
857 return isl_set_remove_dims(set, isl_set_n_dim(set) - n, n);
860 static struct isl_basic_set *convex_hull_0d(struct isl_set *set)
862 struct isl_basic_set *convex_hull;
864 if (!set)
865 return NULL;
867 if (isl_set_is_empty(set))
868 convex_hull = isl_basic_set_empty(isl_dim_copy(set->dim));
869 else
870 convex_hull = isl_basic_set_universe(isl_dim_copy(set->dim));
871 isl_set_free(set);
872 return convex_hull;
875 /* Compute the convex hull of a pair of basic sets without any parameters or
876 * integer divisions using Fourier-Motzkin elimination.
877 * The convex hull is the set of all points that can be written as
878 * the sum of points from both basic sets (in homogeneous coordinates).
879 * We set up the constraints in a space with dimensions for each of
880 * the three sets and then project out the dimensions corresponding
881 * to the two original basic sets, retaining only those corresponding
882 * to the convex hull.
884 static struct isl_basic_set *convex_hull_pair(struct isl_basic_set *bset1,
885 struct isl_basic_set *bset2)
887 int i, j, k;
888 struct isl_basic_set *bset[2];
889 struct isl_basic_set *hull = NULL;
890 unsigned dim;
892 if (!bset1 || !bset2)
893 goto error;
895 dim = isl_basic_set_n_dim(bset1);
896 hull = isl_basic_set_alloc(bset1->ctx, 0, 2 + 3 * dim, 0,
897 1 + dim + bset1->n_eq + bset2->n_eq,
898 2 + bset1->n_ineq + bset2->n_ineq);
899 bset[0] = bset1;
900 bset[1] = bset2;
901 for (i = 0; i < 2; ++i) {
902 for (j = 0; j < bset[i]->n_eq; ++j) {
903 k = isl_basic_set_alloc_equality(hull);
904 if (k < 0)
905 goto error;
906 isl_seq_clr(hull->eq[k], (i+1) * (1+dim));
907 isl_seq_clr(hull->eq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
908 isl_seq_cpy(hull->eq[k]+(i+1)*(1+dim), bset[i]->eq[j],
909 1+dim);
911 for (j = 0; j < bset[i]->n_ineq; ++j) {
912 k = isl_basic_set_alloc_inequality(hull);
913 if (k < 0)
914 goto error;
915 isl_seq_clr(hull->ineq[k], (i+1) * (1+dim));
916 isl_seq_clr(hull->ineq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
917 isl_seq_cpy(hull->ineq[k]+(i+1)*(1+dim),
918 bset[i]->ineq[j], 1+dim);
920 k = isl_basic_set_alloc_inequality(hull);
921 if (k < 0)
922 goto error;
923 isl_seq_clr(hull->ineq[k], 1+2+3*dim);
924 isl_int_set_si(hull->ineq[k][(i+1)*(1+dim)], 1);
926 for (j = 0; j < 1+dim; ++j) {
927 k = isl_basic_set_alloc_equality(hull);
928 if (k < 0)
929 goto error;
930 isl_seq_clr(hull->eq[k], 1+2+3*dim);
931 isl_int_set_si(hull->eq[k][j], -1);
932 isl_int_set_si(hull->eq[k][1+dim+j], 1);
933 isl_int_set_si(hull->eq[k][2*(1+dim)+j], 1);
935 hull = isl_basic_set_set_rational(hull);
936 hull = isl_basic_set_remove_dims(hull, dim, 2*(1+dim));
937 hull = isl_basic_set_convex_hull(hull);
938 isl_basic_set_free(bset1);
939 isl_basic_set_free(bset2);
940 return hull;
941 error:
942 isl_basic_set_free(bset1);
943 isl_basic_set_free(bset2);
944 isl_basic_set_free(hull);
945 return NULL;
948 /* Compute the convex hull of a set without any parameters or
949 * integer divisions using Fourier-Motzkin elimination.
950 * In each step, we combined two basic sets until only one
951 * basic set is left.
953 static struct isl_basic_set *uset_convex_hull_elim(struct isl_set *set)
955 struct isl_basic_set *convex_hull = NULL;
957 convex_hull = isl_set_copy_basic_set(set);
958 set = isl_set_drop_basic_set(set, convex_hull);
959 if (!set)
960 goto error;
961 while (set->n > 0) {
962 struct isl_basic_set *t;
963 t = isl_set_copy_basic_set(set);
964 if (!t)
965 goto error;
966 set = isl_set_drop_basic_set(set, t);
967 if (!set)
968 goto error;
969 convex_hull = convex_hull_pair(convex_hull, t);
971 isl_set_free(set);
972 return convex_hull;
973 error:
974 isl_set_free(set);
975 isl_basic_set_free(convex_hull);
976 return NULL;
979 /* Compute an initial hull for wrapping containing a single initial
980 * facet by first computing bounds on the set and then using these
981 * bounds to construct an initial facet.
982 * This function is a remnant of an older implementation where the
983 * bounds were also used to check whether the set was bounded.
984 * Since this function will now only be called when we know the
985 * set to be bounded, the initial facet should probably be constructed
986 * by simply using the coordinate directions instead.
988 static struct isl_basic_set *initial_hull(struct isl_basic_set *hull,
989 struct isl_set *set)
991 struct isl_mat *bounds = NULL;
992 unsigned dim;
993 int k;
995 if (!hull)
996 goto error;
997 bounds = independent_bounds(set->ctx, set);
998 if (!bounds)
999 goto error;
1000 isl_assert(set->ctx, bounds->n_row == isl_set_n_dim(set), goto error);
1001 bounds = initial_facet_constraint(set->ctx, set, bounds);
1002 if (!bounds)
1003 goto error;
1004 k = isl_basic_set_alloc_inequality(hull);
1005 if (k < 0)
1006 goto error;
1007 dim = isl_set_n_dim(set);
1008 isl_assert(set->ctx, 1 + dim == bounds->n_col, goto error);
1009 isl_seq_cpy(hull->ineq[k], bounds->row[0], bounds->n_col);
1010 isl_mat_free(set->ctx, bounds);
1012 return hull;
1013 error:
1014 isl_basic_set_free(hull);
1015 isl_mat_free(set->ctx, bounds);
1016 return NULL;
1019 struct max_constraint {
1020 struct isl_mat *c;
1021 int count;
1022 int ineq;
1025 static int max_constraint_equal(const void *entry, const void *val)
1027 struct max_constraint *a = (struct max_constraint *)entry;
1028 isl_int *b = (isl_int *)val;
1030 return isl_seq_eq(a->c->row[0] + 1, b, a->c->n_col - 1);
1033 static void update_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
1034 isl_int *con, unsigned len, int n, int ineq)
1036 struct isl_hash_table_entry *entry;
1037 struct max_constraint *c;
1038 uint32_t c_hash;
1040 c_hash = isl_seq_hash(con + 1, len, isl_hash_init());
1041 entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
1042 con + 1, 0);
1043 if (!entry)
1044 return;
1045 c = entry->data;
1046 if (c->count < n) {
1047 isl_hash_table_remove(ctx, table, entry);
1048 return;
1050 c->count++;
1051 if (isl_int_gt(c->c->row[0][0], con[0]))
1052 return;
1053 if (isl_int_eq(c->c->row[0][0], con[0])) {
1054 if (ineq)
1055 c->ineq = ineq;
1056 return;
1058 c->c = isl_mat_cow(ctx, c->c);
1059 isl_int_set(c->c->row[0][0], con[0]);
1060 c->ineq = ineq;
1063 /* Check whether the constraint hash table "table" constains the constraint
1064 * "con".
1066 static int has_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
1067 isl_int *con, unsigned len, int n)
1069 struct isl_hash_table_entry *entry;
1070 struct max_constraint *c;
1071 uint32_t c_hash;
1073 c_hash = isl_seq_hash(con + 1, len, isl_hash_init());
1074 entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
1075 con + 1, 0);
1076 if (!entry)
1077 return 0;
1078 c = entry->data;
1079 if (c->count < n)
1080 return 0;
1081 return isl_int_eq(c->c->row[0][0], con[0]);
1084 /* Check for inequality constraints of a basic set without equalities
1085 * such that the same or more stringent copies of the constraint appear
1086 * in all of the basic sets. Such constraints are necessarily facet
1087 * constraints of the convex hull.
1089 * If the resulting basic set is by chance identical to one of
1090 * the basic sets in "set", then we know that this basic set contains
1091 * all other basic sets and is therefore the convex hull of set.
1092 * In this case we set *is_hull to 1.
1094 static struct isl_basic_set *common_constraints(struct isl_basic_set *hull,
1095 struct isl_set *set, int *is_hull)
1097 int i, j, s, n;
1098 int min_constraints;
1099 int best;
1100 struct max_constraint *constraints = NULL;
1101 struct isl_hash_table *table = NULL;
1102 unsigned total;
1104 *is_hull = 0;
1106 for (i = 0; i < set->n; ++i)
1107 if (set->p[i]->n_eq == 0)
1108 break;
1109 if (i >= set->n)
1110 return hull;
1111 min_constraints = set->p[i]->n_ineq;
1112 best = i;
1113 for (i = best + 1; i < set->n; ++i) {
1114 if (set->p[i]->n_eq != 0)
1115 continue;
1116 if (set->p[i]->n_ineq >= min_constraints)
1117 continue;
1118 min_constraints = set->p[i]->n_ineq;
1119 best = i;
1121 constraints = isl_calloc_array(hull->ctx, struct max_constraint,
1122 min_constraints);
1123 if (!constraints)
1124 return hull;
1125 table = isl_alloc_type(hull->ctx, struct isl_hash_table);
1126 if (isl_hash_table_init(hull->ctx, table, min_constraints))
1127 goto error;
1129 total = isl_dim_total(set->dim);
1130 for (i = 0; i < set->p[best]->n_ineq; ++i) {
1131 constraints[i].c = isl_mat_sub_alloc(hull->ctx,
1132 set->p[best]->ineq + i, 0, 1, 0, 1 + total);
1133 if (!constraints[i].c)
1134 goto error;
1135 constraints[i].ineq = 1;
1137 for (i = 0; i < min_constraints; ++i) {
1138 struct isl_hash_table_entry *entry;
1139 uint32_t c_hash;
1140 c_hash = isl_seq_hash(constraints[i].c->row[0] + 1, total,
1141 isl_hash_init());
1142 entry = isl_hash_table_find(hull->ctx, table, c_hash,
1143 max_constraint_equal, constraints[i].c->row[0] + 1, 1);
1144 if (!entry)
1145 goto error;
1146 isl_assert(hull->ctx, !entry->data, goto error);
1147 entry->data = &constraints[i];
1150 n = 0;
1151 for (s = 0; s < set->n; ++s) {
1152 if (s == best)
1153 continue;
1155 for (i = 0; i < set->p[s]->n_eq; ++i) {
1156 isl_int *eq = set->p[s]->eq[i];
1157 for (j = 0; j < 2; ++j) {
1158 isl_seq_neg(eq, eq, 1 + total);
1159 update_constraint(hull->ctx, table,
1160 eq, total, n, 0);
1163 for (i = 0; i < set->p[s]->n_ineq; ++i) {
1164 isl_int *ineq = set->p[s]->ineq[i];
1165 update_constraint(hull->ctx, table, ineq, total, n,
1166 set->p[s]->n_eq == 0);
1168 ++n;
1171 for (i = 0; i < min_constraints; ++i) {
1172 if (constraints[i].count < n)
1173 continue;
1174 if (!constraints[i].ineq)
1175 continue;
1176 j = isl_basic_set_alloc_inequality(hull);
1177 if (j < 0)
1178 goto error;
1179 isl_seq_cpy(hull->ineq[j], constraints[i].c->row[0], 1 + total);
1182 for (s = 0; s < set->n; ++s) {
1183 if (set->p[s]->n_eq)
1184 continue;
1185 if (set->p[s]->n_ineq != hull->n_ineq)
1186 continue;
1187 for (i = 0; i < set->p[s]->n_ineq; ++i) {
1188 isl_int *ineq = set->p[s]->ineq[i];
1189 if (!has_constraint(hull->ctx, table, ineq, total, n))
1190 break;
1192 if (i == set->p[s]->n_ineq)
1193 *is_hull = 1;
1196 isl_hash_table_clear(table);
1197 for (i = 0; i < min_constraints; ++i)
1198 isl_mat_free(hull->ctx, constraints[i].c);
1199 free(constraints);
1200 free(table);
1201 return hull;
1202 error:
1203 isl_hash_table_clear(table);
1204 free(table);
1205 if (constraints)
1206 for (i = 0; i < min_constraints; ++i)
1207 isl_mat_free(hull->ctx, constraints[i].c);
1208 free(constraints);
1209 return hull;
1212 /* Create a template for the convex hull of "set" and fill it up
1213 * obvious facet constraints, if any. If the result happens to
1214 * be the convex hull of "set" then *is_hull is set to 1.
1216 static struct isl_basic_set *proto_hull(struct isl_set *set, int *is_hull)
1218 struct isl_basic_set *hull;
1219 unsigned n_ineq;
1220 int i;
1222 n_ineq = 1;
1223 for (i = 0; i < set->n; ++i) {
1224 n_ineq += set->p[i]->n_eq;
1225 n_ineq += set->p[i]->n_ineq;
1227 hull = isl_basic_set_alloc_dim(isl_dim_copy(set->dim), 0, 0, n_ineq);
1228 hull = isl_basic_set_set_rational(hull);
1229 if (!hull)
1230 return NULL;
1231 return common_constraints(hull, set, is_hull);
1234 static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set)
1236 struct isl_basic_set *hull;
1237 int is_hull;
1239 hull = proto_hull(set, &is_hull);
1240 if (hull && !is_hull) {
1241 if (hull->n_ineq == 0)
1242 hull = initial_hull(hull, set);
1243 hull = extend(hull, set);
1245 isl_set_free(set);
1247 return hull;
1250 static int isl_basic_set_is_bounded(struct isl_basic_set *bset)
1252 struct isl_tab *tab;
1253 int bounded;
1255 tab = isl_tab_from_recession_cone((struct isl_basic_map *)bset);
1256 bounded = isl_tab_cone_is_bounded(bset->ctx, tab);
1257 isl_tab_free(bset->ctx, tab);
1258 return bounded;
1261 static int isl_set_is_bounded(struct isl_set *set)
1263 int i;
1265 for (i = 0; i < set->n; ++i) {
1266 int bounded = isl_basic_set_is_bounded(set->p[i]);
1267 if (!bounded || bounded < 0)
1268 return bounded;
1270 return 1;
1273 /* Compute the convex hull of a set without any parameters or
1274 * integer divisions. Depending on whether the set is bounded,
1275 * we pass control to the wrapping based convex hull or
1276 * the Fourier-Motzkin elimination based convex hull.
1277 * We also handle a few special cases before checking the boundedness.
1279 static struct isl_basic_set *uset_convex_hull(struct isl_set *set)
1281 int i;
1282 struct isl_basic_set *convex_hull = NULL;
1284 if (isl_set_n_dim(set) == 0)
1285 return convex_hull_0d(set);
1287 set = isl_set_coalesce(set);
1288 set = isl_set_set_rational(set);
1290 if (!set)
1291 goto error;
1292 if (!set)
1293 return NULL;
1294 if (set->n == 1) {
1295 convex_hull = isl_basic_set_copy(set->p[0]);
1296 isl_set_free(set);
1297 return convex_hull;
1299 if (isl_set_n_dim(set) == 1)
1300 return convex_hull_1d(set->ctx, set);
1302 if (!isl_set_is_bounded(set))
1303 return uset_convex_hull_elim(set);
1305 return uset_convex_hull_wrap(set);
1306 error:
1307 isl_set_free(set);
1308 isl_basic_set_free(convex_hull);
1309 return NULL;
1312 /* This is the core procedure, where "set" is a "pure" set, i.e.,
1313 * without parameters or divs and where the convex hull of set is
1314 * known to be full-dimensional.
1316 static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set)
1318 int i;
1319 struct isl_basic_set *convex_hull = NULL;
1321 if (isl_set_n_dim(set) == 0) {
1322 convex_hull = isl_basic_set_universe(isl_dim_copy(set->dim));
1323 isl_set_free(set);
1324 convex_hull = isl_basic_set_set_rational(convex_hull);
1325 return convex_hull;
1328 set = isl_set_set_rational(set);
1330 if (!set)
1331 goto error;
1332 set = isl_set_normalize(set);
1333 if (!set)
1334 goto error;
1335 if (set->n == 1) {
1336 convex_hull = isl_basic_set_copy(set->p[0]);
1337 isl_set_free(set);
1338 return convex_hull;
1340 if (isl_set_n_dim(set) == 1)
1341 return convex_hull_1d(set->ctx, set);
1343 return uset_convex_hull_wrap(set);
1344 error:
1345 isl_set_free(set);
1346 return NULL;
1349 /* Compute the convex hull of set "set" with affine hull "affine_hull",
1350 * We first remove the equalities (transforming the set), compute the
1351 * convex hull of the transformed set and then add the equalities back
1352 * (after performing the inverse transformation.
1354 static struct isl_basic_set *modulo_affine_hull(struct isl_ctx *ctx,
1355 struct isl_set *set, struct isl_basic_set *affine_hull)
1357 struct isl_mat *T;
1358 struct isl_mat *T2;
1359 struct isl_basic_set *dummy;
1360 struct isl_basic_set *convex_hull;
1362 dummy = isl_basic_set_remove_equalities(
1363 isl_basic_set_copy(affine_hull), &T, &T2);
1364 if (!dummy)
1365 goto error;
1366 isl_basic_set_free(dummy);
1367 set = isl_set_preimage(set, T);
1368 convex_hull = uset_convex_hull(set);
1369 convex_hull = isl_basic_set_preimage(convex_hull, T2);
1370 convex_hull = isl_basic_set_intersect(convex_hull, affine_hull);
1371 return convex_hull;
1372 error:
1373 isl_basic_set_free(affine_hull);
1374 isl_set_free(set);
1375 return NULL;
1378 /* Compute the convex hull of a map.
1380 * The implementation was inspired by "Extended Convex Hull" by Fukuda et al.,
1381 * specifically, the wrapping of facets to obtain new facets.
1383 struct isl_basic_map *isl_map_convex_hull(struct isl_map *map)
1385 struct isl_basic_set *bset;
1386 struct isl_basic_map *model = NULL;
1387 struct isl_basic_set *affine_hull = NULL;
1388 struct isl_basic_map *convex_hull = NULL;
1389 struct isl_set *set = NULL;
1390 struct isl_ctx *ctx;
1392 if (!map)
1393 goto error;
1395 ctx = map->ctx;
1396 if (map->n == 0) {
1397 convex_hull = isl_basic_map_empty_like_map(map);
1398 isl_map_free(map);
1399 return convex_hull;
1402 map = isl_map_detect_equalities(map);
1403 map = isl_map_align_divs(map);
1404 model = isl_basic_map_copy(map->p[0]);
1405 set = isl_map_underlying_set(map);
1406 if (!set)
1407 goto error;
1409 affine_hull = isl_set_affine_hull(isl_set_copy(set));
1410 if (!affine_hull)
1411 goto error;
1412 if (affine_hull->n_eq != 0)
1413 bset = modulo_affine_hull(ctx, set, affine_hull);
1414 else {
1415 isl_basic_set_free(affine_hull);
1416 bset = uset_convex_hull(set);
1419 convex_hull = isl_basic_map_overlying_set(bset, model);
1421 ISL_F_SET(convex_hull, ISL_BASIC_MAP_NO_IMPLICIT);
1422 ISL_F_SET(convex_hull, ISL_BASIC_MAP_ALL_EQUALITIES);
1423 ISL_F_CLR(convex_hull, ISL_BASIC_MAP_RATIONAL);
1424 return convex_hull;
1425 error:
1426 isl_set_free(set);
1427 isl_basic_map_free(model);
1428 return NULL;
1431 struct isl_basic_set *isl_set_convex_hull(struct isl_set *set)
1433 return (struct isl_basic_set *)
1434 isl_map_convex_hull((struct isl_map *)set);
1437 struct sh_data_entry {
1438 struct isl_hash_table *table;
1439 struct isl_tab *tab;
1442 /* Holds the data needed during the simple hull computation.
1443 * In particular,
1444 * n the number of basic sets in the original set
1445 * hull_table a hash table of already computed constraints
1446 * in the simple hull
1447 * p for each basic set,
1448 * table a hash table of the constraints
1449 * tab the tableau corresponding to the basic set
1451 struct sh_data {
1452 struct isl_ctx *ctx;
1453 unsigned n;
1454 struct isl_hash_table *hull_table;
1455 struct sh_data_entry p[0];
1458 static void sh_data_free(struct sh_data *data)
1460 int i;
1462 if (!data)
1463 return;
1464 isl_hash_table_free(data->ctx, data->hull_table);
1465 for (i = 0; i < data->n; ++i) {
1466 isl_hash_table_free(data->ctx, data->p[i].table);
1467 isl_tab_free(data->ctx, data->p[i].tab);
1469 free(data);
1472 struct ineq_cmp_data {
1473 unsigned len;
1474 isl_int *p;
1477 static int has_ineq(const void *entry, const void *val)
1479 isl_int *row = (isl_int *)entry;
1480 struct ineq_cmp_data *v = (struct ineq_cmp_data *)val;
1482 return isl_seq_eq(row + 1, v->p + 1, v->len) ||
1483 isl_seq_is_neg(row + 1, v->p + 1, v->len);
1486 static int hash_ineq(struct isl_ctx *ctx, struct isl_hash_table *table,
1487 isl_int *ineq, unsigned len)
1489 uint32_t c_hash;
1490 struct ineq_cmp_data v;
1491 struct isl_hash_table_entry *entry;
1493 v.len = len;
1494 v.p = ineq;
1495 c_hash = isl_seq_hash(ineq + 1, len, isl_hash_init());
1496 entry = isl_hash_table_find(ctx, table, c_hash, has_ineq, &v, 1);
1497 if (!entry)
1498 return - 1;
1499 entry->data = ineq;
1500 return 0;
1503 /* Fill hash table "table" with the constraints of "bset".
1504 * Equalities are added as two inequalities.
1505 * The value in the hash table is a pointer to the (in)equality of "bset".
1507 static int hash_basic_set(struct isl_hash_table *table,
1508 struct isl_basic_set *bset)
1510 int i, j;
1511 unsigned dim = isl_basic_set_total_dim(bset);
1513 for (i = 0; i < bset->n_eq; ++i) {
1514 for (j = 0; j < 2; ++j) {
1515 isl_seq_neg(bset->eq[i], bset->eq[i], 1 + dim);
1516 if (hash_ineq(bset->ctx, table, bset->eq[i], dim) < 0)
1517 return -1;
1520 for (i = 0; i < bset->n_ineq; ++i) {
1521 if (hash_ineq(bset->ctx, table, bset->ineq[i], dim) < 0)
1522 return -1;
1524 return 0;
1527 static struct sh_data *sh_data_alloc(struct isl_set *set, unsigned n_ineq)
1529 struct sh_data *data;
1530 int i;
1532 data = isl_calloc(set->ctx, struct sh_data,
1533 sizeof(struct sh_data) + set->n * sizeof(struct sh_data_entry));
1534 if (!data)
1535 return NULL;
1536 data->ctx = set->ctx;
1537 data->n = set->n;
1538 data->hull_table = isl_hash_table_alloc(set->ctx, n_ineq);
1539 if (!data->hull_table)
1540 goto error;
1541 for (i = 0; i < set->n; ++i) {
1542 data->p[i].table = isl_hash_table_alloc(set->ctx,
1543 2 * set->p[i]->n_eq + set->p[i]->n_ineq);
1544 if (!data->p[i].table)
1545 goto error;
1546 if (hash_basic_set(data->p[i].table, set->p[i]) < 0)
1547 goto error;
1549 return data;
1550 error:
1551 sh_data_free(data);
1552 return NULL;
1555 /* Check if inequality "ineq" is a bound for basic set "j" or if
1556 * it can be relaxed (by increasing the constant term) to become
1557 * a bound for that basic set. In the latter case, the constant
1558 * term is updated.
1559 * Return 1 if "ineq" is a bound
1560 * 0 if "ineq" may attain arbitrarily small values on basic set "j"
1561 * -1 if some error occurred
1563 static int is_bound(struct sh_data *data, struct isl_set *set, int j,
1564 isl_int *ineq)
1566 enum isl_lp_result res;
1567 isl_int opt;
1569 if (!data->p[j].tab) {
1570 data->p[j].tab = isl_tab_from_basic_set(set->p[j]);
1571 if (!data->p[j].tab)
1572 return -1;
1575 isl_int_init(opt);
1577 res = isl_tab_min(data->ctx, data->p[j].tab, ineq, data->ctx->one,
1578 &opt, NULL);
1579 if (res == isl_lp_ok && isl_int_is_neg(opt))
1580 isl_int_sub(ineq[0], ineq[0], opt);
1582 isl_int_clear(opt);
1584 return res == isl_lp_ok ? 1 :
1585 res == isl_lp_unbounded ? 0 : -1;
1588 /* Check if inequality "ineq" from basic set "i" can be relaxed to
1589 * become a bound on the whole set. If so, add the (relaxed) inequality
1590 * to "hull".
1592 * We first check if "hull" already contains a translate of the inequality.
1593 * If so, we are done.
1594 * Then, we check if any of the previous basic sets contains a translate
1595 * of the inequality. If so, then we have already considered this
1596 * inequality and we are done.
1597 * Otherwise, for each basic set other than "i", we check if the inequality
1598 * is a bound on the basic set.
1599 * For previous basic sets, we know that they do not contain a translate
1600 * of the inequality, so we directly call is_bound.
1601 * For following basic sets, we first check if a translate of the
1602 * inequality appears in its description and if so directly update
1603 * the inequality accordingly.
1605 static struct isl_basic_set *add_bound(struct isl_basic_set *hull,
1606 struct sh_data *data, struct isl_set *set, int i, isl_int *ineq)
1608 uint32_t c_hash;
1609 struct ineq_cmp_data v;
1610 struct isl_hash_table_entry *entry;
1611 int j, k;
1613 if (!hull)
1614 return NULL;
1616 v.len = isl_basic_set_total_dim(hull);
1617 v.p = ineq;
1618 c_hash = isl_seq_hash(ineq + 1, v.len, isl_hash_init());
1620 entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
1621 has_ineq, &v, 0);
1622 if (entry)
1623 return hull;
1625 for (j = 0; j < i; ++j) {
1626 entry = isl_hash_table_find(hull->ctx, data->p[j].table,
1627 c_hash, has_ineq, &v, 0);
1628 if (entry)
1629 break;
1631 if (j < i)
1632 return hull;
1634 k = isl_basic_set_alloc_inequality(hull);
1635 isl_seq_cpy(hull->ineq[k], ineq, 1 + v.len);
1636 if (k < 0)
1637 goto error;
1639 for (j = 0; j < i; ++j) {
1640 int bound;
1641 bound = is_bound(data, set, j, hull->ineq[k]);
1642 if (bound < 0)
1643 goto error;
1644 if (!bound)
1645 break;
1647 if (j < i) {
1648 isl_basic_set_free_inequality(hull, 1);
1649 return hull;
1652 for (j = i + 1; j < set->n; ++j) {
1653 int bound, neg;
1654 isl_int *ineq_j;
1655 entry = isl_hash_table_find(hull->ctx, data->p[j].table,
1656 c_hash, has_ineq, &v, 0);
1657 if (entry) {
1658 ineq_j = entry->data;
1659 neg = isl_seq_is_neg(ineq_j + 1,
1660 hull->ineq[k] + 1, v.len);
1661 if (neg)
1662 isl_int_neg(ineq_j[0], ineq_j[0]);
1663 if (isl_int_gt(ineq_j[0], hull->ineq[k][0]))
1664 isl_int_set(hull->ineq[k][0], ineq_j[0]);
1665 if (neg)
1666 isl_int_neg(ineq_j[0], ineq_j[0]);
1667 continue;
1669 bound = is_bound(data, set, j, hull->ineq[k]);
1670 if (bound < 0)
1671 goto error;
1672 if (!bound)
1673 break;
1675 if (j < set->n) {
1676 isl_basic_set_free_inequality(hull, 1);
1677 return hull;
1680 entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
1681 has_ineq, &v, 1);
1682 if (!entry)
1683 goto error;
1684 entry->data = hull->ineq[k];
1686 return hull;
1687 error:
1688 isl_basic_set_free(hull);
1689 return NULL;
1692 /* Check if any inequality from basic set "i" can be relaxed to
1693 * become a bound on the whole set. If so, add the (relaxed) inequality
1694 * to "hull".
1696 static struct isl_basic_set *add_bounds(struct isl_basic_set *bset,
1697 struct sh_data *data, struct isl_set *set, int i)
1699 int j, k;
1700 unsigned dim = isl_basic_set_total_dim(bset);
1702 for (j = 0; j < set->p[i]->n_eq; ++j) {
1703 for (k = 0; k < 2; ++k) {
1704 isl_seq_neg(set->p[i]->eq[j], set->p[i]->eq[j], 1+dim);
1705 add_bound(bset, data, set, i, set->p[i]->eq[j]);
1708 for (j = 0; j < set->p[i]->n_ineq; ++j)
1709 add_bound(bset, data, set, i, set->p[i]->ineq[j]);
1710 return bset;
1713 /* Compute a superset of the convex hull of set that is described
1714 * by only translates of the constraints in the constituents of set.
1716 static struct isl_basic_set *uset_simple_hull(struct isl_set *set)
1718 struct sh_data *data = NULL;
1719 struct isl_basic_set *hull = NULL;
1720 unsigned n_ineq;
1721 int i, j;
1723 if (!set)
1724 return NULL;
1726 n_ineq = 0;
1727 for (i = 0; i < set->n; ++i) {
1728 if (!set->p[i])
1729 goto error;
1730 n_ineq += 2 * set->p[i]->n_eq + set->p[i]->n_ineq;
1733 hull = isl_basic_set_alloc_dim(isl_dim_copy(set->dim), 0, 0, n_ineq);
1734 if (!hull)
1735 goto error;
1737 data = sh_data_alloc(set, n_ineq);
1738 if (!data)
1739 goto error;
1741 for (i = 0; i < set->n; ++i)
1742 hull = add_bounds(hull, data, set, i);
1744 sh_data_free(data);
1745 isl_set_free(set);
1747 return hull;
1748 error:
1749 sh_data_free(data);
1750 isl_basic_set_free(hull);
1751 isl_set_free(set);
1752 return NULL;
1755 /* Compute a superset of the convex hull of map that is described
1756 * by only translates of the constraints in the constituents of map.
1758 struct isl_basic_map *isl_map_simple_hull(struct isl_map *map)
1760 struct isl_set *set = NULL;
1761 struct isl_basic_map *model = NULL;
1762 struct isl_basic_map *hull;
1763 struct isl_basic_map *affine_hull;
1764 struct isl_basic_set *bset = NULL;
1766 if (!map)
1767 return NULL;
1768 if (map->n == 0) {
1769 hull = isl_basic_map_empty_like_map(map);
1770 isl_map_free(map);
1771 return hull;
1773 if (map->n == 1) {
1774 hull = isl_basic_map_copy(map->p[0]);
1775 isl_map_free(map);
1776 return hull;
1779 map = isl_map_detect_equalities(map);
1780 affine_hull = isl_map_affine_hull(isl_map_copy(map));
1781 map = isl_map_align_divs(map);
1782 model = isl_basic_map_copy(map->p[0]);
1784 set = isl_map_underlying_set(map);
1786 bset = uset_simple_hull(set);
1788 hull = isl_basic_map_overlying_set(bset, model);
1790 hull = isl_basic_map_intersect(hull, affine_hull);
1791 hull = isl_basic_map_convex_hull(hull);
1792 ISL_F_SET(hull, ISL_BASIC_MAP_NO_IMPLICIT);
1793 ISL_F_SET(hull, ISL_BASIC_MAP_ALL_EQUALITIES);
1795 return hull;
1798 struct isl_basic_set *isl_set_simple_hull(struct isl_set *set)
1800 return (struct isl_basic_set *)
1801 isl_map_simple_hull((struct isl_map *)set);
1804 /* Given a set "set", return parametric bounds on the dimension "dim".
1806 static struct isl_basic_set *set_bounds(struct isl_set *set, int dim)
1808 unsigned set_dim = isl_set_dim(set, isl_dim_set);
1809 set = isl_set_copy(set);
1810 set = isl_set_eliminate_dims(set, dim + 1, set_dim - (dim + 1));
1811 set = isl_set_eliminate_dims(set, 0, dim);
1812 return isl_set_convex_hull(set);
1815 /* Computes a "simple hull" and then check if each dimension in the
1816 * resulting hull is bounded by a symbolic constant. If not, the
1817 * hull is intersected with the corresponding bounds on the whole set.
1819 struct isl_basic_set *isl_set_bounded_simple_hull(struct isl_set *set)
1821 int i, j;
1822 struct isl_basic_set *hull;
1823 unsigned nparam, left;
1824 int removed_divs = 0;
1826 hull = isl_set_simple_hull(isl_set_copy(set));
1827 if (!hull)
1828 goto error;
1830 nparam = isl_basic_set_dim(hull, isl_dim_param);
1831 for (i = 0; i < isl_basic_set_dim(hull, isl_dim_set); ++i) {
1832 int lower = 0, upper = 0;
1833 struct isl_basic_set *bounds;
1835 left = isl_basic_set_total_dim(hull) - nparam - i - 1;
1836 for (j = 0; j < hull->n_eq; ++j) {
1837 if (isl_int_is_zero(hull->eq[j][1 + nparam + i]))
1838 continue;
1839 if (isl_seq_first_non_zero(hull->eq[j]+1+nparam+i+1,
1840 left) == -1)
1841 break;
1843 if (j < hull->n_eq)
1844 continue;
1846 for (j = 0; j < hull->n_ineq; ++j) {
1847 if (isl_int_is_zero(hull->ineq[j][1 + nparam + i]))
1848 continue;
1849 if (isl_seq_first_non_zero(hull->ineq[j]+1+nparam+i+1,
1850 left) != -1 ||
1851 isl_seq_first_non_zero(hull->ineq[j]+1+nparam,
1852 i) != -1)
1853 continue;
1854 if (isl_int_is_pos(hull->ineq[j][1 + nparam + i]))
1855 lower = 1;
1856 else
1857 upper = 1;
1858 if (lower && upper)
1859 break;
1862 if (lower && upper)
1863 continue;
1865 if (!removed_divs) {
1866 set = isl_set_remove_divs(set);
1867 if (!set)
1868 goto error;
1869 removed_divs = 1;
1871 bounds = set_bounds(set, i);
1872 hull = isl_basic_set_intersect(hull, bounds);
1873 if (!hull)
1874 goto error;
1877 isl_set_free(set);
1878 return hull;
1879 error:
1880 isl_set_free(set);
1881 return NULL;