add isl_schedule_node_band_split
[isl.git] / isl_range.c
blob5599582cb83d49239abecb7b821d0036fcc3f122
1 #include <isl_ctx_private.h>
2 #include <isl_constraint_private.h>
3 #include <isl/set.h>
4 #include <isl_polynomial_private.h>
5 #include <isl_morph.h>
6 #include <isl_range.h>
8 struct range_data {
9 struct isl_bound *bound;
10 int *signs;
11 int sign;
12 int test_monotonicity;
13 int monotonicity;
14 int tight;
15 isl_qpolynomial *poly;
16 isl_pw_qpolynomial_fold *pwf;
17 isl_pw_qpolynomial_fold *pwf_tight;
20 static int propagate_on_domain(__isl_take isl_basic_set *bset,
21 __isl_take isl_qpolynomial *poly, struct range_data *data);
23 /* Check whether the polynomial "poly" has sign "sign" over "bset",
24 * i.e., if sign == 1, check that the lower bound on the polynomial
25 * is non-negative and if sign == -1, check that the upper bound on
26 * the polynomial is non-positive.
28 static int has_sign(__isl_keep isl_basic_set *bset,
29 __isl_keep isl_qpolynomial *poly, int sign, int *signs)
31 struct range_data data_m;
32 unsigned nvar;
33 unsigned nparam;
34 isl_space *dim;
35 isl_val *opt;
36 int r;
37 enum isl_fold type;
39 nparam = isl_basic_set_dim(bset, isl_dim_param);
40 nvar = isl_basic_set_dim(bset, isl_dim_set);
42 bset = isl_basic_set_copy(bset);
43 poly = isl_qpolynomial_copy(poly);
45 bset = isl_basic_set_move_dims(bset, isl_dim_set, 0,
46 isl_dim_param, 0, nparam);
47 poly = isl_qpolynomial_move_dims(poly, isl_dim_in, 0,
48 isl_dim_param, 0, nparam);
50 dim = isl_qpolynomial_get_space(poly);
51 dim = isl_space_params(dim);
52 dim = isl_space_from_domain(dim);
53 dim = isl_space_add_dims(dim, isl_dim_out, 1);
55 data_m.test_monotonicity = 0;
56 data_m.signs = signs;
57 data_m.sign = -sign;
58 type = data_m.sign < 0 ? isl_fold_min : isl_fold_max;
59 data_m.pwf = isl_pw_qpolynomial_fold_zero(dim, type);
60 data_m.tight = 0;
61 data_m.pwf_tight = NULL;
63 if (propagate_on_domain(bset, poly, &data_m) < 0)
64 goto error;
66 if (sign > 0)
67 opt = isl_pw_qpolynomial_fold_min(data_m.pwf);
68 else
69 opt = isl_pw_qpolynomial_fold_max(data_m.pwf);
71 if (!opt)
72 r = -1;
73 else if (isl_val_is_nan(opt) ||
74 isl_val_is_infty(opt) ||
75 isl_val_is_neginfty(opt))
76 r = 0;
77 else
78 r = sign * isl_val_sgn(opt) >= 0;
80 isl_val_free(opt);
82 return r;
83 error:
84 isl_pw_qpolynomial_fold_free(data_m.pwf);
85 return -1;
88 /* Return 1 if poly is monotonically increasing in the last set variable,
89 * -1 if poly is monotonically decreasing in the last set variable,
90 * 0 if no conclusion,
91 * -2 on error.
93 * We simply check the sign of p(x+1)-p(x)
95 static int monotonicity(__isl_keep isl_basic_set *bset,
96 __isl_keep isl_qpolynomial *poly, struct range_data *data)
98 isl_ctx *ctx;
99 isl_space *dim;
100 isl_qpolynomial *sub = NULL;
101 isl_qpolynomial *diff = NULL;
102 int result = 0;
103 int s;
104 unsigned nvar;
106 ctx = isl_qpolynomial_get_ctx(poly);
107 dim = isl_qpolynomial_get_domain_space(poly);
109 nvar = isl_basic_set_dim(bset, isl_dim_set);
111 sub = isl_qpolynomial_var_on_domain(isl_space_copy(dim), isl_dim_set, nvar - 1);
112 sub = isl_qpolynomial_add(sub,
113 isl_qpolynomial_rat_cst_on_domain(dim, ctx->one, ctx->one));
115 diff = isl_qpolynomial_substitute(isl_qpolynomial_copy(poly),
116 isl_dim_in, nvar - 1, 1, &sub);
117 diff = isl_qpolynomial_sub(diff, isl_qpolynomial_copy(poly));
119 s = has_sign(bset, diff, 1, data->signs);
120 if (s < 0)
121 goto error;
122 if (s)
123 result = 1;
124 else {
125 s = has_sign(bset, diff, -1, data->signs);
126 if (s < 0)
127 goto error;
128 if (s)
129 result = -1;
132 isl_qpolynomial_free(diff);
133 isl_qpolynomial_free(sub);
135 return result;
136 error:
137 isl_qpolynomial_free(diff);
138 isl_qpolynomial_free(sub);
139 return -2;
142 static __isl_give isl_qpolynomial *bound2poly(__isl_take isl_constraint *bound,
143 __isl_take isl_space *dim, unsigned pos, int sign)
145 if (!bound) {
146 if (sign > 0)
147 return isl_qpolynomial_infty_on_domain(dim);
148 else
149 return isl_qpolynomial_neginfty_on_domain(dim);
151 isl_space_free(dim);
152 return isl_qpolynomial_from_constraint(bound, isl_dim_set, pos);
155 static int bound_is_integer(__isl_take isl_constraint *bound, unsigned pos)
157 isl_int c;
158 int is_int;
160 if (!bound)
161 return 1;
163 isl_int_init(c);
164 isl_constraint_get_coefficient(bound, isl_dim_set, pos, &c);
165 is_int = isl_int_is_one(c) || isl_int_is_negone(c);
166 isl_int_clear(c);
168 return is_int;
171 struct isl_fixed_sign_data {
172 int *signs;
173 int sign;
174 isl_qpolynomial *poly;
177 /* Add term "term" to data->poly if it has sign data->sign.
178 * The sign is determined based on the signs of the parameters
179 * and variables in data->signs. The integer divisions, if
180 * any, are assumed to be non-negative.
182 static int collect_fixed_sign_terms(__isl_take isl_term *term, void *user)
184 struct isl_fixed_sign_data *data = (struct isl_fixed_sign_data *)user;
185 isl_int n;
186 int i;
187 int sign;
188 unsigned nparam;
189 unsigned nvar;
191 if (!term)
192 return -1;
194 nparam = isl_term_dim(term, isl_dim_param);
195 nvar = isl_term_dim(term, isl_dim_set);
197 isl_int_init(n);
199 isl_term_get_num(term, &n);
201 sign = isl_int_sgn(n);
202 for (i = 0; i < nparam; ++i) {
203 if (data->signs[i] > 0)
204 continue;
205 if (isl_term_get_exp(term, isl_dim_param, i) % 2)
206 sign = -sign;
208 for (i = 0; i < nvar; ++i) {
209 if (data->signs[nparam + i] > 0)
210 continue;
211 if (isl_term_get_exp(term, isl_dim_set, i) % 2)
212 sign = -sign;
215 if (sign == data->sign) {
216 isl_qpolynomial *t = isl_qpolynomial_from_term(term);
218 data->poly = isl_qpolynomial_add(data->poly, t);
219 } else
220 isl_term_free(term);
222 isl_int_clear(n);
224 return 0;
227 /* Construct and return a polynomial that consists of the terms
228 * in "poly" that have sign "sign". The integer divisions, if
229 * any, are assumed to be non-negative.
231 __isl_give isl_qpolynomial *isl_qpolynomial_terms_of_sign(
232 __isl_keep isl_qpolynomial *poly, int *signs, int sign)
234 isl_space *space;
235 struct isl_fixed_sign_data data = { signs, sign };
237 space = isl_qpolynomial_get_domain_space(poly);
238 data.poly = isl_qpolynomial_zero_on_domain(space);
240 if (isl_qpolynomial_foreach_term(poly, collect_fixed_sign_terms, &data) < 0)
241 goto error;
243 return data.poly;
244 error:
245 isl_qpolynomial_free(data.poly);
246 return NULL;
249 /* Helper function to add a guarded polynomial to either pwf_tight or pwf,
250 * depending on whether the result has been determined to be tight.
252 static int add_guarded_poly(__isl_take isl_basic_set *bset,
253 __isl_take isl_qpolynomial *poly, struct range_data *data)
255 enum isl_fold type = data->sign < 0 ? isl_fold_min : isl_fold_max;
256 isl_set *set;
257 isl_qpolynomial_fold *fold;
258 isl_pw_qpolynomial_fold *pwf;
260 bset = isl_basic_set_params(bset);
261 poly = isl_qpolynomial_project_domain_on_params(poly);
263 fold = isl_qpolynomial_fold_alloc(type, poly);
264 set = isl_set_from_basic_set(bset);
265 pwf = isl_pw_qpolynomial_fold_alloc(type, set, fold);
266 if (data->tight)
267 data->pwf_tight = isl_pw_qpolynomial_fold_fold(
268 data->pwf_tight, pwf);
269 else
270 data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, pwf);
272 return 0;
275 /* Given a lower and upper bound on the final variable and constraints
276 * on the remaining variables where these bounds are active,
277 * eliminate the variable from data->poly based on these bounds.
278 * If the polynomial has been determined to be monotonic
279 * in the variable, then simply plug in the appropriate bound.
280 * If the current polynomial is tight and if this bound is integer,
281 * then the result is still tight. In all other cases, the results
282 * may not be tight.
283 * Otherwise, plug in the largest bound (in absolute value) in
284 * the positive terms (if an upper bound is wanted) or the negative terms
285 * (if a lower bounded is wanted) and the other bound in the other terms.
287 * If all variables have been eliminated, then record the result.
288 * Ohterwise, recurse on the next variable.
290 static int propagate_on_bound_pair(__isl_take isl_constraint *lower,
291 __isl_take isl_constraint *upper, __isl_take isl_basic_set *bset,
292 void *user)
294 struct range_data *data = (struct range_data *)user;
295 int save_tight = data->tight;
296 isl_qpolynomial *poly;
297 int r;
298 unsigned nvar;
300 nvar = isl_basic_set_dim(bset, isl_dim_set);
302 if (data->monotonicity) {
303 isl_qpolynomial *sub;
304 isl_space *dim = isl_qpolynomial_get_domain_space(data->poly);
305 if (data->monotonicity * data->sign > 0) {
306 if (data->tight)
307 data->tight = bound_is_integer(upper, nvar);
308 sub = bound2poly(upper, dim, nvar, 1);
309 isl_constraint_free(lower);
310 } else {
311 if (data->tight)
312 data->tight = bound_is_integer(lower, nvar);
313 sub = bound2poly(lower, dim, nvar, -1);
314 isl_constraint_free(upper);
316 poly = isl_qpolynomial_copy(data->poly);
317 poly = isl_qpolynomial_substitute(poly, isl_dim_in, nvar, 1, &sub);
318 poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, nvar, 1);
320 isl_qpolynomial_free(sub);
321 } else {
322 isl_qpolynomial *l, *u;
323 isl_qpolynomial *pos, *neg;
324 isl_space *dim = isl_qpolynomial_get_domain_space(data->poly);
325 unsigned nparam = isl_basic_set_dim(bset, isl_dim_param);
326 int sign = data->sign * data->signs[nparam + nvar];
328 data->tight = 0;
330 u = bound2poly(upper, isl_space_copy(dim), nvar, 1);
331 l = bound2poly(lower, dim, nvar, -1);
333 pos = isl_qpolynomial_terms_of_sign(data->poly, data->signs, sign);
334 neg = isl_qpolynomial_terms_of_sign(data->poly, data->signs, -sign);
336 pos = isl_qpolynomial_substitute(pos, isl_dim_in, nvar, 1, &u);
337 neg = isl_qpolynomial_substitute(neg, isl_dim_in, nvar, 1, &l);
339 poly = isl_qpolynomial_add(pos, neg);
340 poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, nvar, 1);
342 isl_qpolynomial_free(u);
343 isl_qpolynomial_free(l);
346 if (isl_basic_set_dim(bset, isl_dim_set) == 0)
347 r = add_guarded_poly(bset, poly, data);
348 else
349 r = propagate_on_domain(bset, poly, data);
351 data->tight = save_tight;
353 return r;
356 /* Recursively perform range propagation on the polynomial "poly"
357 * defined over the basic set "bset" and collect the results in "data".
359 static int propagate_on_domain(__isl_take isl_basic_set *bset,
360 __isl_take isl_qpolynomial *poly, struct range_data *data)
362 isl_ctx *ctx;
363 isl_qpolynomial *save_poly = data->poly;
364 int save_monotonicity = data->monotonicity;
365 unsigned d;
367 if (!bset || !poly)
368 goto error;
370 ctx = isl_basic_set_get_ctx(bset);
371 d = isl_basic_set_dim(bset, isl_dim_set);
372 isl_assert(ctx, d >= 1, goto error);
374 if (isl_qpolynomial_is_cst(poly, NULL, NULL)) {
375 bset = isl_basic_set_project_out(bset, isl_dim_set, 0, d);
376 poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, 0, d);
377 return add_guarded_poly(bset, poly, data);
380 if (data->test_monotonicity)
381 data->monotonicity = monotonicity(bset, poly, data);
382 else
383 data->monotonicity = 0;
384 if (data->monotonicity < -1)
385 goto error;
387 data->poly = poly;
388 if (isl_basic_set_foreach_bound_pair(bset, isl_dim_set, d - 1,
389 &propagate_on_bound_pair, data) < 0)
390 goto error;
392 isl_basic_set_free(bset);
393 isl_qpolynomial_free(poly);
394 data->monotonicity = save_monotonicity;
395 data->poly = save_poly;
397 return 0;
398 error:
399 isl_basic_set_free(bset);
400 isl_qpolynomial_free(poly);
401 data->monotonicity = save_monotonicity;
402 data->poly = save_poly;
403 return -1;
406 static int basic_guarded_poly_bound(__isl_take isl_basic_set *bset, void *user)
408 struct range_data *data = (struct range_data *)user;
409 isl_ctx *ctx;
410 unsigned nparam = isl_basic_set_dim(bset, isl_dim_param);
411 unsigned dim = isl_basic_set_dim(bset, isl_dim_set);
412 int r;
414 data->signs = NULL;
416 ctx = isl_basic_set_get_ctx(bset);
417 data->signs = isl_alloc_array(ctx, int,
418 isl_basic_set_dim(bset, isl_dim_all));
420 if (isl_basic_set_dims_get_sign(bset, isl_dim_set, 0, dim,
421 data->signs + nparam) < 0)
422 goto error;
423 if (isl_basic_set_dims_get_sign(bset, isl_dim_param, 0, nparam,
424 data->signs) < 0)
425 goto error;
427 r = propagate_on_domain(bset, isl_qpolynomial_copy(data->poly), data);
429 free(data->signs);
431 return r;
432 error:
433 free(data->signs);
434 isl_basic_set_free(bset);
435 return -1;
438 static int qpolynomial_bound_on_domain_range(__isl_take isl_basic_set *bset,
439 __isl_take isl_qpolynomial *poly, struct range_data *data)
441 unsigned nparam = isl_basic_set_dim(bset, isl_dim_param);
442 unsigned nvar = isl_basic_set_dim(bset, isl_dim_set);
443 isl_set *set = NULL;
445 if (!bset)
446 goto error;
448 if (nvar == 0)
449 return add_guarded_poly(bset, poly, data);
451 set = isl_set_from_basic_set(bset);
452 set = isl_set_split_dims(set, isl_dim_param, 0, nparam);
453 set = isl_set_split_dims(set, isl_dim_set, 0, nvar);
455 data->poly = poly;
457 data->test_monotonicity = 1;
458 if (isl_set_foreach_basic_set(set, &basic_guarded_poly_bound, data) < 0)
459 goto error;
461 isl_set_free(set);
462 isl_qpolynomial_free(poly);
464 return 0;
465 error:
466 isl_set_free(set);
467 isl_qpolynomial_free(poly);
468 return -1;
471 int isl_qpolynomial_bound_on_domain_range(__isl_take isl_basic_set *bset,
472 __isl_take isl_qpolynomial *poly, struct isl_bound *bound)
474 struct range_data data;
475 int r;
477 data.pwf = bound->pwf;
478 data.pwf_tight = bound->pwf_tight;
479 data.tight = bound->check_tight;
480 if (bound->type == isl_fold_min)
481 data.sign = -1;
482 else
483 data.sign = 1;
485 r = qpolynomial_bound_on_domain_range(bset, poly, &data);
487 bound->pwf = data.pwf;
488 bound->pwf_tight = data.pwf_tight;
490 return r;