2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
12 #include <isl_ctx_private.h>
13 #include <isl_map_private.h>
14 #include <isl_factorization.h>
17 #include <isl_union_map_private.h>
18 #include <isl_polynomial_private.h>
19 #include <isl_point_private.h>
20 #include <isl_dim_private.h>
21 #include <isl_div_private.h>
22 #include <isl_mat_private.h>
23 #include <isl_range.h>
24 #include <isl_local_space_private.h>
25 #include <isl_aff_private.h>
27 static unsigned pos(__isl_keep isl_dim
*dim
, enum isl_dim_type type
)
30 case isl_dim_param
: return 0;
31 case isl_dim_in
: return dim
->nparam
;
32 case isl_dim_out
: return dim
->nparam
+ dim
->n_in
;
37 int isl_upoly_is_cst(__isl_keep
struct isl_upoly
*up
)
45 __isl_keep
struct isl_upoly_cst
*isl_upoly_as_cst(__isl_keep
struct isl_upoly
*up
)
50 isl_assert(up
->ctx
, up
->var
< 0, return NULL
);
52 return (struct isl_upoly_cst
*)up
;
55 __isl_keep
struct isl_upoly_rec
*isl_upoly_as_rec(__isl_keep
struct isl_upoly
*up
)
60 isl_assert(up
->ctx
, up
->var
>= 0, return NULL
);
62 return (struct isl_upoly_rec
*)up
;
65 int isl_upoly_is_equal(__isl_keep
struct isl_upoly
*up1
,
66 __isl_keep
struct isl_upoly
*up2
)
69 struct isl_upoly_rec
*rec1
, *rec2
;
75 if (up1
->var
!= up2
->var
)
77 if (isl_upoly_is_cst(up1
)) {
78 struct isl_upoly_cst
*cst1
, *cst2
;
79 cst1
= isl_upoly_as_cst(up1
);
80 cst2
= isl_upoly_as_cst(up2
);
83 return isl_int_eq(cst1
->n
, cst2
->n
) &&
84 isl_int_eq(cst1
->d
, cst2
->d
);
87 rec1
= isl_upoly_as_rec(up1
);
88 rec2
= isl_upoly_as_rec(up2
);
92 if (rec1
->n
!= rec2
->n
)
95 for (i
= 0; i
< rec1
->n
; ++i
) {
96 int eq
= isl_upoly_is_equal(rec1
->p
[i
], rec2
->p
[i
]);
104 int isl_upoly_is_zero(__isl_keep
struct isl_upoly
*up
)
106 struct isl_upoly_cst
*cst
;
110 if (!isl_upoly_is_cst(up
))
113 cst
= isl_upoly_as_cst(up
);
117 return isl_int_is_zero(cst
->n
) && isl_int_is_pos(cst
->d
);
120 int isl_upoly_sgn(__isl_keep
struct isl_upoly
*up
)
122 struct isl_upoly_cst
*cst
;
126 if (!isl_upoly_is_cst(up
))
129 cst
= isl_upoly_as_cst(up
);
133 return isl_int_sgn(cst
->n
);
136 int isl_upoly_is_nan(__isl_keep
struct isl_upoly
*up
)
138 struct isl_upoly_cst
*cst
;
142 if (!isl_upoly_is_cst(up
))
145 cst
= isl_upoly_as_cst(up
);
149 return isl_int_is_zero(cst
->n
) && isl_int_is_zero(cst
->d
);
152 int isl_upoly_is_infty(__isl_keep
struct isl_upoly
*up
)
154 struct isl_upoly_cst
*cst
;
158 if (!isl_upoly_is_cst(up
))
161 cst
= isl_upoly_as_cst(up
);
165 return isl_int_is_pos(cst
->n
) && isl_int_is_zero(cst
->d
);
168 int isl_upoly_is_neginfty(__isl_keep
struct isl_upoly
*up
)
170 struct isl_upoly_cst
*cst
;
174 if (!isl_upoly_is_cst(up
))
177 cst
= isl_upoly_as_cst(up
);
181 return isl_int_is_neg(cst
->n
) && isl_int_is_zero(cst
->d
);
184 int isl_upoly_is_one(__isl_keep
struct isl_upoly
*up
)
186 struct isl_upoly_cst
*cst
;
190 if (!isl_upoly_is_cst(up
))
193 cst
= isl_upoly_as_cst(up
);
197 return isl_int_eq(cst
->n
, cst
->d
) && isl_int_is_pos(cst
->d
);
200 int isl_upoly_is_negone(__isl_keep
struct isl_upoly
*up
)
202 struct isl_upoly_cst
*cst
;
206 if (!isl_upoly_is_cst(up
))
209 cst
= isl_upoly_as_cst(up
);
213 return isl_int_is_negone(cst
->n
) && isl_int_is_one(cst
->d
);
216 __isl_give
struct isl_upoly_cst
*isl_upoly_cst_alloc(struct isl_ctx
*ctx
)
218 struct isl_upoly_cst
*cst
;
220 cst
= isl_alloc_type(ctx
, struct isl_upoly_cst
);
229 isl_int_init(cst
->n
);
230 isl_int_init(cst
->d
);
235 __isl_give
struct isl_upoly
*isl_upoly_zero(struct isl_ctx
*ctx
)
237 struct isl_upoly_cst
*cst
;
239 cst
= isl_upoly_cst_alloc(ctx
);
243 isl_int_set_si(cst
->n
, 0);
244 isl_int_set_si(cst
->d
, 1);
249 __isl_give
struct isl_upoly
*isl_upoly_one(struct isl_ctx
*ctx
)
251 struct isl_upoly_cst
*cst
;
253 cst
= isl_upoly_cst_alloc(ctx
);
257 isl_int_set_si(cst
->n
, 1);
258 isl_int_set_si(cst
->d
, 1);
263 __isl_give
struct isl_upoly
*isl_upoly_infty(struct isl_ctx
*ctx
)
265 struct isl_upoly_cst
*cst
;
267 cst
= isl_upoly_cst_alloc(ctx
);
271 isl_int_set_si(cst
->n
, 1);
272 isl_int_set_si(cst
->d
, 0);
277 __isl_give
struct isl_upoly
*isl_upoly_neginfty(struct isl_ctx
*ctx
)
279 struct isl_upoly_cst
*cst
;
281 cst
= isl_upoly_cst_alloc(ctx
);
285 isl_int_set_si(cst
->n
, -1);
286 isl_int_set_si(cst
->d
, 0);
291 __isl_give
struct isl_upoly
*isl_upoly_nan(struct isl_ctx
*ctx
)
293 struct isl_upoly_cst
*cst
;
295 cst
= isl_upoly_cst_alloc(ctx
);
299 isl_int_set_si(cst
->n
, 0);
300 isl_int_set_si(cst
->d
, 0);
305 __isl_give
struct isl_upoly
*isl_upoly_rat_cst(struct isl_ctx
*ctx
,
306 isl_int n
, isl_int d
)
308 struct isl_upoly_cst
*cst
;
310 cst
= isl_upoly_cst_alloc(ctx
);
314 isl_int_set(cst
->n
, n
);
315 isl_int_set(cst
->d
, d
);
320 __isl_give
struct isl_upoly_rec
*isl_upoly_alloc_rec(struct isl_ctx
*ctx
,
323 struct isl_upoly_rec
*rec
;
325 isl_assert(ctx
, var
>= 0, return NULL
);
326 isl_assert(ctx
, size
>= 0, return NULL
);
327 rec
= isl_calloc(ctx
, struct isl_upoly_rec
,
328 sizeof(struct isl_upoly_rec
) +
329 (size
- 1) * sizeof(struct isl_upoly
*));
344 __isl_give isl_qpolynomial
*isl_qpolynomial_reset_dim(
345 __isl_take isl_qpolynomial
*qp
, __isl_take isl_dim
*dim
)
347 qp
= isl_qpolynomial_cow(qp
);
351 isl_dim_free(qp
->dim
);
356 isl_qpolynomial_free(qp
);
361 isl_ctx
*isl_qpolynomial_get_ctx(__isl_keep isl_qpolynomial
*qp
)
363 return qp
? qp
->dim
->ctx
: NULL
;
366 __isl_give isl_dim
*isl_qpolynomial_get_dim(__isl_keep isl_qpolynomial
*qp
)
368 return qp
? isl_dim_copy(qp
->dim
) : NULL
;
371 unsigned isl_qpolynomial_dim(__isl_keep isl_qpolynomial
*qp
,
372 enum isl_dim_type type
)
374 return qp
? isl_dim_size(qp
->dim
, type
) : 0;
377 int isl_qpolynomial_is_zero(__isl_keep isl_qpolynomial
*qp
)
379 return qp
? isl_upoly_is_zero(qp
->upoly
) : -1;
382 int isl_qpolynomial_is_one(__isl_keep isl_qpolynomial
*qp
)
384 return qp
? isl_upoly_is_one(qp
->upoly
) : -1;
387 int isl_qpolynomial_is_nan(__isl_keep isl_qpolynomial
*qp
)
389 return qp
? isl_upoly_is_nan(qp
->upoly
) : -1;
392 int isl_qpolynomial_is_infty(__isl_keep isl_qpolynomial
*qp
)
394 return qp
? isl_upoly_is_infty(qp
->upoly
) : -1;
397 int isl_qpolynomial_is_neginfty(__isl_keep isl_qpolynomial
*qp
)
399 return qp
? isl_upoly_is_neginfty(qp
->upoly
) : -1;
402 int isl_qpolynomial_sgn(__isl_keep isl_qpolynomial
*qp
)
404 return qp
? isl_upoly_sgn(qp
->upoly
) : 0;
407 static void upoly_free_cst(__isl_take
struct isl_upoly_cst
*cst
)
409 isl_int_clear(cst
->n
);
410 isl_int_clear(cst
->d
);
413 static void upoly_free_rec(__isl_take
struct isl_upoly_rec
*rec
)
417 for (i
= 0; i
< rec
->n
; ++i
)
418 isl_upoly_free(rec
->p
[i
]);
421 __isl_give
struct isl_upoly
*isl_upoly_copy(__isl_keep
struct isl_upoly
*up
)
430 __isl_give
struct isl_upoly
*isl_upoly_dup_cst(__isl_keep
struct isl_upoly
*up
)
432 struct isl_upoly_cst
*cst
;
433 struct isl_upoly_cst
*dup
;
435 cst
= isl_upoly_as_cst(up
);
439 dup
= isl_upoly_as_cst(isl_upoly_zero(up
->ctx
));
442 isl_int_set(dup
->n
, cst
->n
);
443 isl_int_set(dup
->d
, cst
->d
);
448 __isl_give
struct isl_upoly
*isl_upoly_dup_rec(__isl_keep
struct isl_upoly
*up
)
451 struct isl_upoly_rec
*rec
;
452 struct isl_upoly_rec
*dup
;
454 rec
= isl_upoly_as_rec(up
);
458 dup
= isl_upoly_alloc_rec(up
->ctx
, up
->var
, rec
->n
);
462 for (i
= 0; i
< rec
->n
; ++i
) {
463 dup
->p
[i
] = isl_upoly_copy(rec
->p
[i
]);
471 isl_upoly_free(&dup
->up
);
475 __isl_give
struct isl_upoly
*isl_upoly_dup(__isl_keep
struct isl_upoly
*up
)
477 struct isl_upoly
*dup
;
482 if (isl_upoly_is_cst(up
))
483 return isl_upoly_dup_cst(up
);
485 return isl_upoly_dup_rec(up
);
488 __isl_give
struct isl_upoly
*isl_upoly_cow(__isl_take
struct isl_upoly
*up
)
496 return isl_upoly_dup(up
);
499 void isl_upoly_free(__isl_take
struct isl_upoly
*up
)
508 upoly_free_cst((struct isl_upoly_cst
*)up
);
510 upoly_free_rec((struct isl_upoly_rec
*)up
);
512 isl_ctx_deref(up
->ctx
);
516 static void isl_upoly_cst_reduce(__isl_keep
struct isl_upoly_cst
*cst
)
521 isl_int_gcd(gcd
, cst
->n
, cst
->d
);
522 if (!isl_int_is_zero(gcd
) && !isl_int_is_one(gcd
)) {
523 isl_int_divexact(cst
->n
, cst
->n
, gcd
);
524 isl_int_divexact(cst
->d
, cst
->d
, gcd
);
529 __isl_give
struct isl_upoly
*isl_upoly_sum_cst(__isl_take
struct isl_upoly
*up1
,
530 __isl_take
struct isl_upoly
*up2
)
532 struct isl_upoly_cst
*cst1
;
533 struct isl_upoly_cst
*cst2
;
535 up1
= isl_upoly_cow(up1
);
539 cst1
= isl_upoly_as_cst(up1
);
540 cst2
= isl_upoly_as_cst(up2
);
542 if (isl_int_eq(cst1
->d
, cst2
->d
))
543 isl_int_add(cst1
->n
, cst1
->n
, cst2
->n
);
545 isl_int_mul(cst1
->n
, cst1
->n
, cst2
->d
);
546 isl_int_addmul(cst1
->n
, cst2
->n
, cst1
->d
);
547 isl_int_mul(cst1
->d
, cst1
->d
, cst2
->d
);
550 isl_upoly_cst_reduce(cst1
);
560 static __isl_give
struct isl_upoly
*replace_by_zero(
561 __isl_take
struct isl_upoly
*up
)
569 return isl_upoly_zero(ctx
);
572 static __isl_give
struct isl_upoly
*replace_by_constant_term(
573 __isl_take
struct isl_upoly
*up
)
575 struct isl_upoly_rec
*rec
;
576 struct isl_upoly
*cst
;
581 rec
= isl_upoly_as_rec(up
);
584 cst
= isl_upoly_copy(rec
->p
[0]);
592 __isl_give
struct isl_upoly
*isl_upoly_sum(__isl_take
struct isl_upoly
*up1
,
593 __isl_take
struct isl_upoly
*up2
)
596 struct isl_upoly_rec
*rec1
, *rec2
;
601 if (isl_upoly_is_nan(up1
)) {
606 if (isl_upoly_is_nan(up2
)) {
611 if (isl_upoly_is_zero(up1
)) {
616 if (isl_upoly_is_zero(up2
)) {
621 if (up1
->var
< up2
->var
)
622 return isl_upoly_sum(up2
, up1
);
624 if (up2
->var
< up1
->var
) {
625 struct isl_upoly_rec
*rec
;
626 if (isl_upoly_is_infty(up2
) || isl_upoly_is_neginfty(up2
)) {
630 up1
= isl_upoly_cow(up1
);
631 rec
= isl_upoly_as_rec(up1
);
634 rec
->p
[0] = isl_upoly_sum(rec
->p
[0], up2
);
636 up1
= replace_by_constant_term(up1
);
640 if (isl_upoly_is_cst(up1
))
641 return isl_upoly_sum_cst(up1
, up2
);
643 rec1
= isl_upoly_as_rec(up1
);
644 rec2
= isl_upoly_as_rec(up2
);
648 if (rec1
->n
< rec2
->n
)
649 return isl_upoly_sum(up2
, up1
);
651 up1
= isl_upoly_cow(up1
);
652 rec1
= isl_upoly_as_rec(up1
);
656 for (i
= rec2
->n
- 1; i
>= 0; --i
) {
657 rec1
->p
[i
] = isl_upoly_sum(rec1
->p
[i
],
658 isl_upoly_copy(rec2
->p
[i
]));
661 if (i
== rec1
->n
- 1 && isl_upoly_is_zero(rec1
->p
[i
])) {
662 isl_upoly_free(rec1
->p
[i
]);
668 up1
= replace_by_zero(up1
);
669 else if (rec1
->n
== 1)
670 up1
= replace_by_constant_term(up1
);
681 __isl_give
struct isl_upoly
*isl_upoly_cst_add_isl_int(
682 __isl_take
struct isl_upoly
*up
, isl_int v
)
684 struct isl_upoly_cst
*cst
;
686 up
= isl_upoly_cow(up
);
690 cst
= isl_upoly_as_cst(up
);
692 isl_int_addmul(cst
->n
, cst
->d
, v
);
697 __isl_give
struct isl_upoly
*isl_upoly_add_isl_int(
698 __isl_take
struct isl_upoly
*up
, isl_int v
)
700 struct isl_upoly_rec
*rec
;
705 if (isl_upoly_is_cst(up
))
706 return isl_upoly_cst_add_isl_int(up
, v
);
708 up
= isl_upoly_cow(up
);
709 rec
= isl_upoly_as_rec(up
);
713 rec
->p
[0] = isl_upoly_add_isl_int(rec
->p
[0], v
);
723 __isl_give
struct isl_upoly
*isl_upoly_cst_mul_isl_int(
724 __isl_take
struct isl_upoly
*up
, isl_int v
)
726 struct isl_upoly_cst
*cst
;
728 if (isl_upoly_is_zero(up
))
731 up
= isl_upoly_cow(up
);
735 cst
= isl_upoly_as_cst(up
);
737 isl_int_mul(cst
->n
, cst
->n
, v
);
742 __isl_give
struct isl_upoly
*isl_upoly_mul_isl_int(
743 __isl_take
struct isl_upoly
*up
, isl_int v
)
746 struct isl_upoly_rec
*rec
;
751 if (isl_upoly_is_cst(up
))
752 return isl_upoly_cst_mul_isl_int(up
, v
);
754 up
= isl_upoly_cow(up
);
755 rec
= isl_upoly_as_rec(up
);
759 for (i
= 0; i
< rec
->n
; ++i
) {
760 rec
->p
[i
] = isl_upoly_mul_isl_int(rec
->p
[i
], v
);
771 __isl_give
struct isl_upoly
*isl_upoly_mul_cst(__isl_take
struct isl_upoly
*up1
,
772 __isl_take
struct isl_upoly
*up2
)
774 struct isl_upoly_cst
*cst1
;
775 struct isl_upoly_cst
*cst2
;
777 up1
= isl_upoly_cow(up1
);
781 cst1
= isl_upoly_as_cst(up1
);
782 cst2
= isl_upoly_as_cst(up2
);
784 isl_int_mul(cst1
->n
, cst1
->n
, cst2
->n
);
785 isl_int_mul(cst1
->d
, cst1
->d
, cst2
->d
);
787 isl_upoly_cst_reduce(cst1
);
797 __isl_give
struct isl_upoly
*isl_upoly_mul_rec(__isl_take
struct isl_upoly
*up1
,
798 __isl_take
struct isl_upoly
*up2
)
800 struct isl_upoly_rec
*rec1
;
801 struct isl_upoly_rec
*rec2
;
802 struct isl_upoly_rec
*res
;
806 rec1
= isl_upoly_as_rec(up1
);
807 rec2
= isl_upoly_as_rec(up2
);
810 size
= rec1
->n
+ rec2
->n
- 1;
811 res
= isl_upoly_alloc_rec(up1
->ctx
, up1
->var
, size
);
815 for (i
= 0; i
< rec1
->n
; ++i
) {
816 res
->p
[i
] = isl_upoly_mul(isl_upoly_copy(rec2
->p
[0]),
817 isl_upoly_copy(rec1
->p
[i
]));
822 for (; i
< size
; ++i
) {
823 res
->p
[i
] = isl_upoly_zero(up1
->ctx
);
828 for (i
= 0; i
< rec1
->n
; ++i
) {
829 for (j
= 1; j
< rec2
->n
; ++j
) {
830 struct isl_upoly
*up
;
831 up
= isl_upoly_mul(isl_upoly_copy(rec2
->p
[j
]),
832 isl_upoly_copy(rec1
->p
[i
]));
833 res
->p
[i
+ j
] = isl_upoly_sum(res
->p
[i
+ j
], up
);
846 isl_upoly_free(&res
->up
);
850 __isl_give
struct isl_upoly
*isl_upoly_mul(__isl_take
struct isl_upoly
*up1
,
851 __isl_take
struct isl_upoly
*up2
)
856 if (isl_upoly_is_nan(up1
)) {
861 if (isl_upoly_is_nan(up2
)) {
866 if (isl_upoly_is_zero(up1
)) {
871 if (isl_upoly_is_zero(up2
)) {
876 if (isl_upoly_is_one(up1
)) {
881 if (isl_upoly_is_one(up2
)) {
886 if (up1
->var
< up2
->var
)
887 return isl_upoly_mul(up2
, up1
);
889 if (up2
->var
< up1
->var
) {
891 struct isl_upoly_rec
*rec
;
892 if (isl_upoly_is_infty(up2
) || isl_upoly_is_neginfty(up2
)) {
893 isl_ctx
*ctx
= up1
->ctx
;
896 return isl_upoly_nan(ctx
);
898 up1
= isl_upoly_cow(up1
);
899 rec
= isl_upoly_as_rec(up1
);
903 for (i
= 0; i
< rec
->n
; ++i
) {
904 rec
->p
[i
] = isl_upoly_mul(rec
->p
[i
],
905 isl_upoly_copy(up2
));
913 if (isl_upoly_is_cst(up1
))
914 return isl_upoly_mul_cst(up1
, up2
);
916 return isl_upoly_mul_rec(up1
, up2
);
923 __isl_give
struct isl_upoly
*isl_upoly_pow(__isl_take
struct isl_upoly
*up
,
926 struct isl_upoly
*res
;
934 res
= isl_upoly_copy(up
);
936 res
= isl_upoly_one(up
->ctx
);
938 while (power
>>= 1) {
939 up
= isl_upoly_mul(up
, isl_upoly_copy(up
));
941 res
= isl_upoly_mul(res
, isl_upoly_copy(up
));
948 __isl_give isl_qpolynomial
*isl_qpolynomial_alloc(__isl_take isl_dim
*dim
,
949 unsigned n_div
, __isl_take
struct isl_upoly
*up
)
951 struct isl_qpolynomial
*qp
= NULL
;
957 total
= isl_dim_total(dim
);
959 qp
= isl_calloc_type(dim
->ctx
, struct isl_qpolynomial
);
964 qp
->div
= isl_mat_alloc(dim
->ctx
, n_div
, 1 + 1 + total
+ n_div
);
975 isl_qpolynomial_free(qp
);
979 __isl_give isl_qpolynomial
*isl_qpolynomial_copy(__isl_keep isl_qpolynomial
*qp
)
988 __isl_give isl_qpolynomial
*isl_qpolynomial_dup(__isl_keep isl_qpolynomial
*qp
)
990 struct isl_qpolynomial
*dup
;
995 dup
= isl_qpolynomial_alloc(isl_dim_copy(qp
->dim
), qp
->div
->n_row
,
996 isl_upoly_copy(qp
->upoly
));
999 isl_mat_free(dup
->div
);
1000 dup
->div
= isl_mat_copy(qp
->div
);
1006 isl_qpolynomial_free(dup
);
1010 __isl_give isl_qpolynomial
*isl_qpolynomial_cow(__isl_take isl_qpolynomial
*qp
)
1018 return isl_qpolynomial_dup(qp
);
1021 void isl_qpolynomial_free(__isl_take isl_qpolynomial
*qp
)
1029 isl_dim_free(qp
->dim
);
1030 isl_mat_free(qp
->div
);
1031 isl_upoly_free(qp
->upoly
);
1036 __isl_give
struct isl_upoly
*isl_upoly_var_pow(isl_ctx
*ctx
, int pos
, int power
)
1039 struct isl_upoly
*up
;
1040 struct isl_upoly_rec
*rec
;
1041 struct isl_upoly_cst
*cst
;
1043 rec
= isl_upoly_alloc_rec(ctx
, pos
, 1 + power
);
1046 for (i
= 0; i
< 1 + power
; ++i
) {
1047 rec
->p
[i
] = isl_upoly_zero(ctx
);
1052 cst
= isl_upoly_as_cst(rec
->p
[power
]);
1053 isl_int_set_si(cst
->n
, 1);
1057 isl_upoly_free(&rec
->up
);
1061 /* r array maps original positions to new positions.
1063 static __isl_give
struct isl_upoly
*reorder(__isl_take
struct isl_upoly
*up
,
1067 struct isl_upoly_rec
*rec
;
1068 struct isl_upoly
*base
;
1069 struct isl_upoly
*res
;
1071 if (isl_upoly_is_cst(up
))
1074 rec
= isl_upoly_as_rec(up
);
1078 isl_assert(up
->ctx
, rec
->n
>= 1, goto error
);
1080 base
= isl_upoly_var_pow(up
->ctx
, r
[up
->var
], 1);
1081 res
= reorder(isl_upoly_copy(rec
->p
[rec
->n
- 1]), r
);
1083 for (i
= rec
->n
- 2; i
>= 0; --i
) {
1084 res
= isl_upoly_mul(res
, isl_upoly_copy(base
));
1085 res
= isl_upoly_sum(res
, reorder(isl_upoly_copy(rec
->p
[i
]), r
));
1088 isl_upoly_free(base
);
1097 static int compatible_divs(__isl_keep isl_mat
*div1
, __isl_keep isl_mat
*div2
)
1102 isl_assert(div1
->ctx
, div1
->n_row
>= div2
->n_row
&&
1103 div1
->n_col
>= div2
->n_col
, return -1);
1105 if (div1
->n_row
== div2
->n_row
)
1106 return isl_mat_is_equal(div1
, div2
);
1108 n_row
= div1
->n_row
;
1109 n_col
= div1
->n_col
;
1110 div1
->n_row
= div2
->n_row
;
1111 div1
->n_col
= div2
->n_col
;
1113 equal
= isl_mat_is_equal(div1
, div2
);
1115 div1
->n_row
= n_row
;
1116 div1
->n_col
= n_col
;
1121 static int cmp_row(__isl_keep isl_mat
*div
, int i
, int j
)
1125 li
= isl_seq_last_non_zero(div
->row
[i
], div
->n_col
);
1126 lj
= isl_seq_last_non_zero(div
->row
[j
], div
->n_col
);
1131 return isl_seq_cmp(div
->row
[i
], div
->row
[j
], div
->n_col
);
1134 struct isl_div_sort_info
{
1139 static int div_sort_cmp(const void *p1
, const void *p2
)
1141 const struct isl_div_sort_info
*i1
, *i2
;
1142 i1
= (const struct isl_div_sort_info
*) p1
;
1143 i2
= (const struct isl_div_sort_info
*) p2
;
1145 return cmp_row(i1
->div
, i1
->row
, i2
->row
);
1148 /* Sort divs and remove duplicates.
1150 static __isl_give isl_qpolynomial
*sort_divs(__isl_take isl_qpolynomial
*qp
)
1155 struct isl_div_sort_info
*array
= NULL
;
1156 int *pos
= NULL
, *at
= NULL
;
1157 int *reordering
= NULL
;
1162 if (qp
->div
->n_row
<= 1)
1165 div_pos
= isl_dim_total(qp
->dim
);
1167 array
= isl_alloc_array(qp
->div
->ctx
, struct isl_div_sort_info
,
1169 pos
= isl_alloc_array(qp
->div
->ctx
, int, qp
->div
->n_row
);
1170 at
= isl_alloc_array(qp
->div
->ctx
, int, qp
->div
->n_row
);
1171 len
= qp
->div
->n_col
- 2;
1172 reordering
= isl_alloc_array(qp
->div
->ctx
, int, len
);
1173 if (!array
|| !pos
|| !at
|| !reordering
)
1176 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
1177 array
[i
].div
= qp
->div
;
1183 qsort(array
, qp
->div
->n_row
, sizeof(struct isl_div_sort_info
),
1186 for (i
= 0; i
< div_pos
; ++i
)
1189 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
1190 if (pos
[array
[i
].row
] == i
)
1192 qp
->div
= isl_mat_swap_rows(qp
->div
, i
, pos
[array
[i
].row
]);
1193 pos
[at
[i
]] = pos
[array
[i
].row
];
1194 at
[pos
[array
[i
].row
]] = at
[i
];
1195 at
[i
] = array
[i
].row
;
1196 pos
[array
[i
].row
] = i
;
1200 for (i
= 0; i
< len
- div_pos
; ++i
) {
1202 isl_seq_eq(qp
->div
->row
[i
- skip
- 1],
1203 qp
->div
->row
[i
- skip
], qp
->div
->n_col
)) {
1204 qp
->div
= isl_mat_drop_rows(qp
->div
, i
- skip
, 1);
1205 isl_mat_col_add(qp
->div
, 2 + div_pos
+ i
- skip
- 1,
1206 2 + div_pos
+ i
- skip
);
1207 qp
->div
= isl_mat_drop_cols(qp
->div
,
1208 2 + div_pos
+ i
- skip
, 1);
1211 reordering
[div_pos
+ array
[i
].row
] = div_pos
+ i
- skip
;
1214 qp
->upoly
= reorder(qp
->upoly
, reordering
);
1216 if (!qp
->upoly
|| !qp
->div
)
1230 isl_qpolynomial_free(qp
);
1234 static __isl_give
struct isl_upoly
*expand(__isl_take
struct isl_upoly
*up
,
1235 int *exp
, int first
)
1238 struct isl_upoly_rec
*rec
;
1240 if (isl_upoly_is_cst(up
))
1243 if (up
->var
< first
)
1246 if (exp
[up
->var
- first
] == up
->var
- first
)
1249 up
= isl_upoly_cow(up
);
1253 up
->var
= exp
[up
->var
- first
] + first
;
1255 rec
= isl_upoly_as_rec(up
);
1259 for (i
= 0; i
< rec
->n
; ++i
) {
1260 rec
->p
[i
] = expand(rec
->p
[i
], exp
, first
);
1271 static __isl_give isl_qpolynomial
*with_merged_divs(
1272 __isl_give isl_qpolynomial
*(*fn
)(__isl_take isl_qpolynomial
*qp1
,
1273 __isl_take isl_qpolynomial
*qp2
),
1274 __isl_take isl_qpolynomial
*qp1
, __isl_take isl_qpolynomial
*qp2
)
1278 isl_mat
*div
= NULL
;
1280 qp1
= isl_qpolynomial_cow(qp1
);
1281 qp2
= isl_qpolynomial_cow(qp2
);
1286 isl_assert(qp1
->div
->ctx
, qp1
->div
->n_row
>= qp2
->div
->n_row
&&
1287 qp1
->div
->n_col
>= qp2
->div
->n_col
, goto error
);
1289 exp1
= isl_alloc_array(qp1
->div
->ctx
, int, qp1
->div
->n_row
);
1290 exp2
= isl_alloc_array(qp2
->div
->ctx
, int, qp2
->div
->n_row
);
1294 div
= isl_merge_divs(qp1
->div
, qp2
->div
, exp1
, exp2
);
1298 isl_mat_free(qp1
->div
);
1299 qp1
->div
= isl_mat_copy(div
);
1300 isl_mat_free(qp2
->div
);
1301 qp2
->div
= isl_mat_copy(div
);
1303 qp1
->upoly
= expand(qp1
->upoly
, exp1
, div
->n_col
- div
->n_row
- 2);
1304 qp2
->upoly
= expand(qp2
->upoly
, exp2
, div
->n_col
- div
->n_row
- 2);
1306 if (!qp1
->upoly
|| !qp2
->upoly
)
1313 return fn(qp1
, qp2
);
1318 isl_qpolynomial_free(qp1
);
1319 isl_qpolynomial_free(qp2
);
1323 __isl_give isl_qpolynomial
*isl_qpolynomial_add(__isl_take isl_qpolynomial
*qp1
,
1324 __isl_take isl_qpolynomial
*qp2
)
1326 qp1
= isl_qpolynomial_cow(qp1
);
1331 if (qp1
->div
->n_row
< qp2
->div
->n_row
)
1332 return isl_qpolynomial_add(qp2
, qp1
);
1334 isl_assert(qp1
->dim
->ctx
, isl_dim_equal(qp1
->dim
, qp2
->dim
), goto error
);
1335 if (!compatible_divs(qp1
->div
, qp2
->div
))
1336 return with_merged_divs(isl_qpolynomial_add
, qp1
, qp2
);
1338 qp1
->upoly
= isl_upoly_sum(qp1
->upoly
, isl_upoly_copy(qp2
->upoly
));
1342 isl_qpolynomial_free(qp2
);
1346 isl_qpolynomial_free(qp1
);
1347 isl_qpolynomial_free(qp2
);
1351 __isl_give isl_qpolynomial
*isl_qpolynomial_add_on_domain(
1352 __isl_keep isl_set
*dom
,
1353 __isl_take isl_qpolynomial
*qp1
,
1354 __isl_take isl_qpolynomial
*qp2
)
1356 qp1
= isl_qpolynomial_add(qp1
, qp2
);
1357 qp1
= isl_qpolynomial_gist(qp1
, isl_set_copy(dom
));
1361 __isl_give isl_qpolynomial
*isl_qpolynomial_sub(__isl_take isl_qpolynomial
*qp1
,
1362 __isl_take isl_qpolynomial
*qp2
)
1364 return isl_qpolynomial_add(qp1
, isl_qpolynomial_neg(qp2
));
1367 __isl_give isl_qpolynomial
*isl_qpolynomial_add_isl_int(
1368 __isl_take isl_qpolynomial
*qp
, isl_int v
)
1370 if (isl_int_is_zero(v
))
1373 qp
= isl_qpolynomial_cow(qp
);
1377 qp
->upoly
= isl_upoly_add_isl_int(qp
->upoly
, v
);
1383 isl_qpolynomial_free(qp
);
1388 __isl_give isl_qpolynomial
*isl_qpolynomial_neg(__isl_take isl_qpolynomial
*qp
)
1393 return isl_qpolynomial_mul_isl_int(qp
, qp
->dim
->ctx
->negone
);
1396 __isl_give isl_qpolynomial
*isl_qpolynomial_mul_isl_int(
1397 __isl_take isl_qpolynomial
*qp
, isl_int v
)
1399 if (isl_int_is_one(v
))
1402 if (qp
&& isl_int_is_zero(v
)) {
1403 isl_qpolynomial
*zero
;
1404 zero
= isl_qpolynomial_zero(isl_dim_copy(qp
->dim
));
1405 isl_qpolynomial_free(qp
);
1409 qp
= isl_qpolynomial_cow(qp
);
1413 qp
->upoly
= isl_upoly_mul_isl_int(qp
->upoly
, v
);
1419 isl_qpolynomial_free(qp
);
1423 __isl_give isl_qpolynomial
*isl_qpolynomial_mul(__isl_take isl_qpolynomial
*qp1
,
1424 __isl_take isl_qpolynomial
*qp2
)
1426 qp1
= isl_qpolynomial_cow(qp1
);
1431 if (qp1
->div
->n_row
< qp2
->div
->n_row
)
1432 return isl_qpolynomial_mul(qp2
, qp1
);
1434 isl_assert(qp1
->dim
->ctx
, isl_dim_equal(qp1
->dim
, qp2
->dim
), goto error
);
1435 if (!compatible_divs(qp1
->div
, qp2
->div
))
1436 return with_merged_divs(isl_qpolynomial_mul
, qp1
, qp2
);
1438 qp1
->upoly
= isl_upoly_mul(qp1
->upoly
, isl_upoly_copy(qp2
->upoly
));
1442 isl_qpolynomial_free(qp2
);
1446 isl_qpolynomial_free(qp1
);
1447 isl_qpolynomial_free(qp2
);
1451 __isl_give isl_qpolynomial
*isl_qpolynomial_pow(__isl_take isl_qpolynomial
*qp
,
1454 qp
= isl_qpolynomial_cow(qp
);
1459 qp
->upoly
= isl_upoly_pow(qp
->upoly
, power
);
1465 isl_qpolynomial_free(qp
);
1469 __isl_give isl_qpolynomial
*isl_qpolynomial_zero(__isl_take isl_dim
*dim
)
1473 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_zero(dim
->ctx
));
1476 __isl_give isl_qpolynomial
*isl_qpolynomial_one(__isl_take isl_dim
*dim
)
1480 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_one(dim
->ctx
));
1483 __isl_give isl_qpolynomial
*isl_qpolynomial_infty(__isl_take isl_dim
*dim
)
1487 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_infty(dim
->ctx
));
1490 __isl_give isl_qpolynomial
*isl_qpolynomial_neginfty(__isl_take isl_dim
*dim
)
1494 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_neginfty(dim
->ctx
));
1497 __isl_give isl_qpolynomial
*isl_qpolynomial_nan(__isl_take isl_dim
*dim
)
1501 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_nan(dim
->ctx
));
1504 __isl_give isl_qpolynomial
*isl_qpolynomial_cst(__isl_take isl_dim
*dim
,
1507 struct isl_qpolynomial
*qp
;
1508 struct isl_upoly_cst
*cst
;
1513 qp
= isl_qpolynomial_alloc(dim
, 0, isl_upoly_zero(dim
->ctx
));
1517 cst
= isl_upoly_as_cst(qp
->upoly
);
1518 isl_int_set(cst
->n
, v
);
1523 int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial
*qp
,
1524 isl_int
*n
, isl_int
*d
)
1526 struct isl_upoly_cst
*cst
;
1531 if (!isl_upoly_is_cst(qp
->upoly
))
1534 cst
= isl_upoly_as_cst(qp
->upoly
);
1539 isl_int_set(*n
, cst
->n
);
1541 isl_int_set(*d
, cst
->d
);
1546 int isl_upoly_is_affine(__isl_keep
struct isl_upoly
*up
)
1549 struct isl_upoly_rec
*rec
;
1557 rec
= isl_upoly_as_rec(up
);
1564 isl_assert(up
->ctx
, rec
->n
> 1, return -1);
1566 is_cst
= isl_upoly_is_cst(rec
->p
[1]);
1572 return isl_upoly_is_affine(rec
->p
[0]);
1575 int isl_qpolynomial_is_affine(__isl_keep isl_qpolynomial
*qp
)
1580 if (qp
->div
->n_row
> 0)
1583 return isl_upoly_is_affine(qp
->upoly
);
1586 static void update_coeff(__isl_keep isl_vec
*aff
,
1587 __isl_keep
struct isl_upoly_cst
*cst
, int pos
)
1592 if (isl_int_is_zero(cst
->n
))
1597 isl_int_gcd(gcd
, cst
->d
, aff
->el
[0]);
1598 isl_int_divexact(f
, cst
->d
, gcd
);
1599 isl_int_divexact(gcd
, aff
->el
[0], gcd
);
1600 isl_seq_scale(aff
->el
, aff
->el
, f
, aff
->size
);
1601 isl_int_mul(aff
->el
[1 + pos
], gcd
, cst
->n
);
1606 int isl_upoly_update_affine(__isl_keep
struct isl_upoly
*up
,
1607 __isl_keep isl_vec
*aff
)
1609 struct isl_upoly_cst
*cst
;
1610 struct isl_upoly_rec
*rec
;
1616 struct isl_upoly_cst
*cst
;
1618 cst
= isl_upoly_as_cst(up
);
1621 update_coeff(aff
, cst
, 0);
1625 rec
= isl_upoly_as_rec(up
);
1628 isl_assert(up
->ctx
, rec
->n
== 2, return -1);
1630 cst
= isl_upoly_as_cst(rec
->p
[1]);
1633 update_coeff(aff
, cst
, 1 + up
->var
);
1635 return isl_upoly_update_affine(rec
->p
[0], aff
);
1638 __isl_give isl_vec
*isl_qpolynomial_extract_affine(
1639 __isl_keep isl_qpolynomial
*qp
)
1647 d
= isl_dim_total(qp
->dim
);
1648 aff
= isl_vec_alloc(qp
->div
->ctx
, 2 + d
+ qp
->div
->n_row
);
1652 isl_seq_clr(aff
->el
+ 1, 1 + d
+ qp
->div
->n_row
);
1653 isl_int_set_si(aff
->el
[0], 1);
1655 if (isl_upoly_update_affine(qp
->upoly
, aff
) < 0)
1664 int isl_qpolynomial_is_equal(__isl_keep isl_qpolynomial
*qp1
,
1665 __isl_keep isl_qpolynomial
*qp2
)
1670 return isl_upoly_is_equal(qp1
->upoly
, qp2
->upoly
);
1673 static void upoly_update_den(__isl_keep
struct isl_upoly
*up
, isl_int
*d
)
1676 struct isl_upoly_rec
*rec
;
1678 if (isl_upoly_is_cst(up
)) {
1679 struct isl_upoly_cst
*cst
;
1680 cst
= isl_upoly_as_cst(up
);
1683 isl_int_lcm(*d
, *d
, cst
->d
);
1687 rec
= isl_upoly_as_rec(up
);
1691 for (i
= 0; i
< rec
->n
; ++i
)
1692 upoly_update_den(rec
->p
[i
], d
);
1695 void isl_qpolynomial_get_den(__isl_keep isl_qpolynomial
*qp
, isl_int
*d
)
1697 isl_int_set_si(*d
, 1);
1700 upoly_update_den(qp
->upoly
, d
);
1703 __isl_give isl_qpolynomial
*isl_qpolynomial_var_pow(__isl_take isl_dim
*dim
,
1706 struct isl_ctx
*ctx
;
1713 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_var_pow(ctx
, pos
, power
));
1716 __isl_give isl_qpolynomial
*isl_qpolynomial_var(__isl_take isl_dim
*dim
,
1717 enum isl_dim_type type
, unsigned pos
)
1722 isl_assert(dim
->ctx
, isl_dim_size(dim
, isl_dim_in
) == 0, goto error
);
1723 isl_assert(dim
->ctx
, pos
< isl_dim_size(dim
, type
), goto error
);
1725 if (type
== isl_dim_set
)
1726 pos
+= isl_dim_size(dim
, isl_dim_param
);
1728 return isl_qpolynomial_var_pow(dim
, pos
, 1);
1734 __isl_give
struct isl_upoly
*isl_upoly_subs(__isl_take
struct isl_upoly
*up
,
1735 unsigned first
, unsigned n
, __isl_keep
struct isl_upoly
**subs
)
1738 struct isl_upoly_rec
*rec
;
1739 struct isl_upoly
*base
, *res
;
1744 if (isl_upoly_is_cst(up
))
1747 if (up
->var
< first
)
1750 rec
= isl_upoly_as_rec(up
);
1754 isl_assert(up
->ctx
, rec
->n
>= 1, goto error
);
1756 if (up
->var
>= first
+ n
)
1757 base
= isl_upoly_var_pow(up
->ctx
, up
->var
, 1);
1759 base
= isl_upoly_copy(subs
[up
->var
- first
]);
1761 res
= isl_upoly_subs(isl_upoly_copy(rec
->p
[rec
->n
- 1]), first
, n
, subs
);
1762 for (i
= rec
->n
- 2; i
>= 0; --i
) {
1763 struct isl_upoly
*t
;
1764 t
= isl_upoly_subs(isl_upoly_copy(rec
->p
[i
]), first
, n
, subs
);
1765 res
= isl_upoly_mul(res
, isl_upoly_copy(base
));
1766 res
= isl_upoly_sum(res
, t
);
1769 isl_upoly_free(base
);
1778 __isl_give
struct isl_upoly
*isl_upoly_from_affine(isl_ctx
*ctx
, isl_int
*f
,
1779 isl_int denom
, unsigned len
)
1782 struct isl_upoly
*up
;
1784 isl_assert(ctx
, len
>= 1, return NULL
);
1786 up
= isl_upoly_rat_cst(ctx
, f
[0], denom
);
1787 for (i
= 0; i
< len
- 1; ++i
) {
1788 struct isl_upoly
*t
;
1789 struct isl_upoly
*c
;
1791 if (isl_int_is_zero(f
[1 + i
]))
1794 c
= isl_upoly_rat_cst(ctx
, f
[1 + i
], denom
);
1795 t
= isl_upoly_var_pow(ctx
, i
, 1);
1796 t
= isl_upoly_mul(c
, t
);
1797 up
= isl_upoly_sum(up
, t
);
1803 /* Remove common factor of non-constant terms and denominator.
1805 static void normalize_div(__isl_keep isl_qpolynomial
*qp
, int div
)
1807 isl_ctx
*ctx
= qp
->div
->ctx
;
1808 unsigned total
= qp
->div
->n_col
- 2;
1810 isl_seq_gcd(qp
->div
->row
[div
] + 2, total
, &ctx
->normalize_gcd
);
1811 isl_int_gcd(ctx
->normalize_gcd
,
1812 ctx
->normalize_gcd
, qp
->div
->row
[div
][0]);
1813 if (isl_int_is_one(ctx
->normalize_gcd
))
1816 isl_seq_scale_down(qp
->div
->row
[div
] + 2, qp
->div
->row
[div
] + 2,
1817 ctx
->normalize_gcd
, total
);
1818 isl_int_divexact(qp
->div
->row
[div
][0], qp
->div
->row
[div
][0],
1819 ctx
->normalize_gcd
);
1820 isl_int_fdiv_q(qp
->div
->row
[div
][1], qp
->div
->row
[div
][1],
1821 ctx
->normalize_gcd
);
1824 /* Replace the integer division identified by "div" by the polynomial "s".
1825 * The integer division is assumed not to appear in the definition
1826 * of any other integer divisions.
1828 static __isl_give isl_qpolynomial
*substitute_div(
1829 __isl_take isl_qpolynomial
*qp
,
1830 int div
, __isl_take
struct isl_upoly
*s
)
1839 qp
= isl_qpolynomial_cow(qp
);
1843 total
= isl_dim_total(qp
->dim
);
1844 qp
->upoly
= isl_upoly_subs(qp
->upoly
, total
+ div
, 1, &s
);
1848 reordering
= isl_alloc_array(qp
->dim
->ctx
, int, total
+ qp
->div
->n_row
);
1851 for (i
= 0; i
< total
+ div
; ++i
)
1853 for (i
= total
+ div
+ 1; i
< total
+ qp
->div
->n_row
; ++i
)
1854 reordering
[i
] = i
- 1;
1855 qp
->div
= isl_mat_drop_rows(qp
->div
, div
, 1);
1856 qp
->div
= isl_mat_drop_cols(qp
->div
, 2 + total
+ div
, 1);
1857 qp
->upoly
= reorder(qp
->upoly
, reordering
);
1860 if (!qp
->upoly
|| !qp
->div
)
1866 isl_qpolynomial_free(qp
);
1871 /* Replace all integer divisions [e/d] that turn out to not actually be integer
1872 * divisions because d is equal to 1 by their definition, i.e., e.
1874 static __isl_give isl_qpolynomial
*substitute_non_divs(
1875 __isl_take isl_qpolynomial
*qp
)
1879 struct isl_upoly
*s
;
1884 total
= isl_dim_total(qp
->dim
);
1885 for (i
= 0; qp
&& i
< qp
->div
->n_row
; ++i
) {
1886 if (!isl_int_is_one(qp
->div
->row
[i
][0]))
1888 for (j
= i
+ 1; j
< qp
->div
->n_row
; ++j
) {
1889 if (isl_int_is_zero(qp
->div
->row
[j
][2 + total
+ i
]))
1891 isl_seq_combine(qp
->div
->row
[j
] + 1,
1892 qp
->div
->ctx
->one
, qp
->div
->row
[j
] + 1,
1893 qp
->div
->row
[j
][2 + total
+ i
],
1894 qp
->div
->row
[i
] + 1, 1 + total
+ i
);
1895 isl_int_set_si(qp
->div
->row
[j
][2 + total
+ i
], 0);
1896 normalize_div(qp
, j
);
1898 s
= isl_upoly_from_affine(qp
->dim
->ctx
, qp
->div
->row
[i
] + 1,
1899 qp
->div
->row
[i
][0], qp
->div
->n_col
- 1);
1900 qp
= substitute_div(qp
, i
, s
);
1907 /* Reduce the coefficients of div "div" to lie in the interval [0, d-1],
1908 * with d the denominator. When replacing the coefficient e of x by
1909 * d * frac(e/d) = e - d * floor(e/d), we are subtracting d * floor(e/d) * x
1910 * inside the division, so we need to add floor(e/d) * x outside.
1911 * That is, we replace q by q' + floor(e/d) * x and we therefore need
1912 * to adjust the coefficient of x in each later div that depends on the
1913 * current div "div" and also in the affine expression "aff"
1914 * (if it too depends on "div").
1916 static void reduce_div(__isl_keep isl_qpolynomial
*qp
, int div
,
1917 __isl_keep isl_vec
*aff
)
1921 unsigned total
= qp
->div
->n_col
- qp
->div
->n_row
- 2;
1924 for (i
= 0; i
< 1 + total
+ div
; ++i
) {
1925 if (isl_int_is_nonneg(qp
->div
->row
[div
][1 + i
]) &&
1926 isl_int_lt(qp
->div
->row
[div
][1 + i
], qp
->div
->row
[div
][0]))
1928 isl_int_fdiv_q(v
, qp
->div
->row
[div
][1 + i
], qp
->div
->row
[div
][0]);
1929 isl_int_fdiv_r(qp
->div
->row
[div
][1 + i
],
1930 qp
->div
->row
[div
][1 + i
], qp
->div
->row
[div
][0]);
1931 if (!isl_int_is_zero(aff
->el
[1 + total
+ div
]))
1932 isl_int_addmul(aff
->el
[i
], v
, aff
->el
[1 + total
+ div
]);
1933 for (j
= div
+ 1; j
< qp
->div
->n_row
; ++j
) {
1934 if (isl_int_is_zero(qp
->div
->row
[j
][2 + total
+ div
]))
1936 isl_int_addmul(qp
->div
->row
[j
][1 + i
],
1937 v
, qp
->div
->row
[j
][2 + total
+ div
]);
1943 /* Check if the last non-zero coefficient is bigger that half of the
1944 * denominator. If so, we will invert the div to further reduce the number
1945 * of distinct divs that may appear.
1946 * If the last non-zero coefficient is exactly half the denominator,
1947 * then we continue looking for earlier coefficients that are bigger
1948 * than half the denominator.
1950 static int needs_invert(__isl_keep isl_mat
*div
, int row
)
1955 for (i
= div
->n_col
- 1; i
>= 1; --i
) {
1956 if (isl_int_is_zero(div
->row
[row
][i
]))
1958 isl_int_mul_ui(div
->row
[row
][i
], div
->row
[row
][i
], 2);
1959 cmp
= isl_int_cmp(div
->row
[row
][i
], div
->row
[row
][0]);
1960 isl_int_divexact_ui(div
->row
[row
][i
], div
->row
[row
][i
], 2);
1970 /* Replace div "div" q = [e/d] by -[(-e+(d-1))/d].
1971 * We only invert the coefficients of e (and the coefficient of q in
1972 * later divs and in "aff"). After calling this function, the
1973 * coefficients of e should be reduced again.
1975 static void invert_div(__isl_keep isl_qpolynomial
*qp
, int div
,
1976 __isl_keep isl_vec
*aff
)
1978 unsigned total
= qp
->div
->n_col
- qp
->div
->n_row
- 2;
1980 isl_seq_neg(qp
->div
->row
[div
] + 1,
1981 qp
->div
->row
[div
] + 1, qp
->div
->n_col
- 1);
1982 isl_int_sub_ui(qp
->div
->row
[div
][1], qp
->div
->row
[div
][1], 1);
1983 isl_int_add(qp
->div
->row
[div
][1],
1984 qp
->div
->row
[div
][1], qp
->div
->row
[div
][0]);
1985 if (!isl_int_is_zero(aff
->el
[1 + total
+ div
]))
1986 isl_int_neg(aff
->el
[1 + total
+ div
], aff
->el
[1 + total
+ div
]);
1987 isl_mat_col_mul(qp
->div
, 2 + total
+ div
,
1988 qp
->div
->ctx
->negone
, 2 + total
+ div
);
1991 /* Assuming "qp" is a monomial, reduce all its divs to have coefficients
1992 * in the interval [0, d-1], with d the denominator and such that the
1993 * last non-zero coefficient that is not equal to d/2 is smaller than d/2.
1995 * After the reduction, some divs may have become redundant or identical,
1996 * so we call substitute_non_divs and sort_divs. If these functions
1997 * eliminate divs or merge two or more divs into one, the coefficients
1998 * of the enclosing divs may have to be reduced again, so we call
1999 * ourselves recursively if the number of divs decreases.
2001 static __isl_give isl_qpolynomial
*reduce_divs(__isl_take isl_qpolynomial
*qp
)
2004 isl_vec
*aff
= NULL
;
2005 struct isl_upoly
*s
;
2011 aff
= isl_vec_alloc(qp
->div
->ctx
, qp
->div
->n_col
- 1);
2012 aff
= isl_vec_clr(aff
);
2016 isl_int_set_si(aff
->el
[1 + qp
->upoly
->var
], 1);
2018 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
2019 normalize_div(qp
, i
);
2020 reduce_div(qp
, i
, aff
);
2021 if (needs_invert(qp
->div
, i
)) {
2022 invert_div(qp
, i
, aff
);
2023 reduce_div(qp
, i
, aff
);
2027 s
= isl_upoly_from_affine(qp
->div
->ctx
, aff
->el
,
2028 qp
->div
->ctx
->one
, aff
->size
);
2029 qp
->upoly
= isl_upoly_subs(qp
->upoly
, qp
->upoly
->var
, 1, &s
);
2036 n_div
= qp
->div
->n_row
;
2037 qp
= substitute_non_divs(qp
);
2039 if (qp
&& qp
->div
->n_row
< n_div
)
2040 return reduce_divs(qp
);
2044 isl_qpolynomial_free(qp
);
2049 /* Assumes each div only depends on earlier divs.
2051 __isl_give isl_qpolynomial
*isl_qpolynomial_div_pow(__isl_take isl_div
*div
,
2054 struct isl_qpolynomial
*qp
= NULL
;
2055 struct isl_upoly_rec
*rec
;
2056 struct isl_upoly_cst
*cst
;
2063 d
= div
->line
- div
->bmap
->div
;
2065 pos
= isl_dim_total(div
->bmap
->dim
) + d
;
2066 rec
= isl_upoly_alloc_rec(div
->ctx
, pos
, 1 + power
);
2067 qp
= isl_qpolynomial_alloc(isl_basic_map_get_dim(div
->bmap
),
2068 div
->bmap
->n_div
, &rec
->up
);
2072 for (i
= 0; i
< div
->bmap
->n_div
; ++i
)
2073 isl_seq_cpy(qp
->div
->row
[i
], div
->bmap
->div
[i
], qp
->div
->n_col
);
2075 for (i
= 0; i
< 1 + power
; ++i
) {
2076 rec
->p
[i
] = isl_upoly_zero(div
->ctx
);
2081 cst
= isl_upoly_as_cst(rec
->p
[power
]);
2082 isl_int_set_si(cst
->n
, 1);
2086 qp
= reduce_divs(qp
);
2090 isl_qpolynomial_free(qp
);
2095 __isl_give isl_qpolynomial
*isl_qpolynomial_div(__isl_take isl_div
*div
)
2097 return isl_qpolynomial_div_pow(div
, 1);
2100 __isl_give isl_qpolynomial
*isl_qpolynomial_rat_cst(__isl_take isl_dim
*dim
,
2101 const isl_int n
, const isl_int d
)
2103 struct isl_qpolynomial
*qp
;
2104 struct isl_upoly_cst
*cst
;
2106 qp
= isl_qpolynomial_alloc(dim
, 0, isl_upoly_zero(dim
->ctx
));
2110 cst
= isl_upoly_as_cst(qp
->upoly
);
2111 isl_int_set(cst
->n
, n
);
2112 isl_int_set(cst
->d
, d
);
2117 static int up_set_active(__isl_keep
struct isl_upoly
*up
, int *active
, int d
)
2119 struct isl_upoly_rec
*rec
;
2125 if (isl_upoly_is_cst(up
))
2129 active
[up
->var
] = 1;
2131 rec
= isl_upoly_as_rec(up
);
2132 for (i
= 0; i
< rec
->n
; ++i
)
2133 if (up_set_active(rec
->p
[i
], active
, d
) < 0)
2139 static int set_active(__isl_keep isl_qpolynomial
*qp
, int *active
)
2142 int d
= isl_dim_total(qp
->dim
);
2147 for (i
= 0; i
< d
; ++i
)
2148 for (j
= 0; j
< qp
->div
->n_row
; ++j
) {
2149 if (isl_int_is_zero(qp
->div
->row
[j
][2 + i
]))
2155 return up_set_active(qp
->upoly
, active
, d
);
2158 int isl_qpolynomial_involves_dims(__isl_keep isl_qpolynomial
*qp
,
2159 enum isl_dim_type type
, unsigned first
, unsigned n
)
2170 isl_assert(qp
->dim
->ctx
, first
+ n
<= isl_dim_size(qp
->dim
, type
),
2172 isl_assert(qp
->dim
->ctx
, type
== isl_dim_param
||
2173 type
== isl_dim_set
, return -1);
2175 active
= isl_calloc_array(qp
->dim
->ctx
, int, isl_dim_total(qp
->dim
));
2176 if (set_active(qp
, active
) < 0)
2179 if (type
== isl_dim_set
)
2180 first
+= isl_dim_size(qp
->dim
, isl_dim_param
);
2181 for (i
= 0; i
< n
; ++i
)
2182 if (active
[first
+ i
]) {
2195 /* Remove divs that do not appear in the quasi-polynomial, nor in any
2196 * of the divs that do appear in the quasi-polynomial.
2198 static __isl_give isl_qpolynomial
*remove_redundant_divs(
2199 __isl_take isl_qpolynomial
*qp
)
2206 int *reordering
= NULL
;
2212 if (qp
->div
->n_row
== 0)
2215 d
= isl_dim_total(qp
->dim
);
2216 len
= qp
->div
->n_col
- 2;
2217 active
= isl_calloc_array(qp
->ctx
, int, len
);
2221 if (up_set_active(qp
->upoly
, active
, len
) < 0)
2224 for (i
= qp
->div
->n_row
- 1; i
>= 0; --i
) {
2225 if (!active
[d
+ i
]) {
2229 for (j
= 0; j
< i
; ++j
) {
2230 if (isl_int_is_zero(qp
->div
->row
[i
][2 + d
+ j
]))
2242 reordering
= isl_alloc_array(qp
->div
->ctx
, int, len
);
2246 for (i
= 0; i
< d
; ++i
)
2250 n_div
= qp
->div
->n_row
;
2251 for (i
= 0; i
< n_div
; ++i
) {
2252 if (!active
[d
+ i
]) {
2253 qp
->div
= isl_mat_drop_rows(qp
->div
, i
- skip
, 1);
2254 qp
->div
= isl_mat_drop_cols(qp
->div
,
2255 2 + d
+ i
- skip
, 1);
2258 reordering
[d
+ i
] = d
+ i
- skip
;
2261 qp
->upoly
= reorder(qp
->upoly
, reordering
);
2263 if (!qp
->upoly
|| !qp
->div
)
2273 isl_qpolynomial_free(qp
);
2277 __isl_give
struct isl_upoly
*isl_upoly_drop(__isl_take
struct isl_upoly
*up
,
2278 unsigned first
, unsigned n
)
2281 struct isl_upoly_rec
*rec
;
2285 if (n
== 0 || up
->var
< 0 || up
->var
< first
)
2287 if (up
->var
< first
+ n
) {
2288 up
= replace_by_constant_term(up
);
2289 return isl_upoly_drop(up
, first
, n
);
2291 up
= isl_upoly_cow(up
);
2295 rec
= isl_upoly_as_rec(up
);
2299 for (i
= 0; i
< rec
->n
; ++i
) {
2300 rec
->p
[i
] = isl_upoly_drop(rec
->p
[i
], first
, n
);
2311 __isl_give isl_qpolynomial
*isl_qpolynomial_set_dim_name(
2312 __isl_take isl_qpolynomial
*qp
,
2313 enum isl_dim_type type
, unsigned pos
, const char *s
)
2315 qp
= isl_qpolynomial_cow(qp
);
2318 qp
->dim
= isl_dim_set_name(qp
->dim
, type
, pos
, s
);
2323 isl_qpolynomial_free(qp
);
2327 __isl_give isl_qpolynomial
*isl_qpolynomial_drop_dims(
2328 __isl_take isl_qpolynomial
*qp
,
2329 enum isl_dim_type type
, unsigned first
, unsigned n
)
2333 if (n
== 0 && !isl_dim_get_tuple_name(qp
->dim
, type
))
2336 qp
= isl_qpolynomial_cow(qp
);
2340 isl_assert(qp
->dim
->ctx
, first
+ n
<= isl_dim_size(qp
->dim
, type
),
2342 isl_assert(qp
->dim
->ctx
, type
== isl_dim_param
||
2343 type
== isl_dim_set
, goto error
);
2345 qp
->dim
= isl_dim_drop(qp
->dim
, type
, first
, n
);
2349 if (type
== isl_dim_set
)
2350 first
+= isl_dim_size(qp
->dim
, isl_dim_param
);
2352 qp
->div
= isl_mat_drop_cols(qp
->div
, 2 + first
, n
);
2356 qp
->upoly
= isl_upoly_drop(qp
->upoly
, first
, n
);
2362 isl_qpolynomial_free(qp
);
2366 __isl_give isl_qpolynomial
*isl_qpolynomial_substitute_equalities(
2367 __isl_take isl_qpolynomial
*qp
, __isl_take isl_basic_set
*eq
)
2373 struct isl_upoly
*up
;
2377 if (eq
->n_eq
== 0) {
2378 isl_basic_set_free(eq
);
2382 qp
= isl_qpolynomial_cow(qp
);
2385 qp
->div
= isl_mat_cow(qp
->div
);
2389 total
= 1 + isl_dim_total(eq
->dim
);
2391 isl_int_init(denom
);
2392 for (i
= 0; i
< eq
->n_eq
; ++i
) {
2393 j
= isl_seq_last_non_zero(eq
->eq
[i
], total
+ n_div
);
2394 if (j
< 0 || j
== 0 || j
>= total
)
2397 for (k
= 0; k
< qp
->div
->n_row
; ++k
) {
2398 if (isl_int_is_zero(qp
->div
->row
[k
][1 + j
]))
2400 isl_seq_elim(qp
->div
->row
[k
] + 1, eq
->eq
[i
], j
, total
,
2401 &qp
->div
->row
[k
][0]);
2402 normalize_div(qp
, k
);
2405 if (isl_int_is_pos(eq
->eq
[i
][j
]))
2406 isl_seq_neg(eq
->eq
[i
], eq
->eq
[i
], total
);
2407 isl_int_abs(denom
, eq
->eq
[i
][j
]);
2408 isl_int_set_si(eq
->eq
[i
][j
], 0);
2410 up
= isl_upoly_from_affine(qp
->dim
->ctx
,
2411 eq
->eq
[i
], denom
, total
);
2412 qp
->upoly
= isl_upoly_subs(qp
->upoly
, j
- 1, 1, &up
);
2415 isl_int_clear(denom
);
2420 isl_basic_set_free(eq
);
2422 qp
= substitute_non_divs(qp
);
2427 isl_basic_set_free(eq
);
2428 isl_qpolynomial_free(qp
);
2432 static __isl_give isl_basic_set
*add_div_constraints(
2433 __isl_take isl_basic_set
*bset
, __isl_take isl_mat
*div
)
2441 bset
= isl_basic_set_extend_constraints(bset
, 0, 2 * div
->n_row
);
2444 total
= isl_basic_set_total_dim(bset
);
2445 for (i
= 0; i
< div
->n_row
; ++i
)
2446 if (isl_basic_set_add_div_constraints_var(bset
,
2447 total
- div
->n_row
+ i
, div
->row
[i
]) < 0)
2454 isl_basic_set_free(bset
);
2458 /* Look for equalities among the variables shared by context and qp
2459 * and the integer divisions of qp, if any.
2460 * The equalities are then used to eliminate variables and/or integer
2461 * divisions from qp.
2463 __isl_give isl_qpolynomial
*isl_qpolynomial_gist(
2464 __isl_take isl_qpolynomial
*qp
, __isl_take isl_set
*context
)
2470 if (qp
->div
->n_row
> 0) {
2471 isl_basic_set
*bset
;
2472 context
= isl_set_add_dims(context
, isl_dim_set
,
2474 bset
= isl_basic_set_universe(isl_set_get_dim(context
));
2475 bset
= add_div_constraints(bset
, isl_mat_copy(qp
->div
));
2476 context
= isl_set_intersect(context
,
2477 isl_set_from_basic_set(bset
));
2480 aff
= isl_set_affine_hull(context
);
2481 return isl_qpolynomial_substitute_equalities(qp
, aff
);
2483 isl_qpolynomial_free(qp
);
2484 isl_set_free(context
);
2489 #define PW isl_pw_qpolynomial
2491 #define EL isl_qpolynomial
2493 #define IS_ZERO is_zero
2497 #include <isl_pw_templ.c>
2500 #define UNION isl_union_pw_qpolynomial
2502 #define PART isl_pw_qpolynomial
2504 #define PARTS pw_qpolynomial
2506 #include <isl_union_templ.c>
2508 int isl_pw_qpolynomial_is_one(__isl_keep isl_pw_qpolynomial
*pwqp
)
2516 if (!isl_set_plain_is_universe(pwqp
->p
[0].set
))
2519 return isl_qpolynomial_is_one(pwqp
->p
[0].qp
);
2522 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_mul(
2523 __isl_take isl_pw_qpolynomial
*pwqp1
,
2524 __isl_take isl_pw_qpolynomial
*pwqp2
)
2527 struct isl_pw_qpolynomial
*res
;
2530 if (!pwqp1
|| !pwqp2
)
2533 isl_assert(pwqp1
->dim
->ctx
, isl_dim_equal(pwqp1
->dim
, pwqp2
->dim
),
2536 if (isl_pw_qpolynomial_is_zero(pwqp1
)) {
2537 isl_pw_qpolynomial_free(pwqp2
);
2541 if (isl_pw_qpolynomial_is_zero(pwqp2
)) {
2542 isl_pw_qpolynomial_free(pwqp1
);
2546 if (isl_pw_qpolynomial_is_one(pwqp1
)) {
2547 isl_pw_qpolynomial_free(pwqp1
);
2551 if (isl_pw_qpolynomial_is_one(pwqp2
)) {
2552 isl_pw_qpolynomial_free(pwqp2
);
2556 n
= pwqp1
->n
* pwqp2
->n
;
2557 res
= isl_pw_qpolynomial_alloc_(isl_dim_copy(pwqp1
->dim
), n
);
2559 for (i
= 0; i
< pwqp1
->n
; ++i
) {
2560 for (j
= 0; j
< pwqp2
->n
; ++j
) {
2561 struct isl_set
*common
;
2562 struct isl_qpolynomial
*prod
;
2563 common
= isl_set_intersect(isl_set_copy(pwqp1
->p
[i
].set
),
2564 isl_set_copy(pwqp2
->p
[j
].set
));
2565 if (isl_set_plain_is_empty(common
)) {
2566 isl_set_free(common
);
2570 prod
= isl_qpolynomial_mul(
2571 isl_qpolynomial_copy(pwqp1
->p
[i
].qp
),
2572 isl_qpolynomial_copy(pwqp2
->p
[j
].qp
));
2574 res
= isl_pw_qpolynomial_add_piece(res
, common
, prod
);
2578 isl_pw_qpolynomial_free(pwqp1
);
2579 isl_pw_qpolynomial_free(pwqp2
);
2583 isl_pw_qpolynomial_free(pwqp1
);
2584 isl_pw_qpolynomial_free(pwqp2
);
2588 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_neg(
2589 __isl_take isl_pw_qpolynomial
*pwqp
)
2596 if (isl_pw_qpolynomial_is_zero(pwqp
))
2599 pwqp
= isl_pw_qpolynomial_cow(pwqp
);
2603 for (i
= 0; i
< pwqp
->n
; ++i
) {
2604 pwqp
->p
[i
].qp
= isl_qpolynomial_neg(pwqp
->p
[i
].qp
);
2611 isl_pw_qpolynomial_free(pwqp
);
2615 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_sub(
2616 __isl_take isl_pw_qpolynomial
*pwqp1
,
2617 __isl_take isl_pw_qpolynomial
*pwqp2
)
2619 return isl_pw_qpolynomial_add(pwqp1
, isl_pw_qpolynomial_neg(pwqp2
));
2622 __isl_give
struct isl_upoly
*isl_upoly_eval(
2623 __isl_take
struct isl_upoly
*up
, __isl_take isl_vec
*vec
)
2626 struct isl_upoly_rec
*rec
;
2627 struct isl_upoly
*res
;
2628 struct isl_upoly
*base
;
2630 if (isl_upoly_is_cst(up
)) {
2635 rec
= isl_upoly_as_rec(up
);
2639 isl_assert(up
->ctx
, rec
->n
>= 1, goto error
);
2641 base
= isl_upoly_rat_cst(up
->ctx
, vec
->el
[1 + up
->var
], vec
->el
[0]);
2643 res
= isl_upoly_eval(isl_upoly_copy(rec
->p
[rec
->n
- 1]),
2646 for (i
= rec
->n
- 2; i
>= 0; --i
) {
2647 res
= isl_upoly_mul(res
, isl_upoly_copy(base
));
2648 res
= isl_upoly_sum(res
,
2649 isl_upoly_eval(isl_upoly_copy(rec
->p
[i
]),
2650 isl_vec_copy(vec
)));
2653 isl_upoly_free(base
);
2663 __isl_give isl_qpolynomial
*isl_qpolynomial_eval(
2664 __isl_take isl_qpolynomial
*qp
, __isl_take isl_point
*pnt
)
2667 struct isl_upoly
*up
;
2672 isl_assert(pnt
->dim
->ctx
, isl_dim_equal(pnt
->dim
, qp
->dim
), goto error
);
2674 if (qp
->div
->n_row
== 0)
2675 ext
= isl_vec_copy(pnt
->vec
);
2678 unsigned dim
= isl_dim_total(qp
->dim
);
2679 ext
= isl_vec_alloc(qp
->dim
->ctx
, 1 + dim
+ qp
->div
->n_row
);
2683 isl_seq_cpy(ext
->el
, pnt
->vec
->el
, pnt
->vec
->size
);
2684 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
2685 isl_seq_inner_product(qp
->div
->row
[i
] + 1, ext
->el
,
2686 1 + dim
+ i
, &ext
->el
[1+dim
+i
]);
2687 isl_int_fdiv_q(ext
->el
[1+dim
+i
], ext
->el
[1+dim
+i
],
2688 qp
->div
->row
[i
][0]);
2692 up
= isl_upoly_eval(isl_upoly_copy(qp
->upoly
), ext
);
2696 dim
= isl_dim_copy(qp
->dim
);
2697 isl_qpolynomial_free(qp
);
2698 isl_point_free(pnt
);
2700 return isl_qpolynomial_alloc(dim
, 0, up
);
2702 isl_qpolynomial_free(qp
);
2703 isl_point_free(pnt
);
2707 int isl_upoly_cmp(__isl_keep
struct isl_upoly_cst
*cst1
,
2708 __isl_keep
struct isl_upoly_cst
*cst2
)
2713 isl_int_mul(t
, cst1
->n
, cst2
->d
);
2714 isl_int_submul(t
, cst2
->n
, cst1
->d
);
2715 cmp
= isl_int_sgn(t
);
2720 int isl_qpolynomial_le_cst(__isl_keep isl_qpolynomial
*qp1
,
2721 __isl_keep isl_qpolynomial
*qp2
)
2723 struct isl_upoly_cst
*cst1
, *cst2
;
2727 isl_assert(qp1
->dim
->ctx
, isl_upoly_is_cst(qp1
->upoly
), return -1);
2728 isl_assert(qp2
->dim
->ctx
, isl_upoly_is_cst(qp2
->upoly
), return -1);
2729 if (isl_qpolynomial_is_nan(qp1
))
2731 if (isl_qpolynomial_is_nan(qp2
))
2733 cst1
= isl_upoly_as_cst(qp1
->upoly
);
2734 cst2
= isl_upoly_as_cst(qp2
->upoly
);
2736 return isl_upoly_cmp(cst1
, cst2
) <= 0;
2739 __isl_give isl_qpolynomial
*isl_qpolynomial_min_cst(
2740 __isl_take isl_qpolynomial
*qp1
, __isl_take isl_qpolynomial
*qp2
)
2742 struct isl_upoly_cst
*cst1
, *cst2
;
2747 isl_assert(qp1
->dim
->ctx
, isl_upoly_is_cst(qp1
->upoly
), goto error
);
2748 isl_assert(qp2
->dim
->ctx
, isl_upoly_is_cst(qp2
->upoly
), goto error
);
2749 cst1
= isl_upoly_as_cst(qp1
->upoly
);
2750 cst2
= isl_upoly_as_cst(qp2
->upoly
);
2751 cmp
= isl_upoly_cmp(cst1
, cst2
);
2754 isl_qpolynomial_free(qp2
);
2756 isl_qpolynomial_free(qp1
);
2761 isl_qpolynomial_free(qp1
);
2762 isl_qpolynomial_free(qp2
);
2766 __isl_give isl_qpolynomial
*isl_qpolynomial_max_cst(
2767 __isl_take isl_qpolynomial
*qp1
, __isl_take isl_qpolynomial
*qp2
)
2769 struct isl_upoly_cst
*cst1
, *cst2
;
2774 isl_assert(qp1
->dim
->ctx
, isl_upoly_is_cst(qp1
->upoly
), goto error
);
2775 isl_assert(qp2
->dim
->ctx
, isl_upoly_is_cst(qp2
->upoly
), goto error
);
2776 cst1
= isl_upoly_as_cst(qp1
->upoly
);
2777 cst2
= isl_upoly_as_cst(qp2
->upoly
);
2778 cmp
= isl_upoly_cmp(cst1
, cst2
);
2781 isl_qpolynomial_free(qp2
);
2783 isl_qpolynomial_free(qp1
);
2788 isl_qpolynomial_free(qp1
);
2789 isl_qpolynomial_free(qp2
);
2793 __isl_give isl_qpolynomial
*isl_qpolynomial_insert_dims(
2794 __isl_take isl_qpolynomial
*qp
, enum isl_dim_type type
,
2795 unsigned first
, unsigned n
)
2804 qp
= isl_qpolynomial_cow(qp
);
2808 isl_assert(qp
->div
->ctx
, first
<= isl_dim_size(qp
->dim
, type
),
2811 g_pos
= pos(qp
->dim
, type
) + first
;
2813 qp
->div
= isl_mat_insert_cols(qp
->div
, 2 + g_pos
, n
);
2817 total
= qp
->div
->n_col
- 2;
2818 if (total
> g_pos
) {
2820 exp
= isl_alloc_array(qp
->div
->ctx
, int, total
- g_pos
);
2823 for (i
= 0; i
< total
- g_pos
; ++i
)
2825 qp
->upoly
= expand(qp
->upoly
, exp
, g_pos
);
2831 qp
->dim
= isl_dim_insert(qp
->dim
, type
, first
, n
);
2837 isl_qpolynomial_free(qp
);
2841 __isl_give isl_qpolynomial
*isl_qpolynomial_add_dims(
2842 __isl_take isl_qpolynomial
*qp
, enum isl_dim_type type
, unsigned n
)
2846 pos
= isl_qpolynomial_dim(qp
, type
);
2848 return isl_qpolynomial_insert_dims(qp
, type
, pos
, n
);
2851 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_add_dims(
2852 __isl_take isl_pw_qpolynomial
*pwqp
,
2853 enum isl_dim_type type
, unsigned n
)
2857 pos
= isl_pw_qpolynomial_dim(pwqp
, type
);
2859 return isl_pw_qpolynomial_insert_dims(pwqp
, type
, pos
, n
);
2862 static int *reordering_move(isl_ctx
*ctx
,
2863 unsigned len
, unsigned dst
, unsigned src
, unsigned n
)
2868 reordering
= isl_alloc_array(ctx
, int, len
);
2873 for (i
= 0; i
< dst
; ++i
)
2875 for (i
= 0; i
< n
; ++i
)
2876 reordering
[src
+ i
] = dst
+ i
;
2877 for (i
= 0; i
< src
- dst
; ++i
)
2878 reordering
[dst
+ i
] = dst
+ n
+ i
;
2879 for (i
= 0; i
< len
- src
- n
; ++i
)
2880 reordering
[src
+ n
+ i
] = src
+ n
+ i
;
2882 for (i
= 0; i
< src
; ++i
)
2884 for (i
= 0; i
< n
; ++i
)
2885 reordering
[src
+ i
] = dst
+ i
;
2886 for (i
= 0; i
< dst
- src
; ++i
)
2887 reordering
[src
+ n
+ i
] = src
+ i
;
2888 for (i
= 0; i
< len
- dst
- n
; ++i
)
2889 reordering
[dst
+ n
+ i
] = dst
+ n
+ i
;
2895 __isl_give isl_qpolynomial
*isl_qpolynomial_move_dims(
2896 __isl_take isl_qpolynomial
*qp
,
2897 enum isl_dim_type dst_type
, unsigned dst_pos
,
2898 enum isl_dim_type src_type
, unsigned src_pos
, unsigned n
)
2904 qp
= isl_qpolynomial_cow(qp
);
2908 isl_assert(qp
->dim
->ctx
, src_pos
+ n
<= isl_dim_size(qp
->dim
, src_type
),
2911 g_dst_pos
= pos(qp
->dim
, dst_type
) + dst_pos
;
2912 g_src_pos
= pos(qp
->dim
, src_type
) + src_pos
;
2913 if (dst_type
> src_type
)
2916 qp
->div
= isl_mat_move_cols(qp
->div
, 2 + g_dst_pos
, 2 + g_src_pos
, n
);
2923 reordering
= reordering_move(qp
->dim
->ctx
,
2924 qp
->div
->n_col
- 2, g_dst_pos
, g_src_pos
, n
);
2928 qp
->upoly
= reorder(qp
->upoly
, reordering
);
2933 qp
->dim
= isl_dim_move(qp
->dim
, dst_type
, dst_pos
, src_type
, src_pos
, n
);
2939 isl_qpolynomial_free(qp
);
2943 __isl_give isl_qpolynomial
*isl_qpolynomial_from_affine(__isl_take isl_dim
*dim
,
2944 isl_int
*f
, isl_int denom
)
2946 struct isl_upoly
*up
;
2951 up
= isl_upoly_from_affine(dim
->ctx
, f
, denom
, 1 + isl_dim_total(dim
));
2953 return isl_qpolynomial_alloc(dim
, 0, up
);
2956 __isl_give isl_qpolynomial
*isl_qpolynomial_from_aff(__isl_take isl_aff
*aff
)
2959 struct isl_upoly
*up
;
2960 isl_qpolynomial
*qp
;
2965 ctx
= isl_aff_get_ctx(aff
);
2966 up
= isl_upoly_from_affine(ctx
, aff
->v
->el
+ 1, aff
->v
->el
[0],
2969 qp
= isl_qpolynomial_alloc(isl_aff_get_dim(aff
),
2970 aff
->ls
->div
->n_row
, up
);
2974 isl_mat_free(qp
->div
);
2975 qp
->div
= isl_mat_copy(aff
->ls
->div
);
2976 qp
->div
= isl_mat_cow(qp
->div
);
2981 qp
= reduce_divs(qp
);
2982 qp
= remove_redundant_divs(qp
);
2989 __isl_give isl_qpolynomial
*isl_qpolynomial_from_constraint(
2990 __isl_take isl_constraint
*c
, enum isl_dim_type type
, unsigned pos
)
2994 struct isl_upoly
*up
;
2995 isl_qpolynomial
*qp
;
3001 isl_int_init(denom
);
3003 isl_constraint_get_coefficient(c
, type
, pos
, &denom
);
3004 isl_constraint_set_coefficient(c
, type
, pos
, c
->ctx
->zero
);
3005 sgn
= isl_int_sgn(denom
);
3006 isl_int_abs(denom
, denom
);
3007 up
= isl_upoly_from_affine(c
->ctx
, c
->line
[0], denom
,
3008 1 + isl_constraint_dim(c
, isl_dim_all
));
3010 isl_int_neg(denom
, denom
);
3011 isl_constraint_set_coefficient(c
, type
, pos
, denom
);
3013 dim
= isl_dim_copy(c
->bmap
->dim
);
3015 isl_int_clear(denom
);
3016 isl_constraint_free(c
);
3018 qp
= isl_qpolynomial_alloc(dim
, 0, up
);
3020 qp
= isl_qpolynomial_neg(qp
);
3024 /* For each 0 <= i < "n", replace variable "first" + i of type "type"
3025 * in "qp" by subs[i].
3027 __isl_give isl_qpolynomial
*isl_qpolynomial_substitute(
3028 __isl_take isl_qpolynomial
*qp
,
3029 enum isl_dim_type type
, unsigned first
, unsigned n
,
3030 __isl_keep isl_qpolynomial
**subs
)
3033 struct isl_upoly
**ups
;
3038 qp
= isl_qpolynomial_cow(qp
);
3041 for (i
= 0; i
< n
; ++i
)
3045 isl_assert(qp
->dim
->ctx
, first
+ n
<= isl_dim_size(qp
->dim
, type
),
3048 for (i
= 0; i
< n
; ++i
)
3049 isl_assert(qp
->dim
->ctx
, isl_dim_equal(qp
->dim
, subs
[i
]->dim
),
3052 isl_assert(qp
->dim
->ctx
, qp
->div
->n_row
== 0, goto error
);
3053 for (i
= 0; i
< n
; ++i
)
3054 isl_assert(qp
->dim
->ctx
, subs
[i
]->div
->n_row
== 0, goto error
);
3056 first
+= pos(qp
->dim
, type
);
3058 ups
= isl_alloc_array(qp
->dim
->ctx
, struct isl_upoly
*, n
);
3061 for (i
= 0; i
< n
; ++i
)
3062 ups
[i
] = subs
[i
]->upoly
;
3064 qp
->upoly
= isl_upoly_subs(qp
->upoly
, first
, n
, ups
);
3073 isl_qpolynomial_free(qp
);
3077 /* Extend "bset" with extra set dimensions for each integer division
3078 * in "qp" and then call "fn" with the extended bset and the polynomial
3079 * that results from replacing each of the integer divisions by the
3080 * corresponding extra set dimension.
3082 int isl_qpolynomial_as_polynomial_on_domain(__isl_keep isl_qpolynomial
*qp
,
3083 __isl_keep isl_basic_set
*bset
,
3084 int (*fn
)(__isl_take isl_basic_set
*bset
,
3085 __isl_take isl_qpolynomial
*poly
, void *user
), void *user
)
3089 isl_qpolynomial
*poly
;
3093 if (qp
->div
->n_row
== 0)
3094 return fn(isl_basic_set_copy(bset
), isl_qpolynomial_copy(qp
),
3097 div
= isl_mat_copy(qp
->div
);
3098 dim
= isl_dim_copy(qp
->dim
);
3099 dim
= isl_dim_add(dim
, isl_dim_set
, qp
->div
->n_row
);
3100 poly
= isl_qpolynomial_alloc(dim
, 0, isl_upoly_copy(qp
->upoly
));
3101 bset
= isl_basic_set_copy(bset
);
3102 bset
= isl_basic_set_add(bset
, isl_dim_set
, qp
->div
->n_row
);
3103 bset
= add_div_constraints(bset
, div
);
3105 return fn(bset
, poly
, user
);
3110 /* Return total degree in variables first (inclusive) up to last (exclusive).
3112 int isl_upoly_degree(__isl_keep
struct isl_upoly
*up
, int first
, int last
)
3116 struct isl_upoly_rec
*rec
;
3120 if (isl_upoly_is_zero(up
))
3122 if (isl_upoly_is_cst(up
) || up
->var
< first
)
3125 rec
= isl_upoly_as_rec(up
);
3129 for (i
= 0; i
< rec
->n
; ++i
) {
3132 if (isl_upoly_is_zero(rec
->p
[i
]))
3134 d
= isl_upoly_degree(rec
->p
[i
], first
, last
);
3144 /* Return total degree in set variables.
3146 int isl_qpolynomial_degree(__isl_keep isl_qpolynomial
*poly
)
3154 ovar
= isl_dim_offset(poly
->dim
, isl_dim_set
);
3155 nvar
= isl_dim_size(poly
->dim
, isl_dim_set
);
3156 return isl_upoly_degree(poly
->upoly
, ovar
, ovar
+ nvar
);
3159 __isl_give
struct isl_upoly
*isl_upoly_coeff(__isl_keep
struct isl_upoly
*up
,
3160 unsigned pos
, int deg
)
3163 struct isl_upoly_rec
*rec
;
3168 if (isl_upoly_is_cst(up
) || up
->var
< pos
) {
3170 return isl_upoly_copy(up
);
3172 return isl_upoly_zero(up
->ctx
);
3175 rec
= isl_upoly_as_rec(up
);
3179 if (up
->var
== pos
) {
3181 return isl_upoly_copy(rec
->p
[deg
]);
3183 return isl_upoly_zero(up
->ctx
);
3186 up
= isl_upoly_copy(up
);
3187 up
= isl_upoly_cow(up
);
3188 rec
= isl_upoly_as_rec(up
);
3192 for (i
= 0; i
< rec
->n
; ++i
) {
3193 struct isl_upoly
*t
;
3194 t
= isl_upoly_coeff(rec
->p
[i
], pos
, deg
);
3197 isl_upoly_free(rec
->p
[i
]);
3207 /* Return coefficient of power "deg" of variable "t_pos" of type "type".
3209 __isl_give isl_qpolynomial
*isl_qpolynomial_coeff(
3210 __isl_keep isl_qpolynomial
*qp
,
3211 enum isl_dim_type type
, unsigned t_pos
, int deg
)
3214 struct isl_upoly
*up
;
3220 isl_assert(qp
->div
->ctx
, t_pos
< isl_dim_size(qp
->dim
, type
),
3223 g_pos
= pos(qp
->dim
, type
) + t_pos
;
3224 up
= isl_upoly_coeff(qp
->upoly
, g_pos
, deg
);
3226 c
= isl_qpolynomial_alloc(isl_dim_copy(qp
->dim
), qp
->div
->n_row
, up
);
3229 isl_mat_free(c
->div
);
3230 c
->div
= isl_mat_copy(qp
->div
);
3235 isl_qpolynomial_free(c
);
3239 /* Homogenize the polynomial in the variables first (inclusive) up to
3240 * last (exclusive) by inserting powers of variable first.
3241 * Variable first is assumed not to appear in the input.
3243 __isl_give
struct isl_upoly
*isl_upoly_homogenize(
3244 __isl_take
struct isl_upoly
*up
, int deg
, int target
,
3245 int first
, int last
)
3248 struct isl_upoly_rec
*rec
;
3252 if (isl_upoly_is_zero(up
))
3256 if (isl_upoly_is_cst(up
) || up
->var
< first
) {
3257 struct isl_upoly
*hom
;
3259 hom
= isl_upoly_var_pow(up
->ctx
, first
, target
- deg
);
3262 rec
= isl_upoly_as_rec(hom
);
3263 rec
->p
[target
- deg
] = isl_upoly_mul(rec
->p
[target
- deg
], up
);
3268 up
= isl_upoly_cow(up
);
3269 rec
= isl_upoly_as_rec(up
);
3273 for (i
= 0; i
< rec
->n
; ++i
) {
3274 if (isl_upoly_is_zero(rec
->p
[i
]))
3276 rec
->p
[i
] = isl_upoly_homogenize(rec
->p
[i
],
3277 up
->var
< last
? deg
+ i
: i
, target
,
3289 /* Homogenize the polynomial in the set variables by introducing
3290 * powers of an extra set variable at position 0.
3292 __isl_give isl_qpolynomial
*isl_qpolynomial_homogenize(
3293 __isl_take isl_qpolynomial
*poly
)
3297 int deg
= isl_qpolynomial_degree(poly
);
3302 poly
= isl_qpolynomial_insert_dims(poly
, isl_dim_set
, 0, 1);
3303 poly
= isl_qpolynomial_cow(poly
);
3307 ovar
= isl_dim_offset(poly
->dim
, isl_dim_set
);
3308 nvar
= isl_dim_size(poly
->dim
, isl_dim_set
);
3309 poly
->upoly
= isl_upoly_homogenize(poly
->upoly
, 0, deg
,
3316 isl_qpolynomial_free(poly
);
3320 __isl_give isl_term
*isl_term_alloc(__isl_take isl_dim
*dim
,
3321 __isl_take isl_mat
*div
)
3329 n
= isl_dim_total(dim
) + div
->n_row
;
3331 term
= isl_calloc(dim
->ctx
, struct isl_term
,
3332 sizeof(struct isl_term
) + (n
- 1) * sizeof(int));
3339 isl_int_init(term
->n
);
3340 isl_int_init(term
->d
);
3349 __isl_give isl_term
*isl_term_copy(__isl_keep isl_term
*term
)
3358 __isl_give isl_term
*isl_term_dup(__isl_keep isl_term
*term
)
3367 total
= isl_dim_total(term
->dim
) + term
->div
->n_row
;
3369 dup
= isl_term_alloc(isl_dim_copy(term
->dim
), isl_mat_copy(term
->div
));
3373 isl_int_set(dup
->n
, term
->n
);
3374 isl_int_set(dup
->d
, term
->d
);
3376 for (i
= 0; i
< total
; ++i
)
3377 dup
->pow
[i
] = term
->pow
[i
];
3382 __isl_give isl_term
*isl_term_cow(__isl_take isl_term
*term
)
3390 return isl_term_dup(term
);
3393 void isl_term_free(__isl_take isl_term
*term
)
3398 if (--term
->ref
> 0)
3401 isl_dim_free(term
->dim
);
3402 isl_mat_free(term
->div
);
3403 isl_int_clear(term
->n
);
3404 isl_int_clear(term
->d
);
3408 unsigned isl_term_dim(__isl_keep isl_term
*term
, enum isl_dim_type type
)
3416 case isl_dim_out
: return isl_dim_size(term
->dim
, type
);
3417 case isl_dim_div
: return term
->div
->n_row
;
3418 case isl_dim_all
: return isl_dim_total(term
->dim
) + term
->div
->n_row
;
3423 isl_ctx
*isl_term_get_ctx(__isl_keep isl_term
*term
)
3425 return term
? term
->dim
->ctx
: NULL
;
3428 void isl_term_get_num(__isl_keep isl_term
*term
, isl_int
*n
)
3432 isl_int_set(*n
, term
->n
);
3435 void isl_term_get_den(__isl_keep isl_term
*term
, isl_int
*d
)
3439 isl_int_set(*d
, term
->d
);
3442 int isl_term_get_exp(__isl_keep isl_term
*term
,
3443 enum isl_dim_type type
, unsigned pos
)
3448 isl_assert(term
->dim
->ctx
, pos
< isl_term_dim(term
, type
), return -1);
3450 if (type
>= isl_dim_set
)
3451 pos
+= isl_dim_size(term
->dim
, isl_dim_param
);
3452 if (type
>= isl_dim_div
)
3453 pos
+= isl_dim_size(term
->dim
, isl_dim_set
);
3455 return term
->pow
[pos
];
3458 __isl_give isl_div
*isl_term_get_div(__isl_keep isl_term
*term
, unsigned pos
)
3460 isl_basic_map
*bmap
;
3467 isl_assert(term
->dim
->ctx
, pos
< isl_term_dim(term
, isl_dim_div
),
3470 total
= term
->div
->n_col
- term
->div
->n_row
- 2;
3471 /* No nested divs for now */
3472 isl_assert(term
->dim
->ctx
,
3473 isl_seq_first_non_zero(term
->div
->row
[pos
] + 2 + total
,
3474 term
->div
->n_row
) == -1,
3477 bmap
= isl_basic_map_alloc_dim(isl_dim_copy(term
->dim
), 1, 0, 0);
3478 if ((k
= isl_basic_map_alloc_div(bmap
)) < 0)
3481 isl_seq_cpy(bmap
->div
[k
], term
->div
->row
[pos
], 2 + total
);
3483 return isl_basic_map_div(bmap
, k
);
3485 isl_basic_map_free(bmap
);
3489 __isl_give isl_term
*isl_upoly_foreach_term(__isl_keep
struct isl_upoly
*up
,
3490 int (*fn
)(__isl_take isl_term
*term
, void *user
),
3491 __isl_take isl_term
*term
, void *user
)
3494 struct isl_upoly_rec
*rec
;
3499 if (isl_upoly_is_zero(up
))
3502 isl_assert(up
->ctx
, !isl_upoly_is_nan(up
), goto error
);
3503 isl_assert(up
->ctx
, !isl_upoly_is_infty(up
), goto error
);
3504 isl_assert(up
->ctx
, !isl_upoly_is_neginfty(up
), goto error
);
3506 if (isl_upoly_is_cst(up
)) {
3507 struct isl_upoly_cst
*cst
;
3508 cst
= isl_upoly_as_cst(up
);
3511 term
= isl_term_cow(term
);
3514 isl_int_set(term
->n
, cst
->n
);
3515 isl_int_set(term
->d
, cst
->d
);
3516 if (fn(isl_term_copy(term
), user
) < 0)
3521 rec
= isl_upoly_as_rec(up
);
3525 for (i
= 0; i
< rec
->n
; ++i
) {
3526 term
= isl_term_cow(term
);
3529 term
->pow
[up
->var
] = i
;
3530 term
= isl_upoly_foreach_term(rec
->p
[i
], fn
, term
, user
);
3534 term
->pow
[up
->var
] = 0;
3538 isl_term_free(term
);
3542 int isl_qpolynomial_foreach_term(__isl_keep isl_qpolynomial
*qp
,
3543 int (*fn
)(__isl_take isl_term
*term
, void *user
), void *user
)
3550 term
= isl_term_alloc(isl_dim_copy(qp
->dim
), isl_mat_copy(qp
->div
));
3554 term
= isl_upoly_foreach_term(qp
->upoly
, fn
, term
, user
);
3556 isl_term_free(term
);
3558 return term
? 0 : -1;
3561 __isl_give isl_qpolynomial
*isl_qpolynomial_from_term(__isl_take isl_term
*term
)
3563 struct isl_upoly
*up
;
3564 isl_qpolynomial
*qp
;
3570 n
= isl_dim_total(term
->dim
) + term
->div
->n_row
;
3572 up
= isl_upoly_rat_cst(term
->dim
->ctx
, term
->n
, term
->d
);
3573 for (i
= 0; i
< n
; ++i
) {
3576 up
= isl_upoly_mul(up
,
3577 isl_upoly_var_pow(term
->dim
->ctx
, i
, term
->pow
[i
]));
3580 qp
= isl_qpolynomial_alloc(isl_dim_copy(term
->dim
), term
->div
->n_row
, up
);
3583 isl_mat_free(qp
->div
);
3584 qp
->div
= isl_mat_copy(term
->div
);
3588 isl_term_free(term
);
3591 isl_qpolynomial_free(qp
);
3592 isl_term_free(term
);
3596 __isl_give isl_qpolynomial
*isl_qpolynomial_lift(__isl_take isl_qpolynomial
*qp
,
3597 __isl_take isl_dim
*dim
)
3606 if (isl_dim_equal(qp
->dim
, dim
)) {
3611 qp
= isl_qpolynomial_cow(qp
);
3615 extra
= isl_dim_size(dim
, isl_dim_set
) -
3616 isl_dim_size(qp
->dim
, isl_dim_set
);
3617 total
= isl_dim_total(qp
->dim
);
3618 if (qp
->div
->n_row
) {
3621 exp
= isl_alloc_array(qp
->div
->ctx
, int, qp
->div
->n_row
);
3624 for (i
= 0; i
< qp
->div
->n_row
; ++i
)
3626 qp
->upoly
= expand(qp
->upoly
, exp
, total
);
3631 qp
->div
= isl_mat_insert_cols(qp
->div
, 2 + total
, extra
);
3634 for (i
= 0; i
< qp
->div
->n_row
; ++i
)
3635 isl_seq_clr(qp
->div
->row
[i
] + 2 + total
, extra
);
3637 isl_dim_free(qp
->dim
);
3643 isl_qpolynomial_free(qp
);
3647 /* For each parameter or variable that does not appear in qp,
3648 * first eliminate the variable from all constraints and then set it to zero.
3650 static __isl_give isl_set
*fix_inactive(__isl_take isl_set
*set
,
3651 __isl_keep isl_qpolynomial
*qp
)
3662 d
= isl_dim_total(set
->dim
);
3663 active
= isl_calloc_array(set
->ctx
, int, d
);
3664 if (set_active(qp
, active
) < 0)
3667 for (i
= 0; i
< d
; ++i
)
3676 nparam
= isl_dim_size(set
->dim
, isl_dim_param
);
3677 nvar
= isl_dim_size(set
->dim
, isl_dim_set
);
3678 for (i
= 0; i
< nparam
; ++i
) {
3681 set
= isl_set_eliminate(set
, isl_dim_param
, i
, 1);
3682 set
= isl_set_fix_si(set
, isl_dim_param
, i
, 0);
3684 for (i
= 0; i
< nvar
; ++i
) {
3685 if (active
[nparam
+ i
])
3687 set
= isl_set_eliminate(set
, isl_dim_set
, i
, 1);
3688 set
= isl_set_fix_si(set
, isl_dim_set
, i
, 0);
3700 struct isl_opt_data
{
3701 isl_qpolynomial
*qp
;
3703 isl_qpolynomial
*opt
;
3707 static int opt_fn(__isl_take isl_point
*pnt
, void *user
)
3709 struct isl_opt_data
*data
= (struct isl_opt_data
*)user
;
3710 isl_qpolynomial
*val
;
3712 val
= isl_qpolynomial_eval(isl_qpolynomial_copy(data
->qp
), pnt
);
3716 } else if (data
->max
) {
3717 data
->opt
= isl_qpolynomial_max_cst(data
->opt
, val
);
3719 data
->opt
= isl_qpolynomial_min_cst(data
->opt
, val
);
3725 __isl_give isl_qpolynomial
*isl_qpolynomial_opt_on_domain(
3726 __isl_take isl_qpolynomial
*qp
, __isl_take isl_set
*set
, int max
)
3728 struct isl_opt_data data
= { NULL
, 1, NULL
, max
};
3733 if (isl_upoly_is_cst(qp
->upoly
)) {
3738 set
= fix_inactive(set
, qp
);
3741 if (isl_set_foreach_point(set
, opt_fn
, &data
) < 0)
3745 data
.opt
= isl_qpolynomial_zero(isl_qpolynomial_get_dim(qp
));
3748 isl_qpolynomial_free(qp
);
3752 isl_qpolynomial_free(qp
);
3753 isl_qpolynomial_free(data
.opt
);
3757 __isl_give isl_qpolynomial
*isl_qpolynomial_morph(__isl_take isl_qpolynomial
*qp
,
3758 __isl_take isl_morph
*morph
)
3763 struct isl_upoly
*up
;
3765 struct isl_upoly
**subs
;
3768 qp
= isl_qpolynomial_cow(qp
);
3773 isl_assert(ctx
, isl_dim_equal(qp
->dim
, morph
->dom
->dim
), goto error
);
3775 n_sub
= morph
->inv
->n_row
- 1;
3776 if (morph
->inv
->n_row
!= morph
->inv
->n_col
)
3777 n_sub
+= qp
->div
->n_row
;
3778 subs
= isl_calloc_array(ctx
, struct isl_upoly
*, n_sub
);
3782 for (i
= 0; 1 + i
< morph
->inv
->n_row
; ++i
)
3783 subs
[i
] = isl_upoly_from_affine(ctx
, morph
->inv
->row
[1 + i
],
3784 morph
->inv
->row
[0][0], morph
->inv
->n_col
);
3785 if (morph
->inv
->n_row
!= morph
->inv
->n_col
)
3786 for (i
= 0; i
< qp
->div
->n_row
; ++i
)
3787 subs
[morph
->inv
->n_row
- 1 + i
] =
3788 isl_upoly_var_pow(ctx
, morph
->inv
->n_col
- 1 + i
, 1);
3790 qp
->upoly
= isl_upoly_subs(qp
->upoly
, 0, n_sub
, subs
);
3792 for (i
= 0; i
< n_sub
; ++i
)
3793 isl_upoly_free(subs
[i
]);
3796 mat
= isl_mat_diagonal(isl_mat_identity(ctx
, 1), isl_mat_copy(morph
->inv
));
3797 mat
= isl_mat_diagonal(mat
, isl_mat_identity(ctx
, qp
->div
->n_row
));
3798 qp
->div
= isl_mat_product(qp
->div
, mat
);
3799 isl_dim_free(qp
->dim
);
3800 qp
->dim
= isl_dim_copy(morph
->ran
->dim
);
3802 if (!qp
->upoly
|| !qp
->div
|| !qp
->dim
)
3805 isl_morph_free(morph
);
3809 isl_qpolynomial_free(qp
);
3810 isl_morph_free(morph
);
3814 static int neg_entry(void **entry
, void *user
)
3816 isl_pw_qpolynomial
**pwqp
= (isl_pw_qpolynomial
**)entry
;
3818 *pwqp
= isl_pw_qpolynomial_neg(*pwqp
);
3820 return *pwqp
? 0 : -1;
3823 __isl_give isl_union_pw_qpolynomial
*isl_union_pw_qpolynomial_neg(
3824 __isl_take isl_union_pw_qpolynomial
*upwqp
)
3826 upwqp
= isl_union_pw_qpolynomial_cow(upwqp
);
3830 if (isl_hash_table_foreach(upwqp
->dim
->ctx
, &upwqp
->table
,
3831 &neg_entry
, NULL
) < 0)
3836 isl_union_pw_qpolynomial_free(upwqp
);
3840 __isl_give isl_union_pw_qpolynomial
*isl_union_pw_qpolynomial_sub(
3841 __isl_take isl_union_pw_qpolynomial
*upwqp1
,
3842 __isl_take isl_union_pw_qpolynomial
*upwqp2
)
3844 return isl_union_pw_qpolynomial_add(upwqp1
,
3845 isl_union_pw_qpolynomial_neg(upwqp2
));
3848 static int mul_entry(void **entry
, void *user
)
3850 struct isl_union_pw_qpolynomial_match_bin_data
*data
= user
;
3852 struct isl_hash_table_entry
*entry2
;
3853 isl_pw_qpolynomial
*pwpq
= *entry
;
3856 hash
= isl_dim_get_hash(pwpq
->dim
);
3857 entry2
= isl_hash_table_find(data
->u2
->dim
->ctx
, &data
->u2
->table
,
3858 hash
, &has_dim
, pwpq
->dim
, 0);
3862 pwpq
= isl_pw_qpolynomial_copy(pwpq
);
3863 pwpq
= isl_pw_qpolynomial_mul(pwpq
,
3864 isl_pw_qpolynomial_copy(entry2
->data
));
3866 empty
= isl_pw_qpolynomial_is_zero(pwpq
);
3868 isl_pw_qpolynomial_free(pwpq
);
3872 isl_pw_qpolynomial_free(pwpq
);
3876 data
->res
= isl_union_pw_qpolynomial_add_pw_qpolynomial(data
->res
, pwpq
);
3881 __isl_give isl_union_pw_qpolynomial
*isl_union_pw_qpolynomial_mul(
3882 __isl_take isl_union_pw_qpolynomial
*upwqp1
,
3883 __isl_take isl_union_pw_qpolynomial
*upwqp2
)
3885 return match_bin_op(upwqp1
, upwqp2
, &mul_entry
);
3888 /* Reorder the columns of the given div definitions according to the
3891 static __isl_give isl_mat
*reorder_divs(__isl_take isl_mat
*div
,
3892 __isl_take isl_reordering
*r
)
3901 extra
= isl_dim_total(r
->dim
) + div
->n_row
- r
->len
;
3902 mat
= isl_mat_alloc(div
->ctx
, div
->n_row
, div
->n_col
+ extra
);
3906 for (i
= 0; i
< div
->n_row
; ++i
) {
3907 isl_seq_cpy(mat
->row
[i
], div
->row
[i
], 2);
3908 isl_seq_clr(mat
->row
[i
] + 2, mat
->n_col
- 2);
3909 for (j
= 0; j
< r
->len
; ++j
)
3910 isl_int_set(mat
->row
[i
][2 + r
->pos
[j
]],
3911 div
->row
[i
][2 + j
]);
3914 isl_reordering_free(r
);
3918 isl_reordering_free(r
);
3923 /* Reorder the dimension of "qp" according to the given reordering.
3925 __isl_give isl_qpolynomial
*isl_qpolynomial_realign(
3926 __isl_take isl_qpolynomial
*qp
, __isl_take isl_reordering
*r
)
3928 qp
= isl_qpolynomial_cow(qp
);
3932 r
= isl_reordering_extend(r
, qp
->div
->n_row
);
3936 qp
->div
= reorder_divs(qp
->div
, isl_reordering_copy(r
));
3940 qp
->upoly
= reorder(qp
->upoly
, r
->pos
);
3944 qp
= isl_qpolynomial_reset_dim(qp
, isl_dim_copy(r
->dim
));
3946 isl_reordering_free(r
);
3949 isl_qpolynomial_free(qp
);
3950 isl_reordering_free(r
);
3954 __isl_give isl_qpolynomial
*isl_qpolynomial_align_params(
3955 __isl_take isl_qpolynomial
*qp
, __isl_take isl_dim
*model
)
3960 if (!isl_dim_match(qp
->dim
, isl_dim_param
, model
, isl_dim_param
)) {
3961 isl_reordering
*exp
;
3963 model
= isl_dim_drop(model
, isl_dim_in
,
3964 0, isl_dim_size(model
, isl_dim_in
));
3965 model
= isl_dim_drop(model
, isl_dim_out
,
3966 0, isl_dim_size(model
, isl_dim_out
));
3967 exp
= isl_parameter_alignment_reordering(qp
->dim
, model
);
3968 exp
= isl_reordering_extend_dim(exp
,
3969 isl_qpolynomial_get_dim(qp
));
3970 qp
= isl_qpolynomial_realign(qp
, exp
);
3973 isl_dim_free(model
);
3976 isl_dim_free(model
);
3977 isl_qpolynomial_free(qp
);
3981 struct isl_split_periods_data
{
3983 isl_pw_qpolynomial
*res
;
3986 /* Create a slice where the integer division "div" has the fixed value "v".
3987 * In particular, if "div" refers to floor(f/m), then create a slice
3989 * m v <= f <= m v + (m - 1)
3994 * -f + m v + (m - 1) >= 0
3996 static __isl_give isl_set
*set_div_slice(__isl_take isl_dim
*dim
,
3997 __isl_keep isl_qpolynomial
*qp
, int div
, isl_int v
)
4000 isl_basic_set
*bset
= NULL
;
4006 total
= isl_dim_total(dim
);
4007 bset
= isl_basic_set_alloc_dim(isl_dim_copy(dim
), 0, 0, 2);
4009 k
= isl_basic_set_alloc_inequality(bset
);
4012 isl_seq_cpy(bset
->ineq
[k
], qp
->div
->row
[div
] + 1, 1 + total
);
4013 isl_int_submul(bset
->ineq
[k
][0], v
, qp
->div
->row
[div
][0]);
4015 k
= isl_basic_set_alloc_inequality(bset
);
4018 isl_seq_neg(bset
->ineq
[k
], qp
->div
->row
[div
] + 1, 1 + total
);
4019 isl_int_addmul(bset
->ineq
[k
][0], v
, qp
->div
->row
[div
][0]);
4020 isl_int_add(bset
->ineq
[k
][0], bset
->ineq
[k
][0], qp
->div
->row
[div
][0]);
4021 isl_int_sub_ui(bset
->ineq
[k
][0], bset
->ineq
[k
][0], 1);
4024 return isl_set_from_basic_set(bset
);
4026 isl_basic_set_free(bset
);
4031 static int split_periods(__isl_take isl_set
*set
,
4032 __isl_take isl_qpolynomial
*qp
, void *user
);
4034 /* Create a slice of the domain "set" such that integer division "div"
4035 * has the fixed value "v" and add the results to data->res,
4036 * replacing the integer division by "v" in "qp".
4038 static int set_div(__isl_take isl_set
*set
,
4039 __isl_take isl_qpolynomial
*qp
, int div
, isl_int v
,
4040 struct isl_split_periods_data
*data
)
4045 struct isl_upoly
*cst
;
4047 slice
= set_div_slice(isl_set_get_dim(set
), qp
, div
, v
);
4048 set
= isl_set_intersect(set
, slice
);
4053 total
= isl_dim_total(qp
->dim
);
4055 for (i
= div
+ 1; i
< qp
->div
->n_row
; ++i
) {
4056 if (isl_int_is_zero(qp
->div
->row
[i
][2 + total
+ div
]))
4058 isl_int_addmul(qp
->div
->row
[i
][1],
4059 qp
->div
->row
[i
][2 + total
+ div
], v
);
4060 isl_int_set_si(qp
->div
->row
[i
][2 + total
+ div
], 0);
4063 cst
= isl_upoly_rat_cst(qp
->dim
->ctx
, v
, qp
->dim
->ctx
->one
);
4064 qp
= substitute_div(qp
, div
, cst
);
4066 return split_periods(set
, qp
, data
);
4069 isl_qpolynomial_free(qp
);
4073 /* Split the domain "set" such that integer division "div"
4074 * has a fixed value (ranging from "min" to "max") on each slice
4075 * and add the results to data->res.
4077 static int split_div(__isl_take isl_set
*set
,
4078 __isl_take isl_qpolynomial
*qp
, int div
, isl_int min
, isl_int max
,
4079 struct isl_split_periods_data
*data
)
4081 for (; isl_int_le(min
, max
); isl_int_add_ui(min
, min
, 1)) {
4082 isl_set
*set_i
= isl_set_copy(set
);
4083 isl_qpolynomial
*qp_i
= isl_qpolynomial_copy(qp
);
4085 if (set_div(set_i
, qp_i
, div
, min
, data
) < 0)
4089 isl_qpolynomial_free(qp
);
4093 isl_qpolynomial_free(qp
);
4097 /* If "qp" refers to any integer division
4098 * that can only attain "max_periods" distinct values on "set"
4099 * then split the domain along those distinct values.
4100 * Add the results (or the original if no splitting occurs)
4103 static int split_periods(__isl_take isl_set
*set
,
4104 __isl_take isl_qpolynomial
*qp
, void *user
)
4107 isl_pw_qpolynomial
*pwqp
;
4108 struct isl_split_periods_data
*data
;
4113 data
= (struct isl_split_periods_data
*)user
;
4118 if (qp
->div
->n_row
== 0) {
4119 pwqp
= isl_pw_qpolynomial_alloc(set
, qp
);
4120 data
->res
= isl_pw_qpolynomial_add_disjoint(data
->res
, pwqp
);
4126 total
= isl_dim_total(qp
->dim
);
4127 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
4128 enum isl_lp_result lp_res
;
4130 if (isl_seq_first_non_zero(qp
->div
->row
[i
] + 2 + total
,
4131 qp
->div
->n_row
) != -1)
4134 lp_res
= isl_set_solve_lp(set
, 0, qp
->div
->row
[i
] + 1,
4135 set
->ctx
->one
, &min
, NULL
, NULL
);
4136 if (lp_res
== isl_lp_error
)
4138 if (lp_res
== isl_lp_unbounded
|| lp_res
== isl_lp_empty
)
4140 isl_int_fdiv_q(min
, min
, qp
->div
->row
[i
][0]);
4142 lp_res
= isl_set_solve_lp(set
, 1, qp
->div
->row
[i
] + 1,
4143 set
->ctx
->one
, &max
, NULL
, NULL
);
4144 if (lp_res
== isl_lp_error
)
4146 if (lp_res
== isl_lp_unbounded
|| lp_res
== isl_lp_empty
)
4148 isl_int_fdiv_q(max
, max
, qp
->div
->row
[i
][0]);
4150 isl_int_sub(max
, max
, min
);
4151 if (isl_int_cmp_si(max
, data
->max_periods
) < 0) {
4152 isl_int_add(max
, max
, min
);
4157 if (i
< qp
->div
->n_row
) {
4158 r
= split_div(set
, qp
, i
, min
, max
, data
);
4160 pwqp
= isl_pw_qpolynomial_alloc(set
, qp
);
4161 data
->res
= isl_pw_qpolynomial_add_disjoint(data
->res
, pwqp
);
4173 isl_qpolynomial_free(qp
);
4177 /* If any quasi-polynomial in pwqp refers to any integer division
4178 * that can only attain "max_periods" distinct values on its domain
4179 * then split the domain along those distinct values.
4181 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_split_periods(
4182 __isl_take isl_pw_qpolynomial
*pwqp
, int max_periods
)
4184 struct isl_split_periods_data data
;
4186 data
.max_periods
= max_periods
;
4187 data
.res
= isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_dim(pwqp
));
4189 if (isl_pw_qpolynomial_foreach_piece(pwqp
, &split_periods
, &data
) < 0)
4192 isl_pw_qpolynomial_free(pwqp
);
4196 isl_pw_qpolynomial_free(data
.res
);
4197 isl_pw_qpolynomial_free(pwqp
);
4201 /* Construct a piecewise quasipolynomial that is constant on the given
4202 * domain. In particular, it is
4205 * infinity if cst == -1
4207 static __isl_give isl_pw_qpolynomial
*constant_on_domain(
4208 __isl_take isl_basic_set
*bset
, int cst
)
4211 isl_qpolynomial
*qp
;
4216 bset
= isl_basic_map_domain(isl_basic_map_from_range(bset
));
4217 dim
= isl_basic_set_get_dim(bset
);
4219 qp
= isl_qpolynomial_infty(dim
);
4221 qp
= isl_qpolynomial_zero(dim
);
4223 qp
= isl_qpolynomial_one(dim
);
4224 return isl_pw_qpolynomial_alloc(isl_set_from_basic_set(bset
), qp
);
4227 /* Factor bset, call fn on each of the factors and return the product.
4229 * If no factors can be found, simply call fn on the input.
4230 * Otherwise, construct the factors based on the factorizer,
4231 * call fn on each factor and compute the product.
4233 static __isl_give isl_pw_qpolynomial
*compressed_multiplicative_call(
4234 __isl_take isl_basic_set
*bset
,
4235 __isl_give isl_pw_qpolynomial
*(*fn
)(__isl_take isl_basic_set
*bset
))
4241 isl_qpolynomial
*qp
;
4242 isl_pw_qpolynomial
*pwqp
;
4246 f
= isl_basic_set_factorizer(bset
);
4249 if (f
->n_group
== 0) {
4250 isl_factorizer_free(f
);
4254 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
4255 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
4257 dim
= isl_basic_set_get_dim(bset
);
4258 dim
= isl_dim_domain(dim
);
4259 set
= isl_set_universe(isl_dim_copy(dim
));
4260 qp
= isl_qpolynomial_one(dim
);
4261 pwqp
= isl_pw_qpolynomial_alloc(set
, qp
);
4263 bset
= isl_morph_basic_set(isl_morph_copy(f
->morph
), bset
);
4265 for (i
= 0, n
= 0; i
< f
->n_group
; ++i
) {
4266 isl_basic_set
*bset_i
;
4267 isl_pw_qpolynomial
*pwqp_i
;
4269 bset_i
= isl_basic_set_copy(bset
);
4270 bset_i
= isl_basic_set_drop_constraints_involving(bset_i
,
4271 nparam
+ n
+ f
->len
[i
], nvar
- n
- f
->len
[i
]);
4272 bset_i
= isl_basic_set_drop_constraints_involving(bset_i
,
4274 bset_i
= isl_basic_set_drop(bset_i
, isl_dim_set
,
4275 n
+ f
->len
[i
], nvar
- n
- f
->len
[i
]);
4276 bset_i
= isl_basic_set_drop(bset_i
, isl_dim_set
, 0, n
);
4278 pwqp_i
= fn(bset_i
);
4279 pwqp
= isl_pw_qpolynomial_mul(pwqp
, pwqp_i
);
4284 isl_basic_set_free(bset
);
4285 isl_factorizer_free(f
);
4289 isl_basic_set_free(bset
);
4293 /* Factor bset, call fn on each of the factors and return the product.
4294 * The function is assumed to evaluate to zero on empty domains,
4295 * to one on zero-dimensional domains and to infinity on unbounded domains
4296 * and will not be called explicitly on zero-dimensional or unbounded domains.
4298 * We first check for some special cases and remove all equalities.
4299 * Then we hand over control to compressed_multiplicative_call.
4301 __isl_give isl_pw_qpolynomial
*isl_basic_set_multiplicative_call(
4302 __isl_take isl_basic_set
*bset
,
4303 __isl_give isl_pw_qpolynomial
*(*fn
)(__isl_take isl_basic_set
*bset
))
4307 isl_pw_qpolynomial
*pwqp
;
4308 unsigned orig_nvar
, final_nvar
;
4313 if (isl_basic_set_plain_is_empty(bset
))
4314 return constant_on_domain(bset
, 0);
4316 orig_nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
4319 return constant_on_domain(bset
, 1);
4321 bounded
= isl_basic_set_is_bounded(bset
);
4325 return constant_on_domain(bset
, -1);
4327 if (bset
->n_eq
== 0)
4328 return compressed_multiplicative_call(bset
, fn
);
4330 morph
= isl_basic_set_full_compression(bset
);
4331 bset
= isl_morph_basic_set(isl_morph_copy(morph
), bset
);
4333 final_nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
4335 pwqp
= compressed_multiplicative_call(bset
, fn
);
4337 morph
= isl_morph_remove_dom_dims(morph
, isl_dim_set
, 0, orig_nvar
);
4338 morph
= isl_morph_remove_ran_dims(morph
, isl_dim_set
, 0, final_nvar
);
4339 morph
= isl_morph_inverse(morph
);
4341 pwqp
= isl_pw_qpolynomial_morph(pwqp
, morph
);
4345 isl_basic_set_free(bset
);
4349 /* Drop all floors in "qp", turning each integer division [a/m] into
4350 * a rational division a/m. If "down" is set, then the integer division
4351 * is replaces by (a-(m-1))/m instead.
4353 static __isl_give isl_qpolynomial
*qp_drop_floors(
4354 __isl_take isl_qpolynomial
*qp
, int down
)
4357 struct isl_upoly
*s
;
4361 if (qp
->div
->n_row
== 0)
4364 qp
= isl_qpolynomial_cow(qp
);
4368 for (i
= qp
->div
->n_row
- 1; i
>= 0; --i
) {
4370 isl_int_sub(qp
->div
->row
[i
][1],
4371 qp
->div
->row
[i
][1], qp
->div
->row
[i
][0]);
4372 isl_int_add_ui(qp
->div
->row
[i
][1],
4373 qp
->div
->row
[i
][1], 1);
4375 s
= isl_upoly_from_affine(qp
->dim
->ctx
, qp
->div
->row
[i
] + 1,
4376 qp
->div
->row
[i
][0], qp
->div
->n_col
- 1);
4377 qp
= substitute_div(qp
, i
, s
);
4385 /* Drop all floors in "pwqp", turning each integer division [a/m] into
4386 * a rational division a/m.
4388 static __isl_give isl_pw_qpolynomial
*pwqp_drop_floors(
4389 __isl_take isl_pw_qpolynomial
*pwqp
)
4396 if (isl_pw_qpolynomial_is_zero(pwqp
))
4399 pwqp
= isl_pw_qpolynomial_cow(pwqp
);
4403 for (i
= 0; i
< pwqp
->n
; ++i
) {
4404 pwqp
->p
[i
].qp
= qp_drop_floors(pwqp
->p
[i
].qp
, 0);
4411 isl_pw_qpolynomial_free(pwqp
);
4415 /* Adjust all the integer divisions in "qp" such that they are at least
4416 * one over the given orthant (identified by "signs"). This ensures
4417 * that they will still be non-negative even after subtracting (m-1)/m.
4419 * In particular, f is replaced by f' + v, changing f = [a/m]
4420 * to f' = [(a - m v)/m].
4421 * If the constant term k in a is smaller than m,
4422 * the constant term of v is set to floor(k/m) - 1.
4423 * For any other term, if the coefficient c and the variable x have
4424 * the same sign, then no changes are needed.
4425 * Otherwise, if the variable is positive (and c is negative),
4426 * then the coefficient of x in v is set to floor(c/m).
4427 * If the variable is negative (and c is positive),
4428 * then the coefficient of x in v is set to ceil(c/m).
4430 static __isl_give isl_qpolynomial
*make_divs_pos(__isl_take isl_qpolynomial
*qp
,
4436 struct isl_upoly
*s
;
4438 qp
= isl_qpolynomial_cow(qp
);
4441 qp
->div
= isl_mat_cow(qp
->div
);
4445 total
= isl_dim_total(qp
->dim
);
4446 v
= isl_vec_alloc(qp
->div
->ctx
, qp
->div
->n_col
- 1);
4448 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
4449 isl_int
*row
= qp
->div
->row
[i
];
4453 if (isl_int_lt(row
[1], row
[0])) {
4454 isl_int_fdiv_q(v
->el
[0], row
[1], row
[0]);
4455 isl_int_sub_ui(v
->el
[0], v
->el
[0], 1);
4456 isl_int_submul(row
[1], row
[0], v
->el
[0]);
4458 for (j
= 0; j
< total
; ++j
) {
4459 if (isl_int_sgn(row
[2 + j
]) * signs
[j
] >= 0)
4462 isl_int_cdiv_q(v
->el
[1 + j
], row
[2 + j
], row
[0]);
4464 isl_int_fdiv_q(v
->el
[1 + j
], row
[2 + j
], row
[0]);
4465 isl_int_submul(row
[2 + j
], row
[0], v
->el
[1 + j
]);
4467 for (j
= 0; j
< i
; ++j
) {
4468 if (isl_int_sgn(row
[2 + total
+ j
]) >= 0)
4470 isl_int_fdiv_q(v
->el
[1 + total
+ j
],
4471 row
[2 + total
+ j
], row
[0]);
4472 isl_int_submul(row
[2 + total
+ j
],
4473 row
[0], v
->el
[1 + total
+ j
]);
4475 for (j
= i
+ 1; j
< qp
->div
->n_row
; ++j
) {
4476 if (isl_int_is_zero(qp
->div
->row
[j
][2 + total
+ i
]))
4478 isl_seq_combine(qp
->div
->row
[j
] + 1,
4479 qp
->div
->ctx
->one
, qp
->div
->row
[j
] + 1,
4480 qp
->div
->row
[j
][2 + total
+ i
], v
->el
, v
->size
);
4482 isl_int_set_si(v
->el
[1 + total
+ i
], 1);
4483 s
= isl_upoly_from_affine(qp
->dim
->ctx
, v
->el
,
4484 qp
->div
->ctx
->one
, v
->size
);
4485 qp
->upoly
= isl_upoly_subs(qp
->upoly
, total
+ i
, 1, &s
);
4495 isl_qpolynomial_free(qp
);
4499 struct isl_to_poly_data
{
4501 isl_pw_qpolynomial
*res
;
4502 isl_qpolynomial
*qp
;
4505 /* Appoximate data->qp by a polynomial on the orthant identified by "signs".
4506 * We first make all integer divisions positive and then split the
4507 * quasipolynomials into terms with sign data->sign (the direction
4508 * of the requested approximation) and terms with the opposite sign.
4509 * In the first set of terms, each integer division [a/m] is
4510 * overapproximated by a/m, while in the second it is underapproximated
4513 static int to_polynomial_on_orthant(__isl_take isl_set
*orthant
, int *signs
,
4516 struct isl_to_poly_data
*data
= user
;
4517 isl_pw_qpolynomial
*t
;
4518 isl_qpolynomial
*qp
, *up
, *down
;
4520 qp
= isl_qpolynomial_copy(data
->qp
);
4521 qp
= make_divs_pos(qp
, signs
);
4523 up
= isl_qpolynomial_terms_of_sign(qp
, signs
, data
->sign
);
4524 up
= qp_drop_floors(up
, 0);
4525 down
= isl_qpolynomial_terms_of_sign(qp
, signs
, -data
->sign
);
4526 down
= qp_drop_floors(down
, 1);
4528 isl_qpolynomial_free(qp
);
4529 qp
= isl_qpolynomial_add(up
, down
);
4531 t
= isl_pw_qpolynomial_alloc(orthant
, qp
);
4532 data
->res
= isl_pw_qpolynomial_add_disjoint(data
->res
, t
);
4537 /* Approximate each quasipolynomial by a polynomial. If "sign" is positive,
4538 * the polynomial will be an overapproximation. If "sign" is negative,
4539 * it will be an underapproximation. If "sign" is zero, the approximation
4540 * will lie somewhere in between.
4542 * In particular, is sign == 0, we simply drop the floors, turning
4543 * the integer divisions into rational divisions.
4544 * Otherwise, we split the domains into orthants, make all integer divisions
4545 * positive and then approximate each [a/m] by either a/m or (a-(m-1))/m,
4546 * depending on the requested sign and the sign of the term in which
4547 * the integer division appears.
4549 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_to_polynomial(
4550 __isl_take isl_pw_qpolynomial
*pwqp
, int sign
)
4553 struct isl_to_poly_data data
;
4556 return pwqp_drop_floors(pwqp
);
4562 data
.res
= isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_dim(pwqp
));
4564 for (i
= 0; i
< pwqp
->n
; ++i
) {
4565 if (pwqp
->p
[i
].qp
->div
->n_row
== 0) {
4566 isl_pw_qpolynomial
*t
;
4567 t
= isl_pw_qpolynomial_alloc(
4568 isl_set_copy(pwqp
->p
[i
].set
),
4569 isl_qpolynomial_copy(pwqp
->p
[i
].qp
));
4570 data
.res
= isl_pw_qpolynomial_add_disjoint(data
.res
, t
);
4573 data
.qp
= pwqp
->p
[i
].qp
;
4574 if (isl_set_foreach_orthant(pwqp
->p
[i
].set
,
4575 &to_polynomial_on_orthant
, &data
) < 0)
4579 isl_pw_qpolynomial_free(pwqp
);
4583 isl_pw_qpolynomial_free(pwqp
);
4584 isl_pw_qpolynomial_free(data
.res
);
4588 static int poly_entry(void **entry
, void *user
)
4591 isl_pw_qpolynomial
**pwqp
= (isl_pw_qpolynomial
**)entry
;
4593 *pwqp
= isl_pw_qpolynomial_to_polynomial(*pwqp
, *sign
);
4595 return *pwqp
? 0 : -1;
4598 __isl_give isl_union_pw_qpolynomial
*isl_union_pw_qpolynomial_to_polynomial(
4599 __isl_take isl_union_pw_qpolynomial
*upwqp
, int sign
)
4601 upwqp
= isl_union_pw_qpolynomial_cow(upwqp
);
4605 if (isl_hash_table_foreach(upwqp
->dim
->ctx
, &upwqp
->table
,
4606 &poly_entry
, &sign
) < 0)
4611 isl_union_pw_qpolynomial_free(upwqp
);
4615 __isl_give isl_basic_map
*isl_basic_map_from_qpolynomial(
4616 __isl_take isl_qpolynomial
*qp
)
4620 isl_vec
*aff
= NULL
;
4621 isl_basic_map
*bmap
= NULL
;
4627 if (!isl_upoly_is_affine(qp
->upoly
))
4628 isl_die(qp
->dim
->ctx
, isl_error_invalid
,
4629 "input quasi-polynomial not affine", goto error
);
4630 aff
= isl_qpolynomial_extract_affine(qp
);
4633 dim
= isl_qpolynomial_get_dim(qp
);
4634 dim
= isl_dim_from_domain(dim
);
4635 pos
= 1 + isl_dim_offset(dim
, isl_dim_out
);
4636 dim
= isl_dim_add(dim
, isl_dim_out
, 1);
4637 n_div
= qp
->div
->n_row
;
4638 bmap
= isl_basic_map_alloc_dim(dim
, n_div
, 1, 2 * n_div
);
4640 for (i
= 0; i
< n_div
; ++i
) {
4641 k
= isl_basic_map_alloc_div(bmap
);
4644 isl_seq_cpy(bmap
->div
[k
], qp
->div
->row
[i
], qp
->div
->n_col
);
4645 isl_int_set_si(bmap
->div
[k
][qp
->div
->n_col
], 0);
4646 if (isl_basic_map_add_div_constraints(bmap
, k
) < 0)
4649 k
= isl_basic_map_alloc_equality(bmap
);
4652 isl_int_neg(bmap
->eq
[k
][pos
], aff
->el
[0]);
4653 isl_seq_cpy(bmap
->eq
[k
], aff
->el
+ 1, pos
);
4654 isl_seq_cpy(bmap
->eq
[k
] + pos
+ 1, aff
->el
+ 1 + pos
, n_div
);
4657 isl_qpolynomial_free(qp
);
4658 bmap
= isl_basic_map_finalize(bmap
);
4662 isl_qpolynomial_free(qp
);
4663 isl_basic_map_free(bmap
);