doc: document setting and getting of dimension names
[isl.git] / isl_transitive_closure.c
blob6b984e6e821a81986ca4a1458deb2691c428e4b3
1 /*
2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
8 * 91893 Orsay, France
9 */
11 #include "isl_map.h"
12 #include "isl_map_private.h"
13 #include "isl_seq.h"
14 #include <isl_lp.h>
16 /* Given a map that represents a path with the length of the path
17 * encoded as the difference between the last output coordindate
18 * and the last input coordinate, set this length to either
19 * exactly "length" (if "exactly" is set) or at least "length"
20 * (if "exactly" is not set).
22 static __isl_give isl_map *set_path_length(__isl_take isl_map *map,
23 int exactly, int length)
25 struct isl_dim *dim;
26 struct isl_basic_map *bmap;
27 unsigned d;
28 unsigned nparam;
29 int k;
30 isl_int *c;
32 if (!map)
33 return NULL;
35 dim = isl_map_get_dim(map);
36 d = isl_dim_size(dim, isl_dim_in);
37 nparam = isl_dim_size(dim, isl_dim_param);
38 bmap = isl_basic_map_alloc_dim(dim, 0, 1, 1);
39 if (exactly) {
40 k = isl_basic_map_alloc_equality(bmap);
41 c = bmap->eq[k];
42 } else {
43 k = isl_basic_map_alloc_inequality(bmap);
44 c = bmap->ineq[k];
46 if (k < 0)
47 goto error;
48 isl_seq_clr(c, 1 + isl_basic_map_total_dim(bmap));
49 isl_int_set_si(c[0], -length);
50 isl_int_set_si(c[1 + nparam + d - 1], -1);
51 isl_int_set_si(c[1 + nparam + d + d - 1], 1);
53 bmap = isl_basic_map_finalize(bmap);
54 map = isl_map_intersect(map, isl_map_from_basic_map(bmap));
56 return map;
57 error:
58 isl_basic_map_free(bmap);
59 isl_map_free(map);
60 return NULL;
63 /* Check whether the overapproximation of the power of "map" is exactly
64 * the power of "map". Let R be "map" and A_k the overapproximation.
65 * The approximation is exact if
67 * A_1 = R
68 * A_k = A_{k-1} \circ R k >= 2
70 * Since A_k is known to be an overapproximation, we only need to check
72 * A_1 \subset R
73 * A_k \subset A_{k-1} \circ R k >= 2
75 * In practice, "app" has an extra input and output coordinate
76 * to encode the length of the path. So, we first need to add
77 * this coordinate to "map" and set the length of the path to
78 * one.
80 static int check_power_exactness(__isl_take isl_map *map,
81 __isl_take isl_map *app)
83 int exact;
84 isl_map *app_1;
85 isl_map *app_2;
87 map = isl_map_add(map, isl_dim_in, 1);
88 map = isl_map_add(map, isl_dim_out, 1);
89 map = set_path_length(map, 1, 1);
91 app_1 = set_path_length(isl_map_copy(app), 1, 1);
93 exact = isl_map_is_subset(app_1, map);
94 isl_map_free(app_1);
96 if (!exact || exact < 0) {
97 isl_map_free(app);
98 isl_map_free(map);
99 return exact;
102 app_1 = set_path_length(isl_map_copy(app), 0, 1);
103 app_2 = set_path_length(app, 0, 2);
104 app_1 = isl_map_apply_range(map, app_1);
106 exact = isl_map_is_subset(app_2, app_1);
108 isl_map_free(app_1);
109 isl_map_free(app_2);
111 return exact;
114 /* Check whether the overapproximation of the power of "map" is exactly
115 * the power of "map", possibly after projecting out the power (if "project"
116 * is set).
118 * If "project" is set and if "steps" can only result in acyclic paths,
119 * then we check
121 * A = R \cup (A \circ R)
123 * where A is the overapproximation with the power projected out, i.e.,
124 * an overapproximation of the transitive closure.
125 * More specifically, since A is known to be an overapproximation, we check
127 * A \subset R \cup (A \circ R)
129 * Otherwise, we check if the power is exact.
131 * Note that "app" has an extra input and output coordinate to encode
132 * the length of the part. If we are only interested in the transitive
133 * closure, then we can simply project out these coordinates first.
135 static int check_exactness(__isl_take isl_map *map, __isl_take isl_map *app,
136 int project)
138 isl_map *test;
139 int exact;
140 unsigned d;
142 if (!project)
143 return check_power_exactness(map, app);
145 d = isl_map_dim(map, isl_dim_in);
146 app = set_path_length(app, 0, 1);
147 app = isl_map_project_out(app, isl_dim_in, d, 1);
148 app = isl_map_project_out(app, isl_dim_out, d, 1);
150 test = isl_map_apply_range(isl_map_copy(map), isl_map_copy(app));
151 test = isl_map_union(test, isl_map_copy(map));
153 exact = isl_map_is_subset(app, test);
155 isl_map_free(app);
156 isl_map_free(test);
158 isl_map_free(map);
160 return exact;
161 error:
162 isl_map_free(app);
163 isl_map_free(map);
164 return -1;
168 * The transitive closure implementation is based on the paper
169 * "Computing the Transitive Closure of a Union of Affine Integer
170 * Tuple Relations" by Anna Beletska, Denis Barthou, Wlodzimierz Bielecki and
171 * Albert Cohen.
174 /* Given a set of n offsets v_i (the rows of "steps"), construct a relation
175 * of the given dimension specification (Z^{n+1} -> Z^{n+1})
176 * that maps an element x to any element that can be reached
177 * by taking a non-negative number of steps along any of
178 * the extended offsets v'_i = [v_i 1].
179 * That is, construct
181 * { [x] -> [y] : exists k_i >= 0, y = x + \sum_i k_i v'_i }
183 * For any element in this relation, the number of steps taken
184 * is equal to the difference in the final coordinates.
186 static __isl_give isl_map *path_along_steps(__isl_take isl_dim *dim,
187 __isl_keep isl_mat *steps)
189 int i, j, k;
190 struct isl_basic_map *path = NULL;
191 unsigned d;
192 unsigned n;
193 unsigned nparam;
195 if (!dim || !steps)
196 goto error;
198 d = isl_dim_size(dim, isl_dim_in);
199 n = steps->n_row;
200 nparam = isl_dim_size(dim, isl_dim_param);
202 path = isl_basic_map_alloc_dim(isl_dim_copy(dim), n, d, n);
204 for (i = 0; i < n; ++i) {
205 k = isl_basic_map_alloc_div(path);
206 if (k < 0)
207 goto error;
208 isl_assert(steps->ctx, i == k, goto error);
209 isl_int_set_si(path->div[k][0], 0);
212 for (i = 0; i < d; ++i) {
213 k = isl_basic_map_alloc_equality(path);
214 if (k < 0)
215 goto error;
216 isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path));
217 isl_int_set_si(path->eq[k][1 + nparam + i], 1);
218 isl_int_set_si(path->eq[k][1 + nparam + d + i], -1);
219 if (i == d - 1)
220 for (j = 0; j < n; ++j)
221 isl_int_set_si(path->eq[k][1 + nparam + 2 * d + j], 1);
222 else
223 for (j = 0; j < n; ++j)
224 isl_int_set(path->eq[k][1 + nparam + 2 * d + j],
225 steps->row[j][i]);
228 for (i = 0; i < n; ++i) {
229 k = isl_basic_map_alloc_inequality(path);
230 if (k < 0)
231 goto error;
232 isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path));
233 isl_int_set_si(path->ineq[k][1 + nparam + 2 * d + i], 1);
236 isl_dim_free(dim);
238 path = isl_basic_map_simplify(path);
239 path = isl_basic_map_finalize(path);
240 return isl_map_from_basic_map(path);
241 error:
242 isl_dim_free(dim);
243 isl_basic_map_free(path);
244 return NULL;
247 #define IMPURE 0
248 #define PURE_PARAM 1
249 #define PURE_VAR 2
250 #define MIXED 3
252 /* Return PURE_PARAM if only the coefficients of the parameters are non-zero.
253 * Return PURE_VAR if only the coefficients of the set variables are non-zero.
254 * Return MIXED if only the coefficients of the parameters and the set
255 * variables are non-zero and if moreover the parametric constant
256 * can never attain positive values.
257 * Return IMPURE otherwise.
259 static int purity(__isl_keep isl_basic_set *bset, isl_int *c, int *div_purity,
260 int eq)
262 unsigned d;
263 unsigned n_div;
264 unsigned nparam;
265 int k;
266 int empty;
267 int i;
268 int p = 0, v = 0;
270 n_div = isl_basic_set_dim(bset, isl_dim_div);
271 d = isl_basic_set_dim(bset, isl_dim_set);
272 nparam = isl_basic_set_dim(bset, isl_dim_param);
274 for (i = 0; i < n_div; ++i) {
275 if (isl_int_is_zero(c[1 + nparam + d + i]))
276 continue;
277 switch (div_purity[i]) {
278 case PURE_PARAM: p = 1; break;
279 case PURE_VAR: v = 1; break;
280 default: return IMPURE;
283 if (!p && isl_seq_first_non_zero(c + 1, nparam) == -1)
284 return PURE_VAR;
285 if (!v && isl_seq_first_non_zero(c + 1 + nparam, d) == -1)
286 return PURE_PARAM;
287 if (eq)
288 return IMPURE;
290 bset = isl_basic_set_copy(bset);
291 bset = isl_basic_set_cow(bset);
292 bset = isl_basic_set_extend_constraints(bset, 0, 1);
293 k = isl_basic_set_alloc_inequality(bset);
294 if (k < 0)
295 goto error;
296 isl_seq_clr(bset->ineq[k], 1 + isl_basic_set_total_dim(bset));
297 isl_seq_cpy(bset->ineq[k], c, 1 + nparam);
298 for (i = 0; i < n_div; ++i) {
299 if (div_purity[i] != PURE_PARAM)
300 continue;
301 isl_int_set(bset->ineq[k][1 + nparam + d + i],
302 c[1 + nparam + d + i]);
304 isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1);
305 empty = isl_basic_set_is_empty(bset);
306 isl_basic_set_free(bset);
308 return empty < 0 ? -1 : empty ? MIXED : IMPURE;
309 error:
310 isl_basic_set_free(bset);
311 return -1;
314 /* Return an array of integers indicating the type of each div in bset.
315 * If the div is (recursively) defined in terms of only the parameters,
316 * then the type is PURE_PARAM.
317 * If the div is (recursively) defined in terms of only the set variables,
318 * then the type is PURE_VAR.
319 * Otherwise, the type is IMPURE.
321 static __isl_give int *get_div_purity(__isl_keep isl_basic_set *bset)
323 int i, j;
324 int *div_purity;
325 unsigned d;
326 unsigned n_div;
327 unsigned nparam;
329 if (!bset)
330 return NULL;
332 n_div = isl_basic_set_dim(bset, isl_dim_div);
333 d = isl_basic_set_dim(bset, isl_dim_set);
334 nparam = isl_basic_set_dim(bset, isl_dim_param);
336 div_purity = isl_alloc_array(bset->ctx, int, n_div);
337 if (!div_purity)
338 return NULL;
340 for (i = 0; i < bset->n_div; ++i) {
341 int p = 0, v = 0;
342 if (isl_int_is_zero(bset->div[i][0])) {
343 div_purity[i] = IMPURE;
344 continue;
346 if (isl_seq_first_non_zero(bset->div[i] + 2, nparam) != -1)
347 p = 1;
348 if (isl_seq_first_non_zero(bset->div[i] + 2 + nparam, d) != -1)
349 v = 1;
350 for (j = 0; j < i; ++j) {
351 if (isl_int_is_zero(bset->div[i][2 + nparam + d + j]))
352 continue;
353 switch (div_purity[j]) {
354 case PURE_PARAM: p = 1; break;
355 case PURE_VAR: v = 1; break;
356 default: p = v = 1; break;
359 div_purity[i] = v ? p ? IMPURE : PURE_VAR : PURE_PARAM;
362 return div_purity;
365 /* Given a path with the as yet unconstrained length at position "pos",
366 * check if setting the length to zero results in only the identity
367 * mapping.
369 int empty_path_is_identity(__isl_keep isl_basic_map *path, unsigned pos)
371 isl_basic_map *test = NULL;
372 isl_basic_map *id = NULL;
373 int k;
374 int is_id;
376 test = isl_basic_map_copy(path);
377 test = isl_basic_map_extend_constraints(test, 1, 0);
378 k = isl_basic_map_alloc_equality(test);
379 if (k < 0)
380 goto error;
381 isl_seq_clr(test->eq[k], 1 + isl_basic_map_total_dim(test));
382 isl_int_set_si(test->eq[k][pos], 1);
383 id = isl_basic_map_identity(isl_dim_domain(isl_basic_map_get_dim(path)));
384 is_id = isl_basic_map_is_subset(test, id);
385 isl_basic_map_free(test);
386 isl_basic_map_free(id);
387 return is_id;
388 error:
389 isl_basic_map_free(test);
390 return -1;
393 __isl_give isl_basic_map *add_delta_constraints(__isl_take isl_basic_map *path,
394 __isl_keep isl_basic_set *delta, unsigned off, unsigned nparam,
395 unsigned d, int *div_purity, int eq)
397 int i, k;
398 int n = eq ? delta->n_eq : delta->n_ineq;
399 isl_int **delta_c = eq ? delta->eq : delta->ineq;
400 isl_int **path_c = eq ? path->eq : path->ineq;
401 unsigned n_div;
403 n_div = isl_basic_set_dim(delta, isl_dim_div);
405 for (i = 0; i < n; ++i) {
406 int p = purity(delta, delta_c[i], div_purity, eq);
407 if (p < 0)
408 goto error;
409 if (p == IMPURE)
410 continue;
411 if (eq)
412 k = isl_basic_map_alloc_equality(path);
413 else
414 k = isl_basic_map_alloc_inequality(path);
415 if (k < 0)
416 goto error;
417 isl_seq_clr(path_c[k], 1 + isl_basic_map_total_dim(path));
418 if (p == PURE_VAR) {
419 isl_seq_cpy(path_c[k] + off,
420 delta_c[i] + 1 + nparam, d);
421 isl_int_set(path_c[k][off + d], delta_c[i][0]);
422 } else if (p == PURE_PARAM) {
423 isl_seq_cpy(path_c[k], delta_c[i], 1 + nparam);
424 } else {
425 isl_seq_cpy(path_c[k] + off,
426 delta_c[i] + 1 + nparam, d);
427 isl_seq_cpy(path_c[k], delta_c[i], 1 + nparam);
429 isl_seq_cpy(path_c[k] + off - n_div,
430 delta_c[i] + 1 + nparam + d, n_div);
433 return path;
434 error:
435 isl_basic_map_free(path);
436 return NULL;
439 /* Given a set of offsets "delta", construct a relation of the
440 * given dimension specification (Z^{n+1} -> Z^{n+1}) that
441 * is an overapproximation of the relations that
442 * maps an element x to any element that can be reached
443 * by taking a non-negative number of steps along any of
444 * the elements in "delta".
445 * That is, construct an approximation of
447 * { [x] -> [y] : exists f \in \delta, k \in Z :
448 * y = x + k [f, 1] and k >= 0 }
450 * For any element in this relation, the number of steps taken
451 * is equal to the difference in the final coordinates.
453 * In particular, let delta be defined as
455 * \delta = [p] -> { [x] : A x + a >= and B p + b >= 0 and
456 * C x + C'p + c >= 0 and
457 * D x + D'p + d >= 0 }
459 * where the constraints C x + C'p + c >= 0 are such that the parametric
460 * constant term of each constraint j, "C_j x + C'_j p + c_j",
461 * can never attain positive values, then the relation is constructed as
463 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
464 * A f + k a >= 0 and B p + b >= 0 and
465 * C f + C'p + c >= 0 and k >= 1 }
466 * union { [x] -> [x] }
468 * If the zero-length paths happen to correspond exactly to the identity
469 * mapping, then we return
471 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
472 * A f + k a >= 0 and B p + b >= 0 and
473 * C f + C'p + c >= 0 and k >= 0 }
475 * instead.
477 * Existentially quantified variables in \delta are handled by
478 * classifying them as independent of the parameters, purely
479 * parameter dependent and others. Constraints containing
480 * any of the other existentially quantified variables are removed.
481 * This is safe, but leads to an additional overapproximation.
483 static __isl_give isl_map *path_along_delta(__isl_take isl_dim *dim,
484 __isl_take isl_basic_set *delta)
486 isl_basic_map *path = NULL;
487 unsigned d;
488 unsigned n_div;
489 unsigned nparam;
490 unsigned off;
491 int i, k;
492 int is_id;
493 int *div_purity = NULL;
495 if (!delta)
496 goto error;
497 n_div = isl_basic_set_dim(delta, isl_dim_div);
498 d = isl_basic_set_dim(delta, isl_dim_set);
499 nparam = isl_basic_set_dim(delta, isl_dim_param);
500 path = isl_basic_map_alloc_dim(isl_dim_copy(dim), n_div + d + 1,
501 d + 1 + delta->n_eq, delta->n_ineq + 1);
502 off = 1 + nparam + 2 * (d + 1) + n_div;
504 for (i = 0; i < n_div + d + 1; ++i) {
505 k = isl_basic_map_alloc_div(path);
506 if (k < 0)
507 goto error;
508 isl_int_set_si(path->div[k][0], 0);
511 for (i = 0; i < d + 1; ++i) {
512 k = isl_basic_map_alloc_equality(path);
513 if (k < 0)
514 goto error;
515 isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path));
516 isl_int_set_si(path->eq[k][1 + nparam + i], 1);
517 isl_int_set_si(path->eq[k][1 + nparam + d + 1 + i], -1);
518 isl_int_set_si(path->eq[k][off + i], 1);
521 div_purity = get_div_purity(delta);
522 if (!div_purity)
523 goto error;
525 path = add_delta_constraints(path, delta, off, nparam, d, div_purity, 1);
526 path = add_delta_constraints(path, delta, off, nparam, d, div_purity, 0);
528 is_id = empty_path_is_identity(path, off + d);
529 if (is_id < 0)
530 goto error;
532 k = isl_basic_map_alloc_inequality(path);
533 if (k < 0)
534 goto error;
535 isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path));
536 if (!is_id)
537 isl_int_set_si(path->ineq[k][0], -1);
538 isl_int_set_si(path->ineq[k][off + d], 1);
540 free(div_purity);
541 isl_basic_set_free(delta);
542 path = isl_basic_map_finalize(path);
543 if (is_id) {
544 isl_dim_free(dim);
545 return isl_map_from_basic_map(path);
547 return isl_basic_map_union(path,
548 isl_basic_map_identity(isl_dim_domain(dim)));
549 error:
550 free(div_purity);
551 isl_dim_free(dim);
552 isl_basic_set_free(delta);
553 isl_basic_map_free(path);
554 return NULL;
557 /* Given a dimenion specification Z^{n+1} -> Z^{n+1} and a parameter "param",
558 * construct a map that equates the parameter to the difference
559 * in the final coordinates and imposes that this difference is positive.
560 * That is, construct
562 * { [x,x_s] -> [y,y_s] : k = y_s - x_s > 0 }
564 static __isl_give isl_map *equate_parameter_to_length(__isl_take isl_dim *dim,
565 unsigned param)
567 struct isl_basic_map *bmap;
568 unsigned d;
569 unsigned nparam;
570 int k;
572 d = isl_dim_size(dim, isl_dim_in);
573 nparam = isl_dim_size(dim, isl_dim_param);
574 bmap = isl_basic_map_alloc_dim(dim, 0, 1, 1);
575 k = isl_basic_map_alloc_equality(bmap);
576 if (k < 0)
577 goto error;
578 isl_seq_clr(bmap->eq[k], 1 + isl_basic_map_total_dim(bmap));
579 isl_int_set_si(bmap->eq[k][1 + param], -1);
580 isl_int_set_si(bmap->eq[k][1 + nparam + d - 1], -1);
581 isl_int_set_si(bmap->eq[k][1 + nparam + d + d - 1], 1);
583 k = isl_basic_map_alloc_inequality(bmap);
584 if (k < 0)
585 goto error;
586 isl_seq_clr(bmap->ineq[k], 1 + isl_basic_map_total_dim(bmap));
587 isl_int_set_si(bmap->ineq[k][1 + param], 1);
588 isl_int_set_si(bmap->ineq[k][0], -1);
590 bmap = isl_basic_map_finalize(bmap);
591 return isl_map_from_basic_map(bmap);
592 error:
593 isl_basic_map_free(bmap);
594 return NULL;
597 /* Check whether "path" is acyclic, where the last coordinates of domain
598 * and range of path encode the number of steps taken.
599 * That is, check whether
601 * { d | d = y - x and (x,y) in path }
603 * does not contain any element with positive last coordinate (positive length)
604 * and zero remaining coordinates (cycle).
606 static int is_acyclic(__isl_take isl_map *path)
608 int i;
609 int acyclic;
610 unsigned dim;
611 struct isl_set *delta;
613 delta = isl_map_deltas(path);
614 dim = isl_set_dim(delta, isl_dim_set);
615 for (i = 0; i < dim; ++i) {
616 if (i == dim -1)
617 delta = isl_set_lower_bound_si(delta, isl_dim_set, i, 1);
618 else
619 delta = isl_set_fix_si(delta, isl_dim_set, i, 0);
622 acyclic = isl_set_is_empty(delta);
623 isl_set_free(delta);
625 return acyclic;
628 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
629 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
630 * construct a map that is an overapproximation of the map
631 * that takes an element from the space D \times Z to another
632 * element from the same space, such that the first n coordinates of the
633 * difference between them is a sum of differences between images
634 * and pre-images in one of the R_i and such that the last coordinate
635 * is equal to the number of steps taken.
636 * That is, let
638 * \Delta_i = { y - x | (x, y) in R_i }
640 * then the constructed map is an overapproximation of
642 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
643 * d = (\sum_i k_i \delta_i, \sum_i k_i) }
645 * The elements of the singleton \Delta_i's are collected as the
646 * rows of the steps matrix. For all these \Delta_i's together,
647 * a single path is constructed.
648 * For each of the other \Delta_i's, we compute an overapproximation
649 * of the paths along elements of \Delta_i.
650 * Since each of these paths performs an addition, composition is
651 * symmetric and we can simply compose all resulting paths in any order.
653 static __isl_give isl_map *construct_extended_path(__isl_take isl_dim *dim,
654 __isl_keep isl_map *map, int *project)
656 struct isl_mat *steps = NULL;
657 struct isl_map *path = NULL;
658 unsigned d;
659 int i, j, n;
661 d = isl_map_dim(map, isl_dim_in);
663 path = isl_map_identity(isl_dim_domain(isl_dim_copy(dim)));
665 steps = isl_mat_alloc(map->ctx, map->n, d);
666 if (!steps)
667 goto error;
669 n = 0;
670 for (i = 0; i < map->n; ++i) {
671 struct isl_basic_set *delta;
673 delta = isl_basic_map_deltas(isl_basic_map_copy(map->p[i]));
675 for (j = 0; j < d; ++j) {
676 int fixed;
678 fixed = isl_basic_set_fast_dim_is_fixed(delta, j,
679 &steps->row[n][j]);
680 if (fixed < 0) {
681 isl_basic_set_free(delta);
682 goto error;
684 if (!fixed)
685 break;
689 if (j < d) {
690 path = isl_map_apply_range(path,
691 path_along_delta(isl_dim_copy(dim), delta));
692 path = isl_map_coalesce(path);
693 } else {
694 isl_basic_set_free(delta);
695 ++n;
699 if (n > 0) {
700 steps->n_row = n;
701 path = isl_map_apply_range(path,
702 path_along_steps(isl_dim_copy(dim), steps));
705 if (project && *project) {
706 *project = is_acyclic(isl_map_copy(path));
707 if (*project < 0)
708 goto error;
711 isl_dim_free(dim);
712 isl_mat_free(steps);
713 return path;
714 error:
715 isl_dim_free(dim);
716 isl_mat_free(steps);
717 isl_map_free(path);
718 return NULL;
721 static int isl_set_overlaps(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
723 isl_set *i;
724 int no_overlap;
726 i = isl_set_intersect(isl_set_copy(set1), isl_set_copy(set2));
727 no_overlap = isl_set_is_empty(i);
728 isl_set_free(i);
730 return no_overlap < 0 ? -1 : !no_overlap;
733 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
734 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
735 * construct a map that is an overapproximation of the map
736 * that takes an element from the dom R \times Z to an
737 * element from ran R \times Z, such that the first n coordinates of the
738 * difference between them is a sum of differences between images
739 * and pre-images in one of the R_i and such that the last coordinate
740 * is equal to the number of steps taken.
741 * That is, let
743 * \Delta_i = { y - x | (x, y) in R_i }
745 * then the constructed map is an overapproximation of
747 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
748 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
749 * x in dom R and x + d in ran R and
750 * \sum_i k_i >= 1 }
752 static __isl_give isl_map *construct_component(__isl_take isl_dim *dim,
753 __isl_keep isl_map *map, int *exact, int project)
755 struct isl_set *domain = NULL;
756 struct isl_set *range = NULL;
757 struct isl_map *app = NULL;
758 struct isl_map *path = NULL;
760 domain = isl_map_domain(isl_map_copy(map));
761 domain = isl_set_coalesce(domain);
762 range = isl_map_range(isl_map_copy(map));
763 range = isl_set_coalesce(range);
764 if (!isl_set_overlaps(domain, range)) {
765 isl_set_free(domain);
766 isl_set_free(range);
767 isl_dim_free(dim);
769 map = isl_map_copy(map);
770 map = isl_map_add(map, isl_dim_in, 1);
771 map = isl_map_add(map, isl_dim_out, 1);
772 map = set_path_length(map, 1, 1);
773 return map;
775 app = isl_map_from_domain_and_range(domain, range);
776 app = isl_map_add(app, isl_dim_in, 1);
777 app = isl_map_add(app, isl_dim_out, 1);
779 path = construct_extended_path(isl_dim_copy(dim), map,
780 exact && *exact ? &project : NULL);
781 app = isl_map_intersect(app, path);
783 if (exact && *exact &&
784 (*exact = check_exactness(isl_map_copy(map), isl_map_copy(app),
785 project)) < 0)
786 goto error;
788 isl_dim_free(dim);
789 app = set_path_length(app, 0, 1);
790 return app;
791 error:
792 isl_dim_free(dim);
793 isl_map_free(app);
794 return NULL;
797 /* Call construct_component and, if "project" is set, project out
798 * the final coordinates.
800 static __isl_give isl_map *construct_projected_component(
801 __isl_take isl_dim *dim,
802 __isl_keep isl_map *map, int *exact, int project)
804 isl_map *app;
805 unsigned d;
807 if (!dim)
808 return NULL;
809 d = isl_dim_size(dim, isl_dim_in);
811 app = construct_component(dim, map, exact, project);
812 if (project) {
813 app = isl_map_project_out(app, isl_dim_in, d - 1, 1);
814 app = isl_map_project_out(app, isl_dim_out, d - 1, 1);
816 return app;
819 /* Given an array of sets "set", add "dom" at position "pos"
820 * and search for elements at earlier positions that overlap with "dom".
821 * If any can be found, then merge all of them, together with "dom", into
822 * a single set and assign the union to the first in the array,
823 * which becomes the new group leader for all groups involved in the merge.
824 * During the search, we only consider group leaders, i.e., those with
825 * group[i] = i, as the other sets have already been combined
826 * with one of the group leaders.
828 static int merge(isl_set **set, int *group, __isl_take isl_set *dom, int pos)
830 int i;
832 group[pos] = pos;
833 set[pos] = isl_set_copy(dom);
835 for (i = pos - 1; i >= 0; --i) {
836 int o;
838 if (group[i] != i)
839 continue;
841 o = isl_set_overlaps(set[i], dom);
842 if (o < 0)
843 goto error;
844 if (!o)
845 continue;
847 set[i] = isl_set_union(set[i], set[group[pos]]);
848 if (!set[i])
849 goto error;
850 set[group[pos]] = NULL;
851 group[group[pos]] = i;
852 group[pos] = i;
855 isl_set_free(dom);
856 return 0;
857 error:
858 isl_set_free(dom);
859 return -1;
862 /* Given a partition of the domains and ranges of the basic maps in "map",
863 * apply the Floyd-Warshall algorithm with the elements in the partition
864 * as vertices.
866 * In particular, there are "n" elements in the partition and "group" is
867 * an array of length 2 * map->n with entries in [0,n-1].
869 * We first construct a matrix of relations based on the partition information,
870 * apply Floyd-Warshall on this matrix of relations and then take the
871 * union of all entries in the matrix as the final result.
873 * The algorithm iterates over all vertices. In each step, the whole
874 * matrix is updated to include all paths that go to the current vertex,
875 * possibly stay there a while (including passing through earlier vertices)
876 * and then come back. At the start of each iteration, the diagonal
877 * element corresponding to the current vertex is replaced by its
878 * transitive closure to account for all indirect paths that stay
879 * in the current vertex.
881 static __isl_give isl_map *floyd_warshall_with_groups(__isl_take isl_dim *dim,
882 __isl_keep isl_map *map, int *exact, int project, int *group, int n)
884 int i, j, k;
885 int r, p, q;
886 isl_map ***grid = NULL;
887 isl_map *app;
889 if (!map)
890 goto error;
892 if (n == 1) {
893 free(group);
894 return construct_projected_component(dim, map, exact, project);
897 grid = isl_calloc_array(map->ctx, isl_map **, n);
898 if (!grid)
899 goto error;
900 for (i = 0; i < n; ++i) {
901 grid[i] = isl_calloc_array(map->ctx, isl_map *, n);
902 if (!grid[i])
903 goto error;
904 for (j = 0; j < n; ++j)
905 grid[i][j] = isl_map_empty(isl_map_get_dim(map));
908 for (k = 0; k < map->n; ++k) {
909 i = group[2 * k];
910 j = group[2 * k + 1];
911 grid[i][j] = isl_map_union(grid[i][j],
912 isl_map_from_basic_map(
913 isl_basic_map_copy(map->p[k])));
916 for (r = 0; r < n; ++r) {
917 int r_exact;
918 grid[r][r] = isl_map_transitive_closure(grid[r][r],
919 (exact && *exact) ? &r_exact : NULL);
920 if (exact && *exact && !r_exact)
921 *exact = 0;
923 for (p = 0; p < n; ++p)
924 for (q = 0; q < n; ++q) {
925 isl_map *loop;
926 if (p == r && q == r)
927 continue;
928 loop = isl_map_apply_range(
929 isl_map_copy(grid[p][r]),
930 isl_map_copy(grid[r][q]));
931 grid[p][q] = isl_map_union(grid[p][q], loop);
932 loop = isl_map_apply_range(
933 isl_map_copy(grid[p][r]),
934 isl_map_apply_range(
935 isl_map_copy(grid[r][r]),
936 isl_map_copy(grid[r][q])));
937 grid[p][q] = isl_map_union(grid[p][q], loop);
938 grid[p][q] = isl_map_coalesce(grid[p][q]);
942 app = isl_map_empty(isl_map_get_dim(map));
944 for (i = 0; i < n; ++i) {
945 for (j = 0; j < n; ++j)
946 app = isl_map_union(app, grid[i][j]);
947 free(grid[i]);
949 free(grid);
951 free(group);
952 isl_dim_free(dim);
954 return app;
955 error:
956 if (grid)
957 for (i = 0; i < n; ++i) {
958 if (!grid[i])
959 continue;
960 for (j = 0; j < n; ++j)
961 isl_map_free(grid[i][j]);
962 free(grid[i]);
964 free(grid);
965 free(group);
966 isl_dim_free(dim);
967 return NULL;
970 /* Check if the domains and ranges of the basic maps in "map" can
971 * be partitioned, and if so, apply Floyd-Warshall on the elements
972 * of the partition. Note that we can only apply this algorithm
973 * if we want to compute the transitive closure, i.e., when "project"
974 * is set. If we want to compute the power, we need to keep track
975 * of the lengths and the recursive calls inside the Floyd-Warshall
976 * would result in non-linear lengths.
978 * To find the partition, we simply consider all of the domains
979 * and ranges in turn and combine those that overlap.
980 * "set" contains the partition elements and "group" indicates
981 * to which partition element a given domain or range belongs.
982 * The domain of basic map i corresponds to element 2 * i in these arrays,
983 * while the domain corresponds to element 2 * i + 1.
984 * During the construction group[k] is either equal to k,
985 * in which case set[k] contains the union of all the domains and
986 * ranges in the corresponding group, or is equal to some l < k,
987 * with l another domain or range in the same group.
989 static __isl_give isl_map *floyd_warshall(__isl_take isl_dim *dim,
990 __isl_keep isl_map *map, int *exact, int project)
992 int i;
993 isl_set **set = NULL;
994 int *group = NULL;
995 int n;
997 if (!map)
998 goto error;
999 if (!project || map->n <= 1)
1000 return construct_projected_component(dim, map, exact, project);
1002 set = isl_calloc_array(map->ctx, isl_set *, 2 * map->n);
1003 group = isl_alloc_array(map->ctx, int, 2 * map->n);
1005 if (!set || !group)
1006 goto error;
1008 for (i = 0; i < map->n; ++i) {
1009 isl_set *dom;
1010 dom = isl_set_from_basic_set(isl_basic_map_domain(
1011 isl_basic_map_copy(map->p[i])));
1012 if (merge(set, group, dom, 2 * i) < 0)
1013 goto error;
1014 dom = isl_set_from_basic_set(isl_basic_map_range(
1015 isl_basic_map_copy(map->p[i])));
1016 if (merge(set, group, dom, 2 * i + 1) < 0)
1017 goto error;
1020 n = 0;
1021 for (i = 0; i < 2 * map->n; ++i)
1022 if (group[i] == i)
1023 group[i] = n++;
1024 else
1025 group[i] = group[group[i]];
1027 for (i = 0; i < 2 * map->n; ++i)
1028 isl_set_free(set[i]);
1030 free(set);
1032 return floyd_warshall_with_groups(dim, map, exact, project, group, n);
1033 error:
1034 for (i = 0; i < 2 * map->n; ++i)
1035 isl_set_free(set[i]);
1036 free(set);
1037 free(group);
1038 isl_dim_free(dim);
1039 return NULL;
1042 /* Structure for representing the nodes in the graph being traversed
1043 * using Tarjan's algorithm.
1044 * index represents the order in which nodes are visited.
1045 * min_index is the index of the root of a (sub)component.
1046 * on_stack indicates whether the node is currently on the stack.
1048 struct basic_map_sort_node {
1049 int index;
1050 int min_index;
1051 int on_stack;
1053 /* Structure for representing the graph being traversed
1054 * using Tarjan's algorithm.
1055 * len is the number of nodes
1056 * node is an array of nodes
1057 * stack contains the nodes on the path from the root to the current node
1058 * sp is the stack pointer
1059 * index is the index of the last node visited
1060 * order contains the elements of the components separated by -1
1061 * op represents the current position in order
1063 struct basic_map_sort {
1064 int len;
1065 struct basic_map_sort_node *node;
1066 int *stack;
1067 int sp;
1068 int index;
1069 int *order;
1070 int op;
1073 static void basic_map_sort_free(struct basic_map_sort *s)
1075 if (!s)
1076 return;
1077 free(s->node);
1078 free(s->stack);
1079 free(s->order);
1080 free(s);
1083 static struct basic_map_sort *basic_map_sort_alloc(struct isl_ctx *ctx, int len)
1085 struct basic_map_sort *s;
1086 int i;
1088 s = isl_calloc_type(ctx, struct basic_map_sort);
1089 if (!s)
1090 return NULL;
1091 s->len = len;
1092 s->node = isl_alloc_array(ctx, struct basic_map_sort_node, len);
1093 if (!s->node)
1094 goto error;
1095 for (i = 0; i < len; ++i)
1096 s->node[i].index = -1;
1097 s->stack = isl_alloc_array(ctx, int, len);
1098 if (!s->stack)
1099 goto error;
1100 s->order = isl_alloc_array(ctx, int, 2 * len);
1101 if (!s->order)
1102 goto error;
1104 s->sp = 0;
1105 s->index = 0;
1106 s->op = 0;
1108 return s;
1109 error:
1110 basic_map_sort_free(s);
1111 return NULL;
1114 /* Check whether in the computation of the transitive closure
1115 * "bmap1" (R_1) should follow (or be part of the same component as)
1116 * "bmap2" (R_2).
1118 * That is check whether
1120 * R_1 \circ R_2
1122 * is a subset of
1124 * R_2 \circ R_1
1126 * If so, then there is no reason for R_1 to immediately follow R_2
1127 * in any path.
1129 static int basic_map_follows(__isl_keep isl_basic_map *bmap1,
1130 __isl_keep isl_basic_map *bmap2)
1132 struct isl_map *map12 = NULL;
1133 struct isl_map *map21 = NULL;
1134 int subset;
1136 map21 = isl_map_from_basic_map(
1137 isl_basic_map_apply_range(
1138 isl_basic_map_copy(bmap2),
1139 isl_basic_map_copy(bmap1)));
1140 subset = isl_map_is_empty(map21);
1141 if (subset < 0)
1142 goto error;
1143 if (subset) {
1144 isl_map_free(map21);
1145 return 0;
1148 map12 = isl_map_from_basic_map(
1149 isl_basic_map_apply_range(
1150 isl_basic_map_copy(bmap1),
1151 isl_basic_map_copy(bmap2)));
1153 subset = isl_map_is_subset(map21, map12);
1155 isl_map_free(map12);
1156 isl_map_free(map21);
1158 return subset < 0 ? -1 : !subset;
1159 error:
1160 isl_map_free(map21);
1161 return -1;
1164 /* Perform Tarjan's algorithm for computing the strongly connected components
1165 * in the graph with the disjuncts of "map" as vertices and with an
1166 * edge between any pair of disjuncts such that the first has
1167 * to be applied after the second.
1169 static int power_components_tarjan(struct basic_map_sort *s,
1170 __isl_keep isl_map *map, int i)
1172 int j;
1174 s->node[i].index = s->index;
1175 s->node[i].min_index = s->index;
1176 s->node[i].on_stack = 1;
1177 s->index++;
1178 s->stack[s->sp++] = i;
1180 for (j = s->len - 1; j >= 0; --j) {
1181 int f;
1183 if (j == i)
1184 continue;
1185 if (s->node[j].index >= 0 &&
1186 (!s->node[j].on_stack ||
1187 s->node[j].index > s->node[i].min_index))
1188 continue;
1190 f = basic_map_follows(map->p[i], map->p[j]);
1191 if (f < 0)
1192 return -1;
1193 if (!f)
1194 continue;
1196 if (s->node[j].index < 0) {
1197 power_components_tarjan(s, map, j);
1198 if (s->node[j].min_index < s->node[i].min_index)
1199 s->node[i].min_index = s->node[j].min_index;
1200 } else if (s->node[j].index < s->node[i].min_index)
1201 s->node[i].min_index = s->node[j].index;
1204 if (s->node[i].index != s->node[i].min_index)
1205 return 0;
1207 do {
1208 j = s->stack[--s->sp];
1209 s->node[j].on_stack = 0;
1210 s->order[s->op++] = j;
1211 } while (j != i);
1212 s->order[s->op++] = -1;
1214 return 0;
1217 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
1218 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
1219 * construct a map that is an overapproximation of the map
1220 * that takes an element from the dom R \times Z to an
1221 * element from ran R \times Z, such that the first n coordinates of the
1222 * difference between them is a sum of differences between images
1223 * and pre-images in one of the R_i and such that the last coordinate
1224 * is equal to the number of steps taken.
1225 * If "project" is set, then these final coordinates are not included,
1226 * i.e., a relation of type Z^n -> Z^n is returned.
1227 * That is, let
1229 * \Delta_i = { y - x | (x, y) in R_i }
1231 * then the constructed map is an overapproximation of
1233 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1234 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
1235 * x in dom R and x + d in ran R }
1237 * or
1239 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1240 * d = (\sum_i k_i \delta_i) and
1241 * x in dom R and x + d in ran R }
1243 * if "project" is set.
1245 * We first split the map into strongly connected components, perform
1246 * the above on each component and then join the results in the correct
1247 * order, at each join also taking in the union of both arguments
1248 * to allow for paths that do not go through one of the two arguments.
1250 static __isl_give isl_map *construct_power_components(__isl_take isl_dim *dim,
1251 __isl_keep isl_map *map, int *exact, int project)
1253 int i, n;
1254 struct isl_map *path = NULL;
1255 struct basic_map_sort *s = NULL;
1257 if (!map)
1258 goto error;
1259 if (map->n <= 1)
1260 return floyd_warshall(dim, map, exact, project);
1262 s = basic_map_sort_alloc(map->ctx, map->n);
1263 if (!s)
1264 goto error;
1265 for (i = map->n - 1; i >= 0; --i) {
1266 if (s->node[i].index >= 0)
1267 continue;
1268 if (power_components_tarjan(s, map, i) < 0)
1269 goto error;
1272 i = 0;
1273 n = map->n;
1274 if (project)
1275 path = isl_map_empty(isl_map_get_dim(map));
1276 else
1277 path = isl_map_empty(isl_dim_copy(dim));
1278 while (n) {
1279 struct isl_map *comp;
1280 isl_map *path_comp, *path_comb;
1281 comp = isl_map_alloc_dim(isl_map_get_dim(map), n, 0);
1282 while (s->order[i] != -1) {
1283 comp = isl_map_add_basic_map(comp,
1284 isl_basic_map_copy(map->p[s->order[i]]));
1285 --n;
1286 ++i;
1288 path_comp = floyd_warshall(isl_dim_copy(dim),
1289 comp, exact, project);
1290 path_comb = isl_map_apply_range(isl_map_copy(path),
1291 isl_map_copy(path_comp));
1292 path = isl_map_union(path, path_comp);
1293 path = isl_map_union(path, path_comb);
1294 isl_map_free(comp);
1295 ++i;
1298 basic_map_sort_free(s);
1299 isl_dim_free(dim);
1301 return path;
1302 error:
1303 basic_map_sort_free(s);
1304 isl_dim_free(dim);
1305 return NULL;
1308 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D,
1309 * construct a map that is an overapproximation of the map
1310 * that takes an element from the space D to another
1311 * element from the same space, such that the difference between
1312 * them is a strictly positive sum of differences between images
1313 * and pre-images in one of the R_i.
1314 * The number of differences in the sum is equated to parameter "param".
1315 * That is, let
1317 * \Delta_i = { y - x | (x, y) in R_i }
1319 * then the constructed map is an overapproximation of
1321 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1322 * d = \sum_i k_i \delta_i and k = \sum_i k_i > 0 }
1323 * or
1325 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1326 * d = \sum_i k_i \delta_i and \sum_i k_i > 0 }
1328 * if "project" is set.
1330 * If "project" is not set, then
1331 * we first construct an extended mapping with an extra coordinate
1332 * that indicates the number of steps taken. In particular,
1333 * the difference in the last coordinate is equal to the number
1334 * of steps taken to move from a domain element to the corresponding
1335 * image element(s).
1336 * In the final step, this difference is equated to the parameter "param"
1337 * and made positive. The extra coordinates are subsequently projected out.
1339 static __isl_give isl_map *construct_power(__isl_keep isl_map *map,
1340 unsigned param, int *exact, int project)
1342 struct isl_map *app = NULL;
1343 struct isl_map *diff;
1344 struct isl_dim *dim = NULL;
1345 unsigned d;
1347 if (!map)
1348 return NULL;
1350 dim = isl_map_get_dim(map);
1352 d = isl_dim_size(dim, isl_dim_in);
1353 dim = isl_dim_add(dim, isl_dim_in, 1);
1354 dim = isl_dim_add(dim, isl_dim_out, 1);
1356 app = construct_power_components(isl_dim_copy(dim), map,
1357 exact, project);
1359 if (project) {
1360 isl_dim_free(dim);
1361 } else {
1362 diff = equate_parameter_to_length(dim, param);
1363 app = isl_map_intersect(app, diff);
1364 app = isl_map_project_out(app, isl_dim_in, d, 1);
1365 app = isl_map_project_out(app, isl_dim_out, d, 1);
1368 return app;
1371 /* Compute the positive powers of "map", or an overapproximation.
1372 * The power is given by parameter "param". If the result is exact,
1373 * then *exact is set to 1.
1375 * If project is set, then we are actually interested in the transitive
1376 * closure, so we can use a more relaxed exactness check.
1377 * The lengths of the paths are also projected out instead of being
1378 * equated to "param" (which is then ignored in this case).
1380 static __isl_give isl_map *map_power(__isl_take isl_map *map, unsigned param,
1381 int *exact, int project)
1383 struct isl_map *app = NULL;
1385 if (exact)
1386 *exact = 1;
1388 map = isl_map_coalesce(map);
1389 if (!map)
1390 return NULL;
1392 if (isl_map_fast_is_empty(map))
1393 return map;
1395 isl_assert(map->ctx, project || param < isl_map_dim(map, isl_dim_param),
1396 goto error);
1397 isl_assert(map->ctx,
1398 isl_map_dim(map, isl_dim_in) == isl_map_dim(map, isl_dim_out),
1399 goto error);
1401 app = construct_power(map, param, exact, project);
1403 isl_map_free(map);
1404 return app;
1405 error:
1406 isl_map_free(map);
1407 isl_map_free(app);
1408 return NULL;
1411 /* Compute the positive powers of "map", or an overapproximation.
1412 * The power is given by parameter "param". If the result is exact,
1413 * then *exact is set to 1.
1415 __isl_give isl_map *isl_map_power(__isl_take isl_map *map, unsigned param,
1416 int *exact)
1418 return map_power(map, param, exact, 0);
1421 /* Check whether equality i of bset is a pure stride constraint
1422 * on a single dimensions, i.e., of the form
1424 * v = k e
1426 * with k a constant and e an existentially quantified variable.
1428 static int is_eq_stride(__isl_keep isl_basic_set *bset, int i)
1430 int k;
1431 unsigned nparam;
1432 unsigned d;
1433 unsigned n_div;
1434 int pos1;
1435 int pos2;
1437 if (!bset)
1438 return -1;
1440 if (!isl_int_is_zero(bset->eq[i][0]))
1441 return 0;
1443 nparam = isl_basic_set_dim(bset, isl_dim_param);
1444 d = isl_basic_set_dim(bset, isl_dim_set);
1445 n_div = isl_basic_set_dim(bset, isl_dim_div);
1447 if (isl_seq_first_non_zero(bset->eq[i] + 1, nparam) != -1)
1448 return 0;
1449 pos1 = isl_seq_first_non_zero(bset->eq[i] + 1 + nparam, d);
1450 if (pos1 == -1)
1451 return 0;
1452 if (isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + pos1 + 1,
1453 d - pos1 - 1) != -1)
1454 return 0;
1456 pos2 = isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + d, n_div);
1457 if (pos2 == -1)
1458 return 0;
1459 if (isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + d + pos2 + 1,
1460 n_div - pos2 - 1) != -1)
1461 return 0;
1462 if (!isl_int_is_one(bset->eq[i][1 + nparam + pos1]) &&
1463 !isl_int_is_negone(bset->eq[i][1 + nparam + pos1]))
1464 return 0;
1466 return 1;
1469 /* Given a map, compute the smallest superset of this map that is of the form
1471 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
1473 * (where p ranges over the (non-parametric) dimensions),
1474 * compute the transitive closure of this map, i.e.,
1476 * { i -> j : exists k > 0:
1477 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
1479 * and intersect domain and range of this transitive closure with
1480 * domain and range of the original map.
1482 * If with_id is set, then try to include as much of the identity mapping
1483 * as possible, by computing
1485 * { i -> j : exists k >= 0:
1486 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
1488 * instead (i.e., allow k = 0) and by intersecting domain and range
1489 * with the union of the domain and the range of the original map.
1491 * In practice, we compute the difference set
1493 * delta = { j - i | i -> j in map },
1495 * look for stride constraint on the individual dimensions and compute
1496 * (constant) lower and upper bounds for each individual dimension,
1497 * adding a constraint for each bound not equal to infinity.
1499 static __isl_give isl_map *box_closure(__isl_take isl_map *map, int with_id)
1501 int i;
1502 int k;
1503 unsigned d;
1504 unsigned nparam;
1505 unsigned total;
1506 isl_dim *dim;
1507 isl_set *delta;
1508 isl_set *domain = NULL;
1509 isl_set *range = NULL;
1510 isl_map *app = NULL;
1511 isl_basic_set *aff = NULL;
1512 isl_basic_map *bmap = NULL;
1513 isl_vec *obj = NULL;
1514 isl_int opt;
1516 isl_int_init(opt);
1518 delta = isl_map_deltas(isl_map_copy(map));
1520 aff = isl_set_affine_hull(isl_set_copy(delta));
1521 if (!aff)
1522 goto error;
1523 dim = isl_map_get_dim(map);
1524 d = isl_dim_size(dim, isl_dim_in);
1525 nparam = isl_dim_size(dim, isl_dim_param);
1526 total = isl_dim_total(dim);
1527 bmap = isl_basic_map_alloc_dim(dim,
1528 aff->n_div + 1, aff->n_div, 2 * d + 1);
1529 for (i = 0; i < aff->n_div + 1; ++i) {
1530 k = isl_basic_map_alloc_div(bmap);
1531 if (k < 0)
1532 goto error;
1533 isl_int_set_si(bmap->div[k][0], 0);
1535 for (i = 0; i < aff->n_eq; ++i) {
1536 if (!is_eq_stride(aff, i))
1537 continue;
1538 k = isl_basic_map_alloc_equality(bmap);
1539 if (k < 0)
1540 goto error;
1541 isl_seq_clr(bmap->eq[k], 1 + nparam);
1542 isl_seq_cpy(bmap->eq[k] + 1 + nparam + d,
1543 aff->eq[i] + 1 + nparam, d);
1544 isl_seq_neg(bmap->eq[k] + 1 + nparam,
1545 aff->eq[i] + 1 + nparam, d);
1546 isl_seq_cpy(bmap->eq[k] + 1 + nparam + 2 * d,
1547 aff->eq[i] + 1 + nparam + d, aff->n_div);
1548 isl_int_set_si(bmap->eq[k][1 + total + aff->n_div], 0);
1550 obj = isl_vec_alloc(map->ctx, 1 + nparam + d);
1551 if (!obj)
1552 goto error;
1553 isl_seq_clr(obj->el, 1 + nparam + d);
1554 for (i = 0; i < d; ++ i) {
1555 enum isl_lp_result res;
1557 isl_int_set_si(obj->el[1 + nparam + i], 1);
1559 res = isl_set_solve_lp(delta, 0, obj->el, map->ctx->one, &opt,
1560 NULL, NULL);
1561 if (res == isl_lp_error)
1562 goto error;
1563 if (res == isl_lp_ok) {
1564 k = isl_basic_map_alloc_inequality(bmap);
1565 if (k < 0)
1566 goto error;
1567 isl_seq_clr(bmap->ineq[k],
1568 1 + nparam + 2 * d + bmap->n_div);
1569 isl_int_set_si(bmap->ineq[k][1 + nparam + i], -1);
1570 isl_int_set_si(bmap->ineq[k][1 + nparam + d + i], 1);
1571 isl_int_neg(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], opt);
1574 res = isl_set_solve_lp(delta, 1, obj->el, map->ctx->one, &opt,
1575 NULL, NULL);
1576 if (res == isl_lp_error)
1577 goto error;
1578 if (res == isl_lp_ok) {
1579 k = isl_basic_map_alloc_inequality(bmap);
1580 if (k < 0)
1581 goto error;
1582 isl_seq_clr(bmap->ineq[k],
1583 1 + nparam + 2 * d + bmap->n_div);
1584 isl_int_set_si(bmap->ineq[k][1 + nparam + i], 1);
1585 isl_int_set_si(bmap->ineq[k][1 + nparam + d + i], -1);
1586 isl_int_set(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], opt);
1589 isl_int_set_si(obj->el[1 + nparam + i], 0);
1591 k = isl_basic_map_alloc_inequality(bmap);
1592 if (k < 0)
1593 goto error;
1594 isl_seq_clr(bmap->ineq[k],
1595 1 + nparam + 2 * d + bmap->n_div);
1596 if (!with_id)
1597 isl_int_set_si(bmap->ineq[k][0], -1);
1598 isl_int_set_si(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], 1);
1600 domain = isl_map_domain(isl_map_copy(map));
1601 domain = isl_set_coalesce(domain);
1602 range = isl_map_range(isl_map_copy(map));
1603 range = isl_set_coalesce(range);
1604 if (with_id) {
1605 domain = isl_set_union(domain, range);
1606 domain = isl_set_coalesce(domain);
1607 range = isl_set_copy(domain);
1609 app = isl_map_from_domain_and_range(domain, range);
1611 isl_vec_free(obj);
1612 isl_basic_set_free(aff);
1613 isl_map_free(map);
1614 bmap = isl_basic_map_finalize(bmap);
1615 isl_set_free(delta);
1616 isl_int_clear(opt);
1618 map = isl_map_from_basic_map(bmap);
1619 map = isl_map_intersect(map, app);
1621 return map;
1622 error:
1623 isl_vec_free(obj);
1624 isl_basic_map_free(bmap);
1625 isl_basic_set_free(aff);
1626 isl_map_free(map);
1627 isl_set_free(delta);
1628 isl_int_clear(opt);
1629 return NULL;
1632 /* Check whether app is the transitive closure of map.
1633 * In particular, check that app is acyclic and, if so,
1634 * check that
1636 * app \subset (map \cup (map \circ app))
1638 static int check_exactness_omega(__isl_keep isl_map *map,
1639 __isl_keep isl_map *app)
1641 isl_set *delta;
1642 int i;
1643 int is_empty, is_exact;
1644 unsigned d;
1645 isl_map *test;
1647 delta = isl_map_deltas(isl_map_copy(app));
1648 d = isl_set_dim(delta, isl_dim_set);
1649 for (i = 0; i < d; ++i)
1650 delta = isl_set_fix_si(delta, isl_dim_set, i, 0);
1651 is_empty = isl_set_is_empty(delta);
1652 isl_set_free(delta);
1653 if (is_empty < 0)
1654 return -1;
1655 if (!is_empty)
1656 return 0;
1658 test = isl_map_apply_range(isl_map_copy(app), isl_map_copy(map));
1659 test = isl_map_union(test, isl_map_copy(map));
1660 is_exact = isl_map_is_subset(app, test);
1661 isl_map_free(test);
1663 return is_exact;
1666 /* Check if basic map M_i can be combined with all the other
1667 * basic maps such that
1669 * (\cup_j M_j)^+
1671 * can be computed as
1673 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
1675 * In particular, check if we can compute a compact representation
1676 * of
1678 * M_i^* \circ M_j \circ M_i^*
1680 * for each j != i.
1681 * Let M_i^? be an extension of M_i^+ that allows paths
1682 * of length zero, i.e., the result of box_closure(., 1).
1683 * The criterion, as proposed by Kelly et al., is that
1684 * id = M_i^? - M_i^+ can be represented as a basic map
1685 * and that
1687 * id \circ M_j \circ id = M_j
1689 * for each j != i.
1691 * If this function returns 1, then tc and qc are set to
1692 * M_i^+ and M_i^?, respectively.
1694 static int can_be_split_off(__isl_keep isl_map *map, int i,
1695 __isl_give isl_map **tc, __isl_give isl_map **qc)
1697 isl_map *map_i, *id;
1698 int j = -1;
1700 map_i = isl_map_from_basic_map(isl_basic_map_copy(map->p[i]));
1701 *tc = box_closure(isl_map_copy(map_i), 0);
1702 *qc = box_closure(map_i, 1);
1703 id = isl_map_subtract(isl_map_copy(*qc), isl_map_copy(*tc));
1705 if (!id || !*qc)
1706 goto error;
1707 if (id->n != 1 || (*qc)->n != 1)
1708 goto done;
1710 for (j = 0; j < map->n; ++j) {
1711 isl_map *map_j, *test;
1712 int is_ok;
1714 if (i == j)
1715 continue;
1716 map_j = isl_map_from_basic_map(
1717 isl_basic_map_copy(map->p[j]));
1718 test = isl_map_apply_range(isl_map_copy(id),
1719 isl_map_copy(map_j));
1720 test = isl_map_apply_range(test, isl_map_copy(id));
1721 is_ok = isl_map_is_equal(test, map_j);
1722 isl_map_free(map_j);
1723 isl_map_free(test);
1724 if (is_ok < 0)
1725 goto error;
1726 if (!is_ok)
1727 break;
1730 done:
1731 isl_map_free(id);
1732 if (j == map->n)
1733 return 1;
1735 isl_map_free(*qc);
1736 isl_map_free(*tc);
1737 *qc = NULL;
1738 *tc = NULL;
1740 return 0;
1741 error:
1742 isl_map_free(id);
1743 isl_map_free(*qc);
1744 isl_map_free(*tc);
1745 *qc = NULL;
1746 *tc = NULL;
1747 return -1;
1750 /* Compute an overapproximation of the transitive closure of "map"
1751 * using a variation of the algorithm from
1752 * "Transitive Closure of Infinite Graphs and its Applications"
1753 * by Kelly et al.
1755 * We first check whether we can can split of any basic map M_i and
1756 * compute
1758 * (\cup_j M_j)^+
1760 * as
1762 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
1764 * using a recursive call on the remaining map.
1766 * If not, we simply call box_closure on the whole map.
1768 static __isl_give isl_map *compute_closure_omega(__isl_take isl_map *map)
1770 int i, j;
1772 if (!map)
1773 return NULL;
1774 if (map->n == 1)
1775 return box_closure(map, 0);
1777 map = isl_map_cow(map);
1778 if (!map)
1779 goto error;
1781 for (i = 0; i < map->n; ++i) {
1782 int ok;
1783 isl_map *qc, *tc;
1784 ok = can_be_split_off(map, i, &tc, &qc);
1785 if (ok < 0)
1786 goto error;
1787 if (!ok)
1788 continue;
1790 isl_basic_map_free(map->p[i]);
1791 if (i != map->n - 1)
1792 map->p[i] = map->p[map->n - 1];
1793 map->n--;
1795 map = isl_map_apply_range(isl_map_copy(qc), map);
1796 map = isl_map_apply_range(map, qc);
1798 return isl_map_union(tc, compute_closure_omega(map));
1801 return box_closure(map, 0);
1802 error:
1803 isl_map_free(map);
1804 return NULL;
1807 /* Compute an overapproximation of the transitive closure of "map"
1808 * using a variation of the algorithm from
1809 * "Transitive Closure of Infinite Graphs and its Applications"
1810 * by Kelly et al. and check whether the result is definitely exact.
1812 static __isl_give isl_map *transitive_closure_omega(__isl_take isl_map *map,
1813 int *exact)
1815 isl_map *app;
1817 app = compute_closure_omega(isl_map_copy(map));
1819 if (exact)
1820 *exact = check_exactness_omega(map, app);
1822 isl_map_free(map);
1823 return app;
1826 /* Compute the transitive closure of "map", or an overapproximation.
1827 * If the result is exact, then *exact is set to 1.
1828 * Simply use map_power to compute the powers of map, but tell
1829 * it to project out the lengths of the paths instead of equating
1830 * the length to a parameter.
1832 __isl_give isl_map *isl_map_transitive_closure(__isl_take isl_map *map,
1833 int *exact)
1835 unsigned param;
1837 if (!map)
1838 goto error;
1840 if (map->ctx->opt->closure == ISL_CLOSURE_OMEGA)
1841 return transitive_closure_omega(map, exact);
1843 param = isl_map_dim(map, isl_dim_param);
1844 map = map_power(map, param, exact, 1);
1846 return map;
1847 error:
1848 isl_map_free(map);
1849 return NULL;