2 * Copyright 2012-2014 Ecole Normale Superieure
3 * Copyright 2014 INRIA Rocquencourt
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege,
8 * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
9 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
10 * B.P. 105 - 78153 Le Chesnay, France
13 #include <isl/constraint.h>
15 #include <isl_ast_build_expr.h>
16 #include <isl_ast_private.h>
17 #include <isl_ast_build_private.h>
19 /* Compute the "opposite" of the (numerator of the) argument of a div
20 * with denonimator "d".
22 * In particular, compute
26 static __isl_give isl_aff
*oppose_div_arg(__isl_take isl_aff
*aff
,
27 __isl_take isl_val
*d
)
29 aff
= isl_aff_neg(aff
);
30 aff
= isl_aff_add_constant_val(aff
, d
);
31 aff
= isl_aff_add_constant_si(aff
, -1);
36 /* Internal data structure used inside isl_ast_expr_add_term.
37 * The domain of "build" is used to simplify the expressions.
38 * "build" needs to be set by the caller of isl_ast_expr_add_term.
39 * "cst" is the constant term of the expression in which the added term
40 * appears. It may be modified by isl_ast_expr_add_term.
42 * "v" is the coefficient of the term that is being constructed and
43 * is set internally by isl_ast_expr_add_term.
45 struct isl_ast_add_term_data
{
51 /* Given the numerator "aff" of the argument of an integer division
52 * with denominator "d", check if it can be made non-negative over
53 * data->build->domain by stealing part of the constant term of
54 * the expression in which the integer division appears.
56 * In particular, the outer expression is of the form
58 * v * floor(aff/d) + cst
60 * We already know that "aff" itself may attain negative values.
61 * Here we check if aff + d*floor(cst/v) is non-negative, such
62 * that we could rewrite the expression to
64 * v * floor((aff + d*floor(cst/v))/d) + cst - v*floor(cst/v)
66 * Note that aff + d*floor(cst/v) can only possibly be non-negative
67 * if data->cst and data->v have the same sign.
68 * Similarly, if floor(cst/v) is zero, then there is no point in
71 static int is_non_neg_after_stealing(__isl_keep isl_aff
*aff
,
72 __isl_keep isl_val
*d
, struct isl_ast_add_term_data
*data
)
79 if (isl_val_sgn(data
->cst
) != isl_val_sgn(data
->v
))
82 shift
= isl_val_div(isl_val_copy(data
->cst
), isl_val_copy(data
->v
));
83 shift
= isl_val_floor(shift
);
84 is_zero
= isl_val_is_zero(shift
);
85 if (is_zero
< 0 || is_zero
) {
87 return is_zero
< 0 ? -1 : 0;
89 shift
= isl_val_mul(shift
, isl_val_copy(d
));
90 shifted
= isl_aff_copy(aff
);
91 shifted
= isl_aff_add_constant_val(shifted
, shift
);
92 non_neg
= isl_ast_build_aff_is_nonneg(data
->build
, shifted
);
93 isl_aff_free(shifted
);
98 /* Given the numerator "aff' of the argument of an integer division
99 * with denominator "d", steal part of the constant term of
100 * the expression in which the integer division appears to make it
101 * non-negative over data->build->domain.
103 * In particular, the outer expression is of the form
105 * v * floor(aff/d) + cst
107 * We know that "aff" itself may attain negative values,
108 * but that aff + d*floor(cst/v) is non-negative.
109 * Find the minimal positive value that we need to add to "aff"
110 * to make it positive and adjust data->cst accordingly.
111 * That is, compute the minimal value "m" of "aff" over
112 * data->build->domain and take
120 * and rewrite the expression to
122 * v * floor((aff + s*d)/d) + (cst - v*s)
124 static __isl_give isl_aff
*steal_from_cst(__isl_take isl_aff
*aff
,
125 __isl_keep isl_val
*d
, struct isl_ast_add_term_data
*data
)
130 domain
= isl_ast_build_get_domain(data
->build
);
131 shift
= isl_set_min_val(domain
, aff
);
132 isl_set_free(domain
);
134 shift
= isl_val_neg(shift
);
135 shift
= isl_val_div(shift
, isl_val_copy(d
));
136 shift
= isl_val_ceil(shift
);
138 t
= isl_val_copy(shift
);
139 t
= isl_val_mul(t
, isl_val_copy(data
->v
));
140 data
->cst
= isl_val_sub(data
->cst
, t
);
142 shift
= isl_val_mul(shift
, isl_val_copy(d
));
143 return isl_aff_add_constant_val(aff
, shift
);
146 /* Create an isl_ast_expr evaluating the div at position "pos" in "ls".
147 * The result is simplified in terms of data->build->domain.
148 * This function may change (the sign of) data->v.
150 * "ls" is known to be non-NULL.
152 * Let the div be of the form floor(e/d).
153 * If the ast_build_prefer_pdiv option is set then we check if "e"
154 * is non-negative, so that we can generate
156 * (pdiv_q, expr(e), expr(d))
160 * (fdiv_q, expr(e), expr(d))
162 * If the ast_build_prefer_pdiv option is set and
163 * if "e" is not non-negative, then we check if "-e + d - 1" is non-negative.
164 * If so, we can rewrite
166 * floor(e/d) = -ceil(-e/d) = -floor((-e + d - 1)/d)
168 * and still use pdiv_q, while changing the sign of data->v.
170 * Otherwise, we check if
174 * is non-negative and if so, replace floor(e/d) by
176 * floor((e + s*d)/d) - s
178 * with s the minimal shift that makes the argument non-negative.
180 static __isl_give isl_ast_expr
*var_div(struct isl_ast_add_term_data
*data
,
181 __isl_keep isl_local_space
*ls
, int pos
)
183 isl_ctx
*ctx
= isl_local_space_get_ctx(ls
);
185 isl_ast_expr
*num
, *den
;
187 enum isl_ast_op_type type
;
189 aff
= isl_local_space_get_div(ls
, pos
);
190 d
= isl_aff_get_denominator_val(aff
);
191 aff
= isl_aff_scale_val(aff
, isl_val_copy(d
));
192 den
= isl_ast_expr_from_val(isl_val_copy(d
));
194 type
= isl_ast_op_fdiv_q
;
195 if (isl_options_get_ast_build_prefer_pdiv(ctx
)) {
196 int non_neg
= isl_ast_build_aff_is_nonneg(data
->build
, aff
);
197 if (non_neg
>= 0 && !non_neg
) {
198 isl_aff
*opp
= oppose_div_arg(isl_aff_copy(aff
),
200 non_neg
= isl_ast_build_aff_is_nonneg(data
->build
, opp
);
201 if (non_neg
>= 0 && non_neg
) {
202 data
->v
= isl_val_neg(data
->v
);
208 if (non_neg
>= 0 && !non_neg
) {
209 non_neg
= is_non_neg_after_stealing(aff
, d
, data
);
210 if (non_neg
>= 0 && non_neg
)
211 aff
= steal_from_cst(aff
, d
, data
);
214 aff
= isl_aff_free(aff
);
216 type
= isl_ast_op_pdiv_q
;
220 num
= isl_ast_expr_from_aff(aff
, data
->build
);
221 return isl_ast_expr_alloc_binary(type
, num
, den
);
224 /* Create an isl_ast_expr evaluating the specified dimension of "ls".
225 * The result is simplified in terms of data->build->domain.
226 * This function may change (the sign of) data->v.
228 * The isl_ast_expr is constructed based on the type of the dimension.
229 * - divs are constructed by var_div
230 * - set variables are constructed from the iterator isl_ids in data->build
231 * - parameters are constructed from the isl_ids in "ls"
233 static __isl_give isl_ast_expr
*var(struct isl_ast_add_term_data
*data
,
234 __isl_keep isl_local_space
*ls
, enum isl_dim_type type
, int pos
)
236 isl_ctx
*ctx
= isl_local_space_get_ctx(ls
);
239 if (type
== isl_dim_div
)
240 return var_div(data
, ls
, pos
);
242 if (type
== isl_dim_set
) {
243 id
= isl_ast_build_get_iterator_id(data
->build
, pos
);
244 return isl_ast_expr_from_id(id
);
247 if (!isl_local_space_has_dim_id(ls
, type
, pos
))
248 isl_die(ctx
, isl_error_internal
, "unnamed dimension",
250 id
= isl_local_space_get_dim_id(ls
, type
, pos
);
251 return isl_ast_expr_from_id(id
);
254 /* Does "expr" represent the zero integer?
256 static int ast_expr_is_zero(__isl_keep isl_ast_expr
*expr
)
260 if (expr
->type
!= isl_ast_expr_int
)
262 return isl_val_is_zero(expr
->u
.v
);
265 /* Create an expression representing the sum of "expr1" and "expr2",
266 * provided neither of the two expressions is identically zero.
268 static __isl_give isl_ast_expr
*ast_expr_add(__isl_take isl_ast_expr
*expr1
,
269 __isl_take isl_ast_expr
*expr2
)
271 if (!expr1
|| !expr2
)
274 if (ast_expr_is_zero(expr1
)) {
275 isl_ast_expr_free(expr1
);
279 if (ast_expr_is_zero(expr2
)) {
280 isl_ast_expr_free(expr2
);
284 return isl_ast_expr_add(expr1
, expr2
);
286 isl_ast_expr_free(expr1
);
287 isl_ast_expr_free(expr2
);
291 /* Subtract expr2 from expr1.
293 * If expr2 is zero, we simply return expr1.
294 * If expr1 is zero, we return
296 * (isl_ast_op_minus, expr2)
298 * Otherwise, we return
300 * (isl_ast_op_sub, expr1, expr2)
302 static __isl_give isl_ast_expr
*ast_expr_sub(__isl_take isl_ast_expr
*expr1
,
303 __isl_take isl_ast_expr
*expr2
)
305 if (!expr1
|| !expr2
)
308 if (ast_expr_is_zero(expr2
)) {
309 isl_ast_expr_free(expr2
);
313 if (ast_expr_is_zero(expr1
)) {
314 isl_ast_expr_free(expr1
);
315 return isl_ast_expr_neg(expr2
);
318 return isl_ast_expr_sub(expr1
, expr2
);
320 isl_ast_expr_free(expr1
);
321 isl_ast_expr_free(expr2
);
325 /* Return an isl_ast_expr that represents
329 * v is assumed to be non-negative.
330 * The result is simplified in terms of build->domain.
332 static __isl_give isl_ast_expr
*isl_ast_expr_mod(__isl_keep isl_val
*v
,
333 __isl_keep isl_aff
*aff
, __isl_keep isl_val
*d
,
334 __isl_keep isl_ast_build
*build
)
342 expr
= isl_ast_expr_from_aff(isl_aff_copy(aff
), build
);
344 c
= isl_ast_expr_from_val(isl_val_copy(d
));
345 expr
= isl_ast_expr_alloc_binary(isl_ast_op_pdiv_r
, expr
, c
);
347 if (!isl_val_is_one(v
)) {
348 c
= isl_ast_expr_from_val(isl_val_copy(v
));
349 expr
= isl_ast_expr_mul(c
, expr
);
355 /* Create an isl_ast_expr that scales "expr" by "v".
357 * If v is 1, we simply return expr.
358 * If v is -1, we return
360 * (isl_ast_op_minus, expr)
362 * Otherwise, we return
364 * (isl_ast_op_mul, expr(v), expr)
366 static __isl_give isl_ast_expr
*scale(__isl_take isl_ast_expr
*expr
,
367 __isl_take isl_val
*v
)
373 if (isl_val_is_one(v
)) {
378 if (isl_val_is_negone(v
)) {
380 expr
= isl_ast_expr_neg(expr
);
382 c
= isl_ast_expr_from_val(v
);
383 expr
= isl_ast_expr_mul(c
, expr
);
389 isl_ast_expr_free(expr
);
393 /* Add an expression for "*v" times the specified dimension of "ls"
395 * If the dimension is an integer division, then this function
396 * may modify data->cst in order to make the numerator non-negative.
397 * The result is simplified in terms of data->build->domain.
399 * Let e be the expression for the specified dimension,
400 * multiplied by the absolute value of "*v".
401 * If "*v" is negative, we create
403 * (isl_ast_op_sub, expr, e)
405 * except when expr is trivially zero, in which case we create
407 * (isl_ast_op_minus, e)
411 * If "*v" is positive, we simply create
413 * (isl_ast_op_add, expr, e)
416 static __isl_give isl_ast_expr
*isl_ast_expr_add_term(
417 __isl_take isl_ast_expr
*expr
,
418 __isl_keep isl_local_space
*ls
, enum isl_dim_type type
, int pos
,
419 __isl_take isl_val
*v
, struct isl_ast_add_term_data
*data
)
427 term
= var(data
, ls
, type
, pos
);
430 if (isl_val_is_neg(v
) && !ast_expr_is_zero(expr
)) {
432 term
= scale(term
, v
);
433 return ast_expr_sub(expr
, term
);
435 term
= scale(term
, v
);
436 return ast_expr_add(expr
, term
);
440 /* Add an expression for "v" to expr.
442 static __isl_give isl_ast_expr
*isl_ast_expr_add_int(
443 __isl_take isl_ast_expr
*expr
, __isl_take isl_val
*v
)
445 isl_ast_expr
*expr_int
;
450 if (isl_val_is_zero(v
)) {
455 if (isl_val_is_neg(v
) && !ast_expr_is_zero(expr
)) {
457 expr_int
= isl_ast_expr_from_val(v
);
458 return ast_expr_sub(expr
, expr_int
);
460 expr_int
= isl_ast_expr_from_val(v
);
461 return ast_expr_add(expr
, expr_int
);
464 isl_ast_expr_free(expr
);
469 /* Internal data structure used inside extract_modulos.
471 * If any modulo expressions are detected in "aff", then the
472 * expression is removed from "aff" and added to either "pos" or "neg"
473 * depending on the sign of the coefficient of the modulo expression
476 * "add" is an expression that needs to be added to "aff" at the end of
477 * the computation. It is NULL as long as no modulos have been extracted.
479 * "i" is the position in "aff" of the div under investigation
480 * "v" is the coefficient in "aff" of the div
481 * "div" is the argument of the div, with the denominator removed
482 * "d" is the original denominator of the argument of the div
484 * "nonneg" is an affine expression that is non-negative over "build"
485 * and that can be used to extract a modulo expression from "div".
486 * In particular, if "sign" is 1, then the coefficients of "nonneg"
487 * are equal to those of "div" modulo "d". If "sign" is -1, then
488 * the coefficients of "nonneg" are opposite to those of "div" modulo "d".
489 * If "sign" is 0, then no such affine expression has been found (yet).
491 struct isl_extract_mod_data
{
492 isl_ast_build
*build
;
509 /* Given that data->v * div_i in data->aff is equal to
511 * f * (term - (arg mod d))
513 * with data->d * f = data->v, add
519 * abs(f) * (arg mod d)
521 * to data->neg or data->pos depending on the sign of -f.
523 static int extract_term_and_mod(struct isl_extract_mod_data
*data
,
524 __isl_take isl_aff
*term
, __isl_take isl_aff
*arg
)
529 data
->v
= isl_val_div(data
->v
, isl_val_copy(data
->d
));
530 s
= isl_val_sgn(data
->v
);
531 data
->v
= isl_val_abs(data
->v
);
532 expr
= isl_ast_expr_mod(data
->v
, arg
, data
->d
, data
->build
);
535 data
->neg
= ast_expr_add(data
->neg
, expr
);
537 data
->pos
= ast_expr_add(data
->pos
, expr
);
538 data
->aff
= isl_aff_set_coefficient_si(data
->aff
,
539 isl_dim_div
, data
->i
, 0);
541 data
->v
= isl_val_neg(data
->v
);
542 term
= isl_aff_scale_val(data
->div
, isl_val_copy(data
->v
));
547 data
->add
= isl_aff_add(data
->add
, term
);
554 /* Given that data->v * div_i in data->aff is of the form
556 * f * d * floor(div/d)
558 * with div nonnegative on data->build, rewrite it as
560 * f * (div - (div mod d)) = f * div - f * (div mod d)
568 * abs(f) * (div mod d)
570 * to data->neg or data->pos depending on the sign of -f.
572 static int extract_mod(struct isl_extract_mod_data
*data
)
574 return extract_term_and_mod(data
, isl_aff_copy(data
->div
),
575 isl_aff_copy(data
->div
));
578 /* Given that data->v * div_i in data->aff is of the form
580 * f * d * floor(div/d) (1)
582 * check if div is non-negative on data->build and, if so,
583 * extract the corresponding modulo from data->aff.
584 * If not, then check if
588 * is non-negative on data->build. If so, replace (1) by
590 * -f * d * floor((-div + d - 1)/d)
592 * and extract the corresponding modulo from data->aff.
594 * This function may modify data->div.
596 static int extract_nonneg_mod(struct isl_extract_mod_data
*data
)
600 mod
= isl_ast_build_aff_is_nonneg(data
->build
, data
->div
);
604 return extract_mod(data
);
606 data
->div
= oppose_div_arg(data
->div
, isl_val_copy(data
->d
));
607 mod
= isl_ast_build_aff_is_nonneg(data
->build
, data
->div
);
611 data
->v
= isl_val_neg(data
->v
);
612 return extract_mod(data
);
617 data
->aff
= isl_aff_free(data
->aff
);
621 /* Is the affine expression of constraint "c" "simpler" than data->nonneg
622 * for use in extracting a modulo expression?
624 * We currently only consider the constant term of the affine expression.
625 * In particular, we prefer the affine expression with the smallest constant
627 * This means that if there are two constraints, say x >= 0 and -x + 10 >= 0,
628 * then we would pick x >= 0
630 * More detailed heuristics could be used if it turns out that there is a need.
632 static int mod_constraint_is_simpler(struct isl_extract_mod_data
*data
,
633 __isl_keep isl_constraint
*c
)
641 v1
= isl_val_abs(isl_constraint_get_constant_val(c
));
642 v2
= isl_val_abs(isl_aff_get_constant_val(data
->nonneg
));
643 simpler
= isl_val_lt(v1
, v2
);
650 /* Check if the coefficients of "c" are either equal or opposite to those
651 * of data->div modulo data->d. If so, and if "c" is "simpler" than
652 * data->nonneg, then replace data->nonneg by the affine expression of "c"
653 * and set data->sign accordingly.
655 * Both "c" and data->div are assumed not to involve any integer divisions.
657 * Before we start the actual comparison, we first quickly check if
658 * "c" and data->div have the same non-zero coefficients.
659 * If not, then we assume that "c" is not of the desired form.
660 * Note that while the coefficients of data->div can be reasonably expected
661 * not to involve any coefficients that are multiples of d, "c" may
662 * very well involve such coefficients. This means that we may actually
665 static isl_stat
check_parallel_or_opposite(__isl_take isl_constraint
*c
,
668 struct isl_extract_mod_data
*data
= user
;
669 enum isl_dim_type c_type
[2] = { isl_dim_param
, isl_dim_set
};
670 enum isl_dim_type a_type
[2] = { isl_dim_param
, isl_dim_in
};
673 int parallel
= 1, opposite
= 1;
675 for (t
= 0; t
< 2; ++t
) {
676 n
[t
] = isl_constraint_dim(c
, c_type
[t
]);
677 for (i
= 0; i
< n
[t
]; ++i
) {
680 a
= isl_constraint_involves_dims(c
, c_type
[t
], i
, 1);
681 b
= isl_aff_involves_dims(data
->div
, a_type
[t
], i
, 1);
683 parallel
= opposite
= 0;
687 for (t
= 0; t
< 2; ++t
) {
688 for (i
= 0; i
< n
[t
]; ++i
) {
691 if (!parallel
&& !opposite
)
693 v1
= isl_constraint_get_coefficient_val(c
,
695 v2
= isl_aff_get_coefficient_val(data
->div
,
698 v1
= isl_val_sub(v1
, isl_val_copy(v2
));
699 parallel
= isl_val_is_divisible_by(v1
, data
->d
);
700 v1
= isl_val_add(v1
, isl_val_copy(v2
));
703 v1
= isl_val_add(v1
, isl_val_copy(v2
));
704 opposite
= isl_val_is_divisible_by(v1
, data
->d
);
711 if ((parallel
|| opposite
) && mod_constraint_is_simpler(data
, c
)) {
712 isl_aff_free(data
->nonneg
);
713 data
->nonneg
= isl_constraint_get_aff(c
);
714 data
->sign
= parallel
? 1 : -1;
717 isl_constraint_free(c
);
719 if (data
->sign
!= 0 && data
->nonneg
== NULL
)
720 return isl_stat_error
;
725 /* Given that data->v * div_i in data->aff is of the form
727 * f * d * floor(div/d) (1)
729 * see if we can find an expression div' that is non-negative over data->build
730 * and that is related to div through
736 * div' = -div + d - 1 + d * e
738 * with e some affine expression.
739 * If so, we write (1) as
741 * f * div + f * (div' mod d)
745 * -f * (-div + d - 1) - f * (div' mod d)
747 * exploiting (in the second case) the fact that
749 * f * d * floor(div/d) = -f * d * floor((-div + d - 1)/d)
752 * We first try to find an appropriate expression for div'
753 * from the constraints of data->build->domain (which is therefore
754 * guaranteed to be non-negative on data->build), where we remove
755 * any integer divisions from the constraints and skip this step
756 * if "div" itself involves any integer divisions.
757 * If we cannot find an appropriate expression this way, then
758 * we pass control to extract_nonneg_mod where check
759 * if div or "-div + d -1" themselves happen to be
760 * non-negative on data->build.
762 * While looking for an appropriate constraint in data->build->domain,
763 * we ignore the constant term, so after finding such a constraint,
764 * we still need to fix up the constant term.
765 * In particular, if a is the constant term of "div"
766 * (or d - 1 - the constant term of "div" if data->sign < 0)
767 * and b is the constant term of the constraint, then we need to find
768 * a non-negative constant c such that
770 * b + c \equiv a mod d
776 * and add it to b to obtain the constant term of div'.
777 * If this constant term is "too negative", then we add an appropriate
778 * multiple of d to make it positive.
781 * Note that the above is a only a very simple heuristic for finding an
782 * appropriate expression. We could try a bit harder by also considering
783 * sums of constraints that involve disjoint sets of variables or
784 * we could consider arbitrary linear combinations of constraints,
785 * although that could potentially be much more expensive as it involves
786 * the solution of an LP problem.
788 * In particular, if v_i is a column vector representing constraint i,
789 * w represents div and e_i is the i-th unit vector, then we are looking
790 * for a solution of the constraints
792 * \sum_i lambda_i v_i = w + \sum_i alpha_i d e_i
794 * with \lambda_i >= 0 and alpha_i of unrestricted sign.
795 * If we are not just interested in a non-negative expression, but
796 * also in one with a minimal range, then we don't just want
797 * c = \sum_i lambda_i v_i to be non-negative over the domain,
798 * but also beta - c = \sum_i mu_i v_i, where beta is a scalar
799 * that we want to minimize and we now also have to take into account
800 * the constant terms of the constraints.
801 * Alternatively, we could first compute the dual of the domain
802 * and plug in the constraints on the coefficients.
804 static int try_extract_mod(struct isl_extract_mod_data
*data
)
813 n
= isl_aff_dim(data
->div
, isl_dim_div
);
815 if (isl_aff_involves_dims(data
->div
, isl_dim_div
, 0, n
))
816 return extract_nonneg_mod(data
);
818 hull
= isl_set_simple_hull(isl_set_copy(data
->build
->domain
));
819 hull
= isl_basic_set_remove_divs(hull
);
822 r
= isl_basic_set_foreach_constraint(hull
, &check_parallel_or_opposite
,
824 isl_basic_set_free(hull
);
826 if (!data
->sign
|| r
< 0) {
827 isl_aff_free(data
->nonneg
);
830 return extract_nonneg_mod(data
);
833 v1
= isl_aff_get_constant_val(data
->div
);
834 v2
= isl_aff_get_constant_val(data
->nonneg
);
835 if (data
->sign
< 0) {
836 v1
= isl_val_neg(v1
);
837 v1
= isl_val_add(v1
, isl_val_copy(data
->d
));
838 v1
= isl_val_sub_ui(v1
, 1);
840 v1
= isl_val_sub(v1
, isl_val_copy(v2
));
841 v1
= isl_val_mod(v1
, isl_val_copy(data
->d
));
842 v1
= isl_val_add(v1
, v2
);
843 v2
= isl_val_div(isl_val_copy(v1
), isl_val_copy(data
->d
));
844 v2
= isl_val_ceil(v2
);
845 if (isl_val_is_neg(v2
)) {
846 v2
= isl_val_mul(v2
, isl_val_copy(data
->d
));
847 v1
= isl_val_sub(v1
, isl_val_copy(v2
));
849 data
->nonneg
= isl_aff_set_constant_val(data
->nonneg
, v1
);
852 if (data
->sign
< 0) {
853 data
->div
= oppose_div_arg(data
->div
, isl_val_copy(data
->d
));
854 data
->v
= isl_val_neg(data
->v
);
857 return extract_term_and_mod(data
,
858 isl_aff_copy(data
->div
), data
->nonneg
);
860 data
->aff
= isl_aff_free(data
->aff
);
864 /* Check if "data->aff" involves any (implicit) modulo computations based
866 * If so, remove them from aff and add expressions corresponding
867 * to those modulo computations to data->pos and/or data->neg.
869 * "aff" is assumed to be an integer affine expression.
871 * In particular, check if (v * div_j) is of the form
873 * f * m * floor(a / m)
875 * and, if so, rewrite it as
877 * f * (a - (a mod m)) = f * a - f * (a mod m)
879 * and extract out -f * (a mod m).
880 * In particular, if f > 0, we add (f * (a mod m)) to *neg.
881 * If f < 0, we add ((-f) * (a mod m)) to *pos.
883 * Note that in order to represent "a mod m" as
885 * (isl_ast_op_pdiv_r, a, m)
887 * we need to make sure that a is non-negative.
888 * If not, we check if "-a + m - 1" is non-negative.
889 * If so, we can rewrite
891 * floor(a/m) = -ceil(-a/m) = -floor((-a + m - 1)/m)
893 * and still extract a modulo.
895 static int extract_modulo(struct isl_extract_mod_data
*data
)
897 data
->div
= isl_aff_get_div(data
->aff
, data
->i
);
898 data
->d
= isl_aff_get_denominator_val(data
->div
);
899 if (isl_val_is_divisible_by(data
->v
, data
->d
)) {
900 data
->div
= isl_aff_scale_val(data
->div
, isl_val_copy(data
->d
));
901 if (try_extract_mod(data
) < 0)
902 data
->aff
= isl_aff_free(data
->aff
);
904 isl_aff_free(data
->div
);
905 isl_val_free(data
->d
);
909 /* Check if "aff" involves any (implicit) modulo computations.
910 * If so, remove them from aff and add expressions corresponding
911 * to those modulo computations to *pos and/or *neg.
912 * We only do this if the option ast_build_prefer_pdiv is set.
914 * "aff" is assumed to be an integer affine expression.
916 * A modulo expression is of the form
918 * a mod m = a - m * floor(a / m)
920 * To detect them in aff, we look for terms of the form
922 * f * m * floor(a / m)
926 * f * (a - (a mod m)) = f * a - f * (a mod m)
928 * and extract out -f * (a mod m).
929 * In particular, if f > 0, we add (f * (a mod m)) to *neg.
930 * If f < 0, we add ((-f) * (a mod m)) to *pos.
932 static __isl_give isl_aff
*extract_modulos(__isl_take isl_aff
*aff
,
933 __isl_keep isl_ast_expr
**pos
, __isl_keep isl_ast_expr
**neg
,
934 __isl_keep isl_ast_build
*build
)
936 struct isl_extract_mod_data data
= { build
, aff
, *pos
, *neg
};
943 ctx
= isl_aff_get_ctx(aff
);
944 if (!isl_options_get_ast_build_prefer_pdiv(ctx
))
947 n
= isl_aff_dim(data
.aff
, isl_dim_div
);
948 for (data
.i
= 0; data
.i
< n
; ++data
.i
) {
949 data
.v
= isl_aff_get_coefficient_val(data
.aff
,
950 isl_dim_div
, data
.i
);
952 return isl_aff_free(aff
);
953 if (isl_val_is_zero(data
.v
) ||
954 isl_val_is_one(data
.v
) || isl_val_is_negone(data
.v
)) {
955 isl_val_free(data
.v
);
958 if (extract_modulo(&data
) < 0)
959 data
.aff
= isl_aff_free(data
.aff
);
960 isl_val_free(data
.v
);
966 data
.aff
= isl_aff_add(data
.aff
, data
.add
);
973 /* Check if aff involves any non-integer coefficients.
974 * If so, split aff into
976 * aff = aff1 + (aff2 / d)
978 * with both aff1 and aff2 having only integer coefficients.
979 * Return aff1 and add (aff2 / d) to *expr.
981 static __isl_give isl_aff
*extract_rational(__isl_take isl_aff
*aff
,
982 __isl_keep isl_ast_expr
**expr
, __isl_keep isl_ast_build
*build
)
986 isl_local_space
*ls
= NULL
;
987 isl_ast_expr
*rat_expr
;
989 enum isl_dim_type t
[] = { isl_dim_param
, isl_dim_in
, isl_dim_div
};
990 enum isl_dim_type l
[] = { isl_dim_param
, isl_dim_set
, isl_dim_div
};
994 d
= isl_aff_get_denominator_val(aff
);
997 if (isl_val_is_one(d
)) {
1002 aff
= isl_aff_scale_val(aff
, isl_val_copy(d
));
1004 ls
= isl_aff_get_domain_local_space(aff
);
1005 rat
= isl_aff_zero_on_domain(isl_local_space_copy(ls
));
1007 for (i
= 0; i
< 3; ++i
) {
1008 n
= isl_aff_dim(aff
, t
[i
]);
1009 for (j
= 0; j
< n
; ++j
) {
1012 v
= isl_aff_get_coefficient_val(aff
, t
[i
], j
);
1015 if (isl_val_is_divisible_by(v
, d
)) {
1019 rat_j
= isl_aff_var_on_domain(isl_local_space_copy(ls
),
1021 rat_j
= isl_aff_scale_val(rat_j
, v
);
1022 rat
= isl_aff_add(rat
, rat_j
);
1026 v
= isl_aff_get_constant_val(aff
);
1027 if (isl_val_is_divisible_by(v
, d
)) {
1032 rat_0
= isl_aff_val_on_domain(isl_local_space_copy(ls
), v
);
1033 rat
= isl_aff_add(rat
, rat_0
);
1036 isl_local_space_free(ls
);
1038 aff
= isl_aff_sub(aff
, isl_aff_copy(rat
));
1039 aff
= isl_aff_scale_down_val(aff
, isl_val_copy(d
));
1041 rat_expr
= isl_ast_expr_from_aff(rat
, build
);
1042 rat_expr
= isl_ast_expr_div(rat_expr
, isl_ast_expr_from_val(d
));
1043 *expr
= ast_expr_add(*expr
, rat_expr
);
1048 isl_local_space_free(ls
);
1054 /* Construct an isl_ast_expr that evaluates the affine expression "aff",
1055 * The result is simplified in terms of build->domain.
1057 * We first extract hidden modulo computations from the affine expression
1058 * and then add terms for each variable with a non-zero coefficient.
1059 * Finally, if the affine expression has a non-trivial denominator,
1060 * we divide the resulting isl_ast_expr by this denominator.
1062 __isl_give isl_ast_expr
*isl_ast_expr_from_aff(__isl_take isl_aff
*aff
,
1063 __isl_keep isl_ast_build
*build
)
1068 isl_ctx
*ctx
= isl_aff_get_ctx(aff
);
1069 isl_ast_expr
*expr
, *expr_neg
;
1070 enum isl_dim_type t
[] = { isl_dim_param
, isl_dim_in
, isl_dim_div
};
1071 enum isl_dim_type l
[] = { isl_dim_param
, isl_dim_set
, isl_dim_div
};
1072 isl_local_space
*ls
;
1073 struct isl_ast_add_term_data data
;
1078 expr
= isl_ast_expr_alloc_int_si(ctx
, 0);
1079 expr_neg
= isl_ast_expr_alloc_int_si(ctx
, 0);
1081 aff
= extract_rational(aff
, &expr
, build
);
1083 aff
= extract_modulos(aff
, &expr
, &expr_neg
, build
);
1084 expr
= ast_expr_sub(expr
, expr_neg
);
1086 ls
= isl_aff_get_domain_local_space(aff
);
1089 data
.cst
= isl_aff_get_constant_val(aff
);
1090 for (i
= 0; i
< 3; ++i
) {
1091 n
= isl_aff_dim(aff
, t
[i
]);
1092 for (j
= 0; j
< n
; ++j
) {
1093 v
= isl_aff_get_coefficient_val(aff
, t
[i
], j
);
1095 expr
= isl_ast_expr_free(expr
);
1096 if (isl_val_is_zero(v
)) {
1100 expr
= isl_ast_expr_add_term(expr
,
1101 ls
, l
[i
], j
, v
, &data
);
1105 expr
= isl_ast_expr_add_int(expr
, data
.cst
);
1107 isl_local_space_free(ls
);
1112 /* Add terms to "expr" for each variable in "aff" with a coefficient
1113 * with sign equal to "sign".
1114 * The result is simplified in terms of data->build->domain.
1116 static __isl_give isl_ast_expr
*add_signed_terms(__isl_take isl_ast_expr
*expr
,
1117 __isl_keep isl_aff
*aff
, int sign
, struct isl_ast_add_term_data
*data
)
1121 enum isl_dim_type t
[] = { isl_dim_param
, isl_dim_in
, isl_dim_div
};
1122 enum isl_dim_type l
[] = { isl_dim_param
, isl_dim_set
, isl_dim_div
};
1123 isl_local_space
*ls
;
1125 ls
= isl_aff_get_domain_local_space(aff
);
1127 for (i
= 0; i
< 3; ++i
) {
1128 int n
= isl_aff_dim(aff
, t
[i
]);
1129 for (j
= 0; j
< n
; ++j
) {
1130 v
= isl_aff_get_coefficient_val(aff
, t
[i
], j
);
1131 if (sign
* isl_val_sgn(v
) <= 0) {
1136 expr
= isl_ast_expr_add_term(expr
,
1137 ls
, l
[i
], j
, v
, data
);
1141 isl_local_space_free(ls
);
1146 /* Should the constant term "v" be considered positive?
1148 * A positive constant will be added to "pos" by the caller,
1149 * while a negative constant will be added to "neg".
1150 * If either "pos" or "neg" is exactly zero, then we prefer
1151 * to add the constant "v" to that side, irrespective of the sign of "v".
1152 * This results in slightly shorter expressions and may reduce the risk
1155 static int constant_is_considered_positive(__isl_keep isl_val
*v
,
1156 __isl_keep isl_ast_expr
*pos
, __isl_keep isl_ast_expr
*neg
)
1158 if (ast_expr_is_zero(pos
))
1160 if (ast_expr_is_zero(neg
))
1162 return isl_val_is_pos(v
);
1165 /* Check if the equality
1169 * represents a stride constraint on the integer division "pos".
1171 * In particular, if the integer division "pos" is equal to
1175 * then check if aff is equal to
1181 * If so, the equality is exactly
1185 * Note that in principle we could also accept
1189 * where e and e' differ by a constant.
1191 static int is_stride_constraint(__isl_keep isl_aff
*aff
, int pos
)
1197 div
= isl_aff_get_div(aff
, pos
);
1198 c
= isl_aff_get_coefficient_val(aff
, isl_dim_div
, pos
);
1199 d
= isl_aff_get_denominator_val(div
);
1200 eq
= isl_val_abs_eq(c
, d
);
1201 if (eq
>= 0 && eq
) {
1202 aff
= isl_aff_copy(aff
);
1203 aff
= isl_aff_set_coefficient_si(aff
, isl_dim_div
, pos
, 0);
1204 div
= isl_aff_scale_val(div
, d
);
1205 if (isl_val_is_pos(c
))
1206 div
= isl_aff_neg(div
);
1207 eq
= isl_aff_plain_is_equal(div
, aff
);
1217 /* Are all coefficients of "aff" (zero or) negative?
1219 static int all_negative_coefficients(__isl_keep isl_aff
*aff
)
1226 n
= isl_aff_dim(aff
, isl_dim_param
);
1227 for (i
= 0; i
< n
; ++i
)
1228 if (isl_aff_coefficient_sgn(aff
, isl_dim_param
, i
) > 0)
1231 n
= isl_aff_dim(aff
, isl_dim_in
);
1232 for (i
= 0; i
< n
; ++i
)
1233 if (isl_aff_coefficient_sgn(aff
, isl_dim_in
, i
) > 0)
1239 /* Give an equality of the form
1241 * aff = e - d floor(e/d) = 0
1245 * aff = -e + d floor(e/d) = 0
1247 * with the integer division "pos" equal to floor(e/d),
1248 * construct the AST expression
1250 * (isl_ast_op_eq, (isl_ast_op_zdiv_r, expr(e), expr(d)), expr(0))
1252 * If e only has negative coefficients, then construct
1254 * (isl_ast_op_eq, (isl_ast_op_zdiv_r, expr(-e), expr(d)), expr(0))
1258 static __isl_give isl_ast_expr
*extract_stride_constraint(
1259 __isl_take isl_aff
*aff
, int pos
, __isl_keep isl_ast_build
*build
)
1263 isl_ast_expr
*expr
, *cst
;
1268 ctx
= isl_aff_get_ctx(aff
);
1270 c
= isl_aff_get_coefficient_val(aff
, isl_dim_div
, pos
);
1271 aff
= isl_aff_set_coefficient_si(aff
, isl_dim_div
, pos
, 0);
1273 if (all_negative_coefficients(aff
))
1274 aff
= isl_aff_neg(aff
);
1276 cst
= isl_ast_expr_from_val(isl_val_abs(c
));
1277 expr
= isl_ast_expr_from_aff(aff
, build
);
1279 expr
= isl_ast_expr_alloc_binary(isl_ast_op_zdiv_r
, expr
, cst
);
1280 cst
= isl_ast_expr_alloc_int_si(ctx
, 0);
1281 expr
= isl_ast_expr_alloc_binary(isl_ast_op_eq
, expr
, cst
);
1286 /* Construct an isl_ast_expr that evaluates the condition "constraint",
1287 * The result is simplified in terms of build->domain.
1289 * We first check if the constraint is an equality of the form
1291 * e - d floor(e/d) = 0
1297 * If so, we convert it to
1299 * (isl_ast_op_eq, (isl_ast_op_zdiv_r, expr(e), expr(d)), expr(0))
1301 * Otherwise, let the constraint by either "a >= 0" or "a == 0".
1302 * We first extract hidden modulo computations from "a"
1303 * and then collect all the terms with a positive coefficient in cons_pos
1304 * and the terms with a negative coefficient in cons_neg.
1306 * The result is then of the form
1308 * (isl_ast_op_ge, expr(pos), expr(-neg)))
1312 * (isl_ast_op_eq, expr(pos), expr(-neg)))
1314 * However, if the first expression is an integer constant (and the second
1315 * is not), then we swap the two expressions. This ensures that we construct,
1316 * e.g., "i <= 5" rather than "5 >= i".
1318 * Furthermore, is there are no terms with positive coefficients (or no terms
1319 * with negative coefficients), then the constant term is added to "pos"
1320 * (or "neg"), ignoring the sign of the constant term.
1322 static __isl_give isl_ast_expr
*isl_ast_expr_from_constraint(
1323 __isl_take isl_constraint
*constraint
, __isl_keep isl_ast_build
*build
)
1327 isl_ast_expr
*expr_pos
;
1328 isl_ast_expr
*expr_neg
;
1332 enum isl_ast_op_type type
;
1333 struct isl_ast_add_term_data data
;
1338 aff
= isl_constraint_get_aff(constraint
);
1339 eq
= isl_constraint_is_equality(constraint
);
1340 isl_constraint_free(constraint
);
1342 n
= isl_aff_dim(aff
, isl_dim_div
);
1344 for (i
= 0; i
< n
; ++i
) {
1346 is_stride
= is_stride_constraint(aff
, i
);
1350 return extract_stride_constraint(aff
, i
, build
);
1353 ctx
= isl_aff_get_ctx(aff
);
1354 expr_pos
= isl_ast_expr_alloc_int_si(ctx
, 0);
1355 expr_neg
= isl_ast_expr_alloc_int_si(ctx
, 0);
1357 aff
= extract_modulos(aff
, &expr_pos
, &expr_neg
, build
);
1360 data
.cst
= isl_aff_get_constant_val(aff
);
1361 expr_pos
= add_signed_terms(expr_pos
, aff
, 1, &data
);
1362 data
.cst
= isl_val_neg(data
.cst
);
1363 expr_neg
= add_signed_terms(expr_neg
, aff
, -1, &data
);
1364 data
.cst
= isl_val_neg(data
.cst
);
1366 if (constant_is_considered_positive(data
.cst
, expr_pos
, expr_neg
)) {
1367 expr_pos
= isl_ast_expr_add_int(expr_pos
, data
.cst
);
1369 data
.cst
= isl_val_neg(data
.cst
);
1370 expr_neg
= isl_ast_expr_add_int(expr_neg
, data
.cst
);
1373 if (isl_ast_expr_get_type(expr_pos
) == isl_ast_expr_int
&&
1374 isl_ast_expr_get_type(expr_neg
) != isl_ast_expr_int
) {
1375 type
= eq
? isl_ast_op_eq
: isl_ast_op_le
;
1376 expr
= isl_ast_expr_alloc_binary(type
, expr_neg
, expr_pos
);
1378 type
= eq
? isl_ast_op_eq
: isl_ast_op_ge
;
1379 expr
= isl_ast_expr_alloc_binary(type
, expr_pos
, expr_neg
);
1389 /* Wrapper around isl_constraint_cmp_last_non_zero for use
1390 * as a callback to isl_constraint_list_sort.
1391 * If isl_constraint_cmp_last_non_zero cannot tell the constraints
1392 * apart, then use isl_constraint_plain_cmp instead.
1394 static int cmp_constraint(__isl_keep isl_constraint
*a
,
1395 __isl_keep isl_constraint
*b
, void *user
)
1399 cmp
= isl_constraint_cmp_last_non_zero(a
, b
);
1402 return isl_constraint_plain_cmp(a
, b
);
1405 /* Construct an isl_ast_expr that evaluates the conditions defining "bset".
1406 * The result is simplified in terms of build->domain.
1408 * If "bset" is not bounded by any constraint, then we contruct
1409 * the expression "1", i.e., "true".
1411 * Otherwise, we sort the constraints, putting constraints that involve
1412 * integer divisions after those that do not, and construct an "and"
1413 * of the ast expressions of the individual constraints.
1415 * Each constraint is added to the generated constraints of the build
1416 * after it has been converted to an AST expression so that it can be used
1417 * to simplify the following constraints. This may change the truth value
1418 * of subsequent constraints that do not satisfy the earlier constraints,
1419 * but this does not affect the outcome of the conjunction as it is
1420 * only true if all the conjuncts are true (no matter in what order
1421 * they are evaluated). In particular, the constraints that do not
1422 * involve integer divisions may serve to simplify some constraints
1423 * that do involve integer divisions.
1425 __isl_give isl_ast_expr
*isl_ast_build_expr_from_basic_set(
1426 __isl_keep isl_ast_build
*build
, __isl_take isl_basic_set
*bset
)
1430 isl_constraint_list
*list
;
1434 list
= isl_basic_set_get_constraint_list(bset
);
1435 isl_basic_set_free(bset
);
1436 list
= isl_constraint_list_sort(list
, &cmp_constraint
, NULL
);
1439 n
= isl_constraint_list_n_constraint(list
);
1441 isl_ctx
*ctx
= isl_basic_set_get_ctx(bset
);
1442 isl_constraint_list_free(list
);
1443 return isl_ast_expr_alloc_int_si(ctx
, 1);
1446 build
= isl_ast_build_copy(build
);
1448 c
= isl_constraint_list_get_constraint(list
, 0);
1449 bset
= isl_basic_set_from_constraint(isl_constraint_copy(c
));
1450 set
= isl_set_from_basic_set(bset
);
1451 res
= isl_ast_expr_from_constraint(c
, build
);
1452 build
= isl_ast_build_restrict_generated(build
, set
);
1454 for (i
= 1; i
< n
; ++i
) {
1457 c
= isl_constraint_list_get_constraint(list
, i
);
1458 bset
= isl_basic_set_from_constraint(isl_constraint_copy(c
));
1459 set
= isl_set_from_basic_set(bset
);
1460 expr
= isl_ast_expr_from_constraint(c
, build
);
1461 build
= isl_ast_build_restrict_generated(build
, set
);
1462 res
= isl_ast_expr_and(res
, expr
);
1465 isl_constraint_list_free(list
);
1466 isl_ast_build_free(build
);
1470 struct isl_expr_from_set_data
{
1471 isl_ast_build
*build
;
1476 /* Construct an isl_ast_expr that evaluates the conditions defining "bset"
1477 * and add it to data->res.
1478 * The result is simplified in terms of data->build->domain.
1480 static isl_stat
expr_from_set(__isl_take isl_basic_set
*bset
, void *user
)
1482 struct isl_expr_from_set_data
*data
= user
;
1485 expr
= isl_ast_build_expr_from_basic_set(data
->build
, bset
);
1489 data
->res
= isl_ast_expr_or(data
->res
, expr
);
1494 return isl_stat_error
;
1498 /* Construct an isl_ast_expr that evaluates the conditions defining "set".
1499 * The result is simplified in terms of build->domain.
1501 * If "set" is an (obviously) empty set, then return the expression "0".
1503 * "set" lives in the internal schedule space.
1505 __isl_give isl_ast_expr
*isl_ast_build_expr_from_set_internal(
1506 __isl_keep isl_ast_build
*build
, __isl_take isl_set
*set
)
1508 struct isl_expr_from_set_data data
= { build
, 1, NULL
};
1510 if (isl_set_foreach_basic_set(set
, &expr_from_set
, &data
) < 0)
1511 data
.res
= isl_ast_expr_free(data
.res
);
1512 else if (data
.first
) {
1513 isl_ctx
*ctx
= isl_ast_build_get_ctx(build
);
1514 data
.res
= isl_ast_expr_from_val(isl_val_zero(ctx
));
1521 /* Construct an isl_ast_expr that evaluates the conditions defining "set".
1522 * The result is simplified in terms of build->domain.
1524 * If "set" is an (obviously) empty set, then return the expression "0".
1526 * "set" lives in the external schedule space.
1528 * The internal AST expression generation assumes that there are
1529 * no unknown divs, so make sure an explicit representation is available.
1530 * Since the set comes from the outside, it may have constraints that
1531 * are redundant with respect to the build domain. Remove them first.
1533 __isl_give isl_ast_expr
*isl_ast_build_expr_from_set(
1534 __isl_keep isl_ast_build
*build
, __isl_take isl_set
*set
)
1536 if (isl_ast_build_need_schedule_map(build
)) {
1538 ma
= isl_ast_build_get_schedule_map_multi_aff(build
);
1539 set
= isl_set_preimage_multi_aff(set
, ma
);
1542 set
= isl_set_compute_divs(set
);
1543 set
= isl_ast_build_compute_gist(build
, set
);
1544 return isl_ast_build_expr_from_set_internal(build
, set
);
1547 struct isl_from_pw_aff_data
{
1548 isl_ast_build
*build
;
1550 isl_ast_expr
**next
;
1554 /* This function is called during the construction of an isl_ast_expr
1555 * that evaluates an isl_pw_aff.
1556 * Adjust data->next to take into account this piece.
1558 * data->n is the number of pairs of set and aff to go.
1559 * data->dom is the domain of the entire isl_pw_aff.
1561 * If this is the last pair, then data->next is set to evaluate aff
1562 * and the domain is ignored.
1563 * Otherwise, data->next is set to a select operation that selects
1564 * an isl_ast_expr corresponding to "aff" on "set" and to an expression
1565 * that will be filled in by later calls otherwise.
1567 * In both cases, the constraints of "set" are added to the generated
1568 * constraints of the build such that they can be exploited to simplify
1569 * the AST expression constructed from "aff".
1571 static isl_stat
ast_expr_from_pw_aff(__isl_take isl_set
*set
,
1572 __isl_take isl_aff
*aff
, void *user
)
1574 struct isl_from_pw_aff_data
*data
= user
;
1576 isl_ast_build
*build
;
1578 ctx
= isl_set_get_ctx(set
);
1581 build
= isl_ast_build_copy(data
->build
);
1582 build
= isl_ast_build_restrict_generated(build
, set
);
1583 *data
->next
= isl_ast_expr_from_aff(aff
, build
);
1584 isl_ast_build_free(build
);
1586 return isl_stat_error
;
1588 isl_ast_expr
*ternary
, *arg
;
1591 ternary
= isl_ast_expr_alloc_op(ctx
, isl_ast_op_select
, 3);
1592 gist
= isl_set_gist(isl_set_copy(set
), isl_set_copy(data
->dom
));
1593 arg
= isl_ast_build_expr_from_set_internal(data
->build
, gist
);
1594 ternary
= isl_ast_expr_set_op_arg(ternary
, 0, arg
);
1595 build
= isl_ast_build_copy(data
->build
);
1596 build
= isl_ast_build_restrict_generated(build
, set
);
1597 arg
= isl_ast_expr_from_aff(aff
, build
);
1598 isl_ast_build_free(build
);
1599 ternary
= isl_ast_expr_set_op_arg(ternary
, 1, arg
);
1601 return isl_stat_error
;
1603 *data
->next
= ternary
;
1604 data
->next
= &ternary
->u
.op
.args
[2];
1610 /* Construct an isl_ast_expr that evaluates "pa".
1611 * The result is simplified in terms of build->domain.
1613 * The domain of "pa" lives in the internal schedule space.
1615 __isl_give isl_ast_expr
*isl_ast_build_expr_from_pw_aff_internal(
1616 __isl_keep isl_ast_build
*build
, __isl_take isl_pw_aff
*pa
)
1618 struct isl_from_pw_aff_data data
;
1619 isl_ast_expr
*res
= NULL
;
1621 pa
= isl_ast_build_compute_gist_pw_aff(build
, pa
);
1622 pa
= isl_pw_aff_coalesce(pa
);
1627 data
.n
= isl_pw_aff_n_piece(pa
);
1629 data
.dom
= isl_pw_aff_domain(isl_pw_aff_copy(pa
));
1631 if (isl_pw_aff_foreach_piece(pa
, &ast_expr_from_pw_aff
, &data
) < 0)
1632 res
= isl_ast_expr_free(res
);
1634 isl_die(isl_pw_aff_get_ctx(pa
), isl_error_invalid
,
1635 "cannot handle void expression", res
= NULL
);
1637 isl_pw_aff_free(pa
);
1638 isl_set_free(data
.dom
);
1642 /* Construct an isl_ast_expr that evaluates "pa".
1643 * The result is simplified in terms of build->domain.
1645 * The domain of "pa" lives in the external schedule space.
1647 __isl_give isl_ast_expr
*isl_ast_build_expr_from_pw_aff(
1648 __isl_keep isl_ast_build
*build
, __isl_take isl_pw_aff
*pa
)
1652 if (isl_ast_build_need_schedule_map(build
)) {
1654 ma
= isl_ast_build_get_schedule_map_multi_aff(build
);
1655 pa
= isl_pw_aff_pullback_multi_aff(pa
, ma
);
1657 expr
= isl_ast_build_expr_from_pw_aff_internal(build
, pa
);
1661 /* Set the ids of the input dimensions of "mpa" to the iterator ids
1664 * The domain of "mpa" is assumed to live in the internal schedule domain.
1666 static __isl_give isl_multi_pw_aff
*set_iterator_names(
1667 __isl_keep isl_ast_build
*build
, __isl_take isl_multi_pw_aff
*mpa
)
1671 n
= isl_multi_pw_aff_dim(mpa
, isl_dim_in
);
1672 for (i
= 0; i
< n
; ++i
) {
1675 id
= isl_ast_build_get_iterator_id(build
, i
);
1676 mpa
= isl_multi_pw_aff_set_dim_id(mpa
, isl_dim_in
, i
, id
);
1682 /* Construct an isl_ast_expr of type "type" with as first argument "arg0" and
1683 * the remaining arguments derived from "mpa".
1684 * That is, construct a call or access expression that calls/accesses "arg0"
1685 * with arguments/indices specified by "mpa".
1687 static __isl_give isl_ast_expr
*isl_ast_build_with_arguments(
1688 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
1689 __isl_take isl_ast_expr
*arg0
, __isl_take isl_multi_pw_aff
*mpa
)
1695 ctx
= isl_ast_build_get_ctx(build
);
1697 n
= isl_multi_pw_aff_dim(mpa
, isl_dim_out
);
1698 expr
= isl_ast_expr_alloc_op(ctx
, type
, 1 + n
);
1699 expr
= isl_ast_expr_set_op_arg(expr
, 0, arg0
);
1700 for (i
= 0; i
< n
; ++i
) {
1704 pa
= isl_multi_pw_aff_get_pw_aff(mpa
, i
);
1705 arg
= isl_ast_build_expr_from_pw_aff_internal(build
, pa
);
1706 expr
= isl_ast_expr_set_op_arg(expr
, 1 + i
, arg
);
1709 isl_multi_pw_aff_free(mpa
);
1713 static __isl_give isl_ast_expr
*isl_ast_build_from_multi_pw_aff_internal(
1714 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
1715 __isl_take isl_multi_pw_aff
*mpa
);
1717 /* Construct an isl_ast_expr that accesses the member specified by "mpa".
1718 * The range of "mpa" is assumed to be wrapped relation.
1719 * The domain of this wrapped relation specifies the structure being
1720 * accessed, while the range of this wrapped relation spacifies the
1721 * member of the structure being accessed.
1723 * The domain of "mpa" is assumed to live in the internal schedule domain.
1725 static __isl_give isl_ast_expr
*isl_ast_build_from_multi_pw_aff_member(
1726 __isl_keep isl_ast_build
*build
, __isl_take isl_multi_pw_aff
*mpa
)
1729 isl_multi_pw_aff
*domain
;
1730 isl_ast_expr
*domain_expr
, *expr
;
1731 enum isl_ast_op_type type
= isl_ast_op_access
;
1733 domain
= isl_multi_pw_aff_copy(mpa
);
1734 domain
= isl_multi_pw_aff_range_factor_domain(domain
);
1735 domain_expr
= isl_ast_build_from_multi_pw_aff_internal(build
,
1737 mpa
= isl_multi_pw_aff_range_factor_range(mpa
);
1738 if (!isl_multi_pw_aff_has_tuple_id(mpa
, isl_dim_out
))
1739 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
1740 "missing field name", goto error
);
1741 id
= isl_multi_pw_aff_get_tuple_id(mpa
, isl_dim_out
);
1742 expr
= isl_ast_expr_from_id(id
);
1743 expr
= isl_ast_expr_alloc_binary(isl_ast_op_member
, domain_expr
, expr
);
1744 return isl_ast_build_with_arguments(build
, type
, expr
, mpa
);
1746 isl_multi_pw_aff_free(mpa
);
1750 /* Construct an isl_ast_expr of type "type" that calls or accesses
1751 * the element specified by "mpa".
1752 * The first argument is obtained from the output tuple name.
1753 * The remaining arguments are given by the piecewise affine expressions.
1755 * If the range of "mpa" is a mapped relation, then we assume it
1756 * represents an access to a member of a structure.
1758 * The domain of "mpa" is assumed to live in the internal schedule domain.
1760 static __isl_give isl_ast_expr
*isl_ast_build_from_multi_pw_aff_internal(
1761 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
1762 __isl_take isl_multi_pw_aff
*mpa
)
1771 if (type
== isl_ast_op_access
&&
1772 isl_multi_pw_aff_range_is_wrapping(mpa
))
1773 return isl_ast_build_from_multi_pw_aff_member(build
, mpa
);
1775 mpa
= set_iterator_names(build
, mpa
);
1779 ctx
= isl_ast_build_get_ctx(build
);
1781 if (isl_multi_pw_aff_has_tuple_id(mpa
, isl_dim_out
))
1782 id
= isl_multi_pw_aff_get_tuple_id(mpa
, isl_dim_out
);
1784 id
= isl_id_alloc(ctx
, "", NULL
);
1786 expr
= isl_ast_expr_from_id(id
);
1787 return isl_ast_build_with_arguments(build
, type
, expr
, mpa
);
1789 isl_multi_pw_aff_free(mpa
);
1793 /* Construct an isl_ast_expr of type "type" that calls or accesses
1794 * the element specified by "pma".
1795 * The first argument is obtained from the output tuple name.
1796 * The remaining arguments are given by the piecewise affine expressions.
1798 * The domain of "pma" is assumed to live in the internal schedule domain.
1800 static __isl_give isl_ast_expr
*isl_ast_build_from_pw_multi_aff_internal(
1801 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
1802 __isl_take isl_pw_multi_aff
*pma
)
1804 isl_multi_pw_aff
*mpa
;
1806 mpa
= isl_multi_pw_aff_from_pw_multi_aff(pma
);
1807 return isl_ast_build_from_multi_pw_aff_internal(build
, type
, mpa
);
1810 /* Construct an isl_ast_expr of type "type" that calls or accesses
1811 * the element specified by "mpa".
1812 * The first argument is obtained from the output tuple name.
1813 * The remaining arguments are given by the piecewise affine expressions.
1815 * The domain of "mpa" is assumed to live in the external schedule domain.
1817 static __isl_give isl_ast_expr
*isl_ast_build_from_multi_pw_aff(
1818 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
1819 __isl_take isl_multi_pw_aff
*mpa
)
1823 isl_space
*space_build
, *space_mpa
;
1825 space_build
= isl_ast_build_get_space(build
, 0);
1826 space_mpa
= isl_multi_pw_aff_get_space(mpa
);
1827 is_domain
= isl_space_tuple_is_equal(space_build
, isl_dim_set
,
1828 space_mpa
, isl_dim_in
);
1829 isl_space_free(space_build
);
1830 isl_space_free(space_mpa
);
1834 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
1835 "spaces don't match", goto error
);
1837 if (isl_ast_build_need_schedule_map(build
)) {
1839 ma
= isl_ast_build_get_schedule_map_multi_aff(build
);
1840 mpa
= isl_multi_pw_aff_pullback_multi_aff(mpa
, ma
);
1843 expr
= isl_ast_build_from_multi_pw_aff_internal(build
, type
, mpa
);
1846 isl_multi_pw_aff_free(mpa
);
1850 /* Construct an isl_ast_expr that calls the domain element specified by "mpa".
1851 * The name of the function is obtained from the output tuple name.
1852 * The arguments are given by the piecewise affine expressions.
1854 * The domain of "mpa" is assumed to live in the external schedule domain.
1856 __isl_give isl_ast_expr
*isl_ast_build_call_from_multi_pw_aff(
1857 __isl_keep isl_ast_build
*build
, __isl_take isl_multi_pw_aff
*mpa
)
1859 return isl_ast_build_from_multi_pw_aff(build
, isl_ast_op_call
, mpa
);
1862 /* Construct an isl_ast_expr that accesses the array element specified by "mpa".
1863 * The name of the array is obtained from the output tuple name.
1864 * The index expressions are given by the piecewise affine expressions.
1866 * The domain of "mpa" is assumed to live in the external schedule domain.
1868 __isl_give isl_ast_expr
*isl_ast_build_access_from_multi_pw_aff(
1869 __isl_keep isl_ast_build
*build
, __isl_take isl_multi_pw_aff
*mpa
)
1871 return isl_ast_build_from_multi_pw_aff(build
, isl_ast_op_access
, mpa
);
1874 /* Construct an isl_ast_expr of type "type" that calls or accesses
1875 * the element specified by "pma".
1876 * The first argument is obtained from the output tuple name.
1877 * The remaining arguments are given by the piecewise affine expressions.
1879 * The domain of "pma" is assumed to live in the external schedule domain.
1881 static __isl_give isl_ast_expr
*isl_ast_build_from_pw_multi_aff(
1882 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
1883 __isl_take isl_pw_multi_aff
*pma
)
1885 isl_multi_pw_aff
*mpa
;
1887 mpa
= isl_multi_pw_aff_from_pw_multi_aff(pma
);
1888 return isl_ast_build_from_multi_pw_aff(build
, type
, mpa
);
1891 /* Construct an isl_ast_expr that calls the domain element specified by "pma".
1892 * The name of the function is obtained from the output tuple name.
1893 * The arguments are given by the piecewise affine expressions.
1895 * The domain of "pma" is assumed to live in the external schedule domain.
1897 __isl_give isl_ast_expr
*isl_ast_build_call_from_pw_multi_aff(
1898 __isl_keep isl_ast_build
*build
, __isl_take isl_pw_multi_aff
*pma
)
1900 return isl_ast_build_from_pw_multi_aff(build
, isl_ast_op_call
, pma
);
1903 /* Construct an isl_ast_expr that accesses the array element specified by "pma".
1904 * The name of the array is obtained from the output tuple name.
1905 * The index expressions are given by the piecewise affine expressions.
1907 * The domain of "pma" is assumed to live in the external schedule domain.
1909 __isl_give isl_ast_expr
*isl_ast_build_access_from_pw_multi_aff(
1910 __isl_keep isl_ast_build
*build
, __isl_take isl_pw_multi_aff
*pma
)
1912 return isl_ast_build_from_pw_multi_aff(build
, isl_ast_op_access
, pma
);
1915 /* Construct an isl_ast_expr that calls the domain element
1916 * specified by "executed".
1918 * "executed" is assumed to be single-valued, with a domain that lives
1919 * in the internal schedule space.
1921 __isl_give isl_ast_node
*isl_ast_build_call_from_executed(
1922 __isl_keep isl_ast_build
*build
, __isl_take isl_map
*executed
)
1924 isl_pw_multi_aff
*iteration
;
1927 iteration
= isl_pw_multi_aff_from_map(executed
);
1928 iteration
= isl_ast_build_compute_gist_pw_multi_aff(build
, iteration
);
1929 iteration
= isl_pw_multi_aff_intersect_domain(iteration
,
1930 isl_ast_build_get_domain(build
));
1931 expr
= isl_ast_build_from_pw_multi_aff_internal(build
, isl_ast_op_call
,
1933 return isl_ast_node_alloc_user(expr
);