2 * Copyright 2011 INRIA Saclay
3 * Copyright 2012-2014 Ecole Normale Superieure
4 * Copyright 2015 Sven Verdoolaege
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
9 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
11 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
14 #include <isl_ctx_private.h>
15 #include <isl_map_private.h>
16 #include <isl_space_private.h>
17 #include <isl_aff_private.h>
19 #include <isl/constraint.h>
20 #include <isl/schedule.h>
21 #include <isl/schedule_node.h>
22 #include <isl_mat_private.h>
23 #include <isl_vec_private.h>
25 #include <isl/union_set.h>
28 #include <isl_dim_map.h>
29 #include <isl/map_to_basic_set.h>
31 #include <isl_options_private.h>
32 #include <isl_tarjan.h>
33 #include <isl_morph.h>
36 * The scheduling algorithm implemented in this file was inspired by
37 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
38 * Parallelization and Locality Optimization in the Polyhedral Model".
42 isl_edge_validity
= 0,
43 isl_edge_first
= isl_edge_validity
,
46 isl_edge_conditional_validity
,
48 isl_edge_last
= isl_edge_proximity
,
52 /* The constraints that need to be satisfied by a schedule on "domain".
54 * "context" specifies extra constraints on the parameters.
56 * "validity" constraints map domain elements i to domain elements
57 * that should be scheduled after i. (Hard constraint)
58 * "proximity" constraints map domain elements i to domains elements
59 * that should be scheduled as early as possible after i (or before i).
62 * "condition" and "conditional_validity" constraints map possibly "tagged"
63 * domain elements i -> s to "tagged" domain elements j -> t.
64 * The elements of the "conditional_validity" constraints, but without the
65 * tags (i.e., the elements i -> j) are treated as validity constraints,
66 * except that during the construction of a tilable band,
67 * the elements of the "conditional_validity" constraints may be violated
68 * provided that all adjacent elements of the "condition" constraints
69 * are local within the band.
70 * A dependence is local within a band if domain and range are mapped
71 * to the same schedule point by the band.
73 struct isl_schedule_constraints
{
74 isl_union_set
*domain
;
77 isl_union_map
*constraint
[isl_edge_last
+ 1];
80 __isl_give isl_schedule_constraints
*isl_schedule_constraints_copy(
81 __isl_keep isl_schedule_constraints
*sc
)
84 isl_schedule_constraints
*sc_copy
;
87 ctx
= isl_union_set_get_ctx(sc
->domain
);
88 sc_copy
= isl_calloc_type(ctx
, struct isl_schedule_constraints
);
92 sc_copy
->domain
= isl_union_set_copy(sc
->domain
);
93 sc_copy
->context
= isl_set_copy(sc
->context
);
94 if (!sc_copy
->domain
|| !sc_copy
->context
)
95 return isl_schedule_constraints_free(sc_copy
);
97 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
98 sc_copy
->constraint
[i
] = isl_union_map_copy(sc
->constraint
[i
]);
99 if (!sc_copy
->constraint
[i
])
100 return isl_schedule_constraints_free(sc_copy
);
107 /* Construct an isl_schedule_constraints object for computing a schedule
108 * on "domain". The initial object does not impose any constraints.
110 __isl_give isl_schedule_constraints
*isl_schedule_constraints_on_domain(
111 __isl_take isl_union_set
*domain
)
115 isl_schedule_constraints
*sc
;
116 isl_union_map
*empty
;
117 enum isl_edge_type i
;
122 ctx
= isl_union_set_get_ctx(domain
);
123 sc
= isl_calloc_type(ctx
, struct isl_schedule_constraints
);
127 space
= isl_union_set_get_space(domain
);
129 sc
->context
= isl_set_universe(isl_space_copy(space
));
130 empty
= isl_union_map_empty(space
);
131 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
132 sc
->constraint
[i
] = isl_union_map_copy(empty
);
133 if (!sc
->constraint
[i
])
134 sc
->domain
= isl_union_set_free(sc
->domain
);
136 isl_union_map_free(empty
);
138 if (!sc
->domain
|| !sc
->context
)
139 return isl_schedule_constraints_free(sc
);
143 isl_union_set_free(domain
);
147 /* Replace the context of "sc" by "context".
149 __isl_give isl_schedule_constraints
*isl_schedule_constraints_set_context(
150 __isl_take isl_schedule_constraints
*sc
, __isl_take isl_set
*context
)
155 isl_set_free(sc
->context
);
156 sc
->context
= context
;
160 isl_schedule_constraints_free(sc
);
161 isl_set_free(context
);
165 /* Replace the validity constraints of "sc" by "validity".
167 __isl_give isl_schedule_constraints
*isl_schedule_constraints_set_validity(
168 __isl_take isl_schedule_constraints
*sc
,
169 __isl_take isl_union_map
*validity
)
171 if (!sc
|| !validity
)
174 isl_union_map_free(sc
->constraint
[isl_edge_validity
]);
175 sc
->constraint
[isl_edge_validity
] = validity
;
179 isl_schedule_constraints_free(sc
);
180 isl_union_map_free(validity
);
184 /* Replace the coincidence constraints of "sc" by "coincidence".
186 __isl_give isl_schedule_constraints
*isl_schedule_constraints_set_coincidence(
187 __isl_take isl_schedule_constraints
*sc
,
188 __isl_take isl_union_map
*coincidence
)
190 if (!sc
|| !coincidence
)
193 isl_union_map_free(sc
->constraint
[isl_edge_coincidence
]);
194 sc
->constraint
[isl_edge_coincidence
] = coincidence
;
198 isl_schedule_constraints_free(sc
);
199 isl_union_map_free(coincidence
);
203 /* Replace the proximity constraints of "sc" by "proximity".
205 __isl_give isl_schedule_constraints
*isl_schedule_constraints_set_proximity(
206 __isl_take isl_schedule_constraints
*sc
,
207 __isl_take isl_union_map
*proximity
)
209 if (!sc
|| !proximity
)
212 isl_union_map_free(sc
->constraint
[isl_edge_proximity
]);
213 sc
->constraint
[isl_edge_proximity
] = proximity
;
217 isl_schedule_constraints_free(sc
);
218 isl_union_map_free(proximity
);
222 /* Replace the conditional validity constraints of "sc" by "condition"
225 __isl_give isl_schedule_constraints
*
226 isl_schedule_constraints_set_conditional_validity(
227 __isl_take isl_schedule_constraints
*sc
,
228 __isl_take isl_union_map
*condition
,
229 __isl_take isl_union_map
*validity
)
231 if (!sc
|| !condition
|| !validity
)
234 isl_union_map_free(sc
->constraint
[isl_edge_condition
]);
235 sc
->constraint
[isl_edge_condition
] = condition
;
236 isl_union_map_free(sc
->constraint
[isl_edge_conditional_validity
]);
237 sc
->constraint
[isl_edge_conditional_validity
] = validity
;
241 isl_schedule_constraints_free(sc
);
242 isl_union_map_free(condition
);
243 isl_union_map_free(validity
);
247 __isl_null isl_schedule_constraints
*isl_schedule_constraints_free(
248 __isl_take isl_schedule_constraints
*sc
)
250 enum isl_edge_type i
;
255 isl_union_set_free(sc
->domain
);
256 isl_set_free(sc
->context
);
257 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
)
258 isl_union_map_free(sc
->constraint
[i
]);
265 isl_ctx
*isl_schedule_constraints_get_ctx(
266 __isl_keep isl_schedule_constraints
*sc
)
268 return sc
? isl_union_set_get_ctx(sc
->domain
) : NULL
;
271 /* Return the domain of "sc".
273 __isl_give isl_union_set
*isl_schedule_constraints_get_domain(
274 __isl_keep isl_schedule_constraints
*sc
)
279 return isl_union_set_copy(sc
->domain
);
282 /* Return the validity constraints of "sc".
284 __isl_give isl_union_map
*isl_schedule_constraints_get_validity(
285 __isl_keep isl_schedule_constraints
*sc
)
290 return isl_union_map_copy(sc
->constraint
[isl_edge_validity
]);
293 /* Return the coincidence constraints of "sc".
295 __isl_give isl_union_map
*isl_schedule_constraints_get_coincidence(
296 __isl_keep isl_schedule_constraints
*sc
)
301 return isl_union_map_copy(sc
->constraint
[isl_edge_coincidence
]);
304 /* Return the conditional validity constraints of "sc".
306 __isl_give isl_union_map
*isl_schedule_constraints_get_conditional_validity(
307 __isl_keep isl_schedule_constraints
*sc
)
313 isl_union_map_copy(sc
->constraint
[isl_edge_conditional_validity
]);
316 /* Return the conditions for the conditional validity constraints of "sc".
318 __isl_give isl_union_map
*
319 isl_schedule_constraints_get_conditional_validity_condition(
320 __isl_keep isl_schedule_constraints
*sc
)
325 return isl_union_map_copy(sc
->constraint
[isl_edge_condition
]);
328 void isl_schedule_constraints_dump(__isl_keep isl_schedule_constraints
*sc
)
333 fprintf(stderr
, "domain: ");
334 isl_union_set_dump(sc
->domain
);
335 fprintf(stderr
, "context: ");
336 isl_set_dump(sc
->context
);
337 fprintf(stderr
, "validity: ");
338 isl_union_map_dump(sc
->constraint
[isl_edge_validity
]);
339 fprintf(stderr
, "proximity: ");
340 isl_union_map_dump(sc
->constraint
[isl_edge_proximity
]);
341 fprintf(stderr
, "coincidence: ");
342 isl_union_map_dump(sc
->constraint
[isl_edge_coincidence
]);
343 fprintf(stderr
, "condition: ");
344 isl_union_map_dump(sc
->constraint
[isl_edge_condition
]);
345 fprintf(stderr
, "conditional_validity: ");
346 isl_union_map_dump(sc
->constraint
[isl_edge_conditional_validity
]);
349 /* Align the parameters of the fields of "sc".
351 static __isl_give isl_schedule_constraints
*
352 isl_schedule_constraints_align_params(__isl_take isl_schedule_constraints
*sc
)
355 enum isl_edge_type i
;
360 space
= isl_union_set_get_space(sc
->domain
);
361 space
= isl_space_align_params(space
, isl_set_get_space(sc
->context
));
362 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
)
363 space
= isl_space_align_params(space
,
364 isl_union_map_get_space(sc
->constraint
[i
]));
366 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
367 sc
->constraint
[i
] = isl_union_map_align_params(
368 sc
->constraint
[i
], isl_space_copy(space
));
369 if (!sc
->constraint
[i
])
370 space
= isl_space_free(space
);
372 sc
->context
= isl_set_align_params(sc
->context
, isl_space_copy(space
));
373 sc
->domain
= isl_union_set_align_params(sc
->domain
, space
);
374 if (!sc
->context
|| !sc
->domain
)
375 return isl_schedule_constraints_free(sc
);
380 /* Return the total number of isl_maps in the constraints of "sc".
382 static __isl_give
int isl_schedule_constraints_n_map(
383 __isl_keep isl_schedule_constraints
*sc
)
385 enum isl_edge_type i
;
388 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
)
389 n
+= isl_union_map_n_map(sc
->constraint
[i
]);
394 /* Internal information about a node that is used during the construction
396 * space represents the space in which the domain lives
397 * sched is a matrix representation of the schedule being constructed
398 * for this node; if compressed is set, then this schedule is
399 * defined over the compressed domain space
400 * sched_map is an isl_map representation of the same (partial) schedule
401 * sched_map may be NULL; if compressed is set, then this map
402 * is defined over the uncompressed domain space
403 * rank is the number of linearly independent rows in the linear part
405 * the columns of cmap represent a change of basis for the schedule
406 * coefficients; the first rank columns span the linear part of
408 * cinv is the inverse of cmap.
409 * ctrans is the transpose of cmap.
410 * start is the first variable in the LP problem in the sequences that
411 * represents the schedule coefficients of this node
412 * nvar is the dimension of the domain
413 * nparam is the number of parameters or 0 if we are not constructing
414 * a parametric schedule
416 * If compressed is set, then hull represents the constraints
417 * that were used to derive the compression, while compress and
418 * decompress map the original space to the compressed space and
421 * scc is the index of SCC (or WCC) this node belongs to
423 * "cluster" is only used inside extract_clusters and identifies
424 * the cluster of SCCs that the node belongs to.
426 * coincident contains a boolean for each of the rows of the schedule,
427 * indicating whether the corresponding scheduling dimension satisfies
428 * the coincidence constraints in the sense that the corresponding
429 * dependence distances are zero.
431 struct isl_sched_node
{
435 isl_multi_aff
*compress
;
436 isl_multi_aff
*decompress
;
453 static int node_has_space(const void *entry
, const void *val
)
455 struct isl_sched_node
*node
= (struct isl_sched_node
*)entry
;
456 isl_space
*dim
= (isl_space
*)val
;
458 return isl_space_is_equal(node
->space
, dim
);
461 static int node_scc_exactly(struct isl_sched_node
*node
, int scc
)
463 return node
->scc
== scc
;
466 static int node_scc_at_most(struct isl_sched_node
*node
, int scc
)
468 return node
->scc
<= scc
;
471 static int node_scc_at_least(struct isl_sched_node
*node
, int scc
)
473 return node
->scc
>= scc
;
476 /* An edge in the dependence graph. An edge may be used to
477 * ensure validity of the generated schedule, to minimize the dependence
480 * map is the dependence relation, with i -> j in the map if j depends on i
481 * tagged_condition and tagged_validity contain the union of all tagged
482 * condition or conditional validity dependence relations that
483 * specialize the dependence relation "map"; that is,
484 * if (i -> a) -> (j -> b) is an element of "tagged_condition"
485 * or "tagged_validity", then i -> j is an element of "map".
486 * If these fields are NULL, then they represent the empty relation.
487 * src is the source node
488 * dst is the sink node
490 * types is a bit vector containing the types of this edge.
491 * validity is set if the edge is used to ensure correctness
492 * coincidence is used to enforce zero dependence distances
493 * proximity is set if the edge is used to minimize dependence distances
494 * condition is set if the edge represents a condition
495 * for a conditional validity schedule constraint
496 * local can only be set for condition edges and indicates that
497 * the dependence distance over the edge should be zero
498 * conditional_validity is set if the edge is used to conditionally
501 * For validity edges, start and end mark the sequence of inequality
502 * constraints in the LP problem that encode the validity constraint
503 * corresponding to this edge.
505 * During clustering, an edge may be marked "no_merge" if it should
506 * not be used to merge clusters.
507 * The weight is also only used during clustering and it is
508 * an indication of how many schedule dimensions on either side
509 * of the schedule constraints can be aligned.
510 * If the weight is negative, then this means that this edge was postponed
511 * by has_bounded_distances or any_no_merge. The original weight can
512 * be retrieved by adding 1 + graph->max_weight, with "graph"
513 * the graph containing this edge.
515 struct isl_sched_edge
{
517 isl_union_map
*tagged_condition
;
518 isl_union_map
*tagged_validity
;
520 struct isl_sched_node
*src
;
521 struct isl_sched_node
*dst
;
532 /* Is "edge" marked as being of type "type"?
534 static int is_type(struct isl_sched_edge
*edge
, enum isl_edge_type type
)
536 return ISL_FL_ISSET(edge
->types
, 1 << type
);
539 /* Mark "edge" as being of type "type".
541 static void set_type(struct isl_sched_edge
*edge
, enum isl_edge_type type
)
543 ISL_FL_SET(edge
->types
, 1 << type
);
546 /* No longer mark "edge" as being of type "type"?
548 static void clear_type(struct isl_sched_edge
*edge
, enum isl_edge_type type
)
550 ISL_FL_CLR(edge
->types
, 1 << type
);
553 /* Is "edge" marked as a validity edge?
555 static int is_validity(struct isl_sched_edge
*edge
)
557 return is_type(edge
, isl_edge_validity
);
560 /* Mark "edge" as a validity edge.
562 static void set_validity(struct isl_sched_edge
*edge
)
564 set_type(edge
, isl_edge_validity
);
567 /* Is "edge" marked as a proximity edge?
569 static int is_proximity(struct isl_sched_edge
*edge
)
571 return is_type(edge
, isl_edge_proximity
);
574 /* Is "edge" marked as a local edge?
576 static int is_local(struct isl_sched_edge
*edge
)
578 return is_type(edge
, isl_edge_local
);
581 /* Mark "edge" as a local edge.
583 static void set_local(struct isl_sched_edge
*edge
)
585 set_type(edge
, isl_edge_local
);
588 /* No longer mark "edge" as a local edge.
590 static void clear_local(struct isl_sched_edge
*edge
)
592 clear_type(edge
, isl_edge_local
);
595 /* Is "edge" marked as a coincidence edge?
597 static int is_coincidence(struct isl_sched_edge
*edge
)
599 return is_type(edge
, isl_edge_coincidence
);
602 /* Is "edge" marked as a condition edge?
604 static int is_condition(struct isl_sched_edge
*edge
)
606 return is_type(edge
, isl_edge_condition
);
609 /* Is "edge" marked as a conditional validity edge?
611 static int is_conditional_validity(struct isl_sched_edge
*edge
)
613 return is_type(edge
, isl_edge_conditional_validity
);
616 /* Internal information about the dependence graph used during
617 * the construction of the schedule.
619 * intra_hmap is a cache, mapping dependence relations to their dual,
620 * for dependences from a node to itself
621 * inter_hmap is a cache, mapping dependence relations to their dual,
622 * for dependences between distinct nodes
623 * if compression is involved then the key for these maps
624 * it the original, uncompressed dependence relation, while
625 * the value is the dual of the compressed dependence relation.
627 * n is the number of nodes
628 * node is the list of nodes
629 * maxvar is the maximal number of variables over all nodes
630 * max_row is the allocated number of rows in the schedule
631 * n_row is the current (maximal) number of linearly independent
632 * rows in the node schedules
633 * n_total_row is the current number of rows in the node schedules
634 * band_start is the starting row in the node schedules of the current band
635 * root is set if this graph is the original dependence graph,
636 * without any splitting
638 * sorted contains a list of node indices sorted according to the
639 * SCC to which a node belongs
641 * n_edge is the number of edges
642 * edge is the list of edges
643 * max_edge contains the maximal number of edges of each type;
644 * in particular, it contains the number of edges in the inital graph.
645 * edge_table contains pointers into the edge array, hashed on the source
646 * and sink spaces; there is one such table for each type;
647 * a given edge may be referenced from more than one table
648 * if the corresponding relation appears in more than one of the
649 * sets of dependences; however, for each type there is only
650 * a single edge between a given pair of source and sink space
651 * in the entire graph
653 * node_table contains pointers into the node array, hashed on the space
655 * region contains a list of variable sequences that should be non-trivial
657 * lp contains the (I)LP problem used to obtain new schedule rows
659 * src_scc and dst_scc are the source and sink SCCs of an edge with
660 * conflicting constraints
662 * scc represents the number of components
663 * weak is set if the components are weakly connected
665 * max_weight is used during clustering and represents the maximal
666 * weight of the relevant proximity edges.
668 struct isl_sched_graph
{
669 isl_map_to_basic_set
*intra_hmap
;
670 isl_map_to_basic_set
*inter_hmap
;
672 struct isl_sched_node
*node
;
685 struct isl_sched_edge
*edge
;
687 int max_edge
[isl_edge_last
+ 1];
688 struct isl_hash_table
*edge_table
[isl_edge_last
+ 1];
690 struct isl_hash_table
*node_table
;
691 struct isl_region
*region
;
704 /* Initialize node_table based on the list of nodes.
706 static int graph_init_table(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
710 graph
->node_table
= isl_hash_table_alloc(ctx
, graph
->n
);
711 if (!graph
->node_table
)
714 for (i
= 0; i
< graph
->n
; ++i
) {
715 struct isl_hash_table_entry
*entry
;
718 hash
= isl_space_get_hash(graph
->node
[i
].space
);
719 entry
= isl_hash_table_find(ctx
, graph
->node_table
, hash
,
721 graph
->node
[i
].space
, 1);
724 entry
->data
= &graph
->node
[i
];
730 /* Return a pointer to the node that lives within the given space,
731 * or NULL if there is no such node.
733 static struct isl_sched_node
*graph_find_node(isl_ctx
*ctx
,
734 struct isl_sched_graph
*graph
, __isl_keep isl_space
*dim
)
736 struct isl_hash_table_entry
*entry
;
739 hash
= isl_space_get_hash(dim
);
740 entry
= isl_hash_table_find(ctx
, graph
->node_table
, hash
,
741 &node_has_space
, dim
, 0);
743 return entry
? entry
->data
: NULL
;
746 static int edge_has_src_and_dst(const void *entry
, const void *val
)
748 const struct isl_sched_edge
*edge
= entry
;
749 const struct isl_sched_edge
*temp
= val
;
751 return edge
->src
== temp
->src
&& edge
->dst
== temp
->dst
;
754 /* Add the given edge to graph->edge_table[type].
756 static isl_stat
graph_edge_table_add(isl_ctx
*ctx
,
757 struct isl_sched_graph
*graph
, enum isl_edge_type type
,
758 struct isl_sched_edge
*edge
)
760 struct isl_hash_table_entry
*entry
;
763 hash
= isl_hash_init();
764 hash
= isl_hash_builtin(hash
, edge
->src
);
765 hash
= isl_hash_builtin(hash
, edge
->dst
);
766 entry
= isl_hash_table_find(ctx
, graph
->edge_table
[type
], hash
,
767 &edge_has_src_and_dst
, edge
, 1);
769 return isl_stat_error
;
775 /* Allocate the edge_tables based on the maximal number of edges of
778 static int graph_init_edge_tables(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
782 for (i
= 0; i
<= isl_edge_last
; ++i
) {
783 graph
->edge_table
[i
] = isl_hash_table_alloc(ctx
,
785 if (!graph
->edge_table
[i
])
792 /* If graph->edge_table[type] contains an edge from the given source
793 * to the given destination, then return the hash table entry of this edge.
794 * Otherwise, return NULL.
796 static struct isl_hash_table_entry
*graph_find_edge_entry(
797 struct isl_sched_graph
*graph
,
798 enum isl_edge_type type
,
799 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
801 isl_ctx
*ctx
= isl_space_get_ctx(src
->space
);
803 struct isl_sched_edge temp
= { .src
= src
, .dst
= dst
};
805 hash
= isl_hash_init();
806 hash
= isl_hash_builtin(hash
, temp
.src
);
807 hash
= isl_hash_builtin(hash
, temp
.dst
);
808 return isl_hash_table_find(ctx
, graph
->edge_table
[type
], hash
,
809 &edge_has_src_and_dst
, &temp
, 0);
813 /* If graph->edge_table[type] contains an edge from the given source
814 * to the given destination, then return this edge.
815 * Otherwise, return NULL.
817 static struct isl_sched_edge
*graph_find_edge(struct isl_sched_graph
*graph
,
818 enum isl_edge_type type
,
819 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
821 struct isl_hash_table_entry
*entry
;
823 entry
= graph_find_edge_entry(graph
, type
, src
, dst
);
830 /* Check whether the dependence graph has an edge of the given type
831 * between the given two nodes.
833 static isl_bool
graph_has_edge(struct isl_sched_graph
*graph
,
834 enum isl_edge_type type
,
835 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
837 struct isl_sched_edge
*edge
;
840 edge
= graph_find_edge(graph
, type
, src
, dst
);
844 empty
= isl_map_plain_is_empty(edge
->map
);
846 return isl_bool_error
;
851 /* Look for any edge with the same src, dst and map fields as "model".
853 * Return the matching edge if one can be found.
854 * Return "model" if no matching edge is found.
855 * Return NULL on error.
857 static struct isl_sched_edge
*graph_find_matching_edge(
858 struct isl_sched_graph
*graph
, struct isl_sched_edge
*model
)
860 enum isl_edge_type i
;
861 struct isl_sched_edge
*edge
;
863 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
866 edge
= graph_find_edge(graph
, i
, model
->src
, model
->dst
);
869 is_equal
= isl_map_plain_is_equal(model
->map
, edge
->map
);
879 /* Remove the given edge from all the edge_tables that refer to it.
881 static void graph_remove_edge(struct isl_sched_graph
*graph
,
882 struct isl_sched_edge
*edge
)
884 isl_ctx
*ctx
= isl_map_get_ctx(edge
->map
);
885 enum isl_edge_type i
;
887 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
888 struct isl_hash_table_entry
*entry
;
890 entry
= graph_find_edge_entry(graph
, i
, edge
->src
, edge
->dst
);
893 if (entry
->data
!= edge
)
895 isl_hash_table_remove(ctx
, graph
->edge_table
[i
], entry
);
899 /* Check whether the dependence graph has any edge
900 * between the given two nodes.
902 static isl_bool
graph_has_any_edge(struct isl_sched_graph
*graph
,
903 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
905 enum isl_edge_type i
;
908 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
909 r
= graph_has_edge(graph
, i
, src
, dst
);
917 /* Check whether the dependence graph has a validity edge
918 * between the given two nodes.
920 * Conditional validity edges are essentially validity edges that
921 * can be ignored if the corresponding condition edges are iteration private.
922 * Here, we are only checking for the presence of validity
923 * edges, so we need to consider the conditional validity edges too.
924 * In particular, this function is used during the detection
925 * of strongly connected components and we cannot ignore
926 * conditional validity edges during this detection.
928 static isl_bool
graph_has_validity_edge(struct isl_sched_graph
*graph
,
929 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
933 r
= graph_has_edge(graph
, isl_edge_validity
, src
, dst
);
937 return graph_has_edge(graph
, isl_edge_conditional_validity
, src
, dst
);
940 static int graph_alloc(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
941 int n_node
, int n_edge
)
946 graph
->n_edge
= n_edge
;
947 graph
->node
= isl_calloc_array(ctx
, struct isl_sched_node
, graph
->n
);
948 graph
->sorted
= isl_calloc_array(ctx
, int, graph
->n
);
949 graph
->region
= isl_alloc_array(ctx
, struct isl_region
, graph
->n
);
950 graph
->edge
= isl_calloc_array(ctx
,
951 struct isl_sched_edge
, graph
->n_edge
);
953 graph
->intra_hmap
= isl_map_to_basic_set_alloc(ctx
, 2 * n_edge
);
954 graph
->inter_hmap
= isl_map_to_basic_set_alloc(ctx
, 2 * n_edge
);
956 if (!graph
->node
|| !graph
->region
|| (graph
->n_edge
&& !graph
->edge
) ||
960 for(i
= 0; i
< graph
->n
; ++i
)
961 graph
->sorted
[i
] = i
;
966 static void graph_free(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
970 isl_map_to_basic_set_free(graph
->intra_hmap
);
971 isl_map_to_basic_set_free(graph
->inter_hmap
);
974 for (i
= 0; i
< graph
->n
; ++i
) {
975 isl_space_free(graph
->node
[i
].space
);
976 isl_set_free(graph
->node
[i
].hull
);
977 isl_multi_aff_free(graph
->node
[i
].compress
);
978 isl_multi_aff_free(graph
->node
[i
].decompress
);
979 isl_mat_free(graph
->node
[i
].sched
);
980 isl_map_free(graph
->node
[i
].sched_map
);
981 isl_mat_free(graph
->node
[i
].cmap
);
982 isl_mat_free(graph
->node
[i
].cinv
);
983 isl_mat_free(graph
->node
[i
].ctrans
);
985 free(graph
->node
[i
].coincident
);
990 for (i
= 0; i
< graph
->n_edge
; ++i
) {
991 isl_map_free(graph
->edge
[i
].map
);
992 isl_union_map_free(graph
->edge
[i
].tagged_condition
);
993 isl_union_map_free(graph
->edge
[i
].tagged_validity
);
997 for (i
= 0; i
<= isl_edge_last
; ++i
)
998 isl_hash_table_free(ctx
, graph
->edge_table
[i
]);
999 isl_hash_table_free(ctx
, graph
->node_table
);
1000 isl_basic_set_free(graph
->lp
);
1003 /* For each "set" on which this function is called, increment
1004 * graph->n by one and update graph->maxvar.
1006 static isl_stat
init_n_maxvar(__isl_take isl_set
*set
, void *user
)
1008 struct isl_sched_graph
*graph
= user
;
1009 int nvar
= isl_set_dim(set
, isl_dim_set
);
1012 if (nvar
> graph
->maxvar
)
1013 graph
->maxvar
= nvar
;
1020 /* Add the number of basic maps in "map" to *n.
1022 static isl_stat
add_n_basic_map(__isl_take isl_map
*map
, void *user
)
1026 *n
+= isl_map_n_basic_map(map
);
1032 /* Compute the number of rows that should be allocated for the schedule.
1033 * In particular, we need one row for each variable or one row
1034 * for each basic map in the dependences.
1035 * Note that it is practically impossible to exhaust both
1036 * the number of dependences and the number of variables.
1038 static int compute_max_row(struct isl_sched_graph
*graph
,
1039 __isl_keep isl_schedule_constraints
*sc
)
1041 enum isl_edge_type i
;
1046 if (isl_union_set_foreach_set(sc
->domain
, &init_n_maxvar
, graph
) < 0)
1049 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
)
1050 if (isl_union_map_foreach_map(sc
->constraint
[i
],
1051 &add_n_basic_map
, &n_edge
) < 0)
1053 graph
->max_row
= n_edge
+ graph
->maxvar
;
1058 /* Does "bset" have any defining equalities for its set variables?
1060 static int has_any_defining_equality(__isl_keep isl_basic_set
*bset
)
1067 n
= isl_basic_set_dim(bset
, isl_dim_set
);
1068 for (i
= 0; i
< n
; ++i
) {
1071 has
= isl_basic_set_has_defining_equality(bset
, isl_dim_set
, i
,
1080 /* Add a new node to the graph representing the given space.
1081 * "nvar" is the (possibly compressed) number of variables and
1082 * may be smaller than then number of set variables in "space"
1083 * if "compressed" is set.
1084 * If "compressed" is set, then "hull" represents the constraints
1085 * that were used to derive the compression, while "compress" and
1086 * "decompress" map the original space to the compressed space and
1088 * If "compressed" is not set, then "hull", "compress" and "decompress"
1091 static isl_stat
add_node(struct isl_sched_graph
*graph
,
1092 __isl_take isl_space
*space
, int nvar
, int compressed
,
1093 __isl_take isl_set
*hull
, __isl_take isl_multi_aff
*compress
,
1094 __isl_take isl_multi_aff
*decompress
)
1102 return isl_stat_error
;
1104 ctx
= isl_space_get_ctx(space
);
1105 nparam
= isl_space_dim(space
, isl_dim_param
);
1106 if (!ctx
->opt
->schedule_parametric
)
1108 sched
= isl_mat_alloc(ctx
, 0, 1 + nparam
+ nvar
);
1109 graph
->node
[graph
->n
].space
= space
;
1110 graph
->node
[graph
->n
].nvar
= nvar
;
1111 graph
->node
[graph
->n
].nparam
= nparam
;
1112 graph
->node
[graph
->n
].sched
= sched
;
1113 graph
->node
[graph
->n
].sched_map
= NULL
;
1114 coincident
= isl_calloc_array(ctx
, int, graph
->max_row
);
1115 graph
->node
[graph
->n
].coincident
= coincident
;
1116 graph
->node
[graph
->n
].compressed
= compressed
;
1117 graph
->node
[graph
->n
].hull
= hull
;
1118 graph
->node
[graph
->n
].compress
= compress
;
1119 graph
->node
[graph
->n
].decompress
= decompress
;
1122 if (!space
|| !sched
|| (graph
->max_row
&& !coincident
))
1123 return isl_stat_error
;
1124 if (compressed
&& (!hull
|| !compress
|| !decompress
))
1125 return isl_stat_error
;
1130 /* Add a new node to the graph representing the given set.
1132 * If any of the set variables is defined by an equality, then
1133 * we perform variable compression such that we can perform
1134 * the scheduling on the compressed domain.
1136 static isl_stat
extract_node(__isl_take isl_set
*set
, void *user
)
1141 isl_basic_set
*hull
;
1144 isl_multi_aff
*compress
, *decompress
;
1145 struct isl_sched_graph
*graph
= user
;
1147 space
= isl_set_get_space(set
);
1148 hull
= isl_set_affine_hull(set
);
1149 hull
= isl_basic_set_remove_divs(hull
);
1150 nvar
= isl_space_dim(space
, isl_dim_set
);
1151 has_equality
= has_any_defining_equality(hull
);
1153 if (has_equality
< 0)
1155 if (!has_equality
) {
1156 isl_basic_set_free(hull
);
1157 return add_node(graph
, space
, nvar
, 0, NULL
, NULL
, NULL
);
1160 morph
= isl_basic_set_variable_compression(hull
, isl_dim_set
);
1161 nvar
= isl_morph_ran_dim(morph
, isl_dim_set
);
1162 compress
= isl_morph_get_var_multi_aff(morph
);
1163 morph
= isl_morph_inverse(morph
);
1164 decompress
= isl_morph_get_var_multi_aff(morph
);
1165 isl_morph_free(morph
);
1167 hull_set
= isl_set_from_basic_set(hull
);
1168 return add_node(graph
, space
, nvar
, 1, hull_set
, compress
, decompress
);
1170 isl_basic_set_free(hull
);
1171 isl_space_free(space
);
1172 return isl_stat_error
;
1175 struct isl_extract_edge_data
{
1176 enum isl_edge_type type
;
1177 struct isl_sched_graph
*graph
;
1180 /* Merge edge2 into edge1, freeing the contents of edge2.
1181 * Return 0 on success and -1 on failure.
1183 * edge1 and edge2 are assumed to have the same value for the map field.
1185 static int merge_edge(struct isl_sched_edge
*edge1
,
1186 struct isl_sched_edge
*edge2
)
1188 edge1
->types
|= edge2
->types
;
1189 isl_map_free(edge2
->map
);
1191 if (is_condition(edge2
)) {
1192 if (!edge1
->tagged_condition
)
1193 edge1
->tagged_condition
= edge2
->tagged_condition
;
1195 edge1
->tagged_condition
=
1196 isl_union_map_union(edge1
->tagged_condition
,
1197 edge2
->tagged_condition
);
1200 if (is_conditional_validity(edge2
)) {
1201 if (!edge1
->tagged_validity
)
1202 edge1
->tagged_validity
= edge2
->tagged_validity
;
1204 edge1
->tagged_validity
=
1205 isl_union_map_union(edge1
->tagged_validity
,
1206 edge2
->tagged_validity
);
1209 if (is_condition(edge2
) && !edge1
->tagged_condition
)
1211 if (is_conditional_validity(edge2
) && !edge1
->tagged_validity
)
1217 /* Insert dummy tags in domain and range of "map".
1219 * In particular, if "map" is of the form
1225 * [A -> dummy_tag] -> [B -> dummy_tag]
1227 * where the dummy_tags are identical and equal to any dummy tags
1228 * introduced by any other call to this function.
1230 static __isl_give isl_map
*insert_dummy_tags(__isl_take isl_map
*map
)
1236 isl_set
*domain
, *range
;
1238 ctx
= isl_map_get_ctx(map
);
1240 id
= isl_id_alloc(ctx
, NULL
, &dummy
);
1241 space
= isl_space_params(isl_map_get_space(map
));
1242 space
= isl_space_set_from_params(space
);
1243 space
= isl_space_set_tuple_id(space
, isl_dim_set
, id
);
1244 space
= isl_space_map_from_set(space
);
1246 domain
= isl_map_wrap(map
);
1247 range
= isl_map_wrap(isl_map_universe(space
));
1248 map
= isl_map_from_domain_and_range(domain
, range
);
1249 map
= isl_map_zip(map
);
1254 /* Given that at least one of "src" or "dst" is compressed, return
1255 * a map between the spaces of these nodes restricted to the affine
1256 * hull that was used in the compression.
1258 static __isl_give isl_map
*extract_hull(struct isl_sched_node
*src
,
1259 struct isl_sched_node
*dst
)
1263 if (src
->compressed
)
1264 dom
= isl_set_copy(src
->hull
);
1266 dom
= isl_set_universe(isl_space_copy(src
->space
));
1267 if (dst
->compressed
)
1268 ran
= isl_set_copy(dst
->hull
);
1270 ran
= isl_set_universe(isl_space_copy(dst
->space
));
1272 return isl_map_from_domain_and_range(dom
, ran
);
1275 /* Intersect the domains of the nested relations in domain and range
1276 * of "tagged" with "map".
1278 static __isl_give isl_map
*map_intersect_domains(__isl_take isl_map
*tagged
,
1279 __isl_keep isl_map
*map
)
1283 tagged
= isl_map_zip(tagged
);
1284 set
= isl_map_wrap(isl_map_copy(map
));
1285 tagged
= isl_map_intersect_domain(tagged
, set
);
1286 tagged
= isl_map_zip(tagged
);
1290 /* Return a pointer to the node that lives in the domain space of "map"
1291 * or NULL if there is no such node.
1293 static struct isl_sched_node
*find_domain_node(isl_ctx
*ctx
,
1294 struct isl_sched_graph
*graph
, __isl_keep isl_map
*map
)
1296 struct isl_sched_node
*node
;
1299 space
= isl_space_domain(isl_map_get_space(map
));
1300 node
= graph_find_node(ctx
, graph
, space
);
1301 isl_space_free(space
);
1306 /* Return a pointer to the node that lives in the range space of "map"
1307 * or NULL if there is no such node.
1309 static struct isl_sched_node
*find_range_node(isl_ctx
*ctx
,
1310 struct isl_sched_graph
*graph
, __isl_keep isl_map
*map
)
1312 struct isl_sched_node
*node
;
1315 space
= isl_space_range(isl_map_get_space(map
));
1316 node
= graph_find_node(ctx
, graph
, space
);
1317 isl_space_free(space
);
1322 /* Add a new edge to the graph based on the given map
1323 * and add it to data->graph->edge_table[data->type].
1324 * If a dependence relation of a given type happens to be identical
1325 * to one of the dependence relations of a type that was added before,
1326 * then we don't create a new edge, but instead mark the original edge
1327 * as also representing a dependence of the current type.
1329 * Edges of type isl_edge_condition or isl_edge_conditional_validity
1330 * may be specified as "tagged" dependence relations. That is, "map"
1331 * may contain elements (i -> a) -> (j -> b), where i -> j denotes
1332 * the dependence on iterations and a and b are tags.
1333 * edge->map is set to the relation containing the elements i -> j,
1334 * while edge->tagged_condition and edge->tagged_validity contain
1335 * the union of all the "map" relations
1336 * for which extract_edge is called that result in the same edge->map.
1338 * If the source or the destination node is compressed, then
1339 * intersect both "map" and "tagged" with the constraints that
1340 * were used to construct the compression.
1341 * This ensures that there are no schedule constraints defined
1342 * outside of these domains, while the scheduler no longer has
1343 * any control over those outside parts.
1345 static isl_stat
extract_edge(__isl_take isl_map
*map
, void *user
)
1347 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1348 struct isl_extract_edge_data
*data
= user
;
1349 struct isl_sched_graph
*graph
= data
->graph
;
1350 struct isl_sched_node
*src
, *dst
;
1351 struct isl_sched_edge
*edge
;
1352 isl_map
*tagged
= NULL
;
1354 if (data
->type
== isl_edge_condition
||
1355 data
->type
== isl_edge_conditional_validity
) {
1356 if (isl_map_can_zip(map
)) {
1357 tagged
= isl_map_copy(map
);
1358 map
= isl_set_unwrap(isl_map_domain(isl_map_zip(map
)));
1360 tagged
= insert_dummy_tags(isl_map_copy(map
));
1364 src
= find_domain_node(ctx
, graph
, map
);
1365 dst
= find_range_node(ctx
, graph
, map
);
1369 isl_map_free(tagged
);
1373 if (src
->compressed
|| dst
->compressed
) {
1375 hull
= extract_hull(src
, dst
);
1377 tagged
= map_intersect_domains(tagged
, hull
);
1378 map
= isl_map_intersect(map
, hull
);
1381 graph
->edge
[graph
->n_edge
].src
= src
;
1382 graph
->edge
[graph
->n_edge
].dst
= dst
;
1383 graph
->edge
[graph
->n_edge
].map
= map
;
1384 graph
->edge
[graph
->n_edge
].types
= 0;
1385 graph
->edge
[graph
->n_edge
].tagged_condition
= NULL
;
1386 graph
->edge
[graph
->n_edge
].tagged_validity
= NULL
;
1387 set_type(&graph
->edge
[graph
->n_edge
], data
->type
);
1388 if (data
->type
== isl_edge_condition
)
1389 graph
->edge
[graph
->n_edge
].tagged_condition
=
1390 isl_union_map_from_map(tagged
);
1391 if (data
->type
== isl_edge_conditional_validity
)
1392 graph
->edge
[graph
->n_edge
].tagged_validity
=
1393 isl_union_map_from_map(tagged
);
1395 edge
= graph_find_matching_edge(graph
, &graph
->edge
[graph
->n_edge
]);
1398 return isl_stat_error
;
1400 if (edge
== &graph
->edge
[graph
->n_edge
])
1401 return graph_edge_table_add(ctx
, graph
, data
->type
,
1402 &graph
->edge
[graph
->n_edge
++]);
1404 if (merge_edge(edge
, &graph
->edge
[graph
->n_edge
]) < 0)
1407 return graph_edge_table_add(ctx
, graph
, data
->type
, edge
);
1410 /* Initialize the schedule graph "graph" from the schedule constraints "sc".
1412 * The context is included in the domain before the nodes of
1413 * the graphs are extracted in order to be able to exploit
1414 * any possible additional equalities.
1415 * Note that this intersection is only performed locally here.
1417 static isl_stat
graph_init(struct isl_sched_graph
*graph
,
1418 __isl_keep isl_schedule_constraints
*sc
)
1421 isl_union_set
*domain
;
1422 struct isl_extract_edge_data data
;
1423 enum isl_edge_type i
;
1427 return isl_stat_error
;
1429 ctx
= isl_schedule_constraints_get_ctx(sc
);
1431 domain
= isl_schedule_constraints_get_domain(sc
);
1432 graph
->n
= isl_union_set_n_set(domain
);
1433 isl_union_set_free(domain
);
1435 if (graph_alloc(ctx
, graph
, graph
->n
,
1436 isl_schedule_constraints_n_map(sc
)) < 0)
1437 return isl_stat_error
;
1439 if (compute_max_row(graph
, sc
) < 0)
1440 return isl_stat_error
;
1443 domain
= isl_schedule_constraints_get_domain(sc
);
1444 domain
= isl_union_set_intersect_params(domain
,
1445 isl_set_copy(sc
->context
));
1446 r
= isl_union_set_foreach_set(domain
, &extract_node
, graph
);
1447 isl_union_set_free(domain
);
1449 return isl_stat_error
;
1450 if (graph_init_table(ctx
, graph
) < 0)
1451 return isl_stat_error
;
1452 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
)
1453 graph
->max_edge
[i
] = isl_union_map_n_map(sc
->constraint
[i
]);
1454 if (graph_init_edge_tables(ctx
, graph
) < 0)
1455 return isl_stat_error
;
1458 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
1460 if (isl_union_map_foreach_map(sc
->constraint
[i
],
1461 &extract_edge
, &data
) < 0)
1462 return isl_stat_error
;
1468 /* Check whether there is any dependence from node[j] to node[i]
1469 * or from node[i] to node[j].
1471 static isl_bool
node_follows_weak(int i
, int j
, void *user
)
1474 struct isl_sched_graph
*graph
= user
;
1476 f
= graph_has_any_edge(graph
, &graph
->node
[j
], &graph
->node
[i
]);
1479 return graph_has_any_edge(graph
, &graph
->node
[i
], &graph
->node
[j
]);
1482 /* Check whether there is a (conditional) validity dependence from node[j]
1483 * to node[i], forcing node[i] to follow node[j].
1485 static isl_bool
node_follows_strong(int i
, int j
, void *user
)
1487 struct isl_sched_graph
*graph
= user
;
1489 return graph_has_validity_edge(graph
, &graph
->node
[j
], &graph
->node
[i
]);
1492 /* Use Tarjan's algorithm for computing the strongly connected components
1493 * in the dependence graph only considering those edges defined by "follows".
1495 static int detect_ccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
1496 isl_bool (*follows
)(int i
, int j
, void *user
))
1499 struct isl_tarjan_graph
*g
= NULL
;
1501 g
= isl_tarjan_graph_init(ctx
, graph
->n
, follows
, graph
);
1509 while (g
->order
[i
] != -1) {
1510 graph
->node
[g
->order
[i
]].scc
= graph
->scc
;
1518 isl_tarjan_graph_free(g
);
1523 /* Apply Tarjan's algorithm to detect the strongly connected components
1524 * in the dependence graph.
1525 * Only consider the (conditional) validity dependences and clear "weak".
1527 static int detect_sccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
1530 return detect_ccs(ctx
, graph
, &node_follows_strong
);
1533 /* Apply Tarjan's algorithm to detect the (weakly) connected components
1534 * in the dependence graph.
1535 * Consider all dependences and set "weak".
1537 static int detect_wccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
1540 return detect_ccs(ctx
, graph
, &node_follows_weak
);
1543 static int cmp_scc(const void *a
, const void *b
, void *data
)
1545 struct isl_sched_graph
*graph
= data
;
1549 return graph
->node
[*i1
].scc
- graph
->node
[*i2
].scc
;
1552 /* Sort the elements of graph->sorted according to the corresponding SCCs.
1554 static int sort_sccs(struct isl_sched_graph
*graph
)
1556 return isl_sort(graph
->sorted
, graph
->n
, sizeof(int), &cmp_scc
, graph
);
1559 /* Given a dependence relation R from "node" to itself,
1560 * construct the set of coefficients of valid constraints for elements
1561 * in that dependence relation.
1562 * In particular, the result contains tuples of coefficients
1563 * c_0, c_n, c_x such that
1565 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
1569 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
1571 * We choose here to compute the dual of delta R.
1572 * Alternatively, we could have computed the dual of R, resulting
1573 * in a set of tuples c_0, c_n, c_x, c_y, and then
1574 * plugged in (c_0, c_n, c_x, -c_x).
1576 * If "node" has been compressed, then the dependence relation
1577 * is also compressed before the set of coefficients is computed.
1579 static __isl_give isl_basic_set
*intra_coefficients(
1580 struct isl_sched_graph
*graph
, struct isl_sched_node
*node
,
1581 __isl_take isl_map
*map
)
1585 isl_basic_set
*coef
;
1586 isl_maybe_isl_basic_set m
;
1588 m
= isl_map_to_basic_set_try_get(graph
->intra_hmap
, map
);
1589 if (m
.valid
< 0 || m
.valid
) {
1594 key
= isl_map_copy(map
);
1595 if (node
->compressed
) {
1596 map
= isl_map_preimage_domain_multi_aff(map
,
1597 isl_multi_aff_copy(node
->decompress
));
1598 map
= isl_map_preimage_range_multi_aff(map
,
1599 isl_multi_aff_copy(node
->decompress
));
1601 delta
= isl_set_remove_divs(isl_map_deltas(map
));
1602 coef
= isl_set_coefficients(delta
);
1603 graph
->intra_hmap
= isl_map_to_basic_set_set(graph
->intra_hmap
, key
,
1604 isl_basic_set_copy(coef
));
1609 /* Given a dependence relation R, construct the set of coefficients
1610 * of valid constraints for elements in that dependence relation.
1611 * In particular, the result contains tuples of coefficients
1612 * c_0, c_n, c_x, c_y such that
1614 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
1616 * If the source or destination nodes of "edge" have been compressed,
1617 * then the dependence relation is also compressed before
1618 * the set of coefficients is computed.
1620 static __isl_give isl_basic_set
*inter_coefficients(
1621 struct isl_sched_graph
*graph
, struct isl_sched_edge
*edge
,
1622 __isl_take isl_map
*map
)
1626 isl_basic_set
*coef
;
1627 isl_maybe_isl_basic_set m
;
1629 m
= isl_map_to_basic_set_try_get(graph
->inter_hmap
, map
);
1630 if (m
.valid
< 0 || m
.valid
) {
1635 key
= isl_map_copy(map
);
1636 if (edge
->src
->compressed
)
1637 map
= isl_map_preimage_domain_multi_aff(map
,
1638 isl_multi_aff_copy(edge
->src
->decompress
));
1639 if (edge
->dst
->compressed
)
1640 map
= isl_map_preimage_range_multi_aff(map
,
1641 isl_multi_aff_copy(edge
->dst
->decompress
));
1642 set
= isl_map_wrap(isl_map_remove_divs(map
));
1643 coef
= isl_set_coefficients(set
);
1644 graph
->inter_hmap
= isl_map_to_basic_set_set(graph
->inter_hmap
, key
,
1645 isl_basic_set_copy(coef
));
1650 /* Add constraints to graph->lp that force validity for the given
1651 * dependence from a node i to itself.
1652 * That is, add constraints that enforce
1654 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
1655 * = c_i_x (y - x) >= 0
1657 * for each (x,y) in R.
1658 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1659 * of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-),
1660 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
1661 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1663 * Actually, we do not construct constraints for the c_i_x themselves,
1664 * but for the coefficients of c_i_x written as a linear combination
1665 * of the columns in node->cmap.
1667 static int add_intra_validity_constraints(struct isl_sched_graph
*graph
,
1668 struct isl_sched_edge
*edge
)
1671 isl_map
*map
= isl_map_copy(edge
->map
);
1672 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1674 isl_dim_map
*dim_map
;
1675 isl_basic_set
*coef
;
1676 struct isl_sched_node
*node
= edge
->src
;
1678 coef
= intra_coefficients(graph
, node
, map
);
1680 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
1682 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
1683 isl_space_dim(dim
, isl_dim_set
), isl_mat_copy(node
->cmap
));
1687 total
= isl_basic_set_total_dim(graph
->lp
);
1688 dim_map
= isl_dim_map_alloc(ctx
, total
);
1689 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 1, 2,
1690 isl_space_dim(dim
, isl_dim_set
), 1,
1692 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 2, 2,
1693 isl_space_dim(dim
, isl_dim_set
), 1,
1695 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
1696 coef
->n_eq
, coef
->n_ineq
);
1697 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
1699 isl_space_free(dim
);
1703 isl_space_free(dim
);
1707 /* Add constraints to graph->lp that force validity for the given
1708 * dependence from node i to node j.
1709 * That is, add constraints that enforce
1711 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
1713 * for each (x,y) in R.
1714 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1715 * of valid constraints for R and then plug in
1716 * (c_j_0 - c_i_0, c_j_n^+ - c_j_n^- - (c_i_n^+ - c_i_n^-),
1717 * c_j_x^+ - c_j_x^- - (c_i_x^+ - c_i_x^-)),
1718 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
1719 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1721 * Actually, we do not construct constraints for the c_*_x themselves,
1722 * but for the coefficients of c_*_x written as a linear combination
1723 * of the columns in node->cmap.
1725 static int add_inter_validity_constraints(struct isl_sched_graph
*graph
,
1726 struct isl_sched_edge
*edge
)
1729 isl_map
*map
= isl_map_copy(edge
->map
);
1730 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1732 isl_dim_map
*dim_map
;
1733 isl_basic_set
*coef
;
1734 struct isl_sched_node
*src
= edge
->src
;
1735 struct isl_sched_node
*dst
= edge
->dst
;
1737 coef
= inter_coefficients(graph
, edge
, map
);
1739 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
1741 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
1742 isl_space_dim(dim
, isl_dim_set
), isl_mat_copy(src
->cmap
));
1743 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
1744 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
,
1745 isl_mat_copy(dst
->cmap
));
1749 total
= isl_basic_set_total_dim(graph
->lp
);
1750 dim_map
= isl_dim_map_alloc(ctx
, total
);
1752 isl_dim_map_range(dim_map
, dst
->start
, 0, 0, 0, 1, 1);
1753 isl_dim_map_range(dim_map
, dst
->start
+ 1, 2, 1, 1, dst
->nparam
, -1);
1754 isl_dim_map_range(dim_map
, dst
->start
+ 2, 2, 1, 1, dst
->nparam
, 1);
1755 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 1, 2,
1756 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
1758 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 2, 2,
1759 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
1762 isl_dim_map_range(dim_map
, src
->start
, 0, 0, 0, 1, -1);
1763 isl_dim_map_range(dim_map
, src
->start
+ 1, 2, 1, 1, src
->nparam
, 1);
1764 isl_dim_map_range(dim_map
, src
->start
+ 2, 2, 1, 1, src
->nparam
, -1);
1765 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 1, 2,
1766 isl_space_dim(dim
, isl_dim_set
), 1,
1768 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 2, 2,
1769 isl_space_dim(dim
, isl_dim_set
), 1,
1772 edge
->start
= graph
->lp
->n_ineq
;
1773 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
1774 coef
->n_eq
, coef
->n_ineq
);
1775 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
1779 isl_space_free(dim
);
1780 edge
->end
= graph
->lp
->n_ineq
;
1784 isl_space_free(dim
);
1788 /* Add constraints to graph->lp that bound the dependence distance for the given
1789 * dependence from a node i to itself.
1790 * If s = 1, we add the constraint
1792 * c_i_x (y - x) <= m_0 + m_n n
1796 * -c_i_x (y - x) + m_0 + m_n n >= 0
1798 * for each (x,y) in R.
1799 * If s = -1, we add the constraint
1801 * -c_i_x (y - x) <= m_0 + m_n n
1805 * c_i_x (y - x) + m_0 + m_n n >= 0
1807 * for each (x,y) in R.
1808 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1809 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
1810 * with each coefficient (except m_0) represented as a pair of non-negative
1813 * Actually, we do not construct constraints for the c_i_x themselves,
1814 * but for the coefficients of c_i_x written as a linear combination
1815 * of the columns in node->cmap.
1818 * If "local" is set, then we add constraints
1820 * c_i_x (y - x) <= 0
1824 * -c_i_x (y - x) <= 0
1826 * instead, forcing the dependence distance to be (less than or) equal to 0.
1827 * That is, we plug in (0, 0, -s * c_i_x),
1828 * Note that dependences marked local are treated as validity constraints
1829 * by add_all_validity_constraints and therefore also have
1830 * their distances bounded by 0 from below.
1832 static int add_intra_proximity_constraints(struct isl_sched_graph
*graph
,
1833 struct isl_sched_edge
*edge
, int s
, int local
)
1837 isl_map
*map
= isl_map_copy(edge
->map
);
1838 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1840 isl_dim_map
*dim_map
;
1841 isl_basic_set
*coef
;
1842 struct isl_sched_node
*node
= edge
->src
;
1844 coef
= intra_coefficients(graph
, node
, map
);
1846 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
1848 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
1849 isl_space_dim(dim
, isl_dim_set
), isl_mat_copy(node
->cmap
));
1853 nparam
= isl_space_dim(node
->space
, isl_dim_param
);
1854 total
= isl_basic_set_total_dim(graph
->lp
);
1855 dim_map
= isl_dim_map_alloc(ctx
, total
);
1858 isl_dim_map_range(dim_map
, 1, 0, 0, 0, 1, 1);
1859 isl_dim_map_range(dim_map
, 4, 2, 1, 1, nparam
, -1);
1860 isl_dim_map_range(dim_map
, 5, 2, 1, 1, nparam
, 1);
1862 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 1, 2,
1863 isl_space_dim(dim
, isl_dim_set
), 1,
1865 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 2, 2,
1866 isl_space_dim(dim
, isl_dim_set
), 1,
1868 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
1869 coef
->n_eq
, coef
->n_ineq
);
1870 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
1872 isl_space_free(dim
);
1876 isl_space_free(dim
);
1880 /* Add constraints to graph->lp that bound the dependence distance for the given
1881 * dependence from node i to node j.
1882 * If s = 1, we add the constraint
1884 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
1889 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
1892 * for each (x,y) in R.
1893 * If s = -1, we add the constraint
1895 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
1900 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
1903 * for each (x,y) in R.
1904 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1905 * of valid constraints for R and then plug in
1906 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
1908 * with each coefficient (except m_0, c_j_0 and c_i_0)
1909 * represented as a pair of non-negative coefficients.
1911 * Actually, we do not construct constraints for the c_*_x themselves,
1912 * but for the coefficients of c_*_x written as a linear combination
1913 * of the columns in node->cmap.
1916 * If "local" is set, then we add constraints
1918 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
1922 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)) <= 0
1924 * instead, forcing the dependence distance to be (less than or) equal to 0.
1925 * That is, we plug in
1926 * (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, -s*c_j_x+s*c_i_x).
1927 * Note that dependences marked local are treated as validity constraints
1928 * by add_all_validity_constraints and therefore also have
1929 * their distances bounded by 0 from below.
1931 static int add_inter_proximity_constraints(struct isl_sched_graph
*graph
,
1932 struct isl_sched_edge
*edge
, int s
, int local
)
1936 isl_map
*map
= isl_map_copy(edge
->map
);
1937 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1939 isl_dim_map
*dim_map
;
1940 isl_basic_set
*coef
;
1941 struct isl_sched_node
*src
= edge
->src
;
1942 struct isl_sched_node
*dst
= edge
->dst
;
1944 coef
= inter_coefficients(graph
, edge
, map
);
1946 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
1948 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
1949 isl_space_dim(dim
, isl_dim_set
), isl_mat_copy(src
->cmap
));
1950 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
1951 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
,
1952 isl_mat_copy(dst
->cmap
));
1956 nparam
= isl_space_dim(src
->space
, isl_dim_param
);
1957 total
= isl_basic_set_total_dim(graph
->lp
);
1958 dim_map
= isl_dim_map_alloc(ctx
, total
);
1961 isl_dim_map_range(dim_map
, 1, 0, 0, 0, 1, 1);
1962 isl_dim_map_range(dim_map
, 4, 2, 1, 1, nparam
, -1);
1963 isl_dim_map_range(dim_map
, 5, 2, 1, 1, nparam
, 1);
1966 isl_dim_map_range(dim_map
, dst
->start
, 0, 0, 0, 1, -s
);
1967 isl_dim_map_range(dim_map
, dst
->start
+ 1, 2, 1, 1, dst
->nparam
, s
);
1968 isl_dim_map_range(dim_map
, dst
->start
+ 2, 2, 1, 1, dst
->nparam
, -s
);
1969 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 1, 2,
1970 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
1972 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 2, 2,
1973 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
1976 isl_dim_map_range(dim_map
, src
->start
, 0, 0, 0, 1, s
);
1977 isl_dim_map_range(dim_map
, src
->start
+ 1, 2, 1, 1, src
->nparam
, -s
);
1978 isl_dim_map_range(dim_map
, src
->start
+ 2, 2, 1, 1, src
->nparam
, s
);
1979 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 1, 2,
1980 isl_space_dim(dim
, isl_dim_set
), 1,
1982 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 2, 2,
1983 isl_space_dim(dim
, isl_dim_set
), 1,
1986 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
1987 coef
->n_eq
, coef
->n_ineq
);
1988 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
1990 isl_space_free(dim
);
1994 isl_space_free(dim
);
1998 /* Add all validity constraints to graph->lp.
2000 * An edge that is forced to be local needs to have its dependence
2001 * distances equal to zero. We take care of bounding them by 0 from below
2002 * here. add_all_proximity_constraints takes care of bounding them by 0
2005 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2006 * Otherwise, we ignore them.
2008 static int add_all_validity_constraints(struct isl_sched_graph
*graph
,
2009 int use_coincidence
)
2013 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2014 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
2017 local
= is_local(edge
) ||
2018 (is_coincidence(edge
) && use_coincidence
);
2019 if (!is_validity(edge
) && !local
)
2021 if (edge
->src
!= edge
->dst
)
2023 if (add_intra_validity_constraints(graph
, edge
) < 0)
2027 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2028 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
2031 local
= is_local(edge
) ||
2032 (is_coincidence(edge
) && use_coincidence
);
2033 if (!is_validity(edge
) && !local
)
2035 if (edge
->src
== edge
->dst
)
2037 if (add_inter_validity_constraints(graph
, edge
) < 0)
2044 /* Add constraints to graph->lp that bound the dependence distance
2045 * for all dependence relations.
2046 * If a given proximity dependence is identical to a validity
2047 * dependence, then the dependence distance is already bounded
2048 * from below (by zero), so we only need to bound the distance
2049 * from above. (This includes the case of "local" dependences
2050 * which are treated as validity dependence by add_all_validity_constraints.)
2051 * Otherwise, we need to bound the distance both from above and from below.
2053 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2054 * Otherwise, we ignore them.
2056 static int add_all_proximity_constraints(struct isl_sched_graph
*graph
,
2057 int use_coincidence
)
2061 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2062 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
2065 local
= is_local(edge
) ||
2066 (is_coincidence(edge
) && use_coincidence
);
2067 if (!is_proximity(edge
) && !local
)
2069 if (edge
->src
== edge
->dst
&&
2070 add_intra_proximity_constraints(graph
, edge
, 1, local
) < 0)
2072 if (edge
->src
!= edge
->dst
&&
2073 add_inter_proximity_constraints(graph
, edge
, 1, local
) < 0)
2075 if (is_validity(edge
) || local
)
2077 if (edge
->src
== edge
->dst
&&
2078 add_intra_proximity_constraints(graph
, edge
, -1, 0) < 0)
2080 if (edge
->src
!= edge
->dst
&&
2081 add_inter_proximity_constraints(graph
, edge
, -1, 0) < 0)
2088 /* Compute a basis for the rows in the linear part of the schedule
2089 * and extend this basis to a full basis. The remaining rows
2090 * can then be used to force linear independence from the rows
2093 * In particular, given the schedule rows S, we compute
2098 * with H the Hermite normal form of S. That is, all but the
2099 * first rank columns of H are zero and so each row in S is
2100 * a linear combination of the first rank rows of Q.
2101 * The matrix Q is then transposed because we will write the
2102 * coefficients of the next schedule row as a column vector s
2103 * and express this s as a linear combination s = Q c of the
2105 * Similarly, the matrix U is transposed such that we can
2106 * compute the coefficients c = U s from a schedule row s.
2108 static int node_update_cmap(struct isl_sched_node
*node
)
2111 int n_row
= isl_mat_rows(node
->sched
);
2113 H
= isl_mat_sub_alloc(node
->sched
, 0, n_row
,
2114 1 + node
->nparam
, node
->nvar
);
2116 H
= isl_mat_left_hermite(H
, 0, &U
, &Q
);
2117 isl_mat_free(node
->cmap
);
2118 isl_mat_free(node
->cinv
);
2119 isl_mat_free(node
->ctrans
);
2120 node
->ctrans
= isl_mat_copy(Q
);
2121 node
->cmap
= isl_mat_transpose(Q
);
2122 node
->cinv
= isl_mat_transpose(U
);
2123 node
->rank
= isl_mat_initial_non_zero_cols(H
);
2126 if (!node
->cmap
|| !node
->cinv
|| !node
->ctrans
|| node
->rank
< 0)
2131 /* How many times should we count the constraints in "edge"?
2133 * If carry is set, then we are counting the number of
2134 * (validity or conditional validity) constraints that will be added
2135 * in setup_carry_lp and we count each edge exactly once.
2137 * Otherwise, we count as follows
2138 * validity -> 1 (>= 0)
2139 * validity+proximity -> 2 (>= 0 and upper bound)
2140 * proximity -> 2 (lower and upper bound)
2141 * local(+any) -> 2 (>= 0 and <= 0)
2143 * If an edge is only marked conditional_validity then it counts
2144 * as zero since it is only checked afterwards.
2146 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2147 * Otherwise, we ignore them.
2149 static int edge_multiplicity(struct isl_sched_edge
*edge
, int carry
,
2150 int use_coincidence
)
2152 if (carry
&& !is_validity(edge
) && !is_conditional_validity(edge
))
2156 if (is_proximity(edge
) || is_local(edge
))
2158 if (use_coincidence
&& is_coincidence(edge
))
2160 if (is_validity(edge
))
2165 /* Count the number of equality and inequality constraints
2166 * that will be added for the given map.
2168 * "use_coincidence" is set if we should take into account coincidence edges.
2170 static int count_map_constraints(struct isl_sched_graph
*graph
,
2171 struct isl_sched_edge
*edge
, __isl_take isl_map
*map
,
2172 int *n_eq
, int *n_ineq
, int carry
, int use_coincidence
)
2174 isl_basic_set
*coef
;
2175 int f
= edge_multiplicity(edge
, carry
, use_coincidence
);
2182 if (edge
->src
== edge
->dst
)
2183 coef
= intra_coefficients(graph
, edge
->src
, map
);
2185 coef
= inter_coefficients(graph
, edge
, map
);
2188 *n_eq
+= f
* coef
->n_eq
;
2189 *n_ineq
+= f
* coef
->n_ineq
;
2190 isl_basic_set_free(coef
);
2195 /* Count the number of equality and inequality constraints
2196 * that will be added to the main lp problem.
2197 * We count as follows
2198 * validity -> 1 (>= 0)
2199 * validity+proximity -> 2 (>= 0 and upper bound)
2200 * proximity -> 2 (lower and upper bound)
2201 * local(+any) -> 2 (>= 0 and <= 0)
2203 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2204 * Otherwise, we ignore them.
2206 static int count_constraints(struct isl_sched_graph
*graph
,
2207 int *n_eq
, int *n_ineq
, int use_coincidence
)
2211 *n_eq
= *n_ineq
= 0;
2212 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2213 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
2214 isl_map
*map
= isl_map_copy(edge
->map
);
2216 if (count_map_constraints(graph
, edge
, map
, n_eq
, n_ineq
,
2217 0, use_coincidence
) < 0)
2224 /* Count the number of constraints that will be added by
2225 * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
2228 * In practice, add_bound_coefficient_constraints only adds inequalities.
2230 static int count_bound_coefficient_constraints(isl_ctx
*ctx
,
2231 struct isl_sched_graph
*graph
, int *n_eq
, int *n_ineq
)
2235 if (ctx
->opt
->schedule_max_coefficient
== -1)
2238 for (i
= 0; i
< graph
->n
; ++i
)
2239 *n_ineq
+= 2 * graph
->node
[i
].nparam
+ 2 * graph
->node
[i
].nvar
;
2244 /* Add constraints that bound the values of the variable and parameter
2245 * coefficients of the schedule.
2247 * The maximal value of the coefficients is defined by the option
2248 * 'schedule_max_coefficient'.
2250 static int add_bound_coefficient_constraints(isl_ctx
*ctx
,
2251 struct isl_sched_graph
*graph
)
2254 int max_coefficient
;
2257 max_coefficient
= ctx
->opt
->schedule_max_coefficient
;
2259 if (max_coefficient
== -1)
2262 total
= isl_basic_set_total_dim(graph
->lp
);
2264 for (i
= 0; i
< graph
->n
; ++i
) {
2265 struct isl_sched_node
*node
= &graph
->node
[i
];
2266 for (j
= 0; j
< 2 * node
->nparam
+ 2 * node
->nvar
; ++j
) {
2268 k
= isl_basic_set_alloc_inequality(graph
->lp
);
2271 dim
= 1 + node
->start
+ 1 + j
;
2272 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
2273 isl_int_set_si(graph
->lp
->ineq
[k
][dim
], -1);
2274 isl_int_set_si(graph
->lp
->ineq
[k
][0], max_coefficient
);
2281 /* Construct an ILP problem for finding schedule coefficients
2282 * that result in non-negative, but small dependence distances
2283 * over all dependences.
2284 * In particular, the dependence distances over proximity edges
2285 * are bounded by m_0 + m_n n and we compute schedule coefficients
2286 * with small values (preferably zero) of m_n and m_0.
2288 * All variables of the ILP are non-negative. The actual coefficients
2289 * may be negative, so each coefficient is represented as the difference
2290 * of two non-negative variables. The negative part always appears
2291 * immediately before the positive part.
2292 * Other than that, the variables have the following order
2294 * - sum of positive and negative parts of m_n coefficients
2296 * - sum of positive and negative parts of all c_n coefficients
2297 * (unconstrained when computing non-parametric schedules)
2298 * - sum of positive and negative parts of all c_x coefficients
2299 * - positive and negative parts of m_n coefficients
2302 * - positive and negative parts of c_i_n (if parametric)
2303 * - positive and negative parts of c_i_x
2305 * The c_i_x are not represented directly, but through the columns of
2306 * node->cmap. That is, the computed values are for variable t_i_x
2307 * such that c_i_x = Q t_i_x with Q equal to node->cmap.
2309 * The constraints are those from the edges plus two or three equalities
2310 * to express the sums.
2312 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2313 * Otherwise, we ignore them.
2315 static int setup_lp(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
2316 int use_coincidence
)
2326 int max_constant_term
;
2328 max_constant_term
= ctx
->opt
->schedule_max_constant_term
;
2330 parametric
= ctx
->opt
->schedule_parametric
;
2331 nparam
= isl_space_dim(graph
->node
[0].space
, isl_dim_param
);
2333 total
= param_pos
+ 2 * nparam
;
2334 for (i
= 0; i
< graph
->n
; ++i
) {
2335 struct isl_sched_node
*node
= &graph
->node
[graph
->sorted
[i
]];
2336 if (node_update_cmap(node
) < 0)
2338 node
->start
= total
;
2339 total
+= 1 + 2 * (node
->nparam
+ node
->nvar
);
2342 if (count_constraints(graph
, &n_eq
, &n_ineq
, use_coincidence
) < 0)
2344 if (count_bound_coefficient_constraints(ctx
, graph
, &n_eq
, &n_ineq
) < 0)
2347 dim
= isl_space_set_alloc(ctx
, 0, total
);
2348 isl_basic_set_free(graph
->lp
);
2349 n_eq
+= 2 + parametric
;
2350 if (max_constant_term
!= -1)
2353 graph
->lp
= isl_basic_set_alloc_space(dim
, 0, n_eq
, n_ineq
);
2355 k
= isl_basic_set_alloc_equality(graph
->lp
);
2358 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2359 isl_int_set_si(graph
->lp
->eq
[k
][1], -1);
2360 for (i
= 0; i
< 2 * nparam
; ++i
)
2361 isl_int_set_si(graph
->lp
->eq
[k
][1 + param_pos
+ i
], 1);
2364 k
= isl_basic_set_alloc_equality(graph
->lp
);
2367 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2368 isl_int_set_si(graph
->lp
->eq
[k
][3], -1);
2369 for (i
= 0; i
< graph
->n
; ++i
) {
2370 int pos
= 1 + graph
->node
[i
].start
+ 1;
2372 for (j
= 0; j
< 2 * graph
->node
[i
].nparam
; ++j
)
2373 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
2377 k
= isl_basic_set_alloc_equality(graph
->lp
);
2380 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2381 isl_int_set_si(graph
->lp
->eq
[k
][4], -1);
2382 for (i
= 0; i
< graph
->n
; ++i
) {
2383 struct isl_sched_node
*node
= &graph
->node
[i
];
2384 int pos
= 1 + node
->start
+ 1 + 2 * node
->nparam
;
2386 for (j
= 0; j
< 2 * node
->nvar
; ++j
)
2387 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
2390 if (max_constant_term
!= -1)
2391 for (i
= 0; i
< graph
->n
; ++i
) {
2392 struct isl_sched_node
*node
= &graph
->node
[i
];
2393 k
= isl_basic_set_alloc_inequality(graph
->lp
);
2396 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
2397 isl_int_set_si(graph
->lp
->ineq
[k
][1 + node
->start
], -1);
2398 isl_int_set_si(graph
->lp
->ineq
[k
][0], max_constant_term
);
2401 if (add_bound_coefficient_constraints(ctx
, graph
) < 0)
2403 if (add_all_validity_constraints(graph
, use_coincidence
) < 0)
2405 if (add_all_proximity_constraints(graph
, use_coincidence
) < 0)
2411 /* Analyze the conflicting constraint found by
2412 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
2413 * constraint of one of the edges between distinct nodes, living, moreover
2414 * in distinct SCCs, then record the source and sink SCC as this may
2415 * be a good place to cut between SCCs.
2417 static int check_conflict(int con
, void *user
)
2420 struct isl_sched_graph
*graph
= user
;
2422 if (graph
->src_scc
>= 0)
2425 con
-= graph
->lp
->n_eq
;
2427 if (con
>= graph
->lp
->n_ineq
)
2430 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2431 if (!is_validity(&graph
->edge
[i
]))
2433 if (graph
->edge
[i
].src
== graph
->edge
[i
].dst
)
2435 if (graph
->edge
[i
].src
->scc
== graph
->edge
[i
].dst
->scc
)
2437 if (graph
->edge
[i
].start
> con
)
2439 if (graph
->edge
[i
].end
<= con
)
2441 graph
->src_scc
= graph
->edge
[i
].src
->scc
;
2442 graph
->dst_scc
= graph
->edge
[i
].dst
->scc
;
2448 /* Check whether the next schedule row of the given node needs to be
2449 * non-trivial. Lower-dimensional domains may have some trivial rows,
2450 * but as soon as the number of remaining required non-trivial rows
2451 * is as large as the number or remaining rows to be computed,
2452 * all remaining rows need to be non-trivial.
2454 static int needs_row(struct isl_sched_graph
*graph
, struct isl_sched_node
*node
)
2456 return node
->nvar
- node
->rank
>= graph
->maxvar
- graph
->n_row
;
2459 /* Solve the ILP problem constructed in setup_lp.
2460 * For each node such that all the remaining rows of its schedule
2461 * need to be non-trivial, we construct a non-triviality region.
2462 * This region imposes that the next row is independent of previous rows.
2463 * In particular the coefficients c_i_x are represented by t_i_x
2464 * variables with c_i_x = Q t_i_x and Q a unimodular matrix such that
2465 * its first columns span the rows of the previously computed part
2466 * of the schedule. The non-triviality region enforces that at least
2467 * one of the remaining components of t_i_x is non-zero, i.e.,
2468 * that the new schedule row depends on at least one of the remaining
2471 static __isl_give isl_vec
*solve_lp(struct isl_sched_graph
*graph
)
2477 for (i
= 0; i
< graph
->n
; ++i
) {
2478 struct isl_sched_node
*node
= &graph
->node
[i
];
2479 int skip
= node
->rank
;
2480 graph
->region
[i
].pos
= node
->start
+ 1 + 2*(node
->nparam
+skip
);
2481 if (needs_row(graph
, node
))
2482 graph
->region
[i
].len
= 2 * (node
->nvar
- skip
);
2484 graph
->region
[i
].len
= 0;
2486 lp
= isl_basic_set_copy(graph
->lp
);
2487 sol
= isl_tab_basic_set_non_trivial_lexmin(lp
, 2, graph
->n
,
2488 graph
->region
, &check_conflict
, graph
);
2492 /* Update the schedules of all nodes based on the given solution
2493 * of the LP problem.
2494 * The new row is added to the current band.
2495 * All possibly negative coefficients are encoded as a difference
2496 * of two non-negative variables, so we need to perform the subtraction
2497 * here. Moreover, if use_cmap is set, then the solution does
2498 * not refer to the actual coefficients c_i_x, but instead to variables
2499 * t_i_x such that c_i_x = Q t_i_x and Q is equal to node->cmap.
2500 * In this case, we then also need to perform this multiplication
2501 * to obtain the values of c_i_x.
2503 * If coincident is set, then the caller guarantees that the new
2504 * row satisfies the coincidence constraints.
2506 static int update_schedule(struct isl_sched_graph
*graph
,
2507 __isl_take isl_vec
*sol
, int use_cmap
, int coincident
)
2510 isl_vec
*csol
= NULL
;
2515 isl_die(sol
->ctx
, isl_error_internal
,
2516 "no solution found", goto error
);
2517 if (graph
->n_total_row
>= graph
->max_row
)
2518 isl_die(sol
->ctx
, isl_error_internal
,
2519 "too many schedule rows", goto error
);
2521 for (i
= 0; i
< graph
->n
; ++i
) {
2522 struct isl_sched_node
*node
= &graph
->node
[i
];
2523 int pos
= node
->start
;
2524 int row
= isl_mat_rows(node
->sched
);
2527 csol
= isl_vec_alloc(sol
->ctx
, node
->nvar
);
2531 isl_map_free(node
->sched_map
);
2532 node
->sched_map
= NULL
;
2533 node
->sched
= isl_mat_add_rows(node
->sched
, 1);
2536 node
->sched
= isl_mat_set_element(node
->sched
, row
, 0,
2538 for (j
= 0; j
< node
->nparam
+ node
->nvar
; ++j
)
2539 isl_int_sub(sol
->el
[1 + pos
+ 1 + 2 * j
+ 1],
2540 sol
->el
[1 + pos
+ 1 + 2 * j
+ 1],
2541 sol
->el
[1 + pos
+ 1 + 2 * j
]);
2542 for (j
= 0; j
< node
->nparam
; ++j
)
2543 node
->sched
= isl_mat_set_element(node
->sched
,
2544 row
, 1 + j
, sol
->el
[1+pos
+1+2*j
+1]);
2545 for (j
= 0; j
< node
->nvar
; ++j
)
2546 isl_int_set(csol
->el
[j
],
2547 sol
->el
[1+pos
+1+2*(node
->nparam
+j
)+1]);
2549 csol
= isl_mat_vec_product(isl_mat_copy(node
->cmap
),
2553 for (j
= 0; j
< node
->nvar
; ++j
)
2554 node
->sched
= isl_mat_set_element(node
->sched
,
2555 row
, 1 + node
->nparam
+ j
, csol
->el
[j
]);
2556 node
->coincident
[graph
->n_total_row
] = coincident
;
2562 graph
->n_total_row
++;
2571 /* Convert row "row" of node->sched into an isl_aff living in "ls"
2572 * and return this isl_aff.
2574 static __isl_give isl_aff
*extract_schedule_row(__isl_take isl_local_space
*ls
,
2575 struct isl_sched_node
*node
, int row
)
2583 aff
= isl_aff_zero_on_domain(ls
);
2584 isl_mat_get_element(node
->sched
, row
, 0, &v
);
2585 aff
= isl_aff_set_constant(aff
, v
);
2586 for (j
= 0; j
< node
->nparam
; ++j
) {
2587 isl_mat_get_element(node
->sched
, row
, 1 + j
, &v
);
2588 aff
= isl_aff_set_coefficient(aff
, isl_dim_param
, j
, v
);
2590 for (j
= 0; j
< node
->nvar
; ++j
) {
2591 isl_mat_get_element(node
->sched
, row
, 1 + node
->nparam
+ j
, &v
);
2592 aff
= isl_aff_set_coefficient(aff
, isl_dim_in
, j
, v
);
2600 /* Convert the "n" rows starting at "first" of node->sched into a multi_aff
2601 * and return this multi_aff.
2603 * The result is defined over the uncompressed node domain.
2605 static __isl_give isl_multi_aff
*node_extract_partial_schedule_multi_aff(
2606 struct isl_sched_node
*node
, int first
, int n
)
2610 isl_local_space
*ls
;
2617 nrow
= isl_mat_rows(node
->sched
);
2618 if (node
->compressed
)
2619 space
= isl_multi_aff_get_domain_space(node
->decompress
);
2621 space
= isl_space_copy(node
->space
);
2622 ls
= isl_local_space_from_space(isl_space_copy(space
));
2623 space
= isl_space_from_domain(space
);
2624 space
= isl_space_add_dims(space
, isl_dim_out
, n
);
2625 ma
= isl_multi_aff_zero(space
);
2627 for (i
= first
; i
< first
+ n
; ++i
) {
2628 aff
= extract_schedule_row(isl_local_space_copy(ls
), node
, i
);
2629 ma
= isl_multi_aff_set_aff(ma
, i
- first
, aff
);
2632 isl_local_space_free(ls
);
2634 if (node
->compressed
)
2635 ma
= isl_multi_aff_pullback_multi_aff(ma
,
2636 isl_multi_aff_copy(node
->compress
));
2641 /* Convert node->sched into a multi_aff and return this multi_aff.
2643 * The result is defined over the uncompressed node domain.
2645 static __isl_give isl_multi_aff
*node_extract_schedule_multi_aff(
2646 struct isl_sched_node
*node
)
2650 nrow
= isl_mat_rows(node
->sched
);
2651 return node_extract_partial_schedule_multi_aff(node
, 0, nrow
);
2654 /* Convert node->sched into a map and return this map.
2656 * The result is cached in node->sched_map, which needs to be released
2657 * whenever node->sched is updated.
2658 * It is defined over the uncompressed node domain.
2660 static __isl_give isl_map
*node_extract_schedule(struct isl_sched_node
*node
)
2662 if (!node
->sched_map
) {
2665 ma
= node_extract_schedule_multi_aff(node
);
2666 node
->sched_map
= isl_map_from_multi_aff(ma
);
2669 return isl_map_copy(node
->sched_map
);
2672 /* Construct a map that can be used to update a dependence relation
2673 * based on the current schedule.
2674 * That is, construct a map expressing that source and sink
2675 * are executed within the same iteration of the current schedule.
2676 * This map can then be intersected with the dependence relation.
2677 * This is not the most efficient way, but this shouldn't be a critical
2680 static __isl_give isl_map
*specializer(struct isl_sched_node
*src
,
2681 struct isl_sched_node
*dst
)
2683 isl_map
*src_sched
, *dst_sched
;
2685 src_sched
= node_extract_schedule(src
);
2686 dst_sched
= node_extract_schedule(dst
);
2687 return isl_map_apply_range(src_sched
, isl_map_reverse(dst_sched
));
2690 /* Intersect the domains of the nested relations in domain and range
2691 * of "umap" with "map".
2693 static __isl_give isl_union_map
*intersect_domains(
2694 __isl_take isl_union_map
*umap
, __isl_keep isl_map
*map
)
2696 isl_union_set
*uset
;
2698 umap
= isl_union_map_zip(umap
);
2699 uset
= isl_union_set_from_set(isl_map_wrap(isl_map_copy(map
)));
2700 umap
= isl_union_map_intersect_domain(umap
, uset
);
2701 umap
= isl_union_map_zip(umap
);
2705 /* Update the dependence relation of the given edge based
2706 * on the current schedule.
2707 * If the dependence is carried completely by the current schedule, then
2708 * it is removed from the edge_tables. It is kept in the list of edges
2709 * as otherwise all edge_tables would have to be recomputed.
2711 static int update_edge(struct isl_sched_graph
*graph
,
2712 struct isl_sched_edge
*edge
)
2717 id
= specializer(edge
->src
, edge
->dst
);
2718 edge
->map
= isl_map_intersect(edge
->map
, isl_map_copy(id
));
2722 if (edge
->tagged_condition
) {
2723 edge
->tagged_condition
=
2724 intersect_domains(edge
->tagged_condition
, id
);
2725 if (!edge
->tagged_condition
)
2728 if (edge
->tagged_validity
) {
2729 edge
->tagged_validity
=
2730 intersect_domains(edge
->tagged_validity
, id
);
2731 if (!edge
->tagged_validity
)
2735 empty
= isl_map_plain_is_empty(edge
->map
);
2739 graph_remove_edge(graph
, edge
);
2748 /* Does the domain of "umap" intersect "uset"?
2750 static int domain_intersects(__isl_keep isl_union_map
*umap
,
2751 __isl_keep isl_union_set
*uset
)
2755 umap
= isl_union_map_copy(umap
);
2756 umap
= isl_union_map_intersect_domain(umap
, isl_union_set_copy(uset
));
2757 empty
= isl_union_map_is_empty(umap
);
2758 isl_union_map_free(umap
);
2760 return empty
< 0 ? -1 : !empty
;
2763 /* Does the range of "umap" intersect "uset"?
2765 static int range_intersects(__isl_keep isl_union_map
*umap
,
2766 __isl_keep isl_union_set
*uset
)
2770 umap
= isl_union_map_copy(umap
);
2771 umap
= isl_union_map_intersect_range(umap
, isl_union_set_copy(uset
));
2772 empty
= isl_union_map_is_empty(umap
);
2773 isl_union_map_free(umap
);
2775 return empty
< 0 ? -1 : !empty
;
2778 /* Are the condition dependences of "edge" local with respect to
2779 * the current schedule?
2781 * That is, are domain and range of the condition dependences mapped
2782 * to the same point?
2784 * In other words, is the condition false?
2786 static int is_condition_false(struct isl_sched_edge
*edge
)
2788 isl_union_map
*umap
;
2789 isl_map
*map
, *sched
, *test
;
2792 empty
= isl_union_map_is_empty(edge
->tagged_condition
);
2793 if (empty
< 0 || empty
)
2796 umap
= isl_union_map_copy(edge
->tagged_condition
);
2797 umap
= isl_union_map_zip(umap
);
2798 umap
= isl_union_set_unwrap(isl_union_map_domain(umap
));
2799 map
= isl_map_from_union_map(umap
);
2801 sched
= node_extract_schedule(edge
->src
);
2802 map
= isl_map_apply_domain(map
, sched
);
2803 sched
= node_extract_schedule(edge
->dst
);
2804 map
= isl_map_apply_range(map
, sched
);
2806 test
= isl_map_identity(isl_map_get_space(map
));
2807 local
= isl_map_is_subset(map
, test
);
2814 /* For each conditional validity constraint that is adjacent
2815 * to a condition with domain in condition_source or range in condition_sink,
2816 * turn it into an unconditional validity constraint.
2818 static int unconditionalize_adjacent_validity(struct isl_sched_graph
*graph
,
2819 __isl_take isl_union_set
*condition_source
,
2820 __isl_take isl_union_set
*condition_sink
)
2824 condition_source
= isl_union_set_coalesce(condition_source
);
2825 condition_sink
= isl_union_set_coalesce(condition_sink
);
2827 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2829 isl_union_map
*validity
;
2831 if (!is_conditional_validity(&graph
->edge
[i
]))
2833 if (is_validity(&graph
->edge
[i
]))
2836 validity
= graph
->edge
[i
].tagged_validity
;
2837 adjacent
= domain_intersects(validity
, condition_sink
);
2838 if (adjacent
>= 0 && !adjacent
)
2839 adjacent
= range_intersects(validity
, condition_source
);
2845 set_validity(&graph
->edge
[i
]);
2848 isl_union_set_free(condition_source
);
2849 isl_union_set_free(condition_sink
);
2852 isl_union_set_free(condition_source
);
2853 isl_union_set_free(condition_sink
);
2857 /* Update the dependence relations of all edges based on the current schedule
2858 * and enforce conditional validity constraints that are adjacent
2859 * to satisfied condition constraints.
2861 * First check if any of the condition constraints are satisfied
2862 * (i.e., not local to the outer schedule) and keep track of
2863 * their domain and range.
2864 * Then update all dependence relations (which removes the non-local
2866 * Finally, if any condition constraints turned out to be satisfied,
2867 * then turn all adjacent conditional validity constraints into
2868 * unconditional validity constraints.
2870 static int update_edges(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2874 isl_union_set
*source
, *sink
;
2876 source
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
2877 sink
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
2878 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2880 isl_union_set
*uset
;
2881 isl_union_map
*umap
;
2883 if (!is_condition(&graph
->edge
[i
]))
2885 if (is_local(&graph
->edge
[i
]))
2887 local
= is_condition_false(&graph
->edge
[i
]);
2895 umap
= isl_union_map_copy(graph
->edge
[i
].tagged_condition
);
2896 uset
= isl_union_map_domain(umap
);
2897 source
= isl_union_set_union(source
, uset
);
2899 umap
= isl_union_map_copy(graph
->edge
[i
].tagged_condition
);
2900 uset
= isl_union_map_range(umap
);
2901 sink
= isl_union_set_union(sink
, uset
);
2904 for (i
= graph
->n_edge
- 1; i
>= 0; --i
) {
2905 if (update_edge(graph
, &graph
->edge
[i
]) < 0)
2910 return unconditionalize_adjacent_validity(graph
, source
, sink
);
2912 isl_union_set_free(source
);
2913 isl_union_set_free(sink
);
2916 isl_union_set_free(source
);
2917 isl_union_set_free(sink
);
2921 static void next_band(struct isl_sched_graph
*graph
)
2923 graph
->band_start
= graph
->n_total_row
;
2926 /* Return the union of the universe domains of the nodes in "graph"
2927 * that satisfy "pred".
2929 static __isl_give isl_union_set
*isl_sched_graph_domain(isl_ctx
*ctx
,
2930 struct isl_sched_graph
*graph
,
2931 int (*pred
)(struct isl_sched_node
*node
, int data
), int data
)
2937 for (i
= 0; i
< graph
->n
; ++i
)
2938 if (pred(&graph
->node
[i
], data
))
2942 isl_die(ctx
, isl_error_internal
,
2943 "empty component", return NULL
);
2945 set
= isl_set_universe(isl_space_copy(graph
->node
[i
].space
));
2946 dom
= isl_union_set_from_set(set
);
2948 for (i
= i
+ 1; i
< graph
->n
; ++i
) {
2949 if (!pred(&graph
->node
[i
], data
))
2951 set
= isl_set_universe(isl_space_copy(graph
->node
[i
].space
));
2952 dom
= isl_union_set_union(dom
, isl_union_set_from_set(set
));
2958 /* Return a list of unions of universe domains, where each element
2959 * in the list corresponds to an SCC (or WCC) indexed by node->scc.
2961 static __isl_give isl_union_set_list
*extract_sccs(isl_ctx
*ctx
,
2962 struct isl_sched_graph
*graph
)
2965 isl_union_set_list
*filters
;
2967 filters
= isl_union_set_list_alloc(ctx
, graph
->scc
);
2968 for (i
= 0; i
< graph
->scc
; ++i
) {
2971 dom
= isl_sched_graph_domain(ctx
, graph
, &node_scc_exactly
, i
);
2972 filters
= isl_union_set_list_add(filters
, dom
);
2978 /* Return a list of two unions of universe domains, one for the SCCs up
2979 * to and including graph->src_scc and another for the other SCCs.
2981 static __isl_give isl_union_set_list
*extract_split(isl_ctx
*ctx
,
2982 struct isl_sched_graph
*graph
)
2985 isl_union_set_list
*filters
;
2987 filters
= isl_union_set_list_alloc(ctx
, 2);
2988 dom
= isl_sched_graph_domain(ctx
, graph
,
2989 &node_scc_at_most
, graph
->src_scc
);
2990 filters
= isl_union_set_list_add(filters
, dom
);
2991 dom
= isl_sched_graph_domain(ctx
, graph
,
2992 &node_scc_at_least
, graph
->src_scc
+ 1);
2993 filters
= isl_union_set_list_add(filters
, dom
);
2998 /* Copy nodes that satisfy node_pred from the src dependence graph
2999 * to the dst dependence graph.
3001 static int copy_nodes(struct isl_sched_graph
*dst
, struct isl_sched_graph
*src
,
3002 int (*node_pred
)(struct isl_sched_node
*node
, int data
), int data
)
3007 for (i
= 0; i
< src
->n
; ++i
) {
3010 if (!node_pred(&src
->node
[i
], data
))
3014 dst
->node
[j
].space
= isl_space_copy(src
->node
[i
].space
);
3015 dst
->node
[j
].compressed
= src
->node
[i
].compressed
;
3016 dst
->node
[j
].hull
= isl_set_copy(src
->node
[i
].hull
);
3017 dst
->node
[j
].compress
=
3018 isl_multi_aff_copy(src
->node
[i
].compress
);
3019 dst
->node
[j
].decompress
=
3020 isl_multi_aff_copy(src
->node
[i
].decompress
);
3021 dst
->node
[j
].nvar
= src
->node
[i
].nvar
;
3022 dst
->node
[j
].nparam
= src
->node
[i
].nparam
;
3023 dst
->node
[j
].sched
= isl_mat_copy(src
->node
[i
].sched
);
3024 dst
->node
[j
].sched_map
= isl_map_copy(src
->node
[i
].sched_map
);
3025 dst
->node
[j
].coincident
= src
->node
[i
].coincident
;
3028 if (!dst
->node
[j
].space
|| !dst
->node
[j
].sched
)
3030 if (dst
->node
[j
].compressed
&&
3031 (!dst
->node
[j
].hull
|| !dst
->node
[j
].compress
||
3032 !dst
->node
[j
].decompress
))
3039 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
3040 * to the dst dependence graph.
3041 * If the source or destination node of the edge is not in the destination
3042 * graph, then it must be a backward proximity edge and it should simply
3045 static int copy_edges(isl_ctx
*ctx
, struct isl_sched_graph
*dst
,
3046 struct isl_sched_graph
*src
,
3047 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
), int data
)
3050 enum isl_edge_type t
;
3053 for (i
= 0; i
< src
->n_edge
; ++i
) {
3054 struct isl_sched_edge
*edge
= &src
->edge
[i
];
3056 isl_union_map
*tagged_condition
;
3057 isl_union_map
*tagged_validity
;
3058 struct isl_sched_node
*dst_src
, *dst_dst
;
3060 if (!edge_pred(edge
, data
))
3063 if (isl_map_plain_is_empty(edge
->map
))
3066 dst_src
= graph_find_node(ctx
, dst
, edge
->src
->space
);
3067 dst_dst
= graph_find_node(ctx
, dst
, edge
->dst
->space
);
3068 if (!dst_src
|| !dst_dst
) {
3069 if (is_validity(edge
) || is_conditional_validity(edge
))
3070 isl_die(ctx
, isl_error_internal
,
3071 "backward (conditional) validity edge",
3076 map
= isl_map_copy(edge
->map
);
3077 tagged_condition
= isl_union_map_copy(edge
->tagged_condition
);
3078 tagged_validity
= isl_union_map_copy(edge
->tagged_validity
);
3080 dst
->edge
[dst
->n_edge
].src
= dst_src
;
3081 dst
->edge
[dst
->n_edge
].dst
= dst_dst
;
3082 dst
->edge
[dst
->n_edge
].map
= map
;
3083 dst
->edge
[dst
->n_edge
].tagged_condition
= tagged_condition
;
3084 dst
->edge
[dst
->n_edge
].tagged_validity
= tagged_validity
;
3085 dst
->edge
[dst
->n_edge
].types
= edge
->types
;
3088 if (edge
->tagged_condition
&& !tagged_condition
)
3090 if (edge
->tagged_validity
&& !tagged_validity
)
3093 for (t
= isl_edge_first
; t
<= isl_edge_last
; ++t
) {
3095 graph_find_edge(src
, t
, edge
->src
, edge
->dst
))
3097 if (graph_edge_table_add(ctx
, dst
, t
,
3098 &dst
->edge
[dst
->n_edge
- 1]) < 0)
3106 /* Compute the maximal number of variables over all nodes.
3107 * This is the maximal number of linearly independent schedule
3108 * rows that we need to compute.
3109 * Just in case we end up in a part of the dependence graph
3110 * with only lower-dimensional domains, we make sure we will
3111 * compute the required amount of extra linearly independent rows.
3113 static int compute_maxvar(struct isl_sched_graph
*graph
)
3118 for (i
= 0; i
< graph
->n
; ++i
) {
3119 struct isl_sched_node
*node
= &graph
->node
[i
];
3122 if (node_update_cmap(node
) < 0)
3124 nvar
= node
->nvar
+ graph
->n_row
- node
->rank
;
3125 if (nvar
> graph
->maxvar
)
3126 graph
->maxvar
= nvar
;
3132 /* Extract the subgraph of "graph" that consists of the node satisfying
3133 * "node_pred" and the edges satisfying "edge_pred" and store
3134 * the result in "sub".
3136 static int extract_sub_graph(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
3137 int (*node_pred
)(struct isl_sched_node
*node
, int data
),
3138 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
),
3139 int data
, struct isl_sched_graph
*sub
)
3141 int i
, n
= 0, n_edge
= 0;
3144 for (i
= 0; i
< graph
->n
; ++i
)
3145 if (node_pred(&graph
->node
[i
], data
))
3147 for (i
= 0; i
< graph
->n_edge
; ++i
)
3148 if (edge_pred(&graph
->edge
[i
], data
))
3150 if (graph_alloc(ctx
, sub
, n
, n_edge
) < 0)
3152 if (copy_nodes(sub
, graph
, node_pred
, data
) < 0)
3154 if (graph_init_table(ctx
, sub
) < 0)
3156 for (t
= 0; t
<= isl_edge_last
; ++t
)
3157 sub
->max_edge
[t
] = graph
->max_edge
[t
];
3158 if (graph_init_edge_tables(ctx
, sub
) < 0)
3160 if (copy_edges(ctx
, sub
, graph
, edge_pred
, data
) < 0)
3162 sub
->n_row
= graph
->n_row
;
3163 sub
->max_row
= graph
->max_row
;
3164 sub
->n_total_row
= graph
->n_total_row
;
3165 sub
->band_start
= graph
->band_start
;
3170 static __isl_give isl_schedule_node
*compute_schedule(isl_schedule_node
*node
,
3171 struct isl_sched_graph
*graph
);
3172 static __isl_give isl_schedule_node
*compute_schedule_wcc(
3173 isl_schedule_node
*node
, struct isl_sched_graph
*graph
);
3175 /* Compute a schedule for a subgraph of "graph". In particular, for
3176 * the graph composed of nodes that satisfy node_pred and edges that
3177 * that satisfy edge_pred.
3178 * If the subgraph is known to consist of a single component, then wcc should
3179 * be set and then we call compute_schedule_wcc on the constructed subgraph.
3180 * Otherwise, we call compute_schedule, which will check whether the subgraph
3183 * The schedule is inserted at "node" and the updated schedule node
3186 static __isl_give isl_schedule_node
*compute_sub_schedule(
3187 __isl_take isl_schedule_node
*node
, isl_ctx
*ctx
,
3188 struct isl_sched_graph
*graph
,
3189 int (*node_pred
)(struct isl_sched_node
*node
, int data
),
3190 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
),
3193 struct isl_sched_graph split
= { 0 };
3195 if (extract_sub_graph(ctx
, graph
, node_pred
, edge_pred
, data
,
3200 node
= compute_schedule_wcc(node
, &split
);
3202 node
= compute_schedule(node
, &split
);
3204 graph_free(ctx
, &split
);
3207 graph_free(ctx
, &split
);
3208 return isl_schedule_node_free(node
);
3211 static int edge_scc_exactly(struct isl_sched_edge
*edge
, int scc
)
3213 return edge
->src
->scc
== scc
&& edge
->dst
->scc
== scc
;
3216 static int edge_dst_scc_at_most(struct isl_sched_edge
*edge
, int scc
)
3218 return edge
->dst
->scc
<= scc
;
3221 static int edge_src_scc_at_least(struct isl_sched_edge
*edge
, int scc
)
3223 return edge
->src
->scc
>= scc
;
3226 /* Reset the current band by dropping all its schedule rows.
3228 static int reset_band(struct isl_sched_graph
*graph
)
3233 drop
= graph
->n_total_row
- graph
->band_start
;
3234 graph
->n_total_row
-= drop
;
3235 graph
->n_row
-= drop
;
3237 for (i
= 0; i
< graph
->n
; ++i
) {
3238 struct isl_sched_node
*node
= &graph
->node
[i
];
3240 isl_map_free(node
->sched_map
);
3241 node
->sched_map
= NULL
;
3243 node
->sched
= isl_mat_drop_rows(node
->sched
,
3244 graph
->band_start
, drop
);
3253 /* Split the current graph into two parts and compute a schedule for each
3254 * part individually. In particular, one part consists of all SCCs up
3255 * to and including graph->src_scc, while the other part contains the other
3256 * SCCs. The split is enforced by a sequence node inserted at position "node"
3257 * in the schedule tree. Return the updated schedule node.
3258 * If either of these two parts consists of a sequence, then it is spliced
3259 * into the sequence containing the two parts.
3261 * The current band is reset. It would be possible to reuse
3262 * the previously computed rows as the first rows in the next
3263 * band, but recomputing them may result in better rows as we are looking
3264 * at a smaller part of the dependence graph.
3266 static __isl_give isl_schedule_node
*compute_split_schedule(
3267 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
3271 isl_union_set_list
*filters
;
3276 if (reset_band(graph
) < 0)
3277 return isl_schedule_node_free(node
);
3281 ctx
= isl_schedule_node_get_ctx(node
);
3282 filters
= extract_split(ctx
, graph
);
3283 node
= isl_schedule_node_insert_sequence(node
, filters
);
3284 node
= isl_schedule_node_child(node
, 1);
3285 node
= isl_schedule_node_child(node
, 0);
3287 node
= compute_sub_schedule(node
, ctx
, graph
,
3288 &node_scc_at_least
, &edge_src_scc_at_least
,
3289 graph
->src_scc
+ 1, 0);
3290 is_seq
= isl_schedule_node_get_type(node
) == isl_schedule_node_sequence
;
3291 node
= isl_schedule_node_parent(node
);
3292 node
= isl_schedule_node_parent(node
);
3294 node
= isl_schedule_node_sequence_splice_child(node
, 1);
3295 node
= isl_schedule_node_child(node
, 0);
3296 node
= isl_schedule_node_child(node
, 0);
3297 node
= compute_sub_schedule(node
, ctx
, graph
,
3298 &node_scc_at_most
, &edge_dst_scc_at_most
,
3300 is_seq
= isl_schedule_node_get_type(node
) == isl_schedule_node_sequence
;
3301 node
= isl_schedule_node_parent(node
);
3302 node
= isl_schedule_node_parent(node
);
3304 node
= isl_schedule_node_sequence_splice_child(node
, 0);
3309 /* Insert a band node at position "node" in the schedule tree corresponding
3310 * to the current band in "graph". Mark the band node permutable
3311 * if "permutable" is set.
3312 * The partial schedules and the coincidence property are extracted
3313 * from the graph nodes.
3314 * Return the updated schedule node.
3316 static __isl_give isl_schedule_node
*insert_current_band(
3317 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
3323 isl_multi_pw_aff
*mpa
;
3324 isl_multi_union_pw_aff
*mupa
;
3330 isl_die(isl_schedule_node_get_ctx(node
), isl_error_internal
,
3331 "graph should have at least one node",
3332 return isl_schedule_node_free(node
));
3334 start
= graph
->band_start
;
3335 end
= graph
->n_total_row
;
3338 ma
= node_extract_partial_schedule_multi_aff(&graph
->node
[0], start
, n
);
3339 mpa
= isl_multi_pw_aff_from_multi_aff(ma
);
3340 mupa
= isl_multi_union_pw_aff_from_multi_pw_aff(mpa
);
3342 for (i
= 1; i
< graph
->n
; ++i
) {
3343 isl_multi_union_pw_aff
*mupa_i
;
3345 ma
= node_extract_partial_schedule_multi_aff(&graph
->node
[i
],
3347 mpa
= isl_multi_pw_aff_from_multi_aff(ma
);
3348 mupa_i
= isl_multi_union_pw_aff_from_multi_pw_aff(mpa
);
3349 mupa
= isl_multi_union_pw_aff_union_add(mupa
, mupa_i
);
3351 node
= isl_schedule_node_insert_partial_schedule(node
, mupa
);
3353 for (i
= 0; i
< n
; ++i
)
3354 node
= isl_schedule_node_band_member_set_coincident(node
, i
,
3355 graph
->node
[0].coincident
[start
+ i
]);
3356 node
= isl_schedule_node_band_set_permutable(node
, permutable
);
3361 /* Update the dependence relations based on the current schedule,
3362 * add the current band to "node" and then continue with the computation
3364 * Return the updated schedule node.
3366 static __isl_give isl_schedule_node
*compute_next_band(
3367 __isl_take isl_schedule_node
*node
,
3368 struct isl_sched_graph
*graph
, int permutable
)
3375 ctx
= isl_schedule_node_get_ctx(node
);
3376 if (update_edges(ctx
, graph
) < 0)
3377 return isl_schedule_node_free(node
);
3378 node
= insert_current_band(node
, graph
, permutable
);
3381 node
= isl_schedule_node_child(node
, 0);
3382 node
= compute_schedule(node
, graph
);
3383 node
= isl_schedule_node_parent(node
);
3388 /* Add constraints to graph->lp that force the dependence "map" (which
3389 * is part of the dependence relation of "edge")
3390 * to be respected and attempt to carry it, where the edge is one from
3391 * a node j to itself. "pos" is the sequence number of the given map.
3392 * That is, add constraints that enforce
3394 * (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x)
3395 * = c_j_x (y - x) >= e_i
3397 * for each (x,y) in R.
3398 * We obtain general constraints on coefficients (c_0, c_n, c_x)
3399 * of valid constraints for (y - x) and then plug in (-e_i, 0, c_j_x),
3400 * with each coefficient in c_j_x represented as a pair of non-negative
3403 static int add_intra_constraints(struct isl_sched_graph
*graph
,
3404 struct isl_sched_edge
*edge
, __isl_take isl_map
*map
, int pos
)
3407 isl_ctx
*ctx
= isl_map_get_ctx(map
);
3409 isl_dim_map
*dim_map
;
3410 isl_basic_set
*coef
;
3411 struct isl_sched_node
*node
= edge
->src
;
3413 coef
= intra_coefficients(graph
, node
, map
);
3417 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
3419 total
= isl_basic_set_total_dim(graph
->lp
);
3420 dim_map
= isl_dim_map_alloc(ctx
, total
);
3421 isl_dim_map_range(dim_map
, 3 + pos
, 0, 0, 0, 1, -1);
3422 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 1, 2,
3423 isl_space_dim(dim
, isl_dim_set
), 1,
3425 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 2, 2,
3426 isl_space_dim(dim
, isl_dim_set
), 1,
3428 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
3429 coef
->n_eq
, coef
->n_ineq
);
3430 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
3432 isl_space_free(dim
);
3437 /* Add constraints to graph->lp that force the dependence "map" (which
3438 * is part of the dependence relation of "edge")
3439 * to be respected and attempt to carry it, where the edge is one from
3440 * node j to node k. "pos" is the sequence number of the given map.
3441 * That is, add constraints that enforce
3443 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
3445 * for each (x,y) in R.
3446 * We obtain general constraints on coefficients (c_0, c_n, c_x)
3447 * of valid constraints for R and then plug in
3448 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, c_k_x - c_j_x)
3449 * with each coefficient (except e_i, c_k_0 and c_j_0)
3450 * represented as a pair of non-negative coefficients.
3452 static int add_inter_constraints(struct isl_sched_graph
*graph
,
3453 struct isl_sched_edge
*edge
, __isl_take isl_map
*map
, int pos
)
3456 isl_ctx
*ctx
= isl_map_get_ctx(map
);
3458 isl_dim_map
*dim_map
;
3459 isl_basic_set
*coef
;
3460 struct isl_sched_node
*src
= edge
->src
;
3461 struct isl_sched_node
*dst
= edge
->dst
;
3463 coef
= inter_coefficients(graph
, edge
, map
);
3467 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
3469 total
= isl_basic_set_total_dim(graph
->lp
);
3470 dim_map
= isl_dim_map_alloc(ctx
, total
);
3472 isl_dim_map_range(dim_map
, 3 + pos
, 0, 0, 0, 1, -1);
3474 isl_dim_map_range(dim_map
, dst
->start
, 0, 0, 0, 1, 1);
3475 isl_dim_map_range(dim_map
, dst
->start
+ 1, 2, 1, 1, dst
->nparam
, -1);
3476 isl_dim_map_range(dim_map
, dst
->start
+ 2, 2, 1, 1, dst
->nparam
, 1);
3477 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 1, 2,
3478 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
3480 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 2, 2,
3481 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
3484 isl_dim_map_range(dim_map
, src
->start
, 0, 0, 0, 1, -1);
3485 isl_dim_map_range(dim_map
, src
->start
+ 1, 2, 1, 1, src
->nparam
, 1);
3486 isl_dim_map_range(dim_map
, src
->start
+ 2, 2, 1, 1, src
->nparam
, -1);
3487 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 1, 2,
3488 isl_space_dim(dim
, isl_dim_set
), 1,
3490 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 2, 2,
3491 isl_space_dim(dim
, isl_dim_set
), 1,
3494 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
3495 coef
->n_eq
, coef
->n_ineq
);
3496 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
3498 isl_space_free(dim
);
3503 /* Add constraints to graph->lp that force all (conditional) validity
3504 * dependences to be respected and attempt to carry them.
3506 static int add_all_constraints(struct isl_sched_graph
*graph
)
3512 for (i
= 0; i
< graph
->n_edge
; ++i
) {
3513 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
3515 if (!is_validity(edge
) && !is_conditional_validity(edge
))
3518 for (j
= 0; j
< edge
->map
->n
; ++j
) {
3519 isl_basic_map
*bmap
;
3522 bmap
= isl_basic_map_copy(edge
->map
->p
[j
]);
3523 map
= isl_map_from_basic_map(bmap
);
3525 if (edge
->src
== edge
->dst
&&
3526 add_intra_constraints(graph
, edge
, map
, pos
) < 0)
3528 if (edge
->src
!= edge
->dst
&&
3529 add_inter_constraints(graph
, edge
, map
, pos
) < 0)
3538 /* Count the number of equality and inequality constraints
3539 * that will be added to the carry_lp problem.
3540 * We count each edge exactly once.
3542 static int count_all_constraints(struct isl_sched_graph
*graph
,
3543 int *n_eq
, int *n_ineq
)
3547 *n_eq
= *n_ineq
= 0;
3548 for (i
= 0; i
< graph
->n_edge
; ++i
) {
3549 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
3550 for (j
= 0; j
< edge
->map
->n
; ++j
) {
3551 isl_basic_map
*bmap
;
3554 bmap
= isl_basic_map_copy(edge
->map
->p
[j
]);
3555 map
= isl_map_from_basic_map(bmap
);
3557 if (count_map_constraints(graph
, edge
, map
,
3558 n_eq
, n_ineq
, 1, 0) < 0)
3566 /* Construct an LP problem for finding schedule coefficients
3567 * such that the schedule carries as many dependences as possible.
3568 * In particular, for each dependence i, we bound the dependence distance
3569 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
3570 * of all e_i's. Dependences with e_i = 0 in the solution are simply
3571 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
3572 * Note that if the dependence relation is a union of basic maps,
3573 * then we have to consider each basic map individually as it may only
3574 * be possible to carry the dependences expressed by some of those
3575 * basic maps and not all of them.
3576 * Below, we consider each of those basic maps as a separate "edge".
3578 * All variables of the LP are non-negative. The actual coefficients
3579 * may be negative, so each coefficient is represented as the difference
3580 * of two non-negative variables. The negative part always appears
3581 * immediately before the positive part.
3582 * Other than that, the variables have the following order
3584 * - sum of (1 - e_i) over all edges
3585 * - sum of positive and negative parts of all c_n coefficients
3586 * (unconstrained when computing non-parametric schedules)
3587 * - sum of positive and negative parts of all c_x coefficients
3592 * - positive and negative parts of c_i_n (if parametric)
3593 * - positive and negative parts of c_i_x
3595 * The constraints are those from the (validity) edges plus three equalities
3596 * to express the sums and n_edge inequalities to express e_i <= 1.
3598 static int setup_carry_lp(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
3608 for (i
= 0; i
< graph
->n_edge
; ++i
)
3609 n_edge
+= graph
->edge
[i
].map
->n
;
3612 for (i
= 0; i
< graph
->n
; ++i
) {
3613 struct isl_sched_node
*node
= &graph
->node
[graph
->sorted
[i
]];
3614 node
->start
= total
;
3615 total
+= 1 + 2 * (node
->nparam
+ node
->nvar
);
3618 if (count_all_constraints(graph
, &n_eq
, &n_ineq
) < 0)
3621 dim
= isl_space_set_alloc(ctx
, 0, total
);
3622 isl_basic_set_free(graph
->lp
);
3625 graph
->lp
= isl_basic_set_alloc_space(dim
, 0, n_eq
, n_ineq
);
3626 graph
->lp
= isl_basic_set_set_rational(graph
->lp
);
3628 k
= isl_basic_set_alloc_equality(graph
->lp
);
3631 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
3632 isl_int_set_si(graph
->lp
->eq
[k
][0], -n_edge
);
3633 isl_int_set_si(graph
->lp
->eq
[k
][1], 1);
3634 for (i
= 0; i
< n_edge
; ++i
)
3635 isl_int_set_si(graph
->lp
->eq
[k
][4 + i
], 1);
3637 k
= isl_basic_set_alloc_equality(graph
->lp
);
3640 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
3641 isl_int_set_si(graph
->lp
->eq
[k
][2], -1);
3642 for (i
= 0; i
< graph
->n
; ++i
) {
3643 int pos
= 1 + graph
->node
[i
].start
+ 1;
3645 for (j
= 0; j
< 2 * graph
->node
[i
].nparam
; ++j
)
3646 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
3649 k
= isl_basic_set_alloc_equality(graph
->lp
);
3652 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
3653 isl_int_set_si(graph
->lp
->eq
[k
][3], -1);
3654 for (i
= 0; i
< graph
->n
; ++i
) {
3655 struct isl_sched_node
*node
= &graph
->node
[i
];
3656 int pos
= 1 + node
->start
+ 1 + 2 * node
->nparam
;
3658 for (j
= 0; j
< 2 * node
->nvar
; ++j
)
3659 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
3662 for (i
= 0; i
< n_edge
; ++i
) {
3663 k
= isl_basic_set_alloc_inequality(graph
->lp
);
3666 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
3667 isl_int_set_si(graph
->lp
->ineq
[k
][4 + i
], -1);
3668 isl_int_set_si(graph
->lp
->ineq
[k
][0], 1);
3671 if (add_all_constraints(graph
) < 0)
3677 static __isl_give isl_schedule_node
*compute_component_schedule(
3678 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
3681 /* Comparison function for sorting the statements based on
3682 * the corresponding value in "r".
3684 static int smaller_value(const void *a
, const void *b
, void *data
)
3690 return isl_int_cmp(r
->el
[*i1
], r
->el
[*i2
]);
3693 /* If the schedule_split_scaled option is set and if the linear
3694 * parts of the scheduling rows for all nodes in the graphs have
3695 * a non-trivial common divisor, then split off the remainder of the
3696 * constant term modulo this common divisor from the linear part.
3697 * Otherwise, insert a band node directly and continue with
3698 * the construction of the schedule.
3700 * If a non-trivial common divisor is found, then
3701 * the linear part is reduced and the remainder is enforced
3702 * by a sequence node with the children placed in the order
3703 * of this remainder.
3704 * In particular, we assign an scc index based on the remainder and
3705 * then rely on compute_component_schedule to insert the sequence and
3706 * to continue the schedule construction on each part.
3708 static __isl_give isl_schedule_node
*split_scaled(
3709 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
3722 ctx
= isl_schedule_node_get_ctx(node
);
3723 if (!ctx
->opt
->schedule_split_scaled
)
3724 return compute_next_band(node
, graph
, 0);
3726 return compute_next_band(node
, graph
, 0);
3729 isl_int_init(gcd_i
);
3731 isl_int_set_si(gcd
, 0);
3733 row
= isl_mat_rows(graph
->node
[0].sched
) - 1;
3735 for (i
= 0; i
< graph
->n
; ++i
) {
3736 struct isl_sched_node
*node
= &graph
->node
[i
];
3737 int cols
= isl_mat_cols(node
->sched
);
3739 isl_seq_gcd(node
->sched
->row
[row
] + 1, cols
- 1, &gcd_i
);
3740 isl_int_gcd(gcd
, gcd
, gcd_i
);
3743 isl_int_clear(gcd_i
);
3745 if (isl_int_cmp_si(gcd
, 1) <= 0) {
3747 return compute_next_band(node
, graph
, 0);
3750 r
= isl_vec_alloc(ctx
, graph
->n
);
3751 order
= isl_calloc_array(ctx
, int, graph
->n
);
3755 for (i
= 0; i
< graph
->n
; ++i
) {
3756 struct isl_sched_node
*node
= &graph
->node
[i
];
3759 isl_int_fdiv_r(r
->el
[i
], node
->sched
->row
[row
][0], gcd
);
3760 isl_int_fdiv_q(node
->sched
->row
[row
][0],
3761 node
->sched
->row
[row
][0], gcd
);
3762 isl_int_mul(node
->sched
->row
[row
][0],
3763 node
->sched
->row
[row
][0], gcd
);
3764 node
->sched
= isl_mat_scale_down_row(node
->sched
, row
, gcd
);
3769 if (isl_sort(order
, graph
->n
, sizeof(order
[0]), &smaller_value
, r
) < 0)
3773 for (i
= 0; i
< graph
->n
; ++i
) {
3774 if (i
> 0 && isl_int_ne(r
->el
[order
[i
- 1]], r
->el
[order
[i
]]))
3776 graph
->node
[order
[i
]].scc
= scc
;
3785 if (update_edges(ctx
, graph
) < 0)
3786 return isl_schedule_node_free(node
);
3787 node
= insert_current_band(node
, graph
, 0);
3790 node
= isl_schedule_node_child(node
, 0);
3791 node
= compute_component_schedule(node
, graph
, 0);
3792 node
= isl_schedule_node_parent(node
);
3799 return isl_schedule_node_free(node
);
3802 /* Is the schedule row "sol" trivial on node "node"?
3803 * That is, is the solution zero on the dimensions orthogonal to
3804 * the previously found solutions?
3805 * Return 1 if the solution is trivial, 0 if it is not and -1 on error.
3807 * Each coefficient is represented as the difference between
3808 * two non-negative values in "sol". "sol" has been computed
3809 * in terms of the original iterators (i.e., without use of cmap).
3810 * We construct the schedule row s and write it as a linear
3811 * combination of (linear combinations of) previously computed schedule rows.
3812 * s = Q c or c = U s.
3813 * If the final entries of c are all zero, then the solution is trivial.
3815 static int is_trivial(struct isl_sched_node
*node
, __isl_keep isl_vec
*sol
)
3825 if (node
->nvar
== node
->rank
)
3828 ctx
= isl_vec_get_ctx(sol
);
3829 node_sol
= isl_vec_alloc(ctx
, node
->nvar
);
3833 pos
= 1 + node
->start
+ 1 + 2 * node
->nparam
;
3835 for (i
= 0; i
< node
->nvar
; ++i
)
3836 isl_int_sub(node_sol
->el
[i
],
3837 sol
->el
[pos
+ 2 * i
+ 1], sol
->el
[pos
+ 2 * i
]);
3839 node_sol
= isl_mat_vec_product(isl_mat_copy(node
->cinv
), node_sol
);
3844 trivial
= isl_seq_first_non_zero(node_sol
->el
+ node
->rank
,
3845 node
->nvar
- node
->rank
) == -1;
3847 isl_vec_free(node_sol
);
3852 /* Is the schedule row "sol" trivial on any node where it should
3854 * "sol" has been computed in terms of the original iterators
3855 * (i.e., without use of cmap).
3856 * Return 1 if any solution is trivial, 0 if they are not and -1 on error.
3858 static int is_any_trivial(struct isl_sched_graph
*graph
,
3859 __isl_keep isl_vec
*sol
)
3863 for (i
= 0; i
< graph
->n
; ++i
) {
3864 struct isl_sched_node
*node
= &graph
->node
[i
];
3867 if (!needs_row(graph
, node
))
3869 trivial
= is_trivial(node
, sol
);
3870 if (trivial
< 0 || trivial
)
3877 /* Construct a schedule row for each node such that as many dependences
3878 * as possible are carried and then continue with the next band.
3880 * Note that despite the fact that the problem is solved using a rational
3881 * solver, the solution is guaranteed to be integral.
3882 * Specifically, the dependence distance lower bounds e_i (and therefore
3883 * also their sum) are integers. See Lemma 5 of [1].
3885 * If the computed schedule row turns out to be trivial on one or
3886 * more nodes where it should not be trivial, then we throw it away
3887 * and try again on each component separately.
3889 * If there is only one component, then we accept the schedule row anyway,
3890 * but we do not consider it as a complete row and therefore do not
3891 * increment graph->n_row. Note that the ranks of the nodes that
3892 * do get a non-trivial schedule part will get updated regardless and
3893 * graph->maxvar is computed based on these ranks. The test for
3894 * whether more schedule rows are required in compute_schedule_wcc
3895 * is therefore not affected.
3897 * Insert a band corresponding to the schedule row at position "node"
3898 * of the schedule tree and continue with the construction of the schedule.
3899 * This insertion and the continued construction is performed by split_scaled
3900 * after optionally checking for non-trivial common divisors.
3902 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
3903 * Problem, Part II: Multi-Dimensional Time.
3904 * In Intl. Journal of Parallel Programming, 1992.
3906 static __isl_give isl_schedule_node
*carry_dependences(
3907 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
3920 for (i
= 0; i
< graph
->n_edge
; ++i
)
3921 n_edge
+= graph
->edge
[i
].map
->n
;
3923 ctx
= isl_schedule_node_get_ctx(node
);
3924 if (setup_carry_lp(ctx
, graph
) < 0)
3925 return isl_schedule_node_free(node
);
3927 lp
= isl_basic_set_copy(graph
->lp
);
3928 sol
= isl_tab_basic_set_non_neg_lexmin(lp
);
3930 return isl_schedule_node_free(node
);
3932 if (sol
->size
== 0) {
3934 isl_die(ctx
, isl_error_internal
,
3935 "error in schedule construction",
3936 return isl_schedule_node_free(node
));
3939 isl_int_divexact(sol
->el
[1], sol
->el
[1], sol
->el
[0]);
3940 if (isl_int_cmp_si(sol
->el
[1], n_edge
) >= 0) {
3942 isl_die(ctx
, isl_error_unknown
,
3943 "unable to carry dependences",
3944 return isl_schedule_node_free(node
));
3947 trivial
= is_any_trivial(graph
, sol
);
3949 sol
= isl_vec_free(sol
);
3950 } else if (trivial
&& graph
->scc
> 1) {
3952 return compute_component_schedule(node
, graph
, 1);
3955 if (update_schedule(graph
, sol
, 0, 0) < 0)
3956 return isl_schedule_node_free(node
);
3960 return split_scaled(node
, graph
);
3963 /* Topologically sort statements mapped to the same schedule iteration
3964 * and add insert a sequence node in front of "node"
3965 * corresponding to this order.
3966 * If "initialized" is set, then it may be assumed that compute_maxvar
3967 * has been called on the current band. Otherwise, call
3968 * compute_maxvar if and before carry_dependences gets called.
3970 * If it turns out to be impossible to sort the statements apart,
3971 * because different dependences impose different orderings
3972 * on the statements, then we extend the schedule such that
3973 * it carries at least one more dependence.
3975 static __isl_give isl_schedule_node
*sort_statements(
3976 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
3980 isl_union_set_list
*filters
;
3985 ctx
= isl_schedule_node_get_ctx(node
);
3987 isl_die(ctx
, isl_error_internal
,
3988 "graph should have at least one node",
3989 return isl_schedule_node_free(node
));
3994 if (update_edges(ctx
, graph
) < 0)
3995 return isl_schedule_node_free(node
);
3997 if (graph
->n_edge
== 0)
4000 if (detect_sccs(ctx
, graph
) < 0)
4001 return isl_schedule_node_free(node
);
4004 if (graph
->scc
< graph
->n
) {
4005 if (!initialized
&& compute_maxvar(graph
) < 0)
4006 return isl_schedule_node_free(node
);
4007 return carry_dependences(node
, graph
);
4010 filters
= extract_sccs(ctx
, graph
);
4011 node
= isl_schedule_node_insert_sequence(node
, filters
);
4016 /* Are there any (non-empty) (conditional) validity edges in the graph?
4018 static int has_validity_edges(struct isl_sched_graph
*graph
)
4022 for (i
= 0; i
< graph
->n_edge
; ++i
) {
4025 empty
= isl_map_plain_is_empty(graph
->edge
[i
].map
);
4030 if (is_validity(&graph
->edge
[i
]) ||
4031 is_conditional_validity(&graph
->edge
[i
]))
4038 /* Should we apply a Feautrier step?
4039 * That is, did the user request the Feautrier algorithm and are
4040 * there any validity dependences (left)?
4042 static int need_feautrier_step(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
4044 if (ctx
->opt
->schedule_algorithm
!= ISL_SCHEDULE_ALGORITHM_FEAUTRIER
)
4047 return has_validity_edges(graph
);
4050 /* Compute a schedule for a connected dependence graph using Feautrier's
4051 * multi-dimensional scheduling algorithm and return the updated schedule node.
4053 * The original algorithm is described in [1].
4054 * The main idea is to minimize the number of scheduling dimensions, by
4055 * trying to satisfy as many dependences as possible per scheduling dimension.
4057 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
4058 * Problem, Part II: Multi-Dimensional Time.
4059 * In Intl. Journal of Parallel Programming, 1992.
4061 static __isl_give isl_schedule_node
*compute_schedule_wcc_feautrier(
4062 isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
4064 return carry_dependences(node
, graph
);
4067 /* Turn off the "local" bit on all (condition) edges.
4069 static void clear_local_edges(struct isl_sched_graph
*graph
)
4073 for (i
= 0; i
< graph
->n_edge
; ++i
)
4074 if (is_condition(&graph
->edge
[i
]))
4075 clear_local(&graph
->edge
[i
]);
4078 /* Does "graph" have both condition and conditional validity edges?
4080 static int need_condition_check(struct isl_sched_graph
*graph
)
4083 int any_condition
= 0;
4084 int any_conditional_validity
= 0;
4086 for (i
= 0; i
< graph
->n_edge
; ++i
) {
4087 if (is_condition(&graph
->edge
[i
]))
4089 if (is_conditional_validity(&graph
->edge
[i
]))
4090 any_conditional_validity
= 1;
4093 return any_condition
&& any_conditional_validity
;
4096 /* Does "graph" contain any coincidence edge?
4098 static int has_any_coincidence(struct isl_sched_graph
*graph
)
4102 for (i
= 0; i
< graph
->n_edge
; ++i
)
4103 if (is_coincidence(&graph
->edge
[i
]))
4109 /* Extract the final schedule row as a map with the iteration domain
4110 * of "node" as domain.
4112 static __isl_give isl_map
*final_row(struct isl_sched_node
*node
)
4114 isl_local_space
*ls
;
4118 row
= isl_mat_rows(node
->sched
) - 1;
4119 ls
= isl_local_space_from_space(isl_space_copy(node
->space
));
4120 aff
= extract_schedule_row(ls
, node
, row
);
4121 return isl_map_from_aff(aff
);
4124 /* Is the conditional validity dependence in the edge with index "edge_index"
4125 * violated by the latest (i.e., final) row of the schedule?
4126 * That is, is i scheduled after j
4127 * for any conditional validity dependence i -> j?
4129 static int is_violated(struct isl_sched_graph
*graph
, int edge_index
)
4131 isl_map
*src_sched
, *dst_sched
, *map
;
4132 struct isl_sched_edge
*edge
= &graph
->edge
[edge_index
];
4135 src_sched
= final_row(edge
->src
);
4136 dst_sched
= final_row(edge
->dst
);
4137 map
= isl_map_copy(edge
->map
);
4138 map
= isl_map_apply_domain(map
, src_sched
);
4139 map
= isl_map_apply_range(map
, dst_sched
);
4140 map
= isl_map_order_gt(map
, isl_dim_in
, 0, isl_dim_out
, 0);
4141 empty
= isl_map_is_empty(map
);
4150 /* Does "graph" have any satisfied condition edges that
4151 * are adjacent to the conditional validity constraint with
4152 * domain "conditional_source" and range "conditional_sink"?
4154 * A satisfied condition is one that is not local.
4155 * If a condition was forced to be local already (i.e., marked as local)
4156 * then there is no need to check if it is in fact local.
4158 * Additionally, mark all adjacent condition edges found as local.
4160 static int has_adjacent_true_conditions(struct isl_sched_graph
*graph
,
4161 __isl_keep isl_union_set
*conditional_source
,
4162 __isl_keep isl_union_set
*conditional_sink
)
4167 for (i
= 0; i
< graph
->n_edge
; ++i
) {
4168 int adjacent
, local
;
4169 isl_union_map
*condition
;
4171 if (!is_condition(&graph
->edge
[i
]))
4173 if (is_local(&graph
->edge
[i
]))
4176 condition
= graph
->edge
[i
].tagged_condition
;
4177 adjacent
= domain_intersects(condition
, conditional_sink
);
4178 if (adjacent
>= 0 && !adjacent
)
4179 adjacent
= range_intersects(condition
,
4180 conditional_source
);
4186 set_local(&graph
->edge
[i
]);
4188 local
= is_condition_false(&graph
->edge
[i
]);
4198 /* Are there any violated conditional validity dependences with
4199 * adjacent condition dependences that are not local with respect
4200 * to the current schedule?
4201 * That is, is the conditional validity constraint violated?
4203 * Additionally, mark all those adjacent condition dependences as local.
4204 * We also mark those adjacent condition dependences that were not marked
4205 * as local before, but just happened to be local already. This ensures
4206 * that they remain local if the schedule is recomputed.
4208 * We first collect domain and range of all violated conditional validity
4209 * dependences and then check if there are any adjacent non-local
4210 * condition dependences.
4212 static int has_violated_conditional_constraint(isl_ctx
*ctx
,
4213 struct isl_sched_graph
*graph
)
4217 isl_union_set
*source
, *sink
;
4219 source
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
4220 sink
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
4221 for (i
= 0; i
< graph
->n_edge
; ++i
) {
4222 isl_union_set
*uset
;
4223 isl_union_map
*umap
;
4226 if (!is_conditional_validity(&graph
->edge
[i
]))
4229 violated
= is_violated(graph
, i
);
4237 umap
= isl_union_map_copy(graph
->edge
[i
].tagged_validity
);
4238 uset
= isl_union_map_domain(umap
);
4239 source
= isl_union_set_union(source
, uset
);
4240 source
= isl_union_set_coalesce(source
);
4242 umap
= isl_union_map_copy(graph
->edge
[i
].tagged_validity
);
4243 uset
= isl_union_map_range(umap
);
4244 sink
= isl_union_set_union(sink
, uset
);
4245 sink
= isl_union_set_coalesce(sink
);
4249 any
= has_adjacent_true_conditions(graph
, source
, sink
);
4251 isl_union_set_free(source
);
4252 isl_union_set_free(sink
);
4255 isl_union_set_free(source
);
4256 isl_union_set_free(sink
);
4260 /* Examine the current band (the rows between graph->band_start and
4261 * graph->n_total_row), deciding whether to drop it or add it to "node"
4262 * and then continue with the computation of the next band, if any.
4263 * If "initialized" is set, then it may be assumed that compute_maxvar
4264 * has been called on the current band. Otherwise, call
4265 * compute_maxvar if and before carry_dependences gets called.
4267 * The caller keeps looking for a new row as long as
4268 * graph->n_row < graph->maxvar. If the latest attempt to find
4269 * such a row failed (i.e., we still have graph->n_row < graph->maxvar),
4271 * - split between SCCs and start over (assuming we found an interesting
4272 * pair of SCCs between which to split)
4273 * - continue with the next band (assuming the current band has at least
4275 * - try to carry as many dependences as possible and continue with the next
4277 * In each case, we first insert a band node in the schedule tree
4278 * if any rows have been computed.
4280 * If the caller managed to complete the schedule, we insert a band node
4281 * (if any schedule rows were computed) and we finish off by topologically
4282 * sorting the statements based on the remaining dependences.
4284 static __isl_give isl_schedule_node
*compute_schedule_finish_band(
4285 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
4293 if (graph
->n_row
< graph
->maxvar
) {
4295 int empty
= graph
->n_total_row
== graph
->band_start
;
4297 ctx
= isl_schedule_node_get_ctx(node
);
4298 if (!ctx
->opt
->schedule_maximize_band_depth
&& !empty
)
4299 return compute_next_band(node
, graph
, 1);
4300 if (graph
->src_scc
>= 0)
4301 return compute_split_schedule(node
, graph
);
4303 return compute_next_band(node
, graph
, 1);
4304 if (!initialized
&& compute_maxvar(graph
) < 0)
4305 return isl_schedule_node_free(node
);
4306 return carry_dependences(node
, graph
);
4309 insert
= graph
->n_total_row
> graph
->band_start
;
4311 node
= insert_current_band(node
, graph
, 1);
4312 node
= isl_schedule_node_child(node
, 0);
4314 node
= sort_statements(node
, graph
, initialized
);
4316 node
= isl_schedule_node_parent(node
);
4321 /* Construct a band of schedule rows for a connected dependence graph.
4322 * The caller is responsible for determining the strongly connected
4323 * components and calling compute_maxvar first.
4325 * We try to find a sequence of as many schedule rows as possible that result
4326 * in non-negative dependence distances (independent of the previous rows
4327 * in the sequence, i.e., such that the sequence is tilable), with as
4328 * many of the initial rows as possible satisfying the coincidence constraints.
4329 * The computation stops if we can't find any more rows or if we have found
4330 * all the rows we wanted to find.
4332 * If ctx->opt->schedule_outer_coincidence is set, then we force the
4333 * outermost dimension to satisfy the coincidence constraints. If this
4334 * turns out to be impossible, we fall back on the general scheme above
4335 * and try to carry as many dependences as possible.
4337 * If "graph" contains both condition and conditional validity dependences,
4338 * then we need to check that that the conditional schedule constraint
4339 * is satisfied, i.e., there are no violated conditional validity dependences
4340 * that are adjacent to any non-local condition dependences.
4341 * If there are, then we mark all those adjacent condition dependences
4342 * as local and recompute the current band. Those dependences that
4343 * are marked local will then be forced to be local.
4344 * The initial computation is performed with no dependences marked as local.
4345 * If we are lucky, then there will be no violated conditional validity
4346 * dependences adjacent to any non-local condition dependences.
4347 * Otherwise, we mark some additional condition dependences as local and
4348 * recompute. We continue this process until there are no violations left or
4349 * until we are no longer able to compute a schedule.
4350 * Since there are only a finite number of dependences,
4351 * there will only be a finite number of iterations.
4353 static isl_stat
compute_schedule_wcc_band(isl_ctx
*ctx
,
4354 struct isl_sched_graph
*graph
)
4356 int has_coincidence
;
4357 int use_coincidence
;
4358 int force_coincidence
= 0;
4359 int check_conditional
;
4361 if (sort_sccs(graph
) < 0)
4362 return isl_stat_error
;
4364 clear_local_edges(graph
);
4365 check_conditional
= need_condition_check(graph
);
4366 has_coincidence
= has_any_coincidence(graph
);
4368 if (ctx
->opt
->schedule_outer_coincidence
)
4369 force_coincidence
= 1;
4371 use_coincidence
= has_coincidence
;
4372 while (graph
->n_row
< graph
->maxvar
) {
4377 graph
->src_scc
= -1;
4378 graph
->dst_scc
= -1;
4380 if (setup_lp(ctx
, graph
, use_coincidence
) < 0)
4381 return isl_stat_error
;
4382 sol
= solve_lp(graph
);
4384 return isl_stat_error
;
4385 if (sol
->size
== 0) {
4386 int empty
= graph
->n_total_row
== graph
->band_start
;
4389 if (use_coincidence
&& (!force_coincidence
|| !empty
)) {
4390 use_coincidence
= 0;
4395 coincident
= !has_coincidence
|| use_coincidence
;
4396 if (update_schedule(graph
, sol
, 1, coincident
) < 0)
4397 return isl_stat_error
;
4399 if (!check_conditional
)
4401 violated
= has_violated_conditional_constraint(ctx
, graph
);
4403 return isl_stat_error
;
4406 if (reset_band(graph
) < 0)
4407 return isl_stat_error
;
4408 use_coincidence
= has_coincidence
;
4414 /* Compute a schedule for a connected dependence graph by considering
4415 * the graph as a whole and return the updated schedule node.
4417 * The actual schedule rows of the current band are computed by
4418 * compute_schedule_wcc_band. compute_schedule_finish_band takes
4419 * care of integrating the band into "node" and continuing
4422 static __isl_give isl_schedule_node
*compute_schedule_wcc_whole(
4423 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
4430 ctx
= isl_schedule_node_get_ctx(node
);
4431 if (compute_schedule_wcc_band(ctx
, graph
) < 0)
4432 return isl_schedule_node_free(node
);
4434 return compute_schedule_finish_band(node
, graph
, 1);
4437 /* Clustering information used by compute_schedule_wcc_clustering.
4439 * "n" is the number of SCCs in the original dependence graph
4440 * "scc" is an array of "n" elements, each representing an SCC
4441 * of the original dependence graph. All entries in the same cluster
4442 * have the same number of schedule rows.
4443 * "scc_cluster" maps each SCC index to the cluster to which it belongs,
4444 * where each cluster is represented by the index of the first SCC
4445 * in the cluster. Initially, each SCC belongs to a cluster containing
4448 * "scc_in_merge" is used by merge_clusters_along_edge to keep
4449 * track of which SCCs need to be merged.
4451 * "cluster" contains the merged clusters of SCCs after the clustering
4454 * "scc_node" is a temporary data structure used inside copy_partial.
4455 * For each SCC, it keeps track of the number of nodes in the SCC
4456 * that have already been copied.
4458 struct isl_clustering
{
4460 struct isl_sched_graph
*scc
;
4461 struct isl_sched_graph
*cluster
;
4467 /* Initialize the clustering data structure "c" from "graph".
4469 * In particular, allocate memory, extract the SCCs from "graph"
4470 * into c->scc, initialize scc_cluster and construct
4471 * a band of schedule rows for each SCC.
4472 * Within each SCC, there is only one SCC by definition.
4473 * Each SCC initially belongs to a cluster containing only that SCC.
4475 static isl_stat
clustering_init(isl_ctx
*ctx
, struct isl_clustering
*c
,
4476 struct isl_sched_graph
*graph
)
4481 c
->scc
= isl_calloc_array(ctx
, struct isl_sched_graph
, c
->n
);
4482 c
->cluster
= isl_calloc_array(ctx
, struct isl_sched_graph
, c
->n
);
4483 c
->scc_cluster
= isl_calloc_array(ctx
, int, c
->n
);
4484 c
->scc_node
= isl_calloc_array(ctx
, int, c
->n
);
4485 c
->scc_in_merge
= isl_calloc_array(ctx
, int, c
->n
);
4486 if (!c
->scc
|| !c
->cluster
||
4487 !c
->scc_cluster
|| !c
->scc_node
|| !c
->scc_in_merge
)
4488 return isl_stat_error
;
4490 for (i
= 0; i
< c
->n
; ++i
) {
4491 if (extract_sub_graph(ctx
, graph
, &node_scc_exactly
,
4492 &edge_scc_exactly
, i
, &c
->scc
[i
]) < 0)
4493 return isl_stat_error
;
4495 if (compute_maxvar(&c
->scc
[i
]) < 0)
4496 return isl_stat_error
;
4497 if (compute_schedule_wcc_band(ctx
, &c
->scc
[i
]) < 0)
4498 return isl_stat_error
;
4499 c
->scc_cluster
[i
] = i
;
4505 /* Free all memory allocated for "c".
4507 static void clustering_free(isl_ctx
*ctx
, struct isl_clustering
*c
)
4512 for (i
= 0; i
< c
->n
; ++i
)
4513 graph_free(ctx
, &c
->scc
[i
]);
4516 for (i
= 0; i
< c
->n
; ++i
)
4517 graph_free(ctx
, &c
->cluster
[i
]);
4519 free(c
->scc_cluster
);
4521 free(c
->scc_in_merge
);
4524 /* Should we refrain from merging the cluster in "graph" with
4525 * any other cluster?
4526 * In particular, is its current schedule band empty and incomplete.
4528 static int bad_cluster(struct isl_sched_graph
*graph
)
4530 return graph
->n_row
< graph
->maxvar
&&
4531 graph
->n_total_row
== graph
->band_start
;
4534 /* Return the index of an edge in "graph" that can be used to merge
4535 * two clusters in "c".
4536 * Return graph->n_edge if no such edge can be found.
4537 * Return -1 on error.
4539 * In particular, return a proximity edge between two clusters
4540 * that is not marked "no_merge" and such that neither of the
4541 * two clusters has an incomplete, empty band.
4543 * If there are multiple such edges, then try and find the most
4544 * appropriate edge to use for merging. In particular, pick the edge
4545 * with the greatest weight. If there are multiple of those,
4546 * then pick one with the shortest distance between
4547 * the two cluster representatives.
4549 static int find_proximity(struct isl_sched_graph
*graph
,
4550 struct isl_clustering
*c
)
4552 int i
, best
= graph
->n_edge
, best_dist
, best_weight
;
4554 for (i
= 0; i
< graph
->n_edge
; ++i
) {
4555 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
4558 if (!is_proximity(edge
))
4562 if (bad_cluster(&c
->scc
[edge
->src
->scc
]) ||
4563 bad_cluster(&c
->scc
[edge
->dst
->scc
]))
4565 dist
= c
->scc_cluster
[edge
->dst
->scc
] -
4566 c
->scc_cluster
[edge
->src
->scc
];
4569 weight
= edge
->weight
;
4570 if (best
< graph
->n_edge
) {
4571 if (best_weight
> weight
)
4573 if (best_weight
== weight
&& best_dist
<= dist
)
4578 best_weight
= weight
;
4584 /* Internal data structure used in mark_merge_sccs.
4586 * "graph" is the dependence graph in which a strongly connected
4587 * component is constructed.
4588 * "scc_cluster" maps each SCC index to the cluster to which it belongs.
4589 * "src" and "dst" are the indices of the nodes that are being merged.
4591 struct isl_mark_merge_sccs_data
{
4592 struct isl_sched_graph
*graph
;
4598 /* Check whether the cluster containing node "i" depends on the cluster
4599 * containing node "j". If "i" and "j" belong to the same cluster,
4600 * then they are taken to depend on each other to ensure that
4601 * the resulting strongly connected component consists of complete
4602 * clusters. Furthermore, if "i" and "j" are the two nodes that
4603 * are being merged, then they are taken to depend on each other as well.
4604 * Otherwise, check if there is a (conditional) validity dependence
4605 * from node[j] to node[i], forcing node[i] to follow node[j].
4607 static isl_bool
cluster_follows(int i
, int j
, void *user
)
4609 struct isl_mark_merge_sccs_data
*data
= user
;
4610 struct isl_sched_graph
*graph
= data
->graph
;
4611 int *scc_cluster
= data
->scc_cluster
;
4613 if (data
->src
== i
&& data
->dst
== j
)
4614 return isl_bool_true
;
4615 if (data
->src
== j
&& data
->dst
== i
)
4616 return isl_bool_true
;
4617 if (scc_cluster
[graph
->node
[i
].scc
] == scc_cluster
[graph
->node
[j
].scc
])
4618 return isl_bool_true
;
4620 return graph_has_validity_edge(graph
, &graph
->node
[j
], &graph
->node
[i
]);
4623 /* Mark all SCCs that belong to either of the two clusters in "c"
4624 * connected by the edge in "graph" with index "edge", or to any
4625 * of the intermediate clusters.
4626 * The marking is recorded in c->scc_in_merge.
4628 * The given edge has been selected for merging two clusters,
4629 * meaning that there is at least a proximity edge between the two nodes.
4630 * However, there may also be (indirect) validity dependences
4631 * between the two nodes. When merging the two clusters, all clusters
4632 * containing one or more of the intermediate nodes along the
4633 * indirect validity dependences need to be merged in as well.
4635 * First collect all such nodes by computing the strongly connected
4636 * component (SCC) containing the two nodes connected by the edge, where
4637 * the two nodes are considered to depend on each other to make
4638 * sure they end up in the same SCC. Similarly, each node is considered
4639 * to depend on every other node in the same cluster to ensure
4640 * that the SCC consists of complete clusters.
4642 * Then the original SCCs that contain any of these nodes are marked
4643 * in c->scc_in_merge.
4645 static isl_stat
mark_merge_sccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
4646 int edge
, struct isl_clustering
*c
)
4648 struct isl_mark_merge_sccs_data data
;
4649 struct isl_tarjan_graph
*g
;
4652 for (i
= 0; i
< c
->n
; ++i
)
4653 c
->scc_in_merge
[i
] = 0;
4656 data
.scc_cluster
= c
->scc_cluster
;
4657 data
.src
= graph
->edge
[edge
].src
- graph
->node
;
4658 data
.dst
= graph
->edge
[edge
].dst
- graph
->node
;
4660 g
= isl_tarjan_graph_component(ctx
, graph
->n
, data
.dst
,
4661 &cluster_follows
, &data
);
4667 isl_die(ctx
, isl_error_internal
,
4668 "expecting at least two nodes in component",
4670 if (g
->order
[--i
] != -1)
4671 isl_die(ctx
, isl_error_internal
,
4672 "expecting end of component marker", goto error
);
4674 for (--i
; i
>= 0 && g
->order
[i
] != -1; --i
) {
4675 int scc
= graph
->node
[g
->order
[i
]].scc
;
4676 c
->scc_in_merge
[scc
] = 1;
4679 isl_tarjan_graph_free(g
);
4682 isl_tarjan_graph_free(g
);
4683 return isl_stat_error
;
4686 /* Construct the identifier "cluster_i".
4688 static __isl_give isl_id
*cluster_id(isl_ctx
*ctx
, int i
)
4692 snprintf(name
, sizeof(name
), "cluster_%d", i
);
4693 return isl_id_alloc(ctx
, name
, NULL
);
4696 /* Construct the space of the cluster with index "i" containing
4697 * the strongly connected component "scc".
4699 * In particular, construct a space called cluster_i with dimension equal
4700 * to the number of schedule rows in the current band of "scc".
4702 static __isl_give isl_space
*cluster_space(struct isl_sched_graph
*scc
, int i
)
4708 nvar
= scc
->n_total_row
- scc
->band_start
;
4709 space
= isl_space_copy(scc
->node
[0].space
);
4710 space
= isl_space_params(space
);
4711 space
= isl_space_set_from_params(space
);
4712 space
= isl_space_add_dims(space
, isl_dim_set
, nvar
);
4713 id
= cluster_id(isl_space_get_ctx(space
), i
);
4714 space
= isl_space_set_tuple_id(space
, isl_dim_set
, id
);
4719 /* Collect the domain of the graph for merging clusters.
4721 * In particular, for each cluster with first SCC "i", construct
4722 * a set in the space called cluster_i with dimension equal
4723 * to the number of schedule rows in the current band of the cluster.
4725 static __isl_give isl_union_set
*collect_domain(isl_ctx
*ctx
,
4726 struct isl_sched_graph
*graph
, struct isl_clustering
*c
)
4730 isl_union_set
*domain
;
4732 space
= isl_space_params_alloc(ctx
, 0);
4733 domain
= isl_union_set_empty(space
);
4735 for (i
= 0; i
< graph
->scc
; ++i
) {
4738 if (!c
->scc_in_merge
[i
])
4740 if (c
->scc_cluster
[i
] != i
)
4742 space
= cluster_space(&c
->scc
[i
], i
);
4743 domain
= isl_union_set_add_set(domain
, isl_set_universe(space
));
4749 /* Construct a map from the original instances to the corresponding
4750 * cluster instance in the current bands of the clusters in "c".
4752 static __isl_give isl_union_map
*collect_cluster_map(isl_ctx
*ctx
,
4753 struct isl_sched_graph
*graph
, struct isl_clustering
*c
)
4757 isl_union_map
*cluster_map
;
4759 space
= isl_space_params_alloc(ctx
, 0);
4760 cluster_map
= isl_union_map_empty(space
);
4761 for (i
= 0; i
< graph
->scc
; ++i
) {
4765 if (!c
->scc_in_merge
[i
])
4768 id
= cluster_id(ctx
, c
->scc_cluster
[i
]);
4769 start
= c
->scc
[i
].band_start
;
4770 n
= c
->scc
[i
].n_total_row
- start
;
4771 for (j
= 0; j
< c
->scc
[i
].n
; ++j
) {
4774 struct isl_sched_node
*node
= &c
->scc
[i
].node
[j
];
4776 ma
= node_extract_partial_schedule_multi_aff(node
,
4778 ma
= isl_multi_aff_set_tuple_id(ma
, isl_dim_out
,
4780 map
= isl_map_from_multi_aff(ma
);
4781 cluster_map
= isl_union_map_add_map(cluster_map
, map
);
4789 /* Add "umap" to the schedule constraints "sc" of all types of "edge"
4790 * that are not isl_edge_condition or isl_edge_conditional_validity.
4792 static __isl_give isl_schedule_constraints
*add_non_conditional_constraints(
4793 struct isl_sched_edge
*edge
, __isl_keep isl_union_map
*umap
,
4794 __isl_take isl_schedule_constraints
*sc
)
4796 enum isl_edge_type t
;
4801 for (t
= isl_edge_first
; t
<= isl_edge_last
; ++t
) {
4802 if (t
== isl_edge_condition
||
4803 t
== isl_edge_conditional_validity
)
4805 if (!is_type(edge
, t
))
4807 sc
->constraint
[t
] = isl_union_map_union(sc
->constraint
[t
],
4808 isl_union_map_copy(umap
));
4809 if (!sc
->constraint
[t
])
4810 return isl_schedule_constraints_free(sc
);
4816 /* Add schedule constraints of types isl_edge_condition and
4817 * isl_edge_conditional_validity to "sc" by applying "umap" to
4818 * the domains of the wrapped relations in domain and range
4819 * of the corresponding tagged constraints of "edge".
4821 static __isl_give isl_schedule_constraints
*add_conditional_constraints(
4822 struct isl_sched_edge
*edge
, __isl_keep isl_union_map
*umap
,
4823 __isl_take isl_schedule_constraints
*sc
)
4825 enum isl_edge_type t
;
4826 isl_union_map
*tagged
;
4828 for (t
= isl_edge_condition
; t
<= isl_edge_conditional_validity
; ++t
) {
4829 if (!is_type(edge
, t
))
4831 if (t
== isl_edge_condition
)
4832 tagged
= isl_union_map_copy(edge
->tagged_condition
);
4834 tagged
= isl_union_map_copy(edge
->tagged_validity
);
4835 tagged
= isl_union_map_zip(tagged
);
4836 tagged
= isl_union_map_apply_domain(tagged
,
4837 isl_union_map_copy(umap
));
4838 tagged
= isl_union_map_zip(tagged
);
4839 sc
->constraint
[t
] = isl_union_map_union(sc
->constraint
[t
],
4841 if (!sc
->constraint
[t
])
4842 return isl_schedule_constraints_free(sc
);
4848 /* Given a mapping "cluster_map" from the original instances to
4849 * the cluster instances, add schedule constraints on the clusters
4850 * to "sc" corresponding to the original constraints represented by "edge".
4852 * For non-tagged dependence constraints, the cluster constraints
4853 * are obtained by applying "cluster_map" to the edge->map.
4855 * For tagged dependence constraints, "cluster_map" needs to be applied
4856 * to the domains of the wrapped relations in domain and range
4857 * of the tagged dependence constraints. Pick out the mappings
4858 * from these domains from "cluster_map" and construct their product.
4859 * This mapping can then be applied to the pair of domains.
4861 static __isl_give isl_schedule_constraints
*collect_edge_constraints(
4862 struct isl_sched_edge
*edge
, __isl_keep isl_union_map
*cluster_map
,
4863 __isl_take isl_schedule_constraints
*sc
)
4865 isl_union_map
*umap
;
4867 isl_union_set
*uset
;
4868 isl_union_map
*umap1
, *umap2
;
4873 umap
= isl_union_map_from_map(isl_map_copy(edge
->map
));
4874 umap
= isl_union_map_apply_domain(umap
,
4875 isl_union_map_copy(cluster_map
));
4876 umap
= isl_union_map_apply_range(umap
,
4877 isl_union_map_copy(cluster_map
));
4878 sc
= add_non_conditional_constraints(edge
, umap
, sc
);
4879 isl_union_map_free(umap
);
4881 if (!sc
|| (!is_condition(edge
) && !is_conditional_validity(edge
)))
4884 space
= isl_space_domain(isl_map_get_space(edge
->map
));
4885 uset
= isl_union_set_from_set(isl_set_universe(space
));
4886 umap1
= isl_union_map_copy(cluster_map
);
4887 umap1
= isl_union_map_intersect_domain(umap1
, uset
);
4888 space
= isl_space_range(isl_map_get_space(edge
->map
));
4889 uset
= isl_union_set_from_set(isl_set_universe(space
));
4890 umap2
= isl_union_map_copy(cluster_map
);
4891 umap2
= isl_union_map_intersect_domain(umap2
, uset
);
4892 umap
= isl_union_map_product(umap1
, umap2
);
4894 sc
= add_conditional_constraints(edge
, umap
, sc
);
4896 isl_union_map_free(umap
);
4900 /* Given a mapping "cluster_map" from the original instances to
4901 * the cluster instances, add schedule constraints on the clusters
4902 * to "sc" corresponding to all edges in "graph" between nodes that
4903 * belong to SCCs that are marked for merging in "scc_in_merge".
4905 static __isl_give isl_schedule_constraints
*collect_constraints(
4906 struct isl_sched_graph
*graph
, int *scc_in_merge
,
4907 __isl_keep isl_union_map
*cluster_map
,
4908 __isl_take isl_schedule_constraints
*sc
)
4912 for (i
= 0; i
< graph
->n_edge
; ++i
) {
4913 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
4915 if (!scc_in_merge
[edge
->src
->scc
])
4917 if (!scc_in_merge
[edge
->dst
->scc
])
4919 sc
= collect_edge_constraints(edge
, cluster_map
, sc
);
4925 /* Construct a dependence graph for scheduling clusters with respect
4926 * to each other and store the result in "merge_graph".
4927 * In particular, the nodes of the graph correspond to the schedule
4928 * dimensions of the current bands of those clusters that have been
4929 * marked for merging in "c".
4931 * First construct an isl_schedule_constraints object for this domain
4932 * by transforming the edges in "graph" to the domain.
4933 * Then initialize a dependence graph for scheduling from these
4936 static isl_stat
init_merge_graph(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
4937 struct isl_clustering
*c
, struct isl_sched_graph
*merge_graph
)
4939 isl_union_set
*domain
;
4940 isl_union_map
*cluster_map
;
4941 isl_schedule_constraints
*sc
;
4944 domain
= collect_domain(ctx
, graph
, c
);
4945 sc
= isl_schedule_constraints_on_domain(domain
);
4947 return isl_stat_error
;
4948 cluster_map
= collect_cluster_map(ctx
, graph
, c
);
4949 sc
= collect_constraints(graph
, c
->scc_in_merge
, cluster_map
, sc
);
4950 isl_union_map_free(cluster_map
);
4952 r
= graph_init(merge_graph
, sc
);
4954 isl_schedule_constraints_free(sc
);
4959 /* Compute the maximal number of remaining schedule rows that still need
4960 * to be computed for the nodes that belong to clusters with the maximal
4961 * dimension for the current band (i.e., the band that is to be merged).
4962 * Only clusters that are about to be merged are considered.
4963 * "maxvar" is the maximal dimension for the current band.
4964 * "c" contains information about the clusters.
4966 * Return the maximal number of remaining schedule rows or -1 on error.
4968 static int compute_maxvar_max_slack(int maxvar
, struct isl_clustering
*c
)
4974 for (i
= 0; i
< c
->n
; ++i
) {
4976 struct isl_sched_graph
*scc
;
4978 if (!c
->scc_in_merge
[i
])
4981 nvar
= scc
->n_total_row
- scc
->band_start
;
4984 for (j
= 0; j
< scc
->n
; ++j
) {
4985 struct isl_sched_node
*node
= &scc
->node
[j
];
4988 if (node_update_cmap(node
) < 0)
4990 slack
= node
->nvar
- node
->rank
;
4991 if (slack
> max_slack
)
4999 /* If there are any clusters where the dimension of the current band
5000 * (i.e., the band that is to be merged) is smaller than "maxvar" and
5001 * if there are any nodes in such a cluster where the number
5002 * of remaining schedule rows that still need to be computed
5003 * is greater than "max_slack", then return the smallest current band
5004 * dimension of all these clusters. Otherwise return the original value
5005 * of "maxvar". Return -1 in case of any error.
5006 * Only clusters that are about to be merged are considered.
5007 * "c" contains information about the clusters.
5009 static int limit_maxvar_to_slack(int maxvar
, int max_slack
,
5010 struct isl_clustering
*c
)
5014 for (i
= 0; i
< c
->n
; ++i
) {
5016 struct isl_sched_graph
*scc
;
5018 if (!c
->scc_in_merge
[i
])
5021 nvar
= scc
->n_total_row
- scc
->band_start
;
5024 for (j
= 0; j
< scc
->n
; ++j
) {
5025 struct isl_sched_node
*node
= &scc
->node
[j
];
5028 if (node_update_cmap(node
) < 0)
5030 slack
= node
->nvar
- node
->rank
;
5031 if (slack
> max_slack
) {
5041 /* Adjust merge_graph->maxvar based on the number of remaining schedule rows
5042 * that still need to be computed. In particular, if there is a node
5043 * in a cluster where the dimension of the current band is smaller
5044 * than merge_graph->maxvar, but the number of remaining schedule rows
5045 * is greater than that of any node in a cluster with the maximal
5046 * dimension for the current band (i.e., merge_graph->maxvar),
5047 * then adjust merge_graph->maxvar to the (smallest) current band dimension
5048 * of those clusters. Without this adjustment, the total number of
5049 * schedule dimensions would be increased, resulting in a skewed view
5050 * of the number of coincident dimensions.
5051 * "c" contains information about the clusters.
5053 * If the maximize_band_depth option is set and merge_graph->maxvar is reduced,
5054 * then there is no point in attempting any merge since it will be rejected
5055 * anyway. Set merge_graph->maxvar to zero in such cases.
5057 static isl_stat
adjust_maxvar_to_slack(isl_ctx
*ctx
,
5058 struct isl_sched_graph
*merge_graph
, struct isl_clustering
*c
)
5060 int max_slack
, maxvar
;
5062 max_slack
= compute_maxvar_max_slack(merge_graph
->maxvar
, c
);
5064 return isl_stat_error
;
5065 maxvar
= limit_maxvar_to_slack(merge_graph
->maxvar
, max_slack
, c
);
5067 return isl_stat_error
;
5069 if (maxvar
< merge_graph
->maxvar
) {
5070 if (isl_options_get_schedule_maximize_band_depth(ctx
))
5071 merge_graph
->maxvar
= 0;
5073 merge_graph
->maxvar
= maxvar
;
5079 /* Return the number of coincident dimensions in the current band of "graph",
5080 * where the nodes of "graph" are assumed to be scheduled by a single band.
5082 static int get_n_coincident(struct isl_sched_graph
*graph
)
5086 for (i
= graph
->band_start
; i
< graph
->n_total_row
; ++i
)
5087 if (!graph
->node
[0].coincident
[i
])
5090 return i
- graph
->band_start
;
5093 /* Should the clusters be merged based on the cluster schedule
5094 * in the current (and only) band of "merge_graph", given that
5095 * coincidence should be maximized?
5097 * If the number of coincident schedule dimensions in the merged band
5098 * would be less than the maximal number of coincident schedule dimensions
5099 * in any of the merged clusters, then the clusters should not be merged.
5101 static isl_bool
ok_to_merge_coincident(struct isl_clustering
*c
,
5102 struct isl_sched_graph
*merge_graph
)
5109 for (i
= 0; i
< c
->n
; ++i
) {
5110 if (!c
->scc_in_merge
[i
])
5112 n_coincident
= get_n_coincident(&c
->scc
[i
]);
5113 if (n_coincident
> max_coincident
)
5114 max_coincident
= n_coincident
;
5117 n_coincident
= get_n_coincident(merge_graph
);
5119 return n_coincident
>= max_coincident
;
5122 /* Return the transformation on "node" expressed by the current (and only)
5123 * band of "merge_graph" applied to the clusters in "c".
5125 * First find the representation of "node" in its SCC in "c" and
5126 * extract the transformation expressed by the current band.
5127 * Then extract the transformation applied by "merge_graph"
5128 * to the cluster to which this SCC belongs.
5129 * Combine the two to obtain the complete transformation on the node.
5131 * Note that the range of the first transformation is an anonymous space,
5132 * while the domain of the second is named "cluster_X". The range
5133 * of the former therefore needs to be adjusted before the two
5136 static __isl_give isl_map
*extract_node_transformation(isl_ctx
*ctx
,
5137 struct isl_sched_node
*node
, struct isl_clustering
*c
,
5138 struct isl_sched_graph
*merge_graph
)
5140 struct isl_sched_node
*scc_node
, *cluster_node
;
5144 isl_multi_aff
*ma
, *ma2
;
5146 scc_node
= graph_find_node(ctx
, &c
->scc
[node
->scc
], node
->space
);
5147 start
= c
->scc
[node
->scc
].band_start
;
5148 n
= c
->scc
[node
->scc
].n_total_row
- start
;
5149 ma
= node_extract_partial_schedule_multi_aff(scc_node
, start
, n
);
5150 space
= cluster_space(&c
->scc
[node
->scc
], c
->scc_cluster
[node
->scc
]);
5151 cluster_node
= graph_find_node(ctx
, merge_graph
, space
);
5152 if (space
&& !cluster_node
)
5153 isl_die(ctx
, isl_error_internal
, "unable to find cluster",
5154 space
= isl_space_free(space
));
5155 id
= isl_space_get_tuple_id(space
, isl_dim_set
);
5156 ma
= isl_multi_aff_set_tuple_id(ma
, isl_dim_out
, id
);
5157 isl_space_free(space
);
5158 n
= merge_graph
->n_total_row
;
5159 ma2
= node_extract_partial_schedule_multi_aff(cluster_node
, 0, n
);
5160 ma
= isl_multi_aff_pullback_multi_aff(ma2
, ma
);
5162 return isl_map_from_multi_aff(ma
);
5165 /* Give a set of distances "set", are they bounded by a small constant
5166 * in direction "pos"?
5167 * In practice, check if they are bounded by 2 by checking that there
5168 * are no elements with a value greater than or equal to 3 or
5169 * smaller than or equal to -3.
5171 static isl_bool
distance_is_bounded(__isl_keep isl_set
*set
, int pos
)
5177 return isl_bool_error
;
5179 test
= isl_set_copy(set
);
5180 test
= isl_set_lower_bound_si(test
, isl_dim_set
, pos
, 3);
5181 bounded
= isl_set_is_empty(test
);
5184 if (bounded
< 0 || !bounded
)
5187 test
= isl_set_copy(set
);
5188 test
= isl_set_upper_bound_si(test
, isl_dim_set
, pos
, -3);
5189 bounded
= isl_set_is_empty(test
);
5195 /* Does the set "set" have a fixed (but possible parametric) value
5196 * at dimension "pos"?
5198 static isl_bool
has_single_value(__isl_keep isl_set
*set
, int pos
)
5204 return isl_bool_error
;
5205 set
= isl_set_copy(set
);
5206 n
= isl_set_dim(set
, isl_dim_set
);
5207 set
= isl_set_project_out(set
, isl_dim_set
, pos
+ 1, n
- (pos
+ 1));
5208 set
= isl_set_project_out(set
, isl_dim_set
, 0, pos
);
5209 single
= isl_set_is_singleton(set
);
5215 /* Does "map" have a fixed (but possible parametric) value
5216 * at dimension "pos" of either its domain or its range?
5218 static isl_bool
has_singular_src_or_dst(__isl_keep isl_map
*map
, int pos
)
5223 set
= isl_map_domain(isl_map_copy(map
));
5224 single
= has_single_value(set
, pos
);
5227 if (single
< 0 || single
)
5230 set
= isl_map_range(isl_map_copy(map
));
5231 single
= has_single_value(set
, pos
);
5237 /* Does the edge "edge" from "graph" have bounded dependence distances
5238 * in the merged graph "merge_graph" of a selection of clusters in "c"?
5240 * Extract the complete transformations of the source and destination
5241 * nodes of the edge, apply them to the edge constraints and
5242 * compute the differences. Finally, check if these differences are bounded
5243 * in each direction.
5245 * If the dimension of the band is greater than the number of
5246 * dimensions that can be expected to be optimized by the edge
5247 * (based on its weight), then also allow the differences to be unbounded
5248 * in the remaining dimensions, but only if either the source or
5249 * the destination has a fixed value in that direction.
5250 * This allows a statement that produces values that are used by
5251 * several instance of another statement to be merged with that
5253 * However, merging such clusters will introduce an inherently
5254 * large proximity distance inside the merged cluster, meaning
5255 * that proximity distances will no longer be optimized in
5256 * subsequent merges. These merges are therefore only allowed
5257 * after all other possible merges have been tried.
5258 * The first time such a merge is encountered, the weight of the edge
5259 * is replaced by a negative weight. The second time (i.e., after
5260 * all merges over edges with a non-negative weight have been tried),
5261 * the merge is allowed.
5263 static isl_bool
has_bounded_distances(isl_ctx
*ctx
, struct isl_sched_edge
*edge
,
5264 struct isl_sched_graph
*graph
, struct isl_clustering
*c
,
5265 struct isl_sched_graph
*merge_graph
)
5272 map
= isl_map_copy(edge
->map
);
5273 t
= extract_node_transformation(ctx
, edge
->src
, c
, merge_graph
);
5274 map
= isl_map_apply_domain(map
, t
);
5275 t
= extract_node_transformation(ctx
, edge
->dst
, c
, merge_graph
);
5276 map
= isl_map_apply_range(map
, t
);
5277 dist
= isl_map_deltas(isl_map_copy(map
));
5279 bounded
= isl_bool_true
;
5280 n
= isl_set_dim(dist
, isl_dim_set
);
5281 n_slack
= n
- edge
->weight
;
5282 if (edge
->weight
< 0)
5283 n_slack
-= graph
->max_weight
+ 1;
5284 for (i
= 0; i
< n
; ++i
) {
5285 isl_bool bounded_i
, singular_i
;
5287 bounded_i
= distance_is_bounded(dist
, i
);
5292 if (edge
->weight
>= 0)
5293 bounded
= isl_bool_false
;
5297 singular_i
= has_singular_src_or_dst(map
, i
);
5302 bounded
= isl_bool_false
;
5305 if (!bounded
&& i
>= n
&& edge
->weight
>= 0)
5306 edge
->weight
-= graph
->max_weight
+ 1;
5314 return isl_bool_error
;
5317 /* Should the clusters be merged based on the cluster schedule
5318 * in the current (and only) band of "merge_graph"?
5319 * "graph" is the original dependence graph, while "c" records
5320 * which SCCs are involved in the latest merge.
5322 * In particular, is there at least one proximity constraint
5323 * that is optimized by the merge?
5325 * A proximity constraint is considered to be optimized
5326 * if the dependence distances are small.
5328 static isl_bool
ok_to_merge_proximity(isl_ctx
*ctx
,
5329 struct isl_sched_graph
*graph
, struct isl_clustering
*c
,
5330 struct isl_sched_graph
*merge_graph
)
5334 for (i
= 0; i
< graph
->n_edge
; ++i
) {
5335 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
5338 if (!is_proximity(edge
))
5340 if (!c
->scc_in_merge
[edge
->src
->scc
])
5342 if (!c
->scc_in_merge
[edge
->dst
->scc
])
5344 if (c
->scc_cluster
[edge
->dst
->scc
] ==
5345 c
->scc_cluster
[edge
->src
->scc
])
5347 bounded
= has_bounded_distances(ctx
, edge
, graph
, c
,
5349 if (bounded
< 0 || bounded
)
5353 return isl_bool_false
;
5356 /* Should the clusters be merged based on the cluster schedule
5357 * in the current (and only) band of "merge_graph"?
5358 * "graph" is the original dependence graph, while "c" records
5359 * which SCCs are involved in the latest merge.
5361 * If the current band is empty, then the clusters should not be merged.
5363 * If the band depth should be maximized and the merge schedule
5364 * is incomplete (meaning that the dimension of some of the schedule
5365 * bands in the original schedule will be reduced), then the clusters
5366 * should not be merged.
5368 * If the schedule_maximize_coincidence option is set, then check that
5369 * the number of coincident schedule dimensions is not reduced.
5371 * Finally, only allow the merge if at least one proximity
5372 * constraint is optimized.
5374 static isl_bool
ok_to_merge(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
5375 struct isl_clustering
*c
, struct isl_sched_graph
*merge_graph
)
5377 if (merge_graph
->n_total_row
== merge_graph
->band_start
)
5378 return isl_bool_false
;
5380 if (isl_options_get_schedule_maximize_band_depth(ctx
) &&
5381 merge_graph
->n_total_row
< merge_graph
->maxvar
)
5382 return isl_bool_false
;
5384 if (isl_options_get_schedule_maximize_coincidence(ctx
)) {
5387 ok
= ok_to_merge_coincident(c
, merge_graph
);
5392 return ok_to_merge_proximity(ctx
, graph
, c
, merge_graph
);
5395 /* Apply the schedule in "t_node" to the "n" rows starting at "first"
5396 * of the schedule in "node" and return the result.
5398 * That is, essentially compute
5400 * T * N(first:first+n-1)
5402 * taking into account the constant term and the parameter coefficients
5405 static __isl_give isl_mat
*node_transformation(isl_ctx
*ctx
,
5406 struct isl_sched_node
*t_node
, struct isl_sched_node
*node
,
5411 int n_row
, n_col
, n_param
, n_var
;
5413 n_param
= node
->nparam
;
5415 n_row
= isl_mat_rows(t_node
->sched
);
5416 n_col
= isl_mat_cols(node
->sched
);
5417 t
= isl_mat_alloc(ctx
, n_row
, n_col
);
5420 for (i
= 0; i
< n_row
; ++i
) {
5421 isl_seq_cpy(t
->row
[i
], t_node
->sched
->row
[i
], 1 + n_param
);
5422 isl_seq_clr(t
->row
[i
] + 1 + n_param
, n_var
);
5423 for (j
= 0; j
< n
; ++j
)
5424 isl_seq_addmul(t
->row
[i
],
5425 t_node
->sched
->row
[i
][1 + n_param
+ j
],
5426 node
->sched
->row
[first
+ j
],
5427 1 + n_param
+ n_var
);
5432 /* Apply the cluster schedule in "t_node" to the current band
5433 * schedule of the nodes in "graph".
5435 * In particular, replace the rows starting at band_start
5436 * by the result of applying the cluster schedule in "t_node"
5437 * to the original rows.
5439 * The coincidence of the schedule is determined by the coincidence
5440 * of the cluster schedule.
5442 static isl_stat
transform(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
5443 struct isl_sched_node
*t_node
)
5449 start
= graph
->band_start
;
5450 n
= graph
->n_total_row
- start
;
5452 n_new
= isl_mat_rows(t_node
->sched
);
5453 for (i
= 0; i
< graph
->n
; ++i
) {
5454 struct isl_sched_node
*node
= &graph
->node
[i
];
5457 t
= node_transformation(ctx
, t_node
, node
, start
, n
);
5458 node
->sched
= isl_mat_drop_rows(node
->sched
, start
, n
);
5459 node
->sched
= isl_mat_concat(node
->sched
, t
);
5460 node
->sched_map
= isl_map_free(node
->sched_map
);
5462 return isl_stat_error
;
5463 for (j
= 0; j
< n_new
; ++j
)
5464 node
->coincident
[start
+ j
] = t_node
->coincident
[j
];
5466 graph
->n_total_row
-= n
;
5468 graph
->n_total_row
+= n_new
;
5469 graph
->n_row
+= n_new
;
5475 /* Merge the clusters marked for merging in "c" into a single
5476 * cluster using the cluster schedule in the current band of "merge_graph".
5477 * The representative SCC for the new cluster is the SCC with
5478 * the smallest index.
5480 * The current band schedule of each SCC in the new cluster is obtained
5481 * by applying the schedule of the corresponding original cluster
5482 * to the original band schedule.
5483 * All SCCs in the new cluster have the same number of schedule rows.
5485 static isl_stat
merge(isl_ctx
*ctx
, struct isl_clustering
*c
,
5486 struct isl_sched_graph
*merge_graph
)
5492 for (i
= 0; i
< c
->n
; ++i
) {
5493 struct isl_sched_node
*node
;
5495 if (!c
->scc_in_merge
[i
])
5499 space
= cluster_space(&c
->scc
[i
], c
->scc_cluster
[i
]);
5501 return isl_stat_error
;
5502 node
= graph_find_node(ctx
, merge_graph
, space
);
5503 isl_space_free(space
);
5505 isl_die(ctx
, isl_error_internal
,
5506 "unable to find cluster",
5507 return isl_stat_error
);
5508 if (transform(ctx
, &c
->scc
[i
], node
) < 0)
5509 return isl_stat_error
;
5510 c
->scc_cluster
[i
] = cluster
;
5516 /* Try and merge the clusters of SCCs marked in c->scc_in_merge
5517 * by scheduling the current cluster bands with respect to each other.
5519 * Construct a dependence graph with a space for each cluster and
5520 * with the coordinates of each space corresponding to the schedule
5521 * dimensions of the current band of that cluster.
5522 * Construct a cluster schedule in this cluster dependence graph and
5523 * apply it to the current cluster bands if it is applicable
5524 * according to ok_to_merge.
5526 * If the number of remaining schedule dimensions in a cluster
5527 * with a non-maximal current schedule dimension is greater than
5528 * the number of remaining schedule dimensions in clusters
5529 * with a maximal current schedule dimension, then restrict
5530 * the number of rows to be computed in the cluster schedule
5531 * to the minimal such non-maximal current schedule dimension.
5532 * Do this by adjusting merge_graph.maxvar.
5534 * Return isl_bool_true if the clusters have effectively been merged
5535 * into a single cluster.
5537 * Note that since the standard scheduling algorithm minimizes the maximal
5538 * distance over proximity constraints, the proximity constraints between
5539 * the merged clusters may not be optimized any further than what is
5540 * sufficient to bring the distances within the limits of the internal
5541 * proximity constraints inside the individual clusters.
5542 * It may therefore make sense to perform an additional translation step
5543 * to bring the clusters closer to each other, while maintaining
5544 * the linear part of the merging schedule found using the standard
5545 * scheduling algorithm.
5547 static isl_bool
try_merge(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
5548 struct isl_clustering
*c
)
5550 struct isl_sched_graph merge_graph
= { 0 };
5553 if (init_merge_graph(ctx
, graph
, c
, &merge_graph
) < 0)
5556 if (compute_maxvar(&merge_graph
) < 0)
5558 if (adjust_maxvar_to_slack(ctx
, &merge_graph
,c
) < 0)
5560 if (compute_schedule_wcc_band(ctx
, &merge_graph
) < 0)
5562 merged
= ok_to_merge(ctx
, graph
, c
, &merge_graph
);
5563 if (merged
&& merge(ctx
, c
, &merge_graph
) < 0)
5566 graph_free(ctx
, &merge_graph
);
5569 graph_free(ctx
, &merge_graph
);
5570 return isl_bool_error
;
5573 /* Is there any edge marked "no_merge" between two SCCs that are
5574 * about to be merged (i.e., that are set in "scc_in_merge")?
5575 * "merge_edge" is the proximity edge along which the clusters of SCCs
5576 * are going to be merged.
5578 * If there is any edge between two SCCs with a negative weight,
5579 * while the weight of "merge_edge" is non-negative, then this
5580 * means that the edge was postponed. "merge_edge" should then
5581 * also be postponed since merging along the edge with negative weight should
5582 * be postponed until all edges with non-negative weight have been tried.
5583 * Replace the weight of "merge_edge" by a negative weight as well and
5584 * tell the caller not to attempt a merge.
5586 static int any_no_merge(struct isl_sched_graph
*graph
, int *scc_in_merge
,
5587 struct isl_sched_edge
*merge_edge
)
5591 for (i
= 0; i
< graph
->n_edge
; ++i
) {
5592 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
5594 if (!scc_in_merge
[edge
->src
->scc
])
5596 if (!scc_in_merge
[edge
->dst
->scc
])
5600 if (merge_edge
->weight
>= 0 && edge
->weight
< 0) {
5601 merge_edge
->weight
-= graph
->max_weight
+ 1;
5609 /* Merge the two clusters in "c" connected by the edge in "graph"
5610 * with index "edge" into a single cluster.
5611 * If it turns out to be impossible to merge these two clusters,
5612 * then mark the edge as "no_merge" such that it will not be
5615 * First mark all SCCs that need to be merged. This includes the SCCs
5616 * in the two clusters, but it may also include the SCCs
5617 * of intermediate clusters.
5618 * If there is already a no_merge edge between any pair of such SCCs,
5619 * then simply mark the current edge as no_merge as well.
5620 * Likewise, if any of those edges was postponed by has_bounded_distances,
5621 * then postpone the current edge as well.
5622 * Otherwise, try and merge the clusters and mark "edge" as "no_merge"
5623 * if the clusters did not end up getting merged, unless the non-merge
5624 * is due to the fact that the edge was postponed. This postponement
5625 * can be recognized by a change in weight (from non-negative to negative).
5627 static isl_stat
merge_clusters_along_edge(isl_ctx
*ctx
,
5628 struct isl_sched_graph
*graph
, int edge
, struct isl_clustering
*c
)
5631 int edge_weight
= graph
->edge
[edge
].weight
;
5633 if (mark_merge_sccs(ctx
, graph
, edge
, c
) < 0)
5634 return isl_stat_error
;
5636 if (any_no_merge(graph
, c
->scc_in_merge
, &graph
->edge
[edge
]))
5637 merged
= isl_bool_false
;
5639 merged
= try_merge(ctx
, graph
, c
);
5641 return isl_stat_error
;
5642 if (!merged
&& edge_weight
== graph
->edge
[edge
].weight
)
5643 graph
->edge
[edge
].no_merge
= 1;
5648 /* Does "node" belong to the cluster identified by "cluster"?
5650 static int node_cluster_exactly(struct isl_sched_node
*node
, int cluster
)
5652 return node
->cluster
== cluster
;
5655 /* Does "edge" connect two nodes belonging to the cluster
5656 * identified by "cluster"?
5658 static int edge_cluster_exactly(struct isl_sched_edge
*edge
, int cluster
)
5660 return edge
->src
->cluster
== cluster
&& edge
->dst
->cluster
== cluster
;
5663 /* Swap the schedule of "node1" and "node2".
5664 * Both nodes have been derived from the same node in a common parent graph.
5665 * Since the "coincident" field is shared with that node
5666 * in the parent graph, there is no need to also swap this field.
5668 static void swap_sched(struct isl_sched_node
*node1
,
5669 struct isl_sched_node
*node2
)
5674 sched
= node1
->sched
;
5675 node1
->sched
= node2
->sched
;
5676 node2
->sched
= sched
;
5678 sched_map
= node1
->sched_map
;
5679 node1
->sched_map
= node2
->sched_map
;
5680 node2
->sched_map
= sched_map
;
5683 /* Copy the current band schedule from the SCCs that form the cluster
5684 * with index "pos" to the actual cluster at position "pos".
5685 * By construction, the index of the first SCC that belongs to the cluster
5688 * The order of the nodes inside both the SCCs and the cluster
5689 * is assumed to be same as the order in the original "graph".
5691 * Since the SCC graphs will no longer be used after this function,
5692 * the schedules are actually swapped rather than copied.
5694 static isl_stat
copy_partial(struct isl_sched_graph
*graph
,
5695 struct isl_clustering
*c
, int pos
)
5699 c
->cluster
[pos
].n_total_row
= c
->scc
[pos
].n_total_row
;
5700 c
->cluster
[pos
].n_row
= c
->scc
[pos
].n_row
;
5701 c
->cluster
[pos
].maxvar
= c
->scc
[pos
].maxvar
;
5703 for (i
= 0; i
< graph
->n
; ++i
) {
5707 if (graph
->node
[i
].cluster
!= pos
)
5709 s
= graph
->node
[i
].scc
;
5710 k
= c
->scc_node
[s
]++;
5711 swap_sched(&c
->cluster
[pos
].node
[j
], &c
->scc
[s
].node
[k
]);
5712 if (c
->scc
[s
].maxvar
> c
->cluster
[pos
].maxvar
)
5713 c
->cluster
[pos
].maxvar
= c
->scc
[s
].maxvar
;
5720 /* Is there a (conditional) validity dependence from node[j] to node[i],
5721 * forcing node[i] to follow node[j] or do the nodes belong to the same
5724 static isl_bool
node_follows_strong_or_same_cluster(int i
, int j
, void *user
)
5726 struct isl_sched_graph
*graph
= user
;
5728 if (graph
->node
[i
].cluster
== graph
->node
[j
].cluster
)
5729 return isl_bool_true
;
5730 return graph_has_validity_edge(graph
, &graph
->node
[j
], &graph
->node
[i
]);
5733 /* Extract the merged clusters of SCCs in "graph", sort them, and
5734 * store them in c->clusters. Update c->scc_cluster accordingly.
5736 * First keep track of the cluster containing the SCC to which a node
5737 * belongs in the node itself.
5738 * Then extract the clusters into c->clusters, copying the current
5739 * band schedule from the SCCs that belong to the cluster.
5740 * Do this only once per cluster.
5742 * Finally, topologically sort the clusters and update c->scc_cluster
5743 * to match the new scc numbering. While the SCCs were originally
5744 * sorted already, some SCCs that depend on some other SCCs may
5745 * have been merged with SCCs that appear before these other SCCs.
5746 * A reordering may therefore be required.
5748 static isl_stat
extract_clusters(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
5749 struct isl_clustering
*c
)
5753 for (i
= 0; i
< graph
->n
; ++i
)
5754 graph
->node
[i
].cluster
= c
->scc_cluster
[graph
->node
[i
].scc
];
5756 for (i
= 0; i
< graph
->scc
; ++i
) {
5757 if (c
->scc_cluster
[i
] != i
)
5759 if (extract_sub_graph(ctx
, graph
, &node_cluster_exactly
,
5760 &edge_cluster_exactly
, i
, &c
->cluster
[i
]) < 0)
5761 return isl_stat_error
;
5762 c
->cluster
[i
].src_scc
= -1;
5763 c
->cluster
[i
].dst_scc
= -1;
5764 if (copy_partial(graph
, c
, i
) < 0)
5765 return isl_stat_error
;
5768 if (detect_ccs(ctx
, graph
, &node_follows_strong_or_same_cluster
) < 0)
5769 return isl_stat_error
;
5770 for (i
= 0; i
< graph
->n
; ++i
)
5771 c
->scc_cluster
[graph
->node
[i
].scc
] = graph
->node
[i
].cluster
;
5776 /* Compute weights on the proximity edges of "graph" that can
5777 * be used by find_proximity to find the most appropriate
5778 * proximity edge to use to merge two clusters in "c".
5779 * The weights are also used by has_bounded_distances to determine
5780 * whether the merge should be allowed.
5781 * Store the maximum of the computed weights in graph->max_weight.
5783 * The computed weight is a measure for the number of remaining schedule
5784 * dimensions that can still be completely aligned.
5785 * In particular, compute the number of equalities between
5786 * input dimensions and output dimensions in the proximity constraints.
5787 * The directions that are already handled by outer schedule bands
5788 * are projected out prior to determining this number.
5790 * Edges that will never be considered by find_proximity are ignored.
5792 static isl_stat
compute_weights(struct isl_sched_graph
*graph
,
5793 struct isl_clustering
*c
)
5797 graph
->max_weight
= 0;
5799 for (i
= 0; i
< graph
->n_edge
; ++i
) {
5800 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
5801 struct isl_sched_node
*src
= edge
->src
;
5802 struct isl_sched_node
*dst
= edge
->dst
;
5803 isl_basic_map
*hull
;
5806 if (!is_proximity(edge
))
5808 if (bad_cluster(&c
->scc
[edge
->src
->scc
]) ||
5809 bad_cluster(&c
->scc
[edge
->dst
->scc
]))
5811 if (c
->scc_cluster
[edge
->dst
->scc
] ==
5812 c
->scc_cluster
[edge
->src
->scc
])
5815 hull
= isl_map_affine_hull(isl_map_copy(edge
->map
));
5816 hull
= isl_basic_map_transform_dims(hull
, isl_dim_in
, 0,
5817 isl_mat_copy(src
->ctrans
));
5818 hull
= isl_basic_map_transform_dims(hull
, isl_dim_out
, 0,
5819 isl_mat_copy(dst
->ctrans
));
5820 hull
= isl_basic_map_project_out(hull
,
5821 isl_dim_in
, 0, src
->rank
);
5822 hull
= isl_basic_map_project_out(hull
,
5823 isl_dim_out
, 0, dst
->rank
);
5824 hull
= isl_basic_map_remove_divs(hull
);
5825 n_in
= isl_basic_map_dim(hull
, isl_dim_in
);
5826 n_out
= isl_basic_map_dim(hull
, isl_dim_out
);
5827 hull
= isl_basic_map_drop_constraints_not_involving_dims(hull
,
5828 isl_dim_in
, 0, n_in
);
5829 hull
= isl_basic_map_drop_constraints_not_involving_dims(hull
,
5830 isl_dim_out
, 0, n_out
);
5832 return isl_stat_error
;
5833 edge
->weight
= hull
->n_eq
;
5834 isl_basic_map_free(hull
);
5836 if (edge
->weight
> graph
->max_weight
)
5837 graph
->max_weight
= edge
->weight
;
5843 /* Call compute_schedule_finish_band on each of the clusters in "c"
5844 * in their topological order. This order is determined by the scc
5845 * fields of the nodes in "graph".
5846 * Combine the results in a sequence expressing the topological order.
5848 * If there is only one cluster left, then there is no need to introduce
5849 * a sequence node. Also, in this case, the cluster necessarily contains
5850 * the SCC at position 0 in the original graph and is therefore also
5851 * stored in the first cluster of "c".
5853 static __isl_give isl_schedule_node
*finish_bands_clustering(
5854 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
5855 struct isl_clustering
*c
)
5859 isl_union_set_list
*filters
;
5861 if (graph
->scc
== 1)
5862 return compute_schedule_finish_band(node
, &c
->cluster
[0], 0);
5864 ctx
= isl_schedule_node_get_ctx(node
);
5866 filters
= extract_sccs(ctx
, graph
);
5867 node
= isl_schedule_node_insert_sequence(node
, filters
);
5869 for (i
= 0; i
< graph
->scc
; ++i
) {
5870 int j
= c
->scc_cluster
[i
];
5871 node
= isl_schedule_node_child(node
, i
);
5872 node
= isl_schedule_node_child(node
, 0);
5873 node
= compute_schedule_finish_band(node
, &c
->cluster
[j
], 0);
5874 node
= isl_schedule_node_parent(node
);
5875 node
= isl_schedule_node_parent(node
);
5881 /* Compute a schedule for a connected dependence graph by first considering
5882 * each strongly connected component (SCC) in the graph separately and then
5883 * incrementally combining them into clusters.
5884 * Return the updated schedule node.
5886 * Initially, each cluster consists of a single SCC, each with its
5887 * own band schedule. The algorithm then tries to merge pairs
5888 * of clusters along a proximity edge until no more suitable
5889 * proximity edges can be found. During this merging, the schedule
5890 * is maintained in the individual SCCs.
5891 * After the merging is completed, the full resulting clusters
5892 * are extracted and in finish_bands_clustering,
5893 * compute_schedule_finish_band is called on each of them to integrate
5894 * the band into "node" and to continue the computation.
5896 * compute_weights initializes the weights that are used by find_proximity.
5898 static __isl_give isl_schedule_node
*compute_schedule_wcc_clustering(
5899 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
5902 struct isl_clustering c
;
5905 ctx
= isl_schedule_node_get_ctx(node
);
5907 if (clustering_init(ctx
, &c
, graph
) < 0)
5910 if (compute_weights(graph
, &c
) < 0)
5914 i
= find_proximity(graph
, &c
);
5917 if (i
>= graph
->n_edge
)
5919 if (merge_clusters_along_edge(ctx
, graph
, i
, &c
) < 0)
5923 if (extract_clusters(ctx
, graph
, &c
) < 0)
5926 node
= finish_bands_clustering(node
, graph
, &c
);
5928 clustering_free(ctx
, &c
);
5931 clustering_free(ctx
, &c
);
5932 return isl_schedule_node_free(node
);
5935 /* Compute a schedule for a connected dependence graph and return
5936 * the updated schedule node.
5938 * If Feautrier's algorithm is selected, we first recursively try to satisfy
5939 * as many validity dependences as possible. When all validity dependences
5940 * are satisfied we extend the schedule to a full-dimensional schedule.
5942 * Call compute_schedule_wcc_whole or compute_schedule_wcc_clustering
5943 * depending on whether the user has selected the option to try and
5944 * compute a schedule for the entire (weakly connected) component first.
5945 * If there is only a single strongly connected component (SCC), then
5946 * there is no point in trying to combine SCCs
5947 * in compute_schedule_wcc_clustering, so compute_schedule_wcc_whole
5948 * is called instead.
5950 static __isl_give isl_schedule_node
*compute_schedule_wcc(
5951 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
5958 ctx
= isl_schedule_node_get_ctx(node
);
5959 if (detect_sccs(ctx
, graph
) < 0)
5960 return isl_schedule_node_free(node
);
5962 if (compute_maxvar(graph
) < 0)
5963 return isl_schedule_node_free(node
);
5965 if (need_feautrier_step(ctx
, graph
))
5966 return compute_schedule_wcc_feautrier(node
, graph
);
5968 if (graph
->scc
<= 1 || isl_options_get_schedule_whole_component(ctx
))
5969 return compute_schedule_wcc_whole(node
, graph
);
5971 return compute_schedule_wcc_clustering(node
, graph
);
5974 /* Compute a schedule for each group of nodes identified by node->scc
5975 * separately and then combine them in a sequence node (or as set node
5976 * if graph->weak is set) inserted at position "node" of the schedule tree.
5977 * Return the updated schedule node.
5979 * If "wcc" is set then each of the groups belongs to a single
5980 * weakly connected component in the dependence graph so that
5981 * there is no need for compute_sub_schedule to look for weakly
5982 * connected components.
5984 static __isl_give isl_schedule_node
*compute_component_schedule(
5985 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
5990 isl_union_set_list
*filters
;
5994 ctx
= isl_schedule_node_get_ctx(node
);
5996 filters
= extract_sccs(ctx
, graph
);
5998 node
= isl_schedule_node_insert_set(node
, filters
);
6000 node
= isl_schedule_node_insert_sequence(node
, filters
);
6002 for (component
= 0; component
< graph
->scc
; ++component
) {
6003 node
= isl_schedule_node_child(node
, component
);
6004 node
= isl_schedule_node_child(node
, 0);
6005 node
= compute_sub_schedule(node
, ctx
, graph
,
6007 &edge_scc_exactly
, component
, wcc
);
6008 node
= isl_schedule_node_parent(node
);
6009 node
= isl_schedule_node_parent(node
);
6015 /* Compute a schedule for the given dependence graph and insert it at "node".
6016 * Return the updated schedule node.
6018 * We first check if the graph is connected (through validity and conditional
6019 * validity dependences) and, if not, compute a schedule
6020 * for each component separately.
6021 * If the schedule_serialize_sccs option is set, then we check for strongly
6022 * connected components instead and compute a separate schedule for
6023 * each such strongly connected component.
6025 static __isl_give isl_schedule_node
*compute_schedule(isl_schedule_node
*node
,
6026 struct isl_sched_graph
*graph
)
6033 ctx
= isl_schedule_node_get_ctx(node
);
6034 if (isl_options_get_schedule_serialize_sccs(ctx
)) {
6035 if (detect_sccs(ctx
, graph
) < 0)
6036 return isl_schedule_node_free(node
);
6038 if (detect_wccs(ctx
, graph
) < 0)
6039 return isl_schedule_node_free(node
);
6043 return compute_component_schedule(node
, graph
, 1);
6045 return compute_schedule_wcc(node
, graph
);
6048 /* Compute a schedule on sc->domain that respects the given schedule
6051 * In particular, the schedule respects all the validity dependences.
6052 * If the default isl scheduling algorithm is used, it tries to minimize
6053 * the dependence distances over the proximity dependences.
6054 * If Feautrier's scheduling algorithm is used, the proximity dependence
6055 * distances are only minimized during the extension to a full-dimensional
6058 * If there are any condition and conditional validity dependences,
6059 * then the conditional validity dependences may be violated inside
6060 * a tilable band, provided they have no adjacent non-local
6061 * condition dependences.
6063 __isl_give isl_schedule
*isl_schedule_constraints_compute_schedule(
6064 __isl_take isl_schedule_constraints
*sc
)
6066 isl_ctx
*ctx
= isl_schedule_constraints_get_ctx(sc
);
6067 struct isl_sched_graph graph
= { 0 };
6068 isl_schedule
*sched
;
6069 isl_schedule_node
*node
;
6070 isl_union_set
*domain
;
6072 sc
= isl_schedule_constraints_align_params(sc
);
6074 domain
= isl_schedule_constraints_get_domain(sc
);
6075 if (isl_union_set_n_set(domain
) == 0) {
6076 isl_schedule_constraints_free(sc
);
6077 return isl_schedule_from_domain(domain
);
6080 if (graph_init(&graph
, sc
) < 0)
6081 domain
= isl_union_set_free(domain
);
6083 node
= isl_schedule_node_from_domain(domain
);
6084 node
= isl_schedule_node_child(node
, 0);
6086 node
= compute_schedule(node
, &graph
);
6087 sched
= isl_schedule_node_get_schedule(node
);
6088 isl_schedule_node_free(node
);
6090 graph_free(ctx
, &graph
);
6091 isl_schedule_constraints_free(sc
);
6096 /* Compute a schedule for the given union of domains that respects
6097 * all the validity dependences and minimizes
6098 * the dependence distances over the proximity dependences.
6100 * This function is kept for backward compatibility.
6102 __isl_give isl_schedule
*isl_union_set_compute_schedule(
6103 __isl_take isl_union_set
*domain
,
6104 __isl_take isl_union_map
*validity
,
6105 __isl_take isl_union_map
*proximity
)
6107 isl_schedule_constraints
*sc
;
6109 sc
= isl_schedule_constraints_on_domain(domain
);
6110 sc
= isl_schedule_constraints_set_validity(sc
, validity
);
6111 sc
= isl_schedule_constraints_set_proximity(sc
, proximity
);
6113 return isl_schedule_constraints_compute_schedule(sc
);