2 * Copyright 2005-2007 Universiteit Leiden
3 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Copyright 2010 INRIA Saclay
5 * Copyright 2012 Universiteit Leiden
6 * Copyright 2014 Ecole Normale Superieure
8 * Use of this software is governed by the MIT license
10 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
11 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
12 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
13 * B-3001 Leuven, Belgium
14 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
15 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
16 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
21 #include <isl/union_set.h>
22 #include <isl/union_map.h>
24 #include <isl/schedule_node.h>
26 #include <isl/stream.h>
28 enum isl_restriction_type
{
29 isl_restriction_type_empty
,
30 isl_restriction_type_none
,
31 isl_restriction_type_input
,
32 isl_restriction_type_output
35 struct isl_restriction
{
36 enum isl_restriction_type type
;
42 /* Create a restriction of the given type.
44 static __isl_give isl_restriction
*isl_restriction_alloc(
45 __isl_take isl_map
*source_map
, enum isl_restriction_type type
)
48 isl_restriction
*restr
;
53 ctx
= isl_map_get_ctx(source_map
);
54 restr
= isl_calloc_type(ctx
, struct isl_restriction
);
60 isl_map_free(source_map
);
63 isl_map_free(source_map
);
67 /* Create a restriction that doesn't restrict anything.
69 __isl_give isl_restriction
*isl_restriction_none(__isl_take isl_map
*source_map
)
71 return isl_restriction_alloc(source_map
, isl_restriction_type_none
);
74 /* Create a restriction that removes everything.
76 __isl_give isl_restriction
*isl_restriction_empty(
77 __isl_take isl_map
*source_map
)
79 return isl_restriction_alloc(source_map
, isl_restriction_type_empty
);
82 /* Create a restriction on the input of the maximization problem
83 * based on the given source and sink restrictions.
85 __isl_give isl_restriction
*isl_restriction_input(
86 __isl_take isl_set
*source_restr
, __isl_take isl_set
*sink_restr
)
89 isl_restriction
*restr
;
91 if (!source_restr
|| !sink_restr
)
94 ctx
= isl_set_get_ctx(source_restr
);
95 restr
= isl_calloc_type(ctx
, struct isl_restriction
);
99 restr
->type
= isl_restriction_type_input
;
100 restr
->source
= source_restr
;
101 restr
->sink
= sink_restr
;
105 isl_set_free(source_restr
);
106 isl_set_free(sink_restr
);
110 /* Create a restriction on the output of the maximization problem
111 * based on the given source restriction.
113 __isl_give isl_restriction
*isl_restriction_output(
114 __isl_take isl_set
*source_restr
)
117 isl_restriction
*restr
;
122 ctx
= isl_set_get_ctx(source_restr
);
123 restr
= isl_calloc_type(ctx
, struct isl_restriction
);
127 restr
->type
= isl_restriction_type_output
;
128 restr
->source
= source_restr
;
132 isl_set_free(source_restr
);
136 __isl_null isl_restriction
*isl_restriction_free(
137 __isl_take isl_restriction
*restr
)
142 isl_set_free(restr
->source
);
143 isl_set_free(restr
->sink
);
148 isl_ctx
*isl_restriction_get_ctx(__isl_keep isl_restriction
*restr
)
150 return restr
? isl_set_get_ctx(restr
->source
) : NULL
;
153 /* A private structure to keep track of a mapping together with
154 * a user-specified identifier and a boolean indicating whether
155 * the map represents a must or may access/dependence.
157 struct isl_labeled_map
{
163 typedef int (*isl_access_coscheduled
)(void *first
, void *second
);
165 /* A structure containing the input for dependence analysis:
167 * - n_must + n_may (<= max_source) sources
168 * - a function for determining the relative order of sources and sink
169 * - an optional function "coscheduled" for determining whether sources
170 * may be coscheduled. If "coscheduled" is NULL, then the sources
171 * are assumed not to be coscheduled.
172 * The must sources are placed before the may sources.
174 * domain_map is an auxiliary map that maps the sink access relation
175 * to the domain of this access relation.
176 * This field is only needed when restrict_fn is set and
177 * the field itself is set by isl_access_info_compute_flow.
179 * restrict_fn is a callback that (if not NULL) will be called
180 * right before any lexicographical maximization.
182 struct isl_access_info
{
184 struct isl_labeled_map sink
;
185 isl_access_level_before level_before
;
186 isl_access_coscheduled coscheduled
;
188 isl_access_restrict restrict_fn
;
194 struct isl_labeled_map source
[1];
197 /* A structure containing the output of dependence analysis:
198 * - n_source dependences
199 * - a wrapped subset of the sink for which definitely no source could be found
200 * - a wrapped subset of the sink for which possibly no source could be found
203 isl_set
*must_no_source
;
204 isl_set
*may_no_source
;
206 struct isl_labeled_map
*dep
;
209 /* Construct an isl_access_info structure and fill it up with
210 * the given data. The number of sources is set to 0.
212 __isl_give isl_access_info
*isl_access_info_alloc(__isl_take isl_map
*sink
,
213 void *sink_user
, isl_access_level_before fn
, int max_source
)
216 struct isl_access_info
*acc
;
221 ctx
= isl_map_get_ctx(sink
);
222 isl_assert(ctx
, max_source
>= 0, goto error
);
224 acc
= isl_calloc(ctx
, struct isl_access_info
,
225 sizeof(struct isl_access_info
) +
226 (max_source
- 1) * sizeof(struct isl_labeled_map
));
230 acc
->sink
.map
= sink
;
231 acc
->sink
.data
= sink_user
;
232 acc
->level_before
= fn
;
233 acc
->max_source
= max_source
;
243 /* Free the given isl_access_info structure.
245 __isl_null isl_access_info
*isl_access_info_free(
246 __isl_take isl_access_info
*acc
)
252 isl_map_free(acc
->domain_map
);
253 isl_map_free(acc
->sink
.map
);
254 for (i
= 0; i
< acc
->n_must
+ acc
->n_may
; ++i
)
255 isl_map_free(acc
->source
[i
].map
);
260 isl_ctx
*isl_access_info_get_ctx(__isl_keep isl_access_info
*acc
)
262 return acc
? isl_map_get_ctx(acc
->sink
.map
) : NULL
;
265 __isl_give isl_access_info
*isl_access_info_set_restrict(
266 __isl_take isl_access_info
*acc
, isl_access_restrict fn
, void *user
)
270 acc
->restrict_fn
= fn
;
271 acc
->restrict_user
= user
;
275 /* Add another source to an isl_access_info structure, making
276 * sure the "must" sources are placed before the "may" sources.
277 * This function may be called at most max_source times on a
278 * given isl_access_info structure, with max_source as specified
279 * in the call to isl_access_info_alloc that constructed the structure.
281 __isl_give isl_access_info
*isl_access_info_add_source(
282 __isl_take isl_access_info
*acc
, __isl_take isl_map
*source
,
283 int must
, void *source_user
)
289 ctx
= isl_map_get_ctx(acc
->sink
.map
);
290 isl_assert(ctx
, acc
->n_must
+ acc
->n_may
< acc
->max_source
, goto error
);
294 acc
->source
[acc
->n_must
+ acc
->n_may
] =
295 acc
->source
[acc
->n_must
];
296 acc
->source
[acc
->n_must
].map
= source
;
297 acc
->source
[acc
->n_must
].data
= source_user
;
298 acc
->source
[acc
->n_must
].must
= 1;
301 acc
->source
[acc
->n_must
+ acc
->n_may
].map
= source
;
302 acc
->source
[acc
->n_must
+ acc
->n_may
].data
= source_user
;
303 acc
->source
[acc
->n_must
+ acc
->n_may
].must
= 0;
309 isl_map_free(source
);
310 isl_access_info_free(acc
);
314 /* A helper struct carrying the isl_access_info and an error condition.
316 struct access_sort_info
{
317 isl_access_info
*access_info
;
321 /* Return -n, 0 or n (with n a positive value), depending on whether
322 * the source access identified by p1 should be sorted before, together
323 * or after that identified by p2.
325 * If p1 appears before p2, then it should be sorted first.
326 * For more generic initial schedules, it is possible that neither
327 * p1 nor p2 appears before the other, or at least not in any obvious way.
328 * We therefore also check if p2 appears before p1, in which case p2
329 * should be sorted first.
330 * If not, we try to order the two statements based on the description
331 * of the iteration domains. This results in an arbitrary, but fairly
334 * In case of an error, sort_info.error is set to true and all elements are
335 * reported to be equal.
337 static int access_sort_cmp(const void *p1
, const void *p2
, void *user
)
339 struct access_sort_info
*sort_info
= user
;
340 isl_access_info
*acc
= sort_info
->access_info
;
342 if (sort_info
->error
)
345 const struct isl_labeled_map
*i1
, *i2
;
348 i1
= (const struct isl_labeled_map
*) p1
;
349 i2
= (const struct isl_labeled_map
*) p2
;
351 level1
= acc
->level_before(i1
->data
, i2
->data
);
357 level2
= acc
->level_before(i2
->data
, i1
->data
);
363 h1
= isl_map_get_hash(i1
->map
);
364 h2
= isl_map_get_hash(i2
->map
);
365 return h1
> h2
? 1 : h1
< h2
? -1 : 0;
367 sort_info
->error
= 1;
371 /* Sort the must source accesses in their textual order.
373 static __isl_give isl_access_info
*isl_access_info_sort_sources(
374 __isl_take isl_access_info
*acc
)
376 struct access_sort_info sort_info
;
378 sort_info
.access_info
= acc
;
383 if (acc
->n_must
<= 1)
386 if (isl_sort(acc
->source
, acc
->n_must
, sizeof(struct isl_labeled_map
),
387 access_sort_cmp
, &sort_info
) < 0)
388 return isl_access_info_free(acc
);
390 return isl_access_info_free(acc
);
395 /* Align the parameters of the two spaces if needed and then call
398 static __isl_give isl_space
*space_align_and_join(__isl_take isl_space
*left
,
399 __isl_take isl_space
*right
)
401 isl_bool equal_params
;
403 equal_params
= isl_space_has_equal_params(left
, right
);
404 if (equal_params
< 0)
407 return isl_space_join(left
, right
);
409 left
= isl_space_align_params(left
, isl_space_copy(right
));
410 right
= isl_space_align_params(right
, isl_space_copy(left
));
411 return isl_space_join(left
, right
);
413 isl_space_free(left
);
414 isl_space_free(right
);
418 /* Initialize an empty isl_flow structure corresponding to a given
419 * isl_access_info structure.
420 * For each must access, two dependences are created (initialized
421 * to the empty relation), one for the resulting must dependences
422 * and one for the resulting may dependences. May accesses can
423 * only lead to may dependences, so only one dependence is created
425 * This function is private as isl_flow structures are only supposed
426 * to be created by isl_access_info_compute_flow.
428 static __isl_give isl_flow
*isl_flow_alloc(__isl_keep isl_access_info
*acc
)
432 struct isl_flow
*dep
;
437 ctx
= isl_map_get_ctx(acc
->sink
.map
);
438 dep
= isl_calloc_type(ctx
, struct isl_flow
);
442 n
= 2 * acc
->n_must
+ acc
->n_may
;
443 dep
->dep
= isl_calloc_array(ctx
, struct isl_labeled_map
, n
);
448 for (i
= 0; i
< acc
->n_must
; ++i
) {
450 dim
= space_align_and_join(
451 isl_map_get_space(acc
->source
[i
].map
),
452 isl_space_reverse(isl_map_get_space(acc
->sink
.map
)));
453 dep
->dep
[2 * i
].map
= isl_map_empty(dim
);
454 dep
->dep
[2 * i
+ 1].map
= isl_map_copy(dep
->dep
[2 * i
].map
);
455 dep
->dep
[2 * i
].data
= acc
->source
[i
].data
;
456 dep
->dep
[2 * i
+ 1].data
= acc
->source
[i
].data
;
457 dep
->dep
[2 * i
].must
= 1;
458 dep
->dep
[2 * i
+ 1].must
= 0;
459 if (!dep
->dep
[2 * i
].map
|| !dep
->dep
[2 * i
+ 1].map
)
462 for (i
= acc
->n_must
; i
< acc
->n_must
+ acc
->n_may
; ++i
) {
464 dim
= space_align_and_join(
465 isl_map_get_space(acc
->source
[i
].map
),
466 isl_space_reverse(isl_map_get_space(acc
->sink
.map
)));
467 dep
->dep
[acc
->n_must
+ i
].map
= isl_map_empty(dim
);
468 dep
->dep
[acc
->n_must
+ i
].data
= acc
->source
[i
].data
;
469 dep
->dep
[acc
->n_must
+ i
].must
= 0;
470 if (!dep
->dep
[acc
->n_must
+ i
].map
)
480 /* Iterate over all sources and for each resulting flow dependence
481 * that is not empty, call the user specfied function.
482 * The second argument in this function call identifies the source,
483 * while the third argument correspond to the final argument of
484 * the isl_flow_foreach call.
486 isl_stat
isl_flow_foreach(__isl_keep isl_flow
*deps
,
487 isl_stat (*fn
)(__isl_take isl_map
*dep
, int must
, void *dep_user
,
494 return isl_stat_error
;
496 for (i
= 0; i
< deps
->n_source
; ++i
) {
497 if (isl_map_plain_is_empty(deps
->dep
[i
].map
))
499 if (fn(isl_map_copy(deps
->dep
[i
].map
), deps
->dep
[i
].must
,
500 deps
->dep
[i
].data
, user
) < 0)
501 return isl_stat_error
;
507 /* Return a copy of the subset of the sink for which no source could be found.
509 __isl_give isl_map
*isl_flow_get_no_source(__isl_keep isl_flow
*deps
, int must
)
515 return isl_set_unwrap(isl_set_copy(deps
->must_no_source
));
517 return isl_set_unwrap(isl_set_copy(deps
->may_no_source
));
520 void isl_flow_free(__isl_take isl_flow
*deps
)
526 isl_set_free(deps
->must_no_source
);
527 isl_set_free(deps
->may_no_source
);
529 for (i
= 0; i
< deps
->n_source
; ++i
)
530 isl_map_free(deps
->dep
[i
].map
);
536 isl_ctx
*isl_flow_get_ctx(__isl_keep isl_flow
*deps
)
538 return deps
? isl_set_get_ctx(deps
->must_no_source
) : NULL
;
541 /* Return a map that enforces that the domain iteration occurs after
542 * the range iteration at the given level.
543 * If level is odd, then the domain iteration should occur after
544 * the target iteration in their shared level/2 outermost loops.
545 * In this case we simply need to enforce that these outermost
546 * loop iterations are the same.
547 * If level is even, then the loop iterator of the domain should
548 * be greater than the loop iterator of the range at the last
549 * of the level/2 shared loops, i.e., loop level/2 - 1.
551 static __isl_give isl_map
*after_at_level(__isl_take isl_space
*dim
, int level
)
553 struct isl_basic_map
*bmap
;
556 bmap
= isl_basic_map_equal(dim
, level
/2);
558 bmap
= isl_basic_map_more_at(dim
, level
/2 - 1);
560 return isl_map_from_basic_map(bmap
);
563 /* Compute the partial lexicographic maximum of "dep" on domain "sink",
564 * but first check if the user has set acc->restrict_fn and if so
565 * update either the input or the output of the maximization problem
566 * with respect to the resulting restriction.
568 * Since the user expects a mapping from sink iterations to source iterations,
569 * whereas the domain of "dep" is a wrapped map, mapping sink iterations
570 * to accessed array elements, we first need to project out the accessed
571 * sink array elements by applying acc->domain_map.
572 * Similarly, the sink restriction specified by the user needs to be
573 * converted back to the wrapped map.
575 static __isl_give isl_map
*restricted_partial_lexmax(
576 __isl_keep isl_access_info
*acc
, __isl_take isl_map
*dep
,
577 int source
, __isl_take isl_set
*sink
, __isl_give isl_set
**empty
)
580 isl_restriction
*restr
;
581 isl_set
*sink_domain
;
585 if (!acc
->restrict_fn
)
586 return isl_map_partial_lexmax(dep
, sink
, empty
);
588 source_map
= isl_map_copy(dep
);
589 source_map
= isl_map_apply_domain(source_map
,
590 isl_map_copy(acc
->domain_map
));
591 sink_domain
= isl_set_copy(sink
);
592 sink_domain
= isl_set_apply(sink_domain
, isl_map_copy(acc
->domain_map
));
593 restr
= acc
->restrict_fn(source_map
, sink_domain
,
594 acc
->source
[source
].data
, acc
->restrict_user
);
595 isl_set_free(sink_domain
);
596 isl_map_free(source_map
);
600 if (restr
->type
== isl_restriction_type_input
) {
601 dep
= isl_map_intersect_range(dep
, isl_set_copy(restr
->source
));
602 sink_restr
= isl_set_copy(restr
->sink
);
603 sink_restr
= isl_set_apply(sink_restr
,
604 isl_map_reverse(isl_map_copy(acc
->domain_map
)));
605 sink
= isl_set_intersect(sink
, sink_restr
);
606 } else if (restr
->type
== isl_restriction_type_empty
) {
607 isl_space
*space
= isl_map_get_space(dep
);
609 dep
= isl_map_empty(space
);
612 res
= isl_map_partial_lexmax(dep
, sink
, empty
);
614 if (restr
->type
== isl_restriction_type_output
)
615 res
= isl_map_intersect_range(res
, isl_set_copy(restr
->source
));
617 isl_restriction_free(restr
);
626 /* Compute the last iteration of must source j that precedes the sink
627 * at the given level for sink iterations in set_C.
628 * The subset of set_C for which no such iteration can be found is returned
631 static struct isl_map
*last_source(struct isl_access_info
*acc
,
632 struct isl_set
*set_C
,
633 int j
, int level
, struct isl_set
**empty
)
635 struct isl_map
*read_map
;
636 struct isl_map
*write_map
;
637 struct isl_map
*dep_map
;
638 struct isl_map
*after
;
639 struct isl_map
*result
;
641 read_map
= isl_map_copy(acc
->sink
.map
);
642 write_map
= isl_map_copy(acc
->source
[j
].map
);
643 write_map
= isl_map_reverse(write_map
);
644 dep_map
= isl_map_apply_range(read_map
, write_map
);
645 after
= after_at_level(isl_map_get_space(dep_map
), level
);
646 dep_map
= isl_map_intersect(dep_map
, after
);
647 result
= restricted_partial_lexmax(acc
, dep_map
, j
, set_C
, empty
);
648 result
= isl_map_reverse(result
);
653 /* For a given mapping between iterations of must source j and iterations
654 * of the sink, compute the last iteration of must source k preceding
655 * the sink at level before_level for any of the sink iterations,
656 * but following the corresponding iteration of must source j at level
659 static struct isl_map
*last_later_source(struct isl_access_info
*acc
,
660 struct isl_map
*old_map
,
661 int j
, int before_level
,
662 int k
, int after_level
,
663 struct isl_set
**empty
)
666 struct isl_set
*set_C
;
667 struct isl_map
*read_map
;
668 struct isl_map
*write_map
;
669 struct isl_map
*dep_map
;
670 struct isl_map
*after_write
;
671 struct isl_map
*before_read
;
672 struct isl_map
*result
;
674 set_C
= isl_map_range(isl_map_copy(old_map
));
675 read_map
= isl_map_copy(acc
->sink
.map
);
676 write_map
= isl_map_copy(acc
->source
[k
].map
);
678 write_map
= isl_map_reverse(write_map
);
679 dep_map
= isl_map_apply_range(read_map
, write_map
);
680 dim
= space_align_and_join(isl_map_get_space(acc
->source
[k
].map
),
681 isl_space_reverse(isl_map_get_space(acc
->source
[j
].map
)));
682 after_write
= after_at_level(dim
, after_level
);
683 after_write
= isl_map_apply_range(after_write
, old_map
);
684 after_write
= isl_map_reverse(after_write
);
685 dep_map
= isl_map_intersect(dep_map
, after_write
);
686 before_read
= after_at_level(isl_map_get_space(dep_map
), before_level
);
687 dep_map
= isl_map_intersect(dep_map
, before_read
);
688 result
= restricted_partial_lexmax(acc
, dep_map
, k
, set_C
, empty
);
689 result
= isl_map_reverse(result
);
694 /* Given a shared_level between two accesses, return 1 if the
695 * the first can precede the second at the requested target_level.
696 * If the target level is odd, i.e., refers to a statement level
697 * dimension, then first needs to precede second at the requested
698 * level, i.e., shared_level must be equal to target_level.
699 * If the target level is odd, then the two loops should share
700 * at least the requested number of outer loops.
702 static int can_precede_at_level(int shared_level
, int target_level
)
704 if (shared_level
< target_level
)
706 if ((target_level
% 2) && shared_level
> target_level
)
711 /* Given a possible flow dependence temp_rel[j] between source j and the sink
712 * at level sink_level, remove those elements for which
713 * there is an iteration of another source k < j that is closer to the sink.
714 * The flow dependences temp_rel[k] are updated with the improved sources.
715 * Any improved source needs to precede the sink at the same level
716 * and needs to follow source j at the same or a deeper level.
717 * The lower this level, the later the execution date of source k.
718 * We therefore consider lower levels first.
720 * If temp_rel[j] is empty, then there can be no improvement and
721 * we return immediately.
723 * This function returns isl_stat_ok in case it was executed successfully and
724 * isl_stat_error in case of errors during the execution of this function.
726 static isl_stat
intermediate_sources(__isl_keep isl_access_info
*acc
,
727 struct isl_map
**temp_rel
, int j
, int sink_level
)
730 int depth
= 2 * isl_map_dim(acc
->source
[j
].map
, isl_dim_in
) + 1;
732 if (isl_map_plain_is_empty(temp_rel
[j
]))
735 for (k
= j
- 1; k
>= 0; --k
) {
737 plevel
= acc
->level_before(acc
->source
[k
].data
, acc
->sink
.data
);
739 return isl_stat_error
;
740 if (!can_precede_at_level(plevel
, sink_level
))
743 plevel2
= acc
->level_before(acc
->source
[j
].data
,
744 acc
->source
[k
].data
);
746 return isl_stat_error
;
748 for (level
= sink_level
; level
<= depth
; ++level
) {
750 struct isl_set
*trest
;
751 struct isl_map
*copy
;
753 if (!can_precede_at_level(plevel2
, level
))
756 copy
= isl_map_copy(temp_rel
[j
]);
757 T
= last_later_source(acc
, copy
, j
, sink_level
, k
,
759 if (isl_map_plain_is_empty(T
)) {
764 temp_rel
[j
] = isl_map_intersect_range(temp_rel
[j
], trest
);
765 temp_rel
[k
] = isl_map_union_disjoint(temp_rel
[k
], T
);
772 /* Compute all iterations of may source j that precedes the sink at the given
773 * level for sink iterations in set_C.
775 static __isl_give isl_map
*all_sources(__isl_keep isl_access_info
*acc
,
776 __isl_take isl_set
*set_C
, int j
, int level
)
783 read_map
= isl_map_copy(acc
->sink
.map
);
784 read_map
= isl_map_intersect_domain(read_map
, set_C
);
785 write_map
= isl_map_copy(acc
->source
[acc
->n_must
+ j
].map
);
786 write_map
= isl_map_reverse(write_map
);
787 dep_map
= isl_map_apply_range(read_map
, write_map
);
788 after
= after_at_level(isl_map_get_space(dep_map
), level
);
789 dep_map
= isl_map_intersect(dep_map
, after
);
791 return isl_map_reverse(dep_map
);
794 /* For a given mapping between iterations of must source k and iterations
795 * of the sink, compute all iterations of may source j preceding
796 * the sink at level before_level for any of the sink iterations,
797 * but following the corresponding iteration of must source k at level
800 static __isl_give isl_map
*all_later_sources(__isl_keep isl_access_info
*acc
,
801 __isl_take isl_map
*old_map
,
802 int j
, int before_level
, int k
, int after_level
)
809 isl_map
*after_write
;
810 isl_map
*before_read
;
812 set_C
= isl_map_range(isl_map_copy(old_map
));
813 read_map
= isl_map_copy(acc
->sink
.map
);
814 read_map
= isl_map_intersect_domain(read_map
, set_C
);
815 write_map
= isl_map_copy(acc
->source
[acc
->n_must
+ j
].map
);
817 write_map
= isl_map_reverse(write_map
);
818 dep_map
= isl_map_apply_range(read_map
, write_map
);
819 dim
= isl_space_join(isl_map_get_space(acc
->source
[acc
->n_must
+ j
].map
),
820 isl_space_reverse(isl_map_get_space(acc
->source
[k
].map
)));
821 after_write
= after_at_level(dim
, after_level
);
822 after_write
= isl_map_apply_range(after_write
, old_map
);
823 after_write
= isl_map_reverse(after_write
);
824 dep_map
= isl_map_intersect(dep_map
, after_write
);
825 before_read
= after_at_level(isl_map_get_space(dep_map
), before_level
);
826 dep_map
= isl_map_intersect(dep_map
, before_read
);
827 return isl_map_reverse(dep_map
);
830 /* Given the must and may dependence relations for the must accesses
831 * for level sink_level, check if there are any accesses of may access j
832 * that occur in between and return their union.
833 * If some of these accesses are intermediate with respect to
834 * (previously thought to be) must dependences, then these
835 * must dependences are turned into may dependences.
837 static __isl_give isl_map
*all_intermediate_sources(
838 __isl_keep isl_access_info
*acc
, __isl_take isl_map
*map
,
839 struct isl_map
**must_rel
, struct isl_map
**may_rel
,
840 int j
, int sink_level
)
843 int depth
= 2 * isl_map_dim(acc
->source
[acc
->n_must
+ j
].map
,
846 for (k
= 0; k
< acc
->n_must
; ++k
) {
849 if (isl_map_plain_is_empty(may_rel
[k
]) &&
850 isl_map_plain_is_empty(must_rel
[k
]))
853 plevel
= acc
->level_before(acc
->source
[k
].data
,
854 acc
->source
[acc
->n_must
+ j
].data
);
856 return isl_map_free(map
);
858 for (level
= sink_level
; level
<= depth
; ++level
) {
863 if (!can_precede_at_level(plevel
, level
))
866 copy
= isl_map_copy(may_rel
[k
]);
867 T
= all_later_sources(acc
, copy
, j
, sink_level
, k
, level
);
868 map
= isl_map_union(map
, T
);
870 copy
= isl_map_copy(must_rel
[k
]);
871 T
= all_later_sources(acc
, copy
, j
, sink_level
, k
, level
);
872 ran
= isl_map_range(isl_map_copy(T
));
873 map
= isl_map_union(map
, T
);
874 may_rel
[k
] = isl_map_union_disjoint(may_rel
[k
],
875 isl_map_intersect_range(isl_map_copy(must_rel
[k
]),
877 T
= isl_map_from_domain_and_range(
879 isl_space_domain(isl_map_get_space(must_rel
[k
]))),
881 must_rel
[k
] = isl_map_subtract(must_rel
[k
], T
);
888 /* Given a dependence relation "old_map" between a must-source and the sink,
889 * return a subset of the dependences, augmented with instances
890 * of the source at position "pos" in "acc" that are coscheduled
891 * with the must-source and that access the same element.
892 * That is, if the input lives in a space T -> K, then the output
893 * lives in the space [T -> S] -> K, with S the space of source "pos", and
894 * the domain factor of the domain product is a subset of the input.
895 * The sources are considered to be coscheduled if they have the same values
896 * for the initial "depth" coordinates.
898 * First construct a dependence relation S -> K and a mapping
899 * between coscheduled sources T -> S.
900 * The second is combined with the original dependence relation T -> K
901 * to form a relation in T -> [S -> K], which is subsequently
902 * uncurried to [T -> S] -> K.
903 * This result is then intersected with the dependence relation S -> K
904 * to form the output.
906 * In case a negative depth is given, NULL is returned to indicate an error.
908 static __isl_give isl_map
*coscheduled_source(__isl_keep isl_access_info
*acc
,
909 __isl_keep isl_map
*old_map
, int pos
, int depth
)
922 set_C
= isl_map_range(isl_map_copy(old_map
));
923 read_map
= isl_map_copy(acc
->sink
.map
);
924 read_map
= isl_map_intersect_domain(read_map
, set_C
);
925 write_map
= isl_map_copy(acc
->source
[pos
].map
);
926 dep_map
= isl_map_domain_product(write_map
, read_map
);
927 dep_map
= isl_set_unwrap(isl_map_domain(dep_map
));
928 space
= isl_space_join(isl_map_get_space(old_map
),
929 isl_space_reverse(isl_map_get_space(dep_map
)));
930 equal
= isl_map_from_basic_map(isl_basic_map_equal(space
, depth
));
931 map
= isl_map_range_product(equal
, isl_map_copy(old_map
));
932 map
= isl_map_uncurry(map
);
933 map
= isl_map_intersect_domain_factor_range(map
, dep_map
);
938 /* After the dependences derived from a must-source have been computed
939 * at a certain level, check if any of the sources of the must-dependences
940 * may be coscheduled with other sources.
941 * If they are any such sources, then there is no way of determining
942 * which of the sources actually comes last and the must-dependences
943 * need to be turned into may-dependences, while dependences from
944 * the other sources need to be added to the may-dependences as well.
945 * "acc" describes the sources and a callback for checking whether
946 * two sources may be coscheduled. If acc->coscheduled is NULL then
947 * the sources are assumed not to be coscheduled.
948 * "must_rel" and "may_rel" describe the must and may-dependence relations
949 * computed at the current level for the must-sources. Some of the dependences
950 * may be moved from "must_rel" to "may_rel".
951 * "flow" contains all dependences computed so far (apart from those
952 * in "must_rel" and "may_rel") and may be updated with additional
953 * dependences derived from may-sources.
955 * In particular, consider all the must-sources with a non-empty
956 * dependence relation in "must_rel". They are considered in reverse
957 * order because that is the order in which they are considered in the caller.
958 * If any of the must-sources are coscheduled, then the last one
959 * is the one that will have a corresponding dependence relation.
960 * For each must-source i, consider both all the previous must-sources
961 * and all the may-sources. If any of those may be coscheduled with
962 * must-source i, then compute the coscheduled instances that access
963 * the same memory elements. The result is a relation [T -> S] -> K.
964 * The projection onto T -> K is a subset of the must-dependence relation
965 * that needs to be turned into may-dependences.
966 * The projection onto S -> K needs to be added to the may-dependences
968 * Since a given must-source instance may be coscheduled with several
969 * other source instances, the dependences that need to be turned
970 * into may-dependences are first collected and only actually removed
971 * from the must-dependences after all other sources have been considered.
973 static __isl_give isl_flow
*handle_coscheduled(__isl_keep isl_access_info
*acc
,
974 __isl_keep isl_map
**must_rel
, __isl_keep isl_map
**may_rel
,
975 __isl_take isl_flow
*flow
)
979 if (!acc
->coscheduled
)
981 for (i
= acc
->n_must
- 1; i
>= 0; --i
) {
984 if (isl_map_plain_is_empty(must_rel
[i
]))
986 move
= isl_map_empty(isl_map_get_space(must_rel
[i
]));
987 for (j
= i
- 1; j
>= 0; --j
) {
989 isl_map
*map
, *factor
;
991 if (!acc
->coscheduled(acc
->source
[i
].data
,
992 acc
->source
[j
].data
))
994 depth
= acc
->level_before(acc
->source
[i
].data
,
995 acc
->source
[j
].data
) / 2;
996 map
= coscheduled_source(acc
, must_rel
[i
], j
, depth
);
997 factor
= isl_map_domain_factor_range(isl_map_copy(map
));
998 may_rel
[j
] = isl_map_union(may_rel
[j
], factor
);
999 map
= isl_map_domain_factor_domain(map
);
1000 move
= isl_map_union(move
, map
);
1002 for (j
= 0; j
< acc
->n_may
; ++j
) {
1004 isl_map
*map
, *factor
;
1006 pos
= acc
->n_must
+ j
;
1007 if (!acc
->coscheduled(acc
->source
[i
].data
,
1008 acc
->source
[pos
].data
))
1010 depth
= acc
->level_before(acc
->source
[i
].data
,
1011 acc
->source
[pos
].data
) / 2;
1012 map
= coscheduled_source(acc
, must_rel
[i
], pos
, depth
);
1013 factor
= isl_map_domain_factor_range(isl_map_copy(map
));
1014 pos
= 2 * acc
->n_must
+ j
;
1015 flow
->dep
[pos
].map
= isl_map_union(flow
->dep
[pos
].map
,
1017 map
= isl_map_domain_factor_domain(map
);
1018 move
= isl_map_union(move
, map
);
1020 must_rel
[i
] = isl_map_subtract(must_rel
[i
], isl_map_copy(move
));
1021 may_rel
[i
] = isl_map_union(may_rel
[i
], move
);
1027 /* Compute dependences for the case where all accesses are "may"
1028 * accesses, which boils down to computing memory based dependences.
1029 * The generic algorithm would also work in this case, but it would
1030 * be overkill to use it.
1032 static __isl_give isl_flow
*compute_mem_based_dependences(
1033 __isl_keep isl_access_info
*acc
)
1040 res
= isl_flow_alloc(acc
);
1044 mustdo
= isl_map_domain(isl_map_copy(acc
->sink
.map
));
1045 maydo
= isl_set_copy(mustdo
);
1047 for (i
= 0; i
< acc
->n_may
; ++i
) {
1054 plevel
= acc
->level_before(acc
->source
[i
].data
, acc
->sink
.data
);
1058 is_before
= plevel
& 1;
1061 dim
= isl_map_get_space(res
->dep
[i
].map
);
1063 before
= isl_map_lex_le_first(dim
, plevel
);
1065 before
= isl_map_lex_lt_first(dim
, plevel
);
1066 dep
= isl_map_apply_range(isl_map_copy(acc
->source
[i
].map
),
1067 isl_map_reverse(isl_map_copy(acc
->sink
.map
)));
1068 dep
= isl_map_intersect(dep
, before
);
1069 mustdo
= isl_set_subtract(mustdo
,
1070 isl_map_range(isl_map_copy(dep
)));
1071 res
->dep
[i
].map
= isl_map_union(res
->dep
[i
].map
, dep
);
1074 res
->may_no_source
= isl_set_subtract(maydo
, isl_set_copy(mustdo
));
1075 res
->must_no_source
= mustdo
;
1079 isl_set_free(mustdo
);
1080 isl_set_free(maydo
);
1085 /* Compute dependences for the case where there is at least one
1088 * The core algorithm considers all levels in which a source may precede
1089 * the sink, where a level may either be a statement level or a loop level.
1090 * The outermost statement level is 1, the first loop level is 2, etc...
1091 * The algorithm basically does the following:
1092 * for all levels l of the read access from innermost to outermost
1093 * for all sources w that may precede the sink access at that level
1094 * compute the last iteration of the source that precedes the sink access
1096 * add result to possible last accesses at level l of source w
1097 * for all sources w2 that we haven't considered yet at this level that may
1098 * also precede the sink access
1099 * for all levels l2 of w from l to innermost
1100 * for all possible last accesses dep of w at l
1101 * compute last iteration of w2 between the source and sink
1103 * add result to possible last accesses at level l of write w2
1104 * and replace possible last accesses dep by the remainder
1107 * The above algorithm is applied to the must access. During the course
1108 * of the algorithm, we keep track of sink iterations that still
1109 * need to be considered. These iterations are split into those that
1110 * haven't been matched to any source access (mustdo) and those that have only
1111 * been matched to may accesses (maydo).
1112 * At the end of each level, must-sources and may-sources that are coscheduled
1113 * with the sources of the must-dependences at that level are considered.
1114 * If any coscheduled instances are found, then corresponding may-dependences
1115 * are added and the original must-dependences are turned into may-dependences.
1116 * Afterwards, the may accesses that occur after must-dependence sources
1118 * In particular, we consider may accesses that precede the remaining
1119 * sink iterations, moving elements from mustdo to maydo when appropriate,
1120 * and may accesses that occur between a must source and a sink of any
1121 * dependences found at the current level, turning must dependences into
1122 * may dependences when appropriate.
1125 static __isl_give isl_flow
*compute_val_based_dependences(
1126 __isl_keep isl_access_info
*acc
)
1130 isl_set
*mustdo
= NULL
;
1131 isl_set
*maydo
= NULL
;
1134 isl_map
**must_rel
= NULL
;
1135 isl_map
**may_rel
= NULL
;
1140 res
= isl_flow_alloc(acc
);
1143 ctx
= isl_map_get_ctx(acc
->sink
.map
);
1145 depth
= 2 * isl_map_dim(acc
->sink
.map
, isl_dim_in
) + 1;
1146 mustdo
= isl_map_domain(isl_map_copy(acc
->sink
.map
));
1147 maydo
= isl_set_empty(isl_set_get_space(mustdo
));
1148 if (!mustdo
|| !maydo
)
1150 if (isl_set_plain_is_empty(mustdo
))
1153 must_rel
= isl_calloc_array(ctx
, struct isl_map
*, acc
->n_must
);
1154 may_rel
= isl_calloc_array(ctx
, struct isl_map
*, acc
->n_must
);
1155 if (!must_rel
|| !may_rel
)
1158 for (level
= depth
; level
>= 1; --level
) {
1159 for (j
= acc
->n_must
-1; j
>=0; --j
) {
1161 space
= isl_map_get_space(res
->dep
[2 * j
].map
);
1162 must_rel
[j
] = isl_map_empty(space
);
1163 may_rel
[j
] = isl_map_copy(must_rel
[j
]);
1166 for (j
= acc
->n_must
- 1; j
>= 0; --j
) {
1168 struct isl_set
*rest
;
1171 plevel
= acc
->level_before(acc
->source
[j
].data
,
1175 if (!can_precede_at_level(plevel
, level
))
1178 T
= last_source(acc
, mustdo
, j
, level
, &rest
);
1179 must_rel
[j
] = isl_map_union_disjoint(must_rel
[j
], T
);
1182 if (intermediate_sources(acc
, must_rel
, j
, level
) < 0)
1185 T
= last_source(acc
, maydo
, j
, level
, &rest
);
1186 may_rel
[j
] = isl_map_union_disjoint(may_rel
[j
], T
);
1189 if (intermediate_sources(acc
, may_rel
, j
, level
) < 0)
1192 if (isl_set_plain_is_empty(mustdo
) &&
1193 isl_set_plain_is_empty(maydo
))
1196 for (j
= j
- 1; j
>= 0; --j
) {
1199 plevel
= acc
->level_before(acc
->source
[j
].data
,
1203 if (!can_precede_at_level(plevel
, level
))
1206 if (intermediate_sources(acc
, must_rel
, j
, level
) < 0)
1208 if (intermediate_sources(acc
, may_rel
, j
, level
) < 0)
1212 handle_coscheduled(acc
, must_rel
, may_rel
, res
);
1214 for (j
= 0; j
< acc
->n_may
; ++j
) {
1219 plevel
= acc
->level_before(acc
->source
[acc
->n_must
+ j
].data
,
1223 if (!can_precede_at_level(plevel
, level
))
1226 T
= all_sources(acc
, isl_set_copy(maydo
), j
, level
);
1227 res
->dep
[2 * acc
->n_must
+ j
].map
=
1228 isl_map_union(res
->dep
[2 * acc
->n_must
+ j
].map
, T
);
1229 T
= all_sources(acc
, isl_set_copy(mustdo
), j
, level
);
1230 ran
= isl_map_range(isl_map_copy(T
));
1231 res
->dep
[2 * acc
->n_must
+ j
].map
=
1232 isl_map_union(res
->dep
[2 * acc
->n_must
+ j
].map
, T
);
1233 mustdo
= isl_set_subtract(mustdo
, isl_set_copy(ran
));
1234 maydo
= isl_set_union_disjoint(maydo
, ran
);
1236 T
= res
->dep
[2 * acc
->n_must
+ j
].map
;
1237 T
= all_intermediate_sources(acc
, T
, must_rel
, may_rel
,
1239 res
->dep
[2 * acc
->n_must
+ j
].map
= T
;
1242 for (j
= acc
->n_must
- 1; j
>= 0; --j
) {
1243 res
->dep
[2 * j
].map
=
1244 isl_map_union_disjoint(res
->dep
[2 * j
].map
,
1246 res
->dep
[2 * j
+ 1].map
=
1247 isl_map_union_disjoint(res
->dep
[2 * j
+ 1].map
,
1251 if (isl_set_plain_is_empty(mustdo
) &&
1252 isl_set_plain_is_empty(maydo
))
1259 res
->must_no_source
= mustdo
;
1260 res
->may_no_source
= maydo
;
1264 for (j
= 0; j
< acc
->n_must
; ++j
)
1265 isl_map_free(must_rel
[j
]);
1267 for (j
= 0; j
< acc
->n_must
; ++j
)
1268 isl_map_free(may_rel
[j
]);
1270 isl_set_free(mustdo
);
1271 isl_set_free(maydo
);
1277 /* Given a "sink" access, a list of n "source" accesses,
1278 * compute for each iteration of the sink access
1279 * and for each element accessed by that iteration,
1280 * the source access in the list that last accessed the
1281 * element accessed by the sink access before this sink access.
1282 * Each access is given as a map from the loop iterators
1283 * to the array indices.
1284 * The result is a list of n relations between source and sink
1285 * iterations and a subset of the domain of the sink access,
1286 * corresponding to those iterations that access an element
1287 * not previously accessed.
1289 * To deal with multi-valued sink access relations, the sink iteration
1290 * domain is first extended with dimensions that correspond to the data
1291 * space. However, these extra dimensions are not projected out again.
1292 * It is up to the caller to decide whether these dimensions should be kept.
1294 static __isl_give isl_flow
*access_info_compute_flow_core(
1295 __isl_take isl_access_info
*acc
)
1297 struct isl_flow
*res
= NULL
;
1302 acc
->sink
.map
= isl_map_range_map(acc
->sink
.map
);
1306 if (acc
->n_must
== 0)
1307 res
= compute_mem_based_dependences(acc
);
1309 acc
= isl_access_info_sort_sources(acc
);
1310 res
= compute_val_based_dependences(acc
);
1312 acc
= isl_access_info_free(acc
);
1315 if (!res
->must_no_source
|| !res
->may_no_source
)
1319 isl_access_info_free(acc
);
1324 /* Given a "sink" access, a list of n "source" accesses,
1325 * compute for each iteration of the sink access
1326 * and for each element accessed by that iteration,
1327 * the source access in the list that last accessed the
1328 * element accessed by the sink access before this sink access.
1329 * Each access is given as a map from the loop iterators
1330 * to the array indices.
1331 * The result is a list of n relations between source and sink
1332 * iterations and a subset of the domain of the sink access,
1333 * corresponding to those iterations that access an element
1334 * not previously accessed.
1336 * To deal with multi-valued sink access relations,
1337 * access_info_compute_flow_core extends the sink iteration domain
1338 * with dimensions that correspond to the data space. These extra dimensions
1339 * are projected out from the result of access_info_compute_flow_core.
1341 __isl_give isl_flow
*isl_access_info_compute_flow(__isl_take isl_access_info
*acc
)
1344 struct isl_flow
*res
;
1349 acc
->domain_map
= isl_map_domain_map(isl_map_copy(acc
->sink
.map
));
1350 res
= access_info_compute_flow_core(acc
);
1354 for (j
= 0; j
< res
->n_source
; ++j
) {
1355 res
->dep
[j
].map
= isl_map_range_factor_domain(res
->dep
[j
].map
);
1356 if (!res
->dep
[j
].map
)
1367 /* Keep track of some information about a schedule for a given
1368 * access. In particular, keep track of which dimensions
1369 * have a constant value and of the actual constant values.
1371 struct isl_sched_info
{
1376 static void sched_info_free(__isl_take
struct isl_sched_info
*info
)
1380 isl_vec_free(info
->cst
);
1385 /* Extract information on the constant dimensions of the schedule
1386 * for a given access. The "map" is of the form
1390 * with S the schedule domain, D the iteration domain and A the data domain.
1392 static __isl_give
struct isl_sched_info
*sched_info_alloc(
1393 __isl_keep isl_map
*map
)
1397 struct isl_sched_info
*info
;
1403 dim
= isl_space_unwrap(isl_space_domain(isl_map_get_space(map
)));
1406 n
= isl_space_dim(dim
, isl_dim_in
);
1407 isl_space_free(dim
);
1409 ctx
= isl_map_get_ctx(map
);
1410 info
= isl_alloc_type(ctx
, struct isl_sched_info
);
1413 info
->is_cst
= isl_alloc_array(ctx
, int, n
);
1414 info
->cst
= isl_vec_alloc(ctx
, n
);
1415 if (n
&& (!info
->is_cst
|| !info
->cst
))
1418 for (i
= 0; i
< n
; ++i
) {
1421 v
= isl_map_plain_get_val_if_fixed(map
, isl_dim_in
, i
);
1424 info
->is_cst
[i
] = !isl_val_is_nan(v
);
1425 if (info
->is_cst
[i
])
1426 info
->cst
= isl_vec_set_element_val(info
->cst
, i
, v
);
1433 sched_info_free(info
);
1437 /* The different types of access relations that isl_union_access_info
1440 * "isl_access_sink" represents the sink accesses.
1441 * "isl_access_must_source" represents the definite source accesses.
1442 * "isl_access_may_source" represents the possible source accesses.
1443 * "isl_access_kill" represents the kills.
1445 * isl_access_sink is sometimes treated differently and
1446 * should therefore appear first.
1448 enum isl_access_type
{
1450 isl_access_must_source
,
1451 isl_access_may_source
,
1456 /* This structure represents the input for a dependence analysis computation.
1458 * "access" contains the access relations.
1460 * "schedule" or "schedule_map" represents the execution order.
1461 * Exactly one of these fields should be NULL. The other field
1462 * determines the execution order.
1464 * The domains of these four maps refer to the same iteration spaces(s).
1465 * The ranges of the first three maps also refer to the same data space(s).
1467 * After a call to isl_union_access_info_introduce_schedule,
1468 * the "schedule_map" field no longer contains useful information.
1470 struct isl_union_access_info
{
1471 isl_union_map
*access
[isl_access_end
];
1473 isl_schedule
*schedule
;
1474 isl_union_map
*schedule_map
;
1477 /* Free "access" and return NULL.
1479 __isl_null isl_union_access_info
*isl_union_access_info_free(
1480 __isl_take isl_union_access_info
*access
)
1482 enum isl_access_type i
;
1487 for (i
= isl_access_sink
; i
< isl_access_end
; ++i
)
1488 isl_union_map_free(access
->access
[i
]);
1489 isl_schedule_free(access
->schedule
);
1490 isl_union_map_free(access
->schedule_map
);
1496 /* Return the isl_ctx to which "access" belongs.
1498 isl_ctx
*isl_union_access_info_get_ctx(__isl_keep isl_union_access_info
*access
)
1502 return isl_union_map_get_ctx(access
->access
[isl_access_sink
]);
1505 /* Construct an empty (invalid) isl_union_access_info object.
1506 * The caller is responsible for setting the sink access relation and
1507 * initializing all the other fields, e.g., by calling
1508 * isl_union_access_info_init.
1510 static __isl_give isl_union_access_info
*isl_union_access_info_alloc(
1513 return isl_calloc_type(ctx
, isl_union_access_info
);
1516 /* Initialize all the fields of "info", except the sink access relation,
1517 * which is assumed to have been set by the caller.
1519 * By default, we use the schedule field of the isl_union_access_info,
1520 * but this may be overridden by a call
1521 * to isl_union_access_info_set_schedule_map.
1523 static __isl_give isl_union_access_info
*isl_union_access_info_init(
1524 __isl_take isl_union_access_info
*info
)
1527 isl_union_map
*empty
;
1528 enum isl_access_type i
;
1532 if (!info
->access
[isl_access_sink
])
1533 return isl_union_access_info_free(info
);
1535 space
= isl_union_map_get_space(info
->access
[isl_access_sink
]);
1536 empty
= isl_union_map_empty(isl_space_copy(space
));
1537 for (i
= isl_access_sink
+ 1; i
< isl_access_end
; ++i
)
1538 if (!info
->access
[i
])
1539 info
->access
[i
] = isl_union_map_copy(empty
);
1540 isl_union_map_free(empty
);
1541 if (!info
->schedule
&& !info
->schedule_map
)
1542 info
->schedule
= isl_schedule_empty(isl_space_copy(space
));
1543 isl_space_free(space
);
1545 for (i
= isl_access_sink
+ 1; i
< isl_access_end
; ++i
)
1546 if (!info
->access
[i
])
1547 return isl_union_access_info_free(info
);
1548 if (!info
->schedule
&& !info
->schedule_map
)
1549 return isl_union_access_info_free(info
);
1554 /* Create a new isl_union_access_info with the given sink accesses and
1555 * and no other accesses or schedule information.
1557 __isl_give isl_union_access_info
*isl_union_access_info_from_sink(
1558 __isl_take isl_union_map
*sink
)
1561 isl_union_access_info
*access
;
1565 ctx
= isl_union_map_get_ctx(sink
);
1566 access
= isl_union_access_info_alloc(ctx
);
1569 access
->access
[isl_access_sink
] = sink
;
1570 return isl_union_access_info_init(access
);
1572 isl_union_map_free(sink
);
1576 /* Replace the access relation of type "type" of "info" by "access".
1578 static __isl_give isl_union_access_info
*isl_union_access_info_set(
1579 __isl_take isl_union_access_info
*info
,
1580 enum isl_access_type type
, __isl_take isl_union_map
*access
)
1582 if (!info
|| !access
)
1585 isl_union_map_free(info
->access
[type
]);
1586 info
->access
[type
] = access
;
1590 isl_union_access_info_free(info
);
1591 isl_union_map_free(access
);
1595 /* Replace the definite source accesses of "access" by "must_source".
1597 __isl_give isl_union_access_info
*isl_union_access_info_set_must_source(
1598 __isl_take isl_union_access_info
*access
,
1599 __isl_take isl_union_map
*must_source
)
1601 return isl_union_access_info_set(access
, isl_access_must_source
,
1605 /* Replace the possible source accesses of "access" by "may_source".
1607 __isl_give isl_union_access_info
*isl_union_access_info_set_may_source(
1608 __isl_take isl_union_access_info
*access
,
1609 __isl_take isl_union_map
*may_source
)
1611 return isl_union_access_info_set(access
, isl_access_may_source
,
1615 /* Replace the kills of "info" by "kill".
1617 __isl_give isl_union_access_info
*isl_union_access_info_set_kill(
1618 __isl_take isl_union_access_info
*info
, __isl_take isl_union_map
*kill
)
1620 return isl_union_access_info_set(info
, isl_access_kill
, kill
);
1623 /* Return the access relation of type "type" of "info".
1625 static __isl_give isl_union_map
*isl_union_access_info_get(
1626 __isl_keep isl_union_access_info
*info
, enum isl_access_type type
)
1630 return isl_union_map_copy(info
->access
[type
]);
1633 /* Return the definite source accesses of "info".
1635 __isl_give isl_union_map
*isl_union_access_info_get_must_source(
1636 __isl_keep isl_union_access_info
*info
)
1638 return isl_union_access_info_get(info
, isl_access_must_source
);
1641 /* Return the possible source accesses of "info".
1643 __isl_give isl_union_map
*isl_union_access_info_get_may_source(
1644 __isl_keep isl_union_access_info
*info
)
1646 return isl_union_access_info_get(info
, isl_access_may_source
);
1649 /* Return the kills of "info".
1651 __isl_give isl_union_map
*isl_union_access_info_get_kill(
1652 __isl_keep isl_union_access_info
*info
)
1654 return isl_union_access_info_get(info
, isl_access_kill
);
1657 /* Does "info" specify any kills?
1659 static isl_bool
isl_union_access_has_kill(
1660 __isl_keep isl_union_access_info
*info
)
1665 return isl_bool_error
;
1666 empty
= isl_union_map_is_empty(info
->access
[isl_access_kill
]);
1667 return isl_bool_not(empty
);
1670 /* Replace the schedule of "access" by "schedule".
1671 * Also free the schedule_map in case it was set last.
1673 __isl_give isl_union_access_info
*isl_union_access_info_set_schedule(
1674 __isl_take isl_union_access_info
*access
,
1675 __isl_take isl_schedule
*schedule
)
1677 if (!access
|| !schedule
)
1680 access
->schedule_map
= isl_union_map_free(access
->schedule_map
);
1681 isl_schedule_free(access
->schedule
);
1682 access
->schedule
= schedule
;
1686 isl_union_access_info_free(access
);
1687 isl_schedule_free(schedule
);
1691 /* Replace the schedule map of "access" by "schedule_map".
1692 * Also free the schedule in case it was set last.
1694 __isl_give isl_union_access_info
*isl_union_access_info_set_schedule_map(
1695 __isl_take isl_union_access_info
*access
,
1696 __isl_take isl_union_map
*schedule_map
)
1698 if (!access
|| !schedule_map
)
1701 isl_union_map_free(access
->schedule_map
);
1702 access
->schedule
= isl_schedule_free(access
->schedule
);
1703 access
->schedule_map
= schedule_map
;
1707 isl_union_access_info_free(access
);
1708 isl_union_map_free(schedule_map
);
1712 __isl_give isl_union_access_info
*isl_union_access_info_copy(
1713 __isl_keep isl_union_access_info
*access
)
1715 isl_union_access_info
*copy
;
1716 enum isl_access_type i
;
1720 copy
= isl_union_access_info_from_sink(
1721 isl_union_map_copy(access
->access
[isl_access_sink
]));
1722 for (i
= isl_access_sink
+ 1; i
< isl_access_end
; ++i
)
1723 copy
= isl_union_access_info_set(copy
, i
,
1724 isl_union_map_copy(access
->access
[i
]));
1725 if (access
->schedule
)
1726 copy
= isl_union_access_info_set_schedule(copy
,
1727 isl_schedule_copy(access
->schedule
));
1729 copy
= isl_union_access_info_set_schedule_map(copy
,
1730 isl_union_map_copy(access
->schedule_map
));
1735 /* Print a key-value pair of a YAML mapping to "p",
1736 * with key "name" and value "umap".
1738 static __isl_give isl_printer
*print_union_map_field(__isl_take isl_printer
*p
,
1739 const char *name
, __isl_keep isl_union_map
*umap
)
1741 p
= isl_printer_print_str(p
, name
);
1742 p
= isl_printer_yaml_next(p
);
1743 p
= isl_printer_print_str(p
, "\"");
1744 p
= isl_printer_print_union_map(p
, umap
);
1745 p
= isl_printer_print_str(p
, "\"");
1746 p
= isl_printer_yaml_next(p
);
1751 /* An enumeration of the various keys that may appear in a YAML mapping
1752 * of an isl_union_access_info object.
1753 * The keys for the access relation types are assumed to have the same values
1754 * as the access relation types in isl_access_type.
1757 isl_ai_key_error
= -1,
1758 isl_ai_key_sink
= isl_access_sink
,
1759 isl_ai_key_must_source
= isl_access_must_source
,
1760 isl_ai_key_may_source
= isl_access_may_source
,
1761 isl_ai_key_kill
= isl_access_kill
,
1762 isl_ai_key_schedule_map
,
1763 isl_ai_key_schedule
,
1767 /* Textual representations of the YAML keys for an isl_union_access_info
1770 static char *key_str
[] = {
1771 [isl_ai_key_sink
] = "sink",
1772 [isl_ai_key_must_source
] = "must_source",
1773 [isl_ai_key_may_source
] = "may_source",
1774 [isl_ai_key_kill
] = "kill",
1775 [isl_ai_key_schedule_map
] = "schedule_map",
1776 [isl_ai_key_schedule
] = "schedule",
1779 /* Print a key-value pair corresponding to the access relation of type "type"
1780 * of a YAML mapping of "info" to "p".
1782 * The sink access relation is always printed, but any other access relation
1783 * is only printed if it is non-empty.
1785 static __isl_give isl_printer
*print_access_field(__isl_take isl_printer
*p
,
1786 __isl_keep isl_union_access_info
*info
, enum isl_access_type type
)
1788 if (type
!= isl_access_sink
) {
1791 empty
= isl_union_map_is_empty(info
->access
[type
]);
1793 return isl_printer_free(p
);
1797 return print_union_map_field(p
, key_str
[type
], info
->access
[type
]);
1800 /* Print the information contained in "access" to "p".
1801 * The information is printed as a YAML document.
1803 __isl_give isl_printer
*isl_printer_print_union_access_info(
1804 __isl_take isl_printer
*p
, __isl_keep isl_union_access_info
*access
)
1806 enum isl_access_type i
;
1809 return isl_printer_free(p
);
1811 p
= isl_printer_yaml_start_mapping(p
);
1812 for (i
= isl_access_sink
; i
< isl_access_end
; ++i
)
1813 p
= print_access_field(p
, access
, i
);
1814 if (access
->schedule
) {
1815 p
= isl_printer_print_str(p
, key_str
[isl_ai_key_schedule
]);
1816 p
= isl_printer_yaml_next(p
);
1817 p
= isl_printer_print_schedule(p
, access
->schedule
);
1818 p
= isl_printer_yaml_next(p
);
1820 p
= print_union_map_field(p
, key_str
[isl_ai_key_schedule_map
],
1821 access
->schedule_map
);
1823 p
= isl_printer_yaml_end_mapping(p
);
1828 /* Return a string representation of the information in "access".
1829 * The information is printed in flow format.
1831 __isl_give
char *isl_union_access_info_to_str(
1832 __isl_keep isl_union_access_info
*access
)
1840 p
= isl_printer_to_str(isl_union_access_info_get_ctx(access
));
1841 p
= isl_printer_set_yaml_style(p
, ISL_YAML_STYLE_FLOW
);
1842 p
= isl_printer_print_union_access_info(p
, access
);
1843 s
= isl_printer_get_str(p
);
1844 isl_printer_free(p
);
1850 #define KEY enum isl_ai_key
1852 #define KEY_ERROR isl_ai_key_error
1854 #define KEY_END isl_ai_key_end
1855 #include "extract_key.c"
1858 #define BASE union_map
1859 #include "read_in_string_templ.c"
1861 /* Read an isl_union_access_info object from "s".
1863 * Start off with an empty (invalid) isl_union_access_info object and
1864 * then fill up the fields based on the input.
1865 * The input needs to contain at least a description of the sink
1866 * access relation as well as some form of schedule.
1867 * The other access relations are set to empty relations
1868 * by isl_union_access_info_init if they are not specified in the input.
1870 __isl_give isl_union_access_info
*isl_stream_read_union_access_info(
1874 isl_union_access_info
*info
;
1877 int schedule_set
= 0;
1879 if (isl_stream_yaml_read_start_mapping(s
))
1882 ctx
= isl_stream_get_ctx(s
);
1883 info
= isl_union_access_info_alloc(ctx
);
1884 while ((more
= isl_stream_yaml_next(s
)) > 0) {
1885 enum isl_ai_key key
;
1886 isl_union_map
*access
, *schedule_map
;
1887 isl_schedule
*schedule
;
1890 if (isl_stream_yaml_next(s
) < 0)
1891 return isl_union_access_info_free(info
);
1893 case isl_ai_key_end
:
1894 case isl_ai_key_error
:
1895 return isl_union_access_info_free(info
);
1896 case isl_ai_key_sink
:
1898 case isl_ai_key_must_source
:
1899 case isl_ai_key_may_source
:
1900 case isl_ai_key_kill
:
1901 access
= read_union_map(s
);
1902 info
= isl_union_access_info_set(info
, key
, access
);
1906 case isl_ai_key_schedule_map
:
1908 schedule_map
= read_union_map(s
);
1909 info
= isl_union_access_info_set_schedule_map(info
,
1914 case isl_ai_key_schedule
:
1916 schedule
= isl_stream_read_schedule(s
);
1917 info
= isl_union_access_info_set_schedule(info
,
1925 return isl_union_access_info_free(info
);
1927 if (isl_stream_yaml_read_end_mapping(s
) < 0) {
1928 isl_stream_error(s
, NULL
, "unexpected extra elements");
1929 return isl_union_access_info_free(info
);
1933 isl_stream_error(s
, NULL
, "no sink specified");
1934 return isl_union_access_info_free(info
);
1937 if (!schedule_set
) {
1938 isl_stream_error(s
, NULL
, "no schedule specified");
1939 return isl_union_access_info_free(info
);
1942 return isl_union_access_info_init(info
);
1945 /* Read an isl_union_access_info object from the file "input".
1947 __isl_give isl_union_access_info
*isl_union_access_info_read_from_file(
1948 isl_ctx
*ctx
, FILE *input
)
1951 isl_union_access_info
*access
;
1953 s
= isl_stream_new_file(ctx
, input
);
1956 access
= isl_stream_read_union_access_info(s
);
1962 /* Update the fields of "access" such that they all have the same parameters,
1963 * keeping in mind that the schedule_map field may be NULL and ignoring
1964 * the schedule field.
1966 static __isl_give isl_union_access_info
*isl_union_access_info_align_params(
1967 __isl_take isl_union_access_info
*access
)
1970 enum isl_access_type i
;
1975 space
= isl_union_map_get_space(access
->access
[isl_access_sink
]);
1976 for (i
= isl_access_sink
+ 1; i
< isl_access_end
; ++i
)
1977 space
= isl_space_align_params(space
,
1978 isl_union_map_get_space(access
->access
[i
]));
1979 if (access
->schedule_map
)
1980 space
= isl_space_align_params(space
,
1981 isl_union_map_get_space(access
->schedule_map
));
1982 for (i
= isl_access_sink
; i
< isl_access_end
; ++i
)
1984 isl_union_map_align_params(access
->access
[i
],
1985 isl_space_copy(space
));
1986 if (!access
->schedule_map
) {
1987 isl_space_free(space
);
1989 access
->schedule_map
=
1990 isl_union_map_align_params(access
->schedule_map
, space
);
1991 if (!access
->schedule_map
)
1992 return isl_union_access_info_free(access
);
1995 for (i
= isl_access_sink
; i
< isl_access_end
; ++i
)
1996 if (!access
->access
[i
])
1997 return isl_union_access_info_free(access
);
2002 /* Prepend the schedule dimensions to the iteration domains.
2004 * That is, if the schedule is of the form
2008 * while the access relations are of the form
2012 * then the updated access relations are of the form
2016 * The schedule map is also replaced by the map
2020 * that is used during the internal computation.
2021 * Neither the original schedule map nor this updated schedule map
2022 * are used after the call to this function.
2024 static __isl_give isl_union_access_info
*
2025 isl_union_access_info_introduce_schedule(
2026 __isl_take isl_union_access_info
*access
)
2029 enum isl_access_type i
;
2034 sm
= isl_union_map_reverse(access
->schedule_map
);
2035 sm
= isl_union_map_range_map(sm
);
2036 for (i
= isl_access_sink
; i
< isl_access_end
; ++i
)
2038 isl_union_map_apply_range(isl_union_map_copy(sm
),
2040 access
->schedule_map
= sm
;
2042 for (i
= isl_access_sink
; i
< isl_access_end
; ++i
)
2043 if (!access
->access
[i
])
2044 return isl_union_access_info_free(access
);
2045 if (!access
->schedule_map
)
2046 return isl_union_access_info_free(access
);
2051 /* This structure represents the result of a dependence analysis computation.
2053 * "must_dep" represents the full definite dependences
2054 * "may_dep" represents the full non-definite dependences.
2055 * Both are of the form
2057 * [Source] -> [[Sink -> Data]]
2059 * (after the schedule dimensions have been projected out).
2060 * "must_no_source" represents the subset of the sink accesses for which
2061 * definitely no source was found.
2062 * "may_no_source" represents the subset of the sink accesses for which
2063 * possibly, but not definitely, no source was found.
2065 struct isl_union_flow
{
2066 isl_union_map
*must_dep
;
2067 isl_union_map
*may_dep
;
2068 isl_union_map
*must_no_source
;
2069 isl_union_map
*may_no_source
;
2072 /* Return the isl_ctx to which "flow" belongs.
2074 isl_ctx
*isl_union_flow_get_ctx(__isl_keep isl_union_flow
*flow
)
2076 return flow
? isl_union_map_get_ctx(flow
->must_dep
) : NULL
;
2079 /* Free "flow" and return NULL.
2081 __isl_null isl_union_flow
*isl_union_flow_free(__isl_take isl_union_flow
*flow
)
2085 isl_union_map_free(flow
->must_dep
);
2086 isl_union_map_free(flow
->may_dep
);
2087 isl_union_map_free(flow
->must_no_source
);
2088 isl_union_map_free(flow
->may_no_source
);
2093 void isl_union_flow_dump(__isl_keep isl_union_flow
*flow
)
2098 fprintf(stderr
, "must dependences: ");
2099 isl_union_map_dump(flow
->must_dep
);
2100 fprintf(stderr
, "may dependences: ");
2101 isl_union_map_dump(flow
->may_dep
);
2102 fprintf(stderr
, "must no source: ");
2103 isl_union_map_dump(flow
->must_no_source
);
2104 fprintf(stderr
, "may no source: ");
2105 isl_union_map_dump(flow
->may_no_source
);
2108 /* Return the full definite dependences in "flow", with accessed elements.
2110 __isl_give isl_union_map
*isl_union_flow_get_full_must_dependence(
2111 __isl_keep isl_union_flow
*flow
)
2115 return isl_union_map_copy(flow
->must_dep
);
2118 /* Return the full possible dependences in "flow", including the definite
2119 * dependences, with accessed elements.
2121 __isl_give isl_union_map
*isl_union_flow_get_full_may_dependence(
2122 __isl_keep isl_union_flow
*flow
)
2126 return isl_union_map_union(isl_union_map_copy(flow
->must_dep
),
2127 isl_union_map_copy(flow
->may_dep
));
2130 /* Return the definite dependences in "flow", without the accessed elements.
2132 __isl_give isl_union_map
*isl_union_flow_get_must_dependence(
2133 __isl_keep isl_union_flow
*flow
)
2139 dep
= isl_union_map_copy(flow
->must_dep
);
2140 return isl_union_map_range_factor_domain(dep
);
2143 /* Return the possible dependences in "flow", including the definite
2144 * dependences, without the accessed elements.
2146 __isl_give isl_union_map
*isl_union_flow_get_may_dependence(
2147 __isl_keep isl_union_flow
*flow
)
2153 dep
= isl_union_map_union(isl_union_map_copy(flow
->must_dep
),
2154 isl_union_map_copy(flow
->may_dep
));
2155 return isl_union_map_range_factor_domain(dep
);
2158 /* Return the non-definite dependences in "flow".
2160 static __isl_give isl_union_map
*isl_union_flow_get_non_must_dependence(
2161 __isl_keep isl_union_flow
*flow
)
2165 return isl_union_map_copy(flow
->may_dep
);
2168 /* Return the subset of the sink accesses for which definitely
2169 * no source was found.
2171 __isl_give isl_union_map
*isl_union_flow_get_must_no_source(
2172 __isl_keep isl_union_flow
*flow
)
2176 return isl_union_map_copy(flow
->must_no_source
);
2179 /* Return the subset of the sink accesses for which possibly
2180 * no source was found, including those for which definitely
2181 * no source was found.
2183 __isl_give isl_union_map
*isl_union_flow_get_may_no_source(
2184 __isl_keep isl_union_flow
*flow
)
2188 return isl_union_map_union(isl_union_map_copy(flow
->must_no_source
),
2189 isl_union_map_copy(flow
->may_no_source
));
2192 /* Return the subset of the sink accesses for which possibly, but not
2193 * definitely, no source was found.
2195 static __isl_give isl_union_map
*isl_union_flow_get_non_must_no_source(
2196 __isl_keep isl_union_flow
*flow
)
2200 return isl_union_map_copy(flow
->may_no_source
);
2203 /* Create a new isl_union_flow object, initialized with empty
2204 * dependence relations and sink subsets.
2206 static __isl_give isl_union_flow
*isl_union_flow_alloc(
2207 __isl_take isl_space
*space
)
2210 isl_union_map
*empty
;
2211 isl_union_flow
*flow
;
2215 ctx
= isl_space_get_ctx(space
);
2216 flow
= isl_alloc_type(ctx
, isl_union_flow
);
2220 empty
= isl_union_map_empty(space
);
2221 flow
->must_dep
= isl_union_map_copy(empty
);
2222 flow
->may_dep
= isl_union_map_copy(empty
);
2223 flow
->must_no_source
= isl_union_map_copy(empty
);
2224 flow
->may_no_source
= empty
;
2226 if (!flow
->must_dep
|| !flow
->may_dep
||
2227 !flow
->must_no_source
|| !flow
->may_no_source
)
2228 return isl_union_flow_free(flow
);
2232 isl_space_free(space
);
2236 /* Copy this isl_union_flow object.
2238 __isl_give isl_union_flow
*isl_union_flow_copy(__isl_keep isl_union_flow
*flow
)
2240 isl_union_flow
*copy
;
2245 copy
= isl_union_flow_alloc(isl_union_map_get_space(flow
->must_dep
));
2250 copy
->must_dep
= isl_union_map_union(copy
->must_dep
,
2251 isl_union_map_copy(flow
->must_dep
));
2252 copy
->may_dep
= isl_union_map_union(copy
->may_dep
,
2253 isl_union_map_copy(flow
->may_dep
));
2254 copy
->must_no_source
= isl_union_map_union(copy
->must_no_source
,
2255 isl_union_map_copy(flow
->must_no_source
));
2256 copy
->may_no_source
= isl_union_map_union(copy
->may_no_source
,
2257 isl_union_map_copy(flow
->may_no_source
));
2259 if (!copy
->must_dep
|| !copy
->may_dep
||
2260 !copy
->must_no_source
|| !copy
->may_no_source
)
2261 return isl_union_flow_free(copy
);
2266 /* Drop the schedule dimensions from the iteration domains in "flow".
2267 * In particular, the schedule dimensions have been prepended
2268 * to the iteration domains prior to the dependence analysis by
2269 * replacing the iteration domain D, by the wrapped map [S -> D].
2270 * Replace these wrapped maps by the original D.
2272 * In particular, the dependences computed by access_info_compute_flow_core
2275 * [S -> D] -> [[S' -> D'] -> A]
2277 * The schedule dimensions are projected out by first currying the range,
2280 * [S -> D] -> [S' -> [D' -> A]]
2282 * and then computing the factor range
2286 static __isl_give isl_union_flow
*isl_union_flow_drop_schedule(
2287 __isl_take isl_union_flow
*flow
)
2292 flow
->must_dep
= isl_union_map_range_curry(flow
->must_dep
);
2293 flow
->must_dep
= isl_union_map_factor_range(flow
->must_dep
);
2294 flow
->may_dep
= isl_union_map_range_curry(flow
->may_dep
);
2295 flow
->may_dep
= isl_union_map_factor_range(flow
->may_dep
);
2296 flow
->must_no_source
=
2297 isl_union_map_domain_factor_range(flow
->must_no_source
);
2298 flow
->may_no_source
=
2299 isl_union_map_domain_factor_range(flow
->may_no_source
);
2301 if (!flow
->must_dep
|| !flow
->may_dep
||
2302 !flow
->must_no_source
|| !flow
->may_no_source
)
2303 return isl_union_flow_free(flow
);
2308 struct isl_compute_flow_data
{
2309 isl_union_map
*must_source
;
2310 isl_union_map
*may_source
;
2311 isl_union_flow
*flow
;
2316 struct isl_sched_info
*sink_info
;
2317 struct isl_sched_info
**source_info
;
2318 isl_access_info
*accesses
;
2321 static isl_stat
count_matching_array(__isl_take isl_map
*map
, void *user
)
2325 struct isl_compute_flow_data
*data
;
2327 data
= (struct isl_compute_flow_data
*)user
;
2329 dim
= isl_space_range(isl_map_get_space(map
));
2331 eq
= isl_space_is_equal(dim
, data
->dim
);
2333 isl_space_free(dim
);
2337 return isl_stat_error
;
2344 static isl_stat
collect_matching_array(__isl_take isl_map
*map
, void *user
)
2348 struct isl_sched_info
*info
;
2349 struct isl_compute_flow_data
*data
;
2351 data
= (struct isl_compute_flow_data
*)user
;
2353 dim
= isl_space_range(isl_map_get_space(map
));
2355 eq
= isl_space_is_equal(dim
, data
->dim
);
2357 isl_space_free(dim
);
2366 info
= sched_info_alloc(map
);
2367 data
->source_info
[data
->count
] = info
;
2369 data
->accesses
= isl_access_info_add_source(data
->accesses
,
2370 map
, data
->must
, info
);
2377 return isl_stat_error
;
2380 /* Determine the shared nesting level and the "textual order" of
2381 * the given accesses.
2383 * We first determine the minimal schedule dimension for both accesses.
2385 * If among those dimensions, we can find one where both have a fixed
2386 * value and if moreover those values are different, then the previous
2387 * dimension is the last shared nesting level and the textual order
2388 * is determined based on the order of the fixed values.
2389 * If no such fixed values can be found, then we set the shared
2390 * nesting level to the minimal schedule dimension, with no textual ordering.
2392 static int before(void *first
, void *second
)
2394 struct isl_sched_info
*info1
= first
;
2395 struct isl_sched_info
*info2
= second
;
2399 n1
= isl_vec_size(info1
->cst
);
2400 n2
= isl_vec_size(info2
->cst
);
2405 for (i
= 0; i
< n1
; ++i
) {
2409 if (!info1
->is_cst
[i
])
2411 if (!info2
->is_cst
[i
])
2413 cmp
= isl_vec_cmp_element(info1
->cst
, info2
->cst
, i
);
2417 r
= 2 * i
+ (cmp
< 0);
2425 /* Check if the given two accesses may be coscheduled.
2426 * If so, return 1. Otherwise return 0.
2428 * Two accesses may only be coscheduled if the fixed schedule
2429 * coordinates have the same values.
2431 static int coscheduled(void *first
, void *second
)
2433 struct isl_sched_info
*info1
= first
;
2434 struct isl_sched_info
*info2
= second
;
2438 n1
= isl_vec_size(info1
->cst
);
2439 n2
= isl_vec_size(info2
->cst
);
2444 for (i
= 0; i
< n1
; ++i
) {
2447 if (!info1
->is_cst
[i
])
2449 if (!info2
->is_cst
[i
])
2451 cmp
= isl_vec_cmp_element(info1
->cst
, info2
->cst
, i
);
2459 /* Given a sink access, look for all the source accesses that access
2460 * the same array and perform dataflow analysis on them using
2461 * isl_access_info_compute_flow_core.
2463 static isl_stat
compute_flow(__isl_take isl_map
*map
, void *user
)
2467 struct isl_compute_flow_data
*data
;
2471 data
= (struct isl_compute_flow_data
*)user
;
2474 ctx
= isl_map_get_ctx(map
);
2476 data
->accesses
= NULL
;
2477 data
->sink_info
= NULL
;
2478 data
->source_info
= NULL
;
2480 data
->dim
= isl_space_range(isl_map_get_space(map
));
2482 if (isl_union_map_foreach_map(data
->must_source
,
2483 &count_matching_array
, data
) < 0)
2485 if (isl_union_map_foreach_map(data
->may_source
,
2486 &count_matching_array
, data
) < 0)
2489 data
->sink_info
= sched_info_alloc(map
);
2490 data
->source_info
= isl_calloc_array(ctx
, struct isl_sched_info
*,
2493 data
->accesses
= isl_access_info_alloc(isl_map_copy(map
),
2494 data
->sink_info
, &before
, data
->count
);
2495 if (!data
->sink_info
|| (data
->count
&& !data
->source_info
) ||
2498 data
->accesses
->coscheduled
= &coscheduled
;
2501 if (isl_union_map_foreach_map(data
->must_source
,
2502 &collect_matching_array
, data
) < 0)
2505 if (isl_union_map_foreach_map(data
->may_source
,
2506 &collect_matching_array
, data
) < 0)
2509 flow
= access_info_compute_flow_core(data
->accesses
);
2510 data
->accesses
= NULL
;
2515 df
->must_no_source
= isl_union_map_union(df
->must_no_source
,
2516 isl_union_map_from_map(isl_flow_get_no_source(flow
, 1)));
2517 df
->may_no_source
= isl_union_map_union(df
->may_no_source
,
2518 isl_union_map_from_map(isl_flow_get_no_source(flow
, 0)));
2520 for (i
= 0; i
< flow
->n_source
; ++i
) {
2522 dep
= isl_union_map_from_map(isl_map_copy(flow
->dep
[i
].map
));
2523 if (flow
->dep
[i
].must
)
2524 df
->must_dep
= isl_union_map_union(df
->must_dep
, dep
);
2526 df
->may_dep
= isl_union_map_union(df
->may_dep
, dep
);
2529 isl_flow_free(flow
);
2531 sched_info_free(data
->sink_info
);
2532 if (data
->source_info
) {
2533 for (i
= 0; i
< data
->count
; ++i
)
2534 sched_info_free(data
->source_info
[i
]);
2535 free(data
->source_info
);
2537 isl_space_free(data
->dim
);
2542 isl_access_info_free(data
->accesses
);
2543 sched_info_free(data
->sink_info
);
2544 if (data
->source_info
) {
2545 for (i
= 0; i
< data
->count
; ++i
)
2546 sched_info_free(data
->source_info
[i
]);
2547 free(data
->source_info
);
2549 isl_space_free(data
->dim
);
2552 return isl_stat_error
;
2555 /* Add the kills of "info" to the must-sources.
2557 static __isl_give isl_union_access_info
*
2558 isl_union_access_info_add_kill_to_must_source(
2559 __isl_take isl_union_access_info
*info
)
2561 isl_union_map
*must
, *kill
;
2563 must
= isl_union_access_info_get_must_source(info
);
2564 kill
= isl_union_access_info_get_kill(info
);
2565 must
= isl_union_map_union(must
, kill
);
2566 return isl_union_access_info_set_must_source(info
, must
);
2569 /* Drop dependences from "flow" that purely originate from kills.
2570 * That is, only keep those dependences that originate from
2571 * the original must-sources "must" and/or the original may-sources "may".
2572 * In particular, "must" contains the must-sources from before
2573 * the kills were added and "may" contains the may-source from before
2574 * the kills were removed.
2576 * The dependences are of the form
2578 * Source -> [Sink -> Data]
2580 * Only those dependences are kept where the Source -> Data part
2581 * is a subset of the original may-sources or must-sources.
2582 * Of those, only the must-dependences that intersect with the must-sources
2583 * remain must-dependences.
2584 * If there is some overlap between the may-sources and the must-sources,
2585 * then the may-dependences and must-dependences may also overlap.
2586 * This should be fine since the may-dependences are only kept
2587 * disjoint from the must-dependences for the isl_union_map_compute_flow
2588 * interface. This interface does not support kills, so it will
2589 * not end up calling this function.
2591 static __isl_give isl_union_flow
*isl_union_flow_drop_kill_source(
2592 __isl_take isl_union_flow
*flow
, __isl_take isl_union_map
*must
,
2593 __isl_take isl_union_map
*may
)
2595 isl_union_map
*move
;
2599 move
= isl_union_map_copy(flow
->must_dep
);
2600 move
= isl_union_map_intersect_range_factor_range(move
,
2601 isl_union_map_copy(may
));
2602 may
= isl_union_map_union(may
, isl_union_map_copy(must
));
2603 flow
->may_dep
= isl_union_map_intersect_range_factor_range(
2604 flow
->may_dep
, may
);
2605 flow
->must_dep
= isl_union_map_intersect_range_factor_range(
2606 flow
->must_dep
, must
);
2607 flow
->may_dep
= isl_union_map_union(flow
->may_dep
, move
);
2608 if (!flow
->must_dep
|| !flow
->may_dep
)
2609 return isl_union_flow_free(flow
);
2613 isl_union_map_free(must
);
2614 isl_union_map_free(may
);
2618 /* Remove the must accesses from the may accesses.
2620 * A must access always trumps a may access, so there is no need
2621 * for a must access to also be considered as a may access. Doing so
2622 * would only cost extra computations only to find out that
2623 * the duplicated may access does not make any difference.
2625 static __isl_give isl_union_access_info
*isl_union_access_info_normalize(
2626 __isl_take isl_union_access_info
*access
)
2630 access
->access
[isl_access_may_source
] =
2631 isl_union_map_subtract(access
->access
[isl_access_may_source
],
2632 isl_union_map_copy(access
->access
[isl_access_must_source
]));
2633 if (!access
->access
[isl_access_may_source
])
2634 return isl_union_access_info_free(access
);
2639 /* Given a description of the "sink" accesses, the "source" accesses and
2640 * a schedule, compute for each instance of a sink access
2641 * and for each element accessed by that instance,
2642 * the possible or definite source accesses that last accessed the
2643 * element accessed by the sink access before this sink access
2644 * in the sense that there is no intermediate definite source access.
2646 * The must_no_source and may_no_source elements of the result
2647 * are subsets of access->sink. The elements must_dep and may_dep
2648 * map domain elements of access->{may,must)_source to
2649 * domain elements of access->sink.
2651 * This function is used when only the schedule map representation
2654 * We first prepend the schedule dimensions to the domain
2655 * of the accesses so that we can easily compare their relative order.
2656 * Then we consider each sink access individually in compute_flow.
2658 static __isl_give isl_union_flow
*compute_flow_union_map(
2659 __isl_take isl_union_access_info
*access
)
2661 struct isl_compute_flow_data data
;
2662 isl_union_map
*sink
;
2664 access
= isl_union_access_info_align_params(access
);
2665 access
= isl_union_access_info_introduce_schedule(access
);
2669 data
.must_source
= access
->access
[isl_access_must_source
];
2670 data
.may_source
= access
->access
[isl_access_may_source
];
2672 sink
= access
->access
[isl_access_sink
];
2673 data
.flow
= isl_union_flow_alloc(isl_union_map_get_space(sink
));
2675 if (isl_union_map_foreach_map(sink
, &compute_flow
, &data
) < 0)
2678 data
.flow
= isl_union_flow_drop_schedule(data
.flow
);
2680 isl_union_access_info_free(access
);
2683 isl_union_access_info_free(access
);
2684 isl_union_flow_free(data
.flow
);
2688 /* A schedule access relation.
2690 * The access relation "access" is of the form [S -> D] -> A,
2691 * where S corresponds to the prefix schedule at "node".
2692 * "must" is only relevant for source accesses and indicates
2693 * whether the access is a must source or a may source.
2695 struct isl_scheduled_access
{
2698 isl_schedule_node
*node
;
2701 /* Data structure for keeping track of individual scheduled sink and source
2702 * accesses when computing dependence analysis based on a schedule tree.
2704 * "n_sink" is the number of used entries in "sink"
2705 * "n_source" is the number of used entries in "source"
2707 * "set_sink", "must" and "node" are only used inside collect_sink_source,
2708 * to keep track of the current node and
2709 * of what extract_sink_source needs to do.
2711 struct isl_compute_flow_schedule_data
{
2712 isl_union_access_info
*access
;
2717 struct isl_scheduled_access
*sink
;
2718 struct isl_scheduled_access
*source
;
2722 isl_schedule_node
*node
;
2725 /* Align the parameters of all sinks with all sources.
2727 * If there are no sinks or no sources, then no alignment is needed.
2729 static void isl_compute_flow_schedule_data_align_params(
2730 struct isl_compute_flow_schedule_data
*data
)
2735 if (data
->n_sink
== 0 || data
->n_source
== 0)
2738 space
= isl_map_get_space(data
->sink
[0].access
);
2740 for (i
= 1; i
< data
->n_sink
; ++i
)
2741 space
= isl_space_align_params(space
,
2742 isl_map_get_space(data
->sink
[i
].access
));
2743 for (i
= 0; i
< data
->n_source
; ++i
)
2744 space
= isl_space_align_params(space
,
2745 isl_map_get_space(data
->source
[i
].access
));
2747 for (i
= 0; i
< data
->n_sink
; ++i
)
2748 data
->sink
[i
].access
=
2749 isl_map_align_params(data
->sink
[i
].access
,
2750 isl_space_copy(space
));
2751 for (i
= 0; i
< data
->n_source
; ++i
)
2752 data
->source
[i
].access
=
2753 isl_map_align_params(data
->source
[i
].access
,
2754 isl_space_copy(space
));
2756 isl_space_free(space
);
2759 /* Free all the memory referenced from "data".
2760 * Do not free "data" itself as it may be allocated on the stack.
2762 static void isl_compute_flow_schedule_data_clear(
2763 struct isl_compute_flow_schedule_data
*data
)
2770 for (i
= 0; i
< data
->n_sink
; ++i
) {
2771 isl_map_free(data
->sink
[i
].access
);
2772 isl_schedule_node_free(data
->sink
[i
].node
);
2775 for (i
= 0; i
< data
->n_source
; ++i
) {
2776 isl_map_free(data
->source
[i
].access
);
2777 isl_schedule_node_free(data
->source
[i
].node
);
2783 /* isl_schedule_foreach_schedule_node_top_down callback for counting
2784 * (an upper bound on) the number of sinks and sources.
2786 * Sinks and sources are only extracted at leaves of the tree,
2787 * so we skip the node if it is not a leaf.
2788 * Otherwise we increment data->n_sink and data->n_source with
2789 * the number of spaces in the sink and source access domains
2790 * that reach this node.
2792 static isl_bool
count_sink_source(__isl_keep isl_schedule_node
*node
,
2795 struct isl_compute_flow_schedule_data
*data
= user
;
2796 isl_union_set
*domain
;
2797 isl_union_map
*umap
;
2798 isl_bool r
= isl_bool_false
;
2800 if (isl_schedule_node_get_type(node
) != isl_schedule_node_leaf
)
2801 return isl_bool_true
;
2803 domain
= isl_schedule_node_get_universe_domain(node
);
2805 umap
= isl_union_map_copy(data
->access
->access
[isl_access_sink
]);
2806 umap
= isl_union_map_intersect_domain(umap
, isl_union_set_copy(domain
));
2807 data
->n_sink
+= isl_union_map_n_map(umap
);
2808 isl_union_map_free(umap
);
2812 umap
= isl_union_map_copy(data
->access
->access
[isl_access_must_source
]);
2813 umap
= isl_union_map_intersect_domain(umap
, isl_union_set_copy(domain
));
2814 data
->n_source
+= isl_union_map_n_map(umap
);
2815 isl_union_map_free(umap
);
2819 umap
= isl_union_map_copy(data
->access
->access
[isl_access_may_source
]);
2820 umap
= isl_union_map_intersect_domain(umap
, isl_union_set_copy(domain
));
2821 data
->n_source
+= isl_union_map_n_map(umap
);
2822 isl_union_map_free(umap
);
2826 isl_union_set_free(domain
);
2831 /* Add a single scheduled sink or source (depending on data->set_sink)
2832 * with scheduled access relation "map", must property data->must and
2833 * schedule node data->node to the list of sinks or sources.
2835 static isl_stat
extract_sink_source(__isl_take isl_map
*map
, void *user
)
2837 struct isl_compute_flow_schedule_data
*data
= user
;
2838 struct isl_scheduled_access
*access
;
2841 access
= data
->sink
+ data
->n_sink
++;
2843 access
= data
->source
+ data
->n_source
++;
2845 access
->access
= map
;
2846 access
->must
= data
->must
;
2847 access
->node
= isl_schedule_node_copy(data
->node
);
2852 /* isl_schedule_foreach_schedule_node_top_down callback for collecting
2853 * individual scheduled source and sink accesses (taking into account
2854 * the domain of the schedule).
2856 * We only collect accesses at the leaves of the schedule tree.
2857 * We prepend the schedule dimensions at the leaf to the iteration
2858 * domains of the source and sink accesses and then extract
2859 * the individual accesses (per space).
2861 * In particular, if the prefix schedule at the node is of the form
2865 * while the access relations are of the form
2869 * then the updated access relations are of the form
2873 * Note that S consists of a single space such that introducing S
2874 * in the access relations does not increase the number of spaces.
2876 static isl_bool
collect_sink_source(__isl_keep isl_schedule_node
*node
,
2879 struct isl_compute_flow_schedule_data
*data
= user
;
2880 isl_union_map
*prefix
;
2881 isl_union_map
*umap
;
2882 isl_bool r
= isl_bool_false
;
2884 if (isl_schedule_node_get_type(node
) != isl_schedule_node_leaf
)
2885 return isl_bool_true
;
2889 prefix
= isl_schedule_node_get_prefix_schedule_relation(node
);
2890 prefix
= isl_union_map_reverse(prefix
);
2891 prefix
= isl_union_map_range_map(prefix
);
2894 umap
= isl_union_map_copy(data
->access
->access
[isl_access_sink
]);
2895 umap
= isl_union_map_apply_range(isl_union_map_copy(prefix
), umap
);
2896 if (isl_union_map_foreach_map(umap
, &extract_sink_source
, data
) < 0)
2898 isl_union_map_free(umap
);
2902 umap
= isl_union_map_copy(data
->access
->access
[isl_access_must_source
]);
2903 umap
= isl_union_map_apply_range(isl_union_map_copy(prefix
), umap
);
2904 if (isl_union_map_foreach_map(umap
, &extract_sink_source
, data
) < 0)
2906 isl_union_map_free(umap
);
2910 umap
= isl_union_map_copy(data
->access
->access
[isl_access_may_source
]);
2911 umap
= isl_union_map_apply_range(isl_union_map_copy(prefix
), umap
);
2912 if (isl_union_map_foreach_map(umap
, &extract_sink_source
, data
) < 0)
2914 isl_union_map_free(umap
);
2916 isl_union_map_free(prefix
);
2921 /* isl_access_info_compute_flow callback for determining whether
2922 * the shared nesting level and the ordering within that level
2923 * for two scheduled accesses for use in compute_single_flow.
2925 * The tokens passed to this function refer to the leaves
2926 * in the schedule tree where the accesses take place.
2928 * If n is the shared number of loops, then we need to return
2929 * "2 * n + 1" if "first" precedes "second" inside the innermost
2930 * shared loop and "2 * n" otherwise.
2932 * The innermost shared ancestor may be the leaves themselves
2933 * if the accesses take place in the same leaf. Otherwise,
2934 * it is either a set node or a sequence node. Only in the case
2935 * of a sequence node do we consider one access to precede the other.
2937 static int before_node(void *first
, void *second
)
2939 isl_schedule_node
*node1
= first
;
2940 isl_schedule_node
*node2
= second
;
2941 isl_schedule_node
*shared
;
2945 shared
= isl_schedule_node_get_shared_ancestor(node1
, node2
);
2949 depth
= isl_schedule_node_get_schedule_depth(shared
);
2950 if (isl_schedule_node_get_type(shared
) == isl_schedule_node_sequence
) {
2953 pos1
= isl_schedule_node_get_ancestor_child_position(node1
,
2955 pos2
= isl_schedule_node_get_ancestor_child_position(node2
,
2957 before
= pos1
< pos2
;
2960 isl_schedule_node_free(shared
);
2962 return 2 * depth
+ before
;
2965 /* Check if the given two accesses may be coscheduled.
2966 * If so, return 1. Otherwise return 0.
2968 * Two accesses may only be coscheduled if they appear in the same leaf.
2970 static int coscheduled_node(void *first
, void *second
)
2972 isl_schedule_node
*node1
= first
;
2973 isl_schedule_node
*node2
= second
;
2975 return node1
== node2
;
2978 /* Add the scheduled sources from "data" that access
2979 * the same data space as "sink" to "access".
2981 static __isl_give isl_access_info
*add_matching_sources(
2982 __isl_take isl_access_info
*access
, struct isl_scheduled_access
*sink
,
2983 struct isl_compute_flow_schedule_data
*data
)
2988 space
= isl_space_range(isl_map_get_space(sink
->access
));
2989 for (i
= 0; i
< data
->n_source
; ++i
) {
2990 struct isl_scheduled_access
*source
;
2991 isl_space
*source_space
;
2994 source
= &data
->source
[i
];
2995 source_space
= isl_map_get_space(source
->access
);
2996 source_space
= isl_space_range(source_space
);
2997 eq
= isl_space_is_equal(space
, source_space
);
2998 isl_space_free(source_space
);
3005 access
= isl_access_info_add_source(access
,
3006 isl_map_copy(source
->access
), source
->must
, source
->node
);
3009 isl_space_free(space
);
3012 isl_space_free(space
);
3013 isl_access_info_free(access
);
3017 /* Given a scheduled sink access relation "sink", compute the corresponding
3018 * dependences on the sources in "data" and add the computed dependences
3021 * The dependences computed by access_info_compute_flow_core are of the form
3023 * [S -> I] -> [[S' -> I'] -> A]
3025 * The schedule dimensions are projected out by first currying the range,
3028 * [S -> I] -> [S' -> [I' -> A]]
3030 * and then computing the factor range
3034 static __isl_give isl_union_flow
*compute_single_flow(
3035 __isl_take isl_union_flow
*uf
, struct isl_scheduled_access
*sink
,
3036 struct isl_compute_flow_schedule_data
*data
)
3039 isl_access_info
*access
;
3046 access
= isl_access_info_alloc(isl_map_copy(sink
->access
), sink
->node
,
3047 &before_node
, data
->n_source
);
3049 access
->coscheduled
= &coscheduled_node
;
3050 access
= add_matching_sources(access
, sink
, data
);
3052 flow
= access_info_compute_flow_core(access
);
3054 return isl_union_flow_free(uf
);
3056 map
= isl_map_domain_factor_range(isl_flow_get_no_source(flow
, 1));
3057 uf
->must_no_source
= isl_union_map_union(uf
->must_no_source
,
3058 isl_union_map_from_map(map
));
3059 map
= isl_map_domain_factor_range(isl_flow_get_no_source(flow
, 0));
3060 uf
->may_no_source
= isl_union_map_union(uf
->may_no_source
,
3061 isl_union_map_from_map(map
));
3063 for (i
= 0; i
< flow
->n_source
; ++i
) {
3066 map
= isl_map_range_curry(isl_map_copy(flow
->dep
[i
].map
));
3067 map
= isl_map_factor_range(map
);
3068 dep
= isl_union_map_from_map(map
);
3069 if (flow
->dep
[i
].must
)
3070 uf
->must_dep
= isl_union_map_union(uf
->must_dep
, dep
);
3072 uf
->may_dep
= isl_union_map_union(uf
->may_dep
, dep
);
3075 isl_flow_free(flow
);
3080 /* Given a description of the "sink" accesses, the "source" accesses and
3081 * a schedule, compute for each instance of a sink access
3082 * and for each element accessed by that instance,
3083 * the possible or definite source accesses that last accessed the
3084 * element accessed by the sink access before this sink access
3085 * in the sense that there is no intermediate definite source access.
3086 * Only consider dependences between statement instances that belong
3087 * to the domain of the schedule.
3089 * The must_no_source and may_no_source elements of the result
3090 * are subsets of access->sink. The elements must_dep and may_dep
3091 * map domain elements of access->{may,must)_source to
3092 * domain elements of access->sink.
3094 * This function is used when a schedule tree representation
3097 * We extract the individual scheduled source and sink access relations
3098 * (taking into account the domain of the schedule) and
3099 * then compute dependences for each scheduled sink individually.
3101 static __isl_give isl_union_flow
*compute_flow_schedule(
3102 __isl_take isl_union_access_info
*access
)
3104 struct isl_compute_flow_schedule_data data
= { access
};
3108 isl_union_flow
*flow
;
3110 ctx
= isl_union_access_info_get_ctx(access
);
3114 if (isl_schedule_foreach_schedule_node_top_down(access
->schedule
,
3115 &count_sink_source
, &data
) < 0)
3118 n
= data
.n_sink
+ data
.n_source
;
3119 data
.sink
= isl_calloc_array(ctx
, struct isl_scheduled_access
, n
);
3120 if (n
&& !data
.sink
)
3122 data
.source
= data
.sink
+ data
.n_sink
;
3126 if (isl_schedule_foreach_schedule_node_top_down(access
->schedule
,
3127 &collect_sink_source
, &data
) < 0)
3130 space
= isl_union_map_get_space(access
->access
[isl_access_sink
]);
3131 flow
= isl_union_flow_alloc(space
);
3133 isl_compute_flow_schedule_data_align_params(&data
);
3135 for (i
= 0; i
< data
.n_sink
; ++i
)
3136 flow
= compute_single_flow(flow
, &data
.sink
[i
], &data
);
3138 isl_compute_flow_schedule_data_clear(&data
);
3140 isl_union_access_info_free(access
);
3143 isl_union_access_info_free(access
);
3144 isl_compute_flow_schedule_data_clear(&data
);
3148 /* Given a description of the "sink" accesses, the "source" accesses and
3149 * a schedule, compute for each instance of a sink access
3150 * and for each element accessed by that instance,
3151 * the possible or definite source accesses that last accessed the
3152 * element accessed by the sink access before this sink access
3153 * in the sense that there is no intermediate definite source access.
3155 * The must_no_source and may_no_source elements of the result
3156 * are subsets of access->sink. The elements must_dep and may_dep
3157 * map domain elements of access->{may,must)_source to
3158 * domain elements of access->sink.
3160 * If any kills have been specified, then they are treated as
3161 * must-sources internally. Any dependence that purely derives
3162 * from an original kill is removed from the output.
3164 * We check whether the schedule is available as a schedule tree
3165 * or a schedule map and call the corresponding function to perform
3168 __isl_give isl_union_flow
*isl_union_access_info_compute_flow(
3169 __isl_take isl_union_access_info
*access
)
3172 isl_union_map
*must
= NULL
, *may
= NULL
;
3173 isl_union_flow
*flow
;
3175 has_kill
= isl_union_access_has_kill(access
);
3179 must
= isl_union_access_info_get_must_source(access
);
3180 may
= isl_union_access_info_get_may_source(access
);
3182 access
= isl_union_access_info_add_kill_to_must_source(access
);
3183 access
= isl_union_access_info_normalize(access
);
3186 if (access
->schedule
)
3187 flow
= compute_flow_schedule(access
);
3189 flow
= compute_flow_union_map(access
);
3191 flow
= isl_union_flow_drop_kill_source(flow
, must
, may
);
3194 isl_union_access_info_free(access
);
3195 isl_union_map_free(must
);
3196 isl_union_map_free(may
);
3200 /* Print the information contained in "flow" to "p".
3201 * The information is printed as a YAML document.
3203 __isl_give isl_printer
*isl_printer_print_union_flow(
3204 __isl_take isl_printer
*p
, __isl_keep isl_union_flow
*flow
)
3206 isl_union_map
*umap
;
3209 return isl_printer_free(p
);
3211 p
= isl_printer_yaml_start_mapping(p
);
3212 umap
= isl_union_flow_get_full_must_dependence(flow
);
3213 p
= print_union_map_field(p
, "must_dependence", umap
);
3214 isl_union_map_free(umap
);
3215 umap
= isl_union_flow_get_full_may_dependence(flow
);
3216 p
= print_union_map_field(p
, "may_dependence", umap
);
3217 isl_union_map_free(umap
);
3218 p
= print_union_map_field(p
, "must_no_source", flow
->must_no_source
);
3219 umap
= isl_union_flow_get_may_no_source(flow
);
3220 p
= print_union_map_field(p
, "may_no_source", umap
);
3221 isl_union_map_free(umap
);
3222 p
= isl_printer_yaml_end_mapping(p
);
3227 /* Return a string representation of the information in "flow".
3228 * The information is printed in flow format.
3230 __isl_give
char *isl_union_flow_to_str(__isl_keep isl_union_flow
*flow
)
3238 p
= isl_printer_to_str(isl_union_flow_get_ctx(flow
));
3239 p
= isl_printer_set_yaml_style(p
, ISL_YAML_STYLE_FLOW
);
3240 p
= isl_printer_print_union_flow(p
, flow
);
3241 s
= isl_printer_get_str(p
);
3242 isl_printer_free(p
);
3247 /* Given a collection of "sink" and "source" accesses,
3248 * compute for each iteration of a sink access
3249 * and for each element accessed by that iteration,
3250 * the source access in the list that last accessed the
3251 * element accessed by the sink access before this sink access.
3252 * Each access is given as a map from the loop iterators
3253 * to the array indices.
3254 * The result is a relations between source and sink
3255 * iterations and a subset of the domain of the sink accesses,
3256 * corresponding to those iterations that access an element
3257 * not previously accessed.
3259 * We collect the inputs in an isl_union_access_info object,
3260 * call isl_union_access_info_compute_flow and extract
3261 * the outputs from the result.
3263 int isl_union_map_compute_flow(__isl_take isl_union_map
*sink
,
3264 __isl_take isl_union_map
*must_source
,
3265 __isl_take isl_union_map
*may_source
,
3266 __isl_take isl_union_map
*schedule
,
3267 __isl_give isl_union_map
**must_dep
, __isl_give isl_union_map
**may_dep
,
3268 __isl_give isl_union_map
**must_no_source
,
3269 __isl_give isl_union_map
**may_no_source
)
3271 isl_union_access_info
*access
;
3272 isl_union_flow
*flow
;
3274 access
= isl_union_access_info_from_sink(sink
);
3275 access
= isl_union_access_info_set_must_source(access
, must_source
);
3276 access
= isl_union_access_info_set_may_source(access
, may_source
);
3277 access
= isl_union_access_info_set_schedule_map(access
, schedule
);
3278 flow
= isl_union_access_info_compute_flow(access
);
3281 *must_dep
= isl_union_flow_get_must_dependence(flow
);
3283 *may_dep
= isl_union_flow_get_non_must_dependence(flow
);
3285 *must_no_source
= isl_union_flow_get_must_no_source(flow
);
3287 *may_no_source
= isl_union_flow_get_non_must_no_source(flow
);
3289 isl_union_flow_free(flow
);
3291 if ((must_dep
&& !*must_dep
) || (may_dep
&& !*may_dep
) ||
3292 (must_no_source
&& !*must_no_source
) ||
3293 (may_no_source
&& !*may_no_source
))
3299 *must_dep
= isl_union_map_free(*must_dep
);
3301 *may_dep
= isl_union_map_free(*may_dep
);
3303 *must_no_source
= isl_union_map_free(*must_no_source
);
3305 *may_no_source
= isl_union_map_free(*may_no_source
);