2 * Copyright 2012-2014 Ecole Normale Superieure
3 * Copyright 2014 INRIA Rocquencourt
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege,
8 * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
9 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
10 * B.P. 105 - 78153 Le Chesnay, France
17 #include <isl/union_map.h>
19 #include <isl_tarjan.h>
20 #include <isl_ast_private.h>
21 #include <isl_ast_build_expr.h>
22 #include <isl_ast_build_private.h>
23 #include <isl_ast_graft_private.h>
25 /* Data used in generate_domain.
27 * "build" is the input build.
28 * "list" collects the results.
30 struct isl_generate_domain_data
{
33 isl_ast_graft_list
*list
;
36 static __isl_give isl_ast_graft_list
*generate_next_level(
37 __isl_take isl_union_map
*executed
,
38 __isl_take isl_ast_build
*build
);
39 static __isl_give isl_ast_graft_list
*generate_code(
40 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
,
43 /* Generate an AST for a single domain based on
44 * the (non single valued) inverse schedule "executed".
46 * We extend the schedule with the iteration domain
47 * and continue generating through a call to generate_code.
49 * In particular, if executed has the form
53 * then we continue generating code on
57 * The extended inverse schedule is clearly single valued
58 * ensuring that the nested generate_code will not reach this function,
59 * but will instead create calls to all elements of D that need
60 * to be executed from the current schedule domain.
62 static int generate_non_single_valued(__isl_take isl_map
*executed
,
63 struct isl_generate_domain_data
*data
)
67 isl_ast_graft_list
*list
;
69 build
= isl_ast_build_copy(data
->build
);
71 identity
= isl_set_identity(isl_map_range(isl_map_copy(executed
)));
72 executed
= isl_map_domain_product(executed
, identity
);
73 build
= isl_ast_build_set_single_valued(build
, 1);
75 list
= generate_code(isl_union_map_from_map(executed
), build
, 1);
77 data
->list
= isl_ast_graft_list_concat(data
->list
, list
);
82 /* Call the at_each_domain callback, if requested by the user,
83 * after recording the current inverse schedule in the build.
85 static __isl_give isl_ast_graft
*at_each_domain(__isl_take isl_ast_graft
*graft
,
86 __isl_keep isl_map
*executed
, __isl_keep isl_ast_build
*build
)
89 return isl_ast_graft_free(graft
);
90 if (!build
->at_each_domain
)
93 build
= isl_ast_build_copy(build
);
94 build
= isl_ast_build_set_executed(build
,
95 isl_union_map_from_map(isl_map_copy(executed
)));
97 return isl_ast_graft_free(graft
);
99 graft
->node
= build
->at_each_domain(graft
->node
,
100 build
, build
->at_each_domain_user
);
101 isl_ast_build_free(build
);
104 graft
= isl_ast_graft_free(graft
);
109 /* Generate an AST for a single domain based on
110 * the inverse schedule "executed" and add it to data->list.
112 * If there is more than one domain element associated to the current
113 * schedule "time", then we need to continue the generation process
114 * in generate_non_single_valued.
115 * Note that the inverse schedule being single-valued may depend
116 * on constraints that are only available in the original context
117 * domain specified by the user. We therefore first introduce
118 * some of the constraints of data->build->domain. In particular,
119 * we intersect with a single-disjunct approximation of this set.
120 * We perform this approximation to avoid further splitting up
121 * the executed relation, possibly introducing a disjunctive guard
124 * On the other hand, we only perform the test after having taken the gist
125 * of the domain as the resulting map is the one from which the call
126 * expression is constructed. Using this map to construct the call
127 * expression usually yields simpler results.
128 * Because we perform the single-valuedness test on the gisted map,
129 * we may in rare cases fail to recognize that the inverse schedule
130 * is single-valued. This becomes problematic if this happens
131 * from the recursive call through generate_non_single_valued
132 * as we would then end up in an infinite recursion.
133 * We therefore check if we are inside a call to generate_non_single_valued
134 * and revert to the ungisted map if the gisted map turns out not to be
137 * Otherwise, we generate a call expression for the single executed
138 * domain element and put a guard around it based on the (simplified)
139 * domain of "executed".
141 * At this stage, any pending constraints in the build can no longer
142 * be simplified with respect to any enforced constraints since
143 * the call node does not have any enforced constraints.
144 * We therefore turn all pending constraints into guards
145 * (after simplifying them with respect to the already generated
146 * constraints) and add them to both the generated constraints
147 * and the guard of the constructed graft. This guard will ensure
148 * that the constraints are effectively generated.
150 * If the user has set an at_each_domain callback, it is called
151 * on the constructed call expression node.
153 static int generate_domain(__isl_take isl_map
*executed
, void *user
)
155 struct isl_generate_domain_data
*data
= user
;
156 isl_ast_build
*build
;
157 isl_ast_graft
*graft
;
158 isl_ast_graft_list
*list
;
159 isl_set
*guard
, *domain
;
163 domain
= isl_ast_build_get_domain(data
->build
);
164 domain
= isl_set_from_basic_set(isl_set_simple_hull(domain
));
165 executed
= isl_map_intersect_domain(executed
, domain
);
166 empty
= isl_map_is_empty(executed
);
170 isl_map_free(executed
);
174 executed
= isl_map_coalesce(executed
);
175 map
= isl_map_copy(executed
);
176 map
= isl_ast_build_compute_gist_map_domain(data
->build
, map
);
177 sv
= isl_map_is_single_valued(map
);
182 if (data
->build
->single_valued
)
183 map
= isl_map_copy(executed
);
185 return generate_non_single_valued(executed
, data
);
187 guard
= isl_map_domain(isl_map_copy(map
));
188 guard
= isl_set_compute_divs(guard
);
189 guard
= isl_set_intersect(guard
,
190 isl_ast_build_get_pending(data
->build
));
191 guard
= isl_set_coalesce(guard
);
192 guard
= isl_ast_build_specialize(data
->build
, guard
);
193 guard
= isl_set_gist(guard
, isl_ast_build_get_generated(data
->build
));
195 build
= isl_ast_build_copy(data
->build
);
196 build
= isl_ast_build_replace_pending_by_guard(build
,
197 isl_set_copy(guard
));
198 graft
= isl_ast_graft_alloc_domain(map
, build
);
199 graft
= at_each_domain(graft
, executed
, build
);
200 isl_ast_build_free(build
);
201 isl_map_free(executed
);
202 graft
= isl_ast_graft_add_guard(graft
, guard
, data
->build
);
204 list
= isl_ast_graft_list_from_ast_graft(graft
);
205 data
->list
= isl_ast_graft_list_concat(data
->list
, list
);
210 isl_map_free(executed
);
214 /* Call build->create_leaf to a create "leaf" node in the AST,
215 * encapsulate the result in an isl_ast_graft and return the result
216 * as a 1-element list.
218 * Note that the node returned by the user may be an entire tree.
220 * Since the node itself cannot enforce any constraints, we turn
221 * all pending constraints into guards and add them to the resulting
222 * graft to ensure that they will be generated.
224 * Before we pass control to the user, we first clear some information
225 * from the build that is (presumbably) only meaningful
226 * for the current code generation.
227 * This includes the create_leaf callback itself, so we make a copy
228 * of the build first.
230 static __isl_give isl_ast_graft_list
*call_create_leaf(
231 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
235 isl_ast_graft
*graft
;
236 isl_ast_build
*user_build
;
238 guard
= isl_ast_build_get_pending(build
);
239 user_build
= isl_ast_build_copy(build
);
240 user_build
= isl_ast_build_replace_pending_by_guard(user_build
,
241 isl_set_copy(guard
));
242 user_build
= isl_ast_build_set_executed(user_build
, executed
);
243 user_build
= isl_ast_build_clear_local_info(user_build
);
247 node
= build
->create_leaf(user_build
, build
->create_leaf_user
);
248 graft
= isl_ast_graft_alloc(node
, build
);
249 graft
= isl_ast_graft_add_guard(graft
, guard
, build
);
250 isl_ast_build_free(build
);
251 return isl_ast_graft_list_from_ast_graft(graft
);
254 /* Generate an AST after having handled the complete schedule
255 * of this call to the code generator.
257 * If the user has specified a create_leaf callback, control
258 * is passed to the user in call_create_leaf.
260 * Otherwise, we generate one or more calls for each individual
261 * domain in generate_domain.
263 static __isl_give isl_ast_graft_list
*generate_inner_level(
264 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
267 struct isl_generate_domain_data data
= { build
};
269 if (!build
|| !executed
)
272 if (build
->create_leaf
)
273 return call_create_leaf(executed
, build
);
275 ctx
= isl_union_map_get_ctx(executed
);
276 data
.list
= isl_ast_graft_list_alloc(ctx
, 0);
277 if (isl_union_map_foreach_map(executed
, &generate_domain
, &data
) < 0)
278 data
.list
= isl_ast_graft_list_free(data
.list
);
281 error
: data
.list
= NULL
;
282 isl_ast_build_free(build
);
283 isl_union_map_free(executed
);
287 /* Call the before_each_for callback, if requested by the user.
289 static __isl_give isl_ast_node
*before_each_for(__isl_take isl_ast_node
*node
,
290 __isl_keep isl_ast_build
*build
)
295 return isl_ast_node_free(node
);
296 if (!build
->before_each_for
)
298 id
= build
->before_each_for(build
, build
->before_each_for_user
);
299 node
= isl_ast_node_set_annotation(node
, id
);
303 /* Call the after_each_for callback, if requested by the user.
305 static __isl_give isl_ast_graft
*after_each_for(__isl_take isl_ast_graft
*graft
,
306 __isl_keep isl_ast_build
*build
)
308 if (!graft
|| !build
)
309 return isl_ast_graft_free(graft
);
310 if (!build
->after_each_for
)
312 graft
->node
= build
->after_each_for(graft
->node
, build
,
313 build
->after_each_for_user
);
315 return isl_ast_graft_free(graft
);
319 /* Plug in all the know values of the current and outer dimensions
320 * in the domain of "executed". In principle, we only need to plug
321 * in the known value of the current dimension since the values of
322 * outer dimensions have been plugged in already.
323 * However, it turns out to be easier to just plug in all known values.
325 static __isl_give isl_union_map
*plug_in_values(
326 __isl_take isl_union_map
*executed
, __isl_keep isl_ast_build
*build
)
328 return isl_ast_build_substitute_values_union_map_domain(build
,
332 /* Check if the constraint "c" is a lower bound on dimension "pos",
333 * an upper bound, or independent of dimension "pos".
335 static int constraint_type(isl_constraint
*c
, int pos
)
337 if (isl_constraint_is_lower_bound(c
, isl_dim_set
, pos
))
339 if (isl_constraint_is_upper_bound(c
, isl_dim_set
, pos
))
344 /* Compare the types of the constraints "a" and "b",
345 * resulting in constraints that are independent of "depth"
346 * to be sorted before the lower bounds on "depth", which in
347 * turn are sorted before the upper bounds on "depth".
349 static int cmp_constraint(__isl_keep isl_constraint
*a
,
350 __isl_keep isl_constraint
*b
, void *user
)
353 int t1
= constraint_type(a
, *depth
);
354 int t2
= constraint_type(b
, *depth
);
359 /* Extract a lower bound on dimension "pos" from constraint "c".
361 * If the constraint is of the form
365 * then we essentially return
367 * l = ceil(-f(...)/a)
369 * However, if the current dimension is strided, then we need to make
370 * sure that the lower bound we construct is of the form
374 * with f the offset and s the stride.
375 * We therefore compute
377 * f + s * ceil((l - f)/s)
379 static __isl_give isl_aff
*lower_bound(__isl_keep isl_constraint
*c
,
380 int pos
, __isl_keep isl_ast_build
*build
)
384 aff
= isl_constraint_get_bound(c
, isl_dim_set
, pos
);
385 aff
= isl_aff_ceil(aff
);
387 if (isl_ast_build_has_stride(build
, pos
)) {
391 offset
= isl_ast_build_get_offset(build
, pos
);
392 stride
= isl_ast_build_get_stride(build
, pos
);
394 aff
= isl_aff_sub(aff
, isl_aff_copy(offset
));
395 aff
= isl_aff_scale_down_val(aff
, isl_val_copy(stride
));
396 aff
= isl_aff_ceil(aff
);
397 aff
= isl_aff_scale_val(aff
, stride
);
398 aff
= isl_aff_add(aff
, offset
);
401 aff
= isl_ast_build_compute_gist_aff(build
, aff
);
406 /* Return the exact lower bound (or upper bound if "upper" is set)
407 * of "domain" as a piecewise affine expression.
409 * If we are computing a lower bound (of a strided dimension), then
410 * we need to make sure it is of the form
414 * where f is the offset and s is the stride.
415 * We therefore need to include the stride constraint before computing
418 static __isl_give isl_pw_aff
*exact_bound(__isl_keep isl_set
*domain
,
419 __isl_keep isl_ast_build
*build
, int upper
)
424 isl_pw_multi_aff
*pma
;
426 domain
= isl_set_copy(domain
);
428 stride
= isl_ast_build_get_stride_constraint(build
);
429 domain
= isl_set_intersect(domain
, stride
);
431 it_map
= isl_ast_build_map_to_iterator(build
, domain
);
433 pma
= isl_map_lexmax_pw_multi_aff(it_map
);
435 pma
= isl_map_lexmin_pw_multi_aff(it_map
);
436 pa
= isl_pw_multi_aff_get_pw_aff(pma
, 0);
437 isl_pw_multi_aff_free(pma
);
438 pa
= isl_ast_build_compute_gist_pw_aff(build
, pa
);
439 pa
= isl_pw_aff_coalesce(pa
);
444 /* Callback for sorting the isl_pw_aff_list passed to reduce_list and
445 * remove_redundant_lower_bounds.
447 static int reduce_list_cmp(__isl_keep isl_pw_aff
*a
, __isl_keep isl_pw_aff
*b
,
450 return isl_pw_aff_plain_cmp(a
, b
);
453 /* Given a list of lower bounds "list", remove those that are redundant
454 * with respect to the other bounds in "list" and the domain of "build".
456 * We first sort the bounds in the same way as they would be sorted
457 * by set_for_node_expressions so that we can try and remove the last
460 * For a lower bound to be effective, there needs to be at least
461 * one domain element for which it is larger than all other lower bounds.
462 * For each lower bound we therefore intersect the domain with
463 * the conditions that it is larger than all other bounds and
464 * check whether the result is empty. If so, the bound can be removed.
466 static __isl_give isl_pw_aff_list
*remove_redundant_lower_bounds(
467 __isl_take isl_pw_aff_list
*list
, __isl_keep isl_ast_build
*build
)
472 list
= isl_pw_aff_list_sort(list
, &reduce_list_cmp
, NULL
);
476 n
= isl_pw_aff_list_n_pw_aff(list
);
480 domain
= isl_ast_build_get_domain(build
);
482 for (i
= n
- 1; i
>= 0; --i
) {
487 domain_i
= isl_set_copy(domain
);
488 pa_i
= isl_pw_aff_list_get_pw_aff(list
, i
);
490 for (j
= 0; j
< n
; ++j
) {
497 pa_j
= isl_pw_aff_list_get_pw_aff(list
, j
);
498 better
= isl_pw_aff_gt_set(isl_pw_aff_copy(pa_i
), pa_j
);
499 domain_i
= isl_set_intersect(domain_i
, better
);
502 empty
= isl_set_is_empty(domain_i
);
504 isl_set_free(domain_i
);
505 isl_pw_aff_free(pa_i
);
511 list
= isl_pw_aff_list_drop(list
, i
, 1);
515 isl_set_free(domain
);
519 isl_set_free(domain
);
520 return isl_pw_aff_list_free(list
);
523 /* Extract a lower bound on dimension "pos" from each constraint
524 * in "constraints" and return the list of lower bounds.
525 * If "constraints" has zero elements, then we extract a lower bound
526 * from "domain" instead.
528 * If the current dimension is strided, then the lower bound
529 * is adjusted by lower_bound to match the stride information.
530 * This modification may make one or more lower bounds redundant
531 * with respect to the other lower bounds. We therefore check
532 * for this condition and remove the redundant lower bounds.
534 static __isl_give isl_pw_aff_list
*lower_bounds(
535 __isl_keep isl_constraint_list
*constraints
, int pos
,
536 __isl_keep isl_set
*domain
, __isl_keep isl_ast_build
*build
)
539 isl_pw_aff_list
*list
;
545 n
= isl_constraint_list_n_constraint(constraints
);
548 pa
= exact_bound(domain
, build
, 0);
549 return isl_pw_aff_list_from_pw_aff(pa
);
552 ctx
= isl_ast_build_get_ctx(build
);
553 list
= isl_pw_aff_list_alloc(ctx
,n
);
555 for (i
= 0; i
< n
; ++i
) {
559 c
= isl_constraint_list_get_constraint(constraints
, i
);
560 aff
= lower_bound(c
, pos
, build
);
561 isl_constraint_free(c
);
562 list
= isl_pw_aff_list_add(list
, isl_pw_aff_from_aff(aff
));
565 if (isl_ast_build_has_stride(build
, pos
))
566 list
= remove_redundant_lower_bounds(list
, build
);
571 /* Extract an upper bound on dimension "pos" from each constraint
572 * in "constraints" and return the list of upper bounds.
573 * If "constraints" has zero elements, then we extract an upper bound
574 * from "domain" instead.
576 static __isl_give isl_pw_aff_list
*upper_bounds(
577 __isl_keep isl_constraint_list
*constraints
, int pos
,
578 __isl_keep isl_set
*domain
, __isl_keep isl_ast_build
*build
)
581 isl_pw_aff_list
*list
;
584 n
= isl_constraint_list_n_constraint(constraints
);
587 pa
= exact_bound(domain
, build
, 1);
588 return isl_pw_aff_list_from_pw_aff(pa
);
591 ctx
= isl_ast_build_get_ctx(build
);
592 list
= isl_pw_aff_list_alloc(ctx
,n
);
594 for (i
= 0; i
< n
; ++i
) {
598 c
= isl_constraint_list_get_constraint(constraints
, i
);
599 aff
= isl_constraint_get_bound(c
, isl_dim_set
, pos
);
600 isl_constraint_free(c
);
601 aff
= isl_aff_floor(aff
);
602 list
= isl_pw_aff_list_add(list
, isl_pw_aff_from_aff(aff
));
608 /* Return an isl_ast_expr that performs the reduction of type "type"
609 * on AST expressions corresponding to the elements in "list".
611 * The list is assumed to contain at least one element.
612 * If the list contains exactly one element, then the returned isl_ast_expr
613 * simply computes that affine expression.
614 * If the list contains more than one element, then we sort it
615 * using a fairly abitrary but hopefully reasonably stable order.
617 static __isl_give isl_ast_expr
*reduce_list(enum isl_ast_op_type type
,
618 __isl_keep isl_pw_aff_list
*list
, __isl_keep isl_ast_build
*build
)
627 n
= isl_pw_aff_list_n_pw_aff(list
);
630 return isl_ast_build_expr_from_pw_aff_internal(build
,
631 isl_pw_aff_list_get_pw_aff(list
, 0));
633 ctx
= isl_pw_aff_list_get_ctx(list
);
634 expr
= isl_ast_expr_alloc_op(ctx
, type
, n
);
638 list
= isl_pw_aff_list_copy(list
);
639 list
= isl_pw_aff_list_sort(list
, &reduce_list_cmp
, NULL
);
641 return isl_ast_expr_free(expr
);
643 for (i
= 0; i
< n
; ++i
) {
644 isl_ast_expr
*expr_i
;
646 expr_i
= isl_ast_build_expr_from_pw_aff_internal(build
,
647 isl_pw_aff_list_get_pw_aff(list
, i
));
650 expr
->u
.op
.args
[i
] = expr_i
;
653 isl_pw_aff_list_free(list
);
656 isl_pw_aff_list_free(list
);
657 isl_ast_expr_free(expr
);
661 /* Add guards implied by the "generated constraints",
662 * but not (necessarily) enforced by the generated AST to "guard".
663 * In particular, if there is any stride constraints,
664 * then add the guard implied by those constraints.
665 * If we have generated a degenerate loop, then add the guard
666 * implied by "bounds" on the outer dimensions, i.e., the guard
667 * that ensures that the single value actually exists.
668 * Since there may also be guards implied by a combination
669 * of these constraints, we first combine them before
670 * deriving the implied constraints.
672 static __isl_give isl_set
*add_implied_guards(__isl_take isl_set
*guard
,
673 int degenerate
, __isl_keep isl_basic_set
*bounds
,
674 __isl_keep isl_ast_build
*build
)
676 int depth
, has_stride
;
680 depth
= isl_ast_build_get_depth(build
);
681 has_stride
= isl_ast_build_has_stride(build
, depth
);
682 if (!has_stride
&& !degenerate
)
685 space
= isl_basic_set_get_space(bounds
);
686 dom
= isl_set_universe(space
);
689 bounds
= isl_basic_set_copy(bounds
);
690 bounds
= isl_basic_set_drop_constraints_not_involving_dims(
691 bounds
, isl_dim_set
, depth
, 1);
692 set
= isl_set_from_basic_set(bounds
);
693 dom
= isl_set_intersect(dom
, set
);
697 set
= isl_ast_build_get_stride_constraint(build
);
698 dom
= isl_set_intersect(dom
, set
);
701 dom
= isl_set_eliminate(dom
, isl_dim_set
, depth
, 1);
702 dom
= isl_ast_build_compute_gist(build
, dom
);
703 guard
= isl_set_intersect(guard
, dom
);
708 /* Update "graft" based on "sub_build" for the degenerate case.
710 * "build" is the build in which graft->node was created
711 * "sub_build" contains information about the current level itself,
712 * including the single value attained.
714 * We set the initialization part of the for loop to the single
715 * value attained by the current dimension.
716 * The increment and condition are not strictly needed as the are known
717 * to be "1" and "iterator <= value" respectively.
719 static __isl_give isl_ast_graft
*refine_degenerate(
720 __isl_take isl_ast_graft
*graft
, __isl_keep isl_ast_build
*build
,
721 __isl_keep isl_ast_build
*sub_build
)
725 if (!graft
|| !sub_build
)
726 return isl_ast_graft_free(graft
);
728 value
= isl_pw_aff_copy(sub_build
->value
);
730 graft
->node
->u
.f
.init
= isl_ast_build_expr_from_pw_aff_internal(build
,
732 if (!graft
->node
->u
.f
.init
)
733 return isl_ast_graft_free(graft
);
738 /* Return the intersection of constraints in "list" as a set.
740 static __isl_give isl_set
*intersect_constraints(
741 __isl_keep isl_constraint_list
*list
)
746 n
= isl_constraint_list_n_constraint(list
);
748 isl_die(isl_constraint_list_get_ctx(list
), isl_error_internal
,
749 "expecting at least one constraint", return NULL
);
751 bset
= isl_basic_set_from_constraint(
752 isl_constraint_list_get_constraint(list
, 0));
753 for (i
= 1; i
< n
; ++i
) {
754 isl_basic_set
*bset_i
;
756 bset_i
= isl_basic_set_from_constraint(
757 isl_constraint_list_get_constraint(list
, i
));
758 bset
= isl_basic_set_intersect(bset
, bset_i
);
761 return isl_set_from_basic_set(bset
);
764 /* Compute the constraints on the outer dimensions enforced by
765 * graft->node and add those constraints to graft->enforced,
766 * in case the upper bound is expressed as a set "upper".
768 * In particular, if l(...) is a lower bound in "lower", and
770 * -a i + f(...) >= 0 or a i <= f(...)
772 * is an upper bound ocnstraint on the current dimension i,
773 * then the for loop enforces the constraint
775 * -a l(...) + f(...) >= 0 or a l(...) <= f(...)
777 * We therefore simply take each lower bound in turn, plug it into
778 * the upper bounds and compute the intersection over all lower bounds.
780 * If a lower bound is a rational expression, then
781 * isl_basic_set_preimage_multi_aff will force this rational
782 * expression to have only integer values. However, the loop
783 * itself does not enforce this integrality constraint. We therefore
784 * use the ceil of the lower bounds instead of the lower bounds themselves.
785 * Other constraints will make sure that the for loop is only executed
786 * when each of the lower bounds attains an integral value.
787 * In particular, potentially rational values only occur in
788 * lower_bound if the offset is a (seemingly) rational expression,
789 * but then outer conditions will make sure that this rational expression
790 * only attains integer values.
792 static __isl_give isl_ast_graft
*set_enforced_from_set(
793 __isl_take isl_ast_graft
*graft
,
794 __isl_keep isl_pw_aff_list
*lower
, int pos
, __isl_keep isl_set
*upper
)
797 isl_basic_set
*enforced
;
798 isl_pw_multi_aff
*pma
;
801 if (!graft
|| !lower
)
802 return isl_ast_graft_free(graft
);
804 space
= isl_set_get_space(upper
);
805 enforced
= isl_basic_set_universe(isl_space_copy(space
));
807 space
= isl_space_map_from_set(space
);
808 pma
= isl_pw_multi_aff_identity(space
);
810 n
= isl_pw_aff_list_n_pw_aff(lower
);
811 for (i
= 0; i
< n
; ++i
) {
815 isl_pw_multi_aff
*pma_i
;
817 pa
= isl_pw_aff_list_get_pw_aff(lower
, i
);
818 pa
= isl_pw_aff_ceil(pa
);
819 pma_i
= isl_pw_multi_aff_copy(pma
);
820 pma_i
= isl_pw_multi_aff_set_pw_aff(pma_i
, pos
, pa
);
821 enforced_i
= isl_set_copy(upper
);
822 enforced_i
= isl_set_preimage_pw_multi_aff(enforced_i
, pma_i
);
823 hull
= isl_set_simple_hull(enforced_i
);
824 enforced
= isl_basic_set_intersect(enforced
, hull
);
827 isl_pw_multi_aff_free(pma
);
829 graft
= isl_ast_graft_enforce(graft
, enforced
);
834 /* Compute the constraints on the outer dimensions enforced by
835 * graft->node and add those constraints to graft->enforced,
836 * in case the upper bound is expressed as
837 * a list of affine expressions "upper".
839 * The enforced condition is that each lower bound expression is less
840 * than or equal to each upper bound expression.
842 static __isl_give isl_ast_graft
*set_enforced_from_list(
843 __isl_take isl_ast_graft
*graft
,
844 __isl_keep isl_pw_aff_list
*lower
, __isl_keep isl_pw_aff_list
*upper
)
847 isl_basic_set
*enforced
;
849 lower
= isl_pw_aff_list_copy(lower
);
850 upper
= isl_pw_aff_list_copy(upper
);
851 cond
= isl_pw_aff_list_le_set(lower
, upper
);
852 enforced
= isl_set_simple_hull(cond
);
853 graft
= isl_ast_graft_enforce(graft
, enforced
);
858 /* Does "aff" have a negative constant term?
860 static int aff_constant_is_negative(__isl_take isl_set
*set
,
861 __isl_take isl_aff
*aff
, void *user
)
866 v
= isl_aff_get_constant_val(aff
);
867 *neg
= isl_val_is_neg(v
);
872 return *neg
? 0 : -1;
875 /* Does "pa" have a negative constant term over its entire domain?
877 static int pw_aff_constant_is_negative(__isl_take isl_pw_aff
*pa
, void *user
)
882 r
= isl_pw_aff_foreach_piece(pa
, &aff_constant_is_negative
, user
);
885 return (*neg
&& r
>= 0) ? 0 : -1;
888 /* Does each element in "list" have a negative constant term?
890 * The callback terminates the iteration as soon an element has been
891 * found that does not have a negative constant term.
893 static int list_constant_is_negative(__isl_keep isl_pw_aff_list
*list
)
897 if (isl_pw_aff_list_foreach(list
,
898 &pw_aff_constant_is_negative
, &neg
) < 0 && neg
)
904 /* Add 1 to each of the elements in "list", where each of these elements
905 * is defined over the internal schedule space of "build".
907 static __isl_give isl_pw_aff_list
*list_add_one(
908 __isl_take isl_pw_aff_list
*list
, __isl_keep isl_ast_build
*build
)
915 space
= isl_ast_build_get_space(build
, 1);
916 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(space
));
917 aff
= isl_aff_add_constant_si(aff
, 1);
918 one
= isl_pw_aff_from_aff(aff
);
920 n
= isl_pw_aff_list_n_pw_aff(list
);
921 for (i
= 0; i
< n
; ++i
) {
923 pa
= isl_pw_aff_list_get_pw_aff(list
, i
);
924 pa
= isl_pw_aff_add(pa
, isl_pw_aff_copy(one
));
925 list
= isl_pw_aff_list_set_pw_aff(list
, i
, pa
);
928 isl_pw_aff_free(one
);
933 /* Set the condition part of the for node graft->node in case
934 * the upper bound is represented as a list of piecewise affine expressions.
936 * In particular, set the condition to
938 * iterator <= min(list of upper bounds)
940 * If each of the upper bounds has a negative constant term, then
941 * set the condition to
943 * iterator < min(list of (upper bound + 1)s)
946 static __isl_give isl_ast_graft
*set_for_cond_from_list(
947 __isl_take isl_ast_graft
*graft
, __isl_keep isl_pw_aff_list
*list
,
948 __isl_keep isl_ast_build
*build
)
951 isl_ast_expr
*bound
, *iterator
, *cond
;
952 enum isl_ast_op_type type
= isl_ast_op_le
;
955 return isl_ast_graft_free(graft
);
957 neg
= list_constant_is_negative(list
);
959 return isl_ast_graft_free(graft
);
960 list
= isl_pw_aff_list_copy(list
);
962 list
= list_add_one(list
, build
);
963 type
= isl_ast_op_lt
;
966 bound
= reduce_list(isl_ast_op_min
, list
, build
);
967 iterator
= isl_ast_expr_copy(graft
->node
->u
.f
.iterator
);
968 cond
= isl_ast_expr_alloc_binary(type
, iterator
, bound
);
969 graft
->node
->u
.f
.cond
= cond
;
971 isl_pw_aff_list_free(list
);
972 if (!graft
->node
->u
.f
.cond
)
973 return isl_ast_graft_free(graft
);
977 /* Set the condition part of the for node graft->node in case
978 * the upper bound is represented as a set.
980 static __isl_give isl_ast_graft
*set_for_cond_from_set(
981 __isl_take isl_ast_graft
*graft
, __isl_keep isl_set
*set
,
982 __isl_keep isl_ast_build
*build
)
989 cond
= isl_ast_build_expr_from_set(build
, isl_set_copy(set
));
990 graft
->node
->u
.f
.cond
= cond
;
991 if (!graft
->node
->u
.f
.cond
)
992 return isl_ast_graft_free(graft
);
996 /* Construct an isl_ast_expr for the increment (i.e., stride) of
997 * the current dimension.
999 static __isl_give isl_ast_expr
*for_inc(__isl_keep isl_ast_build
*build
)
1007 ctx
= isl_ast_build_get_ctx(build
);
1008 depth
= isl_ast_build_get_depth(build
);
1010 if (!isl_ast_build_has_stride(build
, depth
))
1011 return isl_ast_expr_alloc_int_si(ctx
, 1);
1013 v
= isl_ast_build_get_stride(build
, depth
);
1014 return isl_ast_expr_from_val(v
);
1017 /* Should we express the loop condition as
1019 * iterator <= min(list of upper bounds)
1021 * or as a conjunction of constraints?
1023 * The first is constructed from a list of upper bounds.
1024 * The second is constructed from a set.
1026 * If there are no upper bounds in "constraints", then this could mean
1027 * that "domain" simply doesn't have an upper bound or that we didn't
1028 * pick any upper bound. In the first case, we want to generate the
1029 * loop condition as a(n empty) conjunction of constraints
1030 * In the second case, we will compute
1031 * a single upper bound from "domain" and so we use the list form.
1033 * If there are upper bounds in "constraints",
1034 * then we use the list form iff the atomic_upper_bound option is set.
1036 static int use_upper_bound_list(isl_ctx
*ctx
, int n_upper
,
1037 __isl_keep isl_set
*domain
, int depth
)
1040 return isl_options_get_ast_build_atomic_upper_bound(ctx
);
1042 return isl_set_dim_has_upper_bound(domain
, isl_dim_set
, depth
);
1045 /* Fill in the expressions of the for node in graft->node.
1048 * - set the initialization part of the loop to the maximum of the lower bounds
1049 * - extract the increment from the stride of the current dimension
1050 * - construct the for condition either based on a list of upper bounds
1051 * or on a set of upper bound constraints.
1053 static __isl_give isl_ast_graft
*set_for_node_expressions(
1054 __isl_take isl_ast_graft
*graft
, __isl_keep isl_pw_aff_list
*lower
,
1055 int use_list
, __isl_keep isl_pw_aff_list
*upper_list
,
1056 __isl_keep isl_set
*upper_set
, __isl_keep isl_ast_build
*build
)
1063 build
= isl_ast_build_copy(build
);
1066 node
->u
.f
.init
= reduce_list(isl_ast_op_max
, lower
, build
);
1067 node
->u
.f
.inc
= for_inc(build
);
1070 graft
= set_for_cond_from_list(graft
, upper_list
, build
);
1072 graft
= set_for_cond_from_set(graft
, upper_set
, build
);
1074 isl_ast_build_free(build
);
1076 if (!node
->u
.f
.iterator
|| !node
->u
.f
.init
||
1077 !node
->u
.f
.cond
|| !node
->u
.f
.inc
)
1078 return isl_ast_graft_free(graft
);
1083 /* Update "graft" based on "bounds" and "domain" for the generic,
1084 * non-degenerate, case.
1086 * "c_lower" and "c_upper" contain the lower and upper bounds
1087 * that the loop node should express.
1088 * "domain" is the subset of the intersection of the constraints
1089 * for which some code is executed.
1091 * There may be zero lower bounds or zero upper bounds in "constraints"
1092 * in case the list of constraints was created
1093 * based on the atomic option or based on separation with explicit bounds.
1094 * In that case, we use "domain" to derive lower and/or upper bounds.
1096 * We first compute a list of one or more lower bounds.
1098 * Then we decide if we want to express the condition as
1100 * iterator <= min(list of upper bounds)
1102 * or as a conjunction of constraints.
1104 * The set of enforced constraints is then computed either based on
1105 * a list of upper bounds or on a set of upper bound constraints.
1106 * We do not compute any enforced constraints if we were forced
1107 * to compute a lower or upper bound using exact_bound. The domains
1108 * of the resulting expressions may imply some bounds on outer dimensions
1109 * that we do not want to appear in the enforced constraints since
1110 * they are not actually enforced by the corresponding code.
1112 * Finally, we fill in the expressions of the for node.
1114 static __isl_give isl_ast_graft
*refine_generic_bounds(
1115 __isl_take isl_ast_graft
*graft
,
1116 __isl_take isl_constraint_list
*c_lower
,
1117 __isl_take isl_constraint_list
*c_upper
,
1118 __isl_keep isl_set
*domain
, __isl_keep isl_ast_build
*build
)
1122 isl_pw_aff_list
*lower
;
1124 isl_set
*upper_set
= NULL
;
1125 isl_pw_aff_list
*upper_list
= NULL
;
1126 int n_lower
, n_upper
;
1128 if (!graft
|| !c_lower
|| !c_upper
|| !build
)
1131 depth
= isl_ast_build_get_depth(build
);
1132 ctx
= isl_ast_graft_get_ctx(graft
);
1134 n_lower
= isl_constraint_list_n_constraint(c_lower
);
1135 n_upper
= isl_constraint_list_n_constraint(c_upper
);
1137 use_list
= use_upper_bound_list(ctx
, n_upper
, domain
, depth
);
1139 lower
= lower_bounds(c_lower
, depth
, domain
, build
);
1142 upper_list
= upper_bounds(c_upper
, depth
, domain
, build
);
1143 else if (n_upper
> 0)
1144 upper_set
= intersect_constraints(c_upper
);
1146 upper_set
= isl_set_universe(isl_set_get_space(domain
));
1148 if (n_lower
== 0 || n_upper
== 0)
1151 graft
= set_enforced_from_list(graft
, lower
, upper_list
);
1153 graft
= set_enforced_from_set(graft
, lower
, depth
, upper_set
);
1155 graft
= set_for_node_expressions(graft
, lower
, use_list
, upper_list
,
1158 isl_pw_aff_list_free(lower
);
1159 isl_pw_aff_list_free(upper_list
);
1160 isl_set_free(upper_set
);
1161 isl_constraint_list_free(c_lower
);
1162 isl_constraint_list_free(c_upper
);
1166 isl_constraint_list_free(c_lower
);
1167 isl_constraint_list_free(c_upper
);
1168 return isl_ast_graft_free(graft
);
1171 /* Internal data structure used inside count_constraints to keep
1172 * track of the number of constraints that are independent of dimension "pos",
1173 * the lower bounds in "pos" and the upper bounds in "pos".
1175 struct isl_ast_count_constraints_data
{
1183 /* Increment data->n_indep, data->lower or data->upper depending
1184 * on whether "c" is independenct of dimensions data->pos,
1185 * a lower bound or an upper bound.
1187 static int count_constraints(__isl_take isl_constraint
*c
, void *user
)
1189 struct isl_ast_count_constraints_data
*data
= user
;
1191 if (isl_constraint_is_lower_bound(c
, isl_dim_set
, data
->pos
))
1193 else if (isl_constraint_is_upper_bound(c
, isl_dim_set
, data
->pos
))
1198 isl_constraint_free(c
);
1203 /* Update "graft" based on "bounds" and "domain" for the generic,
1204 * non-degenerate, case.
1206 * "list" respresent the list of bounds that need to be encoded by
1207 * the for loop. Only the constraints that involve the iterator
1208 * are relevant here. The other constraints are taken care of by
1209 * the caller and are included in the generated constraints of "build".
1210 * "domain" is the subset of the intersection of the constraints
1211 * for which some code is executed.
1212 * "build" is the build in which graft->node was created.
1214 * We separate lower bounds, upper bounds and constraints that
1215 * are independent of the loop iterator.
1217 * The actual for loop bounds are generated in refine_generic_bounds.
1219 static __isl_give isl_ast_graft
*refine_generic_split(
1220 __isl_take isl_ast_graft
*graft
, __isl_take isl_constraint_list
*list
,
1221 __isl_keep isl_set
*domain
, __isl_keep isl_ast_build
*build
)
1223 struct isl_ast_count_constraints_data data
;
1224 isl_constraint_list
*lower
;
1225 isl_constraint_list
*upper
;
1228 return isl_ast_graft_free(graft
);
1230 data
.pos
= isl_ast_build_get_depth(build
);
1232 list
= isl_constraint_list_sort(list
, &cmp_constraint
, &data
.pos
);
1234 return isl_ast_graft_free(graft
);
1236 data
.n_indep
= data
.n_lower
= data
.n_upper
= 0;
1237 if (isl_constraint_list_foreach(list
, &count_constraints
, &data
) < 0) {
1238 isl_constraint_list_free(list
);
1239 return isl_ast_graft_free(graft
);
1242 lower
= isl_constraint_list_drop(list
, 0, data
.n_indep
);
1243 upper
= isl_constraint_list_copy(lower
);
1244 lower
= isl_constraint_list_drop(lower
, data
.n_lower
, data
.n_upper
);
1245 upper
= isl_constraint_list_drop(upper
, 0, data
.n_lower
);
1247 return refine_generic_bounds(graft
, lower
, upper
, domain
, build
);
1250 /* Update "graft" based on "bounds" and "domain" for the generic,
1251 * non-degenerate, case.
1253 * "bounds" respresent the bounds that need to be encoded by
1254 * the for loop (or a guard around the for loop).
1255 * "domain" is the subset of "bounds" for which some code is executed.
1256 * "build" is the build in which graft->node was created.
1258 * We break up "bounds" into a list of constraints and continue with
1259 * refine_generic_split.
1261 static __isl_give isl_ast_graft
*refine_generic(
1262 __isl_take isl_ast_graft
*graft
,
1263 __isl_keep isl_basic_set
*bounds
, __isl_keep isl_set
*domain
,
1264 __isl_keep isl_ast_build
*build
)
1266 isl_constraint_list
*list
;
1268 if (!build
|| !graft
)
1269 return isl_ast_graft_free(graft
);
1271 list
= isl_basic_set_get_constraint_list(bounds
);
1273 graft
= refine_generic_split(graft
, list
, domain
, build
);
1278 /* Create a for node for the current level.
1280 * Mark the for node degenerate if "degenerate" is set.
1282 static __isl_give isl_ast_node
*create_for(__isl_keep isl_ast_build
*build
,
1292 depth
= isl_ast_build_get_depth(build
);
1293 id
= isl_ast_build_get_iterator_id(build
, depth
);
1294 node
= isl_ast_node_alloc_for(id
);
1296 node
= isl_ast_node_for_mark_degenerate(node
);
1301 /* If the ast_build_exploit_nested_bounds option is set, then return
1302 * the constraints enforced by all elements in "list".
1303 * Otherwise, return the universe.
1305 static __isl_give isl_basic_set
*extract_shared_enforced(
1306 __isl_keep isl_ast_graft_list
*list
, __isl_keep isl_ast_build
*build
)
1314 ctx
= isl_ast_graft_list_get_ctx(list
);
1315 if (isl_options_get_ast_build_exploit_nested_bounds(ctx
))
1316 return isl_ast_graft_list_extract_shared_enforced(list
, build
);
1318 space
= isl_ast_build_get_space(build
, 1);
1319 return isl_basic_set_universe(space
);
1322 /* Return the pending constraints of "build" that are not already taken
1323 * care of (by a combination of "enforced" and the generated constraints
1326 static __isl_give isl_set
*extract_pending(__isl_keep isl_ast_build
*build
,
1327 __isl_keep isl_basic_set
*enforced
)
1329 isl_set
*guard
, *context
;
1331 guard
= isl_ast_build_get_pending(build
);
1332 context
= isl_set_from_basic_set(isl_basic_set_copy(enforced
));
1333 context
= isl_set_intersect(context
,
1334 isl_ast_build_get_generated(build
));
1335 return isl_set_gist(guard
, context
);
1338 /* Create an AST node for the current dimension based on
1339 * the schedule domain "bounds" and return the node encapsulated
1340 * in an isl_ast_graft.
1342 * "executed" is the current inverse schedule, taking into account
1343 * the bounds in "bounds"
1344 * "domain" is the domain of "executed", with inner dimensions projected out.
1345 * It may be a strict subset of "bounds" in case "bounds" was created
1346 * based on the atomic option or based on separation with explicit bounds.
1348 * "domain" may satisfy additional equalities that result
1349 * from intersecting "executed" with "bounds" in add_node.
1350 * It may also satisfy some global constraints that were dropped out because
1351 * we performed separation with explicit bounds.
1352 * The very first step is then to copy these constraints to "bounds".
1354 * Since we may be calling before_each_for and after_each_for
1355 * callbacks, we record the current inverse schedule in the build.
1357 * We consider three builds,
1358 * "build" is the one in which the current level is created,
1359 * "body_build" is the build in which the next level is created,
1360 * "sub_build" is essentially the same as "body_build", except that
1361 * the depth has not been increased yet.
1363 * "build" already contains information (in strides and offsets)
1364 * about the strides at the current level, but this information is not
1365 * reflected in the build->domain.
1366 * We first add this information and the "bounds" to the sub_build->domain.
1367 * isl_ast_build_set_loop_bounds adds the stride information and
1368 * checks whether the current dimension attains
1369 * only a single value and whether this single value can be represented using
1370 * a single affine expression.
1371 * In the first case, the current level is considered "degenerate".
1372 * In the second, sub-case, the current level is considered "eliminated".
1373 * Eliminated levels don't need to be reflected in the AST since we can
1374 * simply plug in the affine expression. For degenerate, but non-eliminated,
1375 * levels, we do introduce a for node, but mark is as degenerate so that
1376 * it can be printed as an assignment of the single value to the loop
1379 * If the current level is eliminated, we explicitly plug in the value
1380 * for the current level found by isl_ast_build_set_loop_bounds in the
1381 * inverse schedule. This ensures that if we are working on a slice
1382 * of the domain based on information available in the inverse schedule
1383 * and the build domain, that then this information is also reflected
1384 * in the inverse schedule. This operation also eliminates the current
1385 * dimension from the inverse schedule making sure no inner dimensions depend
1386 * on the current dimension. Otherwise, we create a for node, marking
1387 * it degenerate if appropriate. The initial for node is still incomplete
1388 * and will be completed in either refine_degenerate or refine_generic.
1390 * We then generate a sequence of grafts for the next level,
1391 * create a surrounding graft for the current level and insert
1392 * the for node we created (if the current level is not eliminated).
1393 * Before creating a graft for the current level, we first extract
1394 * hoistable constraints from the child guards and combine them
1395 * with the pending constraints in the build. These constraints
1396 * are used to simplify the child guards and then added to the guard
1397 * of the current graft to ensure that they will be generated.
1398 * If the hoisted guard is a disjunction, then we use it directly
1399 * to gist the guards on the children before intersect it with the
1400 * pending constraints. We do so because this disjunction is typically
1401 * identical to the guards on the children such that these guards
1402 * can be effectively removed completely. After the intersection,
1403 * the gist operation would have a harder time figuring this out.
1405 * Finally, we set the bounds of the for loop in either
1406 * refine_degenerate or refine_generic.
1407 * We do so in a context where the pending constraints of the build
1408 * have been replaced by the guard of the current graft.
1410 static __isl_give isl_ast_graft
*create_node_scaled(
1411 __isl_take isl_union_map
*executed
,
1412 __isl_take isl_basic_set
*bounds
, __isl_take isl_set
*domain
,
1413 __isl_take isl_ast_build
*build
)
1416 int degenerate
, eliminated
;
1417 isl_basic_set
*hull
;
1418 isl_basic_set
*enforced
;
1419 isl_set
*guard
, *hoisted
;
1420 isl_ast_node
*node
= NULL
;
1421 isl_ast_graft
*graft
;
1422 isl_ast_graft_list
*children
;
1423 isl_ast_build
*sub_build
;
1424 isl_ast_build
*body_build
;
1426 domain
= isl_ast_build_eliminate_divs(build
, domain
);
1427 domain
= isl_set_detect_equalities(domain
);
1428 hull
= isl_set_unshifted_simple_hull(isl_set_copy(domain
));
1429 bounds
= isl_basic_set_intersect(bounds
, hull
);
1430 build
= isl_ast_build_set_executed(build
, isl_union_map_copy(executed
));
1432 depth
= isl_ast_build_get_depth(build
);
1433 sub_build
= isl_ast_build_copy(build
);
1434 sub_build
= isl_ast_build_set_loop_bounds(sub_build
,
1435 isl_basic_set_copy(bounds
));
1436 degenerate
= isl_ast_build_has_value(sub_build
);
1437 eliminated
= isl_ast_build_has_affine_value(sub_build
, depth
);
1438 if (degenerate
< 0 || eliminated
< 0)
1439 executed
= isl_union_map_free(executed
);
1441 executed
= plug_in_values(executed
, sub_build
);
1443 node
= create_for(build
, degenerate
);
1445 body_build
= isl_ast_build_copy(sub_build
);
1446 body_build
= isl_ast_build_increase_depth(body_build
);
1448 node
= before_each_for(node
, body_build
);
1449 children
= generate_next_level(executed
,
1450 isl_ast_build_copy(body_build
));
1452 enforced
= extract_shared_enforced(children
, build
);
1453 guard
= extract_pending(sub_build
, enforced
);
1454 hoisted
= isl_ast_graft_list_extract_hoistable_guard(children
, build
);
1455 if (isl_set_n_basic_set(hoisted
) > 1)
1456 children
= isl_ast_graft_list_gist_guards(children
,
1457 isl_set_copy(hoisted
));
1458 guard
= isl_set_intersect(guard
, hoisted
);
1460 guard
= add_implied_guards(guard
, degenerate
, bounds
, build
);
1462 graft
= isl_ast_graft_alloc_from_children(children
,
1463 isl_set_copy(guard
), enforced
, build
, sub_build
);
1466 bounds
= isl_ast_build_compute_gist_basic_set(build
, bounds
);
1468 isl_ast_build
*for_build
;
1470 graft
= isl_ast_graft_insert_for(graft
, node
);
1471 for_build
= isl_ast_build_copy(build
);
1472 for_build
= isl_ast_build_replace_pending_by_guard(for_build
,
1473 isl_set_copy(guard
));
1475 graft
= refine_degenerate(graft
, for_build
, sub_build
);
1477 graft
= refine_generic(graft
, bounds
,
1479 isl_ast_build_free(for_build
);
1481 isl_set_free(guard
);
1483 graft
= after_each_for(graft
, body_build
);
1485 isl_ast_build_free(body_build
);
1486 isl_ast_build_free(sub_build
);
1487 isl_ast_build_free(build
);
1488 isl_basic_set_free(bounds
);
1489 isl_set_free(domain
);
1494 /* Internal data structure for checking if all constraints involving
1495 * the input dimension "depth" are such that the other coefficients
1496 * are multiples of "m", reducing "m" if they are not.
1497 * If "m" is reduced all the way down to "1", then the check has failed
1498 * and we break out of the iteration.
1500 struct isl_check_scaled_data
{
1505 /* If constraint "c" involves the input dimension data->depth,
1506 * then make sure that all the other coefficients are multiples of data->m,
1507 * reducing data->m if needed.
1508 * Break out of the iteration if data->m has become equal to "1".
1510 static int constraint_check_scaled(__isl_take isl_constraint
*c
, void *user
)
1512 struct isl_check_scaled_data
*data
= user
;
1514 enum isl_dim_type t
[] = { isl_dim_param
, isl_dim_in
, isl_dim_out
,
1517 if (!isl_constraint_involves_dims(c
, isl_dim_in
, data
->depth
, 1)) {
1518 isl_constraint_free(c
);
1522 for (i
= 0; i
< 4; ++i
) {
1523 n
= isl_constraint_dim(c
, t
[i
]);
1524 for (j
= 0; j
< n
; ++j
) {
1527 if (t
[i
] == isl_dim_in
&& j
== data
->depth
)
1529 if (!isl_constraint_involves_dims(c
, t
[i
], j
, 1))
1531 d
= isl_constraint_get_coefficient_val(c
, t
[i
], j
);
1532 data
->m
= isl_val_gcd(data
->m
, d
);
1533 if (isl_val_is_one(data
->m
))
1540 isl_constraint_free(c
);
1542 return i
< 4 ? -1 : 0;
1545 /* For each constraint of "bmap" that involves the input dimension data->depth,
1546 * make sure that all the other coefficients are multiples of data->m,
1547 * reducing data->m if needed.
1548 * Break out of the iteration if data->m has become equal to "1".
1550 static int basic_map_check_scaled(__isl_take isl_basic_map
*bmap
, void *user
)
1554 r
= isl_basic_map_foreach_constraint(bmap
,
1555 &constraint_check_scaled
, user
);
1556 isl_basic_map_free(bmap
);
1561 /* For each constraint of "map" that involves the input dimension data->depth,
1562 * make sure that all the other coefficients are multiples of data->m,
1563 * reducing data->m if needed.
1564 * Break out of the iteration if data->m has become equal to "1".
1566 static int map_check_scaled(__isl_take isl_map
*map
, void *user
)
1570 r
= isl_map_foreach_basic_map(map
, &basic_map_check_scaled
, user
);
1576 /* Create an AST node for the current dimension based on
1577 * the schedule domain "bounds" and return the node encapsulated
1578 * in an isl_ast_graft.
1580 * "executed" is the current inverse schedule, taking into account
1581 * the bounds in "bounds"
1582 * "domain" is the domain of "executed", with inner dimensions projected out.
1585 * Before moving on to the actual AST node construction in create_node_scaled,
1586 * we first check if the current dimension is strided and if we can scale
1587 * down this stride. Note that we only do this if the ast_build_scale_strides
1590 * In particular, let the current dimension take on values
1594 * with a an integer. We check if we can find an integer m that (obviously)
1595 * divides both f and s.
1597 * If so, we check if the current dimension only appears in constraints
1598 * where the coefficients of the other variables are multiples of m.
1599 * We perform this extra check to avoid the risk of introducing
1600 * divisions by scaling down the current dimension.
1602 * If so, we scale the current dimension down by a factor of m.
1603 * That is, we plug in
1607 * Note that in principle we could always scale down strided loops
1612 * but this may result in i' taking on larger values than the original i,
1613 * due to the shift by "f".
1614 * By constrast, the scaling in (1) can only reduce the (absolute) value "i".
1616 static __isl_give isl_ast_graft
*create_node(__isl_take isl_union_map
*executed
,
1617 __isl_take isl_basic_set
*bounds
, __isl_take isl_set
*domain
,
1618 __isl_take isl_ast_build
*build
)
1620 struct isl_check_scaled_data data
;
1625 ctx
= isl_ast_build_get_ctx(build
);
1626 if (!isl_options_get_ast_build_scale_strides(ctx
))
1627 return create_node_scaled(executed
, bounds
, domain
, build
);
1629 data
.depth
= isl_ast_build_get_depth(build
);
1630 if (!isl_ast_build_has_stride(build
, data
.depth
))
1631 return create_node_scaled(executed
, bounds
, domain
, build
);
1633 offset
= isl_ast_build_get_offset(build
, data
.depth
);
1634 data
.m
= isl_ast_build_get_stride(build
, data
.depth
);
1636 offset
= isl_aff_free(offset
);
1637 offset
= isl_aff_scale_down_val(offset
, isl_val_copy(data
.m
));
1638 d
= isl_aff_get_denominator_val(offset
);
1640 executed
= isl_union_map_free(executed
);
1642 if (executed
&& isl_val_is_divisible_by(data
.m
, d
))
1643 data
.m
= isl_val_div(data
.m
, d
);
1645 data
.m
= isl_val_set_si(data
.m
, 1);
1649 if (!isl_val_is_one(data
.m
)) {
1650 if (isl_union_map_foreach_map(executed
, &map_check_scaled
,
1652 !isl_val_is_one(data
.m
))
1653 executed
= isl_union_map_free(executed
);
1656 if (!isl_val_is_one(data
.m
)) {
1661 isl_union_map
*umap
;
1663 space
= isl_ast_build_get_space(build
, 1);
1664 space
= isl_space_map_from_set(space
);
1665 ma
= isl_multi_aff_identity(space
);
1666 aff
= isl_multi_aff_get_aff(ma
, data
.depth
);
1667 aff
= isl_aff_scale_val(aff
, isl_val_copy(data
.m
));
1668 ma
= isl_multi_aff_set_aff(ma
, data
.depth
, aff
);
1670 bounds
= isl_basic_set_preimage_multi_aff(bounds
,
1671 isl_multi_aff_copy(ma
));
1672 domain
= isl_set_preimage_multi_aff(domain
,
1673 isl_multi_aff_copy(ma
));
1674 map
= isl_map_reverse(isl_map_from_multi_aff(ma
));
1675 umap
= isl_union_map_from_map(map
);
1676 executed
= isl_union_map_apply_domain(executed
,
1677 isl_union_map_copy(umap
));
1678 build
= isl_ast_build_scale_down(build
, isl_val_copy(data
.m
),
1681 isl_aff_free(offset
);
1682 isl_val_free(data
.m
);
1684 return create_node_scaled(executed
, bounds
, domain
, build
);
1687 /* Add the basic set to the list that "user" points to.
1689 static int collect_basic_set(__isl_take isl_basic_set
*bset
, void *user
)
1691 isl_basic_set_list
**list
= user
;
1693 *list
= isl_basic_set_list_add(*list
, bset
);
1698 /* Extract the basic sets of "set" and collect them in an isl_basic_set_list.
1700 static __isl_give isl_basic_set_list
*isl_basic_set_list_from_set(
1701 __isl_take isl_set
*set
)
1705 isl_basic_set_list
*list
;
1710 ctx
= isl_set_get_ctx(set
);
1712 n
= isl_set_n_basic_set(set
);
1713 list
= isl_basic_set_list_alloc(ctx
, n
);
1714 if (isl_set_foreach_basic_set(set
, &collect_basic_set
, &list
) < 0)
1715 list
= isl_basic_set_list_free(list
);
1721 /* Generate code for the schedule domain "bounds"
1722 * and add the result to "list".
1724 * We mainly detect strides here and check if the bounds do not
1725 * conflict with the current build domain
1726 * and then pass over control to create_node.
1728 * "bounds" reflects the bounds on the current dimension and possibly
1729 * some extra conditions on outer dimensions.
1730 * It does not, however, include any divs involving the current dimension,
1731 * so it does not capture any stride constraints.
1732 * We therefore need to compute that part of the schedule domain that
1733 * intersects with "bounds" and derive the strides from the result.
1735 static __isl_give isl_ast_graft_list
*add_node(
1736 __isl_take isl_ast_graft_list
*list
, __isl_take isl_union_map
*executed
,
1737 __isl_take isl_basic_set
*bounds
, __isl_take isl_ast_build
*build
)
1739 isl_ast_graft
*graft
;
1740 isl_set
*domain
= NULL
;
1741 isl_union_set
*uset
;
1742 int empty
, disjoint
;
1744 uset
= isl_union_set_from_basic_set(isl_basic_set_copy(bounds
));
1745 executed
= isl_union_map_intersect_domain(executed
, uset
);
1746 empty
= isl_union_map_is_empty(executed
);
1752 uset
= isl_union_map_domain(isl_union_map_copy(executed
));
1753 domain
= isl_set_from_union_set(uset
);
1754 domain
= isl_ast_build_specialize(build
, domain
);
1756 domain
= isl_set_compute_divs(domain
);
1757 domain
= isl_ast_build_eliminate_inner(build
, domain
);
1758 disjoint
= isl_set_is_disjoint(domain
, build
->domain
);
1764 build
= isl_ast_build_detect_strides(build
, isl_set_copy(domain
));
1766 graft
= create_node(executed
, bounds
, domain
,
1767 isl_ast_build_copy(build
));
1768 list
= isl_ast_graft_list_add(list
, graft
);
1769 isl_ast_build_free(build
);
1772 list
= isl_ast_graft_list_free(list
);
1774 isl_set_free(domain
);
1775 isl_basic_set_free(bounds
);
1776 isl_union_map_free(executed
);
1777 isl_ast_build_free(build
);
1781 /* Does any element of i follow or coincide with any element of j
1782 * at the current depth for equal values of the outer dimensions?
1784 static int domain_follows_at_depth(__isl_keep isl_basic_set
*i
,
1785 __isl_keep isl_basic_set
*j
, void *user
)
1787 int depth
= *(int *) user
;
1788 isl_basic_map
*test
;
1792 test
= isl_basic_map_from_domain_and_range(isl_basic_set_copy(i
),
1793 isl_basic_set_copy(j
));
1794 for (l
= 0; l
< depth
; ++l
)
1795 test
= isl_basic_map_equate(test
, isl_dim_in
, l
,
1797 test
= isl_basic_map_order_ge(test
, isl_dim_in
, depth
,
1798 isl_dim_out
, depth
);
1799 empty
= isl_basic_map_is_empty(test
);
1800 isl_basic_map_free(test
);
1802 return empty
< 0 ? -1 : !empty
;
1805 /* Split up each element of "list" into a part that is related to "bset"
1806 * according to "gt" and a part that is not.
1807 * Return a list that consist of "bset" and all the pieces.
1809 static __isl_give isl_basic_set_list
*add_split_on(
1810 __isl_take isl_basic_set_list
*list
, __isl_take isl_basic_set
*bset
,
1811 __isl_keep isl_basic_map
*gt
)
1814 isl_basic_set_list
*res
;
1817 bset
= isl_basic_set_free(bset
);
1819 gt
= isl_basic_map_copy(gt
);
1820 gt
= isl_basic_map_intersect_domain(gt
, isl_basic_set_copy(bset
));
1821 n
= isl_basic_set_list_n_basic_set(list
);
1822 res
= isl_basic_set_list_from_basic_set(bset
);
1823 for (i
= 0; res
&& i
< n
; ++i
) {
1824 isl_basic_set
*bset
;
1825 isl_set
*set1
, *set2
;
1826 isl_basic_map
*bmap
;
1829 bset
= isl_basic_set_list_get_basic_set(list
, i
);
1830 bmap
= isl_basic_map_copy(gt
);
1831 bmap
= isl_basic_map_intersect_range(bmap
, bset
);
1832 bset
= isl_basic_map_range(bmap
);
1833 empty
= isl_basic_set_is_empty(bset
);
1835 res
= isl_basic_set_list_free(res
);
1837 isl_basic_set_free(bset
);
1838 bset
= isl_basic_set_list_get_basic_set(list
, i
);
1839 res
= isl_basic_set_list_add(res
, bset
);
1843 res
= isl_basic_set_list_add(res
, isl_basic_set_copy(bset
));
1844 set1
= isl_set_from_basic_set(bset
);
1845 bset
= isl_basic_set_list_get_basic_set(list
, i
);
1846 set2
= isl_set_from_basic_set(bset
);
1847 set1
= isl_set_subtract(set2
, set1
);
1848 set1
= isl_set_make_disjoint(set1
);
1850 res
= isl_basic_set_list_concat(res
,
1851 isl_basic_set_list_from_set(set1
));
1853 isl_basic_map_free(gt
);
1854 isl_basic_set_list_free(list
);
1858 static __isl_give isl_ast_graft_list
*generate_sorted_domains(
1859 __isl_keep isl_basic_set_list
*domain_list
,
1860 __isl_keep isl_union_map
*executed
,
1861 __isl_keep isl_ast_build
*build
);
1863 /* Internal data structure for add_nodes.
1865 * "executed" and "build" are extra arguments to be passed to add_node.
1866 * "list" collects the results.
1868 struct isl_add_nodes_data
{
1869 isl_union_map
*executed
;
1870 isl_ast_build
*build
;
1872 isl_ast_graft_list
*list
;
1875 /* Generate code for the schedule domains in "scc"
1876 * and add the results to "list".
1878 * The domains in "scc" form a strongly connected component in the ordering.
1879 * If the number of domains in "scc" is larger than 1, then this means
1880 * that we cannot determine a valid ordering for the domains in the component.
1881 * This should be fairly rare because the individual domains
1882 * have been made disjoint first.
1883 * The problem is that the domains may be integrally disjoint but not
1884 * rationally disjoint. For example, we may have domains
1886 * { [i,i] : 0 <= i <= 1 } and { [i,1-i] : 0 <= i <= 1 }
1888 * These two domains have an empty intersection, but their rational
1889 * relaxations do intersect. It is impossible to order these domains
1890 * in the second dimension because the first should be ordered before
1891 * the second for outer dimension equal to 0, while it should be ordered
1892 * after for outer dimension equal to 1.
1894 * This may happen in particular in case of unrolling since the domain
1895 * of each slice is replaced by its simple hull.
1897 * For each basic set i in "scc" and for each of the following basic sets j,
1898 * we split off that part of the basic set i that shares the outer dimensions
1899 * with j and lies before j in the current dimension.
1900 * We collect all the pieces in a new list that replaces "scc".
1902 * While the elements in "scc" should be disjoint, we double-check
1903 * this property to avoid running into an infinite recursion in case
1904 * they intersect due to some internal error.
1906 static int add_nodes(__isl_take isl_basic_set_list
*scc
, void *user
)
1908 struct isl_add_nodes_data
*data
= user
;
1910 isl_basic_set
*bset
, *first
;
1911 isl_basic_set_list
*list
;
1915 n
= isl_basic_set_list_n_basic_set(scc
);
1916 bset
= isl_basic_set_list_get_basic_set(scc
, 0);
1918 isl_basic_set_list_free(scc
);
1919 data
->list
= add_node(data
->list
,
1920 isl_union_map_copy(data
->executed
), bset
,
1921 isl_ast_build_copy(data
->build
));
1922 return data
->list
? 0 : -1;
1925 depth
= isl_ast_build_get_depth(data
->build
);
1926 space
= isl_basic_set_get_space(bset
);
1927 space
= isl_space_map_from_set(space
);
1928 gt
= isl_basic_map_universe(space
);
1929 for (i
= 0; i
< depth
; ++i
)
1930 gt
= isl_basic_map_equate(gt
, isl_dim_in
, i
, isl_dim_out
, i
);
1931 gt
= isl_basic_map_order_gt(gt
, isl_dim_in
, depth
, isl_dim_out
, depth
);
1933 first
= isl_basic_set_copy(bset
);
1934 list
= isl_basic_set_list_from_basic_set(bset
);
1935 for (i
= 1; i
< n
; ++i
) {
1938 bset
= isl_basic_set_list_get_basic_set(scc
, i
);
1940 disjoint
= isl_basic_set_is_disjoint(bset
, first
);
1942 list
= isl_basic_set_list_free(list
);
1944 isl_die(isl_basic_set_list_get_ctx(scc
),
1946 "basic sets in scc are assumed to be disjoint",
1947 list
= isl_basic_set_list_free(list
));
1949 list
= add_split_on(list
, bset
, gt
);
1951 isl_basic_set_free(first
);
1952 isl_basic_map_free(gt
);
1953 isl_basic_set_list_free(scc
);
1955 data
->list
= isl_ast_graft_list_concat(data
->list
,
1956 generate_sorted_domains(scc
, data
->executed
, data
->build
));
1957 isl_basic_set_list_free(scc
);
1959 return data
->list
? 0 : -1;
1962 /* Sort the domains in "domain_list" according to the execution order
1963 * at the current depth (for equal values of the outer dimensions),
1964 * generate code for each of them, collecting the results in a list.
1965 * If no code is generated (because the intersection of the inverse schedule
1966 * with the domains turns out to be empty), then an empty list is returned.
1968 * The caller is responsible for ensuring that the basic sets in "domain_list"
1969 * are pair-wise disjoint. It can, however, in principle happen that
1970 * two basic sets should be ordered one way for one value of the outer
1971 * dimensions and the other way for some other value of the outer dimensions.
1972 * We therefore play safe and look for strongly connected components.
1973 * The function add_nodes takes care of handling non-trivial components.
1975 static __isl_give isl_ast_graft_list
*generate_sorted_domains(
1976 __isl_keep isl_basic_set_list
*domain_list
,
1977 __isl_keep isl_union_map
*executed
, __isl_keep isl_ast_build
*build
)
1980 struct isl_add_nodes_data data
;
1987 ctx
= isl_basic_set_list_get_ctx(domain_list
);
1988 n
= isl_basic_set_list_n_basic_set(domain_list
);
1989 data
.list
= isl_ast_graft_list_alloc(ctx
, n
);
1993 return add_node(data
.list
, isl_union_map_copy(executed
),
1994 isl_basic_set_list_get_basic_set(domain_list
, 0),
1995 isl_ast_build_copy(build
));
1997 depth
= isl_ast_build_get_depth(build
);
1998 data
.executed
= executed
;
2000 if (isl_basic_set_list_foreach_scc(domain_list
,
2001 &domain_follows_at_depth
, &depth
,
2002 &add_nodes
, &data
) < 0)
2003 data
.list
= isl_ast_graft_list_free(data
.list
);
2008 /* Do i and j share any values for the outer dimensions?
2010 static int shared_outer(__isl_keep isl_basic_set
*i
,
2011 __isl_keep isl_basic_set
*j
, void *user
)
2013 int depth
= *(int *) user
;
2014 isl_basic_map
*test
;
2018 test
= isl_basic_map_from_domain_and_range(isl_basic_set_copy(i
),
2019 isl_basic_set_copy(j
));
2020 for (l
= 0; l
< depth
; ++l
)
2021 test
= isl_basic_map_equate(test
, isl_dim_in
, l
,
2023 empty
= isl_basic_map_is_empty(test
);
2024 isl_basic_map_free(test
);
2026 return empty
< 0 ? -1 : !empty
;
2029 /* Internal data structure for generate_sorted_domains_wrap.
2031 * "n" is the total number of basic sets
2032 * "executed" and "build" are extra arguments to be passed
2033 * to generate_sorted_domains.
2035 * "single" is set to 1 by generate_sorted_domains_wrap if there
2036 * is only a single component.
2037 * "list" collects the results.
2039 struct isl_ast_generate_parallel_domains_data
{
2041 isl_union_map
*executed
;
2042 isl_ast_build
*build
;
2045 isl_ast_graft_list
*list
;
2048 /* Call generate_sorted_domains on "scc", fuse the result into a list
2049 * with either zero or one graft and collect the these single element
2050 * lists into data->list.
2052 * If there is only one component, i.e., if the number of basic sets
2053 * in the current component is equal to the total number of basic sets,
2054 * then data->single is set to 1 and the result of generate_sorted_domains
2057 static int generate_sorted_domains_wrap(__isl_take isl_basic_set_list
*scc
,
2060 struct isl_ast_generate_parallel_domains_data
*data
= user
;
2061 isl_ast_graft_list
*list
;
2063 list
= generate_sorted_domains(scc
, data
->executed
, data
->build
);
2064 data
->single
= isl_basic_set_list_n_basic_set(scc
) == data
->n
;
2066 list
= isl_ast_graft_list_fuse(list
, data
->build
);
2070 data
->list
= isl_ast_graft_list_concat(data
->list
, list
);
2072 isl_basic_set_list_free(scc
);
2079 /* Look for any (weakly connected) components in the "domain_list"
2080 * of domains that share some values of the outer dimensions.
2081 * That is, domains in different components do not share any values
2082 * of the outer dimensions. This means that these components
2083 * can be freely reordered.
2084 * Within each of the components, we sort the domains according
2085 * to the execution order at the current depth.
2087 * If there is more than one component, then generate_sorted_domains_wrap
2088 * fuses the result of each call to generate_sorted_domains
2089 * into a list with either zero or one graft and collects these (at most)
2090 * single element lists into a bigger list. This means that the elements of the
2091 * final list can be freely reordered. In particular, we sort them
2092 * according to an arbitrary but fixed ordering to ease merging of
2093 * graft lists from different components.
2095 static __isl_give isl_ast_graft_list
*generate_parallel_domains(
2096 __isl_keep isl_basic_set_list
*domain_list
,
2097 __isl_keep isl_union_map
*executed
, __isl_keep isl_ast_build
*build
)
2100 struct isl_ast_generate_parallel_domains_data data
;
2105 data
.n
= isl_basic_set_list_n_basic_set(domain_list
);
2107 return generate_sorted_domains(domain_list
, executed
, build
);
2109 depth
= isl_ast_build_get_depth(build
);
2111 data
.executed
= executed
;
2114 if (isl_basic_set_list_foreach_scc(domain_list
, &shared_outer
, &depth
,
2115 &generate_sorted_domains_wrap
,
2117 data
.list
= isl_ast_graft_list_free(data
.list
);
2120 data
.list
= isl_ast_graft_list_sort_guard(data
.list
);
2125 /* Internal data for separate_domain.
2127 * "explicit" is set if we only want to use explicit bounds.
2129 * "domain" collects the separated domains.
2131 struct isl_separate_domain_data
{
2132 isl_ast_build
*build
;
2137 /* Extract implicit bounds on the current dimension for the executed "map".
2139 * The domain of "map" may involve inner dimensions, so we
2140 * need to eliminate them.
2142 static __isl_give isl_set
*implicit_bounds(__isl_take isl_map
*map
,
2143 __isl_keep isl_ast_build
*build
)
2147 domain
= isl_map_domain(map
);
2148 domain
= isl_ast_build_eliminate(build
, domain
);
2153 /* Extract explicit bounds on the current dimension for the executed "map".
2155 * Rather than eliminating the inner dimensions as in implicit_bounds,
2156 * we simply drop any constraints involving those inner dimensions.
2157 * The idea is that most bounds that are implied by constraints on the
2158 * inner dimensions will be enforced by for loops and not by explicit guards.
2159 * There is then no need to separate along those bounds.
2161 static __isl_give isl_set
*explicit_bounds(__isl_take isl_map
*map
,
2162 __isl_keep isl_ast_build
*build
)
2167 dim
= isl_map_dim(map
, isl_dim_out
);
2168 map
= isl_map_drop_constraints_involving_dims(map
, isl_dim_out
, 0, dim
);
2170 domain
= isl_map_domain(map
);
2171 depth
= isl_ast_build_get_depth(build
);
2172 dim
= isl_set_dim(domain
, isl_dim_set
);
2173 domain
= isl_set_detect_equalities(domain
);
2174 domain
= isl_set_drop_constraints_involving_dims(domain
,
2175 isl_dim_set
, depth
+ 1, dim
- (depth
+ 1));
2176 domain
= isl_set_remove_divs_involving_dims(domain
,
2177 isl_dim_set
, depth
, 1);
2178 domain
= isl_set_remove_unknown_divs(domain
);
2183 /* Split data->domain into pieces that intersect with the range of "map"
2184 * and pieces that do not intersect with the range of "map"
2185 * and then add that part of the range of "map" that does not intersect
2186 * with data->domain.
2188 static int separate_domain(__isl_take isl_map
*map
, void *user
)
2190 struct isl_separate_domain_data
*data
= user
;
2195 domain
= explicit_bounds(map
, data
->build
);
2197 domain
= implicit_bounds(map
, data
->build
);
2199 domain
= isl_set_coalesce(domain
);
2200 domain
= isl_set_make_disjoint(domain
);
2201 d1
= isl_set_subtract(isl_set_copy(domain
), isl_set_copy(data
->domain
));
2202 d2
= isl_set_subtract(isl_set_copy(data
->domain
), isl_set_copy(domain
));
2203 data
->domain
= isl_set_intersect(data
->domain
, domain
);
2204 data
->domain
= isl_set_union(data
->domain
, d1
);
2205 data
->domain
= isl_set_union(data
->domain
, d2
);
2210 /* Separate the schedule domains of "executed".
2212 * That is, break up the domain of "executed" into basic sets,
2213 * such that for each basic set S, every element in S is associated with
2214 * the same domain spaces.
2216 * "space" is the (single) domain space of "executed".
2218 static __isl_give isl_set
*separate_schedule_domains(
2219 __isl_take isl_space
*space
, __isl_take isl_union_map
*executed
,
2220 __isl_keep isl_ast_build
*build
)
2222 struct isl_separate_domain_data data
= { build
};
2225 ctx
= isl_ast_build_get_ctx(build
);
2226 data
.explicit = isl_options_get_ast_build_separation_bounds(ctx
) ==
2227 ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT
;
2228 data
.domain
= isl_set_empty(space
);
2229 if (isl_union_map_foreach_map(executed
, &separate_domain
, &data
) < 0)
2230 data
.domain
= isl_set_free(data
.domain
);
2232 isl_union_map_free(executed
);
2236 /* Temporary data used during the search for a lower bound for unrolling.
2238 * "build" is the build in which the unrolling will be performed
2239 * "domain" is the original set for which to find a lower bound
2240 * "depth" is the dimension for which to find a lower boudn
2241 * "expansion" is the expansion that needs to be applied to "domain"
2242 * in the unrolling that will be performed
2244 * "lower" is the best lower bound found so far. It is NULL if we have not
2246 * "n" is the corresponding size. If lower is NULL, then the value of n
2248 * "n_div" is the maximal number of integer divisions in the first
2249 * unrolled iteration (after expansion). It is set to -1 if it hasn't
2250 * been computed yet.
2252 struct isl_find_unroll_data
{
2253 isl_ast_build
*build
;
2256 isl_basic_map
*expansion
;
2263 /* Return the constraint
2265 * i_"depth" = aff + offset
2267 static __isl_give isl_constraint
*at_offset(int depth
, __isl_keep isl_aff
*aff
,
2270 aff
= isl_aff_copy(aff
);
2271 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, depth
, -1);
2272 aff
= isl_aff_add_constant_si(aff
, offset
);
2273 return isl_equality_from_aff(aff
);
2276 /* Update *user to the number of integer divsions in the first element
2277 * of "ma", if it is larger than the current value.
2279 static int update_n_div(__isl_take isl_set
*set
, __isl_take isl_multi_aff
*ma
,
2286 aff
= isl_multi_aff_get_aff(ma
, 0);
2287 n_div
= isl_aff_dim(aff
, isl_dim_div
);
2289 isl_multi_aff_free(ma
);
2295 return aff
? 0 : -1;
2298 /* Get the number of integer divisions in the expression for the iterator
2299 * value at the first slice in the unrolling based on lower bound "lower",
2300 * taking into account the expansion that needs to be performed on this slice.
2302 static int get_expanded_n_div(struct isl_find_unroll_data
*data
,
2303 __isl_keep isl_aff
*lower
)
2307 isl_map
*it_map
, *expansion
;
2308 isl_pw_multi_aff
*pma
;
2311 c
= at_offset(data
->depth
, lower
, 0);
2312 set
= isl_set_copy(data
->domain
);
2313 set
= isl_set_add_constraint(set
, c
);
2314 expansion
= isl_map_from_basic_map(isl_basic_map_copy(data
->expansion
));
2315 set
= isl_set_apply(set
, expansion
);
2316 it_map
= isl_ast_build_map_to_iterator(data
->build
, set
);
2317 pma
= isl_pw_multi_aff_from_map(it_map
);
2319 if (isl_pw_multi_aff_foreach_piece(pma
, &update_n_div
, &n
) < 0)
2321 isl_pw_multi_aff_free(pma
);
2326 /* Is the lower bound "lower" with corresponding iteration count "n"
2327 * better than the one stored in "data"?
2328 * If there is no upper bound on the iteration count ("n" is infinity) or
2329 * if the count is too large, then we cannot use this lower bound.
2330 * Otherwise, if there was no previous lower bound or
2331 * if the iteration count of the new lower bound is smaller than
2332 * the iteration count of the previous lower bound, then we consider
2333 * the new lower bound to be better.
2334 * If the iteration count is the same, then compare the number
2335 * of integer divisions that would be needed to express
2336 * the iterator value at the first slice in the unrolling
2337 * according to the lower bound. If we end up computing this
2338 * number, then store the lowest value in data->n_div.
2340 static int is_better_lower_bound(struct isl_find_unroll_data
*data
,
2341 __isl_keep isl_aff
*lower
, __isl_keep isl_val
*n
)
2348 if (isl_val_is_infty(n
))
2350 if (isl_val_cmp_si(n
, INT_MAX
) > 0)
2354 cmp
= isl_val_cmp_si(n
, *data
->n
);
2359 if (data
->n_div
< 0)
2360 data
->n_div
= get_expanded_n_div(data
, data
->lower
);
2361 if (data
->n_div
< 0)
2363 if (data
->n_div
== 0)
2365 n_div
= get_expanded_n_div(data
, lower
);
2368 if (n_div
>= data
->n_div
)
2370 data
->n_div
= n_div
;
2375 /* Check if we can use "c" as a lower bound and if it is better than
2376 * any previously found lower bound.
2378 * If "c" does not involve the dimension at the current depth,
2379 * then we cannot use it.
2380 * Otherwise, let "c" be of the form
2384 * We compute the maximal value of
2386 * -ceil(f(j)/a)) + i + 1
2388 * over the domain. If there is such a value "n", then we know
2390 * -ceil(f(j)/a)) + i + 1 <= n
2394 * i < ceil(f(j)/a)) + n
2396 * meaning that we can use ceil(f(j)/a)) as a lower bound for unrolling.
2397 * We just need to check if we have found any lower bound before and
2398 * if the new lower bound is better (smaller n or fewer integer divisions)
2399 * than the previously found lower bounds.
2401 static int update_unrolling_lower_bound(struct isl_find_unroll_data
*data
,
2402 __isl_keep isl_constraint
*c
)
2404 isl_aff
*aff
, *lower
;
2408 if (!isl_constraint_is_lower_bound(c
, isl_dim_set
, data
->depth
))
2411 lower
= isl_constraint_get_bound(c
, isl_dim_set
, data
->depth
);
2412 lower
= isl_aff_ceil(lower
);
2413 aff
= isl_aff_copy(lower
);
2414 aff
= isl_aff_neg(aff
);
2415 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, data
->depth
, 1);
2416 aff
= isl_aff_add_constant_si(aff
, 1);
2417 max
= isl_set_max_val(data
->domain
, aff
);
2420 better
= is_better_lower_bound(data
, lower
, max
);
2421 if (better
< 0 || !better
) {
2423 isl_aff_free(lower
);
2424 return better
< 0 ? -1 : 0;
2427 isl_aff_free(data
->lower
);
2428 data
->lower
= lower
;
2429 *data
->n
= isl_val_get_num_si(max
);
2435 /* Check if we can use "c" as a lower bound and if it is better than
2436 * any previously found lower bound.
2438 static int constraint_find_unroll(__isl_take isl_constraint
*c
, void *user
)
2440 struct isl_find_unroll_data
*data
;
2443 data
= (struct isl_find_unroll_data
*) user
;
2444 r
= update_unrolling_lower_bound(data
, c
);
2445 isl_constraint_free(c
);
2450 /* Look for a lower bound l(i) on the dimension at "depth"
2451 * and a size n such that "domain" is a subset of
2453 * { [i] : l(i) <= i_d < l(i) + n }
2455 * where d is "depth" and l(i) depends only on earlier dimensions.
2456 * Furthermore, try and find a lower bound such that n is as small as possible.
2457 * In particular, "n" needs to be finite.
2458 * "build" is the build in which the unrolling will be performed.
2459 * "expansion" is the expansion that needs to be applied to "domain"
2460 * in the unrolling that will be performed.
2462 * Inner dimensions have been eliminated from "domain" by the caller.
2464 * We first construct a collection of lower bounds on the input set
2465 * by computing its simple hull. We then iterate through them,
2466 * discarding those that we cannot use (either because they do not
2467 * involve the dimension at "depth" or because they have no corresponding
2468 * upper bound, meaning that "n" would be unbounded) and pick out the
2469 * best from the remaining ones.
2471 * If we cannot find a suitable lower bound, then we consider that
2474 static __isl_give isl_aff
*find_unroll_lower_bound(
2475 __isl_keep isl_ast_build
*build
, __isl_keep isl_set
*domain
,
2476 int depth
, __isl_keep isl_basic_map
*expansion
, int *n
)
2478 struct isl_find_unroll_data data
=
2479 { build
, domain
, depth
, expansion
, NULL
, n
, -1 };
2480 isl_basic_set
*hull
;
2482 hull
= isl_set_simple_hull(isl_set_copy(domain
));
2484 if (isl_basic_set_foreach_constraint(hull
,
2485 &constraint_find_unroll
, &data
) < 0)
2488 isl_basic_set_free(hull
);
2491 isl_die(isl_set_get_ctx(domain
), isl_error_invalid
,
2492 "cannot find lower bound for unrolling", return NULL
);
2496 isl_basic_set_free(hull
);
2497 return isl_aff_free(data
.lower
);
2500 /* Data structure for storing the results and the intermediate objects
2501 * of compute_domains.
2503 * "list" is the main result of the function and contains a list
2504 * of disjoint basic sets for which code should be generated.
2506 * "executed" and "build" are inputs to compute_domains.
2507 * "schedule_domain" is the domain of "executed".
2509 * "option" constains the domains at the current depth that should by
2510 * atomic, separated or unrolled. These domains are as specified by
2511 * the user, except that inner dimensions have been eliminated and
2512 * that they have been made pair-wise disjoint.
2514 * "sep_class" contains the user-specified split into separation classes
2515 * specialized to the current depth.
2516 * "done" contains the union of the separation domains that have already
2519 struct isl_codegen_domains
{
2520 isl_basic_set_list
*list
;
2522 isl_union_map
*executed
;
2523 isl_ast_build
*build
;
2524 isl_set
*schedule_domain
;
2532 /* Extend domains->list with a list of basic sets, one for each value
2533 * of the current dimension in "domain" and remove the corresponding
2534 * sets from the class domain. Return the updated class domain.
2535 * The divs that involve the current dimension have not been projected out
2538 * Since we are going to be iterating over the individual values,
2539 * we first check if there are any strides on the current dimension.
2540 * If there is, we rewrite the current dimension i as
2542 * i = stride i' + offset
2544 * and then iterate over individual values of i' instead.
2546 * We then look for a lower bound on i' and a size such that the domain
2549 * { [j,i'] : l(j) <= i' < l(j) + n }
2551 * and then take slices of the domain at values of i'
2552 * between l(j) and l(j) + n - 1.
2554 * We compute the unshifted simple hull of each slice to ensure that
2555 * we have a single basic set per offset. The slicing constraint
2556 * may get simplified away before the unshifted simple hull is taken
2557 * and may therefore in some rare cases disappear from the result.
2558 * We therefore explicitly add the constraint back after computing
2559 * the unshifted simple hull to ensure that the basic sets
2560 * remain disjoint. The constraints that are dropped by taking the hull
2561 * will be taken into account at the next level, as in the case of the
2564 * Finally, we map i' back to i and add each basic set to the list.
2565 * Since we may have dropped some constraints, we intersect with
2566 * the class domain again to ensure that each element in the list
2567 * is disjoint from the other class domains.
2569 static __isl_give isl_set
*do_unroll(struct isl_codegen_domains
*domains
,
2570 __isl_take isl_set
*domain
, __isl_take isl_set
*class_domain
)
2576 isl_multi_aff
*expansion
;
2577 isl_basic_map
*bmap
;
2578 isl_set
*unroll_domain
;
2579 isl_ast_build
*build
;
2582 return isl_set_free(class_domain
);
2584 ctx
= isl_set_get_ctx(domain
);
2585 depth
= isl_ast_build_get_depth(domains
->build
);
2586 build
= isl_ast_build_copy(domains
->build
);
2587 domain
= isl_ast_build_eliminate_inner(build
, domain
);
2588 domain
= isl_set_intersect(domain
, isl_ast_build_get_domain(build
));
2589 build
= isl_ast_build_detect_strides(build
, isl_set_copy(domain
));
2590 expansion
= isl_ast_build_get_stride_expansion(build
);
2592 domain
= isl_set_preimage_multi_aff(domain
,
2593 isl_multi_aff_copy(expansion
));
2594 domain
= isl_ast_build_eliminate_divs(build
, domain
);
2596 isl_ast_build_free(build
);
2598 bmap
= isl_basic_map_from_multi_aff(expansion
);
2600 lower
= find_unroll_lower_bound(domains
->build
, domain
, depth
, bmap
,
2603 class_domain
= isl_set_free(class_domain
);
2605 unroll_domain
= isl_set_empty(isl_set_get_space(domain
));
2607 for (i
= 0; class_domain
&& i
< n
; ++i
) {
2609 isl_basic_set
*bset
;
2610 isl_constraint
*slice
;
2611 isl_basic_set_list
*list
;
2613 slice
= at_offset(depth
, lower
, i
);
2614 set
= isl_set_copy(domain
);
2615 set
= isl_set_add_constraint(set
, isl_constraint_copy(slice
));
2616 bset
= isl_set_unshifted_simple_hull(set
);
2617 bset
= isl_basic_set_add_constraint(bset
, slice
);
2618 bset
= isl_basic_set_apply(bset
, isl_basic_map_copy(bmap
));
2619 set
= isl_set_from_basic_set(bset
);
2620 unroll_domain
= isl_set_union(unroll_domain
, isl_set_copy(set
));
2621 set
= isl_set_intersect(set
, isl_set_copy(class_domain
));
2622 set
= isl_set_make_disjoint(set
);
2623 list
= isl_basic_set_list_from_set(set
);
2624 domains
->list
= isl_basic_set_list_concat(domains
->list
, list
);
2627 class_domain
= isl_set_subtract(class_domain
, unroll_domain
);
2629 isl_aff_free(lower
);
2630 isl_set_free(domain
);
2631 isl_basic_map_free(bmap
);
2633 return class_domain
;
2636 /* Add domains to domains->list for each individual value of the current
2637 * dimension, for that part of the schedule domain that lies in the
2638 * intersection of the option domain and the class domain.
2639 * Remove the corresponding sets from the class domain and
2640 * return the updated class domain.
2642 * We first break up the unroll option domain into individual pieces
2643 * and then handle each of them separately. The unroll option domain
2644 * has been made disjoint in compute_domains_init_options,
2646 * Note that we actively want to combine different pieces of the
2647 * schedule domain that have the same value at the current dimension.
2648 * We therefore need to break up the unroll option domain before
2649 * intersecting with class and schedule domain, hoping that the
2650 * unroll option domain specified by the user is relatively simple.
2652 static __isl_give isl_set
*compute_unroll_domains(
2653 struct isl_codegen_domains
*domains
, __isl_take isl_set
*class_domain
)
2655 isl_set
*unroll_domain
;
2656 isl_basic_set_list
*unroll_list
;
2660 empty
= isl_set_is_empty(domains
->option
[unroll
]);
2662 return isl_set_free(class_domain
);
2664 return class_domain
;
2666 unroll_domain
= isl_set_copy(domains
->option
[unroll
]);
2667 unroll_list
= isl_basic_set_list_from_set(unroll_domain
);
2669 n
= isl_basic_set_list_n_basic_set(unroll_list
);
2670 for (i
= 0; i
< n
; ++i
) {
2671 isl_basic_set
*bset
;
2673 bset
= isl_basic_set_list_get_basic_set(unroll_list
, i
);
2674 unroll_domain
= isl_set_from_basic_set(bset
);
2675 unroll_domain
= isl_set_intersect(unroll_domain
,
2676 isl_set_copy(class_domain
));
2677 unroll_domain
= isl_set_intersect(unroll_domain
,
2678 isl_set_copy(domains
->schedule_domain
));
2680 empty
= isl_set_is_empty(unroll_domain
);
2681 if (empty
>= 0 && empty
) {
2682 isl_set_free(unroll_domain
);
2686 class_domain
= do_unroll(domains
, unroll_domain
, class_domain
);
2689 isl_basic_set_list_free(unroll_list
);
2691 return class_domain
;
2694 /* Try and construct a single basic set that includes the intersection of
2695 * the schedule domain, the atomic option domain and the class domain.
2696 * Add the resulting basic set(s) to domains->list and remove them
2697 * from class_domain. Return the updated class domain.
2699 * We construct a single domain rather than trying to combine
2700 * the schedule domains of individual domains because we are working
2701 * within a single component so that non-overlapping schedule domains
2702 * should already have been separated.
2703 * We do however need to make sure that this single domains is a subset
2704 * of the class domain so that it would not intersect with any other
2705 * class domains. This means that we may end up splitting up the atomic
2706 * domain in case separation classes are being used.
2708 * "domain" is the intersection of the schedule domain and the class domain,
2709 * with inner dimensions projected out.
2711 static __isl_give isl_set
*compute_atomic_domain(
2712 struct isl_codegen_domains
*domains
, __isl_take isl_set
*class_domain
)
2714 isl_basic_set
*bset
;
2715 isl_basic_set_list
*list
;
2716 isl_set
*domain
, *atomic_domain
;
2719 domain
= isl_set_copy(domains
->option
[atomic
]);
2720 domain
= isl_set_intersect(domain
, isl_set_copy(class_domain
));
2721 domain
= isl_set_intersect(domain
,
2722 isl_set_copy(domains
->schedule_domain
));
2723 empty
= isl_set_is_empty(domain
);
2725 class_domain
= isl_set_free(class_domain
);
2727 isl_set_free(domain
);
2728 return class_domain
;
2731 domain
= isl_ast_build_eliminate(domains
->build
, domain
);
2732 domain
= isl_set_coalesce(domain
);
2733 bset
= isl_set_unshifted_simple_hull(domain
);
2734 domain
= isl_set_from_basic_set(bset
);
2735 atomic_domain
= isl_set_copy(domain
);
2736 domain
= isl_set_intersect(domain
, isl_set_copy(class_domain
));
2737 class_domain
= isl_set_subtract(class_domain
, atomic_domain
);
2738 domain
= isl_set_make_disjoint(domain
);
2739 list
= isl_basic_set_list_from_set(domain
);
2740 domains
->list
= isl_basic_set_list_concat(domains
->list
, list
);
2742 return class_domain
;
2745 /* Split up the schedule domain into uniform basic sets,
2746 * in the sense that each element in a basic set is associated to
2747 * elements of the same domains, and add the result to domains->list.
2748 * Do this for that part of the schedule domain that lies in the
2749 * intersection of "class_domain" and the separate option domain.
2751 * "class_domain" may or may not include the constraints
2752 * of the schedule domain, but this does not make a difference
2753 * since we are going to intersect it with the domain of the inverse schedule.
2754 * If it includes schedule domain constraints, then they may involve
2755 * inner dimensions, but we will eliminate them in separation_domain.
2757 static int compute_separate_domain(struct isl_codegen_domains
*domains
,
2758 __isl_keep isl_set
*class_domain
)
2762 isl_union_map
*executed
;
2763 isl_basic_set_list
*list
;
2766 domain
= isl_set_copy(domains
->option
[separate
]);
2767 domain
= isl_set_intersect(domain
, isl_set_copy(class_domain
));
2768 executed
= isl_union_map_copy(domains
->executed
);
2769 executed
= isl_union_map_intersect_domain(executed
,
2770 isl_union_set_from_set(domain
));
2771 empty
= isl_union_map_is_empty(executed
);
2772 if (empty
< 0 || empty
) {
2773 isl_union_map_free(executed
);
2774 return empty
< 0 ? -1 : 0;
2777 space
= isl_set_get_space(class_domain
);
2778 domain
= separate_schedule_domains(space
, executed
, domains
->build
);
2780 list
= isl_basic_set_list_from_set(domain
);
2781 domains
->list
= isl_basic_set_list_concat(domains
->list
, list
);
2786 /* Split up the domain at the current depth into disjoint
2787 * basic sets for which code should be generated separately
2788 * for the given separation class domain.
2790 * If any separation classes have been defined, then "class_domain"
2791 * is the domain of the current class and does not refer to inner dimensions.
2792 * Otherwise, "class_domain" is the universe domain.
2794 * We first make sure that the class domain is disjoint from
2795 * previously considered class domains.
2797 * The separate domains can be computed directly from the "class_domain".
2799 * The unroll, atomic and remainder domains need the constraints
2800 * from the schedule domain.
2802 * For unrolling, the actual schedule domain is needed (with divs that
2803 * may refer to the current dimension) so that stride detection can be
2806 * For atomic and remainder domains, inner dimensions and divs involving
2807 * the current dimensions should be eliminated.
2808 * In case we are working within a separation class, we need to intersect
2809 * the result with the current "class_domain" to ensure that the domains
2810 * are disjoint from those generated from other class domains.
2812 * The domain that has been made atomic may be larger than specified
2813 * by the user since it needs to be representable as a single basic set.
2814 * This possibly larger domain is removed from class_domain by
2815 * compute_atomic_domain. It is computed first so that the extended domain
2816 * would not overlap with any domains computed before.
2817 * Similary, the unrolled domains may have some constraints removed and
2818 * may therefore also be larger than specified by the user.
2820 * If anything is left after handling separate, unroll and atomic,
2821 * we split it up into basic sets and append the basic sets to domains->list.
2823 static int compute_partial_domains(struct isl_codegen_domains
*domains
,
2824 __isl_take isl_set
*class_domain
)
2826 isl_basic_set_list
*list
;
2829 class_domain
= isl_set_subtract(class_domain
,
2830 isl_set_copy(domains
->done
));
2831 domains
->done
= isl_set_union(domains
->done
,
2832 isl_set_copy(class_domain
));
2834 class_domain
= compute_atomic_domain(domains
, class_domain
);
2835 class_domain
= compute_unroll_domains(domains
, class_domain
);
2837 domain
= isl_set_copy(class_domain
);
2839 if (compute_separate_domain(domains
, domain
) < 0)
2841 domain
= isl_set_subtract(domain
,
2842 isl_set_copy(domains
->option
[separate
]));
2844 domain
= isl_set_intersect(domain
,
2845 isl_set_copy(domains
->schedule_domain
));
2847 domain
= isl_ast_build_eliminate(domains
->build
, domain
);
2848 domain
= isl_set_intersect(domain
, isl_set_copy(class_domain
));
2850 domain
= isl_set_coalesce(domain
);
2851 domain
= isl_set_make_disjoint(domain
);
2853 list
= isl_basic_set_list_from_set(domain
);
2854 domains
->list
= isl_basic_set_list_concat(domains
->list
, list
);
2856 isl_set_free(class_domain
);
2860 isl_set_free(domain
);
2861 isl_set_free(class_domain
);
2865 /* Split up the domain at the current depth into disjoint
2866 * basic sets for which code should be generated separately
2867 * for the separation class identified by "pnt".
2869 * We extract the corresponding class domain from domains->sep_class,
2870 * eliminate inner dimensions and pass control to compute_partial_domains.
2872 static int compute_class_domains(__isl_take isl_point
*pnt
, void *user
)
2874 struct isl_codegen_domains
*domains
= user
;
2879 class_set
= isl_set_from_point(pnt
);
2880 domain
= isl_map_domain(isl_map_intersect_range(
2881 isl_map_copy(domains
->sep_class
), class_set
));
2882 domain
= isl_ast_build_compute_gist(domains
->build
, domain
);
2883 domain
= isl_ast_build_eliminate(domains
->build
, domain
);
2885 disjoint
= isl_set_plain_is_disjoint(domain
, domains
->schedule_domain
);
2889 isl_set_free(domain
);
2893 return compute_partial_domains(domains
, domain
);
2896 /* Extract the domains at the current depth that should be atomic,
2897 * separated or unrolled and store them in option.
2899 * The domains specified by the user might overlap, so we make
2900 * them disjoint by subtracting earlier domains from later domains.
2902 static void compute_domains_init_options(isl_set
*option
[3],
2903 __isl_keep isl_ast_build
*build
)
2905 enum isl_ast_build_domain_type type
, type2
;
2907 for (type
= atomic
; type
<= separate
; ++type
) {
2908 option
[type
] = isl_ast_build_get_option_domain(build
, type
);
2909 for (type2
= atomic
; type2
< type
; ++type2
)
2910 option
[type
] = isl_set_subtract(option
[type
],
2911 isl_set_copy(option
[type2
]));
2914 option
[unroll
] = isl_set_coalesce(option
[unroll
]);
2915 option
[unroll
] = isl_set_make_disjoint(option
[unroll
]);
2918 /* Split up the domain at the current depth into disjoint
2919 * basic sets for which code should be generated separately,
2920 * based on the user-specified options.
2921 * Return the list of disjoint basic sets.
2923 * There are three kinds of domains that we need to keep track of.
2924 * - the "schedule domain" is the domain of "executed"
2925 * - the "class domain" is the domain corresponding to the currrent
2927 * - the "option domain" is the domain corresponding to one of the options
2928 * atomic, unroll or separate
2930 * We first consider the individial values of the separation classes
2931 * and split up the domain for each of them separately.
2932 * Finally, we consider the remainder. If no separation classes were
2933 * specified, then we call compute_partial_domains with the universe
2934 * "class_domain". Otherwise, we take the "schedule_domain" as "class_domain",
2935 * with inner dimensions removed. We do this because we want to
2936 * avoid computing the complement of the class domains (i.e., the difference
2937 * between the universe and domains->done).
2939 static __isl_give isl_basic_set_list
*compute_domains(
2940 __isl_keep isl_union_map
*executed
, __isl_keep isl_ast_build
*build
)
2942 struct isl_codegen_domains domains
;
2945 isl_union_set
*schedule_domain
;
2949 enum isl_ast_build_domain_type type
;
2955 ctx
= isl_union_map_get_ctx(executed
);
2956 domains
.list
= isl_basic_set_list_alloc(ctx
, 0);
2958 schedule_domain
= isl_union_map_domain(isl_union_map_copy(executed
));
2959 domain
= isl_set_from_union_set(schedule_domain
);
2961 compute_domains_init_options(domains
.option
, build
);
2963 domains
.sep_class
= isl_ast_build_get_separation_class(build
);
2964 classes
= isl_map_range(isl_map_copy(domains
.sep_class
));
2965 n_param
= isl_set_dim(classes
, isl_dim_param
);
2966 classes
= isl_set_project_out(classes
, isl_dim_param
, 0, n_param
);
2968 space
= isl_set_get_space(domain
);
2969 domains
.build
= build
;
2970 domains
.schedule_domain
= isl_set_copy(domain
);
2971 domains
.executed
= executed
;
2972 domains
.done
= isl_set_empty(space
);
2974 if (isl_set_foreach_point(classes
, &compute_class_domains
, &domains
) < 0)
2975 domains
.list
= isl_basic_set_list_free(domains
.list
);
2976 isl_set_free(classes
);
2978 empty
= isl_set_is_empty(domains
.done
);
2980 domains
.list
= isl_basic_set_list_free(domains
.list
);
2981 domain
= isl_set_free(domain
);
2983 isl_set_free(domain
);
2984 domain
= isl_set_universe(isl_set_get_space(domains
.done
));
2986 domain
= isl_ast_build_eliminate(build
, domain
);
2988 if (compute_partial_domains(&domains
, domain
) < 0)
2989 domains
.list
= isl_basic_set_list_free(domains
.list
);
2991 isl_set_free(domains
.schedule_domain
);
2992 isl_set_free(domains
.done
);
2993 isl_map_free(domains
.sep_class
);
2994 for (type
= atomic
; type
<= separate
; ++type
)
2995 isl_set_free(domains
.option
[type
]);
2997 return domains
.list
;
3000 /* Generate code for a single component, after shifting (if any)
3003 * We first split up the domain at the current depth into disjoint
3004 * basic sets based on the user-specified options.
3005 * Then we generated code for each of them and concatenate the results.
3007 static __isl_give isl_ast_graft_list
*generate_shifted_component(
3008 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
3010 isl_basic_set_list
*domain_list
;
3011 isl_ast_graft_list
*list
= NULL
;
3013 domain_list
= compute_domains(executed
, build
);
3014 list
= generate_parallel_domains(domain_list
, executed
, build
);
3016 isl_basic_set_list_free(domain_list
);
3017 isl_union_map_free(executed
);
3018 isl_ast_build_free(build
);
3023 struct isl_set_map_pair
{
3028 /* Given an array "domain" of isl_set_map_pairs and an array "order"
3029 * of indices into the "domain" array,
3030 * return the union of the "map" fields of the elements
3031 * indexed by the first "n" elements of "order".
3033 static __isl_give isl_union_map
*construct_component_executed(
3034 struct isl_set_map_pair
*domain
, int *order
, int n
)
3038 isl_union_map
*executed
;
3040 map
= isl_map_copy(domain
[order
[0]].map
);
3041 executed
= isl_union_map_from_map(map
);
3042 for (i
= 1; i
< n
; ++i
) {
3043 map
= isl_map_copy(domain
[order
[i
]].map
);
3044 executed
= isl_union_map_add_map(executed
, map
);
3050 /* Generate code for a single component, after shifting (if any)
3053 * The component inverse schedule is specified as the "map" fields
3054 * of the elements of "domain" indexed by the first "n" elements of "order".
3056 static __isl_give isl_ast_graft_list
*generate_shifted_component_from_list(
3057 struct isl_set_map_pair
*domain
, int *order
, int n
,
3058 __isl_take isl_ast_build
*build
)
3060 isl_union_map
*executed
;
3062 executed
= construct_component_executed(domain
, order
, n
);
3063 return generate_shifted_component(executed
, build
);
3066 /* Does set dimension "pos" of "set" have an obviously fixed value?
3068 static int dim_is_fixed(__isl_keep isl_set
*set
, int pos
)
3073 v
= isl_set_plain_get_val_if_fixed(set
, isl_dim_set
, pos
);
3076 fixed
= !isl_val_is_nan(v
);
3082 /* Given an array "domain" of isl_set_map_pairs and an array "order"
3083 * of indices into the "domain" array,
3084 * do all (except for at most one) of the "set" field of the elements
3085 * indexed by the first "n" elements of "order" have a fixed value
3086 * at position "depth"?
3088 static int at_most_one_non_fixed(struct isl_set_map_pair
*domain
,
3089 int *order
, int n
, int depth
)
3094 for (i
= 0; i
< n
; ++i
) {
3097 f
= dim_is_fixed(domain
[order
[i
]].set
, depth
);
3110 /* Given an array "domain" of isl_set_map_pairs and an array "order"
3111 * of indices into the "domain" array,
3112 * eliminate the inner dimensions from the "set" field of the elements
3113 * indexed by the first "n" elements of "order", provided the current
3114 * dimension does not have a fixed value.
3116 * Return the index of the first element in "order" with a corresponding
3117 * "set" field that does not have an (obviously) fixed value.
3119 static int eliminate_non_fixed(struct isl_set_map_pair
*domain
,
3120 int *order
, int n
, int depth
, __isl_keep isl_ast_build
*build
)
3125 for (i
= n
- 1; i
>= 0; --i
) {
3127 f
= dim_is_fixed(domain
[order
[i
]].set
, depth
);
3132 domain
[order
[i
]].set
= isl_ast_build_eliminate_inner(build
,
3133 domain
[order
[i
]].set
);
3140 /* Given an array "domain" of isl_set_map_pairs and an array "order"
3141 * of indices into the "domain" array,
3142 * find the element of "domain" (amongst those indexed by the first "n"
3143 * elements of "order") with the "set" field that has the smallest
3144 * value for the current iterator.
3146 * Note that the domain with the smallest value may depend on the parameters
3147 * and/or outer loop dimension. Since the result of this function is only
3148 * used as heuristic, we only make a reasonable attempt at finding the best
3149 * domain, one that should work in case a single domain provides the smallest
3150 * value for the current dimension over all values of the parameters
3151 * and outer dimensions.
3153 * In particular, we compute the smallest value of the first domain
3154 * and replace it by that of any later domain if that later domain
3155 * has a smallest value that is smaller for at least some value
3156 * of the parameters and outer dimensions.
3158 static int first_offset(struct isl_set_map_pair
*domain
, int *order
, int n
,
3159 __isl_keep isl_ast_build
*build
)
3165 min_first
= isl_ast_build_map_to_iterator(build
,
3166 isl_set_copy(domain
[order
[0]].set
));
3167 min_first
= isl_map_lexmin(min_first
);
3169 for (i
= 1; i
< n
; ++i
) {
3170 isl_map
*min
, *test
;
3173 min
= isl_ast_build_map_to_iterator(build
,
3174 isl_set_copy(domain
[order
[i
]].set
));
3175 min
= isl_map_lexmin(min
);
3176 test
= isl_map_copy(min
);
3177 test
= isl_map_apply_domain(isl_map_copy(min_first
), test
);
3178 test
= isl_map_order_lt(test
, isl_dim_in
, 0, isl_dim_out
, 0);
3179 empty
= isl_map_is_empty(test
);
3181 if (empty
>= 0 && !empty
) {
3182 isl_map_free(min_first
);
3192 isl_map_free(min_first
);
3194 return i
< n
? -1 : first
;
3197 /* Construct a shifted inverse schedule based on the original inverse schedule,
3198 * the stride and the offset.
3200 * The original inverse schedule is specified as the "map" fields
3201 * of the elements of "domain" indexed by the first "n" elements of "order".
3203 * "stride" and "offset" are such that the difference
3204 * between the values of the current dimension of domain "i"
3205 * and the values of the current dimension for some reference domain are
3208 * stride * integer + offset[i]
3210 * Moreover, 0 <= offset[i] < stride.
3212 * For each domain, we create a map
3214 * { [..., j, ...] -> [..., j - offset[i], offset[i], ....] }
3216 * where j refers to the current dimension and the other dimensions are
3217 * unchanged, and apply this map to the original schedule domain.
3219 * For example, for the original schedule
3221 * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
3223 * and assuming the offset is 0 for the A domain and 1 for the B domain,
3224 * we apply the mapping
3228 * to the schedule of the "A" domain and the mapping
3230 * { [j - 1] -> [j, 1] }
3232 * to the schedule of the "B" domain.
3235 * Note that after the transformation, the differences between pairs
3236 * of values of the current dimension over all domains are multiples
3237 * of stride and that we have therefore exposed the stride.
3240 * To see that the mapping preserves the lexicographic order,
3241 * first note that each of the individual maps above preserves the order.
3242 * If the value of the current iterator is j1 in one domain and j2 in another,
3243 * then if j1 = j2, we know that the same map is applied to both domains
3244 * and the order is preserved.
3245 * Otherwise, let us assume, without loss of generality, that j1 < j2.
3246 * If c1 >= c2 (with c1 and c2 the corresponding offsets), then
3250 * and the order is preserved.
3251 * If c1 < c2, then we know
3257 * j2 - j1 = n * s + r
3259 * with n >= 0 and 0 <= r < s.
3260 * In other words, r = c2 - c1.
3271 * (j1 - c1, c1) << (j2 - c2, c2)
3273 * with "<<" the lexicographic order, proving that the order is preserved
3276 static __isl_give isl_union_map
*contruct_shifted_executed(
3277 struct isl_set_map_pair
*domain
, int *order
, int n
,
3278 __isl_keep isl_val
*stride
, __isl_keep isl_multi_val
*offset
,
3279 __isl_take isl_ast_build
*build
)
3282 isl_union_map
*executed
;
3288 depth
= isl_ast_build_get_depth(build
);
3289 space
= isl_ast_build_get_space(build
, 1);
3290 executed
= isl_union_map_empty(isl_space_copy(space
));
3291 space
= isl_space_map_from_set(space
);
3292 map
= isl_map_identity(isl_space_copy(space
));
3293 map
= isl_map_eliminate(map
, isl_dim_out
, depth
, 1);
3294 map
= isl_map_insert_dims(map
, isl_dim_out
, depth
+ 1, 1);
3295 space
= isl_space_insert_dims(space
, isl_dim_out
, depth
+ 1, 1);
3297 c
= isl_equality_alloc(isl_local_space_from_space(space
));
3298 c
= isl_constraint_set_coefficient_si(c
, isl_dim_in
, depth
, 1);
3299 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, depth
, -1);
3301 for (i
= 0; i
< n
; ++i
) {
3305 v
= isl_multi_val_get_val(offset
, i
);
3308 map_i
= isl_map_copy(map
);
3309 map_i
= isl_map_fix_val(map_i
, isl_dim_out
, depth
+ 1,
3312 c
= isl_constraint_set_constant_val(c
, v
);
3313 map_i
= isl_map_add_constraint(map_i
, isl_constraint_copy(c
));
3315 map_i
= isl_map_apply_domain(isl_map_copy(domain
[order
[i
]].map
),
3317 executed
= isl_union_map_add_map(executed
, map_i
);
3320 isl_constraint_free(c
);
3324 executed
= isl_union_map_free(executed
);
3329 /* Generate code for a single component, after exposing the stride,
3330 * given that the schedule domain is "shifted strided".
3332 * The component inverse schedule is specified as the "map" fields
3333 * of the elements of "domain" indexed by the first "n" elements of "order".
3335 * The schedule domain being "shifted strided" means that the differences
3336 * between the values of the current dimension of domain "i"
3337 * and the values of the current dimension for some reference domain are
3340 * stride * integer + offset[i]
3342 * We first look for the domain with the "smallest" value for the current
3343 * dimension and adjust the offsets such that the offset of the "smallest"
3344 * domain is equal to zero. The other offsets are reduced modulo stride.
3346 * Based on this information, we construct a new inverse schedule in
3347 * contruct_shifted_executed that exposes the stride.
3348 * Since this involves the introduction of a new schedule dimension,
3349 * the build needs to be changed accodingly.
3350 * After computing the AST, the newly introduced dimension needs
3351 * to be removed again from the list of grafts. We do this by plugging
3352 * in a mapping that represents the new schedule domain in terms of the
3353 * old schedule domain.
3355 static __isl_give isl_ast_graft_list
*generate_shift_component(
3356 struct isl_set_map_pair
*domain
, int *order
, int n
,
3357 __isl_keep isl_val
*stride
, __isl_keep isl_multi_val
*offset
,
3358 __isl_take isl_ast_build
*build
)
3360 isl_ast_graft_list
*list
;
3367 isl_multi_aff
*ma
, *zero
;
3368 isl_union_map
*executed
;
3370 ctx
= isl_ast_build_get_ctx(build
);
3371 depth
= isl_ast_build_get_depth(build
);
3373 first
= first_offset(domain
, order
, n
, build
);
3377 mv
= isl_multi_val_copy(offset
);
3378 val
= isl_multi_val_get_val(offset
, first
);
3379 val
= isl_val_neg(val
);
3380 mv
= isl_multi_val_add_val(mv
, val
);
3381 mv
= isl_multi_val_mod_val(mv
, isl_val_copy(stride
));
3383 executed
= contruct_shifted_executed(domain
, order
, n
, stride
, mv
,
3385 space
= isl_ast_build_get_space(build
, 1);
3386 space
= isl_space_map_from_set(space
);
3387 ma
= isl_multi_aff_identity(isl_space_copy(space
));
3388 space
= isl_space_from_domain(isl_space_domain(space
));
3389 space
= isl_space_add_dims(space
, isl_dim_out
, 1);
3390 zero
= isl_multi_aff_zero(space
);
3391 ma
= isl_multi_aff_range_splice(ma
, depth
+ 1, zero
);
3392 build
= isl_ast_build_insert_dim(build
, depth
+ 1);
3393 list
= generate_shifted_component(executed
, build
);
3395 list
= isl_ast_graft_list_preimage_multi_aff(list
, ma
);
3397 isl_multi_val_free(mv
);
3401 isl_ast_build_free(build
);
3405 /* Generate code for a single component.
3407 * The component inverse schedule is specified as the "map" fields
3408 * of the elements of "domain" indexed by the first "n" elements of "order".
3410 * This function may modify the "set" fields of "domain".
3412 * Before proceeding with the actual code generation for the component,
3413 * we first check if there are any "shifted" strides, meaning that
3414 * the schedule domains of the individual domains are all strided,
3415 * but that they have different offsets, resulting in the union
3416 * of schedule domains not being strided anymore.
3418 * The simplest example is the schedule
3420 * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
3422 * Both schedule domains are strided, but their union is not.
3423 * This function detects such cases and then rewrites the schedule to
3425 * { A[i] -> [2i, 0]: 0 <= i < 10; B[i] -> [2i, 1] : 0 <= i < 10 }
3427 * In the new schedule, the schedule domains have the same offset (modulo
3428 * the stride), ensuring that the union of schedule domains is also strided.
3431 * If there is only a single domain in the component, then there is
3432 * nothing to do. Similarly, if the current schedule dimension has
3433 * a fixed value for almost all domains then there is nothing to be done.
3434 * In particular, we need at least two domains where the current schedule
3435 * dimension does not have a fixed value.
3436 * Finally, if any of the options refer to the current schedule dimension,
3437 * then we bail out as well. It would be possible to reformulate the options
3438 * in terms of the new schedule domain, but that would introduce constraints
3439 * that separate the domains in the options and that is something we would
3443 * To see if there is any shifted stride, we look at the differences
3444 * between the values of the current dimension in pairs of domains
3445 * for equal values of outer dimensions. These differences should be
3450 * with "m" the stride and "r" a constant. Note that we cannot perform
3451 * this analysis on individual domains as the lower bound in each domain
3452 * may depend on parameters or outer dimensions and so the current dimension
3453 * itself may not have a fixed remainder on division by the stride.
3455 * In particular, we compare the first domain that does not have an
3456 * obviously fixed value for the current dimension to itself and all
3457 * other domains and collect the offsets and the gcd of the strides.
3458 * If the gcd becomes one, then we failed to find shifted strides.
3459 * If the gcd is zero, then the differences were all fixed, meaning
3460 * that some domains had non-obviously fixed values for the current dimension.
3461 * If all the offsets are the same (for those domains that do not have
3462 * an obviously fixed value for the current dimension), then we do not
3463 * apply the transformation.
3464 * If none of the domains were skipped, then there is nothing to do.
3465 * If some of them were skipped, then if we apply separation, the schedule
3466 * domain should get split in pieces with a (non-shifted) stride.
3468 * Otherwise, we apply a shift to expose the stride in
3469 * generate_shift_component.
3471 static __isl_give isl_ast_graft_list
*generate_component(
3472 struct isl_set_map_pair
*domain
, int *order
, int n
,
3473 __isl_take isl_ast_build
*build
)
3480 isl_val
*gcd
= NULL
;
3484 isl_ast_graft_list
*list
;
3487 depth
= isl_ast_build_get_depth(build
);
3490 if (skip
>= 0 && !skip
)
3491 skip
= at_most_one_non_fixed(domain
, order
, n
, depth
);
3492 if (skip
>= 0 && !skip
)
3493 skip
= isl_ast_build_options_involve_depth(build
);
3497 return generate_shifted_component_from_list(domain
,
3500 base
= eliminate_non_fixed(domain
, order
, n
, depth
, build
);
3504 ctx
= isl_ast_build_get_ctx(build
);
3506 mv
= isl_multi_val_zero(isl_space_set_alloc(ctx
, 0, n
));
3509 for (i
= 0; i
< n
; ++i
) {
3512 map
= isl_map_from_domain_and_range(
3513 isl_set_copy(domain
[order
[base
]].set
),
3514 isl_set_copy(domain
[order
[i
]].set
));
3515 for (d
= 0; d
< depth
; ++d
)
3516 map
= isl_map_equate(map
, isl_dim_in
, d
,
3518 deltas
= isl_map_deltas(map
);
3519 res
= isl_set_dim_residue_class_val(deltas
, depth
, &m
, &r
);
3520 isl_set_free(deltas
);
3527 gcd
= isl_val_gcd(gcd
, m
);
3528 if (isl_val_is_one(gcd
)) {
3532 mv
= isl_multi_val_set_val(mv
, i
, r
);
3534 res
= dim_is_fixed(domain
[order
[i
]].set
, depth
);
3540 if (fixed
&& i
> base
) {
3542 a
= isl_multi_val_get_val(mv
, i
);
3543 b
= isl_multi_val_get_val(mv
, base
);
3544 if (isl_val_ne(a
, b
))
3551 if (res
< 0 || !gcd
) {
3552 isl_ast_build_free(build
);
3554 } else if (i
< n
|| fixed
|| isl_val_is_zero(gcd
)) {
3555 list
= generate_shifted_component_from_list(domain
,
3558 list
= generate_shift_component(domain
, order
, n
, gcd
, mv
,
3563 isl_multi_val_free(mv
);
3567 isl_ast_build_free(build
);
3571 /* Store both "map" itself and its domain in the
3572 * structure pointed to by *next and advance to the next array element.
3574 static int extract_domain(__isl_take isl_map
*map
, void *user
)
3576 struct isl_set_map_pair
**next
= user
;
3578 (*next
)->map
= isl_map_copy(map
);
3579 (*next
)->set
= isl_map_domain(map
);
3585 /* Internal data for any_scheduled_after.
3587 * "depth" is the number of loops that have already been generated
3588 * "group_coscheduled" is a local copy of options->ast_build_group_coscheduled
3589 * "domain" is an array of set-map pairs corresponding to the different
3590 * iteration domains. The set is the schedule domain, i.e., the domain
3591 * of the inverse schedule, while the map is the inverse schedule itself.
3593 struct isl_any_scheduled_after_data
{
3595 int group_coscheduled
;
3596 struct isl_set_map_pair
*domain
;
3599 /* Is any element of domain "i" scheduled after any element of domain "j"
3600 * (for a common iteration of the first data->depth loops)?
3602 * data->domain[i].set contains the domain of the inverse schedule
3603 * for domain "i", i.e., elements in the schedule domain.
3605 * If data->group_coscheduled is set, then we also return 1 if there
3606 * is any pair of elements in the two domains that are scheduled together.
3608 static int any_scheduled_after(int i
, int j
, void *user
)
3610 struct isl_any_scheduled_after_data
*data
= user
;
3611 int dim
= isl_set_dim(data
->domain
[i
].set
, isl_dim_set
);
3614 for (pos
= data
->depth
; pos
< dim
; ++pos
) {
3617 follows
= isl_set_follows_at(data
->domain
[i
].set
,
3618 data
->domain
[j
].set
, pos
);
3628 return data
->group_coscheduled
;
3631 /* Look for independent components at the current depth and generate code
3632 * for each component separately. The resulting lists of grafts are
3633 * merged in an attempt to combine grafts with identical guards.
3635 * Code for two domains can be generated separately if all the elements
3636 * of one domain are scheduled before (or together with) all the elements
3637 * of the other domain. We therefore consider the graph with as nodes
3638 * the domains and an edge between two nodes if any element of the first
3639 * node is scheduled after any element of the second node.
3640 * If the ast_build_group_coscheduled is set, then we also add an edge if
3641 * there is any pair of elements in the two domains that are scheduled
3643 * Code is then generated (by generate_component)
3644 * for each of the strongly connected components in this graph
3645 * in their topological order.
3647 * Since the test is performed on the domain of the inverse schedules of
3648 * the different domains, we precompute these domains and store
3649 * them in data.domain.
3651 static __isl_give isl_ast_graft_list
*generate_components(
3652 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
3655 isl_ctx
*ctx
= isl_ast_build_get_ctx(build
);
3656 int n
= isl_union_map_n_map(executed
);
3657 struct isl_any_scheduled_after_data data
;
3658 struct isl_set_map_pair
*next
;
3659 struct isl_tarjan_graph
*g
= NULL
;
3660 isl_ast_graft_list
*list
= NULL
;
3663 data
.domain
= isl_calloc_array(ctx
, struct isl_set_map_pair
, n
);
3669 if (isl_union_map_foreach_map(executed
, &extract_domain
, &next
) < 0)
3674 data
.depth
= isl_ast_build_get_depth(build
);
3675 data
.group_coscheduled
= isl_options_get_ast_build_group_coscheduled(ctx
);
3676 g
= isl_tarjan_graph_init(ctx
, n
, &any_scheduled_after
, &data
);
3680 list
= isl_ast_graft_list_alloc(ctx
, 0);
3684 isl_ast_graft_list
*list_c
;
3687 if (g
->order
[i
] == -1)
3688 isl_die(ctx
, isl_error_internal
, "cannot happen",
3691 while (g
->order
[i
] != -1) {
3695 list_c
= generate_component(data
.domain
,
3696 g
->order
+ first
, i
- first
,
3697 isl_ast_build_copy(build
));
3698 list
= isl_ast_graft_list_merge(list
, list_c
, build
);
3704 error
: list
= isl_ast_graft_list_free(list
);
3705 isl_tarjan_graph_free(g
);
3706 for (i
= 0; i
< n_domain
; ++i
) {
3707 isl_map_free(data
.domain
[i
].map
);
3708 isl_set_free(data
.domain
[i
].set
);
3711 isl_union_map_free(executed
);
3712 isl_ast_build_free(build
);
3717 /* Generate code for the next level (and all inner levels).
3719 * If "executed" is empty, i.e., no code needs to be generated,
3720 * then we return an empty list.
3722 * If we have already generated code for all loop levels, then we pass
3723 * control to generate_inner_level.
3725 * If "executed" lives in a single space, i.e., if code needs to be
3726 * generated for a single domain, then there can only be a single
3727 * component and we go directly to generate_shifted_component.
3728 * Otherwise, we call generate_components to detect the components
3729 * and to call generate_component on each of them separately.
3731 static __isl_give isl_ast_graft_list
*generate_next_level(
3732 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
3736 if (!build
|| !executed
)
3739 if (isl_union_map_is_empty(executed
)) {
3740 isl_ctx
*ctx
= isl_ast_build_get_ctx(build
);
3741 isl_union_map_free(executed
);
3742 isl_ast_build_free(build
);
3743 return isl_ast_graft_list_alloc(ctx
, 0);
3746 depth
= isl_ast_build_get_depth(build
);
3747 if (depth
>= isl_ast_build_dim(build
, isl_dim_set
))
3748 return generate_inner_level(executed
, build
);
3750 if (isl_union_map_n_map(executed
) == 1)
3751 return generate_shifted_component(executed
, build
);
3753 return generate_components(executed
, build
);
3755 isl_union_map_free(executed
);
3756 isl_ast_build_free(build
);
3760 /* Internal data structure used by isl_ast_build_ast_from_schedule.
3761 * internal, executed and build are the inputs to generate_code.
3762 * list collects the output.
3764 struct isl_generate_code_data
{
3766 isl_union_map
*executed
;
3767 isl_ast_build
*build
;
3769 isl_ast_graft_list
*list
;
3772 /* Given an inverse schedule in terms of the external build schedule, i.e.,
3776 * with E the external build schedule and S the additional schedule "space",
3777 * reformulate the inverse schedule in terms of the internal schedule domain,
3782 * We first obtain a mapping
3786 * take the inverse and the product with S -> S, resulting in
3788 * [I -> S] -> [E -> S]
3790 * Applying the map to the input produces the desired result.
3792 static __isl_give isl_union_map
*internal_executed(
3793 __isl_take isl_union_map
*executed
, __isl_keep isl_space
*space
,
3794 __isl_keep isl_ast_build
*build
)
3798 proj
= isl_ast_build_get_schedule_map(build
);
3799 proj
= isl_map_reverse(proj
);
3800 space
= isl_space_map_from_set(isl_space_copy(space
));
3801 id
= isl_map_identity(space
);
3802 proj
= isl_map_product(proj
, id
);
3803 executed
= isl_union_map_apply_domain(executed
,
3804 isl_union_map_from_map(proj
));
3808 /* Generate an AST that visits the elements in the range of data->executed
3809 * in the relative order specified by the corresponding domain element(s)
3810 * for those domain elements that belong to "set".
3811 * Add the result to data->list.
3813 * The caller ensures that "set" is a universe domain.
3814 * "space" is the space of the additional part of the schedule.
3815 * It is equal to the space of "set" if build->domain is parametric.
3816 * Otherwise, it is equal to the range of the wrapped space of "set".
3818 * If the build space is not parametric and if isl_ast_build_ast_from_schedule
3819 * was called from an outside user (data->internal not set), then
3820 * the (inverse) schedule refers to the external build domain and needs to
3821 * be transformed to refer to the internal build domain.
3823 * If the build space is parametric, then we add some of the parameter
3824 * constraints to the executed relation. Adding these constraints
3825 * allows for an earlier detection of conflicts in some cases.
3826 * However, we do not want to divide the executed relation into
3827 * more disjuncts than necessary. We therefore approximate
3828 * the constraints on the parameters by a single disjunct set.
3830 * The build is extended to include the additional part of the schedule.
3831 * If the original build space was not parametric, then the options
3832 * in data->build refer only to the additional part of the schedule
3833 * and they need to be adjusted to refer to the complete AST build
3836 * After having adjusted inverse schedule and build, we start generating
3837 * code with the outer loop of the current code generation
3838 * in generate_next_level.
3840 * If the original build space was not parametric, we undo the embedding
3841 * on the resulting isl_ast_node_list so that it can be used within
3842 * the outer AST build.
3844 static int generate_code_in_space(struct isl_generate_code_data
*data
,
3845 __isl_take isl_set
*set
, __isl_take isl_space
*space
)
3847 isl_union_map
*executed
;
3848 isl_ast_build
*build
;
3849 isl_ast_graft_list
*list
;
3852 executed
= isl_union_map_copy(data
->executed
);
3853 executed
= isl_union_map_intersect_domain(executed
,
3854 isl_union_set_from_set(set
));
3856 embed
= !isl_set_is_params(data
->build
->domain
);
3857 if (embed
&& !data
->internal
)
3858 executed
= internal_executed(executed
, space
, data
->build
);
3861 domain
= isl_ast_build_get_domain(data
->build
);
3862 domain
= isl_set_from_basic_set(isl_set_simple_hull(domain
));
3863 executed
= isl_union_map_intersect_params(executed
, domain
);
3866 build
= isl_ast_build_copy(data
->build
);
3867 build
= isl_ast_build_product(build
, space
);
3869 list
= generate_next_level(executed
, build
);
3871 list
= isl_ast_graft_list_unembed(list
, embed
);
3873 data
->list
= isl_ast_graft_list_concat(data
->list
, list
);
3878 /* Generate an AST that visits the elements in the range of data->executed
3879 * in the relative order specified by the corresponding domain element(s)
3880 * for those domain elements that belong to "set".
3881 * Add the result to data->list.
3883 * The caller ensures that "set" is a universe domain.
3885 * If the build space S is not parametric, then the space of "set"
3886 * need to be a wrapped relation with S as domain. That is, it needs
3891 * Check this property and pass control to generate_code_in_space
3893 * If the build space is not parametric, then T is the space of "set".
3895 static int generate_code_set(__isl_take isl_set
*set
, void *user
)
3897 struct isl_generate_code_data
*data
= user
;
3898 isl_space
*space
, *build_space
;
3901 space
= isl_set_get_space(set
);
3903 if (isl_set_is_params(data
->build
->domain
))
3904 return generate_code_in_space(data
, set
, space
);
3906 build_space
= isl_ast_build_get_space(data
->build
, data
->internal
);
3907 space
= isl_space_unwrap(space
);
3908 is_domain
= isl_space_is_domain(build_space
, space
);
3909 isl_space_free(build_space
);
3910 space
= isl_space_range(space
);
3915 isl_die(isl_set_get_ctx(set
), isl_error_invalid
,
3916 "invalid nested schedule space", goto error
);
3918 return generate_code_in_space(data
, set
, space
);
3921 isl_space_free(space
);
3925 /* Generate an AST that visits the elements in the range of "executed"
3926 * in the relative order specified by the corresponding domain element(s).
3928 * "build" is an isl_ast_build that has either been constructed by
3929 * isl_ast_build_from_context or passed to a callback set by
3930 * isl_ast_build_set_create_leaf.
3931 * In the first case, the space of the isl_ast_build is typically
3932 * a parametric space, although this is currently not enforced.
3933 * In the second case, the space is never a parametric space.
3934 * If the space S is not parametric, then the domain space(s) of "executed"
3935 * need to be wrapped relations with S as domain.
3937 * If the domain of "executed" consists of several spaces, then an AST
3938 * is generated for each of them (in arbitrary order) and the results
3941 * If "internal" is set, then the domain "S" above refers to the internal
3942 * schedule domain representation. Otherwise, it refers to the external
3943 * representation, as returned by isl_ast_build_get_schedule_space.
3945 * We essentially run over all the spaces in the domain of "executed"
3946 * and call generate_code_set on each of them.
3948 static __isl_give isl_ast_graft_list
*generate_code(
3949 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
,
3953 struct isl_generate_code_data data
= { 0 };
3955 isl_union_set
*schedule_domain
;
3956 isl_union_map
*universe
;
3960 space
= isl_ast_build_get_space(build
, 1);
3961 space
= isl_space_align_params(space
,
3962 isl_union_map_get_space(executed
));
3963 space
= isl_space_align_params(space
,
3964 isl_union_map_get_space(build
->options
));
3965 build
= isl_ast_build_align_params(build
, isl_space_copy(space
));
3966 executed
= isl_union_map_align_params(executed
, space
);
3967 if (!executed
|| !build
)
3970 ctx
= isl_ast_build_get_ctx(build
);
3972 data
.internal
= internal
;
3973 data
.executed
= executed
;
3975 data
.list
= isl_ast_graft_list_alloc(ctx
, 0);
3977 universe
= isl_union_map_universe(isl_union_map_copy(executed
));
3978 schedule_domain
= isl_union_map_domain(universe
);
3979 if (isl_union_set_foreach_set(schedule_domain
, &generate_code_set
,
3981 data
.list
= isl_ast_graft_list_free(data
.list
);
3983 isl_union_set_free(schedule_domain
);
3984 isl_union_map_free(executed
);
3986 isl_ast_build_free(build
);
3989 isl_union_map_free(executed
);
3990 isl_ast_build_free(build
);
3994 /* Generate an AST that visits the elements in the domain of "schedule"
3995 * in the relative order specified by the corresponding image element(s).
3997 * "build" is an isl_ast_build that has either been constructed by
3998 * isl_ast_build_from_context or passed to a callback set by
3999 * isl_ast_build_set_create_leaf.
4000 * In the first case, the space of the isl_ast_build is typically
4001 * a parametric space, although this is currently not enforced.
4002 * In the second case, the space is never a parametric space.
4003 * If the space S is not parametric, then the range space(s) of "schedule"
4004 * need to be wrapped relations with S as domain.
4006 * If the range of "schedule" consists of several spaces, then an AST
4007 * is generated for each of them (in arbitrary order) and the results
4010 * We first initialize the local copies of the relevant options.
4011 * We do this here rather than when the isl_ast_build is created
4012 * because the options may have changed between the construction
4013 * of the isl_ast_build and the call to isl_generate_code.
4015 * The main computation is performed on an inverse schedule (with
4016 * the schedule domain in the domain and the elements to be executed
4017 * in the range) called "executed".
4019 __isl_give isl_ast_node
*isl_ast_build_ast_from_schedule(
4020 __isl_keep isl_ast_build
*build
, __isl_take isl_union_map
*schedule
)
4022 isl_ast_graft_list
*list
;
4024 isl_union_map
*executed
;
4026 build
= isl_ast_build_copy(build
);
4027 build
= isl_ast_build_set_single_valued(build
, 0);
4028 schedule
= isl_union_map_coalesce(schedule
);
4029 schedule
= isl_union_map_remove_redundancies(schedule
);
4030 executed
= isl_union_map_reverse(schedule
);
4031 list
= generate_code(executed
, isl_ast_build_copy(build
), 0);
4032 node
= isl_ast_node_from_graft_list(list
, build
);
4033 isl_ast_build_free(build
);