isl_schedule_read.c: read_band: avoid double free on error path
[isl.git] / isl_vertices.c
blob011cda1363d0428b6167fbfa30e9ef1f9b6dbb51
1 /*
2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
8 * 91893 Orsay, France
9 */
11 #include <isl_map_private.h>
12 #include <isl_aff_private.h>
13 #include <isl/set.h>
14 #include <isl_seq.h>
15 #include <isl_tab.h>
16 #include <isl_space_private.h>
17 #include <isl_morph.h>
18 #include <isl_vertices_private.h>
19 #include <isl_mat_private.h>
20 #include <isl_vec_private.h>
22 #define SELECTED 1
23 #define DESELECTED -1
24 #define UNSELECTED 0
26 static __isl_give isl_vertices *compute_chambers(__isl_take isl_basic_set *bset,
27 __isl_take isl_vertices *vertices);
29 __isl_give isl_vertices *isl_vertices_copy(__isl_keep isl_vertices *vertices)
31 if (!vertices)
32 return NULL;
34 vertices->ref++;
35 return vertices;
38 void isl_vertices_free(__isl_take isl_vertices *vertices)
40 int i;
42 if (!vertices)
43 return;
45 if (--vertices->ref > 0)
46 return;
48 for (i = 0; i < vertices->n_vertices; ++i) {
49 isl_basic_set_free(vertices->v[i].vertex);
50 isl_basic_set_free(vertices->v[i].dom);
52 free(vertices->v);
54 for (i = 0; i < vertices->n_chambers; ++i) {
55 free(vertices->c[i].vertices);
56 isl_basic_set_free(vertices->c[i].dom);
58 free(vertices->c);
60 isl_basic_set_free(vertices->bset);
61 free(vertices);
64 struct isl_vertex_list {
65 struct isl_vertex v;
66 struct isl_vertex_list *next;
69 static void free_vertex_list(struct isl_vertex_list *list)
71 struct isl_vertex_list *next;
73 for (; list; list = next) {
74 next = list->next;
75 isl_basic_set_free(list->v.vertex);
76 isl_basic_set_free(list->v.dom);
77 free(list);
81 static __isl_give isl_vertices *vertices_from_list(__isl_keep isl_basic_set *bset,
82 int n_vertices, struct isl_vertex_list *list)
84 int i;
85 struct isl_vertex_list *next;
86 isl_vertices *vertices;
88 vertices = isl_calloc_type(bset->ctx, isl_vertices);
89 if (!vertices)
90 goto error;
91 vertices->ref = 1;
92 vertices->bset = isl_basic_set_copy(bset);
93 vertices->v = isl_alloc_array(bset->ctx, struct isl_vertex, n_vertices);
94 if (n_vertices && !vertices->v)
95 goto error;
96 vertices->n_vertices = n_vertices;
98 for (i = 0; list; list = next, i++) {
99 next = list->next;
100 vertices->v[i] = list->v;
101 free(list);
104 return vertices;
105 error:
106 isl_vertices_free(vertices);
107 free_vertex_list(list);
108 return NULL;
111 /* Prepend a vertex to the linked list "list" based on the equalities in "tab".
112 * Return isl_bool_true if the vertex was actually added and
113 * isl_bool_false otherwise.
114 * In particular, vertices with a lower-dimensional activity domain are
115 * not added to the list because they would not be included in any chamber.
116 * Return isl_bool_error on error.
118 static isl_bool add_vertex(struct isl_vertex_list **list,
119 __isl_keep isl_basic_set *bset, struct isl_tab *tab)
121 unsigned nvar;
122 struct isl_vertex_list *v = NULL;
124 if (isl_tab_detect_implicit_equalities(tab) < 0)
125 return isl_bool_error;
127 nvar = isl_basic_set_dim(bset, isl_dim_set);
129 v = isl_calloc_type(tab->mat->ctx, struct isl_vertex_list);
130 if (!v)
131 goto error;
133 v->v.vertex = isl_basic_set_copy(bset);
134 v->v.vertex = isl_basic_set_cow(v->v.vertex);
135 v->v.vertex = isl_basic_set_update_from_tab(v->v.vertex, tab);
136 v->v.vertex = isl_basic_set_simplify(v->v.vertex);
137 v->v.vertex = isl_basic_set_finalize(v->v.vertex);
138 if (!v->v.vertex)
139 goto error;
140 isl_assert(bset->ctx, v->v.vertex->n_eq >= nvar, goto error);
141 v->v.dom = isl_basic_set_copy(v->v.vertex);
142 v->v.dom = isl_basic_set_params(v->v.dom);
143 if (!v->v.dom)
144 goto error;
146 if (v->v.dom->n_eq > 0) {
147 free_vertex_list(v);
148 return isl_bool_false;
151 v->next = *list;
152 *list = v;
154 return isl_bool_true;
155 error:
156 free_vertex_list(v);
157 return isl_bool_error;
160 /* Compute the parametric vertices and the chamber decomposition
161 * of an empty parametric polytope.
163 static __isl_give isl_vertices *vertices_empty(__isl_keep isl_basic_set *bset)
165 isl_vertices *vertices;
167 if (!bset)
168 return NULL;
170 vertices = isl_calloc_type(bset->ctx, isl_vertices);
171 if (!vertices)
172 return NULL;
173 vertices->bset = isl_basic_set_copy(bset);
174 vertices->ref = 1;
176 vertices->n_vertices = 0;
177 vertices->n_chambers = 0;
179 return vertices;
182 /* Compute the parametric vertices and the chamber decomposition
183 * of the parametric polytope defined using the same constraints
184 * as "bset" in the 0D case.
185 * There is exactly one 0D vertex and a single chamber containing
186 * the vertex.
188 static __isl_give isl_vertices *vertices_0D(__isl_keep isl_basic_set *bset)
190 isl_vertices *vertices;
192 if (!bset)
193 return NULL;
195 vertices = isl_calloc_type(bset->ctx, isl_vertices);
196 if (!vertices)
197 return NULL;
198 vertices->ref = 1;
199 vertices->bset = isl_basic_set_copy(bset);
201 vertices->v = isl_calloc_array(bset->ctx, struct isl_vertex, 1);
202 if (!vertices->v)
203 goto error;
204 vertices->n_vertices = 1;
205 vertices->v[0].vertex = isl_basic_set_copy(bset);
206 vertices->v[0].dom = isl_basic_set_params(isl_basic_set_copy(bset));
207 if (!vertices->v[0].vertex || !vertices->v[0].dom)
208 goto error;
210 vertices->c = isl_calloc_array(bset->ctx, struct isl_chamber, 1);
211 if (!vertices->c)
212 goto error;
213 vertices->n_chambers = 1;
214 vertices->c[0].n_vertices = 1;
215 vertices->c[0].vertices = isl_calloc_array(bset->ctx, int, 1);
216 if (!vertices->c[0].vertices)
217 goto error;
218 vertices->c[0].dom = isl_basic_set_copy(vertices->v[0].dom);
219 if (!vertices->c[0].dom)
220 goto error;
222 return vertices;
223 error:
224 isl_vertices_free(vertices);
225 return NULL;
228 static int isl_mat_rank(__isl_keep isl_mat *mat)
230 int row, col;
231 isl_mat *H;
233 H = isl_mat_left_hermite(isl_mat_copy(mat), 0, NULL, NULL);
234 if (!H)
235 return -1;
237 for (col = 0; col < H->n_col; ++col) {
238 for (row = 0; row < H->n_row; ++row)
239 if (!isl_int_is_zero(H->row[row][col]))
240 break;
241 if (row == H->n_row)
242 break;
245 isl_mat_free(H);
247 return col;
250 /* Is the row pointed to by "f" linearly independent of the "n" first
251 * rows in "facets"?
253 static int is_independent(__isl_keep isl_mat *facets, int n, isl_int *f)
255 int rank;
257 if (isl_seq_first_non_zero(f, facets->n_col) < 0)
258 return 0;
260 isl_seq_cpy(facets->row[n], f, facets->n_col);
261 facets->n_row = n + 1;
262 rank = isl_mat_rank(facets);
263 if (rank < 0)
264 return -1;
266 return rank == n + 1;
269 /* Check whether we can select constraint "level", given the current selection
270 * reflected by facets in "tab", the rows of "facets" and the earlier
271 * "selected" elements of "selection".
273 * If the constraint is (strictly) redundant in the tableau, selecting it would
274 * result in an empty tableau, so it can't be selected.
275 * If the set variable part of the constraint is not linearly independent
276 * of the set variable parts of the already selected constraints,
277 * the constraint cannot be selected.
278 * If selecting the constraint results in an empty tableau, the constraint
279 * cannot be selected.
280 * Finally, if selecting the constraint results in some explicitly
281 * deselected constraints turning into equalities, then the corresponding
282 * vertices have already been generated, so the constraint cannot be selected.
284 static int can_select(__isl_keep isl_basic_set *bset, int level,
285 struct isl_tab *tab, __isl_keep isl_mat *facets, int selected,
286 int *selection)
288 int i;
289 int indep;
290 unsigned ovar;
291 struct isl_tab_undo *snap;
293 if (isl_tab_is_redundant(tab, level))
294 return 0;
296 ovar = isl_space_offset(bset->dim, isl_dim_set);
298 indep = is_independent(facets, selected, bset->ineq[level] + 1 + ovar);
299 if (indep < 0)
300 return -1;
301 if (!indep)
302 return 0;
304 snap = isl_tab_snap(tab);
305 if (isl_tab_select_facet(tab, level) < 0)
306 return -1;
308 if (tab->empty) {
309 if (isl_tab_rollback(tab, snap) < 0)
310 return -1;
311 return 0;
314 for (i = 0; i < level; ++i) {
315 int sgn;
317 if (selection[i] != DESELECTED)
318 continue;
320 if (isl_tab_is_equality(tab, i))
321 sgn = 0;
322 else if (isl_tab_is_redundant(tab, i))
323 sgn = 1;
324 else
325 sgn = isl_tab_sign_of_max(tab, i);
326 if (sgn < -1)
327 return -1;
328 if (sgn <= 0) {
329 if (isl_tab_rollback(tab, snap) < 0)
330 return -1;
331 return 0;
335 return 1;
338 /* Compute the parametric vertices and the chamber decomposition
339 * of a parametric polytope that is not full-dimensional.
341 * Simply map the parametric polytope to a lower dimensional space
342 * and map the resulting vertices back.
344 static __isl_give isl_vertices *lower_dim_vertices(
345 __isl_keep isl_basic_set *bset)
347 isl_morph *morph;
348 isl_vertices *vertices;
350 bset = isl_basic_set_copy(bset);
351 morph = isl_basic_set_full_compression(bset);
352 bset = isl_morph_basic_set(isl_morph_copy(morph), bset);
354 vertices = isl_basic_set_compute_vertices(bset);
355 isl_basic_set_free(bset);
357 morph = isl_morph_inverse(morph);
359 vertices = isl_morph_vertices(morph, vertices);
361 return vertices;
364 /* Compute the parametric vertices and the chamber decomposition
365 * of the parametric polytope defined using the same constraints
366 * as "bset". "bset" is assumed to have no existentially quantified
367 * variables.
369 * The vertices themselves are computed in a fairly simplistic way.
370 * We simply run through all combinations of d constraints,
371 * with d the number of set variables, and check if those d constraints
372 * define a vertex. To avoid the generation of duplicate vertices,
373 * which we may happen if a vertex is defined by more that d constraints,
374 * we make sure we only generate the vertex for the d constraints with
375 * smallest index.
377 * We set up a tableau and keep track of which facets have been
378 * selected. The tableau is marked strict_redundant so that we can be
379 * sure that any constraint that is marked redundant (and that is not
380 * also marked zero) is not an equality.
381 * If a constraint is marked DESELECTED, it means the constraint was
382 * SELECTED before (in combination with the same selection of earlier
383 * constraints). If such a deselected constraint turns out to be an
384 * equality, then any vertex that may still be found with the current
385 * selection has already been generated when the constraint was selected.
386 * A constraint is marked UNSELECTED when there is no way selecting
387 * the constraint could lead to a vertex (in combination with the current
388 * selection of earlier constraints).
390 * The set variable coefficients of the selected constraints are stored
391 * in the facets matrix.
393 __isl_give isl_vertices *isl_basic_set_compute_vertices(
394 __isl_keep isl_basic_set *bset)
396 struct isl_tab *tab;
397 int level;
398 int init;
399 unsigned nvar;
400 int *selection = NULL;
401 int selected;
402 struct isl_tab_undo **snap = NULL;
403 isl_mat *facets = NULL;
404 struct isl_vertex_list *list = NULL;
405 int n_vertices = 0;
406 isl_vertices *vertices;
408 if (!bset)
409 return NULL;
411 if (isl_basic_set_plain_is_empty(bset))
412 return vertices_empty(bset);
414 if (bset->n_eq != 0)
415 return lower_dim_vertices(bset);
417 isl_assert(bset->ctx, isl_basic_set_dim(bset, isl_dim_div) == 0,
418 return NULL);
420 if (isl_basic_set_dim(bset, isl_dim_set) == 0)
421 return vertices_0D(bset);
423 nvar = isl_basic_set_dim(bset, isl_dim_set);
425 bset = isl_basic_set_copy(bset);
426 bset = isl_basic_set_set_rational(bset);
427 if (!bset)
428 return NULL;
430 tab = isl_tab_from_basic_set(bset, 0);
431 if (!tab)
432 goto error;
433 tab->strict_redundant = 1;
435 if (tab->empty) {
436 vertices = vertices_empty(bset);
437 isl_basic_set_free(bset);
438 isl_tab_free(tab);
439 return vertices;
442 selection = isl_alloc_array(bset->ctx, int, bset->n_ineq);
443 snap = isl_alloc_array(bset->ctx, struct isl_tab_undo *, bset->n_ineq);
444 facets = isl_mat_alloc(bset->ctx, nvar, nvar);
445 if ((bset->n_ineq && (!selection || !snap)) || !facets)
446 goto error;
448 level = 0;
449 init = 1;
450 selected = 0;
452 while (level >= 0) {
453 if (level >= bset->n_ineq ||
454 (!init && selection[level] != SELECTED)) {
455 --level;
456 init = 0;
457 continue;
459 if (init) {
460 int ok;
461 snap[level] = isl_tab_snap(tab);
462 ok = can_select(bset, level, tab, facets, selected,
463 selection);
464 if (ok < 0)
465 goto error;
466 if (ok) {
467 selection[level] = SELECTED;
468 selected++;
469 } else
470 selection[level] = UNSELECTED;
471 } else {
472 selection[level] = DESELECTED;
473 selected--;
474 if (isl_tab_rollback(tab, snap[level]) < 0)
475 goto error;
477 if (selected == nvar) {
478 if (tab->n_dead == nvar) {
479 isl_bool added = add_vertex(&list, bset, tab);
480 if (added < 0)
481 goto error;
482 if (added)
483 n_vertices++;
485 init = 0;
486 continue;
488 ++level;
489 init = 1;
492 isl_mat_free(facets);
493 free(selection);
494 free(snap);
496 isl_tab_free(tab);
498 vertices = vertices_from_list(bset, n_vertices, list);
500 vertices = compute_chambers(bset, vertices);
502 return vertices;
503 error:
504 free_vertex_list(list);
505 isl_mat_free(facets);
506 free(selection);
507 free(snap);
508 isl_tab_free(tab);
509 isl_basic_set_free(bset);
510 return NULL;
513 struct isl_chamber_list {
514 struct isl_chamber c;
515 struct isl_chamber_list *next;
518 static void free_chamber_list(struct isl_chamber_list *list)
520 struct isl_chamber_list *next;
522 for (; list; list = next) {
523 next = list->next;
524 isl_basic_set_free(list->c.dom);
525 free(list->c.vertices);
526 free(list);
530 /* Check whether the basic set "bset" is a superset of the basic set described
531 * by "tab", i.e., check whether all constraints of "bset" are redundant.
533 static int bset_covers_tab(__isl_keep isl_basic_set *bset, struct isl_tab *tab)
535 int i;
537 if (!bset || !tab)
538 return -1;
540 for (i = 0; i < bset->n_ineq; ++i) {
541 enum isl_ineq_type type = isl_tab_ineq_type(tab, bset->ineq[i]);
542 switch (type) {
543 case isl_ineq_error: return -1;
544 case isl_ineq_redundant: continue;
545 default: return 0;
549 return 1;
552 static __isl_give isl_vertices *vertices_add_chambers(
553 __isl_take isl_vertices *vertices, int n_chambers,
554 struct isl_chamber_list *list)
556 int i;
557 isl_ctx *ctx;
558 struct isl_chamber_list *next;
560 ctx = isl_vertices_get_ctx(vertices);
561 vertices->c = isl_alloc_array(ctx, struct isl_chamber, n_chambers);
562 if (!vertices->c)
563 goto error;
564 vertices->n_chambers = n_chambers;
566 for (i = 0; list; list = next, i++) {
567 next = list->next;
568 vertices->c[i] = list->c;
569 free(list);
572 return vertices;
573 error:
574 isl_vertices_free(vertices);
575 free_chamber_list(list);
576 return NULL;
579 /* Can "tab" be intersected with "bset" without resulting in
580 * a lower-dimensional set.
581 * "bset" itself is assumed to be full-dimensional.
583 static isl_bool can_intersect(struct isl_tab *tab,
584 __isl_keep isl_basic_set *bset)
586 int i;
587 struct isl_tab_undo *snap;
589 if (bset->n_eq > 0)
590 isl_die(isl_basic_set_get_ctx(bset), isl_error_internal,
591 "expecting full-dimensional input",
592 return isl_bool_error);
594 if (isl_tab_extend_cons(tab, bset->n_ineq) < 0)
595 return isl_bool_error;
597 snap = isl_tab_snap(tab);
599 for (i = 0; i < bset->n_ineq; ++i) {
600 if (isl_tab_ineq_type(tab, bset->ineq[i]) == isl_ineq_redundant)
601 continue;
602 if (isl_tab_add_ineq(tab, bset->ineq[i]) < 0)
603 return isl_bool_error;
606 if (isl_tab_detect_implicit_equalities(tab) < 0)
607 return isl_bool_error;
608 if (tab->n_dead) {
609 if (isl_tab_rollback(tab, snap) < 0)
610 return isl_bool_error;
611 return isl_bool_false;
614 return isl_bool_true;
617 static int add_chamber(struct isl_chamber_list **list,
618 __isl_keep isl_vertices *vertices, struct isl_tab *tab, int *selection)
620 int n_frozen;
621 int i, j;
622 int n_vertices = 0;
623 struct isl_tab_undo *snap;
624 struct isl_chamber_list *c = NULL;
626 for (i = 0; i < vertices->n_vertices; ++i)
627 if (selection[i])
628 n_vertices++;
630 snap = isl_tab_snap(tab);
632 for (i = 0; i < tab->n_con && tab->con[i].frozen; ++i)
633 tab->con[i].frozen = 0;
634 n_frozen = i;
636 if (isl_tab_detect_redundant(tab) < 0)
637 return -1;
639 c = isl_calloc_type(tab->mat->ctx, struct isl_chamber_list);
640 if (!c)
641 goto error;
642 c->c.vertices = isl_alloc_array(tab->mat->ctx, int, n_vertices);
643 if (n_vertices && !c->c.vertices)
644 goto error;
645 c->c.dom = isl_basic_set_copy(isl_tab_peek_bset(tab));
646 c->c.dom = isl_basic_set_set_rational(c->c.dom);
647 c->c.dom = isl_basic_set_cow(c->c.dom);
648 c->c.dom = isl_basic_set_update_from_tab(c->c.dom, tab);
649 c->c.dom = isl_basic_set_simplify(c->c.dom);
650 c->c.dom = isl_basic_set_finalize(c->c.dom);
651 if (!c->c.dom)
652 goto error;
654 c->c.n_vertices = n_vertices;
656 for (i = 0, j = 0; i < vertices->n_vertices; ++i)
657 if (selection[i]) {
658 c->c.vertices[j] = i;
659 j++;
662 c->next = *list;
663 *list = c;
665 for (i = 0; i < n_frozen; ++i)
666 tab->con[i].frozen = 1;
668 if (isl_tab_rollback(tab, snap) < 0)
669 return -1;
671 return 0;
672 error:
673 free_chamber_list(c);
674 return -1;
677 struct isl_facet_todo {
678 struct isl_tab *tab; /* A tableau representation of the facet */
679 isl_basic_set *bset; /* A normalized basic set representation */
680 isl_vec *constraint; /* Constraint pointing to the other side */
681 struct isl_facet_todo *next;
684 static void free_todo(struct isl_facet_todo *todo)
686 while (todo) {
687 struct isl_facet_todo *next = todo->next;
689 isl_tab_free(todo->tab);
690 isl_basic_set_free(todo->bset);
691 isl_vec_free(todo->constraint);
692 free(todo);
694 todo = next;
698 static struct isl_facet_todo *create_todo(struct isl_tab *tab, int con)
700 int i;
701 int n_frozen;
702 struct isl_tab_undo *snap;
703 struct isl_facet_todo *todo;
705 snap = isl_tab_snap(tab);
707 for (i = 0; i < tab->n_con && tab->con[i].frozen; ++i)
708 tab->con[i].frozen = 0;
709 n_frozen = i;
711 if (isl_tab_detect_redundant(tab) < 0)
712 return NULL;
714 todo = isl_calloc_type(tab->mat->ctx, struct isl_facet_todo);
715 if (!todo)
716 return NULL;
718 todo->constraint = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
719 if (!todo->constraint)
720 goto error;
721 isl_seq_neg(todo->constraint->el, tab->bmap->ineq[con], 1 + tab->n_var);
722 todo->bset = isl_basic_set_copy(isl_tab_peek_bset(tab));
723 todo->bset = isl_basic_set_set_rational(todo->bset);
724 todo->bset = isl_basic_set_cow(todo->bset);
725 todo->bset = isl_basic_set_update_from_tab(todo->bset, tab);
726 todo->bset = isl_basic_set_simplify(todo->bset);
727 todo->bset = isl_basic_set_sort_constraints(todo->bset);
728 if (!todo->bset)
729 goto error;
730 ISL_F_SET(todo->bset, ISL_BASIC_SET_NORMALIZED);
731 todo->tab = isl_tab_dup(tab);
732 if (!todo->tab)
733 goto error;
735 for (i = 0; i < n_frozen; ++i)
736 tab->con[i].frozen = 1;
738 if (isl_tab_rollback(tab, snap) < 0)
739 goto error;
741 return todo;
742 error:
743 free_todo(todo);
744 return NULL;
747 /* Create todo items for all interior facets of the chamber represented
748 * by "tab" and collect them in "next".
750 static int init_todo(struct isl_facet_todo **next, struct isl_tab *tab)
752 int i;
753 struct isl_tab_undo *snap;
754 struct isl_facet_todo *todo;
756 snap = isl_tab_snap(tab);
758 for (i = 0; i < tab->n_con; ++i) {
759 if (tab->con[i].frozen)
760 continue;
761 if (tab->con[i].is_redundant)
762 continue;
764 if (isl_tab_select_facet(tab, i) < 0)
765 return -1;
767 todo = create_todo(tab, i);
768 if (!todo)
769 return -1;
771 todo->next = *next;
772 *next = todo;
774 if (isl_tab_rollback(tab, snap) < 0)
775 return -1;
778 return 0;
781 /* Does the linked list contain a todo item that is the opposite of "todo".
782 * If so, return 1 and remove the opposite todo item.
784 static int has_opposite(struct isl_facet_todo *todo,
785 struct isl_facet_todo **list)
787 for (; *list; list = &(*list)->next) {
788 int eq;
789 eq = isl_basic_set_plain_is_equal(todo->bset, (*list)->bset);
790 if (eq < 0)
791 return -1;
792 if (!eq)
793 continue;
794 todo = *list;
795 *list = todo->next;
796 todo->next = NULL;
797 free_todo(todo);
798 return 1;
801 return 0;
804 /* Create todo items for all interior facets of the chamber represented
805 * by "tab" and collect them in first->next, taking care to cancel
806 * opposite todo items.
808 static int update_todo(struct isl_facet_todo *first, struct isl_tab *tab)
810 int i;
811 struct isl_tab_undo *snap;
812 struct isl_facet_todo *todo;
814 snap = isl_tab_snap(tab);
816 for (i = 0; i < tab->n_con; ++i) {
817 int drop;
819 if (tab->con[i].frozen)
820 continue;
821 if (tab->con[i].is_redundant)
822 continue;
824 if (isl_tab_select_facet(tab, i) < 0)
825 return -1;
827 todo = create_todo(tab, i);
828 if (!todo)
829 return -1;
831 drop = has_opposite(todo, &first->next);
832 if (drop < 0)
833 return -1;
835 if (drop)
836 free_todo(todo);
837 else {
838 todo->next = first->next;
839 first->next = todo;
842 if (isl_tab_rollback(tab, snap) < 0)
843 return -1;
846 return 0;
849 /* Compute the chamber decomposition of the parametric polytope respresented
850 * by "bset" given the parametric vertices and their activity domains.
852 * We are only interested in full-dimensional chambers.
853 * Each of these chambers is the intersection of the activity domains of
854 * one or more vertices and the union of all chambers is equal to the
855 * projection of the entire parametric polytope onto the parameter space.
857 * We first create an initial chamber by intersecting as many activity
858 * domains as possible without ending up with an empty or lower-dimensional
859 * set. As a minor optimization, we only consider those activity domains
860 * that contain some arbitrary point.
862 * For each of the interior facets of the chamber, we construct a todo item,
863 * containing the facet and a constraint containing the other side of the facet,
864 * for constructing the chamber on the other side.
865 * While their are any todo items left, we pick a todo item and
866 * create the required chamber by intersecting all activity domains
867 * that contain the facet and have a full-dimensional intersection with
868 * the other side of the facet. For each of the interior facets, we
869 * again create todo items, taking care to cancel opposite todo items.
871 static __isl_give isl_vertices *compute_chambers(__isl_take isl_basic_set *bset,
872 __isl_take isl_vertices *vertices)
874 int i;
875 isl_ctx *ctx;
876 isl_vec *sample = NULL;
877 struct isl_tab *tab = NULL;
878 struct isl_tab_undo *snap;
879 int *selection = NULL;
880 int n_chambers = 0;
881 struct isl_chamber_list *list = NULL;
882 struct isl_facet_todo *todo = NULL;
884 if (!bset || !vertices)
885 goto error;
887 ctx = isl_vertices_get_ctx(vertices);
888 selection = isl_alloc_array(ctx, int, vertices->n_vertices);
889 if (vertices->n_vertices && !selection)
890 goto error;
892 bset = isl_basic_set_params(bset);
894 tab = isl_tab_from_basic_set(bset, 1);
895 if (!tab)
896 goto error;
897 for (i = 0; i < bset->n_ineq; ++i)
898 if (isl_tab_freeze_constraint(tab, i) < 0)
899 goto error;
900 isl_basic_set_free(bset);
902 snap = isl_tab_snap(tab);
904 sample = isl_tab_get_sample_value(tab);
906 for (i = 0; i < vertices->n_vertices; ++i) {
907 selection[i] = isl_basic_set_contains(vertices->v[i].dom, sample);
908 if (selection[i] < 0)
909 goto error;
910 if (!selection[i])
911 continue;
912 selection[i] = can_intersect(tab, vertices->v[i].dom);
913 if (selection[i] < 0)
914 goto error;
917 if (isl_tab_detect_redundant(tab) < 0)
918 goto error;
920 if (add_chamber(&list, vertices, tab, selection) < 0)
921 goto error;
922 n_chambers++;
924 if (init_todo(&todo, tab) < 0)
925 goto error;
927 while (todo) {
928 struct isl_facet_todo *next;
930 if (isl_tab_rollback(tab, snap) < 0)
931 goto error;
933 if (isl_tab_add_ineq(tab, todo->constraint->el) < 0)
934 goto error;
935 if (isl_tab_freeze_constraint(tab, tab->n_con - 1) < 0)
936 goto error;
938 for (i = 0; i < vertices->n_vertices; ++i) {
939 selection[i] = bset_covers_tab(vertices->v[i].dom,
940 todo->tab);
941 if (selection[i] < 0)
942 goto error;
943 if (!selection[i])
944 continue;
945 selection[i] = can_intersect(tab, vertices->v[i].dom);
946 if (selection[i] < 0)
947 goto error;
950 if (isl_tab_detect_redundant(tab) < 0)
951 goto error;
953 if (add_chamber(&list, vertices, tab, selection) < 0)
954 goto error;
955 n_chambers++;
957 if (update_todo(todo, tab) < 0)
958 goto error;
960 next = todo->next;
961 todo->next = NULL;
962 free_todo(todo);
963 todo = next;
966 isl_vec_free(sample);
968 isl_tab_free(tab);
969 free(selection);
971 vertices = vertices_add_chambers(vertices, n_chambers, list);
973 for (i = 0; vertices && i < vertices->n_vertices; ++i) {
974 isl_basic_set_free(vertices->v[i].dom);
975 vertices->v[i].dom = NULL;
978 return vertices;
979 error:
980 free_chamber_list(list);
981 free_todo(todo);
982 isl_vec_free(sample);
983 isl_tab_free(tab);
984 free(selection);
985 if (!tab)
986 isl_basic_set_free(bset);
987 isl_vertices_free(vertices);
988 return NULL;
991 isl_ctx *isl_vertex_get_ctx(__isl_keep isl_vertex *vertex)
993 return vertex ? isl_vertices_get_ctx(vertex->vertices) : NULL;
996 int isl_vertex_get_id(__isl_keep isl_vertex *vertex)
998 return vertex ? vertex->id : -1;
1001 __isl_give isl_basic_set *isl_basic_set_set_integral(__isl_take isl_basic_set *bset)
1003 if (!bset)
1004 return NULL;
1006 if (!ISL_F_ISSET(bset, ISL_BASIC_MAP_RATIONAL))
1007 return bset;
1009 bset = isl_basic_set_cow(bset);
1010 if (!bset)
1011 return NULL;
1013 ISL_F_CLR(bset, ISL_BASIC_MAP_RATIONAL);
1015 return isl_basic_set_finalize(bset);
1018 /* Return the activity domain of the vertex "vertex".
1020 __isl_give isl_basic_set *isl_vertex_get_domain(__isl_keep isl_vertex *vertex)
1022 struct isl_vertex *v;
1024 if (!vertex)
1025 return NULL;
1027 v = &vertex->vertices->v[vertex->id];
1028 if (!v->dom) {
1029 v->dom = isl_basic_set_copy(v->vertex);
1030 v->dom = isl_basic_set_params(v->dom);
1031 v->dom = isl_basic_set_set_integral(v->dom);
1034 return isl_basic_set_copy(v->dom);
1037 /* Return a multiple quasi-affine expression describing the vertex "vertex"
1038 * in terms of the parameters,
1040 __isl_give isl_multi_aff *isl_vertex_get_expr(__isl_keep isl_vertex *vertex)
1042 struct isl_vertex *v;
1043 isl_basic_set *bset;
1045 if (!vertex)
1046 return NULL;
1048 v = &vertex->vertices->v[vertex->id];
1050 bset = isl_basic_set_copy(v->vertex);
1051 return isl_multi_aff_from_basic_set_equalities(bset);
1054 static __isl_give isl_vertex *isl_vertex_alloc(__isl_take isl_vertices *vertices,
1055 int id)
1057 isl_ctx *ctx;
1058 isl_vertex *vertex;
1060 if (!vertices)
1061 return NULL;
1063 ctx = isl_vertices_get_ctx(vertices);
1064 vertex = isl_alloc_type(ctx, isl_vertex);
1065 if (!vertex)
1066 goto error;
1068 vertex->vertices = vertices;
1069 vertex->id = id;
1071 return vertex;
1072 error:
1073 isl_vertices_free(vertices);
1074 return NULL;
1077 void isl_vertex_free(__isl_take isl_vertex *vertex)
1079 if (!vertex)
1080 return;
1081 isl_vertices_free(vertex->vertices);
1082 free(vertex);
1085 isl_ctx *isl_cell_get_ctx(__isl_keep isl_cell *cell)
1087 return cell ? cell->dom->ctx : NULL;
1090 __isl_give isl_basic_set *isl_cell_get_domain(__isl_keep isl_cell *cell)
1092 return cell ? isl_basic_set_copy(cell->dom) : NULL;
1095 static __isl_give isl_cell *isl_cell_alloc(__isl_take isl_vertices *vertices,
1096 __isl_take isl_basic_set *dom, int id)
1098 int i;
1099 isl_cell *cell = NULL;
1101 if (!vertices || !dom)
1102 goto error;
1104 cell = isl_calloc_type(dom->ctx, isl_cell);
1105 if (!cell)
1106 goto error;
1108 cell->n_vertices = vertices->c[id].n_vertices;
1109 cell->ids = isl_alloc_array(dom->ctx, int, cell->n_vertices);
1110 if (cell->n_vertices && !cell->ids)
1111 goto error;
1112 for (i = 0; i < cell->n_vertices; ++i)
1113 cell->ids[i] = vertices->c[id].vertices[i];
1114 cell->vertices = vertices;
1115 cell->dom = dom;
1117 return cell;
1118 error:
1119 isl_cell_free(cell);
1120 isl_vertices_free(vertices);
1121 isl_basic_set_free(dom);
1122 return NULL;
1125 void isl_cell_free(__isl_take isl_cell *cell)
1127 if (!cell)
1128 return;
1130 isl_vertices_free(cell->vertices);
1131 free(cell->ids);
1132 isl_basic_set_free(cell->dom);
1133 free(cell);
1136 /* Create a tableau of the cone obtained by first homogenizing the given
1137 * polytope and then making all inequalities strict by setting the
1138 * constant term to -1.
1140 static struct isl_tab *tab_for_shifted_cone(__isl_keep isl_basic_set *bset)
1142 int i;
1143 isl_vec *c = NULL;
1144 struct isl_tab *tab;
1146 if (!bset)
1147 return NULL;
1148 tab = isl_tab_alloc(bset->ctx, bset->n_eq + bset->n_ineq + 1,
1149 1 + isl_basic_set_total_dim(bset), 0);
1150 if (!tab)
1151 return NULL;
1152 tab->rational = ISL_F_ISSET(bset, ISL_BASIC_SET_RATIONAL);
1153 if (ISL_F_ISSET(bset, ISL_BASIC_MAP_EMPTY)) {
1154 if (isl_tab_mark_empty(tab) < 0)
1155 goto error;
1156 return tab;
1159 c = isl_vec_alloc(bset->ctx, 1 + 1 + isl_basic_set_total_dim(bset));
1160 if (!c)
1161 goto error;
1163 isl_int_set_si(c->el[0], 0);
1164 for (i = 0; i < bset->n_eq; ++i) {
1165 isl_seq_cpy(c->el + 1, bset->eq[i], c->size - 1);
1166 if (isl_tab_add_eq(tab, c->el) < 0)
1167 goto error;
1170 isl_int_set_si(c->el[0], -1);
1171 for (i = 0; i < bset->n_ineq; ++i) {
1172 isl_seq_cpy(c->el + 1, bset->ineq[i], c->size - 1);
1173 if (isl_tab_add_ineq(tab, c->el) < 0)
1174 goto error;
1175 if (tab->empty) {
1176 isl_vec_free(c);
1177 return tab;
1181 isl_seq_clr(c->el + 1, c->size - 1);
1182 isl_int_set_si(c->el[1], 1);
1183 if (isl_tab_add_ineq(tab, c->el) < 0)
1184 goto error;
1186 isl_vec_free(c);
1187 return tab;
1188 error:
1189 isl_vec_free(c);
1190 isl_tab_free(tab);
1191 return NULL;
1194 /* Compute an interior point of "bset" by selecting an interior
1195 * point in homogeneous space and projecting the point back down.
1197 static __isl_give isl_vec *isl_basic_set_interior_point(
1198 __isl_keep isl_basic_set *bset)
1200 isl_vec *vec;
1201 struct isl_tab *tab;
1203 tab = tab_for_shifted_cone(bset);
1204 vec = isl_tab_get_sample_value(tab);
1205 isl_tab_free(tab);
1206 if (!vec)
1207 return NULL;
1209 isl_seq_cpy(vec->el, vec->el + 1, vec->size - 1);
1210 vec->size--;
1212 return vec;
1215 /* Call "fn" on all chambers of the parametric polytope with the shared
1216 * facets of neighboring chambers only appearing in one of the chambers.
1218 * We pick an interior point from one of the chambers and then make
1219 * all constraints that do not satisfy this point strict.
1220 * For constraints that saturate the interior point, the sign
1221 * of the first non-zero coefficient is used to determine which
1222 * of the two (internal) constraints should be tightened.
1224 int isl_vertices_foreach_disjoint_cell(__isl_keep isl_vertices *vertices,
1225 int (*fn)(__isl_take isl_cell *cell, void *user), void *user)
1227 int i;
1228 isl_vec *vec;
1229 isl_cell *cell;
1231 if (!vertices)
1232 return -1;
1234 if (vertices->n_chambers == 0)
1235 return 0;
1237 if (vertices->n_chambers == 1) {
1238 isl_basic_set *dom = isl_basic_set_copy(vertices->c[0].dom);
1239 dom = isl_basic_set_set_integral(dom);
1240 cell = isl_cell_alloc(isl_vertices_copy(vertices), dom, 0);
1241 if (!cell)
1242 return -1;
1243 return fn(cell, user);
1246 vec = isl_basic_set_interior_point(vertices->c[0].dom);
1247 if (!vec)
1248 return -1;
1250 for (i = 0; i < vertices->n_chambers; ++i) {
1251 int r;
1252 isl_basic_set *dom = isl_basic_set_copy(vertices->c[i].dom);
1253 if (i)
1254 dom = isl_basic_set_tighten_outward(dom, vec);
1255 dom = isl_basic_set_set_integral(dom);
1256 cell = isl_cell_alloc(isl_vertices_copy(vertices), dom, i);
1257 if (!cell)
1258 goto error;
1259 r = fn(cell, user);
1260 if (r < 0)
1261 goto error;
1264 isl_vec_free(vec);
1266 return 0;
1267 error:
1268 isl_vec_free(vec);
1269 return -1;
1272 isl_stat isl_vertices_foreach_cell(__isl_keep isl_vertices *vertices,
1273 isl_stat (*fn)(__isl_take isl_cell *cell, void *user), void *user)
1275 int i;
1276 isl_cell *cell;
1278 if (!vertices)
1279 return isl_stat_error;
1281 if (vertices->n_chambers == 0)
1282 return isl_stat_ok;
1284 for (i = 0; i < vertices->n_chambers; ++i) {
1285 isl_stat r;
1286 isl_basic_set *dom = isl_basic_set_copy(vertices->c[i].dom);
1288 cell = isl_cell_alloc(isl_vertices_copy(vertices), dom, i);
1289 if (!cell)
1290 return isl_stat_error;
1292 r = fn(cell, user);
1293 if (r < 0)
1294 return isl_stat_error;
1297 return isl_stat_ok;
1300 isl_stat isl_vertices_foreach_vertex(__isl_keep isl_vertices *vertices,
1301 isl_stat (*fn)(__isl_take isl_vertex *vertex, void *user), void *user)
1303 int i;
1304 isl_vertex *vertex;
1306 if (!vertices)
1307 return isl_stat_error;
1309 if (vertices->n_vertices == 0)
1310 return isl_stat_ok;
1312 for (i = 0; i < vertices->n_vertices; ++i) {
1313 isl_stat r;
1315 vertex = isl_vertex_alloc(isl_vertices_copy(vertices), i);
1316 if (!vertex)
1317 return isl_stat_error;
1319 r = fn(vertex, user);
1320 if (r < 0)
1321 return isl_stat_error;
1324 return isl_stat_ok;
1327 isl_stat isl_cell_foreach_vertex(__isl_keep isl_cell *cell,
1328 isl_stat (*fn)(__isl_take isl_vertex *vertex, void *user), void *user)
1330 int i;
1331 isl_vertex *vertex;
1333 if (!cell)
1334 return isl_stat_error;
1336 if (cell->n_vertices == 0)
1337 return isl_stat_ok;
1339 for (i = 0; i < cell->n_vertices; ++i) {
1340 isl_stat r;
1342 vertex = isl_vertex_alloc(isl_vertices_copy(cell->vertices),
1343 cell->ids[i]);
1344 if (!vertex)
1345 return isl_stat_error;
1347 r = fn(vertex, user);
1348 if (r < 0)
1349 return isl_stat_error;
1352 return isl_stat_ok;
1355 isl_ctx *isl_vertices_get_ctx(__isl_keep isl_vertices *vertices)
1357 return vertices ? vertices->bset->ctx : NULL;
1360 int isl_vertices_get_n_vertices(__isl_keep isl_vertices *vertices)
1362 return vertices ? vertices->n_vertices : -1;
1365 __isl_give isl_vertices *isl_morph_vertices(__isl_take isl_morph *morph,
1366 __isl_take isl_vertices *vertices)
1368 int i;
1369 isl_morph *param_morph = NULL;
1371 if (!morph || !vertices)
1372 goto error;
1374 isl_assert(vertices->bset->ctx, vertices->ref == 1, goto error);
1376 param_morph = isl_morph_copy(morph);
1377 param_morph = isl_morph_dom_params(param_morph);
1378 param_morph = isl_morph_ran_params(param_morph);
1380 for (i = 0; i < vertices->n_vertices; ++i) {
1381 vertices->v[i].dom = isl_morph_basic_set(
1382 isl_morph_copy(param_morph), vertices->v[i].dom);
1383 vertices->v[i].vertex = isl_morph_basic_set(
1384 isl_morph_copy(morph), vertices->v[i].vertex);
1385 if (!vertices->v[i].vertex)
1386 goto error;
1389 for (i = 0; i < vertices->n_chambers; ++i) {
1390 vertices->c[i].dom = isl_morph_basic_set(
1391 isl_morph_copy(param_morph), vertices->c[i].dom);
1392 if (!vertices->c[i].dom)
1393 goto error;
1396 isl_morph_free(param_morph);
1397 isl_morph_free(morph);
1398 return vertices;
1399 error:
1400 isl_morph_free(param_morph);
1401 isl_morph_free(morph);
1402 isl_vertices_free(vertices);
1403 return NULL;
1406 /* Construct a simplex isl_cell spanned by the vertices with indices in
1407 * "simplex_ids" and "other_ids" and call "fn" on this isl_cell.
1409 static int call_on_simplex(__isl_keep isl_cell *cell,
1410 int *simplex_ids, int n_simplex, int *other_ids, int n_other,
1411 int (*fn)(__isl_take isl_cell *simplex, void *user), void *user)
1413 int i;
1414 isl_ctx *ctx;
1415 struct isl_cell *simplex;
1417 ctx = isl_cell_get_ctx(cell);
1419 simplex = isl_calloc_type(ctx, struct isl_cell);
1420 if (!simplex)
1421 return -1;
1422 simplex->vertices = isl_vertices_copy(cell->vertices);
1423 if (!simplex->vertices)
1424 goto error;
1425 simplex->dom = isl_basic_set_copy(cell->dom);
1426 if (!simplex->dom)
1427 goto error;
1428 simplex->n_vertices = n_simplex + n_other;
1429 simplex->ids = isl_alloc_array(ctx, int, simplex->n_vertices);
1430 if (!simplex->ids)
1431 goto error;
1433 for (i = 0; i < n_simplex; ++i)
1434 simplex->ids[i] = simplex_ids[i];
1435 for (i = 0; i < n_other; ++i)
1436 simplex->ids[n_simplex + i] = other_ids[i];
1438 return fn(simplex, user);
1439 error:
1440 isl_cell_free(simplex);
1441 return -1;
1444 /* Check whether the parametric vertex described by "vertex"
1445 * lies on the facet corresponding to constraint "facet" of "bset".
1446 * The isl_vec "v" is a temporary vector than can be used by this function.
1448 * We eliminate the variables from the facet constraint using the
1449 * equalities defining the vertex and check if the result is identical
1450 * to zero.
1452 * It would probably be better to keep track of the constraints defining
1453 * a vertex during the vertex construction so that we could simply look
1454 * it up here.
1456 static int vertex_on_facet(__isl_keep isl_basic_set *vertex,
1457 __isl_keep isl_basic_set *bset, int facet, __isl_keep isl_vec *v)
1459 int i;
1460 isl_int m;
1462 isl_seq_cpy(v->el, bset->ineq[facet], v->size);
1464 isl_int_init(m);
1465 for (i = 0; i < vertex->n_eq; ++i) {
1466 int k = isl_seq_last_non_zero(vertex->eq[i], v->size);
1467 isl_seq_elim(v->el, vertex->eq[i], k, v->size, &m);
1469 isl_int_clear(m);
1471 return isl_seq_first_non_zero(v->el, v->size) == -1;
1474 /* Triangulate the polytope spanned by the vertices with ids
1475 * in "simplex_ids" and "other_ids" and call "fn" on each of
1476 * the resulting simplices.
1477 * If the input polytope is already a simplex, we simply call "fn".
1478 * Otherwise, we pick a point from "other_ids" and add it to "simplex_ids".
1479 * Then we consider each facet of "bset" that does not contain the point
1480 * we just picked, but does contain some of the other points in "other_ids"
1481 * and call ourselves recursively on the polytope spanned by the new
1482 * "simplex_ids" and those points in "other_ids" that lie on the facet.
1484 static int triangulate(__isl_keep isl_cell *cell, __isl_keep isl_vec *v,
1485 int *simplex_ids, int n_simplex, int *other_ids, int n_other,
1486 int (*fn)(__isl_take isl_cell *simplex, void *user), void *user)
1488 int i, j, k;
1489 int d, nparam;
1490 int *ids;
1491 isl_ctx *ctx;
1492 isl_basic_set *vertex;
1493 isl_basic_set *bset;
1495 ctx = isl_cell_get_ctx(cell);
1496 d = isl_basic_set_dim(cell->vertices->bset, isl_dim_set);
1497 nparam = isl_basic_set_dim(cell->vertices->bset, isl_dim_param);
1499 if (n_simplex + n_other == d + 1)
1500 return call_on_simplex(cell, simplex_ids, n_simplex,
1501 other_ids, n_other, fn, user);
1503 simplex_ids[n_simplex] = other_ids[0];
1504 vertex = cell->vertices->v[other_ids[0]].vertex;
1505 bset = cell->vertices->bset;
1507 ids = isl_alloc_array(ctx, int, n_other - 1);
1508 for (i = 0; i < bset->n_ineq; ++i) {
1509 if (isl_seq_first_non_zero(bset->ineq[i] + 1 + nparam, d) == -1)
1510 continue;
1511 if (vertex_on_facet(vertex, bset, i, v))
1512 continue;
1514 for (j = 1, k = 0; j < n_other; ++j) {
1515 isl_basic_set *ov;
1516 ov = cell->vertices->v[other_ids[j]].vertex;
1517 if (vertex_on_facet(ov, bset, i, v))
1518 ids[k++] = other_ids[j];
1520 if (k == 0)
1521 continue;
1523 if (triangulate(cell, v, simplex_ids, n_simplex + 1,
1524 ids, k, fn, user) < 0)
1525 goto error;
1527 free(ids);
1529 return 0;
1530 error:
1531 free(ids);
1532 return -1;
1535 /* Triangulate the given cell and call "fn" on each of the resulting
1536 * simplices.
1538 int isl_cell_foreach_simplex(__isl_take isl_cell *cell,
1539 int (*fn)(__isl_take isl_cell *simplex, void *user), void *user)
1541 int d, total;
1542 int r;
1543 isl_ctx *ctx;
1544 isl_vec *v = NULL;
1545 int *simplex_ids = NULL;
1547 if (!cell)
1548 return -1;
1550 d = isl_basic_set_dim(cell->vertices->bset, isl_dim_set);
1551 total = isl_basic_set_total_dim(cell->vertices->bset);
1553 if (cell->n_vertices == d + 1)
1554 return fn(cell, user);
1556 ctx = isl_cell_get_ctx(cell);
1557 simplex_ids = isl_alloc_array(ctx, int, d + 1);
1558 if (!simplex_ids)
1559 goto error;
1561 v = isl_vec_alloc(ctx, 1 + total);
1562 if (!v)
1563 goto error;
1565 r = triangulate(cell, v, simplex_ids, 0,
1566 cell->ids, cell->n_vertices, fn, user);
1568 isl_vec_free(v);
1569 free(simplex_ids);
1571 isl_cell_free(cell);
1573 return r;
1574 error:
1575 free(simplex_ids);
1576 isl_vec_free(v);
1577 isl_cell_free(cell);
1578 return -1;