2 * Copyright 2006-2007 Universiteit Leiden
3 * Copyright 2008-2009 Katholieke Universiteit Leuven
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
8 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
9 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
10 * B-3001 Leuven, Belgium
14 #include <isl_ctx_private.h>
15 #include <isl_map_private.h>
16 #include <isl_options_private.h>
17 #include "isl_basis_reduction.h"
19 static void save_alpha(GBR_LP
*lp
, int first
, int n
, GBR_type
*alpha
)
23 for (i
= 0; i
< n
; ++i
)
24 GBR_lp_get_alpha(lp
, first
+ i
, &alpha
[i
]);
27 /* Compute a reduced basis for the set represented by the tableau "tab".
28 * tab->basis, which must be initialized by the calling function to an affine
29 * unimodular basis, is updated to reflect the reduced basis.
30 * The first tab->n_zero rows of the basis (ignoring the constant row)
31 * are assumed to correspond to equalities and are left untouched.
32 * tab->n_zero is updated to reflect any additional equalities that
33 * have been detected in the first rows of the new basis.
34 * The final tab->n_unbounded rows of the basis are assumed to correspond
35 * to unbounded directions and are also left untouched.
36 * In particular this means that the remaining rows are assumed to
37 * correspond to bounded directions.
39 * This function implements the algorithm described in
40 * "An Implementation of the Generalized Basis Reduction Algorithm
41 * for Integer Programming" of Cook el al. to compute a reduced basis.
42 * We use \epsilon = 1/4.
44 * If ctx->opt->gbr_only_first is set, the user is only interested
45 * in the first direction. In this case we stop the basis reduction when
46 * the width in the first direction becomes smaller than 2.
48 struct isl_tab
*isl_tab_compute_reduced_basis(struct isl_tab
*tab
)
56 GBR_type F_old
, alpha
, F_new
;
59 struct isl_vec
*b_tmp
;
61 GBR_type
*alpha_buffer
[2] = { NULL
, NULL
};
62 GBR_type
*alpha_saved
;
83 gbr_only_first
= ctx
->opt
->gbr_only_first
;
89 n_bounded
= dim
- tab
->n_unbounded
;
90 if (n_bounded
<= tab
->n_zero
+ 1)
106 b_tmp
= isl_vec_alloc(ctx
, dim
);
110 F
= isl_alloc_array(ctx
, GBR_type
, n_bounded
);
111 alpha_buffer
[0] = isl_alloc_array(ctx
, GBR_type
, n_bounded
);
112 alpha_buffer
[1] = isl_alloc_array(ctx
, GBR_type
, n_bounded
);
113 alpha_saved
= alpha_buffer
[0];
115 if (!F
|| !alpha_buffer
[0] || !alpha_buffer
[1])
118 for (i
= 0; i
< n_bounded
; ++i
) {
120 GBR_init(alpha_buffer
[0][i
]);
121 GBR_init(alpha_buffer
[1][i
]);
127 lp
= GBR_lp_init(tab
);
133 GBR_lp_set_obj(lp
, B
->row
[1+i
]+1, dim
);
134 ctx
->stats
->gbr_solved_lps
++;
135 unbounded
= GBR_lp_solve(lp
);
136 isl_assert(ctx
, !unbounded
, goto error
);
137 GBR_lp_get_obj_val(lp
, &F
[i
]);
139 if (GBR_lt(F
[i
], one
)) {
140 if (!GBR_is_zero(F
[i
])) {
141 empty
= GBR_lp_cut(lp
, B
->row
[1+i
]+1);
150 if (i
+1 == tab
->n_zero
) {
151 GBR_lp_set_obj(lp
, B
->row
[1+i
+1]+1, dim
);
152 ctx
->stats
->gbr_solved_lps
++;
153 unbounded
= GBR_lp_solve(lp
);
154 isl_assert(ctx
, !unbounded
, goto error
);
155 GBR_lp_get_obj_val(lp
, &F_new
);
156 fixed
= GBR_lp_is_fixed(lp
);
157 GBR_set_ui(alpha
, 0);
160 row
= GBR_lp_next_row(lp
);
161 GBR_set(F_new
, F_saved
);
163 GBR_set(alpha
, alpha_saved
[i
]);
165 row
= GBR_lp_add_row(lp
, B
->row
[1+i
]+1, dim
);
166 GBR_lp_set_obj(lp
, B
->row
[1+i
+1]+1, dim
);
167 ctx
->stats
->gbr_solved_lps
++;
168 unbounded
= GBR_lp_solve(lp
);
169 isl_assert(ctx
, !unbounded
, goto error
);
170 GBR_lp_get_obj_val(lp
, &F_new
);
171 fixed
= GBR_lp_is_fixed(lp
);
173 GBR_lp_get_alpha(lp
, row
, &alpha
);
176 save_alpha(lp
, row
-i
, i
, alpha_saved
);
178 if (GBR_lp_del_row(lp
) < 0)
181 GBR_set(F
[i
+1], F_new
);
183 GBR_floor(mu
[0], alpha
);
184 GBR_ceil(mu
[1], alpha
);
186 if (isl_int_eq(mu
[0], mu
[1]))
187 isl_int_set(tmp
, mu
[0]);
191 for (j
= 0; j
<= 1; ++j
) {
192 isl_int_set(tmp
, mu
[j
]);
193 isl_seq_combine(b_tmp
->el
,
194 ctx
->one
, B
->row
[1+i
+1]+1,
195 tmp
, B
->row
[1+i
]+1, dim
);
196 GBR_lp_set_obj(lp
, b_tmp
->el
, dim
);
197 ctx
->stats
->gbr_solved_lps
++;
198 unbounded
= GBR_lp_solve(lp
);
199 isl_assert(ctx
, !unbounded
, goto error
);
200 GBR_lp_get_obj_val(lp
, &mu_F
[j
]);
201 mu_fixed
[j
] = GBR_lp_is_fixed(lp
);
203 save_alpha(lp
, row
-i
, i
, alpha_buffer
[j
]);
206 if (GBR_lt(mu_F
[0], mu_F
[1]))
211 isl_int_set(tmp
, mu
[j
]);
212 GBR_set(F_new
, mu_F
[j
]);
214 alpha_saved
= alpha_buffer
[j
];
216 isl_seq_combine(B
->row
[1+i
+1]+1, ctx
->one
, B
->row
[1+i
+1]+1,
217 tmp
, B
->row
[1+i
]+1, dim
);
219 if (i
+1 == tab
->n_zero
&& fixed
) {
220 if (!GBR_is_zero(F
[i
+1])) {
221 empty
= GBR_lp_cut(lp
, B
->row
[1+i
+1]+1);
224 GBR_set_ui(F
[i
+1], 0);
229 GBR_set(F_old
, F
[i
]);
232 /* mu_F[0] = 4 * F_new; mu_F[1] = 3 * F_old */
233 GBR_set_ui(mu_F
[0], 4);
234 GBR_mul(mu_F
[0], mu_F
[0], F_new
);
235 GBR_set_ui(mu_F
[1], 3);
236 GBR_mul(mu_F
[1], mu_F
[1], F_old
);
237 if (GBR_lt(mu_F
[0], mu_F
[1])) {
238 B
= isl_mat_swap_rows(B
, 1 + i
, 1 + i
+ 1);
239 if (i
> tab
->n_zero
) {
241 GBR_set(F_saved
, F_new
);
243 if (GBR_lp_del_row(lp
) < 0)
247 GBR_set(F
[tab
->n_zero
], F_new
);
248 if (gbr_only_first
&& GBR_lt(F
[tab
->n_zero
], two
))
252 if (!GBR_is_zero(F
[tab
->n_zero
])) {
253 empty
= GBR_lp_cut(lp
, B
->row
[1+tab
->n_zero
]+1);
256 GBR_set_ui(F
[tab
->n_zero
], 0);
262 GBR_lp_add_row(lp
, B
->row
[1+i
]+1, dim
);
265 } while (i
< n_bounded
- 1);
279 for (i
= 0; i
< n_bounded
; ++i
) {
281 GBR_clear(alpha_buffer
[0][i
]);
282 GBR_clear(alpha_buffer
[1][i
]);
285 free(alpha_buffer
[0]);
286 free(alpha_buffer
[1]);
300 isl_int_clear(mu
[0]);
301 isl_int_clear(mu
[1]);
308 /* Compute an affine form of a reduced basis of the given basic
309 * non-parametric set, which is assumed to be bounded and not
310 * include any integer divisions.
311 * The first column and the first row correspond to the constant term.
313 * If the input contains any equalities, we first create an initial
314 * basis with the equalities first. Otherwise, we start off with
315 * the identity matrix.
317 struct isl_mat
*isl_basic_set_reduced_basis(struct isl_basic_set
*bset
)
319 struct isl_mat
*basis
;
325 if (isl_basic_set_dim(bset
, isl_dim_div
) != 0)
326 isl_die(bset
->ctx
, isl_error_invalid
,
327 "no integer division allowed", return NULL
);
328 if (isl_basic_set_dim(bset
, isl_dim_param
) != 0)
329 isl_die(bset
->ctx
, isl_error_invalid
,
330 "no parameters allowed", return NULL
);
332 tab
= isl_tab_from_basic_set(bset
, 0);
337 tab
->basis
= isl_mat_identity(bset
->ctx
, 1 + tab
->n_var
);
340 unsigned nvar
= isl_basic_set_total_dim(bset
);
341 eq
= isl_mat_sub_alloc6(bset
->ctx
, bset
->eq
, 0, bset
->n_eq
,
343 eq
= isl_mat_left_hermite(eq
, 0, NULL
, &tab
->basis
);
344 tab
->basis
= isl_mat_lin_to_aff(tab
->basis
);
345 tab
->n_zero
= bset
->n_eq
;
348 tab
= isl_tab_compute_reduced_basis(tab
);
352 basis
= isl_mat_copy(tab
->basis
);