2 * Copyright 2011 INRIA Saclay
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
11 #include <isl_ctx_private.h>
12 #include <isl_map_private.h>
13 #include <isl_space_private.h>
16 #include <isl/constraint.h>
17 #include <isl/schedule.h>
18 #include <isl_mat_private.h>
22 #include <isl_dim_map.h>
23 #include <isl_hmap_map_basic_set.h>
25 #include <isl_schedule_private.h>
26 #include <isl_band_private.h>
27 #include <isl_list_private.h>
28 #include <isl_options_private.h>
29 #include <isl_tarjan.h>
32 * The scheduling algorithm implemented in this file was inspired by
33 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
34 * Parallelization and Locality Optimization in the Polyhedral Model".
38 /* Internal information about a node that is used during the construction
40 * dim represents the space in which the domain lives
41 * sched is a matrix representation of the schedule being constructed
43 * sched_map is an isl_map representation of the same (partial) schedule
44 * sched_map may be NULL
45 * rank is the number of linearly independent rows in the linear part
47 * the columns of cmap represent a change of basis for the schedule
48 * coefficients; the first rank columns span the linear part of
50 * start is the first variable in the LP problem in the sequences that
51 * represents the schedule coefficients of this node
52 * nvar is the dimension of the domain
53 * nparam is the number of parameters or 0 if we are not constructing
54 * a parametric schedule
56 * scc is the index of SCC (or WCC) this node belongs to
58 * band contains the band index for each of the rows of the schedule.
59 * band_id is used to differentiate between separate bands at the same
60 * level within the same parent band, i.e., bands that are separated
61 * by the parent band or bands that are independent of each other.
62 * zero contains a boolean for each of the rows of the schedule,
63 * indicating whether the corresponding scheduling dimension results
64 * in zero dependence distances within its band and with respect
65 * to the proximity edges.
67 struct isl_sched_node
{
84 static int node_has_dim(const void *entry
, const void *val
)
86 struct isl_sched_node
*node
= (struct isl_sched_node
*)entry
;
87 isl_space
*dim
= (isl_space
*)val
;
89 return isl_space_is_equal(node
->dim
, dim
);
92 /* An edge in the dependence graph. An edge may be used to
93 * ensure validity of the generated schedule, to minimize the dependence
96 * map is the dependence relation
97 * src is the source node
98 * dst is the sink node
99 * validity is set if the edge is used to ensure correctness
100 * proximity is set if the edge is used to minimize dependence distances
102 * For validity edges, start and end mark the sequence of inequality
103 * constraints in the LP problem that encode the validity constraint
104 * corresponding to this edge.
106 struct isl_sched_edge
{
109 struct isl_sched_node
*src
;
110 struct isl_sched_node
*dst
;
120 isl_edge_validity
= 0,
121 isl_edge_first
= isl_edge_validity
,
123 isl_edge_last
= isl_edge_proximity
126 /* Internal information about the dependence graph used during
127 * the construction of the schedule.
129 * intra_hmap is a cache, mapping dependence relations to their dual,
130 * for dependences from a node to itself
131 * inter_hmap is a cache, mapping dependence relations to their dual,
132 * for dependences between distinct nodes
134 * n is the number of nodes
135 * node is the list of nodes
136 * maxvar is the maximal number of variables over all nodes
137 * max_row is the allocated number of rows in the schedule
138 * n_row is the current (maximal) number of linearly independent
139 * rows in the node schedules
140 * n_total_row is the current number of rows in the node schedules
141 * n_band is the current number of completed bands
142 * band_start is the starting row in the node schedules of the current band
143 * root is set if this graph is the original dependence graph,
144 * without any splitting
146 * sorted contains a list of node indices sorted according to the
147 * SCC to which a node belongs
149 * n_edge is the number of edges
150 * edge is the list of edges
151 * max_edge contains the maximal number of edges of each type;
152 * in particular, it contains the number of edges in the inital graph.
153 * edge_table contains pointers into the edge array, hashed on the source
154 * and sink spaces; there is one such table for each type;
155 * a given edge may be referenced from more than one table
156 * if the corresponding relation appears in more than of the
157 * sets of dependences
159 * node_table contains pointers into the node array, hashed on the space
161 * region contains a list of variable sequences that should be non-trivial
163 * lp contains the (I)LP problem used to obtain new schedule rows
165 * src_scc and dst_scc are the source and sink SCCs of an edge with
166 * conflicting constraints
168 * scc represents the number of components
170 struct isl_sched_graph
{
171 isl_hmap_map_basic_set
*intra_hmap
;
172 isl_hmap_map_basic_set
*inter_hmap
;
174 struct isl_sched_node
*node
;
188 struct isl_sched_edge
*edge
;
190 int max_edge
[isl_edge_last
+ 1];
191 struct isl_hash_table
*edge_table
[isl_edge_last
+ 1];
193 struct isl_hash_table
*node_table
;
194 struct isl_region
*region
;
204 /* Initialize node_table based on the list of nodes.
206 static int graph_init_table(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
210 graph
->node_table
= isl_hash_table_alloc(ctx
, graph
->n
);
211 if (!graph
->node_table
)
214 for (i
= 0; i
< graph
->n
; ++i
) {
215 struct isl_hash_table_entry
*entry
;
218 hash
= isl_space_get_hash(graph
->node
[i
].dim
);
219 entry
= isl_hash_table_find(ctx
, graph
->node_table
, hash
,
221 graph
->node
[i
].dim
, 1);
224 entry
->data
= &graph
->node
[i
];
230 /* Return a pointer to the node that lives within the given space,
231 * or NULL if there is no such node.
233 static struct isl_sched_node
*graph_find_node(isl_ctx
*ctx
,
234 struct isl_sched_graph
*graph
, __isl_keep isl_space
*dim
)
236 struct isl_hash_table_entry
*entry
;
239 hash
= isl_space_get_hash(dim
);
240 entry
= isl_hash_table_find(ctx
, graph
->node_table
, hash
,
241 &node_has_dim
, dim
, 0);
243 return entry
? entry
->data
: NULL
;
246 static int edge_has_src_and_dst(const void *entry
, const void *val
)
248 const struct isl_sched_edge
*edge
= entry
;
249 const struct isl_sched_edge
*temp
= val
;
251 return edge
->src
== temp
->src
&& edge
->dst
== temp
->dst
;
254 /* Add the given edge to graph->edge_table[type].
256 static int graph_edge_table_add(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
257 enum isl_edge_type type
, struct isl_sched_edge
*edge
)
259 struct isl_hash_table_entry
*entry
;
262 hash
= isl_hash_init();
263 hash
= isl_hash_builtin(hash
, edge
->src
);
264 hash
= isl_hash_builtin(hash
, edge
->dst
);
265 entry
= isl_hash_table_find(ctx
, graph
->edge_table
[type
], hash
,
266 &edge_has_src_and_dst
, edge
, 1);
274 /* Allocate the edge_tables based on the maximal number of edges of
277 static int graph_init_edge_tables(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
281 for (i
= 0; i
<= isl_edge_last
; ++i
) {
282 graph
->edge_table
[i
] = isl_hash_table_alloc(ctx
,
284 if (!graph
->edge_table
[i
])
291 /* If graph->edge_table[type] contains an edge from the given source
292 * to the given destination, then return the hash table entry of this edge.
293 * Otherwise, return NULL.
295 static struct isl_hash_table_entry
*graph_find_edge_entry(
296 struct isl_sched_graph
*graph
,
297 enum isl_edge_type type
,
298 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
300 isl_ctx
*ctx
= isl_space_get_ctx(src
->dim
);
302 struct isl_sched_edge temp
= { .src
= src
, .dst
= dst
};
304 hash
= isl_hash_init();
305 hash
= isl_hash_builtin(hash
, temp
.src
);
306 hash
= isl_hash_builtin(hash
, temp
.dst
);
307 return isl_hash_table_find(ctx
, graph
->edge_table
[type
], hash
,
308 &edge_has_src_and_dst
, &temp
, 0);
312 /* If graph->edge_table[type] contains an edge from the given source
313 * to the given destination, then return this edge.
314 * Otherwise, return NULL.
316 static struct isl_sched_edge
*graph_find_edge(struct isl_sched_graph
*graph
,
317 enum isl_edge_type type
,
318 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
320 struct isl_hash_table_entry
*entry
;
322 entry
= graph_find_edge_entry(graph
, type
, src
, dst
);
329 /* Check whether the dependence graph has an edge of the give type
330 * between the given two nodes.
332 static int graph_has_edge(struct isl_sched_graph
*graph
,
333 enum isl_edge_type type
,
334 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
336 struct isl_sched_edge
*edge
;
339 edge
= graph_find_edge(graph
, type
, src
, dst
);
343 empty
= isl_map_plain_is_empty(edge
->map
);
350 /* If there is an edge from the given source to the given destination
351 * of any type then return this edge.
352 * Otherwise, return NULL.
354 static struct isl_sched_edge
*graph_find_any_edge(struct isl_sched_graph
*graph
,
355 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
357 enum isl_edge_type i
;
358 struct isl_sched_edge
*edge
;
360 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
361 edge
= graph_find_edge(graph
, i
, src
, dst
);
369 /* Remove the given edge from all the edge_tables that refer to it.
371 static void graph_remove_edge(struct isl_sched_graph
*graph
,
372 struct isl_sched_edge
*edge
)
374 isl_ctx
*ctx
= isl_map_get_ctx(edge
->map
);
375 enum isl_edge_type i
;
377 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
378 struct isl_hash_table_entry
*entry
;
380 entry
= graph_find_edge_entry(graph
, i
, edge
->src
, edge
->dst
);
383 if (entry
->data
!= edge
)
385 isl_hash_table_remove(ctx
, graph
->edge_table
[i
], entry
);
389 /* Check whether the dependence graph has any edge
390 * between the given two nodes.
392 static int graph_has_any_edge(struct isl_sched_graph
*graph
,
393 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
395 enum isl_edge_type i
;
398 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
399 r
= graph_has_edge(graph
, i
, src
, dst
);
407 /* Check whether the dependence graph has a validity edge
408 * between the given two nodes.
410 static int graph_has_validity_edge(struct isl_sched_graph
*graph
,
411 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
413 return graph_has_edge(graph
, isl_edge_validity
, src
, dst
);
416 static int graph_alloc(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
417 int n_node
, int n_edge
)
422 graph
->n_edge
= n_edge
;
423 graph
->node
= isl_calloc_array(ctx
, struct isl_sched_node
, graph
->n
);
424 graph
->sorted
= isl_calloc_array(ctx
, int, graph
->n
);
425 graph
->region
= isl_alloc_array(ctx
, struct isl_region
, graph
->n
);
426 graph
->edge
= isl_calloc_array(ctx
,
427 struct isl_sched_edge
, graph
->n_edge
);
429 graph
->intra_hmap
= isl_hmap_map_basic_set_alloc(ctx
, 2 * n_edge
);
430 graph
->inter_hmap
= isl_hmap_map_basic_set_alloc(ctx
, 2 * n_edge
);
432 if (!graph
->node
|| !graph
->region
|| !graph
->edge
|| !graph
->sorted
)
435 for(i
= 0; i
< graph
->n
; ++i
)
436 graph
->sorted
[i
] = i
;
441 static void graph_free(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
445 isl_hmap_map_basic_set_free(ctx
, graph
->intra_hmap
);
446 isl_hmap_map_basic_set_free(ctx
, graph
->inter_hmap
);
448 for (i
= 0; i
< graph
->n
; ++i
) {
449 isl_space_free(graph
->node
[i
].dim
);
450 isl_mat_free(graph
->node
[i
].sched
);
451 isl_map_free(graph
->node
[i
].sched_map
);
452 isl_mat_free(graph
->node
[i
].cmap
);
454 free(graph
->node
[i
].band
);
455 free(graph
->node
[i
].band_id
);
456 free(graph
->node
[i
].zero
);
461 for (i
= 0; i
< graph
->n_edge
; ++i
)
462 isl_map_free(graph
->edge
[i
].map
);
465 for (i
= 0; i
<= isl_edge_last
; ++i
)
466 isl_hash_table_free(ctx
, graph
->edge_table
[i
]);
467 isl_hash_table_free(ctx
, graph
->node_table
);
468 isl_basic_set_free(graph
->lp
);
471 /* For each "set" on which this function is called, increment
472 * graph->n by one and update graph->maxvar.
474 static int init_n_maxvar(__isl_take isl_set
*set
, void *user
)
476 struct isl_sched_graph
*graph
= user
;
477 int nvar
= isl_set_dim(set
, isl_dim_set
);
480 if (nvar
> graph
->maxvar
)
481 graph
->maxvar
= nvar
;
488 /* Compute the number of rows that should be allocated for the schedule.
489 * The graph can be split at most "n - 1" times, there can be at most
490 * two rows for each dimension in the iteration domains (in particular,
491 * we usually have one row, but it may be split by split_scaled),
492 * and there can be one extra row for ordering the statements.
493 * Note that if we have actually split "n - 1" times, then no ordering
494 * is needed, so in principle we could use "graph->n + 2 * graph->maxvar - 1".
496 static int compute_max_row(struct isl_sched_graph
*graph
,
497 __isl_keep isl_union_set
*domain
)
501 if (isl_union_set_foreach_set(domain
, &init_n_maxvar
, graph
) < 0)
503 graph
->max_row
= graph
->n
+ 2 * graph
->maxvar
;
508 /* Add a new node to the graph representing the given set.
510 static int extract_node(__isl_take isl_set
*set
, void *user
)
516 struct isl_sched_graph
*graph
= user
;
517 int *band
, *band_id
, *zero
;
519 ctx
= isl_set_get_ctx(set
);
520 dim
= isl_set_get_space(set
);
522 nvar
= isl_space_dim(dim
, isl_dim_set
);
523 nparam
= isl_space_dim(dim
, isl_dim_param
);
524 if (!ctx
->opt
->schedule_parametric
)
526 sched
= isl_mat_alloc(ctx
, 0, 1 + nparam
+ nvar
);
527 graph
->node
[graph
->n
].dim
= dim
;
528 graph
->node
[graph
->n
].nvar
= nvar
;
529 graph
->node
[graph
->n
].nparam
= nparam
;
530 graph
->node
[graph
->n
].sched
= sched
;
531 graph
->node
[graph
->n
].sched_map
= NULL
;
532 band
= isl_alloc_array(ctx
, int, graph
->max_row
);
533 graph
->node
[graph
->n
].band
= band
;
534 band_id
= isl_calloc_array(ctx
, int, graph
->max_row
);
535 graph
->node
[graph
->n
].band_id
= band_id
;
536 zero
= isl_calloc_array(ctx
, int, graph
->max_row
);
537 graph
->node
[graph
->n
].zero
= zero
;
540 if (!sched
|| !band
|| !band_id
|| !zero
)
546 struct isl_extract_edge_data
{
547 enum isl_edge_type type
;
548 struct isl_sched_graph
*graph
;
551 /* Add a new edge to the graph based on the given map
552 * and add it to data->graph->edge_table[data->type].
553 * If a dependence relation of a given type happens to be identical
554 * to one of the dependence relations of a type that was added before,
555 * then we don't create a new edge, but instead mark the original edge
556 * as also representing a dependence of the current type.
558 static int extract_edge(__isl_take isl_map
*map
, void *user
)
560 isl_ctx
*ctx
= isl_map_get_ctx(map
);
561 struct isl_extract_edge_data
*data
= user
;
562 struct isl_sched_graph
*graph
= data
->graph
;
563 struct isl_sched_node
*src
, *dst
;
565 struct isl_sched_edge
*edge
;
568 dim
= isl_space_domain(isl_map_get_space(map
));
569 src
= graph_find_node(ctx
, graph
, dim
);
571 dim
= isl_space_range(isl_map_get_space(map
));
572 dst
= graph_find_node(ctx
, graph
, dim
);
580 graph
->edge
[graph
->n_edge
].src
= src
;
581 graph
->edge
[graph
->n_edge
].dst
= dst
;
582 graph
->edge
[graph
->n_edge
].map
= map
;
583 if (data
->type
== isl_edge_validity
) {
584 graph
->edge
[graph
->n_edge
].validity
= 1;
585 graph
->edge
[graph
->n_edge
].proximity
= 0;
587 if (data
->type
== isl_edge_proximity
) {
588 graph
->edge
[graph
->n_edge
].validity
= 0;
589 graph
->edge
[graph
->n_edge
].proximity
= 1;
593 edge
= graph_find_any_edge(graph
, src
, dst
);
595 return graph_edge_table_add(ctx
, graph
, data
->type
,
596 &graph
->edge
[graph
->n_edge
- 1]);
597 is_equal
= isl_map_plain_is_equal(map
, edge
->map
);
601 return graph_edge_table_add(ctx
, graph
, data
->type
,
602 &graph
->edge
[graph
->n_edge
- 1]);
605 edge
->validity
|= graph
->edge
[graph
->n_edge
].validity
;
606 edge
->proximity
|= graph
->edge
[graph
->n_edge
].proximity
;
609 return graph_edge_table_add(ctx
, graph
, data
->type
, edge
);
612 /* Check whether there is any dependence from node[j] to node[i]
613 * or from node[i] to node[j].
615 static int node_follows_weak(int i
, int j
, void *user
)
618 struct isl_sched_graph
*graph
= user
;
620 f
= graph_has_any_edge(graph
, &graph
->node
[j
], &graph
->node
[i
]);
623 return graph_has_any_edge(graph
, &graph
->node
[i
], &graph
->node
[j
]);
626 /* Check whether there is a validity dependence from node[j] to node[i],
627 * forcing node[i] to follow node[j].
629 static int node_follows_strong(int i
, int j
, void *user
)
631 struct isl_sched_graph
*graph
= user
;
633 return graph_has_validity_edge(graph
, &graph
->node
[j
], &graph
->node
[i
]);
636 /* Use Tarjan's algorithm for computing the strongly connected components
637 * in the dependence graph (only validity edges).
638 * If weak is set, we consider the graph to be undirected and
639 * we effectively compute the (weakly) connected components.
640 * Additionally, we also consider other edges when weak is set.
642 static int detect_ccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
, int weak
)
645 struct isl_tarjan_graph
*g
= NULL
;
647 g
= isl_tarjan_graph_init(ctx
, graph
->n
,
648 weak
? &node_follows_weak
: &node_follows_strong
, graph
);
656 while (g
->order
[i
] != -1) {
657 graph
->node
[g
->order
[i
]].scc
= graph
->scc
;
665 isl_tarjan_graph_free(g
);
670 /* Apply Tarjan's algorithm to detect the strongly connected components
671 * in the dependence graph.
673 static int detect_sccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
675 return detect_ccs(ctx
, graph
, 0);
678 /* Apply Tarjan's algorithm to detect the (weakly) connected components
679 * in the dependence graph.
681 static int detect_wccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
683 return detect_ccs(ctx
, graph
, 1);
686 static int cmp_scc(const void *a
, const void *b
, void *data
)
688 struct isl_sched_graph
*graph
= data
;
692 return graph
->node
[*i1
].scc
- graph
->node
[*i2
].scc
;
695 /* Sort the elements of graph->sorted according to the corresponding SCCs.
697 static int sort_sccs(struct isl_sched_graph
*graph
)
699 return isl_sort(graph
->sorted
, graph
->n
, sizeof(int), &cmp_scc
, graph
);
702 /* Given a dependence relation R from a node to itself,
703 * construct the set of coefficients of valid constraints for elements
704 * in that dependence relation.
705 * In particular, the result contains tuples of coefficients
706 * c_0, c_n, c_x such that
708 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
712 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
714 * We choose here to compute the dual of delta R.
715 * Alternatively, we could have computed the dual of R, resulting
716 * in a set of tuples c_0, c_n, c_x, c_y, and then
717 * plugged in (c_0, c_n, c_x, -c_x).
719 static __isl_give isl_basic_set
*intra_coefficients(
720 struct isl_sched_graph
*graph
, __isl_take isl_map
*map
)
722 isl_ctx
*ctx
= isl_map_get_ctx(map
);
726 if (isl_hmap_map_basic_set_has(ctx
, graph
->intra_hmap
, map
))
727 return isl_hmap_map_basic_set_get(ctx
, graph
->intra_hmap
, map
);
729 delta
= isl_set_remove_divs(isl_map_deltas(isl_map_copy(map
)));
730 coef
= isl_set_coefficients(delta
);
731 isl_hmap_map_basic_set_set(ctx
, graph
->intra_hmap
, map
,
732 isl_basic_set_copy(coef
));
737 /* Given a dependence relation R, * construct the set of coefficients
738 * of valid constraints for elements in that dependence relation.
739 * In particular, the result contains tuples of coefficients
740 * c_0, c_n, c_x, c_y such that
742 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
745 static __isl_give isl_basic_set
*inter_coefficients(
746 struct isl_sched_graph
*graph
, __isl_take isl_map
*map
)
748 isl_ctx
*ctx
= isl_map_get_ctx(map
);
752 if (isl_hmap_map_basic_set_has(ctx
, graph
->inter_hmap
, map
))
753 return isl_hmap_map_basic_set_get(ctx
, graph
->inter_hmap
, map
);
755 set
= isl_map_wrap(isl_map_remove_divs(isl_map_copy(map
)));
756 coef
= isl_set_coefficients(set
);
757 isl_hmap_map_basic_set_set(ctx
, graph
->inter_hmap
, map
,
758 isl_basic_set_copy(coef
));
763 /* Add constraints to graph->lp that force validity for the given
764 * dependence from a node i to itself.
765 * That is, add constraints that enforce
767 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
768 * = c_i_x (y - x) >= 0
770 * for each (x,y) in R.
771 * We obtain general constraints on coefficients (c_0, c_n, c_x)
772 * of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-),
773 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
774 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
776 * Actually, we do not construct constraints for the c_i_x themselves,
777 * but for the coefficients of c_i_x written as a linear combination
778 * of the columns in node->cmap.
780 static int add_intra_validity_constraints(struct isl_sched_graph
*graph
,
781 struct isl_sched_edge
*edge
)
784 isl_map
*map
= isl_map_copy(edge
->map
);
785 isl_ctx
*ctx
= isl_map_get_ctx(map
);
787 isl_dim_map
*dim_map
;
789 struct isl_sched_node
*node
= edge
->src
;
791 coef
= intra_coefficients(graph
, map
);
793 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
795 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
796 isl_space_dim(dim
, isl_dim_set
), isl_mat_copy(node
->cmap
));
798 total
= isl_basic_set_total_dim(graph
->lp
);
799 dim_map
= isl_dim_map_alloc(ctx
, total
);
800 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 1, 2,
801 isl_space_dim(dim
, isl_dim_set
), 1,
803 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 2, 2,
804 isl_space_dim(dim
, isl_dim_set
), 1,
806 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
807 coef
->n_eq
, coef
->n_ineq
);
808 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
815 /* Add constraints to graph->lp that force validity for the given
816 * dependence from node i to node j.
817 * That is, add constraints that enforce
819 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
821 * for each (x,y) in R.
822 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
823 * of valid constraints for R and then plug in
824 * (c_j_0 - c_i_0, c_j_n^+ - c_j_n^- - (c_i_n^+ - c_i_n^-),
825 * c_j_x^+ - c_j_x^- - (c_i_x^+ - c_i_x^-)),
826 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
827 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
829 * Actually, we do not construct constraints for the c_*_x themselves,
830 * but for the coefficients of c_*_x written as a linear combination
831 * of the columns in node->cmap.
833 static int add_inter_validity_constraints(struct isl_sched_graph
*graph
,
834 struct isl_sched_edge
*edge
)
837 isl_map
*map
= isl_map_copy(edge
->map
);
838 isl_ctx
*ctx
= isl_map_get_ctx(map
);
840 isl_dim_map
*dim_map
;
842 struct isl_sched_node
*src
= edge
->src
;
843 struct isl_sched_node
*dst
= edge
->dst
;
845 coef
= inter_coefficients(graph
, map
);
847 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
849 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
850 isl_space_dim(dim
, isl_dim_set
), isl_mat_copy(src
->cmap
));
851 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
852 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
,
853 isl_mat_copy(dst
->cmap
));
855 total
= isl_basic_set_total_dim(graph
->lp
);
856 dim_map
= isl_dim_map_alloc(ctx
, total
);
858 isl_dim_map_range(dim_map
, dst
->start
, 0, 0, 0, 1, 1);
859 isl_dim_map_range(dim_map
, dst
->start
+ 1, 2, 1, 1, dst
->nparam
, -1);
860 isl_dim_map_range(dim_map
, dst
->start
+ 2, 2, 1, 1, dst
->nparam
, 1);
861 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 1, 2,
862 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
864 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 2, 2,
865 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
868 isl_dim_map_range(dim_map
, src
->start
, 0, 0, 0, 1, -1);
869 isl_dim_map_range(dim_map
, src
->start
+ 1, 2, 1, 1, src
->nparam
, 1);
870 isl_dim_map_range(dim_map
, src
->start
+ 2, 2, 1, 1, src
->nparam
, -1);
871 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 1, 2,
872 isl_space_dim(dim
, isl_dim_set
), 1,
874 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 2, 2,
875 isl_space_dim(dim
, isl_dim_set
), 1,
878 edge
->start
= graph
->lp
->n_ineq
;
879 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
880 coef
->n_eq
, coef
->n_ineq
);
881 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
884 edge
->end
= graph
->lp
->n_ineq
;
889 /* Add constraints to graph->lp that bound the dependence distance for the given
890 * dependence from a node i to itself.
891 * If s = 1, we add the constraint
893 * c_i_x (y - x) <= m_0 + m_n n
897 * -c_i_x (y - x) + m_0 + m_n n >= 0
899 * for each (x,y) in R.
900 * If s = -1, we add the constraint
902 * -c_i_x (y - x) <= m_0 + m_n n
906 * c_i_x (y - x) + m_0 + m_n n >= 0
908 * for each (x,y) in R.
909 * We obtain general constraints on coefficients (c_0, c_n, c_x)
910 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
911 * with each coefficient (except m_0) represented as a pair of non-negative
914 * Actually, we do not construct constraints for the c_i_x themselves,
915 * but for the coefficients of c_i_x written as a linear combination
916 * of the columns in node->cmap.
918 static int add_intra_proximity_constraints(struct isl_sched_graph
*graph
,
919 struct isl_sched_edge
*edge
, int s
)
923 isl_map
*map
= isl_map_copy(edge
->map
);
924 isl_ctx
*ctx
= isl_map_get_ctx(map
);
926 isl_dim_map
*dim_map
;
928 struct isl_sched_node
*node
= edge
->src
;
930 coef
= intra_coefficients(graph
, map
);
932 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
934 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
935 isl_space_dim(dim
, isl_dim_set
), isl_mat_copy(node
->cmap
));
937 nparam
= isl_space_dim(node
->dim
, isl_dim_param
);
938 total
= isl_basic_set_total_dim(graph
->lp
);
939 dim_map
= isl_dim_map_alloc(ctx
, total
);
940 isl_dim_map_range(dim_map
, 1, 0, 0, 0, 1, 1);
941 isl_dim_map_range(dim_map
, 4, 2, 1, 1, nparam
, -1);
942 isl_dim_map_range(dim_map
, 5, 2, 1, 1, nparam
, 1);
943 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 1, 2,
944 isl_space_dim(dim
, isl_dim_set
), 1,
946 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 2, 2,
947 isl_space_dim(dim
, isl_dim_set
), 1,
949 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
950 coef
->n_eq
, coef
->n_ineq
);
951 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
958 /* Add constraints to graph->lp that bound the dependence distance for the given
959 * dependence from node i to node j.
960 * If s = 1, we add the constraint
962 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
967 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
970 * for each (x,y) in R.
971 * If s = -1, we add the constraint
973 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
978 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
981 * for each (x,y) in R.
982 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
983 * of valid constraints for R and then plug in
984 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
986 * with each coefficient (except m_0, c_j_0 and c_i_0)
987 * represented as a pair of non-negative coefficients.
989 * Actually, we do not construct constraints for the c_*_x themselves,
990 * but for the coefficients of c_*_x written as a linear combination
991 * of the columns in node->cmap.
993 static int add_inter_proximity_constraints(struct isl_sched_graph
*graph
,
994 struct isl_sched_edge
*edge
, int s
)
998 isl_map
*map
= isl_map_copy(edge
->map
);
999 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1001 isl_dim_map
*dim_map
;
1002 isl_basic_set
*coef
;
1003 struct isl_sched_node
*src
= edge
->src
;
1004 struct isl_sched_node
*dst
= edge
->dst
;
1006 coef
= inter_coefficients(graph
, map
);
1008 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
1010 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
1011 isl_space_dim(dim
, isl_dim_set
), isl_mat_copy(src
->cmap
));
1012 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
1013 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
,
1014 isl_mat_copy(dst
->cmap
));
1016 nparam
= isl_space_dim(src
->dim
, isl_dim_param
);
1017 total
= isl_basic_set_total_dim(graph
->lp
);
1018 dim_map
= isl_dim_map_alloc(ctx
, total
);
1020 isl_dim_map_range(dim_map
, 1, 0, 0, 0, 1, 1);
1021 isl_dim_map_range(dim_map
, 4, 2, 1, 1, nparam
, -1);
1022 isl_dim_map_range(dim_map
, 5, 2, 1, 1, nparam
, 1);
1024 isl_dim_map_range(dim_map
, dst
->start
, 0, 0, 0, 1, -s
);
1025 isl_dim_map_range(dim_map
, dst
->start
+ 1, 2, 1, 1, dst
->nparam
, s
);
1026 isl_dim_map_range(dim_map
, dst
->start
+ 2, 2, 1, 1, dst
->nparam
, -s
);
1027 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 1, 2,
1028 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
1030 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 2, 2,
1031 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
1034 isl_dim_map_range(dim_map
, src
->start
, 0, 0, 0, 1, s
);
1035 isl_dim_map_range(dim_map
, src
->start
+ 1, 2, 1, 1, src
->nparam
, -s
);
1036 isl_dim_map_range(dim_map
, src
->start
+ 2, 2, 1, 1, src
->nparam
, s
);
1037 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 1, 2,
1038 isl_space_dim(dim
, isl_dim_set
), 1,
1040 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 2, 2,
1041 isl_space_dim(dim
, isl_dim_set
), 1,
1044 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
1045 coef
->n_eq
, coef
->n_ineq
);
1046 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
1048 isl_space_free(dim
);
1053 static int add_all_validity_constraints(struct isl_sched_graph
*graph
)
1057 for (i
= 0; i
< graph
->n_edge
; ++i
) {
1058 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
1059 if (!edge
->validity
)
1061 if (edge
->src
!= edge
->dst
)
1063 if (add_intra_validity_constraints(graph
, edge
) < 0)
1067 for (i
= 0; i
< graph
->n_edge
; ++i
) {
1068 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
1069 if (!edge
->validity
)
1071 if (edge
->src
== edge
->dst
)
1073 if (add_inter_validity_constraints(graph
, edge
) < 0)
1080 /* Add constraints to graph->lp that bound the dependence distance
1081 * for all dependence relations.
1082 * If a given proximity dependence is identical to a validity
1083 * dependence, then the dependence distance is already bounded
1084 * from below (by zero), so we only need to bound the distance
1086 * Otherwise, we need to bound the distance both from above and from below.
1088 static int add_all_proximity_constraints(struct isl_sched_graph
*graph
)
1092 for (i
= 0; i
< graph
->n_edge
; ++i
) {
1093 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
1094 if (!edge
->proximity
)
1096 if (edge
->src
== edge
->dst
&&
1097 add_intra_proximity_constraints(graph
, edge
, 1) < 0)
1099 if (edge
->src
!= edge
->dst
&&
1100 add_inter_proximity_constraints(graph
, edge
, 1) < 0)
1104 if (edge
->src
== edge
->dst
&&
1105 add_intra_proximity_constraints(graph
, edge
, -1) < 0)
1107 if (edge
->src
!= edge
->dst
&&
1108 add_inter_proximity_constraints(graph
, edge
, -1) < 0)
1115 /* Compute a basis for the rows in the linear part of the schedule
1116 * and extend this basis to a full basis. The remaining rows
1117 * can then be used to force linear independence from the rows
1120 * In particular, given the schedule rows S, we compute
1124 * with H the Hermite normal form of S. That is, all but the
1125 * first rank columns of Q are zero and so each row in S is
1126 * a linear combination of the first rank rows of Q.
1127 * The matrix Q is then transposed because we will write the
1128 * coefficients of the next schedule row as a column vector s
1129 * and express this s as a linear combination s = Q c of the
1132 static int node_update_cmap(struct isl_sched_node
*node
)
1135 int n_row
= isl_mat_rows(node
->sched
);
1137 H
= isl_mat_sub_alloc(node
->sched
, 0, n_row
,
1138 1 + node
->nparam
, node
->nvar
);
1140 H
= isl_mat_left_hermite(H
, 0, NULL
, &Q
);
1141 isl_mat_free(node
->cmap
);
1142 node
->cmap
= isl_mat_transpose(Q
);
1143 node
->rank
= isl_mat_initial_non_zero_cols(H
);
1146 if (!node
->cmap
|| node
->rank
< 0)
1151 /* Count the number of equality and inequality constraints
1152 * that will be added for the given map.
1153 * If carry is set, then we are counting the number of (validity)
1154 * constraints that will be added in setup_carry_lp and we count
1155 * each edge exactly once. Otherwise, we count as follows
1156 * validity -> 1 (>= 0)
1157 * validity+proximity -> 2 (>= 0 and upper bound)
1158 * proximity -> 2 (lower and upper bound)
1160 static int count_map_constraints(struct isl_sched_graph
*graph
,
1161 struct isl_sched_edge
*edge
, __isl_take isl_map
*map
,
1162 int *n_eq
, int *n_ineq
, int carry
)
1164 isl_basic_set
*coef
;
1165 int f
= carry
? 1 : edge
->proximity
? 2 : 1;
1167 if (carry
&& !edge
->validity
) {
1172 if (edge
->src
== edge
->dst
)
1173 coef
= intra_coefficients(graph
, map
);
1175 coef
= inter_coefficients(graph
, map
);
1178 *n_eq
+= f
* coef
->n_eq
;
1179 *n_ineq
+= f
* coef
->n_ineq
;
1180 isl_basic_set_free(coef
);
1185 /* Count the number of equality and inequality constraints
1186 * that will be added to the main lp problem.
1187 * We count as follows
1188 * validity -> 1 (>= 0)
1189 * validity+proximity -> 2 (>= 0 and upper bound)
1190 * proximity -> 2 (lower and upper bound)
1192 static int count_constraints(struct isl_sched_graph
*graph
,
1193 int *n_eq
, int *n_ineq
)
1197 *n_eq
= *n_ineq
= 0;
1198 for (i
= 0; i
< graph
->n_edge
; ++i
) {
1199 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
1200 isl_map
*map
= isl_map_copy(edge
->map
);
1202 if (count_map_constraints(graph
, edge
, map
,
1203 n_eq
, n_ineq
, 0) < 0)
1210 /* Add constraints that bound the values of the variable and parameter
1211 * coefficients of the schedule.
1213 * The maximal value of the coefficients is defined by the option
1214 * 'schedule_max_coefficient'.
1216 static int add_bound_coefficient_constraints(isl_ctx
*ctx
,
1217 struct isl_sched_graph
*graph
)
1220 int max_coefficient
;
1223 max_coefficient
= ctx
->opt
->schedule_max_coefficient
;
1225 if (max_coefficient
== -1)
1228 total
= isl_basic_set_total_dim(graph
->lp
);
1230 for (i
= 0; i
< graph
->n
; ++i
) {
1231 struct isl_sched_node
*node
= &graph
->node
[i
];
1232 for (j
= 0; j
< 2 * node
->nparam
+ 2 * node
->nvar
; ++j
) {
1234 k
= isl_basic_set_alloc_inequality(graph
->lp
);
1237 dim
= 1 + node
->start
+ 1 + j
;
1238 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
1239 isl_int_set_si(graph
->lp
->ineq
[k
][dim
], -1);
1240 isl_int_set_si(graph
->lp
->ineq
[k
][0], max_coefficient
);
1247 /* Construct an ILP problem for finding schedule coefficients
1248 * that result in non-negative, but small dependence distances
1249 * over all dependences.
1250 * In particular, the dependence distances over proximity edges
1251 * are bounded by m_0 + m_n n and we compute schedule coefficients
1252 * with small values (preferably zero) of m_n and m_0.
1254 * All variables of the ILP are non-negative. The actual coefficients
1255 * may be negative, so each coefficient is represented as the difference
1256 * of two non-negative variables. The negative part always appears
1257 * immediately before the positive part.
1258 * Other than that, the variables have the following order
1260 * - sum of positive and negative parts of m_n coefficients
1262 * - sum of positive and negative parts of all c_n coefficients
1263 * (unconstrained when computing non-parametric schedules)
1264 * - sum of positive and negative parts of all c_x coefficients
1265 * - positive and negative parts of m_n coefficients
1268 * - positive and negative parts of c_i_n (if parametric)
1269 * - positive and negative parts of c_i_x
1271 * The c_i_x are not represented directly, but through the columns of
1272 * node->cmap. That is, the computed values are for variable t_i_x
1273 * such that c_i_x = Q t_i_x with Q equal to node->cmap.
1275 * The constraints are those from the edges plus two or three equalities
1276 * to express the sums.
1278 * If force_zero is set, then we add equalities to ensure that
1279 * the sum of the m_n coefficients and m_0 are both zero.
1281 static int setup_lp(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
1292 int max_constant_term
;
1293 int max_coefficient
;
1295 max_constant_term
= ctx
->opt
->schedule_max_constant_term
;
1296 max_coefficient
= ctx
->opt
->schedule_max_coefficient
;
1298 parametric
= ctx
->opt
->schedule_parametric
;
1299 nparam
= isl_space_dim(graph
->node
[0].dim
, isl_dim_param
);
1301 total
= param_pos
+ 2 * nparam
;
1302 for (i
= 0; i
< graph
->n
; ++i
) {
1303 struct isl_sched_node
*node
= &graph
->node
[graph
->sorted
[i
]];
1304 if (node_update_cmap(node
) < 0)
1306 node
->start
= total
;
1307 total
+= 1 + 2 * (node
->nparam
+ node
->nvar
);
1310 if (count_constraints(graph
, &n_eq
, &n_ineq
) < 0)
1313 dim
= isl_space_set_alloc(ctx
, 0, total
);
1314 isl_basic_set_free(graph
->lp
);
1315 n_eq
+= 2 + parametric
+ force_zero
;
1316 if (max_constant_term
!= -1)
1318 if (max_coefficient
!= -1)
1319 for (i
= 0; i
< graph
->n
; ++i
)
1320 n_ineq
+= 2 * graph
->node
[i
].nparam
+
1321 2 * graph
->node
[i
].nvar
;
1323 graph
->lp
= isl_basic_set_alloc_space(dim
, 0, n_eq
, n_ineq
);
1325 k
= isl_basic_set_alloc_equality(graph
->lp
);
1328 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
1330 isl_int_set_si(graph
->lp
->eq
[k
][1], -1);
1331 for (i
= 0; i
< 2 * nparam
; ++i
)
1332 isl_int_set_si(graph
->lp
->eq
[k
][1 + param_pos
+ i
], 1);
1335 k
= isl_basic_set_alloc_equality(graph
->lp
);
1338 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
1339 isl_int_set_si(graph
->lp
->eq
[k
][2], -1);
1343 k
= isl_basic_set_alloc_equality(graph
->lp
);
1346 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
1347 isl_int_set_si(graph
->lp
->eq
[k
][3], -1);
1348 for (i
= 0; i
< graph
->n
; ++i
) {
1349 int pos
= 1 + graph
->node
[i
].start
+ 1;
1351 for (j
= 0; j
< 2 * graph
->node
[i
].nparam
; ++j
)
1352 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
1356 k
= isl_basic_set_alloc_equality(graph
->lp
);
1359 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
1360 isl_int_set_si(graph
->lp
->eq
[k
][4], -1);
1361 for (i
= 0; i
< graph
->n
; ++i
) {
1362 struct isl_sched_node
*node
= &graph
->node
[i
];
1363 int pos
= 1 + node
->start
+ 1 + 2 * node
->nparam
;
1365 for (j
= 0; j
< 2 * node
->nvar
; ++j
)
1366 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
1369 if (max_constant_term
!= -1)
1370 for (i
= 0; i
< graph
->n
; ++i
) {
1371 struct isl_sched_node
*node
= &graph
->node
[i
];
1372 k
= isl_basic_set_alloc_inequality(graph
->lp
);
1375 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
1376 isl_int_set_si(graph
->lp
->ineq
[k
][1 + node
->start
], -1);
1377 isl_int_set_si(graph
->lp
->ineq
[k
][0], max_constant_term
);
1380 if (add_bound_coefficient_constraints(ctx
, graph
) < 0)
1382 if (add_all_validity_constraints(graph
) < 0)
1384 if (add_all_proximity_constraints(graph
) < 0)
1390 /* Analyze the conflicting constraint found by
1391 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
1392 * constraint of one of the edges between distinct nodes, living, moreover
1393 * in distinct SCCs, then record the source and sink SCC as this may
1394 * be a good place to cut between SCCs.
1396 static int check_conflict(int con
, void *user
)
1399 struct isl_sched_graph
*graph
= user
;
1401 if (graph
->src_scc
>= 0)
1404 con
-= graph
->lp
->n_eq
;
1406 if (con
>= graph
->lp
->n_ineq
)
1409 for (i
= 0; i
< graph
->n_edge
; ++i
) {
1410 if (!graph
->edge
[i
].validity
)
1412 if (graph
->edge
[i
].src
== graph
->edge
[i
].dst
)
1414 if (graph
->edge
[i
].src
->scc
== graph
->edge
[i
].dst
->scc
)
1416 if (graph
->edge
[i
].start
> con
)
1418 if (graph
->edge
[i
].end
<= con
)
1420 graph
->src_scc
= graph
->edge
[i
].src
->scc
;
1421 graph
->dst_scc
= graph
->edge
[i
].dst
->scc
;
1427 /* Check whether the next schedule row of the given node needs to be
1428 * non-trivial. Lower-dimensional domains may have some trivial rows,
1429 * but as soon as the number of remaining required non-trivial rows
1430 * is as large as the number or remaining rows to be computed,
1431 * all remaining rows need to be non-trivial.
1433 static int needs_row(struct isl_sched_graph
*graph
, struct isl_sched_node
*node
)
1435 return node
->nvar
- node
->rank
>= graph
->maxvar
- graph
->n_row
;
1438 /* Solve the ILP problem constructed in setup_lp.
1439 * For each node such that all the remaining rows of its schedule
1440 * need to be non-trivial, we construct a non-triviality region.
1441 * This region imposes that the next row is independent of previous rows.
1442 * In particular the coefficients c_i_x are represented by t_i_x
1443 * variables with c_i_x = Q t_i_x and Q a unimodular matrix such that
1444 * its first columns span the rows of the previously computed part
1445 * of the schedule. The non-triviality region enforces that at least
1446 * one of the remaining components of t_i_x is non-zero, i.e.,
1447 * that the new schedule row depends on at least one of the remaining
1450 static __isl_give isl_vec
*solve_lp(struct isl_sched_graph
*graph
)
1456 for (i
= 0; i
< graph
->n
; ++i
) {
1457 struct isl_sched_node
*node
= &graph
->node
[i
];
1458 int skip
= node
->rank
;
1459 graph
->region
[i
].pos
= node
->start
+ 1 + 2*(node
->nparam
+skip
);
1460 if (needs_row(graph
, node
))
1461 graph
->region
[i
].len
= 2 * (node
->nvar
- skip
);
1463 graph
->region
[i
].len
= 0;
1465 lp
= isl_basic_set_copy(graph
->lp
);
1466 sol
= isl_tab_basic_set_non_trivial_lexmin(lp
, 2, graph
->n
,
1467 graph
->region
, &check_conflict
, graph
);
1471 /* Update the schedules of all nodes based on the given solution
1472 * of the LP problem.
1473 * The new row is added to the current band.
1474 * All possibly negative coefficients are encoded as a difference
1475 * of two non-negative variables, so we need to perform the subtraction
1476 * here. Moreover, if use_cmap is set, then the solution does
1477 * not refer to the actual coefficients c_i_x, but instead to variables
1478 * t_i_x such that c_i_x = Q t_i_x and Q is equal to node->cmap.
1479 * In this case, we then also need to perform this multiplication
1480 * to obtain the values of c_i_x.
1482 * If check_zero is set, then the first two coordinates of sol are
1483 * assumed to correspond to the dependence distance. If these two
1484 * coordinates are zero, then the corresponding scheduling dimension
1485 * is marked as being zero distance.
1487 static int update_schedule(struct isl_sched_graph
*graph
,
1488 __isl_take isl_vec
*sol
, int use_cmap
, int check_zero
)
1492 isl_vec
*csol
= NULL
;
1497 isl_die(sol
->ctx
, isl_error_internal
,
1498 "no solution found", goto error
);
1501 zero
= isl_int_is_zero(sol
->el
[1]) &&
1502 isl_int_is_zero(sol
->el
[2]);
1504 for (i
= 0; i
< graph
->n
; ++i
) {
1505 struct isl_sched_node
*node
= &graph
->node
[i
];
1506 int pos
= node
->start
;
1507 int row
= isl_mat_rows(node
->sched
);
1510 csol
= isl_vec_alloc(sol
->ctx
, node
->nvar
);
1514 isl_map_free(node
->sched_map
);
1515 node
->sched_map
= NULL
;
1516 node
->sched
= isl_mat_add_rows(node
->sched
, 1);
1519 node
->sched
= isl_mat_set_element(node
->sched
, row
, 0,
1521 for (j
= 0; j
< node
->nparam
+ node
->nvar
; ++j
)
1522 isl_int_sub(sol
->el
[1 + pos
+ 1 + 2 * j
+ 1],
1523 sol
->el
[1 + pos
+ 1 + 2 * j
+ 1],
1524 sol
->el
[1 + pos
+ 1 + 2 * j
]);
1525 for (j
= 0; j
< node
->nparam
; ++j
)
1526 node
->sched
= isl_mat_set_element(node
->sched
,
1527 row
, 1 + j
, sol
->el
[1+pos
+1+2*j
+1]);
1528 for (j
= 0; j
< node
->nvar
; ++j
)
1529 isl_int_set(csol
->el
[j
],
1530 sol
->el
[1+pos
+1+2*(node
->nparam
+j
)+1]);
1532 csol
= isl_mat_vec_product(isl_mat_copy(node
->cmap
),
1536 for (j
= 0; j
< node
->nvar
; ++j
)
1537 node
->sched
= isl_mat_set_element(node
->sched
,
1538 row
, 1 + node
->nparam
+ j
, csol
->el
[j
]);
1539 node
->band
[graph
->n_total_row
] = graph
->n_band
;
1540 node
->zero
[graph
->n_total_row
] = zero
;
1546 graph
->n_total_row
++;
1555 /* Convert node->sched into a multi_aff and return this multi_aff.
1557 static __isl_give isl_multi_aff
*node_extract_schedule_multi_aff(
1558 struct isl_sched_node
*node
)
1562 isl_local_space
*ls
;
1568 nrow
= isl_mat_rows(node
->sched
);
1569 ncol
= isl_mat_cols(node
->sched
) - 1;
1570 space
= isl_space_from_domain(isl_space_copy(node
->dim
));
1571 space
= isl_space_add_dims(space
, isl_dim_out
, nrow
);
1572 ma
= isl_multi_aff_zero(space
);
1573 ls
= isl_local_space_from_space(isl_space_copy(node
->dim
));
1577 for (i
= 0; i
< nrow
; ++i
) {
1578 aff
= isl_aff_zero_on_domain(isl_local_space_copy(ls
));
1579 isl_mat_get_element(node
->sched
, i
, 0, &v
);
1580 aff
= isl_aff_set_constant(aff
, v
);
1581 for (j
= 0; j
< node
->nparam
; ++j
) {
1582 isl_mat_get_element(node
->sched
, i
, 1 + j
, &v
);
1583 aff
= isl_aff_set_coefficient(aff
, isl_dim_param
, j
, v
);
1585 for (j
= 0; j
< node
->nvar
; ++j
) {
1586 isl_mat_get_element(node
->sched
,
1587 i
, 1 + node
->nparam
+ j
, &v
);
1588 aff
= isl_aff_set_coefficient(aff
, isl_dim_in
, j
, v
);
1590 ma
= isl_multi_aff_set_aff(ma
, i
, aff
);
1595 isl_local_space_free(ls
);
1600 /* Convert node->sched into a map and return this map.
1602 * The result is cached in node->sched_map, which needs to be released
1603 * whenever node->sched is updated.
1605 static __isl_give isl_map
*node_extract_schedule(struct isl_sched_node
*node
)
1607 if (!node
->sched_map
) {
1610 ma
= node_extract_schedule_multi_aff(node
);
1611 node
->sched_map
= isl_map_from_multi_aff(ma
);
1614 return isl_map_copy(node
->sched_map
);
1617 /* Update the given dependence relation based on the current schedule.
1618 * That is, intersect the dependence relation with a map expressing
1619 * that source and sink are executed within the same iteration of
1620 * the current schedule.
1621 * This is not the most efficient way, but this shouldn't be a critical
1624 static __isl_give isl_map
*specialize(__isl_take isl_map
*map
,
1625 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
1627 isl_map
*src_sched
, *dst_sched
, *id
;
1629 src_sched
= node_extract_schedule(src
);
1630 dst_sched
= node_extract_schedule(dst
);
1631 id
= isl_map_apply_range(src_sched
, isl_map_reverse(dst_sched
));
1632 return isl_map_intersect(map
, id
);
1635 /* Update the dependence relations of all edges based on the current schedule.
1636 * If a dependence is carried completely by the current schedule, then
1637 * it is removed from the edge_tables. It is kept in the list of edges
1638 * as otherwise all edge_tables would have to be recomputed.
1640 static int update_edges(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
1644 for (i
= graph
->n_edge
- 1; i
>= 0; --i
) {
1645 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
1646 edge
->map
= specialize(edge
->map
, edge
->src
, edge
->dst
);
1650 if (isl_map_plain_is_empty(edge
->map
))
1651 graph_remove_edge(graph
, edge
);
1657 static void next_band(struct isl_sched_graph
*graph
)
1659 graph
->band_start
= graph
->n_total_row
;
1663 /* Topologically sort statements mapped to the same schedule iteration
1664 * and add a row to the schedule corresponding to this order.
1666 static int sort_statements(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
1673 if (update_edges(ctx
, graph
) < 0)
1676 if (graph
->n_edge
== 0)
1679 if (detect_sccs(ctx
, graph
) < 0)
1682 for (i
= 0; i
< graph
->n
; ++i
) {
1683 struct isl_sched_node
*node
= &graph
->node
[i
];
1684 int row
= isl_mat_rows(node
->sched
);
1685 int cols
= isl_mat_cols(node
->sched
);
1687 isl_map_free(node
->sched_map
);
1688 node
->sched_map
= NULL
;
1689 node
->sched
= isl_mat_add_rows(node
->sched
, 1);
1692 node
->sched
= isl_mat_set_element_si(node
->sched
, row
, 0,
1694 for (j
= 1; j
< cols
; ++j
)
1695 node
->sched
= isl_mat_set_element_si(node
->sched
,
1697 node
->band
[graph
->n_total_row
] = graph
->n_band
;
1700 graph
->n_total_row
++;
1706 /* Construct an isl_schedule based on the computed schedule stored
1707 * in graph and with parameters specified by dim.
1709 static __isl_give isl_schedule
*extract_schedule(struct isl_sched_graph
*graph
,
1710 __isl_take isl_space
*dim
)
1714 isl_schedule
*sched
= NULL
;
1719 ctx
= isl_space_get_ctx(dim
);
1720 sched
= isl_calloc(ctx
, struct isl_schedule
,
1721 sizeof(struct isl_schedule
) +
1722 (graph
->n
- 1) * sizeof(struct isl_schedule_node
));
1727 sched
->n
= graph
->n
;
1728 sched
->n_band
= graph
->n_band
;
1729 sched
->n_total_row
= graph
->n_total_row
;
1731 for (i
= 0; i
< sched
->n
; ++i
) {
1733 int *band_end
, *band_id
, *zero
;
1735 band_end
= isl_alloc_array(ctx
, int, graph
->n_band
);
1736 band_id
= isl_alloc_array(ctx
, int, graph
->n_band
);
1737 zero
= isl_alloc_array(ctx
, int, graph
->n_total_row
);
1738 sched
->node
[i
].sched
=
1739 node_extract_schedule_multi_aff(&graph
->node
[i
]);
1740 sched
->node
[i
].band_end
= band_end
;
1741 sched
->node
[i
].band_id
= band_id
;
1742 sched
->node
[i
].zero
= zero
;
1743 if (!band_end
|| !band_id
|| !zero
)
1746 for (r
= 0; r
< graph
->n_total_row
; ++r
)
1747 zero
[r
] = graph
->node
[i
].zero
[r
];
1748 for (r
= b
= 0; r
< graph
->n_total_row
; ++r
) {
1749 if (graph
->node
[i
].band
[r
] == b
)
1752 if (graph
->node
[i
].band
[r
] == -1)
1755 if (r
== graph
->n_total_row
)
1757 sched
->node
[i
].n_band
= b
;
1758 for (--b
; b
>= 0; --b
)
1759 band_id
[b
] = graph
->node
[i
].band_id
[b
];
1766 isl_space_free(dim
);
1767 isl_schedule_free(sched
);
1771 /* Copy nodes that satisfy node_pred from the src dependence graph
1772 * to the dst dependence graph.
1774 static int copy_nodes(struct isl_sched_graph
*dst
, struct isl_sched_graph
*src
,
1775 int (*node_pred
)(struct isl_sched_node
*node
, int data
), int data
)
1780 for (i
= 0; i
< src
->n
; ++i
) {
1781 if (!node_pred(&src
->node
[i
], data
))
1783 dst
->node
[dst
->n
].dim
= isl_space_copy(src
->node
[i
].dim
);
1784 dst
->node
[dst
->n
].nvar
= src
->node
[i
].nvar
;
1785 dst
->node
[dst
->n
].nparam
= src
->node
[i
].nparam
;
1786 dst
->node
[dst
->n
].sched
= isl_mat_copy(src
->node
[i
].sched
);
1787 dst
->node
[dst
->n
].sched_map
=
1788 isl_map_copy(src
->node
[i
].sched_map
);
1789 dst
->node
[dst
->n
].band
= src
->node
[i
].band
;
1790 dst
->node
[dst
->n
].band_id
= src
->node
[i
].band_id
;
1791 dst
->node
[dst
->n
].zero
= src
->node
[i
].zero
;
1798 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
1799 * to the dst dependence graph.
1800 * If the source or destination node of the edge is not in the destination
1801 * graph, then it must be a backward proximity edge and it should simply
1804 static int copy_edges(isl_ctx
*ctx
, struct isl_sched_graph
*dst
,
1805 struct isl_sched_graph
*src
,
1806 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
), int data
)
1809 enum isl_edge_type t
;
1812 for (i
= 0; i
< src
->n_edge
; ++i
) {
1813 struct isl_sched_edge
*edge
= &src
->edge
[i
];
1815 struct isl_sched_node
*dst_src
, *dst_dst
;
1817 if (!edge_pred(edge
, data
))
1820 if (isl_map_plain_is_empty(edge
->map
))
1823 dst_src
= graph_find_node(ctx
, dst
, edge
->src
->dim
);
1824 dst_dst
= graph_find_node(ctx
, dst
, edge
->dst
->dim
);
1825 if (!dst_src
|| !dst_dst
) {
1827 isl_die(ctx
, isl_error_internal
,
1828 "backward validity edge", return -1);
1832 map
= isl_map_copy(edge
->map
);
1834 dst
->edge
[dst
->n_edge
].src
= dst_src
;
1835 dst
->edge
[dst
->n_edge
].dst
= dst_dst
;
1836 dst
->edge
[dst
->n_edge
].map
= map
;
1837 dst
->edge
[dst
->n_edge
].validity
= edge
->validity
;
1838 dst
->edge
[dst
->n_edge
].proximity
= edge
->proximity
;
1841 for (t
= isl_edge_first
; t
<= isl_edge_last
; ++t
) {
1843 graph_find_edge(src
, t
, edge
->src
, edge
->dst
))
1845 if (graph_edge_table_add(ctx
, dst
, t
,
1846 &dst
->edge
[dst
->n_edge
- 1]) < 0)
1854 /* Given a "src" dependence graph that contains the nodes from "dst"
1855 * that satisfy node_pred, copy the schedule computed in "src"
1856 * for those nodes back to "dst".
1858 static int copy_schedule(struct isl_sched_graph
*dst
,
1859 struct isl_sched_graph
*src
,
1860 int (*node_pred
)(struct isl_sched_node
*node
, int data
), int data
)
1865 for (i
= 0; i
< dst
->n
; ++i
) {
1866 if (!node_pred(&dst
->node
[i
], data
))
1868 isl_mat_free(dst
->node
[i
].sched
);
1869 isl_map_free(dst
->node
[i
].sched_map
);
1870 dst
->node
[i
].sched
= isl_mat_copy(src
->node
[src
->n
].sched
);
1871 dst
->node
[i
].sched_map
=
1872 isl_map_copy(src
->node
[src
->n
].sched_map
);
1876 dst
->n_total_row
= src
->n_total_row
;
1877 dst
->n_band
= src
->n_band
;
1882 /* Compute the maximal number of variables over all nodes.
1883 * This is the maximal number of linearly independent schedule
1884 * rows that we need to compute.
1885 * Just in case we end up in a part of the dependence graph
1886 * with only lower-dimensional domains, we make sure we will
1887 * compute the required amount of extra linearly independent rows.
1889 static int compute_maxvar(struct isl_sched_graph
*graph
)
1894 for (i
= 0; i
< graph
->n
; ++i
) {
1895 struct isl_sched_node
*node
= &graph
->node
[i
];
1898 if (node_update_cmap(node
) < 0)
1900 nvar
= node
->nvar
+ graph
->n_row
- node
->rank
;
1901 if (nvar
> graph
->maxvar
)
1902 graph
->maxvar
= nvar
;
1908 static int compute_schedule(isl_ctx
*ctx
, struct isl_sched_graph
*graph
);
1909 static int compute_schedule_wcc(isl_ctx
*ctx
, struct isl_sched_graph
*graph
);
1911 /* Compute a schedule for a subgraph of "graph". In particular, for
1912 * the graph composed of nodes that satisfy node_pred and edges that
1913 * that satisfy edge_pred. The caller should precompute the number
1914 * of nodes and edges that satisfy these predicates and pass them along
1915 * as "n" and "n_edge".
1916 * If the subgraph is known to consist of a single component, then wcc should
1917 * be set and then we call compute_schedule_wcc on the constructed subgraph.
1918 * Otherwise, we call compute_schedule, which will check whether the subgraph
1921 static int compute_sub_schedule(isl_ctx
*ctx
,
1922 struct isl_sched_graph
*graph
, int n
, int n_edge
,
1923 int (*node_pred
)(struct isl_sched_node
*node
, int data
),
1924 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
),
1927 struct isl_sched_graph split
= { 0 };
1930 if (graph_alloc(ctx
, &split
, n
, n_edge
) < 0)
1932 if (copy_nodes(&split
, graph
, node_pred
, data
) < 0)
1934 if (graph_init_table(ctx
, &split
) < 0)
1936 for (t
= 0; t
<= isl_edge_last
; ++t
)
1937 split
.max_edge
[t
] = graph
->max_edge
[t
];
1938 if (graph_init_edge_tables(ctx
, &split
) < 0)
1940 if (copy_edges(ctx
, &split
, graph
, edge_pred
, data
) < 0)
1942 split
.n_row
= graph
->n_row
;
1943 split
.n_total_row
= graph
->n_total_row
;
1944 split
.n_band
= graph
->n_band
;
1945 split
.band_start
= graph
->band_start
;
1947 if (wcc
&& compute_schedule_wcc(ctx
, &split
) < 0)
1949 if (!wcc
&& compute_schedule(ctx
, &split
) < 0)
1952 copy_schedule(graph
, &split
, node_pred
, data
);
1954 graph_free(ctx
, &split
);
1957 graph_free(ctx
, &split
);
1961 static int node_scc_exactly(struct isl_sched_node
*node
, int scc
)
1963 return node
->scc
== scc
;
1966 static int node_scc_at_most(struct isl_sched_node
*node
, int scc
)
1968 return node
->scc
<= scc
;
1971 static int node_scc_at_least(struct isl_sched_node
*node
, int scc
)
1973 return node
->scc
>= scc
;
1976 static int edge_scc_exactly(struct isl_sched_edge
*edge
, int scc
)
1978 return edge
->src
->scc
== scc
&& edge
->dst
->scc
== scc
;
1981 static int edge_dst_scc_at_most(struct isl_sched_edge
*edge
, int scc
)
1983 return edge
->dst
->scc
<= scc
;
1986 static int edge_src_scc_at_least(struct isl_sched_edge
*edge
, int scc
)
1988 return edge
->src
->scc
>= scc
;
1991 /* Pad the schedules of all nodes with zero rows such that in the end
1992 * they all have graph->n_total_row rows.
1993 * The extra rows don't belong to any band, so they get assigned band number -1.
1995 static int pad_schedule(struct isl_sched_graph
*graph
)
1999 for (i
= 0; i
< graph
->n
; ++i
) {
2000 struct isl_sched_node
*node
= &graph
->node
[i
];
2001 int row
= isl_mat_rows(node
->sched
);
2002 if (graph
->n_total_row
> row
) {
2003 isl_map_free(node
->sched_map
);
2004 node
->sched_map
= NULL
;
2006 node
->sched
= isl_mat_add_zero_rows(node
->sched
,
2007 graph
->n_total_row
- row
);
2010 for (j
= row
; j
< graph
->n_total_row
; ++j
)
2017 /* Split the current graph into two parts and compute a schedule for each
2018 * part individually. In particular, one part consists of all SCCs up
2019 * to and including graph->src_scc, while the other part contains the other
2022 * The split is enforced in the schedule by constant rows with two different
2023 * values (0 and 1). These constant rows replace the previously computed rows
2024 * in the current band.
2025 * It would be possible to reuse them as the first rows in the next
2026 * band, but recomputing them may result in better rows as we are looking
2027 * at a smaller part of the dependence graph.
2028 * compute_split_schedule is only called when no zero-distance schedule row
2029 * could be found on the entire graph, so we wark the splitting row as
2030 * non zero-distance.
2032 * The band_id of the second group is set to n, where n is the number
2033 * of nodes in the first group. This ensures that the band_ids over
2034 * the two groups remain disjoint, even if either or both of the two
2035 * groups contain independent components.
2037 static int compute_split_schedule(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2039 int i
, j
, n
, e1
, e2
;
2040 int n_total_row
, orig_total_row
;
2041 int n_band
, orig_band
;
2044 drop
= graph
->n_total_row
- graph
->band_start
;
2045 graph
->n_total_row
-= drop
;
2046 graph
->n_row
-= drop
;
2049 for (i
= 0; i
< graph
->n
; ++i
) {
2050 struct isl_sched_node
*node
= &graph
->node
[i
];
2051 int row
= isl_mat_rows(node
->sched
) - drop
;
2052 int cols
= isl_mat_cols(node
->sched
);
2053 int before
= node
->scc
<= graph
->src_scc
;
2058 isl_map_free(node
->sched_map
);
2059 node
->sched_map
= NULL
;
2060 node
->sched
= isl_mat_drop_rows(node
->sched
,
2061 graph
->band_start
, drop
);
2062 node
->sched
= isl_mat_add_rows(node
->sched
, 1);
2065 node
->sched
= isl_mat_set_element_si(node
->sched
, row
, 0,
2067 for (j
= 1; j
< cols
; ++j
)
2068 node
->sched
= isl_mat_set_element_si(node
->sched
,
2070 node
->band
[graph
->n_total_row
] = graph
->n_band
;
2071 node
->zero
[graph
->n_total_row
] = 0;
2075 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2076 if (graph
->edge
[i
].dst
->scc
<= graph
->src_scc
)
2078 if (graph
->edge
[i
].src
->scc
> graph
->src_scc
)
2082 graph
->n_total_row
++;
2085 for (i
= 0; i
< graph
->n
; ++i
) {
2086 struct isl_sched_node
*node
= &graph
->node
[i
];
2087 if (node
->scc
> graph
->src_scc
)
2088 node
->band_id
[graph
->n_band
] = n
;
2091 orig_total_row
= graph
->n_total_row
;
2092 orig_band
= graph
->n_band
;
2093 if (compute_sub_schedule(ctx
, graph
, n
, e1
,
2094 &node_scc_at_most
, &edge_dst_scc_at_most
,
2095 graph
->src_scc
, 0) < 0)
2097 n_total_row
= graph
->n_total_row
;
2098 graph
->n_total_row
= orig_total_row
;
2099 n_band
= graph
->n_band
;
2100 graph
->n_band
= orig_band
;
2101 if (compute_sub_schedule(ctx
, graph
, graph
->n
- n
, e2
,
2102 &node_scc_at_least
, &edge_src_scc_at_least
,
2103 graph
->src_scc
+ 1, 0) < 0)
2105 if (n_total_row
> graph
->n_total_row
)
2106 graph
->n_total_row
= n_total_row
;
2107 if (n_band
> graph
->n_band
)
2108 graph
->n_band
= n_band
;
2110 return pad_schedule(graph
);
2113 /* Compute the next band of the schedule after updating the dependence
2114 * relations based on the the current schedule.
2116 static int compute_next_band(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2118 if (update_edges(ctx
, graph
) < 0)
2122 return compute_schedule(ctx
, graph
);
2125 /* Add constraints to graph->lp that force the dependence "map" (which
2126 * is part of the dependence relation of "edge")
2127 * to be respected and attempt to carry it, where the edge is one from
2128 * a node j to itself. "pos" is the sequence number of the given map.
2129 * That is, add constraints that enforce
2131 * (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x)
2132 * = c_j_x (y - x) >= e_i
2134 * for each (x,y) in R.
2135 * We obtain general constraints on coefficients (c_0, c_n, c_x)
2136 * of valid constraints for (y - x) and then plug in (-e_i, 0, c_j_x),
2137 * with each coefficient in c_j_x represented as a pair of non-negative
2140 static int add_intra_constraints(struct isl_sched_graph
*graph
,
2141 struct isl_sched_edge
*edge
, __isl_take isl_map
*map
, int pos
)
2144 isl_ctx
*ctx
= isl_map_get_ctx(map
);
2146 isl_dim_map
*dim_map
;
2147 isl_basic_set
*coef
;
2148 struct isl_sched_node
*node
= edge
->src
;
2150 coef
= intra_coefficients(graph
, map
);
2152 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
2154 total
= isl_basic_set_total_dim(graph
->lp
);
2155 dim_map
= isl_dim_map_alloc(ctx
, total
);
2156 isl_dim_map_range(dim_map
, 3 + pos
, 0, 0, 0, 1, -1);
2157 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 1, 2,
2158 isl_space_dim(dim
, isl_dim_set
), 1,
2160 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 2, 2,
2161 isl_space_dim(dim
, isl_dim_set
), 1,
2163 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
2164 coef
->n_eq
, coef
->n_ineq
);
2165 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
2167 isl_space_free(dim
);
2172 /* Add constraints to graph->lp that force the dependence "map" (which
2173 * is part of the dependence relation of "edge")
2174 * to be respected and attempt to carry it, where the edge is one from
2175 * node j to node k. "pos" is the sequence number of the given map.
2176 * That is, add constraints that enforce
2178 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
2180 * for each (x,y) in R.
2181 * We obtain general constraints on coefficients (c_0, c_n, c_x)
2182 * of valid constraints for R and then plug in
2183 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, c_k_x - c_j_x)
2184 * with each coefficient (except e_i, c_k_0 and c_j_0)
2185 * represented as a pair of non-negative coefficients.
2187 static int add_inter_constraints(struct isl_sched_graph
*graph
,
2188 struct isl_sched_edge
*edge
, __isl_take isl_map
*map
, int pos
)
2191 isl_ctx
*ctx
= isl_map_get_ctx(map
);
2193 isl_dim_map
*dim_map
;
2194 isl_basic_set
*coef
;
2195 struct isl_sched_node
*src
= edge
->src
;
2196 struct isl_sched_node
*dst
= edge
->dst
;
2198 coef
= inter_coefficients(graph
, map
);
2200 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
2202 total
= isl_basic_set_total_dim(graph
->lp
);
2203 dim_map
= isl_dim_map_alloc(ctx
, total
);
2205 isl_dim_map_range(dim_map
, 3 + pos
, 0, 0, 0, 1, -1);
2207 isl_dim_map_range(dim_map
, dst
->start
, 0, 0, 0, 1, 1);
2208 isl_dim_map_range(dim_map
, dst
->start
+ 1, 2, 1, 1, dst
->nparam
, -1);
2209 isl_dim_map_range(dim_map
, dst
->start
+ 2, 2, 1, 1, dst
->nparam
, 1);
2210 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 1, 2,
2211 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
2213 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 2, 2,
2214 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
2217 isl_dim_map_range(dim_map
, src
->start
, 0, 0, 0, 1, -1);
2218 isl_dim_map_range(dim_map
, src
->start
+ 1, 2, 1, 1, src
->nparam
, 1);
2219 isl_dim_map_range(dim_map
, src
->start
+ 2, 2, 1, 1, src
->nparam
, -1);
2220 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 1, 2,
2221 isl_space_dim(dim
, isl_dim_set
), 1,
2223 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 2, 2,
2224 isl_space_dim(dim
, isl_dim_set
), 1,
2227 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
2228 coef
->n_eq
, coef
->n_ineq
);
2229 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
2231 isl_space_free(dim
);
2236 /* Add constraints to graph->lp that force all validity dependences
2237 * to be respected and attempt to carry them.
2239 static int add_all_constraints(struct isl_sched_graph
*graph
)
2245 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2246 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
2248 if (!edge
->validity
)
2251 for (j
= 0; j
< edge
->map
->n
; ++j
) {
2252 isl_basic_map
*bmap
;
2255 bmap
= isl_basic_map_copy(edge
->map
->p
[j
]);
2256 map
= isl_map_from_basic_map(bmap
);
2258 if (edge
->src
== edge
->dst
&&
2259 add_intra_constraints(graph
, edge
, map
, pos
) < 0)
2261 if (edge
->src
!= edge
->dst
&&
2262 add_inter_constraints(graph
, edge
, map
, pos
) < 0)
2271 /* Count the number of equality and inequality constraints
2272 * that will be added to the carry_lp problem.
2273 * We count each edge exactly once.
2275 static int count_all_constraints(struct isl_sched_graph
*graph
,
2276 int *n_eq
, int *n_ineq
)
2280 *n_eq
= *n_ineq
= 0;
2281 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2282 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
2283 for (j
= 0; j
< edge
->map
->n
; ++j
) {
2284 isl_basic_map
*bmap
;
2287 bmap
= isl_basic_map_copy(edge
->map
->p
[j
]);
2288 map
= isl_map_from_basic_map(bmap
);
2290 if (count_map_constraints(graph
, edge
, map
,
2291 n_eq
, n_ineq
, 1) < 0)
2299 /* Construct an LP problem for finding schedule coefficients
2300 * such that the schedule carries as many dependences as possible.
2301 * In particular, for each dependence i, we bound the dependence distance
2302 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
2303 * of all e_i's. Dependence with e_i = 0 in the solution are simply
2304 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
2305 * Note that if the dependence relation is a union of basic maps,
2306 * then we have to consider each basic map individually as it may only
2307 * be possible to carry the dependences expressed by some of those
2308 * basic maps and not all off them.
2309 * Below, we consider each of those basic maps as a separate "edge".
2311 * All variables of the LP are non-negative. The actual coefficients
2312 * may be negative, so each coefficient is represented as the difference
2313 * of two non-negative variables. The negative part always appears
2314 * immediately before the positive part.
2315 * Other than that, the variables have the following order
2317 * - sum of (1 - e_i) over all edges
2318 * - sum of positive and negative parts of all c_n coefficients
2319 * (unconstrained when computing non-parametric schedules)
2320 * - sum of positive and negative parts of all c_x coefficients
2325 * - positive and negative parts of c_i_n (if parametric)
2326 * - positive and negative parts of c_i_x
2328 * The constraints are those from the (validity) edges plus three equalities
2329 * to express the sums and n_edge inequalities to express e_i <= 1.
2331 static int setup_carry_lp(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2341 for (i
= 0; i
< graph
->n_edge
; ++i
)
2342 n_edge
+= graph
->edge
[i
].map
->n
;
2345 for (i
= 0; i
< graph
->n
; ++i
) {
2346 struct isl_sched_node
*node
= &graph
->node
[graph
->sorted
[i
]];
2347 node
->start
= total
;
2348 total
+= 1 + 2 * (node
->nparam
+ node
->nvar
);
2351 if (count_all_constraints(graph
, &n_eq
, &n_ineq
) < 0)
2354 dim
= isl_space_set_alloc(ctx
, 0, total
);
2355 isl_basic_set_free(graph
->lp
);
2358 graph
->lp
= isl_basic_set_alloc_space(dim
, 0, n_eq
, n_ineq
);
2359 graph
->lp
= isl_basic_set_set_rational(graph
->lp
);
2361 k
= isl_basic_set_alloc_equality(graph
->lp
);
2364 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2365 isl_int_set_si(graph
->lp
->eq
[k
][0], -n_edge
);
2366 isl_int_set_si(graph
->lp
->eq
[k
][1], 1);
2367 for (i
= 0; i
< n_edge
; ++i
)
2368 isl_int_set_si(graph
->lp
->eq
[k
][4 + i
], 1);
2370 k
= isl_basic_set_alloc_equality(graph
->lp
);
2373 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2374 isl_int_set_si(graph
->lp
->eq
[k
][2], -1);
2375 for (i
= 0; i
< graph
->n
; ++i
) {
2376 int pos
= 1 + graph
->node
[i
].start
+ 1;
2378 for (j
= 0; j
< 2 * graph
->node
[i
].nparam
; ++j
)
2379 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
2382 k
= isl_basic_set_alloc_equality(graph
->lp
);
2385 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2386 isl_int_set_si(graph
->lp
->eq
[k
][3], -1);
2387 for (i
= 0; i
< graph
->n
; ++i
) {
2388 struct isl_sched_node
*node
= &graph
->node
[i
];
2389 int pos
= 1 + node
->start
+ 1 + 2 * node
->nparam
;
2391 for (j
= 0; j
< 2 * node
->nvar
; ++j
)
2392 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
2395 for (i
= 0; i
< n_edge
; ++i
) {
2396 k
= isl_basic_set_alloc_inequality(graph
->lp
);
2399 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
2400 isl_int_set_si(graph
->lp
->ineq
[k
][4 + i
], -1);
2401 isl_int_set_si(graph
->lp
->ineq
[k
][0], 1);
2404 if (add_all_constraints(graph
) < 0)
2410 /* If the schedule_split_scaled option is set and if the linear
2411 * parts of the scheduling rows for all nodes in the graphs have
2412 * non-trivial common divisor, then split off the constant term
2413 * from the linear part.
2414 * The constant term is then placed in a separate band and
2415 * the linear part is reduced.
2417 static int split_scaled(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2423 if (!ctx
->opt
->schedule_split_scaled
)
2429 isl_int_init(gcd_i
);
2431 isl_int_set_si(gcd
, 0);
2433 row
= isl_mat_rows(graph
->node
[0].sched
) - 1;
2435 for (i
= 0; i
< graph
->n
; ++i
) {
2436 struct isl_sched_node
*node
= &graph
->node
[i
];
2437 int cols
= isl_mat_cols(node
->sched
);
2439 isl_seq_gcd(node
->sched
->row
[row
] + 1, cols
- 1, &gcd_i
);
2440 isl_int_gcd(gcd
, gcd
, gcd_i
);
2443 isl_int_clear(gcd_i
);
2445 if (isl_int_cmp_si(gcd
, 1) <= 0) {
2452 for (i
= 0; i
< graph
->n
; ++i
) {
2453 struct isl_sched_node
*node
= &graph
->node
[i
];
2455 isl_map_free(node
->sched_map
);
2456 node
->sched_map
= NULL
;
2457 node
->sched
= isl_mat_add_zero_rows(node
->sched
, 1);
2460 isl_int_fdiv_r(node
->sched
->row
[row
+ 1][0],
2461 node
->sched
->row
[row
][0], gcd
);
2462 isl_int_fdiv_q(node
->sched
->row
[row
][0],
2463 node
->sched
->row
[row
][0], gcd
);
2464 isl_int_mul(node
->sched
->row
[row
][0],
2465 node
->sched
->row
[row
][0], gcd
);
2466 node
->sched
= isl_mat_scale_down_row(node
->sched
, row
, gcd
);
2469 node
->band
[graph
->n_total_row
] = graph
->n_band
;
2472 graph
->n_total_row
++;
2481 /* Construct a schedule row for each node such that as many dependences
2482 * as possible are carried and then continue with the next band.
2484 static int carry_dependences(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2492 for (i
= 0; i
< graph
->n_edge
; ++i
)
2493 n_edge
+= graph
->edge
[i
].map
->n
;
2495 if (setup_carry_lp(ctx
, graph
) < 0)
2498 lp
= isl_basic_set_copy(graph
->lp
);
2499 sol
= isl_tab_basic_set_non_neg_lexmin(lp
);
2503 if (sol
->size
== 0) {
2505 isl_die(ctx
, isl_error_internal
,
2506 "error in schedule construction", return -1);
2509 if (isl_int_cmp_si(sol
->el
[1], n_edge
) >= 0) {
2511 isl_die(ctx
, isl_error_unknown
,
2512 "unable to carry dependences", return -1);
2515 if (update_schedule(graph
, sol
, 0, 0) < 0)
2518 if (split_scaled(ctx
, graph
) < 0)
2521 return compute_next_band(ctx
, graph
);
2524 /* Are there any (non-empty) validity edges in the graph?
2526 static int has_validity_edges(struct isl_sched_graph
*graph
)
2530 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2533 empty
= isl_map_plain_is_empty(graph
->edge
[i
].map
);
2538 if (graph
->edge
[i
].validity
)
2545 /* Should we apply a Feautrier step?
2546 * That is, did the user request the Feautrier algorithm and are
2547 * there any validity dependences (left)?
2549 static int need_feautrier_step(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2551 if (ctx
->opt
->schedule_algorithm
!= ISL_SCHEDULE_ALGORITHM_FEAUTRIER
)
2554 return has_validity_edges(graph
);
2557 /* Compute a schedule for a connected dependence graph using Feautrier's
2558 * multi-dimensional scheduling algorithm.
2559 * The original algorithm is described in [1].
2560 * The main idea is to minimize the number of scheduling dimensions, by
2561 * trying to satisfy as many dependences as possible per scheduling dimension.
2563 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
2564 * Problem, Part II: Multi-Dimensional Time.
2565 * In Intl. Journal of Parallel Programming, 1992.
2567 static int compute_schedule_wcc_feautrier(isl_ctx
*ctx
,
2568 struct isl_sched_graph
*graph
)
2570 return carry_dependences(ctx
, graph
);
2573 /* Compute a schedule for a connected dependence graph.
2574 * We try to find a sequence of as many schedule rows as possible that result
2575 * in non-negative dependence distances (independent of the previous rows
2576 * in the sequence, i.e., such that the sequence is tilable).
2577 * If we can't find any more rows we either
2578 * - split between SCCs and start over (assuming we found an interesting
2579 * pair of SCCs between which to split)
2580 * - continue with the next band (assuming the current band has at least
2582 * - try to carry as many dependences as possible and continue with the next
2585 * If Feautrier's algorithm is selected, we first recursively try to satisfy
2586 * as many validity dependences as possible. When all validity dependences
2587 * are satisfied we extend the schedule to a full-dimensional schedule.
2589 * If we manage to complete the schedule, we finish off by topologically
2590 * sorting the statements based on the remaining dependences.
2592 * If ctx->opt->schedule_outer_zero_distance is set, then we force the
2593 * outermost dimension in the current band to be zero distance. If this
2594 * turns out to be impossible, we fall back on the general scheme above
2595 * and try to carry as many dependences as possible.
2597 static int compute_schedule_wcc(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2601 if (detect_sccs(ctx
, graph
) < 0)
2603 if (sort_sccs(graph
) < 0)
2606 if (compute_maxvar(graph
) < 0)
2609 if (need_feautrier_step(ctx
, graph
))
2610 return compute_schedule_wcc_feautrier(ctx
, graph
);
2612 if (ctx
->opt
->schedule_outer_zero_distance
)
2615 while (graph
->n_row
< graph
->maxvar
) {
2618 graph
->src_scc
= -1;
2619 graph
->dst_scc
= -1;
2621 if (setup_lp(ctx
, graph
, force_zero
) < 0)
2623 sol
= solve_lp(graph
);
2626 if (sol
->size
== 0) {
2628 if (!ctx
->opt
->schedule_maximize_band_depth
&&
2629 graph
->n_total_row
> graph
->band_start
)
2630 return compute_next_band(ctx
, graph
);
2631 if (graph
->src_scc
>= 0)
2632 return compute_split_schedule(ctx
, graph
);
2633 if (graph
->n_total_row
> graph
->band_start
)
2634 return compute_next_band(ctx
, graph
);
2635 return carry_dependences(ctx
, graph
);
2637 if (update_schedule(graph
, sol
, 1, 1) < 0)
2642 if (graph
->n_total_row
> graph
->band_start
)
2644 return sort_statements(ctx
, graph
);
2647 /* Add a row to the schedules that separates the SCCs and move
2650 static int split_on_scc(struct isl_sched_graph
*graph
)
2654 for (i
= 0; i
< graph
->n
; ++i
) {
2655 struct isl_sched_node
*node
= &graph
->node
[i
];
2656 int row
= isl_mat_rows(node
->sched
);
2658 isl_map_free(node
->sched_map
);
2659 node
->sched_map
= NULL
;
2660 node
->sched
= isl_mat_add_zero_rows(node
->sched
, 1);
2661 node
->sched
= isl_mat_set_element_si(node
->sched
, row
, 0,
2665 node
->band
[graph
->n_total_row
] = graph
->n_band
;
2668 graph
->n_total_row
++;
2674 /* Compute a schedule for each component (identified by node->scc)
2675 * of the dependence graph separately and then combine the results.
2676 * Depending on the setting of schedule_fuse, a component may be
2677 * either weakly or strongly connected.
2679 * The band_id is adjusted such that each component has a separate id.
2680 * Note that the band_id may have already been set to a value different
2681 * from zero by compute_split_schedule.
2683 static int compute_component_schedule(isl_ctx
*ctx
,
2684 struct isl_sched_graph
*graph
)
2688 int n_total_row
, orig_total_row
;
2689 int n_band
, orig_band
;
2691 if (ctx
->opt
->schedule_fuse
== ISL_SCHEDULE_FUSE_MIN
||
2692 ctx
->opt
->schedule_separate_components
)
2693 split_on_scc(graph
);
2696 orig_total_row
= graph
->n_total_row
;
2698 orig_band
= graph
->n_band
;
2699 for (i
= 0; i
< graph
->n
; ++i
)
2700 graph
->node
[i
].band_id
[graph
->n_band
] += graph
->node
[i
].scc
;
2701 for (wcc
= 0; wcc
< graph
->scc
; ++wcc
) {
2703 for (i
= 0; i
< graph
->n
; ++i
)
2704 if (graph
->node
[i
].scc
== wcc
)
2707 for (i
= 0; i
< graph
->n_edge
; ++i
)
2708 if (graph
->edge
[i
].src
->scc
== wcc
&&
2709 graph
->edge
[i
].dst
->scc
== wcc
)
2712 if (compute_sub_schedule(ctx
, graph
, n
, n_edge
,
2714 &edge_scc_exactly
, wcc
, 1) < 0)
2716 if (graph
->n_total_row
> n_total_row
)
2717 n_total_row
= graph
->n_total_row
;
2718 graph
->n_total_row
= orig_total_row
;
2719 if (graph
->n_band
> n_band
)
2720 n_band
= graph
->n_band
;
2721 graph
->n_band
= orig_band
;
2724 graph
->n_total_row
= n_total_row
;
2725 graph
->n_band
= n_band
;
2727 return pad_schedule(graph
);
2730 /* Compute a schedule for the given dependence graph.
2731 * We first check if the graph is connected (through validity dependences)
2732 * and, if not, compute a schedule for each component separately.
2733 * If schedule_fuse is set to minimal fusion, then we check for strongly
2734 * connected components instead and compute a separate schedule for
2735 * each such strongly connected component.
2737 static int compute_schedule(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2739 if (ctx
->opt
->schedule_fuse
== ISL_SCHEDULE_FUSE_MIN
) {
2740 if (detect_sccs(ctx
, graph
) < 0)
2743 if (detect_wccs(ctx
, graph
) < 0)
2748 return compute_component_schedule(ctx
, graph
);
2750 return compute_schedule_wcc(ctx
, graph
);
2753 /* Compute a schedule for the given union of domains that respects
2754 * all the validity dependences.
2755 * If the default isl scheduling algorithm is used, it tries to minimize
2756 * the dependence distances over the proximity dependences.
2757 * If Feautrier's scheduling algorithm is used, the proximity dependence
2758 * distances are only minimized during the extension to a full-dimensional
2761 __isl_give isl_schedule
*isl_union_set_compute_schedule(
2762 __isl_take isl_union_set
*domain
,
2763 __isl_take isl_union_map
*validity
,
2764 __isl_take isl_union_map
*proximity
)
2766 isl_ctx
*ctx
= isl_union_set_get_ctx(domain
);
2768 struct isl_sched_graph graph
= { 0 };
2769 isl_schedule
*sched
;
2770 struct isl_extract_edge_data data
;
2772 domain
= isl_union_set_align_params(domain
,
2773 isl_union_map_get_space(validity
));
2774 domain
= isl_union_set_align_params(domain
,
2775 isl_union_map_get_space(proximity
));
2776 dim
= isl_union_set_get_space(domain
);
2777 validity
= isl_union_map_align_params(validity
, isl_space_copy(dim
));
2778 proximity
= isl_union_map_align_params(proximity
, dim
);
2783 graph
.n
= isl_union_set_n_set(domain
);
2786 if (graph_alloc(ctx
, &graph
, graph
.n
,
2787 isl_union_map_n_map(validity
) + isl_union_map_n_map(proximity
)) < 0)
2789 if (compute_max_row(&graph
, domain
) < 0)
2793 if (isl_union_set_foreach_set(domain
, &extract_node
, &graph
) < 0)
2795 if (graph_init_table(ctx
, &graph
) < 0)
2797 graph
.max_edge
[isl_edge_validity
] = isl_union_map_n_map(validity
);
2798 graph
.max_edge
[isl_edge_proximity
] = isl_union_map_n_map(proximity
);
2799 if (graph_init_edge_tables(ctx
, &graph
) < 0)
2802 data
.graph
= &graph
;
2803 data
.type
= isl_edge_validity
;
2804 if (isl_union_map_foreach_map(validity
, &extract_edge
, &data
) < 0)
2806 data
.type
= isl_edge_proximity
;
2807 if (isl_union_map_foreach_map(proximity
, &extract_edge
, &data
) < 0)
2810 if (compute_schedule(ctx
, &graph
) < 0)
2814 sched
= extract_schedule(&graph
, isl_union_set_get_space(domain
));
2816 graph_free(ctx
, &graph
);
2817 isl_union_set_free(domain
);
2818 isl_union_map_free(validity
);
2819 isl_union_map_free(proximity
);
2823 graph_free(ctx
, &graph
);
2824 isl_union_set_free(domain
);
2825 isl_union_map_free(validity
);
2826 isl_union_map_free(proximity
);
2830 void *isl_schedule_free(__isl_take isl_schedule
*sched
)
2836 if (--sched
->ref
> 0)
2839 for (i
= 0; i
< sched
->n
; ++i
) {
2840 isl_multi_aff_free(sched
->node
[i
].sched
);
2841 free(sched
->node
[i
].band_end
);
2842 free(sched
->node
[i
].band_id
);
2843 free(sched
->node
[i
].zero
);
2845 isl_space_free(sched
->dim
);
2846 isl_band_list_free(sched
->band_forest
);
2851 isl_ctx
*isl_schedule_get_ctx(__isl_keep isl_schedule
*schedule
)
2853 return schedule
? isl_space_get_ctx(schedule
->dim
) : NULL
;
2856 /* Return an isl_union_map of the schedule. If we have already constructed
2857 * a band forest, then this band forest may have been modified so we need
2858 * to extract the isl_union_map from the forest rather than from
2859 * the originally computed schedule.
2861 __isl_give isl_union_map
*isl_schedule_get_map(__isl_keep isl_schedule
*sched
)
2864 isl_union_map
*umap
;
2869 if (sched
->band_forest
)
2870 return isl_band_list_get_suffix_schedule(sched
->band_forest
);
2872 umap
= isl_union_map_empty(isl_space_copy(sched
->dim
));
2873 for (i
= 0; i
< sched
->n
; ++i
) {
2876 ma
= isl_multi_aff_copy(sched
->node
[i
].sched
);
2877 umap
= isl_union_map_add_map(umap
, isl_map_from_multi_aff(ma
));
2883 static __isl_give isl_band_list
*construct_band_list(
2884 __isl_keep isl_schedule
*schedule
, __isl_keep isl_band
*parent
,
2885 int band_nr
, int *parent_active
, int n_active
);
2887 /* Construct an isl_band structure for the band in the given schedule
2888 * with sequence number band_nr for the n_active nodes marked by active.
2889 * If the nodes don't have a band with the given sequence number,
2890 * then a band without members is created.
2892 * Because of the way the schedule is constructed, we know that
2893 * the position of the band inside the schedule of a node is the same
2894 * for all active nodes.
2896 static __isl_give isl_band
*construct_band(__isl_keep isl_schedule
*schedule
,
2897 __isl_keep isl_band
*parent
,
2898 int band_nr
, int *active
, int n_active
)
2901 isl_ctx
*ctx
= isl_schedule_get_ctx(schedule
);
2903 unsigned start
, end
;
2905 band
= isl_band_alloc(ctx
);
2909 band
->schedule
= schedule
;
2910 band
->parent
= parent
;
2912 for (i
= 0; i
< schedule
->n
; ++i
)
2913 if (active
[i
] && schedule
->node
[i
].n_band
> band_nr
+ 1)
2916 if (i
< schedule
->n
) {
2917 band
->children
= construct_band_list(schedule
, band
,
2918 band_nr
+ 1, active
, n_active
);
2919 if (!band
->children
)
2923 for (i
= 0; i
< schedule
->n
; ++i
)
2927 if (i
>= schedule
->n
)
2928 isl_die(ctx
, isl_error_internal
,
2929 "band without active statements", goto error
);
2931 start
= band_nr
? schedule
->node
[i
].band_end
[band_nr
- 1] : 0;
2932 end
= band_nr
< schedule
->node
[i
].n_band
?
2933 schedule
->node
[i
].band_end
[band_nr
] : start
;
2934 band
->n
= end
- start
;
2936 band
->zero
= isl_alloc_array(ctx
, int, band
->n
);
2940 for (j
= 0; j
< band
->n
; ++j
)
2941 band
->zero
[j
] = schedule
->node
[i
].zero
[start
+ j
];
2943 band
->pma
= isl_union_pw_multi_aff_empty(isl_space_copy(schedule
->dim
));
2944 for (i
= 0; i
< schedule
->n
; ++i
) {
2946 isl_pw_multi_aff
*pma
;
2952 ma
= isl_multi_aff_copy(schedule
->node
[i
].sched
);
2953 n_out
= isl_multi_aff_dim(ma
, isl_dim_out
);
2954 ma
= isl_multi_aff_drop_dims(ma
, isl_dim_out
, end
, n_out
- end
);
2955 ma
= isl_multi_aff_drop_dims(ma
, isl_dim_out
, 0, start
);
2956 pma
= isl_pw_multi_aff_from_multi_aff(ma
);
2957 band
->pma
= isl_union_pw_multi_aff_add_pw_multi_aff(band
->pma
,
2965 isl_band_free(band
);
2969 /* Construct a list of bands that start at the same position (with
2970 * sequence number band_nr) in the schedules of the nodes that
2971 * were active in the parent band.
2973 * A separate isl_band structure is created for each band_id
2974 * and for each node that does not have a band with sequence
2975 * number band_nr. In the latter case, a band without members
2977 * This ensures that if a band has any children, then each node
2978 * that was active in the band is active in exactly one of the children.
2980 static __isl_give isl_band_list
*construct_band_list(
2981 __isl_keep isl_schedule
*schedule
, __isl_keep isl_band
*parent
,
2982 int band_nr
, int *parent_active
, int n_active
)
2985 isl_ctx
*ctx
= isl_schedule_get_ctx(schedule
);
2988 isl_band_list
*list
;
2991 for (i
= 0; i
< n_active
; ++i
) {
2992 for (j
= 0; j
< schedule
->n
; ++j
) {
2993 if (!parent_active
[j
])
2995 if (schedule
->node
[j
].n_band
<= band_nr
)
2997 if (schedule
->node
[j
].band_id
[band_nr
] == i
) {
3003 for (j
= 0; j
< schedule
->n
; ++j
)
3004 if (schedule
->node
[j
].n_band
<= band_nr
)
3009 list
= isl_band_list_alloc(ctx
, n_band
);
3010 band
= construct_band(schedule
, parent
, band_nr
,
3011 parent_active
, n_active
);
3012 return isl_band_list_add(list
, band
);
3015 active
= isl_alloc_array(ctx
, int, schedule
->n
);
3019 list
= isl_band_list_alloc(ctx
, n_band
);
3021 for (i
= 0; i
< n_active
; ++i
) {
3025 for (j
= 0; j
< schedule
->n
; ++j
) {
3026 active
[j
] = parent_active
[j
] &&
3027 schedule
->node
[j
].n_band
> band_nr
&&
3028 schedule
->node
[j
].band_id
[band_nr
] == i
;
3035 band
= construct_band(schedule
, parent
, band_nr
, active
, n
);
3037 list
= isl_band_list_add(list
, band
);
3039 for (i
= 0; i
< schedule
->n
; ++i
) {
3041 if (!parent_active
[i
])
3043 if (schedule
->node
[i
].n_band
> band_nr
)
3045 for (j
= 0; j
< schedule
->n
; ++j
)
3047 band
= construct_band(schedule
, parent
, band_nr
, active
, 1);
3048 list
= isl_band_list_add(list
, band
);
3056 /* Construct a band forest representation of the schedule and
3057 * return the list of roots.
3059 static __isl_give isl_band_list
*construct_forest(
3060 __isl_keep isl_schedule
*schedule
)
3063 isl_ctx
*ctx
= isl_schedule_get_ctx(schedule
);
3064 isl_band_list
*forest
;
3067 active
= isl_alloc_array(ctx
, int, schedule
->n
);
3071 for (i
= 0; i
< schedule
->n
; ++i
)
3074 forest
= construct_band_list(schedule
, NULL
, 0, active
, schedule
->n
);
3081 /* Return the roots of a band forest representation of the schedule.
3083 __isl_give isl_band_list
*isl_schedule_get_band_forest(
3084 __isl_keep isl_schedule
*schedule
)
3088 if (!schedule
->band_forest
)
3089 schedule
->band_forest
= construct_forest(schedule
);
3090 return isl_band_list_dup(schedule
->band_forest
);
3093 /* Call "fn" on each band in the schedule in depth-first post-order.
3095 int isl_schedule_foreach_band(__isl_keep isl_schedule
*sched
,
3096 int (*fn
)(__isl_keep isl_band
*band
, void *user
), void *user
)
3099 isl_band_list
*forest
;
3104 forest
= isl_schedule_get_band_forest(sched
);
3105 r
= isl_band_list_foreach_band(forest
, fn
, user
);
3106 isl_band_list_free(forest
);
3111 static __isl_give isl_printer
*print_band_list(__isl_take isl_printer
*p
,
3112 __isl_keep isl_band_list
*list
);
3114 static __isl_give isl_printer
*print_band(__isl_take isl_printer
*p
,
3115 __isl_keep isl_band
*band
)
3117 isl_band_list
*children
;
3119 p
= isl_printer_start_line(p
);
3120 p
= isl_printer_print_union_pw_multi_aff(p
, band
->pma
);
3121 p
= isl_printer_end_line(p
);
3123 if (!isl_band_has_children(band
))
3126 children
= isl_band_get_children(band
);
3128 p
= isl_printer_indent(p
, 4);
3129 p
= print_band_list(p
, children
);
3130 p
= isl_printer_indent(p
, -4);
3132 isl_band_list_free(children
);
3137 static __isl_give isl_printer
*print_band_list(__isl_take isl_printer
*p
,
3138 __isl_keep isl_band_list
*list
)
3142 n
= isl_band_list_n_band(list
);
3143 for (i
= 0; i
< n
; ++i
) {
3145 band
= isl_band_list_get_band(list
, i
);
3146 p
= print_band(p
, band
);
3147 isl_band_free(band
);
3153 __isl_give isl_printer
*isl_printer_print_schedule(__isl_take isl_printer
*p
,
3154 __isl_keep isl_schedule
*schedule
)
3156 isl_band_list
*forest
;
3158 forest
= isl_schedule_get_band_forest(schedule
);
3160 p
= print_band_list(p
, forest
);
3162 isl_band_list_free(forest
);
3167 void isl_schedule_dump(__isl_keep isl_schedule
*schedule
)
3169 isl_printer
*printer
;
3174 printer
= isl_printer_to_file(isl_schedule_get_ctx(schedule
), stderr
);
3175 printer
= isl_printer_print_schedule(printer
, schedule
);
3177 isl_printer_free(printer
);