1 #include "isl_equalities.h"
3 #include "isl_map_private.h"
7 static void swap_equality(struct isl_basic_map
*bmap
, int a
, int b
)
9 isl_int
*t
= bmap
->eq
[a
];
10 bmap
->eq
[a
] = bmap
->eq
[b
];
14 static void swap_inequality(struct isl_basic_map
*bmap
, int a
, int b
)
17 isl_int
*t
= bmap
->ineq
[a
];
18 bmap
->ineq
[a
] = bmap
->ineq
[b
];
23 static void set_swap_inequality(struct isl_basic_set
*bset
, int a
, int b
)
25 swap_inequality((struct isl_basic_map
*)bset
, a
, b
);
28 static void constraint_drop_vars(isl_int
*c
, unsigned n
, unsigned rem
)
30 isl_seq_cpy(c
, c
+ n
, rem
);
31 isl_seq_clr(c
+ rem
, n
);
34 /* Drop n dimensions starting at first.
36 * In principle, this frees up some extra variables as the number
37 * of columns remains constant, but we would have to extend
38 * the div array too as the number of rows in this array is assumed
39 * to be equal to extra.
41 struct isl_basic_set
*isl_basic_set_drop_dims(
42 struct isl_basic_set
*bset
, unsigned first
, unsigned n
)
49 isl_assert(bset
->ctx
, first
+ n
<= bset
->dim
->n_out
, goto error
);
54 bset
= isl_basic_set_cow(bset
);
58 for (i
= 0; i
< bset
->n_eq
; ++i
)
59 constraint_drop_vars(bset
->eq
[i
]+1+bset
->dim
->nparam
+first
, n
,
60 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
62 for (i
= 0; i
< bset
->n_ineq
; ++i
)
63 constraint_drop_vars(bset
->ineq
[i
]+1+bset
->dim
->nparam
+first
, n
,
64 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
66 for (i
= 0; i
< bset
->n_div
; ++i
)
67 constraint_drop_vars(bset
->div
[i
]+1+1+bset
->dim
->nparam
+first
, n
,
68 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
70 bset
->dim
= isl_dim_drop_outputs(bset
->dim
, first
, n
);
74 ISL_F_CLR(bset
, ISL_BASIC_SET_NORMALIZED
);
75 bset
= isl_basic_set_simplify(bset
);
76 return isl_basic_set_finalize(bset
);
78 isl_basic_set_free(bset
);
82 struct isl_set
*isl_set_drop_dims(
83 struct isl_set
*set
, unsigned first
, unsigned n
)
90 isl_assert(set
->ctx
, first
+ n
<= set
->dim
->n_out
, goto error
);
94 set
= isl_set_cow(set
);
97 set
->dim
= isl_dim_drop_outputs(set
->dim
, first
, n
);
101 for (i
= 0; i
< set
->n
; ++i
) {
102 set
->p
[i
] = isl_basic_set_drop_dims(set
->p
[i
], first
, n
);
107 ISL_F_CLR(set
, ISL_SET_NORMALIZED
);
114 /* Move "n" divs starting at "first" to the end of the list of divs.
116 static struct isl_basic_map
*move_divs_last(struct isl_basic_map
*bmap
,
117 unsigned first
, unsigned n
)
122 if (first
+ n
== bmap
->n_div
)
125 div
= isl_alloc_array(bmap
->ctx
, isl_int
*, n
);
128 for (i
= 0; i
< n
; ++i
)
129 div
[i
] = bmap
->div
[first
+ i
];
130 for (i
= 0; i
< bmap
->n_div
- first
- n
; ++i
)
131 bmap
->div
[first
+ i
] = bmap
->div
[first
+ n
+ i
];
132 for (i
= 0; i
< n
; ++i
)
133 bmap
->div
[bmap
->n_div
- n
+ i
] = div
[i
];
137 isl_basic_map_free(bmap
);
141 /* Drop "n" dimensions of type "type" starting at "first".
143 * In principle, this frees up some extra variables as the number
144 * of columns remains constant, but we would have to extend
145 * the div array too as the number of rows in this array is assumed
146 * to be equal to extra.
148 struct isl_basic_map
*isl_basic_map_drop(struct isl_basic_map
*bmap
,
149 enum isl_dim_type type
, unsigned first
, unsigned n
)
159 dim
= isl_basic_map_dim(bmap
, type
);
160 isl_assert(bmap
->ctx
, first
+ n
<= dim
, goto error
);
165 bmap
= isl_basic_map_cow(bmap
);
169 offset
= isl_basic_map_offset(bmap
, type
) + first
;
170 left
= isl_basic_map_total_dim(bmap
) - (offset
- 1) - n
;
171 for (i
= 0; i
< bmap
->n_eq
; ++i
)
172 constraint_drop_vars(bmap
->eq
[i
]+offset
, n
, left
);
174 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
175 constraint_drop_vars(bmap
->ineq
[i
]+offset
, n
, left
);
177 for (i
= 0; i
< bmap
->n_div
; ++i
)
178 constraint_drop_vars(bmap
->div
[i
]+1+offset
, n
, left
);
180 if (type
== isl_dim_div
) {
181 bmap
= move_divs_last(bmap
, first
, n
);
184 isl_basic_map_free_div(bmap
, n
);
186 bmap
->dim
= isl_dim_drop(bmap
->dim
, type
, first
, n
);
190 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
191 bmap
= isl_basic_map_simplify(bmap
);
192 return isl_basic_map_finalize(bmap
);
194 isl_basic_map_free(bmap
);
198 struct isl_basic_map
*isl_basic_map_drop_inputs(
199 struct isl_basic_map
*bmap
, unsigned first
, unsigned n
)
201 return isl_basic_map_drop(bmap
, isl_dim_in
, first
, n
);
204 struct isl_map
*isl_map_drop(struct isl_map
*map
,
205 enum isl_dim_type type
, unsigned first
, unsigned n
)
212 isl_assert(map
->ctx
, first
+ n
<= isl_map_dim(map
, type
), goto error
);
216 map
= isl_map_cow(map
);
219 map
->dim
= isl_dim_drop(map
->dim
, type
, first
, n
);
223 for (i
= 0; i
< map
->n
; ++i
) {
224 map
->p
[i
] = isl_basic_map_drop(map
->p
[i
], type
, first
, n
);
228 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
236 struct isl_map
*isl_map_drop_inputs(
237 struct isl_map
*map
, unsigned first
, unsigned n
)
239 return isl_map_drop(map
, isl_dim_in
, first
, n
);
243 * We don't cow, as the div is assumed to be redundant.
245 static struct isl_basic_map
*isl_basic_map_drop_div(
246 struct isl_basic_map
*bmap
, unsigned div
)
254 pos
= 1 + isl_dim_total(bmap
->dim
) + div
;
256 isl_assert(bmap
->ctx
, div
< bmap
->n_div
, goto error
);
258 for (i
= 0; i
< bmap
->n_eq
; ++i
)
259 constraint_drop_vars(bmap
->eq
[i
]+pos
, 1, bmap
->extra
-div
-1);
261 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
262 if (!isl_int_is_zero(bmap
->ineq
[i
][pos
])) {
263 isl_basic_map_drop_inequality(bmap
, i
);
267 constraint_drop_vars(bmap
->ineq
[i
]+pos
, 1, bmap
->extra
-div
-1);
270 for (i
= 0; i
< bmap
->n_div
; ++i
)
271 constraint_drop_vars(bmap
->div
[i
]+1+pos
, 1, bmap
->extra
-div
-1);
273 if (div
!= bmap
->n_div
- 1) {
275 isl_int
*t
= bmap
->div
[div
];
277 for (j
= div
; j
< bmap
->n_div
- 1; ++j
)
278 bmap
->div
[j
] = bmap
->div
[j
+1];
280 bmap
->div
[bmap
->n_div
- 1] = t
;
282 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
283 isl_basic_map_free_div(bmap
, 1);
287 isl_basic_map_free(bmap
);
291 struct isl_basic_map
*isl_basic_map_normalize_constraints(
292 struct isl_basic_map
*bmap
)
296 unsigned total
= isl_basic_map_total_dim(bmap
);
299 for (i
= bmap
->n_eq
- 1; i
>= 0; --i
) {
300 isl_seq_gcd(bmap
->eq
[i
]+1, total
, &gcd
);
301 if (isl_int_is_zero(gcd
)) {
302 if (!isl_int_is_zero(bmap
->eq
[i
][0])) {
303 bmap
= isl_basic_map_set_to_empty(bmap
);
306 isl_basic_map_drop_equality(bmap
, i
);
309 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
310 isl_int_gcd(gcd
, gcd
, bmap
->eq
[i
][0]);
311 if (isl_int_is_one(gcd
))
313 if (!isl_int_is_divisible_by(bmap
->eq
[i
][0], gcd
)) {
314 bmap
= isl_basic_map_set_to_empty(bmap
);
317 isl_seq_scale_down(bmap
->eq
[i
], bmap
->eq
[i
], gcd
, 1+total
);
320 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
321 isl_seq_gcd(bmap
->ineq
[i
]+1, total
, &gcd
);
322 if (isl_int_is_zero(gcd
)) {
323 if (isl_int_is_neg(bmap
->ineq
[i
][0])) {
324 bmap
= isl_basic_map_set_to_empty(bmap
);
327 isl_basic_map_drop_inequality(bmap
, i
);
330 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
331 isl_int_gcd(gcd
, gcd
, bmap
->ineq
[i
][0]);
332 if (isl_int_is_one(gcd
))
334 isl_int_fdiv_q(bmap
->ineq
[i
][0], bmap
->ineq
[i
][0], gcd
);
335 isl_seq_scale_down(bmap
->ineq
[i
]+1, bmap
->ineq
[i
]+1, gcd
, total
);
342 struct isl_basic_set
*isl_basic_set_normalize_constraints(
343 struct isl_basic_set
*bset
)
345 (struct isl_basic_set
*)isl_basic_map_normalize_constraints(
346 (struct isl_basic_map
*)bset
);
349 static void eliminate_div(struct isl_basic_map
*bmap
, isl_int
*eq
, unsigned div
)
352 unsigned pos
= 1 + isl_dim_total(bmap
->dim
) + div
;
354 len
= 1 + isl_basic_map_total_dim(bmap
);
356 for (i
= 0; i
< bmap
->n_eq
; ++i
)
357 if (bmap
->eq
[i
] != eq
)
358 isl_seq_elim(bmap
->eq
[i
], eq
, pos
, len
, NULL
);
360 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
361 isl_seq_elim(bmap
->ineq
[i
], eq
, pos
, len
, NULL
);
363 /* We need to be careful about circular definitions,
364 * so for now we just remove the definitions of other divs that
365 * depend on this div and (possibly) recompute them later.
367 for (i
= 0; i
< bmap
->n_div
; ++i
)
368 if (!isl_int_is_zero(bmap
->div
[i
][0]) &&
369 !isl_int_is_zero(bmap
->div
[i
][1 + pos
]))
370 isl_seq_clr(bmap
->div
[i
], 1 + len
);
372 isl_basic_map_drop_div(bmap
, div
);
375 /* Elimininate divs based on equalities
377 static struct isl_basic_map
*eliminate_divs_eq(
378 struct isl_basic_map
*bmap
, int *progress
)
388 off
= 1 + isl_dim_total(bmap
->dim
);
390 for (d
= bmap
->n_div
- 1; d
>= 0 ; --d
) {
391 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
392 if (!isl_int_is_one(bmap
->eq
[i
][off
+ d
]) &&
393 !isl_int_is_negone(bmap
->eq
[i
][off
+ d
]))
397 eliminate_div(bmap
, bmap
->eq
[i
], d
);
398 isl_basic_map_drop_equality(bmap
, i
);
403 return eliminate_divs_eq(bmap
, progress
);
407 /* Elimininate divs based on inequalities
409 static struct isl_basic_map
*eliminate_divs_ineq(
410 struct isl_basic_map
*bmap
, int *progress
)
421 off
= 1 + isl_dim_total(bmap
->dim
);
423 for (d
= bmap
->n_div
- 1; d
>= 0 ; --d
) {
424 for (i
= 0; i
< bmap
->n_eq
; ++i
)
425 if (!isl_int_is_zero(bmap
->eq
[i
][off
+ d
]))
429 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
430 if (isl_int_abs_gt(bmap
->ineq
[i
][off
+ d
], ctx
->one
))
432 if (i
< bmap
->n_ineq
)
435 bmap
= isl_basic_map_eliminate_vars(bmap
, (off
-1)+d
, 1);
436 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
438 bmap
= isl_basic_map_drop_div(bmap
, d
);
445 /* Assumes divs have been ordered if keep_divs is set.
447 static void eliminate_var_using_equality(struct isl_basic_map
*bmap
,
448 unsigned pos
, isl_int
*eq
, int keep_divs
, int *progress
)
454 total
= isl_basic_map_total_dim(bmap
);
455 last_div
= isl_seq_last_non_zero(eq
+ 1 + isl_dim_total(bmap
->dim
),
457 for (k
= 0; k
< bmap
->n_eq
; ++k
) {
458 if (bmap
->eq
[k
] == eq
)
460 if (isl_int_is_zero(bmap
->eq
[k
][1+pos
]))
464 isl_seq_elim(bmap
->eq
[k
], eq
, 1+pos
, 1+total
, NULL
);
467 for (k
= 0; k
< bmap
->n_ineq
; ++k
) {
468 if (isl_int_is_zero(bmap
->ineq
[k
][1+pos
]))
472 isl_seq_elim(bmap
->ineq
[k
], eq
, 1+pos
, 1+total
, NULL
);
473 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
476 for (k
= 0; k
< bmap
->n_div
; ++k
) {
477 if (isl_int_is_zero(bmap
->div
[k
][0]))
479 if (isl_int_is_zero(bmap
->div
[k
][1+1+pos
]))
483 /* We need to be careful about circular definitions,
484 * so for now we just remove the definition of div k
485 * if the equality contains any divs.
486 * If keep_divs is set, then the divs have been ordered
487 * and we can keep the definition as long as the result
490 if (last_div
== -1 || (keep_divs
&& last_div
< k
))
491 isl_seq_elim(bmap
->div
[k
]+1, eq
,
492 1+pos
, 1+total
, &bmap
->div
[k
][0]);
494 isl_seq_clr(bmap
->div
[k
], 1 + total
);
495 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
499 struct isl_basic_map
*isl_basic_map_gauss(
500 struct isl_basic_map
*bmap
, int *progress
)
508 bmap
= isl_basic_map_order_divs(bmap
);
513 total
= isl_basic_map_total_dim(bmap
);
514 total_var
= total
- bmap
->n_div
;
516 last_var
= total
- 1;
517 for (done
= 0; done
< bmap
->n_eq
; ++done
) {
518 for (; last_var
>= 0; --last_var
) {
519 for (k
= done
; k
< bmap
->n_eq
; ++k
)
520 if (!isl_int_is_zero(bmap
->eq
[k
][1+last_var
]))
528 swap_equality(bmap
, k
, done
);
529 if (isl_int_is_neg(bmap
->eq
[done
][1+last_var
]))
530 isl_seq_neg(bmap
->eq
[done
], bmap
->eq
[done
], 1+total
);
532 eliminate_var_using_equality(bmap
, last_var
, bmap
->eq
[done
], 1,
535 if (last_var
>= total_var
&&
536 isl_int_is_zero(bmap
->div
[last_var
- total_var
][0])) {
537 unsigned div
= last_var
- total_var
;
538 isl_seq_neg(bmap
->div
[div
]+1, bmap
->eq
[done
], 1+total
);
539 isl_int_set_si(bmap
->div
[div
][1+1+last_var
], 0);
540 isl_int_set(bmap
->div
[div
][0],
541 bmap
->eq
[done
][1+last_var
]);
542 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
545 if (done
== bmap
->n_eq
)
547 for (k
= done
; k
< bmap
->n_eq
; ++k
) {
548 if (isl_int_is_zero(bmap
->eq
[k
][0]))
550 return isl_basic_map_set_to_empty(bmap
);
552 isl_basic_map_free_equality(bmap
, bmap
->n_eq
-done
);
556 struct isl_basic_set
*isl_basic_set_gauss(
557 struct isl_basic_set
*bset
, int *progress
)
559 return (struct isl_basic_set
*)isl_basic_map_gauss(
560 (struct isl_basic_map
*)bset
, progress
);
564 static unsigned int round_up(unsigned int v
)
575 static int hash_index(isl_int
***index
, unsigned int size
, int bits
,
576 struct isl_basic_map
*bmap
, int k
)
579 unsigned total
= isl_basic_map_total_dim(bmap
);
580 uint32_t hash
= isl_seq_get_hash_bits(bmap
->ineq
[k
]+1, total
, bits
);
581 for (h
= hash
; index
[h
]; h
= (h
+1) % size
)
582 if (&bmap
->ineq
[k
] != index
[h
] &&
583 isl_seq_eq(bmap
->ineq
[k
]+1, index
[h
][0]+1, total
))
588 static int set_hash_index(isl_int
***index
, unsigned int size
, int bits
,
589 struct isl_basic_set
*bset
, int k
)
591 return hash_index(index
, size
, bits
, (struct isl_basic_map
*)bset
, k
);
594 /* If we can eliminate more than one div, then we need to make
595 * sure we do it from last div to first div, in order not to
596 * change the position of the other divs that still need to
599 static struct isl_basic_map
*remove_duplicate_divs(
600 struct isl_basic_map
*bmap
, int *progress
)
608 unsigned total_var
= isl_dim_total(bmap
->dim
);
609 unsigned total
= total_var
+ bmap
->n_div
;
612 if (bmap
->n_div
<= 1)
616 for (k
= bmap
->n_div
- 1; k
>= 0; --k
)
617 if (!isl_int_is_zero(bmap
->div
[k
][0]))
622 elim_for
= isl_calloc_array(ctx
, int, bmap
->n_div
);
623 size
= round_up(4 * bmap
->n_div
/ 3 - 1);
624 bits
= ffs(size
) - 1;
625 index
= isl_calloc_array(ctx
, int, size
);
628 eq
= isl_blk_alloc(ctx
, 1+total
);
629 if (isl_blk_is_error(eq
))
632 isl_seq_clr(eq
.data
, 1+total
);
633 index
[isl_seq_get_hash_bits(bmap
->div
[k
], 2+total
, bits
)] = k
+ 1;
634 for (--k
; k
>= 0; --k
) {
637 if (isl_int_is_zero(bmap
->div
[k
][0]))
640 hash
= isl_seq_get_hash_bits(bmap
->div
[k
], 2+total
, bits
);
641 for (h
= hash
; index
[h
]; h
= (h
+1) % size
)
642 if (isl_seq_eq(bmap
->div
[k
],
643 bmap
->div
[index
[h
]-1], 2+total
))
652 for (l
= bmap
->n_div
- 1; l
>= 0; --l
) {
656 isl_int_set_si(eq
.data
[1+total_var
+k
], -1);
657 isl_int_set_si(eq
.data
[1+total_var
+l
], 1);
658 eliminate_div(bmap
, eq
.data
, l
);
659 isl_int_set_si(eq
.data
[1+total_var
+k
], 0);
660 isl_int_set_si(eq
.data
[1+total_var
+l
], 0);
663 isl_blk_free(ctx
, eq
);
670 static int n_pure_div_eq(struct isl_basic_map
*bmap
)
675 total
= isl_dim_total(bmap
->dim
);
676 for (i
= 0, j
= bmap
->n_div
-1; i
< bmap
->n_eq
; ++i
) {
677 while (j
>= 0 && isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
681 if (isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + total
, j
) != -1)
687 /* Normalize divs that appear in equalities.
689 * In particular, we assume that bmap contains some equalities
694 * and we want to replace the set of e_i by a minimal set and
695 * such that the new e_i have a canonical representation in terms
697 * If any of the equalities involves more than one divs, then
698 * we currently simply bail out.
700 * Let us first additionally assume that all equalities involve
701 * a div. The equalities then express modulo constraints on the
702 * remaining variables and we can use "parameter compression"
703 * to find a minimal set of constraints. The result is a transformation
705 * x = T(x') = x_0 + G x'
707 * with G a lower-triangular matrix with all elements below the diagonal
708 * non-negative and smaller than the diagonal element on the same row.
709 * We first normalize x_0 by making the same property hold in the affine
711 * The rows i of G with a 1 on the diagonal do not impose any modulo
712 * constraint and simply express x_i = x'_i.
713 * For each of the remaining rows i, we introduce a div and a corresponding
714 * equality. In particular
716 * g_ii e_j = x_i - g_i(x')
718 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
719 * corresponding div (if g_kk != 1).
721 * If there are any equalities not involving any div, then we
722 * first apply a variable compression on the variables x:
724 * x = C x'' x'' = C_2 x
726 * and perform the above parameter compression on A C instead of on A.
727 * The resulting compression is then of the form
729 * x'' = T(x') = x_0 + G x'
731 * and in constructing the new divs and the corresponding equalities,
732 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
733 * by the corresponding row from C_2.
735 static struct isl_basic_map
*normalize_divs(
736 struct isl_basic_map
*bmap
, int *progress
)
743 struct isl_mat
*T
= NULL
;
744 struct isl_mat
*C
= NULL
;
745 struct isl_mat
*C2
= NULL
;
753 if (bmap
->n_div
== 0)
759 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_NORMALIZED_DIVS
))
762 total
= isl_dim_total(bmap
->dim
);
763 div_eq
= n_pure_div_eq(bmap
);
767 if (div_eq
< bmap
->n_eq
) {
768 B
= isl_mat_sub_alloc(bmap
->ctx
, bmap
->eq
, div_eq
,
769 bmap
->n_eq
- div_eq
, 0, 1 + total
);
770 C
= isl_mat_variable_compression(B
, &C2
);
774 bmap
= isl_basic_map_set_to_empty(bmap
);
781 d
= isl_vec_alloc(bmap
->ctx
, div_eq
);
784 for (i
= 0, j
= bmap
->n_div
-1; i
< div_eq
; ++i
) {
785 while (j
>= 0 && isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
787 isl_int_set(d
->block
.data
[i
], bmap
->eq
[i
][1 + total
+ j
]);
789 B
= isl_mat_sub_alloc(bmap
->ctx
, bmap
->eq
, 0, div_eq
, 0, 1 + total
);
792 B
= isl_mat_product(B
, C
);
796 T
= isl_mat_parameter_compression(B
, d
);
800 bmap
= isl_basic_map_set_to_empty(bmap
);
806 for (i
= 0; i
< T
->n_row
- 1; ++i
) {
807 isl_int_fdiv_q(v
, T
->row
[1 + i
][0], T
->row
[1 + i
][1 + i
]);
808 if (isl_int_is_zero(v
))
810 isl_mat_col_submul(T
, 0, v
, 1 + i
);
813 pos
= isl_alloc_array(bmap
->ctx
, int, T
->n_row
);
814 /* We have to be careful because dropping equalities may reorder them */
816 for (j
= bmap
->n_div
- 1; j
>= 0; --j
) {
817 for (i
= 0; i
< bmap
->n_eq
; ++i
)
818 if (!isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
820 if (i
< bmap
->n_eq
) {
821 bmap
= isl_basic_map_drop_div(bmap
, j
);
822 isl_basic_map_drop_equality(bmap
, i
);
828 for (i
= 1; i
< T
->n_row
; ++i
) {
829 if (isl_int_is_one(T
->row
[i
][i
]))
834 if (needed
> dropped
) {
835 bmap
= isl_basic_map_extend_dim(bmap
, isl_dim_copy(bmap
->dim
),
840 for (i
= 1; i
< T
->n_row
; ++i
) {
841 if (isl_int_is_one(T
->row
[i
][i
]))
843 k
= isl_basic_map_alloc_div(bmap
);
844 pos
[i
] = 1 + total
+ k
;
845 isl_seq_clr(bmap
->div
[k
] + 1, 1 + total
+ bmap
->n_div
);
846 isl_int_set(bmap
->div
[k
][0], T
->row
[i
][i
]);
848 isl_seq_cpy(bmap
->div
[k
] + 1, C2
->row
[i
], 1 + total
);
850 isl_int_set_si(bmap
->div
[k
][1 + i
], 1);
851 for (j
= 0; j
< i
; ++j
) {
852 if (isl_int_is_zero(T
->row
[i
][j
]))
854 if (pos
[j
] < T
->n_row
&& C2
)
855 isl_seq_submul(bmap
->div
[k
] + 1, T
->row
[i
][j
],
856 C2
->row
[pos
[j
]], 1 + total
);
858 isl_int_neg(bmap
->div
[k
][1 + pos
[j
]],
861 j
= isl_basic_map_alloc_equality(bmap
);
862 isl_seq_neg(bmap
->eq
[j
], bmap
->div
[k
]+1, 1+total
+bmap
->n_div
);
863 isl_int_set(bmap
->eq
[j
][pos
[i
]], bmap
->div
[k
][0]);
872 ISL_F_SET(bmap
, ISL_BASIC_MAP_NORMALIZED_DIVS
);
882 static struct isl_basic_map
*set_div_from_lower_bound(
883 struct isl_basic_map
*bmap
, int div
, int ineq
)
885 unsigned total
= 1 + isl_dim_total(bmap
->dim
);
887 isl_seq_neg(bmap
->div
[div
] + 1, bmap
->ineq
[ineq
], total
+ bmap
->n_div
);
888 isl_int_set(bmap
->div
[div
][0], bmap
->ineq
[ineq
][total
+ div
]);
889 isl_int_add(bmap
->div
[div
][1], bmap
->div
[div
][1], bmap
->div
[div
][0]);
890 isl_int_sub_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
891 isl_int_set_si(bmap
->div
[div
][1 + total
+ div
], 0);
896 /* Check whether it is ok to define a div based on an inequality.
897 * To avoid the introduction of circular definitions of divs, we
898 * do not allow such a definition if the resulting expression would refer to
899 * any other undefined divs or if any known div is defined in
900 * terms of the unknown div.
902 static int ok_to_set_div_from_bound(struct isl_basic_map
*bmap
,
906 unsigned total
= 1 + isl_dim_total(bmap
->dim
);
908 /* Not defined in terms of unknown divs */
909 for (j
= 0; j
< bmap
->n_div
; ++j
) {
912 if (isl_int_is_zero(bmap
->ineq
[ineq
][total
+ j
]))
914 if (isl_int_is_zero(bmap
->div
[j
][0]))
918 /* No other div defined in terms of this one => avoid loops */
919 for (j
= 0; j
< bmap
->n_div
; ++j
) {
922 if (isl_int_is_zero(bmap
->div
[j
][0]))
924 if (!isl_int_is_zero(bmap
->div
[j
][1 + total
+ div
]))
931 /* Given two constraints "k" and "l" that are opposite to each other,
932 * except for the constant term, check if we can use them
933 * to obtain an expression for one of the hitherto unknown divs.
934 * "sum" is the sum of the constant terms of the constraints.
935 * If this sum is strictly smaller than the coefficient of one
936 * of the divs, then this pair can be used define the div.
937 * To avoid the introduction of circular definitions of divs, we
938 * do not use the pair if the resulting expression would refer to
939 * any other undefined divs or if any known div is defined in
940 * terms of the unknown div.
942 static struct isl_basic_map
*check_for_div_constraints(
943 struct isl_basic_map
*bmap
, int k
, int l
, isl_int sum
, int *progress
)
946 unsigned total
= 1 + isl_dim_total(bmap
->dim
);
948 for (i
= 0; i
< bmap
->n_div
; ++i
) {
949 if (!isl_int_is_zero(bmap
->div
[i
][0]))
951 if (isl_int_is_zero(bmap
->ineq
[k
][total
+ i
]))
953 if (isl_int_abs_ge(sum
, bmap
->ineq
[k
][total
+ i
]))
955 if (!ok_to_set_div_from_bound(bmap
, i
, k
))
957 if (isl_int_is_pos(bmap
->ineq
[k
][total
+ i
]))
958 bmap
= set_div_from_lower_bound(bmap
, i
, k
);
960 bmap
= set_div_from_lower_bound(bmap
, i
, l
);
968 static struct isl_basic_map
*remove_duplicate_constraints(
969 struct isl_basic_map
*bmap
, int *progress
)
975 unsigned total
= isl_basic_map_total_dim(bmap
);
978 if (bmap
->n_ineq
<= 1)
981 size
= round_up(4 * (bmap
->n_ineq
+1) / 3 - 1);
982 bits
= ffs(size
) - 1;
983 index
= isl_calloc_array(ctx
, isl_int
**, size
);
987 index
[isl_seq_get_hash_bits(bmap
->ineq
[0]+1, total
, bits
)] = &bmap
->ineq
[0];
988 for (k
= 1; k
< bmap
->n_ineq
; ++k
) {
989 h
= hash_index(index
, size
, bits
, bmap
, k
);
991 index
[h
] = &bmap
->ineq
[k
];
996 l
= index
[h
] - &bmap
->ineq
[0];
997 if (isl_int_lt(bmap
->ineq
[k
][0], bmap
->ineq
[l
][0]))
998 swap_inequality(bmap
, k
, l
);
999 isl_basic_map_drop_inequality(bmap
, k
);
1003 for (k
= 0; k
< bmap
->n_ineq
-1; ++k
) {
1004 isl_seq_neg(bmap
->ineq
[k
]+1, bmap
->ineq
[k
]+1, total
);
1005 h
= hash_index(index
, size
, bits
, bmap
, k
);
1006 isl_seq_neg(bmap
->ineq
[k
]+1, bmap
->ineq
[k
]+1, total
);
1009 l
= index
[h
] - &bmap
->ineq
[0];
1010 isl_int_add(sum
, bmap
->ineq
[k
][0], bmap
->ineq
[l
][0]);
1011 if (isl_int_is_pos(sum
)) {
1012 bmap
= check_for_div_constraints(bmap
, k
, l
, sum
,
1016 if (isl_int_is_zero(sum
)) {
1017 /* We need to break out of the loop after these
1018 * changes since the contents of the hash
1019 * will no longer be valid.
1020 * Plus, we probably we want to regauss first.
1022 isl_basic_map_drop_inequality(bmap
, l
);
1023 isl_basic_map_inequality_to_equality(bmap
, k
);
1025 bmap
= isl_basic_map_set_to_empty(bmap
);
1035 struct isl_basic_map
*isl_basic_map_simplify(struct isl_basic_map
*bmap
)
1042 bmap
= isl_basic_map_normalize_constraints(bmap
);
1043 bmap
= remove_duplicate_divs(bmap
, &progress
);
1044 bmap
= eliminate_divs_eq(bmap
, &progress
);
1045 bmap
= eliminate_divs_ineq(bmap
, &progress
);
1046 bmap
= isl_basic_map_gauss(bmap
, &progress
);
1047 /* requires equalities in normal form */
1048 bmap
= normalize_divs(bmap
, &progress
);
1049 bmap
= remove_duplicate_constraints(bmap
, &progress
);
1054 struct isl_basic_set
*isl_basic_set_simplify(struct isl_basic_set
*bset
)
1056 return (struct isl_basic_set
*)
1057 isl_basic_map_simplify((struct isl_basic_map
*)bset
);
1061 /* If the only constraints a div d=floor(f/m)
1062 * appears in are its two defining constraints
1065 * -(f - (m - 1)) + m d >= 0
1067 * then it can safely be removed.
1069 static int div_is_redundant(struct isl_basic_map
*bmap
, int div
)
1072 unsigned pos
= 1 + isl_dim_total(bmap
->dim
) + div
;
1074 for (i
= 0; i
< bmap
->n_eq
; ++i
)
1075 if (!isl_int_is_zero(bmap
->eq
[i
][pos
]))
1078 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
1079 if (isl_int_is_zero(bmap
->ineq
[i
][pos
]))
1081 if (isl_int_eq(bmap
->ineq
[i
][pos
], bmap
->div
[div
][0])) {
1083 isl_int_sub(bmap
->div
[div
][1],
1084 bmap
->div
[div
][1], bmap
->div
[div
][0]);
1085 isl_int_add_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1086 neg
= isl_seq_is_neg(bmap
->ineq
[i
], bmap
->div
[div
]+1, pos
);
1087 isl_int_sub_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1088 isl_int_add(bmap
->div
[div
][1],
1089 bmap
->div
[div
][1], bmap
->div
[div
][0]);
1092 if (isl_seq_first_non_zero(bmap
->ineq
[i
]+pos
+1,
1093 bmap
->n_div
-div
-1) != -1)
1095 } else if (isl_int_abs_eq(bmap
->ineq
[i
][pos
], bmap
->div
[div
][0])) {
1096 if (!isl_seq_eq(bmap
->ineq
[i
], bmap
->div
[div
]+1, pos
))
1098 if (isl_seq_first_non_zero(bmap
->ineq
[i
]+pos
+1,
1099 bmap
->n_div
-div
-1) != -1)
1105 for (i
= 0; i
< bmap
->n_div
; ++i
)
1106 if (!isl_int_is_zero(bmap
->div
[i
][1+pos
]))
1113 * Remove divs that don't occur in any of the constraints or other divs.
1114 * These can arise when dropping some of the variables in a quast
1115 * returned by piplib.
1117 static struct isl_basic_map
*remove_redundant_divs(struct isl_basic_map
*bmap
)
1124 for (i
= bmap
->n_div
-1; i
>= 0; --i
) {
1125 if (!div_is_redundant(bmap
, i
))
1127 bmap
= isl_basic_map_drop_div(bmap
, i
);
1132 struct isl_basic_map
*isl_basic_map_finalize(struct isl_basic_map
*bmap
)
1134 bmap
= remove_redundant_divs(bmap
);
1137 ISL_F_SET(bmap
, ISL_BASIC_SET_FINAL
);
1141 struct isl_basic_set
*isl_basic_set_finalize(struct isl_basic_set
*bset
)
1143 return (struct isl_basic_set
*)
1144 isl_basic_map_finalize((struct isl_basic_map
*)bset
);
1147 struct isl_set
*isl_set_finalize(struct isl_set
*set
)
1153 for (i
= 0; i
< set
->n
; ++i
) {
1154 set
->p
[i
] = isl_basic_set_finalize(set
->p
[i
]);
1164 struct isl_map
*isl_map_finalize(struct isl_map
*map
)
1170 for (i
= 0; i
< map
->n
; ++i
) {
1171 map
->p
[i
] = isl_basic_map_finalize(map
->p
[i
]);
1175 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
1183 /* Remove definition of any div that is defined in terms of the given variable.
1184 * The div itself is not removed. Functions such as
1185 * eliminate_divs_ineq depend on the other divs remaining in place.
1187 static struct isl_basic_map
*remove_dependent_vars(struct isl_basic_map
*bmap
,
1191 unsigned dim
= isl_dim_total(bmap
->dim
);
1193 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1194 if (isl_int_is_zero(bmap
->div
[i
][0]))
1196 if (isl_int_is_zero(bmap
->div
[i
][1+1+pos
]))
1198 isl_int_set_si(bmap
->div
[i
][0], 0);
1203 /* Eliminate the specified variables from the constraints using
1204 * Fourier-Motzkin. The variables themselves are not removed.
1206 struct isl_basic_map
*isl_basic_map_eliminate_vars(
1207 struct isl_basic_map
*bmap
, unsigned pos
, unsigned n
)
1217 total
= isl_basic_map_total_dim(bmap
);
1219 bmap
= isl_basic_map_cow(bmap
);
1220 for (d
= pos
+ n
- 1; d
>= 0 && d
>= pos
; --d
)
1221 bmap
= remove_dependent_vars(bmap
, d
);
1223 for (d
= pos
+ n
- 1;
1224 d
>= 0 && d
>= total
- bmap
->n_div
&& d
>= pos
; --d
)
1225 isl_seq_clr(bmap
->div
[d
-(total
-bmap
->n_div
)], 2+total
);
1226 for (d
= pos
+ n
- 1; d
>= 0 && d
>= pos
; --d
) {
1227 int n_lower
, n_upper
;
1230 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
1231 if (isl_int_is_zero(bmap
->eq
[i
][1+d
]))
1233 eliminate_var_using_equality(bmap
, d
, bmap
->eq
[i
], 0, NULL
);
1234 isl_basic_map_drop_equality(bmap
, i
);
1241 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
1242 if (isl_int_is_pos(bmap
->ineq
[i
][1+d
]))
1244 else if (isl_int_is_neg(bmap
->ineq
[i
][1+d
]))
1247 bmap
= isl_basic_map_extend_constraints(bmap
,
1248 0, n_lower
* n_upper
);
1249 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
1251 if (isl_int_is_zero(bmap
->ineq
[i
][1+d
]))
1254 for (j
= 0; j
< i
; ++j
) {
1255 if (isl_int_is_zero(bmap
->ineq
[j
][1+d
]))
1258 if (isl_int_sgn(bmap
->ineq
[i
][1+d
]) ==
1259 isl_int_sgn(bmap
->ineq
[j
][1+d
]))
1261 k
= isl_basic_map_alloc_inequality(bmap
);
1264 isl_seq_cpy(bmap
->ineq
[k
], bmap
->ineq
[i
],
1266 isl_seq_elim(bmap
->ineq
[k
], bmap
->ineq
[j
],
1267 1+d
, 1+total
, NULL
);
1269 isl_basic_map_drop_inequality(bmap
, i
);
1272 if (n_lower
> 0 && n_upper
> 0) {
1273 bmap
= isl_basic_map_normalize_constraints(bmap
);
1274 bmap
= remove_duplicate_constraints(bmap
, NULL
);
1275 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1276 bmap
= isl_basic_map_convex_hull(bmap
);
1279 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
1283 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
1286 isl_basic_map_free(bmap
);
1290 struct isl_basic_set
*isl_basic_set_eliminate_vars(
1291 struct isl_basic_set
*bset
, unsigned pos
, unsigned n
)
1293 return (struct isl_basic_set
*)isl_basic_map_eliminate_vars(
1294 (struct isl_basic_map
*)bset
, pos
, n
);
1297 /* Don't assume equalities are in order, because align_divs
1298 * may have changed the order of the divs.
1300 static void compute_elimination_index(struct isl_basic_map
*bmap
, int *elim
)
1305 total
= isl_dim_total(bmap
->dim
);
1306 for (d
= 0; d
< total
; ++d
)
1308 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
1309 for (d
= total
- 1; d
>= 0; --d
) {
1310 if (isl_int_is_zero(bmap
->eq
[i
][1+d
]))
1318 static void set_compute_elimination_index(struct isl_basic_set
*bset
, int *elim
)
1320 compute_elimination_index((struct isl_basic_map
*)bset
, elim
);
1323 static int reduced_using_equalities(isl_int
*dst
, isl_int
*src
,
1324 struct isl_basic_map
*bmap
, int *elim
)
1330 total
= isl_dim_total(bmap
->dim
);
1331 for (d
= total
- 1; d
>= 0; --d
) {
1332 if (isl_int_is_zero(src
[1+d
]))
1337 isl_seq_cpy(dst
, src
, 1 + total
);
1340 isl_seq_elim(dst
, bmap
->eq
[elim
[d
]], 1 + d
, 1 + total
, NULL
);
1345 static int set_reduced_using_equalities(isl_int
*dst
, isl_int
*src
,
1346 struct isl_basic_set
*bset
, int *elim
)
1348 return reduced_using_equalities(dst
, src
,
1349 (struct isl_basic_map
*)bset
, elim
);
1352 static struct isl_basic_set
*isl_basic_set_reduce_using_equalities(
1353 struct isl_basic_set
*bset
, struct isl_basic_set
*context
)
1358 if (!bset
|| !context
)
1361 bset
= isl_basic_set_cow(bset
);
1365 elim
= isl_alloc_array(ctx
, int, isl_basic_set_n_dim(bset
));
1368 set_compute_elimination_index(context
, elim
);
1369 for (i
= 0; i
< bset
->n_eq
; ++i
)
1370 set_reduced_using_equalities(bset
->eq
[i
], bset
->eq
[i
],
1372 for (i
= 0; i
< bset
->n_ineq
; ++i
)
1373 set_reduced_using_equalities(bset
->ineq
[i
], bset
->ineq
[i
],
1375 isl_basic_set_free(context
);
1377 bset
= isl_basic_set_simplify(bset
);
1378 bset
= isl_basic_set_finalize(bset
);
1381 isl_basic_set_free(bset
);
1382 isl_basic_set_free(context
);
1386 static struct isl_basic_set
*remove_shifted_constraints(
1387 struct isl_basic_set
*bset
, struct isl_basic_set
*context
)
1397 size
= round_up(4 * (context
->n_ineq
+1) / 3 - 1);
1398 bits
= ffs(size
) - 1;
1399 index
= isl_calloc_array(ctx
, isl_int
**, size
);
1403 for (k
= 0; k
< context
->n_ineq
; ++k
) {
1404 h
= set_hash_index(index
, size
, bits
, context
, k
);
1405 index
[h
] = &context
->ineq
[k
];
1407 for (k
= 0; k
< bset
->n_ineq
; ++k
) {
1408 h
= set_hash_index(index
, size
, bits
, bset
, k
);
1411 l
= index
[h
] - &context
->ineq
[0];
1412 if (isl_int_lt(bset
->ineq
[k
][0], context
->ineq
[l
][0]))
1414 bset
= isl_basic_set_cow(bset
);
1417 isl_basic_set_drop_inequality(bset
, k
);
1427 /* Tighten (decrease) the constant terms of the inequalities based
1428 * on the equalities, without removing any integer points.
1429 * For example, if there is an equality
1437 * then we want to replace the inequality by
1441 * We do this by computing a variable compression and translating
1442 * the constraints to the compressed space.
1443 * If any constraint has coefficients (except the contant term)
1444 * with a common factor "f", then we can replace the constant term "c"
1451 * f * floor(c/f) - c = -fract(c/f)
1453 * and we can add the same value to the original constraint.
1455 * In the example, the compressed space only contains "j",
1456 * and the inequality translates to
1460 * We add -fract(-1/3) = -2 to the original constraint to obtain
1464 static struct isl_basic_set
*normalize_constraints_in_compressed_space(
1465 struct isl_basic_set
*bset
)
1469 struct isl_mat
*B
, *C
;
1475 if (ISL_F_ISSET(bset
, ISL_BASIC_SET_RATIONAL
))
1481 bset
= isl_basic_set_cow(bset
);
1485 total
= isl_basic_set_total_dim(bset
);
1486 B
= isl_mat_sub_alloc(bset
->ctx
, bset
->eq
, 0, bset
->n_eq
, 0, 1 + total
);
1487 C
= isl_mat_variable_compression(B
, NULL
);
1490 if (C
->n_col
== 0) {
1492 return isl_basic_set_set_to_empty(bset
);
1494 B
= isl_mat_sub_alloc(bset
->ctx
, bset
->ineq
,
1495 0, bset
->n_ineq
, 0, 1 + total
);
1496 C
= isl_mat_product(B
, C
);
1501 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
1502 isl_seq_gcd(C
->row
[i
] + 1, C
->n_col
- 1, &gcd
);
1503 if (isl_int_is_one(gcd
))
1505 isl_int_fdiv_r(C
->row
[i
][0], C
->row
[i
][0], gcd
);
1506 isl_int_sub(bset
->ineq
[i
][0], bset
->ineq
[i
][0], C
->row
[i
][0]);
1515 /* Remove all information from bset that is redundant in the context
1516 * of context. In particular, equalities that are linear combinations
1517 * of those in context are removed. Then the inequalities that are
1518 * redundant in the context of the equalities and inequalities of
1519 * context are removed.
1521 * We first simplify the constraints of "bset" in the context of the
1522 * equalities of "context".
1523 * Then we simplify the inequalities of the context in the context
1524 * of the equalities of bset and remove the inequalities from "bset"
1525 * that are obviously redundant with respect to some inequality in "context".
1527 * If there are any inequalities left, we construct a tableau for
1528 * the context and then add the inequalities of "bset".
1529 * Before adding these equalities, we freeze all constraints such that
1530 * they won't be considered redundant in terms of the constraints of "bset".
1531 * Then we detect all equalities and redundant constraints (among the
1532 * constraints that weren't frozen) and update bset according to the results.
1533 * We have to be careful here because we don't want any of the context
1534 * constraints to remain and because we haven't added the equalities of "bset"
1535 * to the tableau so we temporarily have to pretend that there were no
1538 static struct isl_basic_set
*uset_gist(struct isl_basic_set
*bset
,
1539 struct isl_basic_set
*context
)
1542 struct isl_tab
*tab
;
1543 unsigned context_ineq
;
1544 struct isl_basic_set
*combined
= NULL
;
1546 if (!context
|| !bset
)
1549 if (context
->n_eq
> 0)
1550 bset
= isl_basic_set_reduce_using_equalities(bset
,
1551 isl_basic_set_copy(context
));
1554 if (isl_basic_set_fast_is_empty(bset
))
1559 if (bset
->n_eq
> 0) {
1560 struct isl_basic_set
*affine_hull
;
1561 affine_hull
= isl_basic_set_copy(bset
);
1562 affine_hull
= isl_basic_set_cow(affine_hull
);
1565 isl_basic_set_free_inequality(affine_hull
, affine_hull
->n_ineq
);
1566 context
= isl_basic_set_intersect(context
, affine_hull
);
1567 context
= isl_basic_set_gauss(context
, NULL
);
1568 context
= normalize_constraints_in_compressed_space(context
);
1572 if (ISL_F_ISSET(context
, ISL_BASIC_SET_EMPTY
)) {
1573 isl_basic_set_free(bset
);
1576 if (!context
->n_ineq
)
1578 bset
= remove_shifted_constraints(bset
, context
);
1581 isl_basic_set_free_equality(context
, context
->n_eq
);
1582 context_ineq
= context
->n_ineq
;
1583 combined
= isl_basic_set_cow(isl_basic_set_copy(context
));
1584 combined
= isl_basic_set_extend_constraints(combined
,
1585 bset
->n_eq
, bset
->n_ineq
);
1586 tab
= isl_tab_from_basic_set(combined
);
1589 for (i
= 0; i
< context_ineq
; ++i
)
1590 tab
->con
[i
].frozen
= 1;
1591 tab
= isl_tab_extend(tab
, bset
->n_ineq
);
1594 for (i
= 0; i
< bset
->n_ineq
; ++i
)
1595 tab
= isl_tab_add_ineq(tab
, bset
->ineq
[i
]);
1596 bset
= isl_basic_set_add_constraints(combined
, bset
, 0);
1597 tab
= isl_tab_detect_equalities(tab
);
1598 tab
= isl_tab_detect_redundant(tab
);
1601 for (i
= 0; i
< context_ineq
; ++i
) {
1602 tab
->con
[i
].is_zero
= 0;
1603 tab
->con
[i
].is_redundant
= 1;
1605 bset
= isl_basic_set_update_from_tab(bset
, tab
);
1607 ISL_F_SET(bset
, ISL_BASIC_SET_NO_IMPLICIT
);
1608 ISL_F_SET(bset
, ISL_BASIC_SET_NO_REDUNDANT
);
1610 bset
= isl_basic_set_simplify(bset
);
1611 bset
= isl_basic_set_finalize(bset
);
1612 isl_basic_set_free(context
);
1615 isl_basic_set_free(combined
);
1617 isl_basic_set_free(bset
);
1618 isl_basic_set_free(context
);
1622 /* Normalize the divs in "bmap" in the context of the equalities in "context".
1623 * We simply add the equalities in context to bmap and then do a regular
1624 * div normalizations. Better results can be obtained by normalizing
1625 * only the divs in bmap than do not also appear in context.
1626 * We need to be careful to reduce the divs using the equalities
1627 * so that later calls to isl_basic_map_overlying_set wouldn't introduce
1628 * spurious constraints.
1630 static struct isl_basic_map
*normalize_divs_in_context(
1631 struct isl_basic_map
*bmap
, struct isl_basic_map
*context
)
1634 unsigned total_context
;
1637 div_eq
= n_pure_div_eq(bmap
);
1641 if (context
->n_div
> 0)
1642 bmap
= isl_basic_map_align_divs(bmap
, context
);
1644 total_context
= isl_basic_map_total_dim(context
);
1645 bmap
= isl_basic_map_extend_constraints(bmap
, context
->n_eq
, 0);
1646 for (i
= 0; i
< context
->n_eq
; ++i
) {
1648 k
= isl_basic_map_alloc_equality(bmap
);
1649 isl_seq_cpy(bmap
->eq
[k
], context
->eq
[i
], 1 + total_context
);
1650 isl_seq_clr(bmap
->eq
[k
] + 1 + total_context
,
1651 isl_basic_map_total_dim(bmap
) - total_context
);
1653 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1654 bmap
= normalize_divs(bmap
, NULL
);
1655 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1659 struct isl_basic_map
*isl_basic_map_gist(struct isl_basic_map
*bmap
,
1660 struct isl_basic_map
*context
)
1662 struct isl_basic_set
*bset
;
1664 if (!bmap
|| !context
)
1667 if (isl_basic_map_is_universe(context
)) {
1668 isl_basic_map_free(context
);
1671 if (isl_basic_map_is_universe(bmap
)) {
1672 isl_basic_map_free(context
);
1675 if (isl_basic_map_fast_is_empty(context
)) {
1676 struct isl_dim
*dim
= isl_dim_copy(bmap
->dim
);
1677 isl_basic_map_free(context
);
1678 isl_basic_map_free(bmap
);
1679 return isl_basic_map_universe(dim
);
1681 if (isl_basic_map_fast_is_empty(bmap
)) {
1682 isl_basic_map_free(context
);
1686 bmap
= isl_basic_map_convex_hull(bmap
);
1687 context
= isl_basic_map_convex_hull(context
);
1690 bmap
= normalize_divs_in_context(bmap
, context
);
1692 context
= isl_basic_map_align_divs(context
, bmap
);
1693 bmap
= isl_basic_map_align_divs(bmap
, context
);
1695 bset
= uset_gist(isl_basic_map_underlying_set(isl_basic_map_copy(bmap
)),
1696 isl_basic_map_underlying_set(context
));
1698 return isl_basic_map_overlying_set(bset
, bmap
);
1700 isl_basic_map_free(bmap
);
1701 isl_basic_map_free(context
);
1706 * Assumes context has no implicit divs.
1708 struct isl_map
*isl_map_gist(struct isl_map
*map
, struct isl_basic_map
*context
)
1712 if (!map
|| !context
)
1715 if (isl_basic_map_is_universe(context
)) {
1716 isl_basic_map_free(context
);
1719 if (isl_basic_map_fast_is_empty(context
)) {
1720 struct isl_dim
*dim
= isl_dim_copy(map
->dim
);
1721 isl_basic_map_free(context
);
1723 return isl_map_universe(dim
);
1726 context
= isl_basic_map_convex_hull(context
);
1727 map
= isl_map_cow(map
);
1728 if (!map
|| !context
)
1730 isl_assert(map
->ctx
, isl_dim_equal(map
->dim
, context
->dim
), goto error
);
1731 map
= isl_map_compute_divs(map
);
1732 for (i
= 0; i
< map
->n
; ++i
)
1733 context
= isl_basic_map_align_divs(context
, map
->p
[i
]);
1734 for (i
= 0; i
< map
->n
; ++i
) {
1735 map
->p
[i
] = isl_basic_map_gist(map
->p
[i
],
1736 isl_basic_map_copy(context
));
1740 isl_basic_map_free(context
);
1741 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
1745 isl_basic_map_free(context
);
1749 struct isl_basic_set
*isl_basic_set_gist(struct isl_basic_set
*bset
,
1750 struct isl_basic_set
*context
)
1752 return (struct isl_basic_set
*)isl_basic_map_gist(
1753 (struct isl_basic_map
*)bset
, (struct isl_basic_map
*)context
);
1756 struct isl_set
*isl_set_gist(struct isl_set
*set
, struct isl_basic_set
*context
)
1758 return (struct isl_set
*)isl_map_gist((struct isl_map
*)set
,
1759 (struct isl_basic_map
*)context
);
1762 /* Quick check to see if two basic maps are disjoint.
1763 * In particular, we reduce the equalities and inequalities of
1764 * one basic map in the context of the equalities of the other
1765 * basic map and check if we get a contradiction.
1767 int isl_basic_map_fast_is_disjoint(struct isl_basic_map
*bmap1
,
1768 struct isl_basic_map
*bmap2
)
1770 struct isl_vec
*v
= NULL
;
1775 if (!bmap1
|| !bmap2
)
1777 isl_assert(bmap1
->ctx
, isl_dim_equal(bmap1
->dim
, bmap2
->dim
),
1779 if (bmap1
->n_div
|| bmap2
->n_div
)
1781 if (!bmap1
->n_eq
&& !bmap2
->n_eq
)
1784 total
= isl_dim_total(bmap1
->dim
);
1787 v
= isl_vec_alloc(bmap1
->ctx
, 1 + total
);
1790 elim
= isl_alloc_array(bmap1
->ctx
, int, total
);
1793 compute_elimination_index(bmap1
, elim
);
1794 for (i
= 0; i
< bmap2
->n_eq
; ++i
) {
1796 reduced
= reduced_using_equalities(v
->block
.data
, bmap2
->eq
[i
],
1798 if (reduced
&& !isl_int_is_zero(v
->block
.data
[0]) &&
1799 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
1802 for (i
= 0; i
< bmap2
->n_ineq
; ++i
) {
1804 reduced
= reduced_using_equalities(v
->block
.data
,
1805 bmap2
->ineq
[i
], bmap1
, elim
);
1806 if (reduced
&& isl_int_is_neg(v
->block
.data
[0]) &&
1807 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
1810 compute_elimination_index(bmap2
, elim
);
1811 for (i
= 0; i
< bmap1
->n_ineq
; ++i
) {
1813 reduced
= reduced_using_equalities(v
->block
.data
,
1814 bmap1
->ineq
[i
], bmap2
, elim
);
1815 if (reduced
&& isl_int_is_neg(v
->block
.data
[0]) &&
1816 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
1832 int isl_basic_set_fast_is_disjoint(struct isl_basic_set
*bset1
,
1833 struct isl_basic_set
*bset2
)
1835 return isl_basic_map_fast_is_disjoint((struct isl_basic_map
*)bset1
,
1836 (struct isl_basic_map
*)bset2
);
1839 int isl_map_fast_is_disjoint(struct isl_map
*map1
, struct isl_map
*map2
)
1846 if (isl_map_fast_is_equal(map1
, map2
))
1849 for (i
= 0; i
< map1
->n
; ++i
) {
1850 for (j
= 0; j
< map2
->n
; ++j
) {
1851 int d
= isl_basic_map_fast_is_disjoint(map1
->p
[i
],
1860 int isl_set_fast_is_disjoint(struct isl_set
*set1
, struct isl_set
*set2
)
1862 return isl_map_fast_is_disjoint((struct isl_map
*)set1
,
1863 (struct isl_map
*)set2
);
1866 /* Check if we can combine a given div with lower bound l and upper
1867 * bound u with some other div and if so return that other div.
1868 * Otherwise return -1.
1870 * We first check that
1871 * - the bounds are opposites of each other (except for the constant
1873 * - the bounds do not reference any other div
1874 * - no div is defined in terms of this div
1876 * Let m be the size of the range allowed on the div by the bounds.
1877 * That is, the bounds are of the form
1879 * e <= a <= e + m - 1
1881 * with e some expression in the other variables.
1882 * We look for another div b such that no third div is defined in terms
1883 * of this second div b and such that in any constraint that contains
1884 * a (except for the given lower and upper bound), also contains b
1885 * with a coefficient that is m times that of b.
1886 * That is, all constraints (execpt for the lower and upper bound)
1889 * e + f (a + m b) >= 0
1891 * If so, we return b so that "a + m b" can be replaced by
1892 * a single div "c = a + m b".
1894 static int div_find_coalesce(struct isl_basic_map
*bmap
, int *pairs
,
1895 unsigned div
, unsigned l
, unsigned u
)
1901 if (bmap
->n_div
<= 1)
1903 dim
= isl_dim_total(bmap
->dim
);
1904 if (isl_seq_first_non_zero(bmap
->ineq
[l
] + 1 + dim
, div
) != -1)
1906 if (isl_seq_first_non_zero(bmap
->ineq
[l
] + 1 + dim
+ div
+ 1,
1907 bmap
->n_div
- div
- 1) != -1)
1909 if (!isl_seq_is_neg(bmap
->ineq
[l
] + 1, bmap
->ineq
[u
] + 1,
1913 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1914 if (isl_int_is_zero(bmap
->div
[i
][0]))
1916 if (!isl_int_is_zero(bmap
->div
[i
][1 + 1 + dim
+ div
]))
1920 isl_int_add(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
1921 isl_int_add_ui(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], 1);
1922 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1927 for (j
= 0; j
< bmap
->n_div
; ++j
) {
1928 if (isl_int_is_zero(bmap
->div
[j
][0]))
1930 if (!isl_int_is_zero(bmap
->div
[j
][1 + 1 + dim
+ i
]))
1933 if (j
< bmap
->n_div
)
1935 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
1937 if (j
== l
|| j
== u
)
1939 if (isl_int_is_zero(bmap
->ineq
[j
][1 + dim
+ div
]))
1941 if (isl_int_is_zero(bmap
->ineq
[j
][1 + dim
+ i
]))
1943 isl_int_mul(bmap
->ineq
[j
][1 + dim
+ div
],
1944 bmap
->ineq
[j
][1 + dim
+ div
],
1946 valid
= isl_int_eq(bmap
->ineq
[j
][1 + dim
+ div
],
1947 bmap
->ineq
[j
][1 + dim
+ i
]);
1948 isl_int_divexact(bmap
->ineq
[j
][1 + dim
+ div
],
1949 bmap
->ineq
[j
][1 + dim
+ div
],
1954 if (j
< bmap
->n_ineq
)
1959 isl_int_sub_ui(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], 1);
1960 isl_int_sub(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
1964 /* Given a lower and an upper bound on div i, construct an inequality
1965 * that when nonnegative ensures that this pair of bounds always allows
1966 * for an integer value of the given div.
1967 * The lower bound is inequality l, while the upper bound is inequality u.
1968 * The constructed inequality is stored in ineq.
1969 * g, fl, fu are temporary scalars.
1971 * Let the upper bound be
1975 * and the lower bound
1979 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
1982 * - f_u e_l <= f_u f_l g a <= f_l e_u
1984 * Since all variables are integer valued, this is equivalent to
1986 * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
1988 * If this interval is at least f_u f_l g, then it contains at least
1989 * one integer value for a.
1990 * That is, the test constraint is
1992 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
1994 static void construct_test_ineq(struct isl_basic_map
*bmap
, int i
,
1995 int l
, int u
, isl_int
*ineq
, isl_int g
, isl_int fl
, isl_int fu
)
1998 dim
= isl_dim_total(bmap
->dim
);
2000 isl_int_gcd(g
, bmap
->ineq
[l
][1 + dim
+ i
], bmap
->ineq
[u
][1 + dim
+ i
]);
2001 isl_int_divexact(fl
, bmap
->ineq
[l
][1 + dim
+ i
], g
);
2002 isl_int_divexact(fu
, bmap
->ineq
[u
][1 + dim
+ i
], g
);
2003 isl_int_neg(fu
, fu
);
2004 isl_seq_combine(ineq
, fl
, bmap
->ineq
[u
], fu
, bmap
->ineq
[l
],
2005 1 + dim
+ bmap
->n_div
);
2006 isl_int_add(ineq
[0], ineq
[0], fl
);
2007 isl_int_add(ineq
[0], ineq
[0], fu
);
2008 isl_int_sub_ui(ineq
[0], ineq
[0], 1);
2009 isl_int_mul(g
, g
, fl
);
2010 isl_int_mul(g
, g
, fu
);
2011 isl_int_sub(ineq
[0], ineq
[0], g
);
2014 /* Remove more kinds of divs that are not strictly needed.
2015 * In particular, if all pairs of lower and upper bounds on a div
2016 * are such that they allow at least one integer value of the div,
2017 * the we can eliminate the div using Fourier-Motzkin without
2018 * introducing any spurious solutions.
2020 static struct isl_basic_map
*drop_more_redundant_divs(
2021 struct isl_basic_map
*bmap
, int *pairs
, int n
)
2023 struct isl_tab
*tab
= NULL
;
2024 struct isl_vec
*vec
= NULL
;
2036 dim
= isl_dim_total(bmap
->dim
);
2037 vec
= isl_vec_alloc(bmap
->ctx
, 1 + dim
+ bmap
->n_div
);
2041 tab
= isl_tab_from_basic_map(bmap
);
2046 enum isl_lp_result res
;
2048 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2051 if (best
>= 0 && pairs
[best
] <= pairs
[i
])
2057 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
2058 if (!isl_int_is_pos(bmap
->ineq
[l
][1 + dim
+ i
]))
2060 for (u
= 0; u
< bmap
->n_ineq
; ++u
) {
2061 if (!isl_int_is_neg(bmap
->ineq
[u
][1 + dim
+ i
]))
2063 construct_test_ineq(bmap
, i
, l
, u
,
2064 vec
->el
, g
, fl
, fu
);
2065 res
= isl_tab_min(tab
, vec
->el
,
2066 bmap
->ctx
->one
, &g
, NULL
, 0);
2067 if (res
== isl_lp_error
)
2069 if (res
== isl_lp_empty
) {
2070 bmap
= isl_basic_map_set_to_empty(bmap
);
2073 if (res
!= isl_lp_ok
|| isl_int_is_neg(g
))
2076 if (u
< bmap
->n_ineq
)
2079 if (l
== bmap
->n_ineq
) {
2099 bmap
= isl_basic_map_remove(bmap
, isl_dim_div
, remove
, 1);
2100 return isl_basic_map_drop_redundant_divs(bmap
);
2103 isl_basic_map_free(bmap
);
2112 /* Given a pair of divs div1 and div2 such that, expect for the lower bound l
2113 * and the upper bound u, div1 always occurs together with div2 in the form
2114 * (div1 + m div2), where m is the constant range on the variable div1
2115 * allowed by l and u, replace the pair div1 and div2 by a single
2116 * div that is equal to div1 + m div2.
2118 * The new div will appear in the location that contains div2.
2119 * We need to modify all constraints that contain
2120 * div2 = (div - div1) / m
2121 * (If a constraint does not contain div2, it will also not contain div1.)
2122 * If the constraint also contains div1, then we know they appear
2123 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
2124 * i.e., the coefficient of div is f.
2126 * Otherwise, we first need to introduce div1 into the constraint.
2135 * A lower bound on div2
2139 * can be replaced by
2141 * (n * (m div 2 + div1) + m t + n f)/g >= 0
2143 * with g = gcd(m,n).
2148 * can be replaced by
2150 * (-n * (m div2 + div1) + m t + n f')/g >= 0
2152 * These constraint are those that we would obtain from eliminating
2153 * div1 using Fourier-Motzkin.
2155 * After all constraints have been modified, we drop the lower and upper
2156 * bound and then drop div1.
2158 static struct isl_basic_map
*coalesce_divs(struct isl_basic_map
*bmap
,
2159 unsigned div1
, unsigned div2
, unsigned l
, unsigned u
)
2164 unsigned dim
, total
;
2167 dim
= isl_dim_total(bmap
->dim
);
2168 total
= 1 + dim
+ bmap
->n_div
;
2173 isl_int_add(m
, bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
2174 isl_int_add_ui(m
, m
, 1);
2176 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
2177 if (i
== l
|| i
== u
)
2179 if (isl_int_is_zero(bmap
->ineq
[i
][1 + dim
+ div2
]))
2181 if (isl_int_is_zero(bmap
->ineq
[i
][1 + dim
+ div1
])) {
2182 isl_int_gcd(b
, m
, bmap
->ineq
[i
][1 + dim
+ div2
]);
2183 isl_int_divexact(a
, m
, b
);
2184 isl_int_divexact(b
, bmap
->ineq
[i
][1 + dim
+ div2
], b
);
2185 if (isl_int_is_pos(b
)) {
2186 isl_seq_combine(bmap
->ineq
[i
], a
, bmap
->ineq
[i
],
2187 b
, bmap
->ineq
[l
], total
);
2190 isl_seq_combine(bmap
->ineq
[i
], a
, bmap
->ineq
[i
],
2191 b
, bmap
->ineq
[u
], total
);
2194 isl_int_set(bmap
->ineq
[i
][1 + dim
+ div2
],
2195 bmap
->ineq
[i
][1 + dim
+ div1
]);
2196 isl_int_set_si(bmap
->ineq
[i
][1 + dim
+ div1
], 0);
2203 isl_basic_map_drop_inequality(bmap
, l
);
2204 isl_basic_map_drop_inequality(bmap
, u
);
2206 isl_basic_map_drop_inequality(bmap
, u
);
2207 isl_basic_map_drop_inequality(bmap
, l
);
2209 bmap
= isl_basic_map_drop_div(bmap
, div1
);
2213 /* First check if we can coalesce any pair of divs and
2214 * then continue with dropping more redundant divs.
2216 * We loop over all pairs of lower and upper bounds on a div
2217 * with coefficient 1 and -1, respectively, check if there
2218 * is any other div "c" with which we can coalesce the div
2219 * and if so, perform the coalescing.
2221 static struct isl_basic_map
*coalesce_or_drop_more_redundant_divs(
2222 struct isl_basic_map
*bmap
, int *pairs
, int n
)
2227 dim
= isl_dim_total(bmap
->dim
);
2229 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2232 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
2233 if (!isl_int_is_one(bmap
->ineq
[l
][1 + dim
+ i
]))
2235 for (u
= 0; u
< bmap
->n_ineq
; ++u
) {
2238 if (!isl_int_is_negone(bmap
->ineq
[u
][1+dim
+i
]))
2240 c
= div_find_coalesce(bmap
, pairs
, i
, l
, u
);
2244 bmap
= coalesce_divs(bmap
, i
, c
, l
, u
);
2245 return isl_basic_map_drop_redundant_divs(bmap
);
2250 return drop_more_redundant_divs(bmap
, pairs
, n
);
2253 /* Remove divs that are not strictly needed.
2254 * In particular, if a div only occurs positively (or negatively)
2255 * in constraints, then it can simply be dropped.
2256 * Also, if a div occurs only occurs in two constraints and if moreover
2257 * those two constraints are opposite to each other, except for the constant
2258 * term and if the sum of the constant terms is such that for any value
2259 * of the other values, there is always at least one integer value of the
2260 * div, i.e., if one plus this sum is greater than or equal to
2261 * the (absolute value) of the coefficent of the div in the constraints,
2262 * then we can also simply drop the div.
2264 * If any divs are left after these simple checks then we move on
2265 * to more complicated cases in drop_more_redundant_divs.
2267 struct isl_basic_map
*isl_basic_map_drop_redundant_divs(
2268 struct isl_basic_map
*bmap
)
2278 off
= isl_dim_total(bmap
->dim
);
2279 pairs
= isl_calloc_array(bmap
->ctx
, int, bmap
->n_div
);
2283 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2285 int last_pos
, last_neg
;
2289 defined
= !isl_int_is_zero(bmap
->div
[i
][0]);
2290 for (j
= 0; j
< bmap
->n_eq
; ++j
)
2291 if (!isl_int_is_zero(bmap
->eq
[j
][1 + off
+ i
]))
2297 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
2298 if (isl_int_is_pos(bmap
->ineq
[j
][1 + off
+ i
])) {
2302 if (isl_int_is_neg(bmap
->ineq
[j
][1 + off
+ i
])) {
2307 pairs
[i
] = pos
* neg
;
2308 if (pairs
[i
] == 0) {
2309 for (j
= bmap
->n_ineq
- 1; j
>= 0; --j
)
2310 if (!isl_int_is_zero(bmap
->ineq
[j
][1+off
+i
]))
2311 isl_basic_map_drop_inequality(bmap
, j
);
2312 bmap
= isl_basic_map_drop_div(bmap
, i
);
2314 return isl_basic_map_drop_redundant_divs(bmap
);
2318 if (!isl_seq_is_neg(bmap
->ineq
[last_pos
] + 1,
2319 bmap
->ineq
[last_neg
] + 1,
2323 isl_int_add(bmap
->ineq
[last_pos
][0],
2324 bmap
->ineq
[last_pos
][0], bmap
->ineq
[last_neg
][0]);
2325 isl_int_add_ui(bmap
->ineq
[last_pos
][0],
2326 bmap
->ineq
[last_pos
][0], 1);
2327 redundant
= isl_int_ge(bmap
->ineq
[last_pos
][0],
2328 bmap
->ineq
[last_pos
][1+off
+i
]);
2329 isl_int_sub_ui(bmap
->ineq
[last_pos
][0],
2330 bmap
->ineq
[last_pos
][0], 1);
2331 isl_int_sub(bmap
->ineq
[last_pos
][0],
2332 bmap
->ineq
[last_pos
][0], bmap
->ineq
[last_neg
][0]);
2335 !ok_to_set_div_from_bound(bmap
, i
, last_pos
)) {
2340 bmap
= set_div_from_lower_bound(bmap
, i
, last_pos
);
2341 bmap
= isl_basic_map_simplify(bmap
);
2343 return isl_basic_map_drop_redundant_divs(bmap
);
2345 if (last_pos
> last_neg
) {
2346 isl_basic_map_drop_inequality(bmap
, last_pos
);
2347 isl_basic_map_drop_inequality(bmap
, last_neg
);
2349 isl_basic_map_drop_inequality(bmap
, last_neg
);
2350 isl_basic_map_drop_inequality(bmap
, last_pos
);
2352 bmap
= isl_basic_map_drop_div(bmap
, i
);
2354 return isl_basic_map_drop_redundant_divs(bmap
);
2358 return coalesce_or_drop_more_redundant_divs(bmap
, pairs
, n
);
2364 isl_basic_map_free(bmap
);
2368 struct isl_basic_set
*isl_basic_set_drop_redundant_divs(
2369 struct isl_basic_set
*bset
)
2371 return (struct isl_basic_set
*)
2372 isl_basic_map_drop_redundant_divs((struct isl_basic_map
*)bset
);
2375 struct isl_map
*isl_map_drop_redundant_divs(struct isl_map
*map
)
2381 for (i
= 0; i
< map
->n
; ++i
) {
2382 map
->p
[i
] = isl_basic_map_drop_redundant_divs(map
->p
[i
]);
2386 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
2393 struct isl_set
*isl_set_drop_redundant_divs(struct isl_set
*set
)
2395 return (struct isl_set
*)
2396 isl_map_drop_redundant_divs((struct isl_map
*)set
);