add isl_qpolynomial_from_constraint
[isl.git] / isl_transitive_closure.c
blobffb14aef8b30f366787563798a9820d378bf2069
1 /*
2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
8 * 91893 Orsay, France
9 */
11 #include "isl_map.h"
12 #include "isl_map_private.h"
13 #include "isl_seq.h"
14 #include <isl_lp.h>
16 /* Given a map that represents a path with the length of the path
17 * encoded as the difference between the last output coordindate
18 * and the last input coordinate, set this length to either
19 * exactly "length" (if "exactly" is set) or at least "length"
20 * (if "exactly" is not set).
22 static __isl_give isl_map *set_path_length(__isl_take isl_map *map,
23 int exactly, int length)
25 struct isl_dim *dim;
26 struct isl_basic_map *bmap;
27 unsigned d;
28 unsigned nparam;
29 int k;
30 isl_int *c;
32 if (!map)
33 return NULL;
35 dim = isl_map_get_dim(map);
36 d = isl_dim_size(dim, isl_dim_in);
37 nparam = isl_dim_size(dim, isl_dim_param);
38 bmap = isl_basic_map_alloc_dim(dim, 0, 1, 1);
39 if (exactly) {
40 k = isl_basic_map_alloc_equality(bmap);
41 c = bmap->eq[k];
42 } else {
43 k = isl_basic_map_alloc_inequality(bmap);
44 c = bmap->ineq[k];
46 if (k < 0)
47 goto error;
48 isl_seq_clr(c, 1 + isl_basic_map_total_dim(bmap));
49 isl_int_set_si(c[0], -length);
50 isl_int_set_si(c[1 + nparam + d - 1], -1);
51 isl_int_set_si(c[1 + nparam + d + d - 1], 1);
53 bmap = isl_basic_map_finalize(bmap);
54 map = isl_map_intersect(map, isl_map_from_basic_map(bmap));
56 return map;
57 error:
58 isl_basic_map_free(bmap);
59 isl_map_free(map);
60 return NULL;
63 /* Check whether the overapproximation of the power of "map" is exactly
64 * the power of "map". Let R be "map" and A_k the overapproximation.
65 * The approximation is exact if
67 * A_1 = R
68 * A_k = A_{k-1} \circ R k >= 2
70 * Since A_k is known to be an overapproximation, we only need to check
72 * A_1 \subset R
73 * A_k \subset A_{k-1} \circ R k >= 2
75 * In practice, "app" has an extra input and output coordinate
76 * to encode the length of the path. So, we first need to add
77 * this coordinate to "map" and set the length of the path to
78 * one.
80 static int check_power_exactness(__isl_take isl_map *map,
81 __isl_take isl_map *app)
83 int exact;
84 isl_map *app_1;
85 isl_map *app_2;
87 map = isl_map_add(map, isl_dim_in, 1);
88 map = isl_map_add(map, isl_dim_out, 1);
89 map = set_path_length(map, 1, 1);
91 app_1 = set_path_length(isl_map_copy(app), 1, 1);
93 exact = isl_map_is_subset(app_1, map);
94 isl_map_free(app_1);
96 if (!exact || exact < 0) {
97 isl_map_free(app);
98 isl_map_free(map);
99 return exact;
102 app_1 = set_path_length(isl_map_copy(app), 0, 1);
103 app_2 = set_path_length(app, 0, 2);
104 app_1 = isl_map_apply_range(map, app_1);
106 exact = isl_map_is_subset(app_2, app_1);
108 isl_map_free(app_1);
109 isl_map_free(app_2);
111 return exact;
114 /* Check whether the overapproximation of the power of "map" is exactly
115 * the power of "map", possibly after projecting out the power (if "project"
116 * is set).
118 * If "project" is set and if "steps" can only result in acyclic paths,
119 * then we check
121 * A = R \cup (A \circ R)
123 * where A is the overapproximation with the power projected out, i.e.,
124 * an overapproximation of the transitive closure.
125 * More specifically, since A is known to be an overapproximation, we check
127 * A \subset R \cup (A \circ R)
129 * Otherwise, we check if the power is exact.
131 * Note that "app" has an extra input and output coordinate to encode
132 * the length of the part. If we are only interested in the transitive
133 * closure, then we can simply project out these coordinates first.
135 static int check_exactness(__isl_take isl_map *map, __isl_take isl_map *app,
136 int project)
138 isl_map *test;
139 int exact;
140 unsigned d;
142 if (!project)
143 return check_power_exactness(map, app);
145 d = isl_map_dim(map, isl_dim_in);
146 app = set_path_length(app, 0, 1);
147 app = isl_map_project_out(app, isl_dim_in, d, 1);
148 app = isl_map_project_out(app, isl_dim_out, d, 1);
150 test = isl_map_apply_range(isl_map_copy(map), isl_map_copy(app));
151 test = isl_map_union(test, isl_map_copy(map));
153 exact = isl_map_is_subset(app, test);
155 isl_map_free(app);
156 isl_map_free(test);
158 isl_map_free(map);
160 return exact;
161 error:
162 isl_map_free(app);
163 isl_map_free(map);
164 return -1;
168 * The transitive closure implementation is based on the paper
169 * "Computing the Transitive Closure of a Union of Affine Integer
170 * Tuple Relations" by Anna Beletska, Denis Barthou, Wlodzimierz Bielecki and
171 * Albert Cohen.
174 /* Given a set of n offsets v_i (the rows of "steps"), construct a relation
175 * of the given dimension specification (Z^{n+1} -> Z^{n+1})
176 * that maps an element x to any element that can be reached
177 * by taking a non-negative number of steps along any of
178 * the extended offsets v'_i = [v_i 1].
179 * That is, construct
181 * { [x] -> [y] : exists k_i >= 0, y = x + \sum_i k_i v'_i }
183 * For any element in this relation, the number of steps taken
184 * is equal to the difference in the final coordinates.
186 static __isl_give isl_map *path_along_steps(__isl_take isl_dim *dim,
187 __isl_keep isl_mat *steps)
189 int i, j, k;
190 struct isl_basic_map *path = NULL;
191 unsigned d;
192 unsigned n;
193 unsigned nparam;
195 if (!dim || !steps)
196 goto error;
198 d = isl_dim_size(dim, isl_dim_in);
199 n = steps->n_row;
200 nparam = isl_dim_size(dim, isl_dim_param);
202 path = isl_basic_map_alloc_dim(isl_dim_copy(dim), n, d, n);
204 for (i = 0; i < n; ++i) {
205 k = isl_basic_map_alloc_div(path);
206 if (k < 0)
207 goto error;
208 isl_assert(steps->ctx, i == k, goto error);
209 isl_int_set_si(path->div[k][0], 0);
212 for (i = 0; i < d; ++i) {
213 k = isl_basic_map_alloc_equality(path);
214 if (k < 0)
215 goto error;
216 isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path));
217 isl_int_set_si(path->eq[k][1 + nparam + i], 1);
218 isl_int_set_si(path->eq[k][1 + nparam + d + i], -1);
219 if (i == d - 1)
220 for (j = 0; j < n; ++j)
221 isl_int_set_si(path->eq[k][1 + nparam + 2 * d + j], 1);
222 else
223 for (j = 0; j < n; ++j)
224 isl_int_set(path->eq[k][1 + nparam + 2 * d + j],
225 steps->row[j][i]);
228 for (i = 0; i < n; ++i) {
229 k = isl_basic_map_alloc_inequality(path);
230 if (k < 0)
231 goto error;
232 isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path));
233 isl_int_set_si(path->ineq[k][1 + nparam + 2 * d + i], 1);
236 isl_dim_free(dim);
238 path = isl_basic_map_simplify(path);
239 path = isl_basic_map_finalize(path);
240 return isl_map_from_basic_map(path);
241 error:
242 isl_dim_free(dim);
243 isl_basic_map_free(path);
244 return NULL;
247 #define IMPURE 0
248 #define PURE_PARAM 1
249 #define PURE_VAR 2
250 #define MIXED 3
252 /* Check whether the parametric constant term of constraint c is never
253 * positive in "bset".
255 static int parametric_constant_never_positive(__isl_keep isl_basic_set *bset,
256 isl_int *c, int *div_purity)
258 unsigned d;
259 unsigned n_div;
260 unsigned nparam;
261 int i;
262 int k;
263 int empty;
265 n_div = isl_basic_set_dim(bset, isl_dim_div);
266 d = isl_basic_set_dim(bset, isl_dim_set);
267 nparam = isl_basic_set_dim(bset, isl_dim_param);
269 bset = isl_basic_set_copy(bset);
270 bset = isl_basic_set_cow(bset);
271 bset = isl_basic_set_extend_constraints(bset, 0, 1);
272 k = isl_basic_set_alloc_inequality(bset);
273 if (k < 0)
274 goto error;
275 isl_seq_clr(bset->ineq[k], 1 + isl_basic_set_total_dim(bset));
276 isl_seq_cpy(bset->ineq[k], c, 1 + nparam);
277 for (i = 0; i < n_div; ++i) {
278 if (div_purity[i] != PURE_PARAM)
279 continue;
280 isl_int_set(bset->ineq[k][1 + nparam + d + i],
281 c[1 + nparam + d + i]);
283 isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1);
284 empty = isl_basic_set_is_empty(bset);
285 isl_basic_set_free(bset);
287 return empty;
288 error:
289 isl_basic_set_free(bset);
290 return -1;
293 /* Return PURE_PARAM if only the coefficients of the parameters are non-zero.
294 * Return PURE_VAR if only the coefficients of the set variables are non-zero.
295 * Return MIXED if only the coefficients of the parameters and the set
296 * variables are non-zero and if moreover the parametric constant
297 * can never attain positive values.
298 * Return IMPURE otherwise.
300 static int purity(__isl_keep isl_basic_set *bset, isl_int *c, int *div_purity,
301 int eq)
303 unsigned d;
304 unsigned n_div;
305 unsigned nparam;
306 int empty;
307 int i;
308 int p = 0, v = 0;
310 n_div = isl_basic_set_dim(bset, isl_dim_div);
311 d = isl_basic_set_dim(bset, isl_dim_set);
312 nparam = isl_basic_set_dim(bset, isl_dim_param);
314 for (i = 0; i < n_div; ++i) {
315 if (isl_int_is_zero(c[1 + nparam + d + i]))
316 continue;
317 switch (div_purity[i]) {
318 case PURE_PARAM: p = 1; break;
319 case PURE_VAR: v = 1; break;
320 default: return IMPURE;
323 if (!p && isl_seq_first_non_zero(c + 1, nparam) == -1)
324 return PURE_VAR;
325 if (!v && isl_seq_first_non_zero(c + 1 + nparam, d) == -1)
326 return PURE_PARAM;
328 empty = parametric_constant_never_positive(bset, c, div_purity);
329 if (eq && empty >= 0 && !empty) {
330 isl_seq_neg(c, c, 1 + nparam + d + n_div);
331 empty = parametric_constant_never_positive(bset, c, div_purity);
334 return empty < 0 ? -1 : empty ? MIXED : IMPURE;
337 /* Return an array of integers indicating the type of each div in bset.
338 * If the div is (recursively) defined in terms of only the parameters,
339 * then the type is PURE_PARAM.
340 * If the div is (recursively) defined in terms of only the set variables,
341 * then the type is PURE_VAR.
342 * Otherwise, the type is IMPURE.
344 static __isl_give int *get_div_purity(__isl_keep isl_basic_set *bset)
346 int i, j;
347 int *div_purity;
348 unsigned d;
349 unsigned n_div;
350 unsigned nparam;
352 if (!bset)
353 return NULL;
355 n_div = isl_basic_set_dim(bset, isl_dim_div);
356 d = isl_basic_set_dim(bset, isl_dim_set);
357 nparam = isl_basic_set_dim(bset, isl_dim_param);
359 div_purity = isl_alloc_array(bset->ctx, int, n_div);
360 if (!div_purity)
361 return NULL;
363 for (i = 0; i < bset->n_div; ++i) {
364 int p = 0, v = 0;
365 if (isl_int_is_zero(bset->div[i][0])) {
366 div_purity[i] = IMPURE;
367 continue;
369 if (isl_seq_first_non_zero(bset->div[i] + 2, nparam) != -1)
370 p = 1;
371 if (isl_seq_first_non_zero(bset->div[i] + 2 + nparam, d) != -1)
372 v = 1;
373 for (j = 0; j < i; ++j) {
374 if (isl_int_is_zero(bset->div[i][2 + nparam + d + j]))
375 continue;
376 switch (div_purity[j]) {
377 case PURE_PARAM: p = 1; break;
378 case PURE_VAR: v = 1; break;
379 default: p = v = 1; break;
382 div_purity[i] = v ? p ? IMPURE : PURE_VAR : PURE_PARAM;
385 return div_purity;
388 /* Given a path with the as yet unconstrained length at position "pos",
389 * check if setting the length to zero results in only the identity
390 * mapping.
392 int empty_path_is_identity(__isl_keep isl_basic_map *path, unsigned pos)
394 isl_basic_map *test = NULL;
395 isl_basic_map *id = NULL;
396 int k;
397 int is_id;
399 test = isl_basic_map_copy(path);
400 test = isl_basic_map_extend_constraints(test, 1, 0);
401 k = isl_basic_map_alloc_equality(test);
402 if (k < 0)
403 goto error;
404 isl_seq_clr(test->eq[k], 1 + isl_basic_map_total_dim(test));
405 isl_int_set_si(test->eq[k][pos], 1);
406 id = isl_basic_map_identity(isl_dim_domain(isl_basic_map_get_dim(path)));
407 is_id = isl_basic_map_is_equal(test, id);
408 isl_basic_map_free(test);
409 isl_basic_map_free(id);
410 return is_id;
411 error:
412 isl_basic_map_free(test);
413 return -1;
416 __isl_give isl_basic_map *add_delta_constraints(__isl_take isl_basic_map *path,
417 __isl_keep isl_basic_set *delta, unsigned off, unsigned nparam,
418 unsigned d, int *div_purity, int eq)
420 int i, k;
421 int n = eq ? delta->n_eq : delta->n_ineq;
422 isl_int **delta_c = eq ? delta->eq : delta->ineq;
423 unsigned n_div;
425 n_div = isl_basic_set_dim(delta, isl_dim_div);
427 for (i = 0; i < n; ++i) {
428 isl_int *path_c;
429 int p = purity(delta, delta_c[i], div_purity, eq);
430 if (p < 0)
431 goto error;
432 if (p == IMPURE)
433 continue;
434 if (eq && p != MIXED) {
435 k = isl_basic_map_alloc_equality(path);
436 path_c = path->eq[k];
437 } else {
438 k = isl_basic_map_alloc_inequality(path);
439 path_c = path->ineq[k];
441 if (k < 0)
442 goto error;
443 isl_seq_clr(path_c, 1 + isl_basic_map_total_dim(path));
444 if (p == PURE_VAR) {
445 isl_seq_cpy(path_c + off,
446 delta_c[i] + 1 + nparam, d);
447 isl_int_set(path_c[off + d], delta_c[i][0]);
448 } else if (p == PURE_PARAM) {
449 isl_seq_cpy(path_c, delta_c[i], 1 + nparam);
450 } else {
451 isl_seq_cpy(path_c + off,
452 delta_c[i] + 1 + nparam, d);
453 isl_seq_cpy(path_c, delta_c[i], 1 + nparam);
455 isl_seq_cpy(path_c + off - n_div,
456 delta_c[i] + 1 + nparam + d, n_div);
459 return path;
460 error:
461 isl_basic_map_free(path);
462 return NULL;
465 /* Given a set of offsets "delta", construct a relation of the
466 * given dimension specification (Z^{n+1} -> Z^{n+1}) that
467 * is an overapproximation of the relations that
468 * maps an element x to any element that can be reached
469 * by taking a non-negative number of steps along any of
470 * the elements in "delta".
471 * That is, construct an approximation of
473 * { [x] -> [y] : exists f \in \delta, k \in Z :
474 * y = x + k [f, 1] and k >= 0 }
476 * For any element in this relation, the number of steps taken
477 * is equal to the difference in the final coordinates.
479 * In particular, let delta be defined as
481 * \delta = [p] -> { [x] : A x + a >= and B p + b >= 0 and
482 * C x + C'p + c >= 0 and
483 * D x + D'p + d >= 0 }
485 * where the constraints C x + C'p + c >= 0 are such that the parametric
486 * constant term of each constraint j, "C_j x + C'_j p + c_j",
487 * can never attain positive values, then the relation is constructed as
489 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
490 * A f + k a >= 0 and B p + b >= 0 and
491 * C f + C'p + c >= 0 and k >= 1 }
492 * union { [x] -> [x] }
494 * If the zero-length paths happen to correspond exactly to the identity
495 * mapping, then we return
497 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
498 * A f + k a >= 0 and B p + b >= 0 and
499 * C f + C'p + c >= 0 and k >= 0 }
501 * instead.
503 * Existentially quantified variables in \delta are handled by
504 * classifying them as independent of the parameters, purely
505 * parameter dependent and others. Constraints containing
506 * any of the other existentially quantified variables are removed.
507 * This is safe, but leads to an additional overapproximation.
509 static __isl_give isl_map *path_along_delta(__isl_take isl_dim *dim,
510 __isl_take isl_basic_set *delta)
512 isl_basic_map *path = NULL;
513 unsigned d;
514 unsigned n_div;
515 unsigned nparam;
516 unsigned off;
517 int i, k;
518 int is_id;
519 int *div_purity = NULL;
521 if (!delta)
522 goto error;
523 n_div = isl_basic_set_dim(delta, isl_dim_div);
524 d = isl_basic_set_dim(delta, isl_dim_set);
525 nparam = isl_basic_set_dim(delta, isl_dim_param);
526 path = isl_basic_map_alloc_dim(isl_dim_copy(dim), n_div + d + 1,
527 d + 1 + delta->n_eq, delta->n_eq + delta->n_ineq + 1);
528 off = 1 + nparam + 2 * (d + 1) + n_div;
530 for (i = 0; i < n_div + d + 1; ++i) {
531 k = isl_basic_map_alloc_div(path);
532 if (k < 0)
533 goto error;
534 isl_int_set_si(path->div[k][0], 0);
537 for (i = 0; i < d + 1; ++i) {
538 k = isl_basic_map_alloc_equality(path);
539 if (k < 0)
540 goto error;
541 isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path));
542 isl_int_set_si(path->eq[k][1 + nparam + i], 1);
543 isl_int_set_si(path->eq[k][1 + nparam + d + 1 + i], -1);
544 isl_int_set_si(path->eq[k][off + i], 1);
547 div_purity = get_div_purity(delta);
548 if (!div_purity)
549 goto error;
551 path = add_delta_constraints(path, delta, off, nparam, d, div_purity, 1);
552 path = add_delta_constraints(path, delta, off, nparam, d, div_purity, 0);
554 is_id = empty_path_is_identity(path, off + d);
555 if (is_id < 0)
556 goto error;
558 k = isl_basic_map_alloc_inequality(path);
559 if (k < 0)
560 goto error;
561 isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path));
562 if (!is_id)
563 isl_int_set_si(path->ineq[k][0], -1);
564 isl_int_set_si(path->ineq[k][off + d], 1);
566 free(div_purity);
567 isl_basic_set_free(delta);
568 path = isl_basic_map_finalize(path);
569 if (is_id) {
570 isl_dim_free(dim);
571 return isl_map_from_basic_map(path);
573 return isl_basic_map_union(path,
574 isl_basic_map_identity(isl_dim_domain(dim)));
575 error:
576 free(div_purity);
577 isl_dim_free(dim);
578 isl_basic_set_free(delta);
579 isl_basic_map_free(path);
580 return NULL;
583 /* Given a dimenion specification Z^{n+1} -> Z^{n+1} and a parameter "param",
584 * construct a map that equates the parameter to the difference
585 * in the final coordinates and imposes that this difference is positive.
586 * That is, construct
588 * { [x,x_s] -> [y,y_s] : k = y_s - x_s > 0 }
590 static __isl_give isl_map *equate_parameter_to_length(__isl_take isl_dim *dim,
591 unsigned param)
593 struct isl_basic_map *bmap;
594 unsigned d;
595 unsigned nparam;
596 int k;
598 d = isl_dim_size(dim, isl_dim_in);
599 nparam = isl_dim_size(dim, isl_dim_param);
600 bmap = isl_basic_map_alloc_dim(dim, 0, 1, 1);
601 k = isl_basic_map_alloc_equality(bmap);
602 if (k < 0)
603 goto error;
604 isl_seq_clr(bmap->eq[k], 1 + isl_basic_map_total_dim(bmap));
605 isl_int_set_si(bmap->eq[k][1 + param], -1);
606 isl_int_set_si(bmap->eq[k][1 + nparam + d - 1], -1);
607 isl_int_set_si(bmap->eq[k][1 + nparam + d + d - 1], 1);
609 k = isl_basic_map_alloc_inequality(bmap);
610 if (k < 0)
611 goto error;
612 isl_seq_clr(bmap->ineq[k], 1 + isl_basic_map_total_dim(bmap));
613 isl_int_set_si(bmap->ineq[k][1 + param], 1);
614 isl_int_set_si(bmap->ineq[k][0], -1);
616 bmap = isl_basic_map_finalize(bmap);
617 return isl_map_from_basic_map(bmap);
618 error:
619 isl_basic_map_free(bmap);
620 return NULL;
623 /* Check whether "path" is acyclic, where the last coordinates of domain
624 * and range of path encode the number of steps taken.
625 * That is, check whether
627 * { d | d = y - x and (x,y) in path }
629 * does not contain any element with positive last coordinate (positive length)
630 * and zero remaining coordinates (cycle).
632 static int is_acyclic(__isl_take isl_map *path)
634 int i;
635 int acyclic;
636 unsigned dim;
637 struct isl_set *delta;
639 delta = isl_map_deltas(path);
640 dim = isl_set_dim(delta, isl_dim_set);
641 for (i = 0; i < dim; ++i) {
642 if (i == dim -1)
643 delta = isl_set_lower_bound_si(delta, isl_dim_set, i, 1);
644 else
645 delta = isl_set_fix_si(delta, isl_dim_set, i, 0);
648 acyclic = isl_set_is_empty(delta);
649 isl_set_free(delta);
651 return acyclic;
654 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
655 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
656 * construct a map that is an overapproximation of the map
657 * that takes an element from the space D \times Z to another
658 * element from the same space, such that the first n coordinates of the
659 * difference between them is a sum of differences between images
660 * and pre-images in one of the R_i and such that the last coordinate
661 * is equal to the number of steps taken.
662 * That is, let
664 * \Delta_i = { y - x | (x, y) in R_i }
666 * then the constructed map is an overapproximation of
668 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
669 * d = (\sum_i k_i \delta_i, \sum_i k_i) }
671 * The elements of the singleton \Delta_i's are collected as the
672 * rows of the steps matrix. For all these \Delta_i's together,
673 * a single path is constructed.
674 * For each of the other \Delta_i's, we compute an overapproximation
675 * of the paths along elements of \Delta_i.
676 * Since each of these paths performs an addition, composition is
677 * symmetric and we can simply compose all resulting paths in any order.
679 static __isl_give isl_map *construct_extended_path(__isl_take isl_dim *dim,
680 __isl_keep isl_map *map, int *project)
682 struct isl_mat *steps = NULL;
683 struct isl_map *path = NULL;
684 unsigned d;
685 int i, j, n;
687 d = isl_map_dim(map, isl_dim_in);
689 path = isl_map_identity(isl_dim_domain(isl_dim_copy(dim)));
691 steps = isl_mat_alloc(map->ctx, map->n, d);
692 if (!steps)
693 goto error;
695 n = 0;
696 for (i = 0; i < map->n; ++i) {
697 struct isl_basic_set *delta;
699 delta = isl_basic_map_deltas(isl_basic_map_copy(map->p[i]));
701 for (j = 0; j < d; ++j) {
702 int fixed;
704 fixed = isl_basic_set_fast_dim_is_fixed(delta, j,
705 &steps->row[n][j]);
706 if (fixed < 0) {
707 isl_basic_set_free(delta);
708 goto error;
710 if (!fixed)
711 break;
715 if (j < d) {
716 path = isl_map_apply_range(path,
717 path_along_delta(isl_dim_copy(dim), delta));
718 path = isl_map_coalesce(path);
719 } else {
720 isl_basic_set_free(delta);
721 ++n;
725 if (n > 0) {
726 steps->n_row = n;
727 path = isl_map_apply_range(path,
728 path_along_steps(isl_dim_copy(dim), steps));
731 if (project && *project) {
732 *project = is_acyclic(isl_map_copy(path));
733 if (*project < 0)
734 goto error;
737 isl_dim_free(dim);
738 isl_mat_free(steps);
739 return path;
740 error:
741 isl_dim_free(dim);
742 isl_mat_free(steps);
743 isl_map_free(path);
744 return NULL;
747 static int isl_set_overlaps(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
749 isl_set *i;
750 int no_overlap;
752 i = isl_set_intersect(isl_set_copy(set1), isl_set_copy(set2));
753 no_overlap = isl_set_is_empty(i);
754 isl_set_free(i);
756 return no_overlap < 0 ? -1 : !no_overlap;
759 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
760 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
761 * construct a map that is an overapproximation of the map
762 * that takes an element from the dom R \times Z to an
763 * element from ran R \times Z, such that the first n coordinates of the
764 * difference between them is a sum of differences between images
765 * and pre-images in one of the R_i and such that the last coordinate
766 * is equal to the number of steps taken.
767 * That is, let
769 * \Delta_i = { y - x | (x, y) in R_i }
771 * then the constructed map is an overapproximation of
773 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
774 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
775 * x in dom R and x + d in ran R and
776 * \sum_i k_i >= 1 }
778 static __isl_give isl_map *construct_component(__isl_take isl_dim *dim,
779 __isl_keep isl_map *map, int *exact, int project)
781 struct isl_set *domain = NULL;
782 struct isl_set *range = NULL;
783 struct isl_map *app = NULL;
784 struct isl_map *path = NULL;
786 domain = isl_map_domain(isl_map_copy(map));
787 domain = isl_set_coalesce(domain);
788 range = isl_map_range(isl_map_copy(map));
789 range = isl_set_coalesce(range);
790 if (!isl_set_overlaps(domain, range)) {
791 isl_set_free(domain);
792 isl_set_free(range);
793 isl_dim_free(dim);
795 map = isl_map_copy(map);
796 map = isl_map_add(map, isl_dim_in, 1);
797 map = isl_map_add(map, isl_dim_out, 1);
798 map = set_path_length(map, 1, 1);
799 return map;
801 app = isl_map_from_domain_and_range(domain, range);
802 app = isl_map_add(app, isl_dim_in, 1);
803 app = isl_map_add(app, isl_dim_out, 1);
805 path = construct_extended_path(isl_dim_copy(dim), map,
806 exact && *exact ? &project : NULL);
807 app = isl_map_intersect(app, path);
809 if (exact && *exact &&
810 (*exact = check_exactness(isl_map_copy(map), isl_map_copy(app),
811 project)) < 0)
812 goto error;
814 isl_dim_free(dim);
815 app = set_path_length(app, 0, 1);
816 return app;
817 error:
818 isl_dim_free(dim);
819 isl_map_free(app);
820 return NULL;
823 /* Call construct_component and, if "project" is set, project out
824 * the final coordinates.
826 static __isl_give isl_map *construct_projected_component(
827 __isl_take isl_dim *dim,
828 __isl_keep isl_map *map, int *exact, int project)
830 isl_map *app;
831 unsigned d;
833 if (!dim)
834 return NULL;
835 d = isl_dim_size(dim, isl_dim_in);
837 app = construct_component(dim, map, exact, project);
838 if (project) {
839 app = isl_map_project_out(app, isl_dim_in, d - 1, 1);
840 app = isl_map_project_out(app, isl_dim_out, d - 1, 1);
842 return app;
845 /* Compute an extended version, i.e., with path lengths, of
846 * an overapproximation of the transitive closure of "bmap"
847 * with path lengths greater than or equal to zero and with
848 * domain and range equal to "dom".
850 static __isl_give isl_map *q_closure(__isl_take isl_dim *dim,
851 __isl_take isl_set *dom, __isl_keep isl_basic_map *bmap, int *exact)
853 int project = 1;
854 isl_map *path;
855 isl_map *map;
856 isl_map *app;
858 dom = isl_set_add(dom, isl_dim_set, 1);
859 app = isl_map_from_domain_and_range(dom, isl_set_copy(dom));
860 map = isl_map_from_basic_map(isl_basic_map_copy(bmap));
861 path = construct_extended_path(dim, map, &project);
862 app = isl_map_intersect(app, path);
864 if ((*exact = check_exactness(map, isl_map_copy(app), project)) < 0)
865 goto error;
867 return app;
868 error:
869 isl_map_free(app);
870 return NULL;
873 /* Check whether qc has any elements of length at least one
874 * with domain and/or range outside of dom and ran.
876 static int has_spurious_elements(__isl_keep isl_map *qc,
877 __isl_keep isl_set *dom, __isl_keep isl_set *ran)
879 isl_set *s;
880 int subset;
881 unsigned d;
883 if (!qc || !dom || !ran)
884 return -1;
886 d = isl_map_dim(qc, isl_dim_in);
888 qc = isl_map_copy(qc);
889 qc = set_path_length(qc, 0, 1);
890 qc = isl_map_project_out(qc, isl_dim_in, d - 1, 1);
891 qc = isl_map_project_out(qc, isl_dim_out, d - 1, 1);
893 s = isl_map_domain(isl_map_copy(qc));
894 subset = isl_set_is_subset(s, dom);
895 isl_set_free(s);
896 if (subset < 0)
897 goto error;
898 if (!subset) {
899 isl_map_free(qc);
900 return 1;
903 s = isl_map_range(qc);
904 subset = isl_set_is_subset(s, ran);
905 isl_set_free(s);
907 return subset < 0 ? -1 : !subset;
908 error:
909 isl_map_free(qc);
910 return -1;
913 #define LEFT 2
914 #define RIGHT 1
916 /* For each basic map in "map", except i, check whether it combines
917 * with the transitive closure that is reflexive on C combines
918 * to the left and to the right.
920 * In particular, if
922 * dom map_j \subseteq C
924 * then right[j] is set to 1. Otherwise, if
926 * ran map_i \cap dom map_j = \emptyset
928 * then right[j] is set to 0. Otherwise, composing to the right
929 * is impossible.
931 * Similar, for composing to the left, we have if
933 * ran map_j \subseteq C
935 * then left[j] is set to 1. Otherwise, if
937 * dom map_i \cap ran map_j = \emptyset
939 * then left[j] is set to 0. Otherwise, composing to the left
940 * is impossible.
942 * The return value is or'd with LEFT if composing to the left
943 * is possible and with RIGHT if composing to the right is possible.
945 static int composability(__isl_keep isl_set *C, int i,
946 isl_set **dom, isl_set **ran, int *left, int *right,
947 __isl_keep isl_map *map)
949 int j;
950 int ok;
952 ok = LEFT | RIGHT;
953 for (j = 0; j < map->n && ok; ++j) {
954 int overlaps, subset;
955 if (j == i)
956 continue;
958 if (ok & RIGHT) {
959 if (!dom[j])
960 dom[j] = isl_set_from_basic_set(
961 isl_basic_map_domain(
962 isl_basic_map_copy(map->p[j])));
963 if (!dom[j])
964 return -1;
965 overlaps = isl_set_overlaps(ran[i], dom[j]);
966 if (overlaps < 0)
967 return -1;
968 if (!overlaps)
969 right[j] = 0;
970 else {
971 subset = isl_set_is_subset(dom[j], C);
972 if (subset < 0)
973 return -1;
974 if (subset)
975 right[j] = 1;
976 else
977 ok &= ~RIGHT;
981 if (ok & LEFT) {
982 if (!ran[j])
983 ran[j] = isl_set_from_basic_set(
984 isl_basic_map_range(
985 isl_basic_map_copy(map->p[j])));
986 if (!ran[j])
987 return -1;
988 overlaps = isl_set_overlaps(dom[i], ran[j]);
989 if (overlaps < 0)
990 return -1;
991 if (!overlaps)
992 left[j] = 0;
993 else {
994 subset = isl_set_is_subset(ran[j], C);
995 if (subset < 0)
996 return -1;
997 if (subset)
998 left[j] = 1;
999 else
1000 ok &= ~LEFT;
1005 return ok;
1008 /* Return a map that is a union of the basic maps in "map", except i,
1009 * composed to left and right with qc based on the entries of "left"
1010 * and "right".
1012 static __isl_give isl_map *compose(__isl_keep isl_map *map, int i,
1013 __isl_take isl_map *qc, int *left, int *right)
1015 int j;
1016 isl_map *comp;
1018 comp = isl_map_empty(isl_map_get_dim(map));
1019 for (j = 0; j < map->n; ++j) {
1020 isl_map *map_j;
1022 if (j == i)
1023 continue;
1025 map_j = isl_map_from_basic_map(isl_basic_map_copy(map->p[j]));
1026 if (left && left[j])
1027 map_j = isl_map_apply_range(map_j, isl_map_copy(qc));
1028 if (right && right[j])
1029 map_j = isl_map_apply_range(isl_map_copy(qc), map_j);
1030 comp = isl_map_union(comp, map_j);
1033 comp = isl_map_compute_divs(comp);
1034 comp = isl_map_coalesce(comp);
1036 isl_map_free(qc);
1038 return comp;
1041 /* Compute the transitive closure of "map" incrementally by
1042 * computing
1044 * map_i^+ \cup qc^+
1046 * or
1048 * map_i^+ \cup ((id \cup map_i^) \circ qc^+)
1050 * or
1052 * map_i^+ \cup (qc^+ \circ (id \cup map_i^))
1054 * depending on whether left or right are NULL.
1056 static __isl_give isl_map *compute_incremental(
1057 __isl_take isl_dim *dim, __isl_keep isl_map *map,
1058 int i, __isl_take isl_map *qc, int *left, int *right, int *exact)
1060 isl_map *map_i;
1061 isl_map *tc;
1062 isl_map *rtc = NULL;
1064 if (!map)
1065 goto error;
1066 isl_assert(map->ctx, left || right, goto error);
1068 map_i = isl_map_from_basic_map(isl_basic_map_copy(map->p[i]));
1069 tc = construct_projected_component(isl_dim_copy(dim), map_i,
1070 exact, 1);
1071 isl_map_free(map_i);
1073 if (*exact)
1074 qc = isl_map_transitive_closure(qc, exact);
1076 if (!*exact) {
1077 isl_dim_free(dim);
1078 isl_map_free(tc);
1079 isl_map_free(qc);
1080 return isl_map_universe(isl_map_get_dim(map));
1083 if (!left || !right)
1084 rtc = isl_map_union(isl_map_copy(tc),
1085 isl_map_identity(isl_dim_domain(isl_map_get_dim(tc))));
1086 if (!right)
1087 qc = isl_map_apply_range(rtc, qc);
1088 if (!left)
1089 qc = isl_map_apply_range(qc, rtc);
1090 qc = isl_map_union(tc, qc);
1092 isl_dim_free(dim);
1094 return qc;
1095 error:
1096 isl_dim_free(dim);
1097 isl_map_free(qc);
1098 return NULL;
1101 /* Given a map "map", try to find a basic map such that
1102 * map^+ can be computed as
1104 * map^+ = map_i^+ \cup
1105 * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
1107 * with C the simple hull of the domain and range of the input map.
1108 * map_i^ \cup Id_C is computed by allowing the path lengths to be zero
1109 * and by intersecting domain and range with C.
1110 * Of course, we need to check that this is actually equal to map_i^ \cup Id_C.
1111 * Also, we only use the incremental computation if all the transitive
1112 * closures are exact and if the number of basic maps in the union,
1113 * after computing the integer divisions, is smaller than the number
1114 * of basic maps in the input map.
1116 static int incemental_on_entire_domain(__isl_keep isl_dim *dim,
1117 __isl_keep isl_map *map,
1118 isl_set **dom, isl_set **ran, int *left, int *right,
1119 __isl_give isl_map **res)
1121 int i;
1122 isl_set *C;
1123 unsigned d;
1125 *res = NULL;
1127 C = isl_set_union(isl_map_domain(isl_map_copy(map)),
1128 isl_map_range(isl_map_copy(map)));
1129 C = isl_set_from_basic_set(isl_set_simple_hull(C));
1130 if (!C)
1131 return -1;
1132 if (C->n != 1) {
1133 isl_set_free(C);
1134 return 0;
1137 d = isl_map_dim(map, isl_dim_in);
1139 for (i = 0; i < map->n; ++i) {
1140 isl_map *qc;
1141 int exact_i, spurious;
1142 int j;
1143 dom[i] = isl_set_from_basic_set(isl_basic_map_domain(
1144 isl_basic_map_copy(map->p[i])));
1145 ran[i] = isl_set_from_basic_set(isl_basic_map_range(
1146 isl_basic_map_copy(map->p[i])));
1147 qc = q_closure(isl_dim_copy(dim), isl_set_copy(C),
1148 map->p[i], &exact_i);
1149 if (!qc)
1150 goto error;
1151 if (!exact_i) {
1152 isl_map_free(qc);
1153 continue;
1155 spurious = has_spurious_elements(qc, dom[i], ran[i]);
1156 if (spurious) {
1157 isl_map_free(qc);
1158 if (spurious < 0)
1159 goto error;
1160 continue;
1162 qc = isl_map_project_out(qc, isl_dim_in, d, 1);
1163 qc = isl_map_project_out(qc, isl_dim_out, d, 1);
1164 qc = isl_map_compute_divs(qc);
1165 for (j = 0; j < map->n; ++j)
1166 left[j] = right[j] = 1;
1167 qc = compose(map, i, qc, left, right);
1168 if (!qc)
1169 goto error;
1170 if (qc->n >= map->n) {
1171 isl_map_free(qc);
1172 continue;
1174 *res = compute_incremental(isl_dim_copy(dim), map, i, qc,
1175 left, right, &exact_i);
1176 if (!*res)
1177 goto error;
1178 if (exact_i)
1179 break;
1180 isl_map_free(*res);
1181 *res = NULL;
1184 isl_set_free(C);
1186 return *res != NULL;
1187 error:
1188 isl_set_free(C);
1189 return -1;
1192 /* Try and compute the transitive closure of "map" as
1194 * map^+ = map_i^+ \cup
1195 * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
1197 * with C either the simple hull of the domain and range of the entire
1198 * map or the simple hull of domain and range of map_i.
1200 static __isl_give isl_map *incremental_closure(__isl_take isl_dim *dim,
1201 __isl_keep isl_map *map, int *exact, int project)
1203 int i;
1204 isl_set **dom = NULL;
1205 isl_set **ran = NULL;
1206 int *left = NULL;
1207 int *right = NULL;
1208 isl_set *C;
1209 unsigned d;
1210 isl_map *res = NULL;
1212 if (!project)
1213 return construct_projected_component(dim, map, exact, project);
1215 if (!map)
1216 goto error;
1217 if (map->n <= 1)
1218 return construct_projected_component(dim, map, exact, project);
1220 d = isl_map_dim(map, isl_dim_in);
1222 dom = isl_calloc_array(map->ctx, isl_set *, map->n);
1223 ran = isl_calloc_array(map->ctx, isl_set *, map->n);
1224 left = isl_calloc_array(map->ctx, int, map->n);
1225 right = isl_calloc_array(map->ctx, int, map->n);
1226 if (!ran || !dom || !left || !right)
1227 goto error;
1229 if (incemental_on_entire_domain(dim, map, dom, ran, left, right, &res) < 0)
1230 goto error;
1232 for (i = 0; !res && i < map->n; ++i) {
1233 isl_map *qc;
1234 int exact_i, spurious, comp;
1235 if (!dom[i])
1236 dom[i] = isl_set_from_basic_set(
1237 isl_basic_map_domain(
1238 isl_basic_map_copy(map->p[i])));
1239 if (!dom[i])
1240 goto error;
1241 if (!ran[i])
1242 ran[i] = isl_set_from_basic_set(
1243 isl_basic_map_range(
1244 isl_basic_map_copy(map->p[i])));
1245 if (!ran[i])
1246 goto error;
1247 C = isl_set_union(isl_set_copy(dom[i]),
1248 isl_set_copy(ran[i]));
1249 C = isl_set_from_basic_set(isl_set_simple_hull(C));
1250 if (!C)
1251 goto error;
1252 if (C->n != 1) {
1253 isl_set_free(C);
1254 continue;
1256 comp = composability(C, i, dom, ran, left, right, map);
1257 if (!comp || comp < 0) {
1258 isl_set_free(C);
1259 if (comp < 0)
1260 goto error;
1261 continue;
1263 qc = q_closure(isl_dim_copy(dim), C, map->p[i], &exact_i);
1264 if (!qc)
1265 goto error;
1266 if (!exact_i) {
1267 isl_map_free(qc);
1268 continue;
1270 spurious = has_spurious_elements(qc, dom[i], ran[i]);
1271 if (spurious) {
1272 isl_map_free(qc);
1273 if (spurious < 0)
1274 goto error;
1275 continue;
1277 qc = isl_map_project_out(qc, isl_dim_in, d, 1);
1278 qc = isl_map_project_out(qc, isl_dim_out, d, 1);
1279 qc = isl_map_compute_divs(qc);
1280 qc = compose(map, i, qc, (comp & LEFT) ? left : NULL,
1281 (comp & RIGHT) ? right : NULL);
1282 if (!qc)
1283 goto error;
1284 if (qc->n >= map->n) {
1285 isl_map_free(qc);
1286 continue;
1288 res = compute_incremental(isl_dim_copy(dim), map, i, qc,
1289 (comp & LEFT) ? left : NULL,
1290 (comp & RIGHT) ? right : NULL, &exact_i);
1291 if (!res)
1292 goto error;
1293 if (exact_i)
1294 break;
1295 isl_map_free(res);
1296 res = NULL;
1299 for (i = 0; i < map->n; ++i) {
1300 isl_set_free(dom[i]);
1301 isl_set_free(ran[i]);
1303 free(dom);
1304 free(ran);
1305 free(left);
1306 free(right);
1308 if (res) {
1309 isl_dim_free(dim);
1310 return res;
1313 return construct_projected_component(dim, map, exact, project);
1314 error:
1315 if (dom)
1316 for (i = 0; i < map->n; ++i)
1317 isl_set_free(dom[i]);
1318 free(dom);
1319 if (ran)
1320 for (i = 0; i < map->n; ++i)
1321 isl_set_free(ran[i]);
1322 free(ran);
1323 free(left);
1324 free(right);
1325 isl_dim_free(dim);
1326 return NULL;
1329 /* Given an array of sets "set", add "dom" at position "pos"
1330 * and search for elements at earlier positions that overlap with "dom".
1331 * If any can be found, then merge all of them, together with "dom", into
1332 * a single set and assign the union to the first in the array,
1333 * which becomes the new group leader for all groups involved in the merge.
1334 * During the search, we only consider group leaders, i.e., those with
1335 * group[i] = i, as the other sets have already been combined
1336 * with one of the group leaders.
1338 static int merge(isl_set **set, int *group, __isl_take isl_set *dom, int pos)
1340 int i;
1342 group[pos] = pos;
1343 set[pos] = isl_set_copy(dom);
1345 for (i = pos - 1; i >= 0; --i) {
1346 int o;
1348 if (group[i] != i)
1349 continue;
1351 o = isl_set_overlaps(set[i], dom);
1352 if (o < 0)
1353 goto error;
1354 if (!o)
1355 continue;
1357 set[i] = isl_set_union(set[i], set[group[pos]]);
1358 if (!set[i])
1359 goto error;
1360 set[group[pos]] = NULL;
1361 group[group[pos]] = i;
1362 group[pos] = i;
1365 isl_set_free(dom);
1366 return 0;
1367 error:
1368 isl_set_free(dom);
1369 return -1;
1372 /* Given a partition of the domains and ranges of the basic maps in "map",
1373 * apply the Floyd-Warshall algorithm with the elements in the partition
1374 * as vertices.
1376 * In particular, there are "n" elements in the partition and "group" is
1377 * an array of length 2 * map->n with entries in [0,n-1].
1379 * We first construct a matrix of relations based on the partition information,
1380 * apply Floyd-Warshall on this matrix of relations and then take the
1381 * union of all entries in the matrix as the final result.
1383 * The algorithm iterates over all vertices. In each step, the whole
1384 * matrix is updated to include all paths that go to the current vertex,
1385 * possibly stay there a while (including passing through earlier vertices)
1386 * and then come back. At the start of each iteration, the diagonal
1387 * element corresponding to the current vertex is replaced by its
1388 * transitive closure to account for all indirect paths that stay
1389 * in the current vertex.
1391 static __isl_give isl_map *floyd_warshall_with_groups(__isl_take isl_dim *dim,
1392 __isl_keep isl_map *map, int *exact, int project, int *group, int n)
1394 int i, j, k;
1395 int r, p, q;
1396 isl_map ***grid = NULL;
1397 isl_map *app;
1399 if (!map)
1400 goto error;
1402 if (n == 1) {
1403 free(group);
1404 return incremental_closure(dim, map, exact, project);
1407 grid = isl_calloc_array(map->ctx, isl_map **, n);
1408 if (!grid)
1409 goto error;
1410 for (i = 0; i < n; ++i) {
1411 grid[i] = isl_calloc_array(map->ctx, isl_map *, n);
1412 if (!grid[i])
1413 goto error;
1414 for (j = 0; j < n; ++j)
1415 grid[i][j] = isl_map_empty(isl_map_get_dim(map));
1418 for (k = 0; k < map->n; ++k) {
1419 i = group[2 * k];
1420 j = group[2 * k + 1];
1421 grid[i][j] = isl_map_union(grid[i][j],
1422 isl_map_from_basic_map(
1423 isl_basic_map_copy(map->p[k])));
1426 for (r = 0; r < n; ++r) {
1427 int r_exact;
1428 grid[r][r] = isl_map_transitive_closure(grid[r][r],
1429 (exact && *exact) ? &r_exact : NULL);
1430 if (exact && *exact && !r_exact)
1431 *exact = 0;
1433 for (p = 0; p < n; ++p)
1434 for (q = 0; q < n; ++q) {
1435 isl_map *loop;
1436 if (p == r && q == r)
1437 continue;
1438 loop = isl_map_apply_range(
1439 isl_map_copy(grid[p][r]),
1440 isl_map_copy(grid[r][q]));
1441 grid[p][q] = isl_map_union(grid[p][q], loop);
1442 loop = isl_map_apply_range(
1443 isl_map_copy(grid[p][r]),
1444 isl_map_apply_range(
1445 isl_map_copy(grid[r][r]),
1446 isl_map_copy(grid[r][q])));
1447 grid[p][q] = isl_map_union(grid[p][q], loop);
1448 grid[p][q] = isl_map_coalesce(grid[p][q]);
1452 app = isl_map_empty(isl_map_get_dim(map));
1454 for (i = 0; i < n; ++i) {
1455 for (j = 0; j < n; ++j)
1456 app = isl_map_union(app, grid[i][j]);
1457 free(grid[i]);
1459 free(grid);
1461 free(group);
1462 isl_dim_free(dim);
1464 return app;
1465 error:
1466 if (grid)
1467 for (i = 0; i < n; ++i) {
1468 if (!grid[i])
1469 continue;
1470 for (j = 0; j < n; ++j)
1471 isl_map_free(grid[i][j]);
1472 free(grid[i]);
1474 free(grid);
1475 free(group);
1476 isl_dim_free(dim);
1477 return NULL;
1480 /* Check if the domains and ranges of the basic maps in "map" can
1481 * be partitioned, and if so, apply Floyd-Warshall on the elements
1482 * of the partition. Note that we can only apply this algorithm
1483 * if we want to compute the transitive closure, i.e., when "project"
1484 * is set. If we want to compute the power, we need to keep track
1485 * of the lengths and the recursive calls inside the Floyd-Warshall
1486 * would result in non-linear lengths.
1488 * To find the partition, we simply consider all of the domains
1489 * and ranges in turn and combine those that overlap.
1490 * "set" contains the partition elements and "group" indicates
1491 * to which partition element a given domain or range belongs.
1492 * The domain of basic map i corresponds to element 2 * i in these arrays,
1493 * while the domain corresponds to element 2 * i + 1.
1494 * During the construction group[k] is either equal to k,
1495 * in which case set[k] contains the union of all the domains and
1496 * ranges in the corresponding group, or is equal to some l < k,
1497 * with l another domain or range in the same group.
1499 static __isl_give isl_map *floyd_warshall(__isl_take isl_dim *dim,
1500 __isl_keep isl_map *map, int *exact, int project)
1502 int i;
1503 isl_set **set = NULL;
1504 int *group = NULL;
1505 int n;
1507 if (!map)
1508 goto error;
1509 if (!project || map->n <= 1)
1510 return incremental_closure(dim, map, exact, project);
1512 set = isl_calloc_array(map->ctx, isl_set *, 2 * map->n);
1513 group = isl_alloc_array(map->ctx, int, 2 * map->n);
1515 if (!set || !group)
1516 goto error;
1518 for (i = 0; i < map->n; ++i) {
1519 isl_set *dom;
1520 dom = isl_set_from_basic_set(isl_basic_map_domain(
1521 isl_basic_map_copy(map->p[i])));
1522 if (merge(set, group, dom, 2 * i) < 0)
1523 goto error;
1524 dom = isl_set_from_basic_set(isl_basic_map_range(
1525 isl_basic_map_copy(map->p[i])));
1526 if (merge(set, group, dom, 2 * i + 1) < 0)
1527 goto error;
1530 n = 0;
1531 for (i = 0; i < 2 * map->n; ++i)
1532 if (group[i] == i)
1533 group[i] = n++;
1534 else
1535 group[i] = group[group[i]];
1537 for (i = 0; i < 2 * map->n; ++i)
1538 isl_set_free(set[i]);
1540 free(set);
1542 return floyd_warshall_with_groups(dim, map, exact, project, group, n);
1543 error:
1544 for (i = 0; i < 2 * map->n; ++i)
1545 isl_set_free(set[i]);
1546 free(set);
1547 free(group);
1548 isl_dim_free(dim);
1549 return NULL;
1552 /* Structure for representing the nodes in the graph being traversed
1553 * using Tarjan's algorithm.
1554 * index represents the order in which nodes are visited.
1555 * min_index is the index of the root of a (sub)component.
1556 * on_stack indicates whether the node is currently on the stack.
1558 struct basic_map_sort_node {
1559 int index;
1560 int min_index;
1561 int on_stack;
1563 /* Structure for representing the graph being traversed
1564 * using Tarjan's algorithm.
1565 * len is the number of nodes
1566 * node is an array of nodes
1567 * stack contains the nodes on the path from the root to the current node
1568 * sp is the stack pointer
1569 * index is the index of the last node visited
1570 * order contains the elements of the components separated by -1
1571 * op represents the current position in order
1573 struct basic_map_sort {
1574 int len;
1575 struct basic_map_sort_node *node;
1576 int *stack;
1577 int sp;
1578 int index;
1579 int *order;
1580 int op;
1583 static void basic_map_sort_free(struct basic_map_sort *s)
1585 if (!s)
1586 return;
1587 free(s->node);
1588 free(s->stack);
1589 free(s->order);
1590 free(s);
1593 static struct basic_map_sort *basic_map_sort_alloc(struct isl_ctx *ctx, int len)
1595 struct basic_map_sort *s;
1596 int i;
1598 s = isl_calloc_type(ctx, struct basic_map_sort);
1599 if (!s)
1600 return NULL;
1601 s->len = len;
1602 s->node = isl_alloc_array(ctx, struct basic_map_sort_node, len);
1603 if (!s->node)
1604 goto error;
1605 for (i = 0; i < len; ++i)
1606 s->node[i].index = -1;
1607 s->stack = isl_alloc_array(ctx, int, len);
1608 if (!s->stack)
1609 goto error;
1610 s->order = isl_alloc_array(ctx, int, 2 * len);
1611 if (!s->order)
1612 goto error;
1614 s->sp = 0;
1615 s->index = 0;
1616 s->op = 0;
1618 return s;
1619 error:
1620 basic_map_sort_free(s);
1621 return NULL;
1624 /* Check whether in the computation of the transitive closure
1625 * "bmap1" (R_1) should follow (or be part of the same component as)
1626 * "bmap2" (R_2).
1628 * That is check whether
1630 * R_1 \circ R_2
1632 * is a subset of
1634 * R_2 \circ R_1
1636 * If so, then there is no reason for R_1 to immediately follow R_2
1637 * in any path.
1639 static int basic_map_follows(__isl_keep isl_basic_map *bmap1,
1640 __isl_keep isl_basic_map *bmap2)
1642 struct isl_map *map12 = NULL;
1643 struct isl_map *map21 = NULL;
1644 int subset;
1646 map21 = isl_map_from_basic_map(
1647 isl_basic_map_apply_range(
1648 isl_basic_map_copy(bmap2),
1649 isl_basic_map_copy(bmap1)));
1650 subset = isl_map_is_empty(map21);
1651 if (subset < 0)
1652 goto error;
1653 if (subset) {
1654 isl_map_free(map21);
1655 return 0;
1658 map12 = isl_map_from_basic_map(
1659 isl_basic_map_apply_range(
1660 isl_basic_map_copy(bmap1),
1661 isl_basic_map_copy(bmap2)));
1663 subset = isl_map_is_subset(map21, map12);
1665 isl_map_free(map12);
1666 isl_map_free(map21);
1668 return subset < 0 ? -1 : !subset;
1669 error:
1670 isl_map_free(map21);
1671 return -1;
1674 /* Perform Tarjan's algorithm for computing the strongly connected components
1675 * in the graph with the disjuncts of "map" as vertices and with an
1676 * edge between any pair of disjuncts such that the first has
1677 * to be applied after the second.
1679 static int power_components_tarjan(struct basic_map_sort *s,
1680 __isl_keep isl_map *map, int i)
1682 int j;
1684 s->node[i].index = s->index;
1685 s->node[i].min_index = s->index;
1686 s->node[i].on_stack = 1;
1687 s->index++;
1688 s->stack[s->sp++] = i;
1690 for (j = s->len - 1; j >= 0; --j) {
1691 int f;
1693 if (j == i)
1694 continue;
1695 if (s->node[j].index >= 0 &&
1696 (!s->node[j].on_stack ||
1697 s->node[j].index > s->node[i].min_index))
1698 continue;
1700 f = basic_map_follows(map->p[i], map->p[j]);
1701 if (f < 0)
1702 return -1;
1703 if (!f)
1704 continue;
1706 if (s->node[j].index < 0) {
1707 power_components_tarjan(s, map, j);
1708 if (s->node[j].min_index < s->node[i].min_index)
1709 s->node[i].min_index = s->node[j].min_index;
1710 } else if (s->node[j].index < s->node[i].min_index)
1711 s->node[i].min_index = s->node[j].index;
1714 if (s->node[i].index != s->node[i].min_index)
1715 return 0;
1717 do {
1718 j = s->stack[--s->sp];
1719 s->node[j].on_stack = 0;
1720 s->order[s->op++] = j;
1721 } while (j != i);
1722 s->order[s->op++] = -1;
1724 return 0;
1727 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
1728 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
1729 * construct a map that is an overapproximation of the map
1730 * that takes an element from the dom R \times Z to an
1731 * element from ran R \times Z, such that the first n coordinates of the
1732 * difference between them is a sum of differences between images
1733 * and pre-images in one of the R_i and such that the last coordinate
1734 * is equal to the number of steps taken.
1735 * If "project" is set, then these final coordinates are not included,
1736 * i.e., a relation of type Z^n -> Z^n is returned.
1737 * That is, let
1739 * \Delta_i = { y - x | (x, y) in R_i }
1741 * then the constructed map is an overapproximation of
1743 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1744 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
1745 * x in dom R and x + d in ran R }
1747 * or
1749 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1750 * d = (\sum_i k_i \delta_i) and
1751 * x in dom R and x + d in ran R }
1753 * if "project" is set.
1755 * We first split the map into strongly connected components, perform
1756 * the above on each component and then join the results in the correct
1757 * order, at each join also taking in the union of both arguments
1758 * to allow for paths that do not go through one of the two arguments.
1760 static __isl_give isl_map *construct_power_components(__isl_take isl_dim *dim,
1761 __isl_keep isl_map *map, int *exact, int project)
1763 int i, n;
1764 struct isl_map *path = NULL;
1765 struct basic_map_sort *s = NULL;
1767 if (!map)
1768 goto error;
1769 if (map->n <= 1)
1770 return floyd_warshall(dim, map, exact, project);
1772 s = basic_map_sort_alloc(map->ctx, map->n);
1773 if (!s)
1774 goto error;
1775 for (i = map->n - 1; i >= 0; --i) {
1776 if (s->node[i].index >= 0)
1777 continue;
1778 if (power_components_tarjan(s, map, i) < 0)
1779 goto error;
1782 i = 0;
1783 n = map->n;
1784 if (project)
1785 path = isl_map_empty(isl_map_get_dim(map));
1786 else
1787 path = isl_map_empty(isl_dim_copy(dim));
1788 while (n) {
1789 struct isl_map *comp;
1790 isl_map *path_comp, *path_comb;
1791 comp = isl_map_alloc_dim(isl_map_get_dim(map), n, 0);
1792 while (s->order[i] != -1) {
1793 comp = isl_map_add_basic_map(comp,
1794 isl_basic_map_copy(map->p[s->order[i]]));
1795 --n;
1796 ++i;
1798 path_comp = floyd_warshall(isl_dim_copy(dim),
1799 comp, exact, project);
1800 path_comb = isl_map_apply_range(isl_map_copy(path),
1801 isl_map_copy(path_comp));
1802 path = isl_map_union(path, path_comp);
1803 path = isl_map_union(path, path_comb);
1804 isl_map_free(comp);
1805 ++i;
1808 basic_map_sort_free(s);
1809 isl_dim_free(dim);
1811 return path;
1812 error:
1813 basic_map_sort_free(s);
1814 isl_dim_free(dim);
1815 return NULL;
1818 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D,
1819 * construct a map that is an overapproximation of the map
1820 * that takes an element from the space D to another
1821 * element from the same space, such that the difference between
1822 * them is a strictly positive sum of differences between images
1823 * and pre-images in one of the R_i.
1824 * The number of differences in the sum is equated to parameter "param".
1825 * That is, let
1827 * \Delta_i = { y - x | (x, y) in R_i }
1829 * then the constructed map is an overapproximation of
1831 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1832 * d = \sum_i k_i \delta_i and k = \sum_i k_i > 0 }
1833 * or
1835 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1836 * d = \sum_i k_i \delta_i and \sum_i k_i > 0 }
1838 * if "project" is set.
1840 * If "project" is not set, then
1841 * we first construct an extended mapping with an extra coordinate
1842 * that indicates the number of steps taken. In particular,
1843 * the difference in the last coordinate is equal to the number
1844 * of steps taken to move from a domain element to the corresponding
1845 * image element(s).
1846 * In the final step, this difference is equated to the parameter "param"
1847 * and made positive. The extra coordinates are subsequently projected out.
1849 static __isl_give isl_map *construct_power(__isl_keep isl_map *map,
1850 unsigned param, int *exact, int project)
1852 struct isl_map *app = NULL;
1853 struct isl_map *diff;
1854 struct isl_dim *dim = NULL;
1855 unsigned d;
1857 if (!map)
1858 return NULL;
1860 dim = isl_map_get_dim(map);
1862 d = isl_dim_size(dim, isl_dim_in);
1863 dim = isl_dim_add(dim, isl_dim_in, 1);
1864 dim = isl_dim_add(dim, isl_dim_out, 1);
1866 app = construct_power_components(isl_dim_copy(dim), map,
1867 exact, project);
1869 if (project) {
1870 isl_dim_free(dim);
1871 } else {
1872 diff = equate_parameter_to_length(dim, param);
1873 app = isl_map_intersect(app, diff);
1874 app = isl_map_project_out(app, isl_dim_in, d, 1);
1875 app = isl_map_project_out(app, isl_dim_out, d, 1);
1878 return app;
1881 /* Compute the positive powers of "map", or an overapproximation.
1882 * The power is given by parameter "param". If the result is exact,
1883 * then *exact is set to 1.
1885 * If project is set, then we are actually interested in the transitive
1886 * closure, so we can use a more relaxed exactness check.
1887 * The lengths of the paths are also projected out instead of being
1888 * equated to "param" (which is then ignored in this case).
1890 static __isl_give isl_map *map_power(__isl_take isl_map *map, unsigned param,
1891 int *exact, int project)
1893 struct isl_map *app = NULL;
1895 if (exact)
1896 *exact = 1;
1898 if (!map)
1899 return NULL;
1901 if (isl_map_fast_is_empty(map))
1902 return map;
1904 isl_assert(map->ctx, project || param < isl_map_dim(map, isl_dim_param),
1905 goto error);
1906 isl_assert(map->ctx,
1907 isl_map_dim(map, isl_dim_in) == isl_map_dim(map, isl_dim_out),
1908 goto error);
1910 app = construct_power(map, param, exact, project);
1912 isl_map_free(map);
1913 return app;
1914 error:
1915 isl_map_free(map);
1916 isl_map_free(app);
1917 return NULL;
1920 /* Compute the positive powers of "map", or an overapproximation.
1921 * The power is given by parameter "param". If the result is exact,
1922 * then *exact is set to 1.
1924 __isl_give isl_map *isl_map_power(__isl_take isl_map *map, unsigned param,
1925 int *exact)
1927 map = isl_map_compute_divs(map);
1928 map = isl_map_coalesce(map);
1929 return map_power(map, param, exact, 0);
1932 /* Check whether equality i of bset is a pure stride constraint
1933 * on a single dimensions, i.e., of the form
1935 * v = k e
1937 * with k a constant and e an existentially quantified variable.
1939 static int is_eq_stride(__isl_keep isl_basic_set *bset, int i)
1941 int k;
1942 unsigned nparam;
1943 unsigned d;
1944 unsigned n_div;
1945 int pos1;
1946 int pos2;
1948 if (!bset)
1949 return -1;
1951 if (!isl_int_is_zero(bset->eq[i][0]))
1952 return 0;
1954 nparam = isl_basic_set_dim(bset, isl_dim_param);
1955 d = isl_basic_set_dim(bset, isl_dim_set);
1956 n_div = isl_basic_set_dim(bset, isl_dim_div);
1958 if (isl_seq_first_non_zero(bset->eq[i] + 1, nparam) != -1)
1959 return 0;
1960 pos1 = isl_seq_first_non_zero(bset->eq[i] + 1 + nparam, d);
1961 if (pos1 == -1)
1962 return 0;
1963 if (isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + pos1 + 1,
1964 d - pos1 - 1) != -1)
1965 return 0;
1967 pos2 = isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + d, n_div);
1968 if (pos2 == -1)
1969 return 0;
1970 if (isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + d + pos2 + 1,
1971 n_div - pos2 - 1) != -1)
1972 return 0;
1973 if (!isl_int_is_one(bset->eq[i][1 + nparam + pos1]) &&
1974 !isl_int_is_negone(bset->eq[i][1 + nparam + pos1]))
1975 return 0;
1977 return 1;
1980 /* Given a map, compute the smallest superset of this map that is of the form
1982 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
1984 * (where p ranges over the (non-parametric) dimensions),
1985 * compute the transitive closure of this map, i.e.,
1987 * { i -> j : exists k > 0:
1988 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
1990 * and intersect domain and range of this transitive closure with
1991 * the given domain and range.
1993 * If with_id is set, then try to include as much of the identity mapping
1994 * as possible, by computing
1996 * { i -> j : exists k >= 0:
1997 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
1999 * instead (i.e., allow k = 0).
2001 * In practice, we compute the difference set
2003 * delta = { j - i | i -> j in map },
2005 * look for stride constraint on the individual dimensions and compute
2006 * (constant) lower and upper bounds for each individual dimension,
2007 * adding a constraint for each bound not equal to infinity.
2009 static __isl_give isl_map *box_closure_on_domain(__isl_take isl_map *map,
2010 __isl_take isl_set *dom, __isl_take isl_set *ran, int with_id)
2012 int i;
2013 int k;
2014 unsigned d;
2015 unsigned nparam;
2016 unsigned total;
2017 isl_dim *dim;
2018 isl_set *delta;
2019 isl_map *app = NULL;
2020 isl_basic_set *aff = NULL;
2021 isl_basic_map *bmap = NULL;
2022 isl_vec *obj = NULL;
2023 isl_int opt;
2025 isl_int_init(opt);
2027 delta = isl_map_deltas(isl_map_copy(map));
2029 aff = isl_set_affine_hull(isl_set_copy(delta));
2030 if (!aff)
2031 goto error;
2032 dim = isl_map_get_dim(map);
2033 d = isl_dim_size(dim, isl_dim_in);
2034 nparam = isl_dim_size(dim, isl_dim_param);
2035 total = isl_dim_total(dim);
2036 bmap = isl_basic_map_alloc_dim(dim,
2037 aff->n_div + 1, aff->n_div, 2 * d + 1);
2038 for (i = 0; i < aff->n_div + 1; ++i) {
2039 k = isl_basic_map_alloc_div(bmap);
2040 if (k < 0)
2041 goto error;
2042 isl_int_set_si(bmap->div[k][0], 0);
2044 for (i = 0; i < aff->n_eq; ++i) {
2045 if (!is_eq_stride(aff, i))
2046 continue;
2047 k = isl_basic_map_alloc_equality(bmap);
2048 if (k < 0)
2049 goto error;
2050 isl_seq_clr(bmap->eq[k], 1 + nparam);
2051 isl_seq_cpy(bmap->eq[k] + 1 + nparam + d,
2052 aff->eq[i] + 1 + nparam, d);
2053 isl_seq_neg(bmap->eq[k] + 1 + nparam,
2054 aff->eq[i] + 1 + nparam, d);
2055 isl_seq_cpy(bmap->eq[k] + 1 + nparam + 2 * d,
2056 aff->eq[i] + 1 + nparam + d, aff->n_div);
2057 isl_int_set_si(bmap->eq[k][1 + total + aff->n_div], 0);
2059 obj = isl_vec_alloc(map->ctx, 1 + nparam + d);
2060 if (!obj)
2061 goto error;
2062 isl_seq_clr(obj->el, 1 + nparam + d);
2063 for (i = 0; i < d; ++ i) {
2064 enum isl_lp_result res;
2066 isl_int_set_si(obj->el[1 + nparam + i], 1);
2068 res = isl_set_solve_lp(delta, 0, obj->el, map->ctx->one, &opt,
2069 NULL, NULL);
2070 if (res == isl_lp_error)
2071 goto error;
2072 if (res == isl_lp_ok) {
2073 k = isl_basic_map_alloc_inequality(bmap);
2074 if (k < 0)
2075 goto error;
2076 isl_seq_clr(bmap->ineq[k],
2077 1 + nparam + 2 * d + bmap->n_div);
2078 isl_int_set_si(bmap->ineq[k][1 + nparam + i], -1);
2079 isl_int_set_si(bmap->ineq[k][1 + nparam + d + i], 1);
2080 isl_int_neg(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], opt);
2083 res = isl_set_solve_lp(delta, 1, obj->el, map->ctx->one, &opt,
2084 NULL, NULL);
2085 if (res == isl_lp_error)
2086 goto error;
2087 if (res == isl_lp_ok) {
2088 k = isl_basic_map_alloc_inequality(bmap);
2089 if (k < 0)
2090 goto error;
2091 isl_seq_clr(bmap->ineq[k],
2092 1 + nparam + 2 * d + bmap->n_div);
2093 isl_int_set_si(bmap->ineq[k][1 + nparam + i], 1);
2094 isl_int_set_si(bmap->ineq[k][1 + nparam + d + i], -1);
2095 isl_int_set(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], opt);
2098 isl_int_set_si(obj->el[1 + nparam + i], 0);
2100 k = isl_basic_map_alloc_inequality(bmap);
2101 if (k < 0)
2102 goto error;
2103 isl_seq_clr(bmap->ineq[k],
2104 1 + nparam + 2 * d + bmap->n_div);
2105 if (!with_id)
2106 isl_int_set_si(bmap->ineq[k][0], -1);
2107 isl_int_set_si(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], 1);
2109 app = isl_map_from_domain_and_range(dom, ran);
2111 isl_vec_free(obj);
2112 isl_basic_set_free(aff);
2113 isl_map_free(map);
2114 bmap = isl_basic_map_finalize(bmap);
2115 isl_set_free(delta);
2116 isl_int_clear(opt);
2118 map = isl_map_from_basic_map(bmap);
2119 map = isl_map_intersect(map, app);
2121 return map;
2122 error:
2123 isl_vec_free(obj);
2124 isl_basic_map_free(bmap);
2125 isl_basic_set_free(aff);
2126 isl_set_free(dom);
2127 isl_set_free(ran);
2128 isl_map_free(map);
2129 isl_set_free(delta);
2130 isl_int_clear(opt);
2131 return NULL;
2134 /* Given a map, compute the smallest superset of this map that is of the form
2136 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2138 * (where p ranges over the (non-parametric) dimensions),
2139 * compute the transitive closure of this map, i.e.,
2141 * { i -> j : exists k > 0:
2142 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2144 * and intersect domain and range of this transitive closure with
2145 * domain and range of the original map.
2147 static __isl_give isl_map *box_closure(__isl_take isl_map *map)
2149 isl_set *domain;
2150 isl_set *range;
2152 domain = isl_map_domain(isl_map_copy(map));
2153 domain = isl_set_coalesce(domain);
2154 range = isl_map_range(isl_map_copy(map));
2155 range = isl_set_coalesce(range);
2157 return box_closure_on_domain(map, domain, range, 0);
2160 /* Given a map, compute the smallest superset of this map that is of the form
2162 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2164 * (where p ranges over the (non-parametric) dimensions),
2165 * compute the transitive and partially reflexive closure of this map, i.e.,
2167 * { i -> j : exists k >= 0:
2168 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2170 * and intersect domain and range of this transitive closure with
2171 * the given domain.
2173 static __isl_give isl_map *box_closure_with_identity(__isl_take isl_map *map,
2174 __isl_take isl_set *dom)
2176 return box_closure_on_domain(map, dom, isl_set_copy(dom), 1);
2179 /* Check whether app is the transitive closure of map.
2180 * In particular, check that app is acyclic and, if so,
2181 * check that
2183 * app \subset (map \cup (map \circ app))
2185 static int check_exactness_omega(__isl_keep isl_map *map,
2186 __isl_keep isl_map *app)
2188 isl_set *delta;
2189 int i;
2190 int is_empty, is_exact;
2191 unsigned d;
2192 isl_map *test;
2194 delta = isl_map_deltas(isl_map_copy(app));
2195 d = isl_set_dim(delta, isl_dim_set);
2196 for (i = 0; i < d; ++i)
2197 delta = isl_set_fix_si(delta, isl_dim_set, i, 0);
2198 is_empty = isl_set_is_empty(delta);
2199 isl_set_free(delta);
2200 if (is_empty < 0)
2201 return -1;
2202 if (!is_empty)
2203 return 0;
2205 test = isl_map_apply_range(isl_map_copy(app), isl_map_copy(map));
2206 test = isl_map_union(test, isl_map_copy(map));
2207 is_exact = isl_map_is_subset(app, test);
2208 isl_map_free(test);
2210 return is_exact;
2213 /* Check if basic map M_i can be combined with all the other
2214 * basic maps such that
2216 * (\cup_j M_j)^+
2218 * can be computed as
2220 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
2222 * In particular, check if we can compute a compact representation
2223 * of
2225 * M_i^* \circ M_j \circ M_i^*
2227 * for each j != i.
2228 * Let M_i^? be an extension of M_i^+ that allows paths
2229 * of length zero, i.e., the result of box_closure(., 1).
2230 * The criterion, as proposed by Kelly et al., is that
2231 * id = M_i^? - M_i^+ can be represented as a basic map
2232 * and that
2234 * id \circ M_j \circ id = M_j
2236 * for each j != i.
2238 * If this function returns 1, then tc and qc are set to
2239 * M_i^+ and M_i^?, respectively.
2241 static int can_be_split_off(__isl_keep isl_map *map, int i,
2242 __isl_give isl_map **tc, __isl_give isl_map **qc)
2244 isl_map *map_i, *id = NULL;
2245 int j = -1;
2246 isl_set *C;
2248 *tc = NULL;
2249 *qc = NULL;
2251 C = isl_set_union(isl_map_domain(isl_map_copy(map)),
2252 isl_map_range(isl_map_copy(map)));
2253 C = isl_set_from_basic_set(isl_set_simple_hull(C));
2254 if (!C)
2255 goto error;
2257 map_i = isl_map_from_basic_map(isl_basic_map_copy(map->p[i]));
2258 *tc = box_closure(isl_map_copy(map_i));
2259 *qc = box_closure_with_identity(map_i, C);
2260 id = isl_map_subtract(isl_map_copy(*qc), isl_map_copy(*tc));
2262 if (!id || !*qc)
2263 goto error;
2264 if (id->n != 1 || (*qc)->n != 1)
2265 goto done;
2267 for (j = 0; j < map->n; ++j) {
2268 isl_map *map_j, *test;
2269 int is_ok;
2271 if (i == j)
2272 continue;
2273 map_j = isl_map_from_basic_map(
2274 isl_basic_map_copy(map->p[j]));
2275 test = isl_map_apply_range(isl_map_copy(id),
2276 isl_map_copy(map_j));
2277 test = isl_map_apply_range(test, isl_map_copy(id));
2278 is_ok = isl_map_is_equal(test, map_j);
2279 isl_map_free(map_j);
2280 isl_map_free(test);
2281 if (is_ok < 0)
2282 goto error;
2283 if (!is_ok)
2284 break;
2287 done:
2288 isl_map_free(id);
2289 if (j == map->n)
2290 return 1;
2292 isl_map_free(*qc);
2293 isl_map_free(*tc);
2294 *qc = NULL;
2295 *tc = NULL;
2297 return 0;
2298 error:
2299 isl_map_free(id);
2300 isl_map_free(*qc);
2301 isl_map_free(*tc);
2302 *qc = NULL;
2303 *tc = NULL;
2304 return -1;
2307 static __isl_give isl_map *box_closure_with_check(__isl_take isl_map *map,
2308 int *exact)
2310 isl_map *app;
2312 app = box_closure(isl_map_copy(map));
2313 if (exact)
2314 *exact = check_exactness_omega(map, app);
2316 isl_map_free(map);
2317 return app;
2320 /* Compute an overapproximation of the transitive closure of "map"
2321 * using a variation of the algorithm from
2322 * "Transitive Closure of Infinite Graphs and its Applications"
2323 * by Kelly et al.
2325 * We first check whether we can can split of any basic map M_i and
2326 * compute
2328 * (\cup_j M_j)^+
2330 * as
2332 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
2334 * using a recursive call on the remaining map.
2336 * If not, we simply call box_closure on the whole map.
2338 static __isl_give isl_map *transitive_closure_omega(__isl_take isl_map *map,
2339 int *exact)
2341 int i, j;
2342 int exact_i;
2343 isl_map *app;
2345 if (!map)
2346 return NULL;
2347 if (map->n == 1)
2348 return box_closure_with_check(map, exact);
2350 for (i = 0; i < map->n; ++i) {
2351 int ok;
2352 isl_map *qc, *tc;
2353 ok = can_be_split_off(map, i, &tc, &qc);
2354 if (ok < 0)
2355 goto error;
2356 if (!ok)
2357 continue;
2359 app = isl_map_alloc_dim(isl_map_get_dim(map), map->n - 1, 0);
2361 for (j = 0; j < map->n; ++j) {
2362 if (j == i)
2363 continue;
2364 app = isl_map_add_basic_map(app,
2365 isl_basic_map_copy(map->p[j]));
2368 app = isl_map_apply_range(isl_map_copy(qc), app);
2369 app = isl_map_apply_range(app, qc);
2371 app = isl_map_union(tc, transitive_closure_omega(app, NULL));
2372 exact_i = check_exactness_omega(map, app);
2373 if (exact_i == 1) {
2374 if (exact)
2375 *exact = exact_i;
2376 isl_map_free(map);
2377 return app;
2379 isl_map_free(app);
2380 if (exact_i < 0)
2381 goto error;
2384 return box_closure_with_check(map, exact);
2385 error:
2386 isl_map_free(map);
2387 return NULL;
2390 int isl_map_is_transitively_closed(__isl_keep isl_map *map)
2392 isl_map *map2;
2393 int closed;
2395 map2 = isl_map_apply_range(isl_map_copy(map), isl_map_copy(map));
2396 closed = isl_map_is_subset(map2, map);
2397 isl_map_free(map2);
2399 return closed;
2402 /* Compute the transitive closure of "map", or an overapproximation.
2403 * If the result is exact, then *exact is set to 1.
2404 * Simply use map_power to compute the powers of map, but tell
2405 * it to project out the lengths of the paths instead of equating
2406 * the length to a parameter.
2408 __isl_give isl_map *isl_map_transitive_closure(__isl_take isl_map *map,
2409 int *exact)
2411 unsigned param;
2412 int closed;
2414 if (!map)
2415 goto error;
2417 if (map->ctx->opt->closure == ISL_CLOSURE_OMEGA)
2418 return transitive_closure_omega(map, exact);
2420 map = isl_map_compute_divs(map);
2421 map = isl_map_coalesce(map);
2422 closed = isl_map_is_transitively_closed(map);
2423 if (closed < 0)
2424 goto error;
2425 if (closed) {
2426 if (exact)
2427 *exact = 1;
2428 return map;
2431 param = isl_map_dim(map, isl_dim_param);
2432 map = map_power(map, param, exact, 1);
2434 return map;
2435 error:
2436 isl_map_free(map);
2437 return NULL;