1 #include <isl_ctx_private.h>
2 #include <isl_constraint_private.h>
4 #include <isl_polynomial_private.h>
9 struct isl_bound
*bound
;
12 int test_monotonicity
;
15 isl_qpolynomial
*poly
;
16 isl_pw_qpolynomial_fold
*pwf
;
17 isl_pw_qpolynomial_fold
*pwf_tight
;
20 static int propagate_on_domain(__isl_take isl_basic_set
*bset
,
21 __isl_take isl_qpolynomial
*poly
, struct range_data
*data
);
23 /* Check whether the polynomial "poly" has sign "sign" over "bset",
24 * i.e., if sign == 1, check that the lower bound on the polynomial
25 * is non-negative and if sign == -1, check that the upper bound on
26 * the polynomial is non-positive.
28 static int has_sign(__isl_keep isl_basic_set
*bset
,
29 __isl_keep isl_qpolynomial
*poly
, int sign
, int *signs
)
31 struct range_data data_m
;
39 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
40 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
42 bset
= isl_basic_set_copy(bset
);
43 poly
= isl_qpolynomial_copy(poly
);
45 bset
= isl_basic_set_move_dims(bset
, isl_dim_set
, 0,
46 isl_dim_param
, 0, nparam
);
47 poly
= isl_qpolynomial_move_dims(poly
, isl_dim_in
, 0,
48 isl_dim_param
, 0, nparam
);
50 dim
= isl_qpolynomial_get_space(poly
);
51 dim
= isl_space_params(dim
);
52 dim
= isl_space_from_domain(dim
);
53 dim
= isl_space_add_dims(dim
, isl_dim_out
, 1);
55 data_m
.test_monotonicity
= 0;
58 type
= data_m
.sign
< 0 ? isl_fold_min
: isl_fold_max
;
59 data_m
.pwf
= isl_pw_qpolynomial_fold_zero(dim
, type
);
61 data_m
.pwf_tight
= NULL
;
63 if (propagate_on_domain(bset
, poly
, &data_m
) < 0)
67 opt
= isl_pw_qpolynomial_fold_min(data_m
.pwf
);
69 opt
= isl_pw_qpolynomial_fold_max(data_m
.pwf
);
73 else if (isl_val_is_nan(opt
) ||
74 isl_val_is_infty(opt
) ||
75 isl_val_is_neginfty(opt
))
78 r
= sign
* isl_val_sgn(opt
) >= 0;
84 isl_pw_qpolynomial_fold_free(data_m
.pwf
);
88 /* Return 1 if poly is monotonically increasing in the last set variable,
89 * -1 if poly is monotonically decreasing in the last set variable,
93 * We simply check the sign of p(x+1)-p(x)
95 static int monotonicity(__isl_keep isl_basic_set
*bset
,
96 __isl_keep isl_qpolynomial
*poly
, struct range_data
*data
)
100 isl_qpolynomial
*sub
= NULL
;
101 isl_qpolynomial
*diff
= NULL
;
106 ctx
= isl_qpolynomial_get_ctx(poly
);
107 dim
= isl_qpolynomial_get_domain_space(poly
);
109 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
111 sub
= isl_qpolynomial_var_on_domain(isl_space_copy(dim
), isl_dim_set
, nvar
- 1);
112 sub
= isl_qpolynomial_add(sub
,
113 isl_qpolynomial_rat_cst_on_domain(dim
, ctx
->one
, ctx
->one
));
115 diff
= isl_qpolynomial_substitute(isl_qpolynomial_copy(poly
),
116 isl_dim_in
, nvar
- 1, 1, &sub
);
117 diff
= isl_qpolynomial_sub(diff
, isl_qpolynomial_copy(poly
));
119 s
= has_sign(bset
, diff
, 1, data
->signs
);
125 s
= has_sign(bset
, diff
, -1, data
->signs
);
132 isl_qpolynomial_free(diff
);
133 isl_qpolynomial_free(sub
);
137 isl_qpolynomial_free(diff
);
138 isl_qpolynomial_free(sub
);
142 static __isl_give isl_qpolynomial
*bound2poly(__isl_take isl_constraint
*bound
,
143 __isl_take isl_space
*dim
, unsigned pos
, int sign
)
147 return isl_qpolynomial_infty_on_domain(dim
);
149 return isl_qpolynomial_neginfty_on_domain(dim
);
152 return isl_qpolynomial_from_constraint(bound
, isl_dim_set
, pos
);
155 static int bound_is_integer(__isl_take isl_constraint
*bound
, unsigned pos
)
164 isl_constraint_get_coefficient(bound
, isl_dim_set
, pos
, &c
);
165 is_int
= isl_int_is_one(c
) || isl_int_is_negone(c
);
171 struct isl_fixed_sign_data
{
174 isl_qpolynomial
*poly
;
177 /* Add term "term" to data->poly if it has sign data->sign.
178 * The sign is determined based on the signs of the parameters
179 * and variables in data->signs. The integer divisions, if
180 * any, are assumed to be non-negative.
182 static int collect_fixed_sign_terms(__isl_take isl_term
*term
, void *user
)
184 struct isl_fixed_sign_data
*data
= (struct isl_fixed_sign_data
*)user
;
194 nparam
= isl_term_dim(term
, isl_dim_param
);
195 nvar
= isl_term_dim(term
, isl_dim_set
);
199 isl_term_get_num(term
, &n
);
201 sign
= isl_int_sgn(n
);
202 for (i
= 0; i
< nparam
; ++i
) {
203 if (data
->signs
[i
] > 0)
205 if (isl_term_get_exp(term
, isl_dim_param
, i
) % 2)
208 for (i
= 0; i
< nvar
; ++i
) {
209 if (data
->signs
[nparam
+ i
] > 0)
211 if (isl_term_get_exp(term
, isl_dim_set
, i
) % 2)
215 if (sign
== data
->sign
) {
216 isl_qpolynomial
*t
= isl_qpolynomial_from_term(term
);
218 data
->poly
= isl_qpolynomial_add(data
->poly
, t
);
227 /* Construct and return a polynomial that consists of the terms
228 * in "poly" that have sign "sign". The integer divisions, if
229 * any, are assumed to be non-negative.
231 __isl_give isl_qpolynomial
*isl_qpolynomial_terms_of_sign(
232 __isl_keep isl_qpolynomial
*poly
, int *signs
, int sign
)
235 struct isl_fixed_sign_data data
= { signs
, sign
};
237 space
= isl_qpolynomial_get_domain_space(poly
);
238 data
.poly
= isl_qpolynomial_zero_on_domain(space
);
240 if (isl_qpolynomial_foreach_term(poly
, collect_fixed_sign_terms
, &data
) < 0)
245 isl_qpolynomial_free(data
.poly
);
249 /* Helper function to add a guarded polynomial to either pwf_tight or pwf,
250 * depending on whether the result has been determined to be tight.
252 static int add_guarded_poly(__isl_take isl_basic_set
*bset
,
253 __isl_take isl_qpolynomial
*poly
, struct range_data
*data
)
255 enum isl_fold type
= data
->sign
< 0 ? isl_fold_min
: isl_fold_max
;
257 isl_qpolynomial_fold
*fold
;
258 isl_pw_qpolynomial_fold
*pwf
;
260 bset
= isl_basic_set_params(bset
);
261 poly
= isl_qpolynomial_project_domain_on_params(poly
);
263 fold
= isl_qpolynomial_fold_alloc(type
, poly
);
264 set
= isl_set_from_basic_set(bset
);
265 pwf
= isl_pw_qpolynomial_fold_alloc(type
, set
, fold
);
267 data
->pwf_tight
= isl_pw_qpolynomial_fold_fold(
268 data
->pwf_tight
, pwf
);
270 data
->pwf
= isl_pw_qpolynomial_fold_fold(data
->pwf
, pwf
);
275 /* Given a lower and upper bound on the final variable and constraints
276 * on the remaining variables where these bounds are active,
277 * eliminate the variable from data->poly based on these bounds.
278 * If the polynomial has been determined to be monotonic
279 * in the variable, then simply plug in the appropriate bound.
280 * If the current polynomial is tight and if this bound is integer,
281 * then the result is still tight. In all other cases, the results
283 * Otherwise, plug in the largest bound (in absolute value) in
284 * the positive terms (if an upper bound is wanted) or the negative terms
285 * (if a lower bounded is wanted) and the other bound in the other terms.
287 * If all variables have been eliminated, then record the result.
288 * Ohterwise, recurse on the next variable.
290 static int propagate_on_bound_pair(__isl_take isl_constraint
*lower
,
291 __isl_take isl_constraint
*upper
, __isl_take isl_basic_set
*bset
,
294 struct range_data
*data
= (struct range_data
*)user
;
295 int save_tight
= data
->tight
;
296 isl_qpolynomial
*poly
;
300 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
302 if (data
->monotonicity
) {
303 isl_qpolynomial
*sub
;
304 isl_space
*dim
= isl_qpolynomial_get_domain_space(data
->poly
);
305 if (data
->monotonicity
* data
->sign
> 0) {
307 data
->tight
= bound_is_integer(upper
, nvar
);
308 sub
= bound2poly(upper
, dim
, nvar
, 1);
309 isl_constraint_free(lower
);
312 data
->tight
= bound_is_integer(lower
, nvar
);
313 sub
= bound2poly(lower
, dim
, nvar
, -1);
314 isl_constraint_free(upper
);
316 poly
= isl_qpolynomial_copy(data
->poly
);
317 poly
= isl_qpolynomial_substitute(poly
, isl_dim_in
, nvar
, 1, &sub
);
318 poly
= isl_qpolynomial_drop_dims(poly
, isl_dim_in
, nvar
, 1);
320 isl_qpolynomial_free(sub
);
322 isl_qpolynomial
*l
, *u
;
323 isl_qpolynomial
*pos
, *neg
;
324 isl_space
*dim
= isl_qpolynomial_get_domain_space(data
->poly
);
325 unsigned nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
326 int sign
= data
->sign
* data
->signs
[nparam
+ nvar
];
330 u
= bound2poly(upper
, isl_space_copy(dim
), nvar
, 1);
331 l
= bound2poly(lower
, dim
, nvar
, -1);
333 pos
= isl_qpolynomial_terms_of_sign(data
->poly
, data
->signs
, sign
);
334 neg
= isl_qpolynomial_terms_of_sign(data
->poly
, data
->signs
, -sign
);
336 pos
= isl_qpolynomial_substitute(pos
, isl_dim_in
, nvar
, 1, &u
);
337 neg
= isl_qpolynomial_substitute(neg
, isl_dim_in
, nvar
, 1, &l
);
339 poly
= isl_qpolynomial_add(pos
, neg
);
340 poly
= isl_qpolynomial_drop_dims(poly
, isl_dim_in
, nvar
, 1);
342 isl_qpolynomial_free(u
);
343 isl_qpolynomial_free(l
);
346 if (isl_basic_set_dim(bset
, isl_dim_set
) == 0)
347 r
= add_guarded_poly(bset
, poly
, data
);
349 r
= propagate_on_domain(bset
, poly
, data
);
351 data
->tight
= save_tight
;
356 /* Recursively perform range propagation on the polynomial "poly"
357 * defined over the basic set "bset" and collect the results in "data".
359 static int propagate_on_domain(__isl_take isl_basic_set
*bset
,
360 __isl_take isl_qpolynomial
*poly
, struct range_data
*data
)
363 isl_qpolynomial
*save_poly
= data
->poly
;
364 int save_monotonicity
= data
->monotonicity
;
370 ctx
= isl_basic_set_get_ctx(bset
);
371 d
= isl_basic_set_dim(bset
, isl_dim_set
);
372 isl_assert(ctx
, d
>= 1, goto error
);
374 if (isl_qpolynomial_is_cst(poly
, NULL
, NULL
)) {
375 bset
= isl_basic_set_project_out(bset
, isl_dim_set
, 0, d
);
376 poly
= isl_qpolynomial_drop_dims(poly
, isl_dim_in
, 0, d
);
377 return add_guarded_poly(bset
, poly
, data
);
380 if (data
->test_monotonicity
)
381 data
->monotonicity
= monotonicity(bset
, poly
, data
);
383 data
->monotonicity
= 0;
384 if (data
->monotonicity
< -1)
388 if (isl_basic_set_foreach_bound_pair(bset
, isl_dim_set
, d
- 1,
389 &propagate_on_bound_pair
, data
) < 0)
392 isl_basic_set_free(bset
);
393 isl_qpolynomial_free(poly
);
394 data
->monotonicity
= save_monotonicity
;
395 data
->poly
= save_poly
;
399 isl_basic_set_free(bset
);
400 isl_qpolynomial_free(poly
);
401 data
->monotonicity
= save_monotonicity
;
402 data
->poly
= save_poly
;
406 static int basic_guarded_poly_bound(__isl_take isl_basic_set
*bset
, void *user
)
408 struct range_data
*data
= (struct range_data
*)user
;
410 unsigned nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
411 unsigned dim
= isl_basic_set_dim(bset
, isl_dim_set
);
416 ctx
= isl_basic_set_get_ctx(bset
);
417 data
->signs
= isl_alloc_array(ctx
, int,
418 isl_basic_set_dim(bset
, isl_dim_all
));
420 if (isl_basic_set_dims_get_sign(bset
, isl_dim_set
, 0, dim
,
421 data
->signs
+ nparam
) < 0)
423 if (isl_basic_set_dims_get_sign(bset
, isl_dim_param
, 0, nparam
,
427 r
= propagate_on_domain(bset
, isl_qpolynomial_copy(data
->poly
), data
);
434 isl_basic_set_free(bset
);
438 static int qpolynomial_bound_on_domain_range(__isl_take isl_basic_set
*bset
,
439 __isl_take isl_qpolynomial
*poly
, struct range_data
*data
)
441 unsigned nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
442 unsigned nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
449 return add_guarded_poly(bset
, poly
, data
);
451 set
= isl_set_from_basic_set(bset
);
452 set
= isl_set_split_dims(set
, isl_dim_param
, 0, nparam
);
453 set
= isl_set_split_dims(set
, isl_dim_set
, 0, nvar
);
457 data
->test_monotonicity
= 1;
458 if (isl_set_foreach_basic_set(set
, &basic_guarded_poly_bound
, data
) < 0)
462 isl_qpolynomial_free(poly
);
467 isl_qpolynomial_free(poly
);
471 int isl_qpolynomial_bound_on_domain_range(__isl_take isl_basic_set
*bset
,
472 __isl_take isl_qpolynomial
*poly
, struct isl_bound
*bound
)
474 struct range_data data
;
477 data
.pwf
= bound
->pwf
;
478 data
.pwf_tight
= bound
->pwf_tight
;
479 data
.tight
= bound
->check_tight
;
480 if (bound
->type
== isl_fold_min
)
485 r
= qpolynomial_bound_on_domain_range(bset
, poly
, &data
);
487 bound
->pwf
= data
.pwf
;
488 bound
->pwf_tight
= data
.pwf_tight
;