2 * Copyright 2012-2014 Ecole Normale Superieure
3 * Copyright 2014 INRIA Rocquencourt
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege,
8 * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
9 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
10 * B.P. 105 - 78153 Le Chesnay, France
15 #include <isl/space.h>
17 #include <isl/constraint.h>
20 #include <isl/union_set.h>
21 #include <isl/union_map.h>
22 #include <isl/schedule_node.h>
24 #include <isl_tarjan.h>
25 #include <isl_ast_private.h>
26 #include <isl_ast_build_expr.h>
27 #include <isl_ast_build_private.h>
28 #include <isl_ast_graft_private.h>
30 /* Data used in generate_domain.
32 * "build" is the input build.
33 * "list" collects the results.
35 struct isl_generate_domain_data
{
38 isl_ast_graft_list
*list
;
41 static __isl_give isl_ast_graft_list
*generate_next_level(
42 __isl_take isl_union_map
*executed
,
43 __isl_take isl_ast_build
*build
);
44 static __isl_give isl_ast_graft_list
*generate_code(
45 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
,
48 /* Generate an AST for a single domain based on
49 * the (non single valued) inverse schedule "executed".
51 * We extend the schedule with the iteration domain
52 * and continue generating through a call to generate_code.
54 * In particular, if executed has the form
58 * then we continue generating code on
62 * The extended inverse schedule is clearly single valued
63 * ensuring that the nested generate_code will not reach this function,
64 * but will instead create calls to all elements of D that need
65 * to be executed from the current schedule domain.
67 static isl_stat
generate_non_single_valued(__isl_take isl_map
*executed
,
68 struct isl_generate_domain_data
*data
)
72 isl_ast_graft_list
*list
;
74 build
= isl_ast_build_copy(data
->build
);
76 identity
= isl_set_identity(isl_map_range(isl_map_copy(executed
)));
77 executed
= isl_map_domain_product(executed
, identity
);
78 build
= isl_ast_build_set_single_valued(build
, 1);
80 list
= generate_code(isl_union_map_from_map(executed
), build
, 1);
82 data
->list
= isl_ast_graft_list_concat(data
->list
, list
);
87 /* Call the at_each_domain callback, if requested by the user,
88 * after recording the current inverse schedule in the build.
90 static __isl_give isl_ast_graft
*at_each_domain(__isl_take isl_ast_graft
*graft
,
91 __isl_keep isl_map
*executed
, __isl_keep isl_ast_build
*build
)
94 return isl_ast_graft_free(graft
);
95 if (!build
->at_each_domain
)
98 build
= isl_ast_build_copy(build
);
99 build
= isl_ast_build_set_executed(build
,
100 isl_union_map_from_map(isl_map_copy(executed
)));
102 return isl_ast_graft_free(graft
);
104 graft
->node
= build
->at_each_domain(graft
->node
,
105 build
, build
->at_each_domain_user
);
106 isl_ast_build_free(build
);
109 graft
= isl_ast_graft_free(graft
);
114 /* Generate a call expression for the single executed
115 * domain element "map" and put a guard around it based its (simplified)
116 * domain. "executed" is the original inverse schedule from which "map"
117 * has been derived. In particular, "map" is either identical to "executed"
118 * or it is the result of gisting "executed" with respect to the build domain.
119 * "executed" is only used if there is an at_each_domain callback.
121 * At this stage, any pending constraints in the build can no longer
122 * be simplified with respect to any enforced constraints since
123 * the call node does not have any enforced constraints.
124 * Since all pending constraints not covered by any enforced constraints
125 * will be added as a guard to the graft in create_node_scaled,
126 * even in the eliminated case, the pending constraints
127 * can be considered to have been generated by outer constructs.
129 * If the user has set an at_each_domain callback, it is called
130 * on the constructed call expression node.
132 static isl_stat
add_domain(__isl_take isl_map
*executed
,
133 __isl_take isl_map
*map
, struct isl_generate_domain_data
*data
)
135 isl_ast_build
*build
;
136 isl_ast_graft
*graft
;
137 isl_ast_graft_list
*list
;
138 isl_set
*guard
, *pending
;
140 build
= isl_ast_build_copy(data
->build
);
141 pending
= isl_ast_build_get_pending(build
);
142 build
= isl_ast_build_replace_pending_by_guard(build
, pending
);
144 guard
= isl_map_domain(isl_map_copy(map
));
145 guard
= isl_set_compute_divs(guard
);
146 guard
= isl_set_coalesce(guard
);
147 guard
= isl_set_gist(guard
, isl_ast_build_get_generated(build
));
148 guard
= isl_ast_build_specialize(build
, guard
);
150 graft
= isl_ast_graft_alloc_domain(map
, build
);
151 graft
= at_each_domain(graft
, executed
, build
);
152 isl_ast_build_free(build
);
153 isl_map_free(executed
);
154 graft
= isl_ast_graft_add_guard(graft
, guard
, data
->build
);
156 list
= isl_ast_graft_list_from_ast_graft(graft
);
157 data
->list
= isl_ast_graft_list_concat(data
->list
, list
);
162 /* Generate an AST for a single domain based on
163 * the inverse schedule "executed" and add it to data->list.
165 * If there is more than one domain element associated to the current
166 * schedule "time", then we need to continue the generation process
167 * in generate_non_single_valued.
168 * Note that the inverse schedule being single-valued may depend
169 * on constraints that are only available in the original context
170 * domain specified by the user. We therefore first introduce
171 * some of the constraints of data->build->domain. In particular,
172 * we intersect with a single-disjunct approximation of this set.
173 * We perform this approximation to avoid further splitting up
174 * the executed relation, possibly introducing a disjunctive guard
177 * On the other hand, we only perform the test after having taken the gist
178 * of the domain as the resulting map is the one from which the call
179 * expression is constructed. Using this map to construct the call
180 * expression usually yields simpler results in cases where the original
181 * map is not obviously single-valued.
182 * If the original map is obviously single-valued, then the gist
183 * operation is skipped.
185 * Because we perform the single-valuedness test on the gisted map,
186 * we may in rare cases fail to recognize that the inverse schedule
187 * is single-valued. This becomes problematic if this happens
188 * from the recursive call through generate_non_single_valued
189 * as we would then end up in an infinite recursion.
190 * We therefore check if we are inside a call to generate_non_single_valued
191 * and revert to the ungisted map if the gisted map turns out not to be
194 * Otherwise, call add_domain to generate a call expression (with guard) and
195 * to call the at_each_domain callback, if any.
197 static isl_stat
generate_domain(__isl_take isl_map
*executed
, void *user
)
199 struct isl_generate_domain_data
*data
= user
;
204 domain
= isl_ast_build_get_domain(data
->build
);
205 domain
= isl_set_from_basic_set(isl_set_simple_hull(domain
));
206 executed
= isl_map_intersect_domain(executed
, domain
);
207 empty
= isl_map_is_empty(executed
);
211 isl_map_free(executed
);
215 sv
= isl_map_plain_is_single_valued(executed
);
219 return add_domain(executed
, isl_map_copy(executed
), data
);
221 executed
= isl_map_coalesce(executed
);
222 map
= isl_map_copy(executed
);
223 map
= isl_ast_build_compute_gist_map_domain(data
->build
, map
);
224 sv
= isl_map_is_single_valued(map
);
229 if (data
->build
->single_valued
)
230 map
= isl_map_copy(executed
);
232 return generate_non_single_valued(executed
, data
);
235 return add_domain(executed
, map
, data
);
238 isl_map_free(executed
);
239 return isl_stat_error
;
242 /* Call build->create_leaf to a create "leaf" node in the AST,
243 * encapsulate the result in an isl_ast_graft and return the result
244 * as a 1-element list.
246 * Note that the node returned by the user may be an entire tree.
248 * Since the node itself cannot enforce any constraints, we turn
249 * all pending constraints into guards and add them to the resulting
250 * graft to ensure that they will be generated.
252 * Before we pass control to the user, we first clear some information
253 * from the build that is (presumbably) only meaningful
254 * for the current code generation.
255 * This includes the create_leaf callback itself, so we make a copy
256 * of the build first.
258 static __isl_give isl_ast_graft_list
*call_create_leaf(
259 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
263 isl_ast_graft
*graft
;
264 isl_ast_build
*user_build
;
266 guard
= isl_ast_build_get_pending(build
);
267 user_build
= isl_ast_build_copy(build
);
268 user_build
= isl_ast_build_replace_pending_by_guard(user_build
,
269 isl_set_copy(guard
));
270 user_build
= isl_ast_build_set_executed(user_build
, executed
);
271 user_build
= isl_ast_build_clear_local_info(user_build
);
275 node
= build
->create_leaf(user_build
, build
->create_leaf_user
);
276 graft
= isl_ast_graft_alloc(node
, build
);
277 graft
= isl_ast_graft_add_guard(graft
, guard
, build
);
278 isl_ast_build_free(build
);
279 return isl_ast_graft_list_from_ast_graft(graft
);
282 static __isl_give isl_ast_graft_list
*build_ast_from_child(
283 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
284 __isl_take isl_union_map
*executed
);
286 /* Generate an AST after having handled the complete schedule
287 * of this call to the code generator or the complete band
288 * if we are generating an AST from a schedule tree.
290 * If we are inside a band node, then move on to the child of the band.
292 * If the user has specified a create_leaf callback, control
293 * is passed to the user in call_create_leaf.
295 * Otherwise, we generate one or more calls for each individual
296 * domain in generate_domain.
298 static __isl_give isl_ast_graft_list
*generate_inner_level(
299 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
302 struct isl_generate_domain_data data
= { build
};
304 if (!build
|| !executed
)
307 if (isl_ast_build_has_schedule_node(build
)) {
308 isl_schedule_node
*node
;
309 node
= isl_ast_build_get_schedule_node(build
);
310 build
= isl_ast_build_reset_schedule_node(build
);
311 return build_ast_from_child(build
, node
, executed
);
314 if (build
->create_leaf
)
315 return call_create_leaf(executed
, build
);
317 ctx
= isl_union_map_get_ctx(executed
);
318 data
.list
= isl_ast_graft_list_alloc(ctx
, 0);
319 if (isl_union_map_foreach_map(executed
, &generate_domain
, &data
) < 0)
320 data
.list
= isl_ast_graft_list_free(data
.list
);
323 error
: data
.list
= NULL
;
324 isl_ast_build_free(build
);
325 isl_union_map_free(executed
);
329 /* Call the before_each_for callback, if requested by the user.
331 static __isl_give isl_ast_node
*before_each_for(__isl_take isl_ast_node
*node
,
332 __isl_keep isl_ast_build
*build
)
337 return isl_ast_node_free(node
);
338 if (!build
->before_each_for
)
340 id
= build
->before_each_for(build
, build
->before_each_for_user
);
341 node
= isl_ast_node_set_annotation(node
, id
);
345 /* Call the after_each_for callback, if requested by the user.
347 static __isl_give isl_ast_graft
*after_each_for(__isl_take isl_ast_graft
*graft
,
348 __isl_keep isl_ast_build
*build
)
350 if (!graft
|| !build
)
351 return isl_ast_graft_free(graft
);
352 if (!build
->after_each_for
)
354 graft
->node
= build
->after_each_for(graft
->node
, build
,
355 build
->after_each_for_user
);
357 return isl_ast_graft_free(graft
);
361 /* Plug in all the know values of the current and outer dimensions
362 * in the domain of "executed". In principle, we only need to plug
363 * in the known value of the current dimension since the values of
364 * outer dimensions have been plugged in already.
365 * However, it turns out to be easier to just plug in all known values.
367 static __isl_give isl_union_map
*plug_in_values(
368 __isl_take isl_union_map
*executed
, __isl_keep isl_ast_build
*build
)
370 return isl_ast_build_substitute_values_union_map_domain(build
,
374 /* Check if the constraint "c" is a lower bound on dimension "pos",
375 * an upper bound, or independent of dimension "pos".
377 static int constraint_type(isl_constraint
*c
, int pos
)
379 if (isl_constraint_is_lower_bound(c
, isl_dim_set
, pos
))
381 if (isl_constraint_is_upper_bound(c
, isl_dim_set
, pos
))
386 /* Compare the types of the constraints "a" and "b",
387 * resulting in constraints that are independent of "depth"
388 * to be sorted before the lower bounds on "depth", which in
389 * turn are sorted before the upper bounds on "depth".
391 static int cmp_constraint(__isl_keep isl_constraint
*a
,
392 __isl_keep isl_constraint
*b
, void *user
)
395 int t1
= constraint_type(a
, *depth
);
396 int t2
= constraint_type(b
, *depth
);
401 /* Extract a lower bound on dimension "pos" from constraint "c".
403 * If the constraint is of the form
407 * then we essentially return
409 * l = ceil(-f(...)/a)
411 * However, if the current dimension is strided, then we need to make
412 * sure that the lower bound we construct is of the form
416 * with f the offset and s the stride.
417 * We therefore compute
419 * f + s * ceil((l - f)/s)
421 static __isl_give isl_aff
*lower_bound(__isl_keep isl_constraint
*c
,
422 int pos
, __isl_keep isl_ast_build
*build
)
426 aff
= isl_constraint_get_bound(c
, isl_dim_set
, pos
);
427 aff
= isl_aff_ceil(aff
);
429 if (isl_ast_build_has_stride(build
, pos
)) {
433 offset
= isl_ast_build_get_offset(build
, pos
);
434 stride
= isl_ast_build_get_stride(build
, pos
);
436 aff
= isl_aff_sub(aff
, isl_aff_copy(offset
));
437 aff
= isl_aff_scale_down_val(aff
, isl_val_copy(stride
));
438 aff
= isl_aff_ceil(aff
);
439 aff
= isl_aff_scale_val(aff
, stride
);
440 aff
= isl_aff_add(aff
, offset
);
443 aff
= isl_ast_build_compute_gist_aff(build
, aff
);
448 /* Return the exact lower bound (or upper bound if "upper" is set)
449 * of "domain" as a piecewise affine expression.
451 * If we are computing a lower bound (of a strided dimension), then
452 * we need to make sure it is of the form
456 * where f is the offset and s is the stride.
457 * We therefore need to include the stride constraint before computing
460 static __isl_give isl_pw_aff
*exact_bound(__isl_keep isl_set
*domain
,
461 __isl_keep isl_ast_build
*build
, int upper
)
466 isl_pw_multi_aff
*pma
;
468 domain
= isl_set_copy(domain
);
470 stride
= isl_ast_build_get_stride_constraint(build
);
471 domain
= isl_set_intersect(domain
, stride
);
473 it_map
= isl_ast_build_map_to_iterator(build
, domain
);
475 pma
= isl_map_lexmax_pw_multi_aff(it_map
);
477 pma
= isl_map_lexmin_pw_multi_aff(it_map
);
478 pa
= isl_pw_multi_aff_get_pw_aff(pma
, 0);
479 isl_pw_multi_aff_free(pma
);
480 pa
= isl_ast_build_compute_gist_pw_aff(build
, pa
);
481 pa
= isl_pw_aff_coalesce(pa
);
486 /* Callback for sorting the isl_pw_aff_list passed to reduce_list and
487 * remove_redundant_lower_bounds.
489 static int reduce_list_cmp(__isl_keep isl_pw_aff
*a
, __isl_keep isl_pw_aff
*b
,
492 return isl_pw_aff_plain_cmp(a
, b
);
495 /* Given a list of lower bounds "list", remove those that are redundant
496 * with respect to the other bounds in "list" and the domain of "build".
498 * We first sort the bounds in the same way as they would be sorted
499 * by set_for_node_expressions so that we can try and remove the last
502 * For a lower bound to be effective, there needs to be at least
503 * one domain element for which it is larger than all other lower bounds.
504 * For each lower bound we therefore intersect the domain with
505 * the conditions that it is larger than all other bounds and
506 * check whether the result is empty. If so, the bound can be removed.
508 static __isl_give isl_pw_aff_list
*remove_redundant_lower_bounds(
509 __isl_take isl_pw_aff_list
*list
, __isl_keep isl_ast_build
*build
)
514 list
= isl_pw_aff_list_sort(list
, &reduce_list_cmp
, NULL
);
518 n
= isl_pw_aff_list_n_pw_aff(list
);
522 domain
= isl_ast_build_get_domain(build
);
524 for (i
= n
- 1; i
>= 0; --i
) {
529 domain_i
= isl_set_copy(domain
);
530 pa_i
= isl_pw_aff_list_get_pw_aff(list
, i
);
532 for (j
= 0; j
< n
; ++j
) {
539 pa_j
= isl_pw_aff_list_get_pw_aff(list
, j
);
540 better
= isl_pw_aff_gt_set(isl_pw_aff_copy(pa_i
), pa_j
);
541 domain_i
= isl_set_intersect(domain_i
, better
);
544 empty
= isl_set_is_empty(domain_i
);
546 isl_set_free(domain_i
);
547 isl_pw_aff_free(pa_i
);
553 list
= isl_pw_aff_list_drop(list
, i
, 1);
557 isl_set_free(domain
);
561 isl_set_free(domain
);
562 return isl_pw_aff_list_free(list
);
565 /* Extract a lower bound on dimension "pos" from each constraint
566 * in "constraints" and return the list of lower bounds.
567 * If "constraints" has zero elements, then we extract a lower bound
568 * from "domain" instead.
570 * If the current dimension is strided, then the lower bound
571 * is adjusted by lower_bound to match the stride information.
572 * This modification may make one or more lower bounds redundant
573 * with respect to the other lower bounds. We therefore check
574 * for this condition and remove the redundant lower bounds.
576 static __isl_give isl_pw_aff_list
*lower_bounds(
577 __isl_keep isl_constraint_list
*constraints
, int pos
,
578 __isl_keep isl_set
*domain
, __isl_keep isl_ast_build
*build
)
581 isl_pw_aff_list
*list
;
587 n
= isl_constraint_list_n_constraint(constraints
);
590 pa
= exact_bound(domain
, build
, 0);
591 return isl_pw_aff_list_from_pw_aff(pa
);
594 ctx
= isl_ast_build_get_ctx(build
);
595 list
= isl_pw_aff_list_alloc(ctx
,n
);
597 for (i
= 0; i
< n
; ++i
) {
601 c
= isl_constraint_list_get_constraint(constraints
, i
);
602 aff
= lower_bound(c
, pos
, build
);
603 isl_constraint_free(c
);
604 list
= isl_pw_aff_list_add(list
, isl_pw_aff_from_aff(aff
));
607 if (isl_ast_build_has_stride(build
, pos
))
608 list
= remove_redundant_lower_bounds(list
, build
);
613 /* Extract an upper bound on dimension "pos" from each constraint
614 * in "constraints" and return the list of upper bounds.
615 * If "constraints" has zero elements, then we extract an upper bound
616 * from "domain" instead.
618 static __isl_give isl_pw_aff_list
*upper_bounds(
619 __isl_keep isl_constraint_list
*constraints
, int pos
,
620 __isl_keep isl_set
*domain
, __isl_keep isl_ast_build
*build
)
623 isl_pw_aff_list
*list
;
626 n
= isl_constraint_list_n_constraint(constraints
);
629 pa
= exact_bound(domain
, build
, 1);
630 return isl_pw_aff_list_from_pw_aff(pa
);
633 ctx
= isl_ast_build_get_ctx(build
);
634 list
= isl_pw_aff_list_alloc(ctx
,n
);
636 for (i
= 0; i
< n
; ++i
) {
640 c
= isl_constraint_list_get_constraint(constraints
, i
);
641 aff
= isl_constraint_get_bound(c
, isl_dim_set
, pos
);
642 isl_constraint_free(c
);
643 aff
= isl_aff_floor(aff
);
644 list
= isl_pw_aff_list_add(list
, isl_pw_aff_from_aff(aff
));
650 /* Return an isl_ast_expr that performs the reduction of type "type"
651 * on AST expressions corresponding to the elements in "list".
653 * The list is assumed to contain at least one element.
654 * If the list contains exactly one element, then the returned isl_ast_expr
655 * simply computes that affine expression.
656 * If the list contains more than one element, then we sort it
657 * using a fairly abitrary but hopefully reasonably stable order.
659 static __isl_give isl_ast_expr
*reduce_list(enum isl_ast_op_type type
,
660 __isl_keep isl_pw_aff_list
*list
, __isl_keep isl_ast_build
*build
)
669 n
= isl_pw_aff_list_n_pw_aff(list
);
672 return isl_ast_build_expr_from_pw_aff_internal(build
,
673 isl_pw_aff_list_get_pw_aff(list
, 0));
675 ctx
= isl_pw_aff_list_get_ctx(list
);
676 expr
= isl_ast_expr_alloc_op(ctx
, type
, n
);
680 list
= isl_pw_aff_list_copy(list
);
681 list
= isl_pw_aff_list_sort(list
, &reduce_list_cmp
, NULL
);
683 return isl_ast_expr_free(expr
);
685 for (i
= 0; i
< n
; ++i
) {
686 isl_ast_expr
*expr_i
;
688 expr_i
= isl_ast_build_expr_from_pw_aff_internal(build
,
689 isl_pw_aff_list_get_pw_aff(list
, i
));
692 expr
->u
.op
.args
[i
] = expr_i
;
695 isl_pw_aff_list_free(list
);
698 isl_pw_aff_list_free(list
);
699 isl_ast_expr_free(expr
);
703 /* Add guards implied by the "generated constraints",
704 * but not (necessarily) enforced by the generated AST to "guard".
705 * In particular, if there is any stride constraints,
706 * then add the guard implied by those constraints.
707 * If we have generated a degenerate loop, then add the guard
708 * implied by "bounds" on the outer dimensions, i.e., the guard
709 * that ensures that the single value actually exists.
710 * Since there may also be guards implied by a combination
711 * of these constraints, we first combine them before
712 * deriving the implied constraints.
714 static __isl_give isl_set
*add_implied_guards(__isl_take isl_set
*guard
,
715 int degenerate
, __isl_keep isl_basic_set
*bounds
,
716 __isl_keep isl_ast_build
*build
)
718 int depth
, has_stride
;
722 depth
= isl_ast_build_get_depth(build
);
723 has_stride
= isl_ast_build_has_stride(build
, depth
);
724 if (!has_stride
&& !degenerate
)
727 space
= isl_basic_set_get_space(bounds
);
728 dom
= isl_set_universe(space
);
731 bounds
= isl_basic_set_copy(bounds
);
732 bounds
= isl_basic_set_drop_constraints_not_involving_dims(
733 bounds
, isl_dim_set
, depth
, 1);
734 set
= isl_set_from_basic_set(bounds
);
735 dom
= isl_set_intersect(dom
, set
);
739 set
= isl_ast_build_get_stride_constraint(build
);
740 dom
= isl_set_intersect(dom
, set
);
743 dom
= isl_set_eliminate(dom
, isl_dim_set
, depth
, 1);
744 dom
= isl_ast_build_compute_gist(build
, dom
);
745 guard
= isl_set_intersect(guard
, dom
);
750 /* Update "graft" based on "sub_build" for the degenerate case.
752 * "build" is the build in which graft->node was created
753 * "sub_build" contains information about the current level itself,
754 * including the single value attained.
756 * We set the initialization part of the for loop to the single
757 * value attained by the current dimension.
758 * The increment and condition are not strictly needed as the are known
759 * to be "1" and "iterator <= value" respectively.
761 static __isl_give isl_ast_graft
*refine_degenerate(
762 __isl_take isl_ast_graft
*graft
, __isl_keep isl_ast_build
*build
,
763 __isl_keep isl_ast_build
*sub_build
)
767 if (!graft
|| !sub_build
)
768 return isl_ast_graft_free(graft
);
770 value
= isl_pw_aff_copy(sub_build
->value
);
772 graft
->node
->u
.f
.init
= isl_ast_build_expr_from_pw_aff_internal(build
,
774 if (!graft
->node
->u
.f
.init
)
775 return isl_ast_graft_free(graft
);
780 /* Return the intersection of constraints in "list" as a set.
782 static __isl_give isl_set
*intersect_constraints(
783 __isl_keep isl_constraint_list
*list
)
788 n
= isl_constraint_list_n_constraint(list
);
790 isl_die(isl_constraint_list_get_ctx(list
), isl_error_internal
,
791 "expecting at least one constraint", return NULL
);
793 bset
= isl_basic_set_from_constraint(
794 isl_constraint_list_get_constraint(list
, 0));
795 for (i
= 1; i
< n
; ++i
) {
796 isl_basic_set
*bset_i
;
798 bset_i
= isl_basic_set_from_constraint(
799 isl_constraint_list_get_constraint(list
, i
));
800 bset
= isl_basic_set_intersect(bset
, bset_i
);
803 return isl_set_from_basic_set(bset
);
806 /* Compute the constraints on the outer dimensions enforced by
807 * graft->node and add those constraints to graft->enforced,
808 * in case the upper bound is expressed as a set "upper".
810 * In particular, if l(...) is a lower bound in "lower", and
812 * -a i + f(...) >= 0 or a i <= f(...)
814 * is an upper bound ocnstraint on the current dimension i,
815 * then the for loop enforces the constraint
817 * -a l(...) + f(...) >= 0 or a l(...) <= f(...)
819 * We therefore simply take each lower bound in turn, plug it into
820 * the upper bounds and compute the intersection over all lower bounds.
822 * If a lower bound is a rational expression, then
823 * isl_basic_set_preimage_multi_aff will force this rational
824 * expression to have only integer values. However, the loop
825 * itself does not enforce this integrality constraint. We therefore
826 * use the ceil of the lower bounds instead of the lower bounds themselves.
827 * Other constraints will make sure that the for loop is only executed
828 * when each of the lower bounds attains an integral value.
829 * In particular, potentially rational values only occur in
830 * lower_bound if the offset is a (seemingly) rational expression,
831 * but then outer conditions will make sure that this rational expression
832 * only attains integer values.
834 static __isl_give isl_ast_graft
*set_enforced_from_set(
835 __isl_take isl_ast_graft
*graft
,
836 __isl_keep isl_pw_aff_list
*lower
, int pos
, __isl_keep isl_set
*upper
)
839 isl_basic_set
*enforced
;
840 isl_pw_multi_aff
*pma
;
843 if (!graft
|| !lower
)
844 return isl_ast_graft_free(graft
);
846 space
= isl_set_get_space(upper
);
847 enforced
= isl_basic_set_universe(isl_space_copy(space
));
849 space
= isl_space_map_from_set(space
);
850 pma
= isl_pw_multi_aff_identity(space
);
852 n
= isl_pw_aff_list_n_pw_aff(lower
);
853 for (i
= 0; i
< n
; ++i
) {
857 isl_pw_multi_aff
*pma_i
;
859 pa
= isl_pw_aff_list_get_pw_aff(lower
, i
);
860 pa
= isl_pw_aff_ceil(pa
);
861 pma_i
= isl_pw_multi_aff_copy(pma
);
862 pma_i
= isl_pw_multi_aff_set_pw_aff(pma_i
, pos
, pa
);
863 enforced_i
= isl_set_copy(upper
);
864 enforced_i
= isl_set_preimage_pw_multi_aff(enforced_i
, pma_i
);
865 hull
= isl_set_simple_hull(enforced_i
);
866 enforced
= isl_basic_set_intersect(enforced
, hull
);
869 isl_pw_multi_aff_free(pma
);
871 graft
= isl_ast_graft_enforce(graft
, enforced
);
876 /* Compute the constraints on the outer dimensions enforced by
877 * graft->node and add those constraints to graft->enforced,
878 * in case the upper bound is expressed as
879 * a list of affine expressions "upper".
881 * The enforced condition is that each lower bound expression is less
882 * than or equal to each upper bound expression.
884 static __isl_give isl_ast_graft
*set_enforced_from_list(
885 __isl_take isl_ast_graft
*graft
,
886 __isl_keep isl_pw_aff_list
*lower
, __isl_keep isl_pw_aff_list
*upper
)
889 isl_basic_set
*enforced
;
891 lower
= isl_pw_aff_list_copy(lower
);
892 upper
= isl_pw_aff_list_copy(upper
);
893 cond
= isl_pw_aff_list_le_set(lower
, upper
);
894 enforced
= isl_set_simple_hull(cond
);
895 graft
= isl_ast_graft_enforce(graft
, enforced
);
900 /* Does "aff" have a negative constant term?
902 static isl_stat
aff_constant_is_negative(__isl_take isl_set
*set
,
903 __isl_take isl_aff
*aff
, void *user
)
908 v
= isl_aff_get_constant_val(aff
);
909 *neg
= isl_val_is_neg(v
);
914 return *neg
? isl_stat_ok
: isl_stat_error
;
917 /* Does "pa" have a negative constant term over its entire domain?
919 static isl_stat
pw_aff_constant_is_negative(__isl_take isl_pw_aff
*pa
,
925 r
= isl_pw_aff_foreach_piece(pa
, &aff_constant_is_negative
, user
);
928 return (*neg
&& r
>= 0) ? isl_stat_ok
: isl_stat_error
;
931 /* Does each element in "list" have a negative constant term?
933 * The callback terminates the iteration as soon an element has been
934 * found that does not have a negative constant term.
936 static int list_constant_is_negative(__isl_keep isl_pw_aff_list
*list
)
940 if (isl_pw_aff_list_foreach(list
,
941 &pw_aff_constant_is_negative
, &neg
) < 0 && neg
)
947 /* Add 1 to each of the elements in "list", where each of these elements
948 * is defined over the internal schedule space of "build".
950 static __isl_give isl_pw_aff_list
*list_add_one(
951 __isl_take isl_pw_aff_list
*list
, __isl_keep isl_ast_build
*build
)
958 space
= isl_ast_build_get_space(build
, 1);
959 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(space
));
960 aff
= isl_aff_add_constant_si(aff
, 1);
961 one
= isl_pw_aff_from_aff(aff
);
963 n
= isl_pw_aff_list_n_pw_aff(list
);
964 for (i
= 0; i
< n
; ++i
) {
966 pa
= isl_pw_aff_list_get_pw_aff(list
, i
);
967 pa
= isl_pw_aff_add(pa
, isl_pw_aff_copy(one
));
968 list
= isl_pw_aff_list_set_pw_aff(list
, i
, pa
);
971 isl_pw_aff_free(one
);
976 /* Set the condition part of the for node graft->node in case
977 * the upper bound is represented as a list of piecewise affine expressions.
979 * In particular, set the condition to
981 * iterator <= min(list of upper bounds)
983 * If each of the upper bounds has a negative constant term, then
984 * set the condition to
986 * iterator < min(list of (upper bound + 1)s)
989 static __isl_give isl_ast_graft
*set_for_cond_from_list(
990 __isl_take isl_ast_graft
*graft
, __isl_keep isl_pw_aff_list
*list
,
991 __isl_keep isl_ast_build
*build
)
994 isl_ast_expr
*bound
, *iterator
, *cond
;
995 enum isl_ast_op_type type
= isl_ast_op_le
;
998 return isl_ast_graft_free(graft
);
1000 neg
= list_constant_is_negative(list
);
1002 return isl_ast_graft_free(graft
);
1003 list
= isl_pw_aff_list_copy(list
);
1005 list
= list_add_one(list
, build
);
1006 type
= isl_ast_op_lt
;
1009 bound
= reduce_list(isl_ast_op_min
, list
, build
);
1010 iterator
= isl_ast_expr_copy(graft
->node
->u
.f
.iterator
);
1011 cond
= isl_ast_expr_alloc_binary(type
, iterator
, bound
);
1012 graft
->node
->u
.f
.cond
= cond
;
1014 isl_pw_aff_list_free(list
);
1015 if (!graft
->node
->u
.f
.cond
)
1016 return isl_ast_graft_free(graft
);
1020 /* Set the condition part of the for node graft->node in case
1021 * the upper bound is represented as a set.
1023 static __isl_give isl_ast_graft
*set_for_cond_from_set(
1024 __isl_take isl_ast_graft
*graft
, __isl_keep isl_set
*set
,
1025 __isl_keep isl_ast_build
*build
)
1032 cond
= isl_ast_build_expr_from_set_internal(build
, isl_set_copy(set
));
1033 graft
->node
->u
.f
.cond
= cond
;
1034 if (!graft
->node
->u
.f
.cond
)
1035 return isl_ast_graft_free(graft
);
1039 /* Construct an isl_ast_expr for the increment (i.e., stride) of
1040 * the current dimension.
1042 static __isl_give isl_ast_expr
*for_inc(__isl_keep isl_ast_build
*build
)
1050 ctx
= isl_ast_build_get_ctx(build
);
1051 depth
= isl_ast_build_get_depth(build
);
1053 if (!isl_ast_build_has_stride(build
, depth
))
1054 return isl_ast_expr_alloc_int_si(ctx
, 1);
1056 v
= isl_ast_build_get_stride(build
, depth
);
1057 return isl_ast_expr_from_val(v
);
1060 /* Should we express the loop condition as
1062 * iterator <= min(list of upper bounds)
1064 * or as a conjunction of constraints?
1066 * The first is constructed from a list of upper bounds.
1067 * The second is constructed from a set.
1069 * If there are no upper bounds in "constraints", then this could mean
1070 * that "domain" simply doesn't have an upper bound or that we didn't
1071 * pick any upper bound. In the first case, we want to generate the
1072 * loop condition as a(n empty) conjunction of constraints
1073 * In the second case, we will compute
1074 * a single upper bound from "domain" and so we use the list form.
1076 * If there are upper bounds in "constraints",
1077 * then we use the list form iff the atomic_upper_bound option is set.
1079 static int use_upper_bound_list(isl_ctx
*ctx
, int n_upper
,
1080 __isl_keep isl_set
*domain
, int depth
)
1083 return isl_options_get_ast_build_atomic_upper_bound(ctx
);
1085 return isl_set_dim_has_upper_bound(domain
, isl_dim_set
, depth
);
1088 /* Fill in the expressions of the for node in graft->node.
1091 * - set the initialization part of the loop to the maximum of the lower bounds
1092 * - extract the increment from the stride of the current dimension
1093 * - construct the for condition either based on a list of upper bounds
1094 * or on a set of upper bound constraints.
1096 static __isl_give isl_ast_graft
*set_for_node_expressions(
1097 __isl_take isl_ast_graft
*graft
, __isl_keep isl_pw_aff_list
*lower
,
1098 int use_list
, __isl_keep isl_pw_aff_list
*upper_list
,
1099 __isl_keep isl_set
*upper_set
, __isl_keep isl_ast_build
*build
)
1106 build
= isl_ast_build_copy(build
);
1109 node
->u
.f
.init
= reduce_list(isl_ast_op_max
, lower
, build
);
1110 node
->u
.f
.inc
= for_inc(build
);
1112 if (!node
->u
.f
.init
|| !node
->u
.f
.inc
)
1113 graft
= isl_ast_graft_free(graft
);
1116 graft
= set_for_cond_from_list(graft
, upper_list
, build
);
1118 graft
= set_for_cond_from_set(graft
, upper_set
, build
);
1120 isl_ast_build_free(build
);
1125 /* Update "graft" based on "bounds" and "domain" for the generic,
1126 * non-degenerate, case.
1128 * "c_lower" and "c_upper" contain the lower and upper bounds
1129 * that the loop node should express.
1130 * "domain" is the subset of the intersection of the constraints
1131 * for which some code is executed.
1133 * There may be zero lower bounds or zero upper bounds in "constraints"
1134 * in case the list of constraints was created
1135 * based on the atomic option or based on separation with explicit bounds.
1136 * In that case, we use "domain" to derive lower and/or upper bounds.
1138 * We first compute a list of one or more lower bounds.
1140 * Then we decide if we want to express the condition as
1142 * iterator <= min(list of upper bounds)
1144 * or as a conjunction of constraints.
1146 * The set of enforced constraints is then computed either based on
1147 * a list of upper bounds or on a set of upper bound constraints.
1148 * We do not compute any enforced constraints if we were forced
1149 * to compute a lower or upper bound using exact_bound. The domains
1150 * of the resulting expressions may imply some bounds on outer dimensions
1151 * that we do not want to appear in the enforced constraints since
1152 * they are not actually enforced by the corresponding code.
1154 * Finally, we fill in the expressions of the for node.
1156 static __isl_give isl_ast_graft
*refine_generic_bounds(
1157 __isl_take isl_ast_graft
*graft
,
1158 __isl_take isl_constraint_list
*c_lower
,
1159 __isl_take isl_constraint_list
*c_upper
,
1160 __isl_keep isl_set
*domain
, __isl_keep isl_ast_build
*build
)
1164 isl_pw_aff_list
*lower
;
1166 isl_set
*upper_set
= NULL
;
1167 isl_pw_aff_list
*upper_list
= NULL
;
1168 int n_lower
, n_upper
;
1170 if (!graft
|| !c_lower
|| !c_upper
|| !build
)
1173 depth
= isl_ast_build_get_depth(build
);
1174 ctx
= isl_ast_graft_get_ctx(graft
);
1176 n_lower
= isl_constraint_list_n_constraint(c_lower
);
1177 n_upper
= isl_constraint_list_n_constraint(c_upper
);
1179 use_list
= use_upper_bound_list(ctx
, n_upper
, domain
, depth
);
1181 lower
= lower_bounds(c_lower
, depth
, domain
, build
);
1184 upper_list
= upper_bounds(c_upper
, depth
, domain
, build
);
1185 else if (n_upper
> 0)
1186 upper_set
= intersect_constraints(c_upper
);
1188 upper_set
= isl_set_universe(isl_set_get_space(domain
));
1190 if (n_lower
== 0 || n_upper
== 0)
1193 graft
= set_enforced_from_list(graft
, lower
, upper_list
);
1195 graft
= set_enforced_from_set(graft
, lower
, depth
, upper_set
);
1197 graft
= set_for_node_expressions(graft
, lower
, use_list
, upper_list
,
1200 isl_pw_aff_list_free(lower
);
1201 isl_pw_aff_list_free(upper_list
);
1202 isl_set_free(upper_set
);
1203 isl_constraint_list_free(c_lower
);
1204 isl_constraint_list_free(c_upper
);
1208 isl_constraint_list_free(c_lower
);
1209 isl_constraint_list_free(c_upper
);
1210 return isl_ast_graft_free(graft
);
1213 /* Internal data structure used inside count_constraints to keep
1214 * track of the number of constraints that are independent of dimension "pos",
1215 * the lower bounds in "pos" and the upper bounds in "pos".
1217 struct isl_ast_count_constraints_data
{
1225 /* Increment data->n_indep, data->lower or data->upper depending
1226 * on whether "c" is independenct of dimensions data->pos,
1227 * a lower bound or an upper bound.
1229 static isl_stat
count_constraints(__isl_take isl_constraint
*c
, void *user
)
1231 struct isl_ast_count_constraints_data
*data
= user
;
1233 if (isl_constraint_is_lower_bound(c
, isl_dim_set
, data
->pos
))
1235 else if (isl_constraint_is_upper_bound(c
, isl_dim_set
, data
->pos
))
1240 isl_constraint_free(c
);
1245 /* Update "graft" based on "bounds" and "domain" for the generic,
1246 * non-degenerate, case.
1248 * "list" respresent the list of bounds that need to be encoded by
1249 * the for loop. Only the constraints that involve the iterator
1250 * are relevant here. The other constraints are taken care of by
1251 * the caller and are included in the generated constraints of "build".
1252 * "domain" is the subset of the intersection of the constraints
1253 * for which some code is executed.
1254 * "build" is the build in which graft->node was created.
1256 * We separate lower bounds, upper bounds and constraints that
1257 * are independent of the loop iterator.
1259 * The actual for loop bounds are generated in refine_generic_bounds.
1261 static __isl_give isl_ast_graft
*refine_generic_split(
1262 __isl_take isl_ast_graft
*graft
, __isl_take isl_constraint_list
*list
,
1263 __isl_keep isl_set
*domain
, __isl_keep isl_ast_build
*build
)
1265 struct isl_ast_count_constraints_data data
;
1266 isl_constraint_list
*lower
;
1267 isl_constraint_list
*upper
;
1270 return isl_ast_graft_free(graft
);
1272 data
.pos
= isl_ast_build_get_depth(build
);
1274 list
= isl_constraint_list_sort(list
, &cmp_constraint
, &data
.pos
);
1276 return isl_ast_graft_free(graft
);
1278 data
.n_indep
= data
.n_lower
= data
.n_upper
= 0;
1279 if (isl_constraint_list_foreach(list
, &count_constraints
, &data
) < 0) {
1280 isl_constraint_list_free(list
);
1281 return isl_ast_graft_free(graft
);
1284 lower
= isl_constraint_list_drop(list
, 0, data
.n_indep
);
1285 upper
= isl_constraint_list_copy(lower
);
1286 lower
= isl_constraint_list_drop(lower
, data
.n_lower
, data
.n_upper
);
1287 upper
= isl_constraint_list_drop(upper
, 0, data
.n_lower
);
1289 return refine_generic_bounds(graft
, lower
, upper
, domain
, build
);
1292 /* Update "graft" based on "bounds" and "domain" for the generic,
1293 * non-degenerate, case.
1295 * "bounds" respresent the bounds that need to be encoded by
1296 * the for loop (or a guard around the for loop).
1297 * "domain" is the subset of "bounds" for which some code is executed.
1298 * "build" is the build in which graft->node was created.
1300 * We break up "bounds" into a list of constraints and continue with
1301 * refine_generic_split.
1303 static __isl_give isl_ast_graft
*refine_generic(
1304 __isl_take isl_ast_graft
*graft
,
1305 __isl_keep isl_basic_set
*bounds
, __isl_keep isl_set
*domain
,
1306 __isl_keep isl_ast_build
*build
)
1308 isl_constraint_list
*list
;
1310 if (!build
|| !graft
)
1311 return isl_ast_graft_free(graft
);
1313 list
= isl_basic_set_get_constraint_list(bounds
);
1315 graft
= refine_generic_split(graft
, list
, domain
, build
);
1320 /* Create a for node for the current level.
1322 * Mark the for node degenerate if "degenerate" is set.
1324 static __isl_give isl_ast_node
*create_for(__isl_keep isl_ast_build
*build
,
1334 depth
= isl_ast_build_get_depth(build
);
1335 id
= isl_ast_build_get_iterator_id(build
, depth
);
1336 node
= isl_ast_node_alloc_for(id
);
1338 node
= isl_ast_node_for_mark_degenerate(node
);
1343 /* If the ast_build_exploit_nested_bounds option is set, then return
1344 * the constraints enforced by all elements in "list".
1345 * Otherwise, return the universe.
1347 static __isl_give isl_basic_set
*extract_shared_enforced(
1348 __isl_keep isl_ast_graft_list
*list
, __isl_keep isl_ast_build
*build
)
1356 ctx
= isl_ast_graft_list_get_ctx(list
);
1357 if (isl_options_get_ast_build_exploit_nested_bounds(ctx
))
1358 return isl_ast_graft_list_extract_shared_enforced(list
, build
);
1360 space
= isl_ast_build_get_space(build
, 1);
1361 return isl_basic_set_universe(space
);
1364 /* Return the pending constraints of "build" that are not already taken
1365 * care of (by a combination of "enforced" and the generated constraints
1368 static __isl_give isl_set
*extract_pending(__isl_keep isl_ast_build
*build
,
1369 __isl_keep isl_basic_set
*enforced
)
1371 isl_set
*guard
, *context
;
1373 guard
= isl_ast_build_get_pending(build
);
1374 context
= isl_set_from_basic_set(isl_basic_set_copy(enforced
));
1375 context
= isl_set_intersect(context
,
1376 isl_ast_build_get_generated(build
));
1377 return isl_set_gist(guard
, context
);
1380 /* Create an AST node for the current dimension based on
1381 * the schedule domain "bounds" and return the node encapsulated
1382 * in an isl_ast_graft.
1384 * "executed" is the current inverse schedule, taking into account
1385 * the bounds in "bounds"
1386 * "domain" is the domain of "executed", with inner dimensions projected out.
1387 * It may be a strict subset of "bounds" in case "bounds" was created
1388 * based on the atomic option or based on separation with explicit bounds.
1390 * "domain" may satisfy additional equalities that result
1391 * from intersecting "executed" with "bounds" in add_node.
1392 * It may also satisfy some global constraints that were dropped out because
1393 * we performed separation with explicit bounds.
1394 * The very first step is then to copy these constraints to "bounds".
1396 * Since we may be calling before_each_for and after_each_for
1397 * callbacks, we record the current inverse schedule in the build.
1399 * We consider three builds,
1400 * "build" is the one in which the current level is created,
1401 * "body_build" is the build in which the next level is created,
1402 * "sub_build" is essentially the same as "body_build", except that
1403 * the depth has not been increased yet.
1405 * "build" already contains information (in strides and offsets)
1406 * about the strides at the current level, but this information is not
1407 * reflected in the build->domain.
1408 * We first add this information and the "bounds" to the sub_build->domain.
1409 * isl_ast_build_set_loop_bounds adds the stride information and
1410 * checks whether the current dimension attains
1411 * only a single value and whether this single value can be represented using
1412 * a single affine expression.
1413 * In the first case, the current level is considered "degenerate".
1414 * In the second, sub-case, the current level is considered "eliminated".
1415 * Eliminated levels don't need to be reflected in the AST since we can
1416 * simply plug in the affine expression. For degenerate, but non-eliminated,
1417 * levels, we do introduce a for node, but mark is as degenerate so that
1418 * it can be printed as an assignment of the single value to the loop
1421 * If the current level is eliminated, we explicitly plug in the value
1422 * for the current level found by isl_ast_build_set_loop_bounds in the
1423 * inverse schedule. This ensures that if we are working on a slice
1424 * of the domain based on information available in the inverse schedule
1425 * and the build domain, that then this information is also reflected
1426 * in the inverse schedule. This operation also eliminates the current
1427 * dimension from the inverse schedule making sure no inner dimensions depend
1428 * on the current dimension. Otherwise, we create a for node, marking
1429 * it degenerate if appropriate. The initial for node is still incomplete
1430 * and will be completed in either refine_degenerate or refine_generic.
1432 * We then generate a sequence of grafts for the next level,
1433 * create a surrounding graft for the current level and insert
1434 * the for node we created (if the current level is not eliminated).
1435 * Before creating a graft for the current level, we first extract
1436 * hoistable constraints from the child guards and combine them
1437 * with the pending constraints in the build. These constraints
1438 * are used to simplify the child guards and then added to the guard
1439 * of the current graft to ensure that they will be generated.
1440 * If the hoisted guard is a disjunction, then we use it directly
1441 * to gist the guards on the children before intersect it with the
1442 * pending constraints. We do so because this disjunction is typically
1443 * identical to the guards on the children such that these guards
1444 * can be effectively removed completely. After the intersection,
1445 * the gist operation would have a harder time figuring this out.
1447 * Finally, we set the bounds of the for loop in either
1448 * refine_degenerate or refine_generic.
1449 * We do so in a context where the pending constraints of the build
1450 * have been replaced by the guard of the current graft.
1452 static __isl_give isl_ast_graft
*create_node_scaled(
1453 __isl_take isl_union_map
*executed
,
1454 __isl_take isl_basic_set
*bounds
, __isl_take isl_set
*domain
,
1455 __isl_take isl_ast_build
*build
)
1458 int degenerate
, eliminated
;
1459 isl_basic_set
*hull
;
1460 isl_basic_set
*enforced
;
1461 isl_set
*guard
, *hoisted
;
1462 isl_ast_node
*node
= NULL
;
1463 isl_ast_graft
*graft
;
1464 isl_ast_graft_list
*children
;
1465 isl_ast_build
*sub_build
;
1466 isl_ast_build
*body_build
;
1468 domain
= isl_ast_build_eliminate_divs(build
, domain
);
1469 domain
= isl_set_detect_equalities(domain
);
1470 hull
= isl_set_unshifted_simple_hull(isl_set_copy(domain
));
1471 bounds
= isl_basic_set_intersect(bounds
, hull
);
1472 build
= isl_ast_build_set_executed(build
, isl_union_map_copy(executed
));
1474 depth
= isl_ast_build_get_depth(build
);
1475 sub_build
= isl_ast_build_copy(build
);
1476 bounds
= isl_basic_set_remove_redundancies(bounds
);
1477 bounds
= isl_ast_build_specialize_basic_set(sub_build
, bounds
);
1478 sub_build
= isl_ast_build_set_loop_bounds(sub_build
,
1479 isl_basic_set_copy(bounds
));
1480 degenerate
= isl_ast_build_has_value(sub_build
);
1481 eliminated
= isl_ast_build_has_affine_value(sub_build
, depth
);
1482 if (degenerate
< 0 || eliminated
< 0)
1483 executed
= isl_union_map_free(executed
);
1485 bounds
= isl_ast_build_compute_gist_basic_set(build
, bounds
);
1486 sub_build
= isl_ast_build_set_pending_generated(sub_build
,
1487 isl_basic_set_copy(bounds
));
1489 executed
= plug_in_values(executed
, sub_build
);
1491 node
= create_for(build
, degenerate
);
1493 body_build
= isl_ast_build_copy(sub_build
);
1494 body_build
= isl_ast_build_increase_depth(body_build
);
1496 node
= before_each_for(node
, body_build
);
1497 children
= generate_next_level(executed
,
1498 isl_ast_build_copy(body_build
));
1500 enforced
= extract_shared_enforced(children
, build
);
1501 guard
= extract_pending(sub_build
, enforced
);
1502 hoisted
= isl_ast_graft_list_extract_hoistable_guard(children
, build
);
1503 if (isl_set_n_basic_set(hoisted
) > 1)
1504 children
= isl_ast_graft_list_gist_guards(children
,
1505 isl_set_copy(hoisted
));
1506 guard
= isl_set_intersect(guard
, hoisted
);
1508 guard
= add_implied_guards(guard
, degenerate
, bounds
, build
);
1510 graft
= isl_ast_graft_alloc_from_children(children
,
1511 isl_set_copy(guard
), enforced
, build
, sub_build
);
1514 isl_ast_build
*for_build
;
1516 graft
= isl_ast_graft_insert_for(graft
, node
);
1517 for_build
= isl_ast_build_copy(build
);
1518 for_build
= isl_ast_build_replace_pending_by_guard(for_build
,
1519 isl_set_copy(guard
));
1521 graft
= refine_degenerate(graft
, for_build
, sub_build
);
1523 graft
= refine_generic(graft
, bounds
,
1525 isl_ast_build_free(for_build
);
1527 isl_set_free(guard
);
1529 graft
= after_each_for(graft
, body_build
);
1531 isl_ast_build_free(body_build
);
1532 isl_ast_build_free(sub_build
);
1533 isl_ast_build_free(build
);
1534 isl_basic_set_free(bounds
);
1535 isl_set_free(domain
);
1540 /* Internal data structure for checking if all constraints involving
1541 * the input dimension "depth" are such that the other coefficients
1542 * are multiples of "m", reducing "m" if they are not.
1543 * If "m" is reduced all the way down to "1", then the check has failed
1544 * and we break out of the iteration.
1546 struct isl_check_scaled_data
{
1551 /* If constraint "c" involves the input dimension data->depth,
1552 * then make sure that all the other coefficients are multiples of data->m,
1553 * reducing data->m if needed.
1554 * Break out of the iteration if data->m has become equal to "1".
1556 static isl_stat
constraint_check_scaled(__isl_take isl_constraint
*c
,
1559 struct isl_check_scaled_data
*data
= user
;
1561 enum isl_dim_type t
[] = { isl_dim_param
, isl_dim_in
, isl_dim_out
,
1564 if (!isl_constraint_involves_dims(c
, isl_dim_in
, data
->depth
, 1)) {
1565 isl_constraint_free(c
);
1569 for (i
= 0; i
< 4; ++i
) {
1570 n
= isl_constraint_dim(c
, t
[i
]);
1571 for (j
= 0; j
< n
; ++j
) {
1574 if (t
[i
] == isl_dim_in
&& j
== data
->depth
)
1576 if (!isl_constraint_involves_dims(c
, t
[i
], j
, 1))
1578 d
= isl_constraint_get_coefficient_val(c
, t
[i
], j
);
1579 data
->m
= isl_val_gcd(data
->m
, d
);
1580 if (isl_val_is_one(data
->m
))
1587 isl_constraint_free(c
);
1589 return i
< 4 ? isl_stat_error
: isl_stat_ok
;
1592 /* For each constraint of "bmap" that involves the input dimension data->depth,
1593 * make sure that all the other coefficients are multiples of data->m,
1594 * reducing data->m if needed.
1595 * Break out of the iteration if data->m has become equal to "1".
1597 static isl_stat
basic_map_check_scaled(__isl_take isl_basic_map
*bmap
,
1602 r
= isl_basic_map_foreach_constraint(bmap
,
1603 &constraint_check_scaled
, user
);
1604 isl_basic_map_free(bmap
);
1609 /* For each constraint of "map" that involves the input dimension data->depth,
1610 * make sure that all the other coefficients are multiples of data->m,
1611 * reducing data->m if needed.
1612 * Break out of the iteration if data->m has become equal to "1".
1614 static isl_stat
map_check_scaled(__isl_take isl_map
*map
, void *user
)
1618 r
= isl_map_foreach_basic_map(map
, &basic_map_check_scaled
, user
);
1624 /* Create an AST node for the current dimension based on
1625 * the schedule domain "bounds" and return the node encapsulated
1626 * in an isl_ast_graft.
1628 * "executed" is the current inverse schedule, taking into account
1629 * the bounds in "bounds"
1630 * "domain" is the domain of "executed", with inner dimensions projected out.
1633 * Before moving on to the actual AST node construction in create_node_scaled,
1634 * we first check if the current dimension is strided and if we can scale
1635 * down this stride. Note that we only do this if the ast_build_scale_strides
1638 * In particular, let the current dimension take on values
1642 * with a an integer. We check if we can find an integer m that (obviously)
1643 * divides both f and s.
1645 * If so, we check if the current dimension only appears in constraints
1646 * where the coefficients of the other variables are multiples of m.
1647 * We perform this extra check to avoid the risk of introducing
1648 * divisions by scaling down the current dimension.
1650 * If so, we scale the current dimension down by a factor of m.
1651 * That is, we plug in
1655 * Note that in principle we could always scale down strided loops
1660 * but this may result in i' taking on larger values than the original i,
1661 * due to the shift by "f".
1662 * By constrast, the scaling in (1) can only reduce the (absolute) value "i".
1664 static __isl_give isl_ast_graft
*create_node(__isl_take isl_union_map
*executed
,
1665 __isl_take isl_basic_set
*bounds
, __isl_take isl_set
*domain
,
1666 __isl_take isl_ast_build
*build
)
1668 struct isl_check_scaled_data data
;
1673 ctx
= isl_ast_build_get_ctx(build
);
1674 if (!isl_options_get_ast_build_scale_strides(ctx
))
1675 return create_node_scaled(executed
, bounds
, domain
, build
);
1677 data
.depth
= isl_ast_build_get_depth(build
);
1678 if (!isl_ast_build_has_stride(build
, data
.depth
))
1679 return create_node_scaled(executed
, bounds
, domain
, build
);
1681 offset
= isl_ast_build_get_offset(build
, data
.depth
);
1682 data
.m
= isl_ast_build_get_stride(build
, data
.depth
);
1684 offset
= isl_aff_free(offset
);
1685 offset
= isl_aff_scale_down_val(offset
, isl_val_copy(data
.m
));
1686 d
= isl_aff_get_denominator_val(offset
);
1688 executed
= isl_union_map_free(executed
);
1690 if (executed
&& isl_val_is_divisible_by(data
.m
, d
))
1691 data
.m
= isl_val_div(data
.m
, d
);
1693 data
.m
= isl_val_set_si(data
.m
, 1);
1697 if (!isl_val_is_one(data
.m
)) {
1698 if (isl_union_map_foreach_map(executed
, &map_check_scaled
,
1700 !isl_val_is_one(data
.m
))
1701 executed
= isl_union_map_free(executed
);
1704 if (!isl_val_is_one(data
.m
)) {
1709 isl_union_map
*umap
;
1711 space
= isl_ast_build_get_space(build
, 1);
1712 space
= isl_space_map_from_set(space
);
1713 ma
= isl_multi_aff_identity(space
);
1714 aff
= isl_multi_aff_get_aff(ma
, data
.depth
);
1715 aff
= isl_aff_scale_val(aff
, isl_val_copy(data
.m
));
1716 ma
= isl_multi_aff_set_aff(ma
, data
.depth
, aff
);
1718 bounds
= isl_basic_set_preimage_multi_aff(bounds
,
1719 isl_multi_aff_copy(ma
));
1720 domain
= isl_set_preimage_multi_aff(domain
,
1721 isl_multi_aff_copy(ma
));
1722 map
= isl_map_reverse(isl_map_from_multi_aff(ma
));
1723 umap
= isl_union_map_from_map(map
);
1724 executed
= isl_union_map_apply_domain(executed
,
1725 isl_union_map_copy(umap
));
1726 build
= isl_ast_build_scale_down(build
, isl_val_copy(data
.m
),
1729 isl_aff_free(offset
);
1730 isl_val_free(data
.m
);
1732 return create_node_scaled(executed
, bounds
, domain
, build
);
1735 /* Add the basic set to the list that "user" points to.
1737 static isl_stat
collect_basic_set(__isl_take isl_basic_set
*bset
, void *user
)
1739 isl_basic_set_list
**list
= user
;
1741 *list
= isl_basic_set_list_add(*list
, bset
);
1746 /* Extract the basic sets of "set" and collect them in an isl_basic_set_list.
1748 static __isl_give isl_basic_set_list
*isl_basic_set_list_from_set(
1749 __isl_take isl_set
*set
)
1753 isl_basic_set_list
*list
;
1758 ctx
= isl_set_get_ctx(set
);
1760 n
= isl_set_n_basic_set(set
);
1761 list
= isl_basic_set_list_alloc(ctx
, n
);
1762 if (isl_set_foreach_basic_set(set
, &collect_basic_set
, &list
) < 0)
1763 list
= isl_basic_set_list_free(list
);
1769 /* Generate code for the schedule domain "bounds"
1770 * and add the result to "list".
1772 * We mainly detect strides here and check if the bounds do not
1773 * conflict with the current build domain
1774 * and then pass over control to create_node.
1776 * "bounds" reflects the bounds on the current dimension and possibly
1777 * some extra conditions on outer dimensions.
1778 * It does not, however, include any divs involving the current dimension,
1779 * so it does not capture any stride constraints.
1780 * We therefore need to compute that part of the schedule domain that
1781 * intersects with "bounds" and derive the strides from the result.
1783 static __isl_give isl_ast_graft_list
*add_node(
1784 __isl_take isl_ast_graft_list
*list
, __isl_take isl_union_map
*executed
,
1785 __isl_take isl_basic_set
*bounds
, __isl_take isl_ast_build
*build
)
1787 isl_ast_graft
*graft
;
1788 isl_set
*domain
= NULL
;
1789 isl_union_set
*uset
;
1790 int empty
, disjoint
;
1792 uset
= isl_union_set_from_basic_set(isl_basic_set_copy(bounds
));
1793 executed
= isl_union_map_intersect_domain(executed
, uset
);
1794 empty
= isl_union_map_is_empty(executed
);
1800 uset
= isl_union_map_domain(isl_union_map_copy(executed
));
1801 domain
= isl_set_from_union_set(uset
);
1802 domain
= isl_ast_build_specialize(build
, domain
);
1804 domain
= isl_set_compute_divs(domain
);
1805 domain
= isl_ast_build_eliminate_inner(build
, domain
);
1806 disjoint
= isl_set_is_disjoint(domain
, build
->domain
);
1812 build
= isl_ast_build_detect_strides(build
, isl_set_copy(domain
));
1814 graft
= create_node(executed
, bounds
, domain
,
1815 isl_ast_build_copy(build
));
1816 list
= isl_ast_graft_list_add(list
, graft
);
1817 isl_ast_build_free(build
);
1820 list
= isl_ast_graft_list_free(list
);
1822 isl_set_free(domain
);
1823 isl_basic_set_free(bounds
);
1824 isl_union_map_free(executed
);
1825 isl_ast_build_free(build
);
1829 /* Does any element of i follow or coincide with any element of j
1830 * at the current depth for equal values of the outer dimensions?
1832 static isl_bool
domain_follows_at_depth(__isl_keep isl_basic_set
*i
,
1833 __isl_keep isl_basic_set
*j
, void *user
)
1835 int depth
= *(int *) user
;
1836 isl_basic_map
*test
;
1840 test
= isl_basic_map_from_domain_and_range(isl_basic_set_copy(i
),
1841 isl_basic_set_copy(j
));
1842 for (l
= 0; l
< depth
; ++l
)
1843 test
= isl_basic_map_equate(test
, isl_dim_in
, l
,
1845 test
= isl_basic_map_order_ge(test
, isl_dim_in
, depth
,
1846 isl_dim_out
, depth
);
1847 empty
= isl_basic_map_is_empty(test
);
1848 isl_basic_map_free(test
);
1850 return empty
< 0 ? isl_bool_error
: !empty
;
1853 /* Split up each element of "list" into a part that is related to "bset"
1854 * according to "gt" and a part that is not.
1855 * Return a list that consist of "bset" and all the pieces.
1857 static __isl_give isl_basic_set_list
*add_split_on(
1858 __isl_take isl_basic_set_list
*list
, __isl_take isl_basic_set
*bset
,
1859 __isl_keep isl_basic_map
*gt
)
1862 isl_basic_set_list
*res
;
1865 bset
= isl_basic_set_free(bset
);
1867 gt
= isl_basic_map_copy(gt
);
1868 gt
= isl_basic_map_intersect_domain(gt
, isl_basic_set_copy(bset
));
1869 n
= isl_basic_set_list_n_basic_set(list
);
1870 res
= isl_basic_set_list_from_basic_set(bset
);
1871 for (i
= 0; res
&& i
< n
; ++i
) {
1872 isl_basic_set
*bset
;
1873 isl_set
*set1
, *set2
;
1874 isl_basic_map
*bmap
;
1877 bset
= isl_basic_set_list_get_basic_set(list
, i
);
1878 bmap
= isl_basic_map_copy(gt
);
1879 bmap
= isl_basic_map_intersect_range(bmap
, bset
);
1880 bset
= isl_basic_map_range(bmap
);
1881 empty
= isl_basic_set_is_empty(bset
);
1883 res
= isl_basic_set_list_free(res
);
1885 isl_basic_set_free(bset
);
1886 bset
= isl_basic_set_list_get_basic_set(list
, i
);
1887 res
= isl_basic_set_list_add(res
, bset
);
1891 res
= isl_basic_set_list_add(res
, isl_basic_set_copy(bset
));
1892 set1
= isl_set_from_basic_set(bset
);
1893 bset
= isl_basic_set_list_get_basic_set(list
, i
);
1894 set2
= isl_set_from_basic_set(bset
);
1895 set1
= isl_set_subtract(set2
, set1
);
1896 set1
= isl_set_make_disjoint(set1
);
1898 res
= isl_basic_set_list_concat(res
,
1899 isl_basic_set_list_from_set(set1
));
1901 isl_basic_map_free(gt
);
1902 isl_basic_set_list_free(list
);
1906 static __isl_give isl_ast_graft_list
*generate_sorted_domains(
1907 __isl_keep isl_basic_set_list
*domain_list
,
1908 __isl_keep isl_union_map
*executed
,
1909 __isl_keep isl_ast_build
*build
);
1911 /* Internal data structure for add_nodes.
1913 * "executed" and "build" are extra arguments to be passed to add_node.
1914 * "list" collects the results.
1916 struct isl_add_nodes_data
{
1917 isl_union_map
*executed
;
1918 isl_ast_build
*build
;
1920 isl_ast_graft_list
*list
;
1923 /* Generate code for the schedule domains in "scc"
1924 * and add the results to "list".
1926 * The domains in "scc" form a strongly connected component in the ordering.
1927 * If the number of domains in "scc" is larger than 1, then this means
1928 * that we cannot determine a valid ordering for the domains in the component.
1929 * This should be fairly rare because the individual domains
1930 * have been made disjoint first.
1931 * The problem is that the domains may be integrally disjoint but not
1932 * rationally disjoint. For example, we may have domains
1934 * { [i,i] : 0 <= i <= 1 } and { [i,1-i] : 0 <= i <= 1 }
1936 * These two domains have an empty intersection, but their rational
1937 * relaxations do intersect. It is impossible to order these domains
1938 * in the second dimension because the first should be ordered before
1939 * the second for outer dimension equal to 0, while it should be ordered
1940 * after for outer dimension equal to 1.
1942 * This may happen in particular in case of unrolling since the domain
1943 * of each slice is replaced by its simple hull.
1945 * For each basic set i in "scc" and for each of the following basic sets j,
1946 * we split off that part of the basic set i that shares the outer dimensions
1947 * with j and lies before j in the current dimension.
1948 * We collect all the pieces in a new list that replaces "scc".
1950 * While the elements in "scc" should be disjoint, we double-check
1951 * this property to avoid running into an infinite recursion in case
1952 * they intersect due to some internal error.
1954 static isl_stat
add_nodes(__isl_take isl_basic_set_list
*scc
, void *user
)
1956 struct isl_add_nodes_data
*data
= user
;
1958 isl_basic_set
*bset
, *first
;
1959 isl_basic_set_list
*list
;
1963 n
= isl_basic_set_list_n_basic_set(scc
);
1964 bset
= isl_basic_set_list_get_basic_set(scc
, 0);
1966 isl_basic_set_list_free(scc
);
1967 data
->list
= add_node(data
->list
,
1968 isl_union_map_copy(data
->executed
), bset
,
1969 isl_ast_build_copy(data
->build
));
1970 return data
->list
? isl_stat_ok
: isl_stat_error
;
1973 depth
= isl_ast_build_get_depth(data
->build
);
1974 space
= isl_basic_set_get_space(bset
);
1975 space
= isl_space_map_from_set(space
);
1976 gt
= isl_basic_map_universe(space
);
1977 for (i
= 0; i
< depth
; ++i
)
1978 gt
= isl_basic_map_equate(gt
, isl_dim_in
, i
, isl_dim_out
, i
);
1979 gt
= isl_basic_map_order_gt(gt
, isl_dim_in
, depth
, isl_dim_out
, depth
);
1981 first
= isl_basic_set_copy(bset
);
1982 list
= isl_basic_set_list_from_basic_set(bset
);
1983 for (i
= 1; i
< n
; ++i
) {
1986 bset
= isl_basic_set_list_get_basic_set(scc
, i
);
1988 disjoint
= isl_basic_set_is_disjoint(bset
, first
);
1990 list
= isl_basic_set_list_free(list
);
1992 isl_die(isl_basic_set_list_get_ctx(scc
),
1994 "basic sets in scc are assumed to be disjoint",
1995 list
= isl_basic_set_list_free(list
));
1997 list
= add_split_on(list
, bset
, gt
);
1999 isl_basic_set_free(first
);
2000 isl_basic_map_free(gt
);
2001 isl_basic_set_list_free(scc
);
2003 data
->list
= isl_ast_graft_list_concat(data
->list
,
2004 generate_sorted_domains(scc
, data
->executed
, data
->build
));
2005 isl_basic_set_list_free(scc
);
2007 return data
->list
? isl_stat_ok
: isl_stat_error
;
2010 /* Sort the domains in "domain_list" according to the execution order
2011 * at the current depth (for equal values of the outer dimensions),
2012 * generate code for each of them, collecting the results in a list.
2013 * If no code is generated (because the intersection of the inverse schedule
2014 * with the domains turns out to be empty), then an empty list is returned.
2016 * The caller is responsible for ensuring that the basic sets in "domain_list"
2017 * are pair-wise disjoint. It can, however, in principle happen that
2018 * two basic sets should be ordered one way for one value of the outer
2019 * dimensions and the other way for some other value of the outer dimensions.
2020 * We therefore play safe and look for strongly connected components.
2021 * The function add_nodes takes care of handling non-trivial components.
2023 static __isl_give isl_ast_graft_list
*generate_sorted_domains(
2024 __isl_keep isl_basic_set_list
*domain_list
,
2025 __isl_keep isl_union_map
*executed
, __isl_keep isl_ast_build
*build
)
2028 struct isl_add_nodes_data data
;
2035 ctx
= isl_basic_set_list_get_ctx(domain_list
);
2036 n
= isl_basic_set_list_n_basic_set(domain_list
);
2037 data
.list
= isl_ast_graft_list_alloc(ctx
, n
);
2041 return add_node(data
.list
, isl_union_map_copy(executed
),
2042 isl_basic_set_list_get_basic_set(domain_list
, 0),
2043 isl_ast_build_copy(build
));
2045 depth
= isl_ast_build_get_depth(build
);
2046 data
.executed
= executed
;
2048 if (isl_basic_set_list_foreach_scc(domain_list
,
2049 &domain_follows_at_depth
, &depth
,
2050 &add_nodes
, &data
) < 0)
2051 data
.list
= isl_ast_graft_list_free(data
.list
);
2056 /* Do i and j share any values for the outer dimensions?
2058 static isl_bool
shared_outer(__isl_keep isl_basic_set
*i
,
2059 __isl_keep isl_basic_set
*j
, void *user
)
2061 int depth
= *(int *) user
;
2062 isl_basic_map
*test
;
2066 test
= isl_basic_map_from_domain_and_range(isl_basic_set_copy(i
),
2067 isl_basic_set_copy(j
));
2068 for (l
= 0; l
< depth
; ++l
)
2069 test
= isl_basic_map_equate(test
, isl_dim_in
, l
,
2071 empty
= isl_basic_map_is_empty(test
);
2072 isl_basic_map_free(test
);
2074 return empty
< 0 ? isl_bool_error
: !empty
;
2077 /* Internal data structure for generate_sorted_domains_wrap.
2079 * "n" is the total number of basic sets
2080 * "executed" and "build" are extra arguments to be passed
2081 * to generate_sorted_domains.
2083 * "single" is set to 1 by generate_sorted_domains_wrap if there
2084 * is only a single component.
2085 * "list" collects the results.
2087 struct isl_ast_generate_parallel_domains_data
{
2089 isl_union_map
*executed
;
2090 isl_ast_build
*build
;
2093 isl_ast_graft_list
*list
;
2096 /* Call generate_sorted_domains on "scc", fuse the result into a list
2097 * with either zero or one graft and collect the these single element
2098 * lists into data->list.
2100 * If there is only one component, i.e., if the number of basic sets
2101 * in the current component is equal to the total number of basic sets,
2102 * then data->single is set to 1 and the result of generate_sorted_domains
2105 static isl_stat
generate_sorted_domains_wrap(__isl_take isl_basic_set_list
*scc
,
2108 struct isl_ast_generate_parallel_domains_data
*data
= user
;
2109 isl_ast_graft_list
*list
;
2111 list
= generate_sorted_domains(scc
, data
->executed
, data
->build
);
2112 data
->single
= isl_basic_set_list_n_basic_set(scc
) == data
->n
;
2114 list
= isl_ast_graft_list_fuse(list
, data
->build
);
2118 data
->list
= isl_ast_graft_list_concat(data
->list
, list
);
2120 isl_basic_set_list_free(scc
);
2122 return isl_stat_error
;
2127 /* Look for any (weakly connected) components in the "domain_list"
2128 * of domains that share some values of the outer dimensions.
2129 * That is, domains in different components do not share any values
2130 * of the outer dimensions. This means that these components
2131 * can be freely reordered.
2132 * Within each of the components, we sort the domains according
2133 * to the execution order at the current depth.
2135 * If there is more than one component, then generate_sorted_domains_wrap
2136 * fuses the result of each call to generate_sorted_domains
2137 * into a list with either zero or one graft and collects these (at most)
2138 * single element lists into a bigger list. This means that the elements of the
2139 * final list can be freely reordered. In particular, we sort them
2140 * according to an arbitrary but fixed ordering to ease merging of
2141 * graft lists from different components.
2143 static __isl_give isl_ast_graft_list
*generate_parallel_domains(
2144 __isl_keep isl_basic_set_list
*domain_list
,
2145 __isl_keep isl_union_map
*executed
, __isl_keep isl_ast_build
*build
)
2148 struct isl_ast_generate_parallel_domains_data data
;
2153 data
.n
= isl_basic_set_list_n_basic_set(domain_list
);
2155 return generate_sorted_domains(domain_list
, executed
, build
);
2157 depth
= isl_ast_build_get_depth(build
);
2159 data
.executed
= executed
;
2162 if (isl_basic_set_list_foreach_scc(domain_list
, &shared_outer
, &depth
,
2163 &generate_sorted_domains_wrap
,
2165 data
.list
= isl_ast_graft_list_free(data
.list
);
2168 data
.list
= isl_ast_graft_list_sort_guard(data
.list
);
2173 /* Internal data for separate_domain.
2175 * "explicit" is set if we only want to use explicit bounds.
2177 * "domain" collects the separated domains.
2179 struct isl_separate_domain_data
{
2180 isl_ast_build
*build
;
2185 /* Extract implicit bounds on the current dimension for the executed "map".
2187 * The domain of "map" may involve inner dimensions, so we
2188 * need to eliminate them.
2190 static __isl_give isl_set
*implicit_bounds(__isl_take isl_map
*map
,
2191 __isl_keep isl_ast_build
*build
)
2195 domain
= isl_map_domain(map
);
2196 domain
= isl_ast_build_eliminate(build
, domain
);
2201 /* Extract explicit bounds on the current dimension for the executed "map".
2203 * Rather than eliminating the inner dimensions as in implicit_bounds,
2204 * we simply drop any constraints involving those inner dimensions.
2205 * The idea is that most bounds that are implied by constraints on the
2206 * inner dimensions will be enforced by for loops and not by explicit guards.
2207 * There is then no need to separate along those bounds.
2209 static __isl_give isl_set
*explicit_bounds(__isl_take isl_map
*map
,
2210 __isl_keep isl_ast_build
*build
)
2215 dim
= isl_map_dim(map
, isl_dim_out
);
2216 map
= isl_map_drop_constraints_involving_dims(map
, isl_dim_out
, 0, dim
);
2218 domain
= isl_map_domain(map
);
2219 depth
= isl_ast_build_get_depth(build
);
2220 dim
= isl_set_dim(domain
, isl_dim_set
);
2221 domain
= isl_set_detect_equalities(domain
);
2222 domain
= isl_set_drop_constraints_involving_dims(domain
,
2223 isl_dim_set
, depth
+ 1, dim
- (depth
+ 1));
2224 domain
= isl_set_remove_divs_involving_dims(domain
,
2225 isl_dim_set
, depth
, 1);
2226 domain
= isl_set_remove_unknown_divs(domain
);
2231 /* Split data->domain into pieces that intersect with the range of "map"
2232 * and pieces that do not intersect with the range of "map"
2233 * and then add that part of the range of "map" that does not intersect
2234 * with data->domain.
2236 static isl_stat
separate_domain(__isl_take isl_map
*map
, void *user
)
2238 struct isl_separate_domain_data
*data
= user
;
2243 domain
= explicit_bounds(map
, data
->build
);
2245 domain
= implicit_bounds(map
, data
->build
);
2247 domain
= isl_set_coalesce(domain
);
2248 domain
= isl_set_make_disjoint(domain
);
2249 d1
= isl_set_subtract(isl_set_copy(domain
), isl_set_copy(data
->domain
));
2250 d2
= isl_set_subtract(isl_set_copy(data
->domain
), isl_set_copy(domain
));
2251 data
->domain
= isl_set_intersect(data
->domain
, domain
);
2252 data
->domain
= isl_set_union(data
->domain
, d1
);
2253 data
->domain
= isl_set_union(data
->domain
, d2
);
2258 /* Separate the schedule domains of "executed".
2260 * That is, break up the domain of "executed" into basic sets,
2261 * such that for each basic set S, every element in S is associated with
2262 * the same domain spaces.
2264 * "space" is the (single) domain space of "executed".
2266 static __isl_give isl_set
*separate_schedule_domains(
2267 __isl_take isl_space
*space
, __isl_take isl_union_map
*executed
,
2268 __isl_keep isl_ast_build
*build
)
2270 struct isl_separate_domain_data data
= { build
};
2273 ctx
= isl_ast_build_get_ctx(build
);
2274 data
.explicit = isl_options_get_ast_build_separation_bounds(ctx
) ==
2275 ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT
;
2276 data
.domain
= isl_set_empty(space
);
2277 if (isl_union_map_foreach_map(executed
, &separate_domain
, &data
) < 0)
2278 data
.domain
= isl_set_free(data
.domain
);
2280 isl_union_map_free(executed
);
2284 /* Temporary data used during the search for a lower bound for unrolling.
2286 * "build" is the build in which the unrolling will be performed
2287 * "domain" is the original set for which to find a lower bound
2288 * "depth" is the dimension for which to find a lower boudn
2289 * "expansion" is the expansion that needs to be applied to "domain"
2290 * in the unrolling that will be performed
2292 * "lower" is the best lower bound found so far. It is NULL if we have not
2294 * "n" is the corresponding size. If lower is NULL, then the value of n
2296 * "n_div" is the maximal number of integer divisions in the first
2297 * unrolled iteration (after expansion). It is set to -1 if it hasn't
2298 * been computed yet.
2300 struct isl_find_unroll_data
{
2301 isl_ast_build
*build
;
2304 isl_basic_map
*expansion
;
2311 /* Return the constraint
2313 * i_"depth" = aff + offset
2315 static __isl_give isl_constraint
*at_offset(int depth
, __isl_keep isl_aff
*aff
,
2318 aff
= isl_aff_copy(aff
);
2319 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, depth
, -1);
2320 aff
= isl_aff_add_constant_si(aff
, offset
);
2321 return isl_equality_from_aff(aff
);
2324 /* Update *user to the number of integer divsions in the first element
2325 * of "ma", if it is larger than the current value.
2327 static isl_stat
update_n_div(__isl_take isl_set
*set
,
2328 __isl_take isl_multi_aff
*ma
, void *user
)
2334 aff
= isl_multi_aff_get_aff(ma
, 0);
2335 n_div
= isl_aff_dim(aff
, isl_dim_div
);
2337 isl_multi_aff_free(ma
);
2343 return aff
? isl_stat_ok
: isl_stat_error
;
2346 /* Get the number of integer divisions in the expression for the iterator
2347 * value at the first slice in the unrolling based on lower bound "lower",
2348 * taking into account the expansion that needs to be performed on this slice.
2350 static int get_expanded_n_div(struct isl_find_unroll_data
*data
,
2351 __isl_keep isl_aff
*lower
)
2355 isl_map
*it_map
, *expansion
;
2356 isl_pw_multi_aff
*pma
;
2359 c
= at_offset(data
->depth
, lower
, 0);
2360 set
= isl_set_copy(data
->domain
);
2361 set
= isl_set_add_constraint(set
, c
);
2362 expansion
= isl_map_from_basic_map(isl_basic_map_copy(data
->expansion
));
2363 set
= isl_set_apply(set
, expansion
);
2364 it_map
= isl_ast_build_map_to_iterator(data
->build
, set
);
2365 pma
= isl_pw_multi_aff_from_map(it_map
);
2367 if (isl_pw_multi_aff_foreach_piece(pma
, &update_n_div
, &n
) < 0)
2369 isl_pw_multi_aff_free(pma
);
2374 /* Is the lower bound "lower" with corresponding iteration count "n"
2375 * better than the one stored in "data"?
2376 * If there is no upper bound on the iteration count ("n" is infinity) or
2377 * if the count is too large, then we cannot use this lower bound.
2378 * Otherwise, if there was no previous lower bound or
2379 * if the iteration count of the new lower bound is smaller than
2380 * the iteration count of the previous lower bound, then we consider
2381 * the new lower bound to be better.
2382 * If the iteration count is the same, then compare the number
2383 * of integer divisions that would be needed to express
2384 * the iterator value at the first slice in the unrolling
2385 * according to the lower bound. If we end up computing this
2386 * number, then store the lowest value in data->n_div.
2388 static int is_better_lower_bound(struct isl_find_unroll_data
*data
,
2389 __isl_keep isl_aff
*lower
, __isl_keep isl_val
*n
)
2396 if (isl_val_is_infty(n
))
2398 if (isl_val_cmp_si(n
, INT_MAX
) > 0)
2402 cmp
= isl_val_cmp_si(n
, *data
->n
);
2407 if (data
->n_div
< 0)
2408 data
->n_div
= get_expanded_n_div(data
, data
->lower
);
2409 if (data
->n_div
< 0)
2411 if (data
->n_div
== 0)
2413 n_div
= get_expanded_n_div(data
, lower
);
2416 if (n_div
>= data
->n_div
)
2418 data
->n_div
= n_div
;
2423 /* Check if we can use "c" as a lower bound and if it is better than
2424 * any previously found lower bound.
2426 * If "c" does not involve the dimension at the current depth,
2427 * then we cannot use it.
2428 * Otherwise, let "c" be of the form
2432 * We compute the maximal value of
2434 * -ceil(f(j)/a)) + i + 1
2436 * over the domain. If there is such a value "n", then we know
2438 * -ceil(f(j)/a)) + i + 1 <= n
2442 * i < ceil(f(j)/a)) + n
2444 * meaning that we can use ceil(f(j)/a)) as a lower bound for unrolling.
2445 * We just need to check if we have found any lower bound before and
2446 * if the new lower bound is better (smaller n or fewer integer divisions)
2447 * than the previously found lower bounds.
2449 static isl_stat
update_unrolling_lower_bound(struct isl_find_unroll_data
*data
,
2450 __isl_keep isl_constraint
*c
)
2452 isl_aff
*aff
, *lower
;
2456 if (!isl_constraint_is_lower_bound(c
, isl_dim_set
, data
->depth
))
2459 lower
= isl_constraint_get_bound(c
, isl_dim_set
, data
->depth
);
2460 lower
= isl_aff_ceil(lower
);
2461 aff
= isl_aff_copy(lower
);
2462 aff
= isl_aff_neg(aff
);
2463 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, data
->depth
, 1);
2464 aff
= isl_aff_add_constant_si(aff
, 1);
2465 max
= isl_set_max_val(data
->domain
, aff
);
2468 better
= is_better_lower_bound(data
, lower
, max
);
2469 if (better
< 0 || !better
) {
2471 isl_aff_free(lower
);
2472 return better
< 0 ? isl_stat_error
: isl_stat_ok
;
2475 isl_aff_free(data
->lower
);
2476 data
->lower
= lower
;
2477 *data
->n
= isl_val_get_num_si(max
);
2483 /* Check if we can use "c" as a lower bound and if it is better than
2484 * any previously found lower bound.
2486 static isl_stat
constraint_find_unroll(__isl_take isl_constraint
*c
, void *user
)
2488 struct isl_find_unroll_data
*data
;
2491 data
= (struct isl_find_unroll_data
*) user
;
2492 r
= update_unrolling_lower_bound(data
, c
);
2493 isl_constraint_free(c
);
2498 /* Look for a lower bound l(i) on the dimension at "depth"
2499 * and a size n such that "domain" is a subset of
2501 * { [i] : l(i) <= i_d < l(i) + n }
2503 * where d is "depth" and l(i) depends only on earlier dimensions.
2504 * Furthermore, try and find a lower bound such that n is as small as possible.
2505 * In particular, "n" needs to be finite.
2506 * "build" is the build in which the unrolling will be performed.
2507 * "expansion" is the expansion that needs to be applied to "domain"
2508 * in the unrolling that will be performed.
2510 * Inner dimensions have been eliminated from "domain" by the caller.
2512 * We first construct a collection of lower bounds on the input set
2513 * by computing its simple hull. We then iterate through them,
2514 * discarding those that we cannot use (either because they do not
2515 * involve the dimension at "depth" or because they have no corresponding
2516 * upper bound, meaning that "n" would be unbounded) and pick out the
2517 * best from the remaining ones.
2519 * If we cannot find a suitable lower bound, then we consider that
2522 static __isl_give isl_aff
*find_unroll_lower_bound(
2523 __isl_keep isl_ast_build
*build
, __isl_keep isl_set
*domain
,
2524 int depth
, __isl_keep isl_basic_map
*expansion
, int *n
)
2526 struct isl_find_unroll_data data
=
2527 { build
, domain
, depth
, expansion
, NULL
, n
, -1 };
2528 isl_basic_set
*hull
;
2530 hull
= isl_set_simple_hull(isl_set_copy(domain
));
2532 if (isl_basic_set_foreach_constraint(hull
,
2533 &constraint_find_unroll
, &data
) < 0)
2536 isl_basic_set_free(hull
);
2539 isl_die(isl_set_get_ctx(domain
), isl_error_invalid
,
2540 "cannot find lower bound for unrolling", return NULL
);
2544 isl_basic_set_free(hull
);
2545 return isl_aff_free(data
.lower
);
2548 /* Call "fn" on each iteration of the current dimension of "domain".
2549 * If "init" is not NULL, then it is called with the number of
2550 * iterations before any call to "fn".
2551 * Return -1 on failure.
2553 * Since we are going to be iterating over the individual values,
2554 * we first check if there are any strides on the current dimension.
2555 * If there is, we rewrite the current dimension i as
2557 * i = stride i' + offset
2559 * and then iterate over individual values of i' instead.
2561 * We then look for a lower bound on i' and a size such that the domain
2564 * { [j,i'] : l(j) <= i' < l(j) + n }
2566 * and then take slices of the domain at values of i'
2567 * between l(j) and l(j) + n - 1.
2569 * We compute the unshifted simple hull of each slice to ensure that
2570 * we have a single basic set per offset. The slicing constraint
2571 * may get simplified away before the unshifted simple hull is taken
2572 * and may therefore in some rare cases disappear from the result.
2573 * We therefore explicitly add the constraint back after computing
2574 * the unshifted simple hull to ensure that the basic sets
2575 * remain disjoint. The constraints that are dropped by taking the hull
2576 * will be taken into account at the next level, as in the case of the
2579 * Finally, we map i' back to i and call "fn".
2581 static int foreach_iteration(__isl_take isl_set
*domain
,
2582 __isl_keep isl_ast_build
*build
, int (*init
)(int n
, void *user
),
2583 int (*fn
)(__isl_take isl_basic_set
*bset
, void *user
), void *user
)
2588 isl_multi_aff
*expansion
;
2589 isl_basic_map
*bmap
;
2590 isl_aff
*lower
= NULL
;
2591 isl_ast_build
*stride_build
;
2593 depth
= isl_ast_build_get_depth(build
);
2595 domain
= isl_ast_build_eliminate_inner(build
, domain
);
2596 domain
= isl_set_intersect(domain
, isl_ast_build_get_domain(build
));
2597 stride_build
= isl_ast_build_copy(build
);
2598 stride_build
= isl_ast_build_detect_strides(stride_build
,
2599 isl_set_copy(domain
));
2600 expansion
= isl_ast_build_get_stride_expansion(stride_build
);
2602 domain
= isl_set_preimage_multi_aff(domain
,
2603 isl_multi_aff_copy(expansion
));
2604 domain
= isl_ast_build_eliminate_divs(stride_build
, domain
);
2605 isl_ast_build_free(stride_build
);
2607 bmap
= isl_basic_map_from_multi_aff(expansion
);
2609 empty
= isl_set_is_empty(domain
);
2615 lower
= find_unroll_lower_bound(build
, domain
, depth
, bmap
, &n
);
2619 if (n
>= 0 && init
&& init(n
, user
) < 0)
2621 for (i
= 0; i
< n
; ++i
) {
2623 isl_basic_set
*bset
;
2624 isl_constraint
*slice
;
2626 slice
= at_offset(depth
, lower
, i
);
2627 set
= isl_set_copy(domain
);
2628 set
= isl_set_add_constraint(set
, isl_constraint_copy(slice
));
2629 bset
= isl_set_unshifted_simple_hull(set
);
2630 bset
= isl_basic_set_add_constraint(bset
, slice
);
2631 bset
= isl_basic_set_apply(bset
, isl_basic_map_copy(bmap
));
2633 if (fn(bset
, user
) < 0)
2637 isl_aff_free(lower
);
2638 isl_set_free(domain
);
2639 isl_basic_map_free(bmap
);
2641 return n
< 0 || i
< n
? -1 : 0;
2644 /* Data structure for storing the results and the intermediate objects
2645 * of compute_domains.
2647 * "list" is the main result of the function and contains a list
2648 * of disjoint basic sets for which code should be generated.
2650 * "executed" and "build" are inputs to compute_domains.
2651 * "schedule_domain" is the domain of "executed".
2653 * "option" constains the domains at the current depth that should by
2654 * atomic, separated or unrolled. These domains are as specified by
2655 * the user, except that inner dimensions have been eliminated and
2656 * that they have been made pair-wise disjoint.
2658 * "sep_class" contains the user-specified split into separation classes
2659 * specialized to the current depth.
2660 * "done" contains the union of the separation domains that have already
2663 struct isl_codegen_domains
{
2664 isl_basic_set_list
*list
;
2666 isl_union_map
*executed
;
2667 isl_ast_build
*build
;
2668 isl_set
*schedule_domain
;
2676 /* Internal data structure for do_unroll.
2678 * "domains" stores the results of compute_domains.
2679 * "class_domain" is the original class domain passed to do_unroll.
2680 * "unroll_domain" collects the unrolled iterations.
2682 struct isl_ast_unroll_data
{
2683 struct isl_codegen_domains
*domains
;
2684 isl_set
*class_domain
;
2685 isl_set
*unroll_domain
;
2688 /* Given an iteration of an unrolled domain represented by "bset",
2689 * add it to data->domains->list.
2690 * Since we may have dropped some constraints, we intersect with
2691 * the class domain again to ensure that each element in the list
2692 * is disjoint from the other class domains.
2694 static int do_unroll_iteration(__isl_take isl_basic_set
*bset
, void *user
)
2696 struct isl_ast_unroll_data
*data
= user
;
2698 isl_basic_set_list
*list
;
2700 set
= isl_set_from_basic_set(bset
);
2701 data
->unroll_domain
= isl_set_union(data
->unroll_domain
,
2703 set
= isl_set_intersect(set
, isl_set_copy(data
->class_domain
));
2704 set
= isl_set_make_disjoint(set
);
2705 list
= isl_basic_set_list_from_set(set
);
2706 data
->domains
->list
= isl_basic_set_list_concat(data
->domains
->list
,
2712 /* Extend domains->list with a list of basic sets, one for each value
2713 * of the current dimension in "domain" and remove the corresponding
2714 * sets from the class domain. Return the updated class domain.
2715 * The divs that involve the current dimension have not been projected out
2718 * We call foreach_iteration to iterate over the individual values and
2719 * in do_unroll_iteration we collect the individual basic sets in
2720 * domains->list and their union in data->unroll_domain, which is then
2721 * used to update the class domain.
2723 static __isl_give isl_set
*do_unroll(struct isl_codegen_domains
*domains
,
2724 __isl_take isl_set
*domain
, __isl_take isl_set
*class_domain
)
2726 struct isl_ast_unroll_data data
;
2729 return isl_set_free(class_domain
);
2731 return isl_set_free(domain
);
2733 data
.domains
= domains
;
2734 data
.class_domain
= class_domain
;
2735 data
.unroll_domain
= isl_set_empty(isl_set_get_space(domain
));
2737 if (foreach_iteration(domain
, domains
->build
, NULL
,
2738 &do_unroll_iteration
, &data
) < 0)
2739 data
.unroll_domain
= isl_set_free(data
.unroll_domain
);
2741 class_domain
= isl_set_subtract(class_domain
, data
.unroll_domain
);
2743 return class_domain
;
2746 /* Add domains to domains->list for each individual value of the current
2747 * dimension, for that part of the schedule domain that lies in the
2748 * intersection of the option domain and the class domain.
2749 * Remove the corresponding sets from the class domain and
2750 * return the updated class domain.
2752 * We first break up the unroll option domain into individual pieces
2753 * and then handle each of them separately. The unroll option domain
2754 * has been made disjoint in compute_domains_init_options,
2756 * Note that we actively want to combine different pieces of the
2757 * schedule domain that have the same value at the current dimension.
2758 * We therefore need to break up the unroll option domain before
2759 * intersecting with class and schedule domain, hoping that the
2760 * unroll option domain specified by the user is relatively simple.
2762 static __isl_give isl_set
*compute_unroll_domains(
2763 struct isl_codegen_domains
*domains
, __isl_take isl_set
*class_domain
)
2765 isl_set
*unroll_domain
;
2766 isl_basic_set_list
*unroll_list
;
2770 empty
= isl_set_is_empty(domains
->option
[isl_ast_loop_unroll
]);
2772 return isl_set_free(class_domain
);
2774 return class_domain
;
2776 unroll_domain
= isl_set_copy(domains
->option
[isl_ast_loop_unroll
]);
2777 unroll_list
= isl_basic_set_list_from_set(unroll_domain
);
2779 n
= isl_basic_set_list_n_basic_set(unroll_list
);
2780 for (i
= 0; i
< n
; ++i
) {
2781 isl_basic_set
*bset
;
2783 bset
= isl_basic_set_list_get_basic_set(unroll_list
, i
);
2784 unroll_domain
= isl_set_from_basic_set(bset
);
2785 unroll_domain
= isl_set_intersect(unroll_domain
,
2786 isl_set_copy(class_domain
));
2787 unroll_domain
= isl_set_intersect(unroll_domain
,
2788 isl_set_copy(domains
->schedule_domain
));
2790 empty
= isl_set_is_empty(unroll_domain
);
2791 if (empty
>= 0 && empty
) {
2792 isl_set_free(unroll_domain
);
2796 class_domain
= do_unroll(domains
, unroll_domain
, class_domain
);
2799 isl_basic_set_list_free(unroll_list
);
2801 return class_domain
;
2804 /* Try and construct a single basic set that includes the intersection of
2805 * the schedule domain, the atomic option domain and the class domain.
2806 * Add the resulting basic set(s) to domains->list and remove them
2807 * from class_domain. Return the updated class domain.
2809 * We construct a single domain rather than trying to combine
2810 * the schedule domains of individual domains because we are working
2811 * within a single component so that non-overlapping schedule domains
2812 * should already have been separated.
2813 * We do however need to make sure that this single domains is a subset
2814 * of the class domain so that it would not intersect with any other
2815 * class domains. This means that we may end up splitting up the atomic
2816 * domain in case separation classes are being used.
2818 * "domain" is the intersection of the schedule domain and the class domain,
2819 * with inner dimensions projected out.
2821 static __isl_give isl_set
*compute_atomic_domain(
2822 struct isl_codegen_domains
*domains
, __isl_take isl_set
*class_domain
)
2824 isl_basic_set
*bset
;
2825 isl_basic_set_list
*list
;
2826 isl_set
*domain
, *atomic_domain
;
2829 domain
= isl_set_copy(domains
->option
[isl_ast_loop_atomic
]);
2830 domain
= isl_set_intersect(domain
, isl_set_copy(class_domain
));
2831 domain
= isl_set_intersect(domain
,
2832 isl_set_copy(domains
->schedule_domain
));
2833 empty
= isl_set_is_empty(domain
);
2835 class_domain
= isl_set_free(class_domain
);
2837 isl_set_free(domain
);
2838 return class_domain
;
2841 domain
= isl_ast_build_eliminate(domains
->build
, domain
);
2842 domain
= isl_set_coalesce(domain
);
2843 bset
= isl_set_unshifted_simple_hull(domain
);
2844 domain
= isl_set_from_basic_set(bset
);
2845 atomic_domain
= isl_set_copy(domain
);
2846 domain
= isl_set_intersect(domain
, isl_set_copy(class_domain
));
2847 class_domain
= isl_set_subtract(class_domain
, atomic_domain
);
2848 domain
= isl_set_make_disjoint(domain
);
2849 list
= isl_basic_set_list_from_set(domain
);
2850 domains
->list
= isl_basic_set_list_concat(domains
->list
, list
);
2852 return class_domain
;
2855 /* Split up the schedule domain into uniform basic sets,
2856 * in the sense that each element in a basic set is associated to
2857 * elements of the same domains, and add the result to domains->list.
2858 * Do this for that part of the schedule domain that lies in the
2859 * intersection of "class_domain" and the separate option domain.
2861 * "class_domain" may or may not include the constraints
2862 * of the schedule domain, but this does not make a difference
2863 * since we are going to intersect it with the domain of the inverse schedule.
2864 * If it includes schedule domain constraints, then they may involve
2865 * inner dimensions, but we will eliminate them in separation_domain.
2867 static int compute_separate_domain(struct isl_codegen_domains
*domains
,
2868 __isl_keep isl_set
*class_domain
)
2872 isl_union_map
*executed
;
2873 isl_basic_set_list
*list
;
2876 domain
= isl_set_copy(domains
->option
[isl_ast_loop_separate
]);
2877 domain
= isl_set_intersect(domain
, isl_set_copy(class_domain
));
2878 executed
= isl_union_map_copy(domains
->executed
);
2879 executed
= isl_union_map_intersect_domain(executed
,
2880 isl_union_set_from_set(domain
));
2881 empty
= isl_union_map_is_empty(executed
);
2882 if (empty
< 0 || empty
) {
2883 isl_union_map_free(executed
);
2884 return empty
< 0 ? -1 : 0;
2887 space
= isl_set_get_space(class_domain
);
2888 domain
= separate_schedule_domains(space
, executed
, domains
->build
);
2890 list
= isl_basic_set_list_from_set(domain
);
2891 domains
->list
= isl_basic_set_list_concat(domains
->list
, list
);
2896 /* Split up the domain at the current depth into disjoint
2897 * basic sets for which code should be generated separately
2898 * for the given separation class domain.
2900 * If any separation classes have been defined, then "class_domain"
2901 * is the domain of the current class and does not refer to inner dimensions.
2902 * Otherwise, "class_domain" is the universe domain.
2904 * We first make sure that the class domain is disjoint from
2905 * previously considered class domains.
2907 * The separate domains can be computed directly from the "class_domain".
2909 * The unroll, atomic and remainder domains need the constraints
2910 * from the schedule domain.
2912 * For unrolling, the actual schedule domain is needed (with divs that
2913 * may refer to the current dimension) so that stride detection can be
2916 * For atomic and remainder domains, inner dimensions and divs involving
2917 * the current dimensions should be eliminated.
2918 * In case we are working within a separation class, we need to intersect
2919 * the result with the current "class_domain" to ensure that the domains
2920 * are disjoint from those generated from other class domains.
2922 * The domain that has been made atomic may be larger than specified
2923 * by the user since it needs to be representable as a single basic set.
2924 * This possibly larger domain is removed from class_domain by
2925 * compute_atomic_domain. It is computed first so that the extended domain
2926 * would not overlap with any domains computed before.
2927 * Similary, the unrolled domains may have some constraints removed and
2928 * may therefore also be larger than specified by the user.
2930 * If anything is left after handling separate, unroll and atomic,
2931 * we split it up into basic sets and append the basic sets to domains->list.
2933 static isl_stat
compute_partial_domains(struct isl_codegen_domains
*domains
,
2934 __isl_take isl_set
*class_domain
)
2936 isl_basic_set_list
*list
;
2939 class_domain
= isl_set_subtract(class_domain
,
2940 isl_set_copy(domains
->done
));
2941 domains
->done
= isl_set_union(domains
->done
,
2942 isl_set_copy(class_domain
));
2944 class_domain
= compute_atomic_domain(domains
, class_domain
);
2945 class_domain
= compute_unroll_domains(domains
, class_domain
);
2947 domain
= isl_set_copy(class_domain
);
2949 if (compute_separate_domain(domains
, domain
) < 0)
2951 domain
= isl_set_subtract(domain
,
2952 isl_set_copy(domains
->option
[isl_ast_loop_separate
]));
2954 domain
= isl_set_intersect(domain
,
2955 isl_set_copy(domains
->schedule_domain
));
2957 domain
= isl_ast_build_eliminate(domains
->build
, domain
);
2958 domain
= isl_set_intersect(domain
, isl_set_copy(class_domain
));
2960 domain
= isl_set_coalesce(domain
);
2961 domain
= isl_set_make_disjoint(domain
);
2963 list
= isl_basic_set_list_from_set(domain
);
2964 domains
->list
= isl_basic_set_list_concat(domains
->list
, list
);
2966 isl_set_free(class_domain
);
2970 isl_set_free(domain
);
2971 isl_set_free(class_domain
);
2972 return isl_stat_error
;
2975 /* Split up the domain at the current depth into disjoint
2976 * basic sets for which code should be generated separately
2977 * for the separation class identified by "pnt".
2979 * We extract the corresponding class domain from domains->sep_class,
2980 * eliminate inner dimensions and pass control to compute_partial_domains.
2982 static isl_stat
compute_class_domains(__isl_take isl_point
*pnt
, void *user
)
2984 struct isl_codegen_domains
*domains
= user
;
2989 class_set
= isl_set_from_point(pnt
);
2990 domain
= isl_map_domain(isl_map_intersect_range(
2991 isl_map_copy(domains
->sep_class
), class_set
));
2992 domain
= isl_ast_build_compute_gist(domains
->build
, domain
);
2993 domain
= isl_ast_build_eliminate(domains
->build
, domain
);
2995 disjoint
= isl_set_plain_is_disjoint(domain
, domains
->schedule_domain
);
2997 return isl_stat_error
;
2999 isl_set_free(domain
);
3003 return compute_partial_domains(domains
, domain
);
3006 /* Extract the domains at the current depth that should be atomic,
3007 * separated or unrolled and store them in option.
3009 * The domains specified by the user might overlap, so we make
3010 * them disjoint by subtracting earlier domains from later domains.
3012 static void compute_domains_init_options(isl_set
*option
[4],
3013 __isl_keep isl_ast_build
*build
)
3015 enum isl_ast_loop_type type
, type2
;
3018 for (type
= isl_ast_loop_atomic
;
3019 type
<= isl_ast_loop_separate
; ++type
) {
3020 option
[type
] = isl_ast_build_get_option_domain(build
, type
);
3021 for (type2
= isl_ast_loop_atomic
; type2
< type
; ++type2
)
3022 option
[type
] = isl_set_subtract(option
[type
],
3023 isl_set_copy(option
[type2
]));
3026 unroll
= option
[isl_ast_loop_unroll
];
3027 unroll
= isl_set_coalesce(unroll
);
3028 unroll
= isl_set_make_disjoint(unroll
);
3029 option
[isl_ast_loop_unroll
] = unroll
;
3032 /* Split up the domain at the current depth into disjoint
3033 * basic sets for which code should be generated separately,
3034 * based on the user-specified options.
3035 * Return the list of disjoint basic sets.
3037 * There are three kinds of domains that we need to keep track of.
3038 * - the "schedule domain" is the domain of "executed"
3039 * - the "class domain" is the domain corresponding to the currrent
3041 * - the "option domain" is the domain corresponding to one of the options
3042 * atomic, unroll or separate
3044 * We first consider the individial values of the separation classes
3045 * and split up the domain for each of them separately.
3046 * Finally, we consider the remainder. If no separation classes were
3047 * specified, then we call compute_partial_domains with the universe
3048 * "class_domain". Otherwise, we take the "schedule_domain" as "class_domain",
3049 * with inner dimensions removed. We do this because we want to
3050 * avoid computing the complement of the class domains (i.e., the difference
3051 * between the universe and domains->done).
3053 static __isl_give isl_basic_set_list
*compute_domains(
3054 __isl_keep isl_union_map
*executed
, __isl_keep isl_ast_build
*build
)
3056 struct isl_codegen_domains domains
;
3059 isl_union_set
*schedule_domain
;
3063 enum isl_ast_loop_type type
;
3069 ctx
= isl_union_map_get_ctx(executed
);
3070 domains
.list
= isl_basic_set_list_alloc(ctx
, 0);
3072 schedule_domain
= isl_union_map_domain(isl_union_map_copy(executed
));
3073 domain
= isl_set_from_union_set(schedule_domain
);
3075 compute_domains_init_options(domains
.option
, build
);
3077 domains
.sep_class
= isl_ast_build_get_separation_class(build
);
3078 classes
= isl_map_range(isl_map_copy(domains
.sep_class
));
3079 n_param
= isl_set_dim(classes
, isl_dim_param
);
3080 classes
= isl_set_project_out(classes
, isl_dim_param
, 0, n_param
);
3082 space
= isl_set_get_space(domain
);
3083 domains
.build
= build
;
3084 domains
.schedule_domain
= isl_set_copy(domain
);
3085 domains
.executed
= executed
;
3086 domains
.done
= isl_set_empty(space
);
3088 if (isl_set_foreach_point(classes
, &compute_class_domains
, &domains
) < 0)
3089 domains
.list
= isl_basic_set_list_free(domains
.list
);
3090 isl_set_free(classes
);
3092 empty
= isl_set_is_empty(domains
.done
);
3094 domains
.list
= isl_basic_set_list_free(domains
.list
);
3095 domain
= isl_set_free(domain
);
3097 isl_set_free(domain
);
3098 domain
= isl_set_universe(isl_set_get_space(domains
.done
));
3100 domain
= isl_ast_build_eliminate(build
, domain
);
3102 if (compute_partial_domains(&domains
, domain
) < 0)
3103 domains
.list
= isl_basic_set_list_free(domains
.list
);
3105 isl_set_free(domains
.schedule_domain
);
3106 isl_set_free(domains
.done
);
3107 isl_map_free(domains
.sep_class
);
3108 for (type
= isl_ast_loop_atomic
; type
<= isl_ast_loop_separate
; ++type
)
3109 isl_set_free(domains
.option
[type
]);
3111 return domains
.list
;
3114 /* Generate code for a single component, after shifting (if any)
3115 * has been applied, in case the schedule was specified as a union map.
3117 * We first split up the domain at the current depth into disjoint
3118 * basic sets based on the user-specified options.
3119 * Then we generated code for each of them and concatenate the results.
3121 static __isl_give isl_ast_graft_list
*generate_shifted_component_flat(
3122 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
3124 isl_basic_set_list
*domain_list
;
3125 isl_ast_graft_list
*list
= NULL
;
3127 domain_list
= compute_domains(executed
, build
);
3128 list
= generate_parallel_domains(domain_list
, executed
, build
);
3130 isl_basic_set_list_free(domain_list
);
3131 isl_union_map_free(executed
);
3132 isl_ast_build_free(build
);
3137 /* Generate code for a single component, after shifting (if any)
3138 * has been applied, in case the schedule was specified as a schedule tree
3139 * and the separate option was specified.
3141 * We perform separation on the domain of "executed" and then generate
3142 * an AST for each of the resulting disjoint basic sets.
3144 static __isl_give isl_ast_graft_list
*generate_shifted_component_tree_separate(
3145 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
3149 isl_basic_set_list
*domain_list
;
3150 isl_ast_graft_list
*list
;
3152 space
= isl_ast_build_get_space(build
, 1);
3153 domain
= separate_schedule_domains(space
,
3154 isl_union_map_copy(executed
), build
);
3155 domain_list
= isl_basic_set_list_from_set(domain
);
3157 list
= generate_parallel_domains(domain_list
, executed
, build
);
3159 isl_basic_set_list_free(domain_list
);
3160 isl_union_map_free(executed
);
3161 isl_ast_build_free(build
);
3166 /* Internal data structure for generate_shifted_component_tree_unroll.
3168 * "executed" and "build" are inputs to generate_shifted_component_tree_unroll.
3169 * "list" collects the constructs grafts.
3171 struct isl_ast_unroll_tree_data
{
3172 isl_union_map
*executed
;
3173 isl_ast_build
*build
;
3174 isl_ast_graft_list
*list
;
3177 /* Initialize data->list to a list of "n" elements.
3179 static int init_unroll_tree(int n
, void *user
)
3181 struct isl_ast_unroll_tree_data
*data
= user
;
3184 ctx
= isl_ast_build_get_ctx(data
->build
);
3185 data
->list
= isl_ast_graft_list_alloc(ctx
, n
);
3190 /* Given an iteration of an unrolled domain represented by "bset",
3191 * generate the corresponding AST and add the result to data->list.
3193 static int do_unroll_tree_iteration(__isl_take isl_basic_set
*bset
, void *user
)
3195 struct isl_ast_unroll_tree_data
*data
= user
;
3197 data
->list
= add_node(data
->list
, isl_union_map_copy(data
->executed
),
3198 bset
, isl_ast_build_copy(data
->build
));
3203 /* Generate code for a single component, after shifting (if any)
3204 * has been applied, in case the schedule was specified as a schedule tree
3205 * and the unroll option was specified.
3207 * We call foreach_iteration to iterate over the individual values and
3208 * construct and collect the corresponding grafts in do_unroll_tree_iteration.
3210 static __isl_give isl_ast_graft_list
*generate_shifted_component_tree_unroll(
3211 __isl_take isl_union_map
*executed
, __isl_take isl_set
*domain
,
3212 __isl_take isl_ast_build
*build
)
3214 struct isl_ast_unroll_tree_data data
= { executed
, build
, NULL
};
3216 if (foreach_iteration(domain
, build
, &init_unroll_tree
,
3217 &do_unroll_tree_iteration
, &data
) < 0)
3218 data
.list
= isl_ast_graft_list_free(data
.list
);
3220 isl_union_map_free(executed
);
3221 isl_ast_build_free(build
);
3226 /* Does "domain" involve a disjunction that is purely based on
3227 * constraints involving only outer dimension?
3229 * In particular, is there a disjunction such that the constraints
3230 * involving the current and later dimensions are the same over
3231 * all the disjuncts?
3233 static isl_bool
has_pure_outer_disjunction(__isl_keep isl_set
*domain
,
3234 __isl_keep isl_ast_build
*build
)
3236 isl_basic_set
*hull
;
3237 isl_set
*shared
, *inner
;
3241 if (isl_set_n_basic_set(domain
) <= 1)
3242 return isl_bool_false
;
3244 inner
= isl_set_copy(domain
);
3245 depth
= isl_ast_build_get_depth(build
);
3246 dim
= isl_set_dim(inner
, isl_dim_set
);
3247 inner
= isl_set_drop_constraints_not_involving_dims(inner
,
3248 isl_dim_set
, depth
, dim
- depth
);
3249 hull
= isl_set_plain_unshifted_simple_hull(isl_set_copy(inner
));
3250 shared
= isl_set_from_basic_set(hull
);
3251 equal
= isl_set_plain_is_equal(inner
, shared
);
3252 isl_set_free(inner
);
3253 isl_set_free(shared
);
3258 /* Generate code for a single component, after shifting (if any)
3259 * has been applied, in case the schedule was specified as a schedule tree.
3260 * In particular, handle the base case where there is either no isolated
3261 * set or we are within the isolated set (in which case "isolated" is set)
3262 * or the iterations that precede or follow the isolated set.
3264 * The schedule domain is broken up or combined into basic sets
3265 * according to the AST generation option specified in the current
3266 * schedule node, which may be either atomic, separate, unroll or
3267 * unspecified. If the option is unspecified, then we currently simply
3268 * split the schedule domain into disjoint basic sets.
3270 * In case the separate option is specified, the AST generation is
3271 * handled by generate_shifted_component_tree_separate.
3272 * In the other cases, we need the global schedule domain.
3273 * In the unroll case, the AST generation is then handled by
3274 * generate_shifted_component_tree_unroll which needs the actual
3275 * schedule domain (with divs that may refer to the current dimension)
3276 * so that stride detection can be performed.
3277 * In the atomic or unspecified case, inner dimensions and divs involving
3278 * the current dimensions should be eliminated.
3279 * The result is then either combined into a single basic set or
3280 * split up into disjoint basic sets.
3281 * Finally an AST is generated for each basic set and the results are
3284 * If the schedule domain involves a disjunction that is purely based on
3285 * constraints involving only outer dimension, then it is treated as
3286 * if atomic was specified. This ensures that only a single loop
3287 * is generated instead of a sequence of identical loops with
3290 static __isl_give isl_ast_graft_list
*generate_shifted_component_tree_base(
3291 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
,
3294 isl_bool outer_disjunction
;
3295 isl_union_set
*schedule_domain
;
3297 isl_basic_set_list
*domain_list
;
3298 isl_ast_graft_list
*list
;
3299 enum isl_ast_loop_type type
;
3301 type
= isl_ast_build_get_loop_type(build
, isolated
);
3305 if (type
== isl_ast_loop_separate
)
3306 return generate_shifted_component_tree_separate(executed
,
3309 schedule_domain
= isl_union_map_domain(isl_union_map_copy(executed
));
3310 domain
= isl_set_from_union_set(schedule_domain
);
3312 if (type
== isl_ast_loop_unroll
)
3313 return generate_shifted_component_tree_unroll(executed
, domain
,
3316 domain
= isl_ast_build_eliminate(build
, domain
);
3317 domain
= isl_set_coalesce(domain
);
3319 outer_disjunction
= has_pure_outer_disjunction(domain
, build
);
3320 if (outer_disjunction
< 0)
3321 domain
= isl_set_free(domain
);
3323 if (outer_disjunction
|| type
== isl_ast_loop_atomic
) {
3324 isl_basic_set
*hull
;
3325 hull
= isl_set_unshifted_simple_hull(domain
);
3326 domain_list
= isl_basic_set_list_from_basic_set(hull
);
3328 domain
= isl_set_make_disjoint(domain
);
3329 domain_list
= isl_basic_set_list_from_set(domain
);
3332 list
= generate_parallel_domains(domain_list
, executed
, build
);
3334 isl_basic_set_list_free(domain_list
);
3335 isl_union_map_free(executed
);
3336 isl_ast_build_free(build
);
3340 isl_union_map_free(executed
);
3341 isl_ast_build_free(build
);
3345 /* Extract out the disjunction imposed by "domain" on the outer
3346 * schedule dimensions.
3348 * In particular, remove all inner dimensions from "domain" (including
3349 * the current dimension) and then remove the constraints that are shared
3350 * by all disjuncts in the result.
3352 static __isl_give isl_set
*extract_disjunction(__isl_take isl_set
*domain
,
3353 __isl_keep isl_ast_build
*build
)
3358 domain
= isl_ast_build_specialize(build
, domain
);
3359 depth
= isl_ast_build_get_depth(build
);
3360 dim
= isl_set_dim(domain
, isl_dim_set
);
3361 domain
= isl_set_eliminate(domain
, isl_dim_set
, depth
, dim
- depth
);
3362 domain
= isl_set_remove_unknown_divs(domain
);
3363 hull
= isl_set_copy(domain
);
3364 hull
= isl_set_from_basic_set(isl_set_unshifted_simple_hull(hull
));
3365 domain
= isl_set_gist(domain
, hull
);
3370 /* Add "guard" to the grafts in "list".
3371 * "build" is the outer AST build, while "sub_build" includes "guard"
3372 * in its generated domain.
3374 * First combine the grafts into a single graft and then add the guard.
3375 * If the list is empty, or if some error occurred, then simply return
3378 static __isl_give isl_ast_graft_list
*list_add_guard(
3379 __isl_take isl_ast_graft_list
*list
, __isl_keep isl_set
*guard
,
3380 __isl_keep isl_ast_build
*build
, __isl_keep isl_ast_build
*sub_build
)
3382 isl_ast_graft
*graft
;
3384 list
= isl_ast_graft_list_fuse(list
, sub_build
);
3386 if (isl_ast_graft_list_n_ast_graft(list
) != 1)
3389 graft
= isl_ast_graft_list_get_ast_graft(list
, 0);
3390 graft
= isl_ast_graft_add_guard(graft
, isl_set_copy(guard
), build
);
3391 list
= isl_ast_graft_list_set_ast_graft(list
, 0, graft
);
3396 /* Generate code for a single component, after shifting (if any)
3397 * has been applied, in case the schedule was specified as a schedule tree.
3398 * In particular, do so for the specified subset of the schedule domain.
3400 * If we are outside of the isolated part, then "domain" may include
3401 * a disjunction. Explicitly generate this disjunction at this point
3402 * instead of relying on the disjunction getting hoisted back up
3405 static __isl_give isl_ast_graft_list
*generate_shifted_component_tree_part(
3406 __isl_keep isl_union_map
*executed
, __isl_take isl_set
*domain
,
3407 __isl_keep isl_ast_build
*build
, int isolated
)
3409 isl_union_set
*uset
;
3410 isl_ast_graft_list
*list
;
3411 isl_ast_build
*sub_build
;
3414 uset
= isl_union_set_from_set(isl_set_copy(domain
));
3415 executed
= isl_union_map_copy(executed
);
3416 executed
= isl_union_map_intersect_domain(executed
, uset
);
3417 empty
= isl_union_map_is_empty(executed
);
3422 isl_union_map_free(executed
);
3423 isl_set_free(domain
);
3424 ctx
= isl_ast_build_get_ctx(build
);
3425 return isl_ast_graft_list_alloc(ctx
, 0);
3428 sub_build
= isl_ast_build_copy(build
);
3430 domain
= extract_disjunction(domain
, build
);
3431 sub_build
= isl_ast_build_restrict_generated(sub_build
,
3432 isl_set_copy(domain
));
3434 list
= generate_shifted_component_tree_base(executed
,
3435 isl_ast_build_copy(sub_build
), isolated
);
3437 list
= list_add_guard(list
, domain
, build
, sub_build
);
3438 isl_ast_build_free(sub_build
);
3439 isl_set_free(domain
);
3442 isl_union_map_free(executed
);
3443 isl_set_free(domain
);
3447 /* Generate code for a single component, after shifting (if any)
3448 * has been applied, in case the schedule was specified as a schedule tree.
3449 * In particular, do so for the specified sequence of subsets
3450 * of the schedule domain, "before", "isolated", "after" and "other",
3451 * where only the "isolated" part is considered to be isolated.
3453 static __isl_give isl_ast_graft_list
*generate_shifted_component_parts(
3454 __isl_take isl_union_map
*executed
, __isl_take isl_set
*before
,
3455 __isl_take isl_set
*isolated
, __isl_take isl_set
*after
,
3456 __isl_take isl_set
*other
, __isl_take isl_ast_build
*build
)
3458 isl_ast_graft_list
*list
, *res
;
3460 res
= generate_shifted_component_tree_part(executed
, before
, build
, 0);
3461 list
= generate_shifted_component_tree_part(executed
, isolated
,
3463 res
= isl_ast_graft_list_concat(res
, list
);
3464 list
= generate_shifted_component_tree_part(executed
, after
, build
, 0);
3465 res
= isl_ast_graft_list_concat(res
, list
);
3466 list
= generate_shifted_component_tree_part(executed
, other
, build
, 0);
3467 res
= isl_ast_graft_list_concat(res
, list
);
3469 isl_union_map_free(executed
);
3470 isl_ast_build_free(build
);
3475 /* Does "set" intersect "first", but not "second"?
3477 static isl_bool
only_intersects_first(__isl_keep isl_set
*set
,
3478 __isl_keep isl_set
*first
, __isl_keep isl_set
*second
)
3482 disjoint
= isl_set_is_disjoint(set
, first
);
3484 return isl_bool_error
;
3486 return isl_bool_false
;
3488 return isl_set_is_disjoint(set
, second
);
3491 /* Generate code for a single component, after shifting (if any)
3492 * has been applied, in case the schedule was specified as a schedule tree.
3493 * In particular, do so in case of isolation where there is
3494 * only an "isolated" part and an "after" part.
3495 * "dead1" and "dead2" are freed by this function in order to simplify
3498 * The "before" and "other" parts are set to empty sets.
3500 static __isl_give isl_ast_graft_list
*generate_shifted_component_only_after(
3501 __isl_take isl_union_map
*executed
, __isl_take isl_set
*isolated
,
3502 __isl_take isl_set
*after
, __isl_take isl_ast_build
*build
,
3503 __isl_take isl_set
*dead1
, __isl_take isl_set
*dead2
)
3507 empty
= isl_set_empty(isl_set_get_space(after
));
3508 isl_set_free(dead1
);
3509 isl_set_free(dead2
);
3510 return generate_shifted_component_parts(executed
, isl_set_copy(empty
),
3511 isolated
, after
, empty
, build
);
3514 /* Generate code for a single component, after shifting (if any)
3515 * has been applied, in case the schedule was specified as a schedule tree.
3517 * We first check if the user has specified an isolated schedule domain
3518 * and that we are not already outside of this isolated schedule domain.
3519 * If so, we break up the schedule domain into iterations that
3520 * precede the isolated domain, the isolated domain itself,
3521 * the iterations that follow the isolated domain and
3522 * the remaining iterations (those that are incomparable
3523 * to the isolated domain).
3524 * We generate an AST for each piece and concatenate the results.
3526 * If the isolated domain is not convex, then it is replaced
3527 * by a convex superset to ensure that the sets of preceding and
3528 * following iterations are properly defined and, in particular,
3529 * that there are no intermediate iterations that do not belong
3530 * to the isolated domain.
3532 * In the special case where at least one element of the schedule
3533 * domain that does not belong to the isolated domain needs
3534 * to be scheduled after this isolated domain, but none of those
3535 * elements need to be scheduled before, break up the schedule domain
3536 * in only two parts, the isolated domain, and a part that will be
3537 * scheduled after the isolated domain.
3539 * If no isolated set has been specified, then we generate an
3540 * AST for the entire inverse schedule.
3542 static __isl_give isl_ast_graft_list
*generate_shifted_component_tree(
3543 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
3546 int empty
, has_isolate
;
3548 isl_union_set
*schedule_domain
;
3550 isl_basic_set
*hull
;
3551 isl_set
*isolated
, *before
, *after
, *test
;
3555 build
= isl_ast_build_extract_isolated(build
);
3556 has_isolate
= isl_ast_build_has_isolated(build
);
3557 if (has_isolate
< 0)
3558 executed
= isl_union_map_free(executed
);
3559 else if (!has_isolate
)
3560 return generate_shifted_component_tree_base(executed
, build
, 0);
3562 schedule_domain
= isl_union_map_domain(isl_union_map_copy(executed
));
3563 domain
= isl_set_from_union_set(schedule_domain
);
3565 isolated
= isl_ast_build_get_isolated(build
);
3566 isolated
= isl_set_intersect(isolated
, isl_set_copy(domain
));
3567 test
= isl_ast_build_specialize(build
, isl_set_copy(isolated
));
3568 empty
= isl_set_is_empty(test
);
3573 isl_set_free(isolated
);
3574 isl_set_free(domain
);
3575 return generate_shifted_component_tree_base(executed
, build
, 0);
3577 isolated
= isl_ast_build_eliminate(build
, isolated
);
3578 hull
= isl_set_unshifted_simple_hull(isolated
);
3579 isolated
= isl_set_from_basic_set(hull
);
3581 depth
= isl_ast_build_get_depth(build
);
3582 space
= isl_space_map_from_set(isl_set_get_space(isolated
));
3583 gt
= isl_map_universe(space
);
3584 for (i
= 0; i
< depth
; ++i
)
3585 gt
= isl_map_equate(gt
, isl_dim_in
, i
, isl_dim_out
, i
);
3586 gt
= isl_map_order_gt(gt
, isl_dim_in
, depth
, isl_dim_out
, depth
);
3587 lt
= isl_map_reverse(isl_map_copy(gt
));
3588 before
= isl_set_apply(isl_set_copy(isolated
), gt
);
3589 after
= isl_set_apply(isl_set_copy(isolated
), lt
);
3591 domain
= isl_set_subtract(domain
, isl_set_copy(isolated
));
3592 pure
= only_intersects_first(domain
, after
, before
);
3594 executed
= isl_union_map_free(executed
);
3596 return generate_shifted_component_only_after(executed
, isolated
,
3597 domain
, build
, before
, after
);
3598 domain
= isl_set_subtract(domain
, isl_set_copy(before
));
3599 domain
= isl_set_subtract(domain
, isl_set_copy(after
));
3600 after
= isl_set_subtract(after
, isl_set_copy(isolated
));
3601 after
= isl_set_subtract(after
, isl_set_copy(before
));
3602 before
= isl_set_subtract(before
, isl_set_copy(isolated
));
3604 return generate_shifted_component_parts(executed
, before
, isolated
,
3605 after
, domain
, build
);
3607 isl_set_free(domain
);
3608 isl_set_free(isolated
);
3609 isl_union_map_free(executed
);
3610 isl_ast_build_free(build
);
3614 /* Generate code for a single component, after shifting (if any)
3617 * Call generate_shifted_component_tree or generate_shifted_component_flat
3618 * depending on whether the schedule was specified as a schedule tree.
3620 static __isl_give isl_ast_graft_list
*generate_shifted_component(
3621 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
3623 if (isl_ast_build_has_schedule_node(build
))
3624 return generate_shifted_component_tree(executed
, build
);
3626 return generate_shifted_component_flat(executed
, build
);
3629 struct isl_set_map_pair
{
3634 /* Given an array "domain" of isl_set_map_pairs and an array "order"
3635 * of indices into the "domain" array,
3636 * return the union of the "map" fields of the elements
3637 * indexed by the first "n" elements of "order".
3639 static __isl_give isl_union_map
*construct_component_executed(
3640 struct isl_set_map_pair
*domain
, int *order
, int n
)
3644 isl_union_map
*executed
;
3646 map
= isl_map_copy(domain
[order
[0]].map
);
3647 executed
= isl_union_map_from_map(map
);
3648 for (i
= 1; i
< n
; ++i
) {
3649 map
= isl_map_copy(domain
[order
[i
]].map
);
3650 executed
= isl_union_map_add_map(executed
, map
);
3656 /* Generate code for a single component, after shifting (if any)
3659 * The component inverse schedule is specified as the "map" fields
3660 * of the elements of "domain" indexed by the first "n" elements of "order".
3662 static __isl_give isl_ast_graft_list
*generate_shifted_component_from_list(
3663 struct isl_set_map_pair
*domain
, int *order
, int n
,
3664 __isl_take isl_ast_build
*build
)
3666 isl_union_map
*executed
;
3668 executed
= construct_component_executed(domain
, order
, n
);
3669 return generate_shifted_component(executed
, build
);
3672 /* Does set dimension "pos" of "set" have an obviously fixed value?
3674 static int dim_is_fixed(__isl_keep isl_set
*set
, int pos
)
3679 v
= isl_set_plain_get_val_if_fixed(set
, isl_dim_set
, pos
);
3682 fixed
= !isl_val_is_nan(v
);
3688 /* Given an array "domain" of isl_set_map_pairs and an array "order"
3689 * of indices into the "domain" array,
3690 * do all (except for at most one) of the "set" field of the elements
3691 * indexed by the first "n" elements of "order" have a fixed value
3692 * at position "depth"?
3694 static int at_most_one_non_fixed(struct isl_set_map_pair
*domain
,
3695 int *order
, int n
, int depth
)
3700 for (i
= 0; i
< n
; ++i
) {
3703 f
= dim_is_fixed(domain
[order
[i
]].set
, depth
);
3716 /* Given an array "domain" of isl_set_map_pairs and an array "order"
3717 * of indices into the "domain" array,
3718 * eliminate the inner dimensions from the "set" field of the elements
3719 * indexed by the first "n" elements of "order", provided the current
3720 * dimension does not have a fixed value.
3722 * Return the index of the first element in "order" with a corresponding
3723 * "set" field that does not have an (obviously) fixed value.
3725 static int eliminate_non_fixed(struct isl_set_map_pair
*domain
,
3726 int *order
, int n
, int depth
, __isl_keep isl_ast_build
*build
)
3731 for (i
= n
- 1; i
>= 0; --i
) {
3733 f
= dim_is_fixed(domain
[order
[i
]].set
, depth
);
3738 domain
[order
[i
]].set
= isl_ast_build_eliminate_inner(build
,
3739 domain
[order
[i
]].set
);
3746 /* Given an array "domain" of isl_set_map_pairs and an array "order"
3747 * of indices into the "domain" array,
3748 * find the element of "domain" (amongst those indexed by the first "n"
3749 * elements of "order") with the "set" field that has the smallest
3750 * value for the current iterator.
3752 * Note that the domain with the smallest value may depend on the parameters
3753 * and/or outer loop dimension. Since the result of this function is only
3754 * used as heuristic, we only make a reasonable attempt at finding the best
3755 * domain, one that should work in case a single domain provides the smallest
3756 * value for the current dimension over all values of the parameters
3757 * and outer dimensions.
3759 * In particular, we compute the smallest value of the first domain
3760 * and replace it by that of any later domain if that later domain
3761 * has a smallest value that is smaller for at least some value
3762 * of the parameters and outer dimensions.
3764 static int first_offset(struct isl_set_map_pair
*domain
, int *order
, int n
,
3765 __isl_keep isl_ast_build
*build
)
3771 min_first
= isl_ast_build_map_to_iterator(build
,
3772 isl_set_copy(domain
[order
[0]].set
));
3773 min_first
= isl_map_lexmin(min_first
);
3775 for (i
= 1; i
< n
; ++i
) {
3776 isl_map
*min
, *test
;
3779 min
= isl_ast_build_map_to_iterator(build
,
3780 isl_set_copy(domain
[order
[i
]].set
));
3781 min
= isl_map_lexmin(min
);
3782 test
= isl_map_copy(min
);
3783 test
= isl_map_apply_domain(isl_map_copy(min_first
), test
);
3784 test
= isl_map_order_lt(test
, isl_dim_in
, 0, isl_dim_out
, 0);
3785 empty
= isl_map_is_empty(test
);
3787 if (empty
>= 0 && !empty
) {
3788 isl_map_free(min_first
);
3798 isl_map_free(min_first
);
3800 return i
< n
? -1 : first
;
3803 /* Construct a shifted inverse schedule based on the original inverse schedule,
3804 * the stride and the offset.
3806 * The original inverse schedule is specified as the "map" fields
3807 * of the elements of "domain" indexed by the first "n" elements of "order".
3809 * "stride" and "offset" are such that the difference
3810 * between the values of the current dimension of domain "i"
3811 * and the values of the current dimension for some reference domain are
3814 * stride * integer + offset[i]
3816 * Moreover, 0 <= offset[i] < stride.
3818 * For each domain, we create a map
3820 * { [..., j, ...] -> [..., j - offset[i], offset[i], ....] }
3822 * where j refers to the current dimension and the other dimensions are
3823 * unchanged, and apply this map to the original schedule domain.
3825 * For example, for the original schedule
3827 * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
3829 * and assuming the offset is 0 for the A domain and 1 for the B domain,
3830 * we apply the mapping
3834 * to the schedule of the "A" domain and the mapping
3836 * { [j - 1] -> [j, 1] }
3838 * to the schedule of the "B" domain.
3841 * Note that after the transformation, the differences between pairs
3842 * of values of the current dimension over all domains are multiples
3843 * of stride and that we have therefore exposed the stride.
3846 * To see that the mapping preserves the lexicographic order,
3847 * first note that each of the individual maps above preserves the order.
3848 * If the value of the current iterator is j1 in one domain and j2 in another,
3849 * then if j1 = j2, we know that the same map is applied to both domains
3850 * and the order is preserved.
3851 * Otherwise, let us assume, without loss of generality, that j1 < j2.
3852 * If c1 >= c2 (with c1 and c2 the corresponding offsets), then
3856 * and the order is preserved.
3857 * If c1 < c2, then we know
3863 * j2 - j1 = n * s + r
3865 * with n >= 0 and 0 <= r < s.
3866 * In other words, r = c2 - c1.
3877 * (j1 - c1, c1) << (j2 - c2, c2)
3879 * with "<<" the lexicographic order, proving that the order is preserved
3882 static __isl_give isl_union_map
*contruct_shifted_executed(
3883 struct isl_set_map_pair
*domain
, int *order
, int n
,
3884 __isl_keep isl_val
*stride
, __isl_keep isl_multi_val
*offset
,
3885 __isl_take isl_ast_build
*build
)
3888 isl_union_map
*executed
;
3894 depth
= isl_ast_build_get_depth(build
);
3895 space
= isl_ast_build_get_space(build
, 1);
3896 executed
= isl_union_map_empty(isl_space_copy(space
));
3897 space
= isl_space_map_from_set(space
);
3898 map
= isl_map_identity(isl_space_copy(space
));
3899 map
= isl_map_eliminate(map
, isl_dim_out
, depth
, 1);
3900 map
= isl_map_insert_dims(map
, isl_dim_out
, depth
+ 1, 1);
3901 space
= isl_space_insert_dims(space
, isl_dim_out
, depth
+ 1, 1);
3903 c
= isl_constraint_alloc_equality(isl_local_space_from_space(space
));
3904 c
= isl_constraint_set_coefficient_si(c
, isl_dim_in
, depth
, 1);
3905 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, depth
, -1);
3907 for (i
= 0; i
< n
; ++i
) {
3911 v
= isl_multi_val_get_val(offset
, i
);
3914 map_i
= isl_map_copy(map
);
3915 map_i
= isl_map_fix_val(map_i
, isl_dim_out
, depth
+ 1,
3918 c
= isl_constraint_set_constant_val(c
, v
);
3919 map_i
= isl_map_add_constraint(map_i
, isl_constraint_copy(c
));
3921 map_i
= isl_map_apply_domain(isl_map_copy(domain
[order
[i
]].map
),
3923 executed
= isl_union_map_add_map(executed
, map_i
);
3926 isl_constraint_free(c
);
3930 executed
= isl_union_map_free(executed
);
3935 /* Generate code for a single component, after exposing the stride,
3936 * given that the schedule domain is "shifted strided".
3938 * The component inverse schedule is specified as the "map" fields
3939 * of the elements of "domain" indexed by the first "n" elements of "order".
3941 * The schedule domain being "shifted strided" means that the differences
3942 * between the values of the current dimension of domain "i"
3943 * and the values of the current dimension for some reference domain are
3946 * stride * integer + offset[i]
3948 * We first look for the domain with the "smallest" value for the current
3949 * dimension and adjust the offsets such that the offset of the "smallest"
3950 * domain is equal to zero. The other offsets are reduced modulo stride.
3952 * Based on this information, we construct a new inverse schedule in
3953 * contruct_shifted_executed that exposes the stride.
3954 * Since this involves the introduction of a new schedule dimension,
3955 * the build needs to be changed accodingly.
3956 * After computing the AST, the newly introduced dimension needs
3957 * to be removed again from the list of grafts. We do this by plugging
3958 * in a mapping that represents the new schedule domain in terms of the
3959 * old schedule domain.
3961 static __isl_give isl_ast_graft_list
*generate_shift_component(
3962 struct isl_set_map_pair
*domain
, int *order
, int n
,
3963 __isl_keep isl_val
*stride
, __isl_keep isl_multi_val
*offset
,
3964 __isl_take isl_ast_build
*build
)
3966 isl_ast_graft_list
*list
;
3972 isl_multi_aff
*ma
, *zero
;
3973 isl_union_map
*executed
;
3975 depth
= isl_ast_build_get_depth(build
);
3977 first
= first_offset(domain
, order
, n
, build
);
3981 mv
= isl_multi_val_copy(offset
);
3982 val
= isl_multi_val_get_val(offset
, first
);
3983 val
= isl_val_neg(val
);
3984 mv
= isl_multi_val_add_val(mv
, val
);
3985 mv
= isl_multi_val_mod_val(mv
, isl_val_copy(stride
));
3987 executed
= contruct_shifted_executed(domain
, order
, n
, stride
, mv
,
3989 space
= isl_ast_build_get_space(build
, 1);
3990 space
= isl_space_map_from_set(space
);
3991 ma
= isl_multi_aff_identity(isl_space_copy(space
));
3992 space
= isl_space_from_domain(isl_space_domain(space
));
3993 space
= isl_space_add_dims(space
, isl_dim_out
, 1);
3994 zero
= isl_multi_aff_zero(space
);
3995 ma
= isl_multi_aff_range_splice(ma
, depth
+ 1, zero
);
3996 build
= isl_ast_build_insert_dim(build
, depth
+ 1);
3997 list
= generate_shifted_component(executed
, build
);
3999 list
= isl_ast_graft_list_preimage_multi_aff(list
, ma
);
4001 isl_multi_val_free(mv
);
4005 isl_ast_build_free(build
);
4009 /* Does any node in the schedule tree rooted at the current schedule node
4010 * of "build" depend on outer schedule nodes?
4012 static int has_anchored_subtree(__isl_keep isl_ast_build
*build
)
4014 isl_schedule_node
*node
;
4017 node
= isl_ast_build_get_schedule_node(build
);
4018 dependent
= isl_schedule_node_is_subtree_anchored(node
);
4019 isl_schedule_node_free(node
);
4024 /* Generate code for a single component.
4026 * The component inverse schedule is specified as the "map" fields
4027 * of the elements of "domain" indexed by the first "n" elements of "order".
4029 * This function may modify the "set" fields of "domain".
4031 * Before proceeding with the actual code generation for the component,
4032 * we first check if there are any "shifted" strides, meaning that
4033 * the schedule domains of the individual domains are all strided,
4034 * but that they have different offsets, resulting in the union
4035 * of schedule domains not being strided anymore.
4037 * The simplest example is the schedule
4039 * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
4041 * Both schedule domains are strided, but their union is not.
4042 * This function detects such cases and then rewrites the schedule to
4044 * { A[i] -> [2i, 0]: 0 <= i < 10; B[i] -> [2i, 1] : 0 <= i < 10 }
4046 * In the new schedule, the schedule domains have the same offset (modulo
4047 * the stride), ensuring that the union of schedule domains is also strided.
4050 * If there is only a single domain in the component, then there is
4051 * nothing to do. Similarly, if the current schedule dimension has
4052 * a fixed value for almost all domains then there is nothing to be done.
4053 * In particular, we need at least two domains where the current schedule
4054 * dimension does not have a fixed value.
4055 * Finally, in case of a schedule map input,
4056 * if any of the options refer to the current schedule dimension,
4057 * then we bail out as well. It would be possible to reformulate the options
4058 * in terms of the new schedule domain, but that would introduce constraints
4059 * that separate the domains in the options and that is something we would
4061 * In the case of a schedule tree input, we bail out if any of
4062 * the descendants of the current schedule node refer to outer
4063 * schedule nodes in any way.
4066 * To see if there is any shifted stride, we look at the differences
4067 * between the values of the current dimension in pairs of domains
4068 * for equal values of outer dimensions. These differences should be
4073 * with "m" the stride and "r" a constant. Note that we cannot perform
4074 * this analysis on individual domains as the lower bound in each domain
4075 * may depend on parameters or outer dimensions and so the current dimension
4076 * itself may not have a fixed remainder on division by the stride.
4078 * In particular, we compare the first domain that does not have an
4079 * obviously fixed value for the current dimension to itself and all
4080 * other domains and collect the offsets and the gcd of the strides.
4081 * If the gcd becomes one, then we failed to find shifted strides.
4082 * If the gcd is zero, then the differences were all fixed, meaning
4083 * that some domains had non-obviously fixed values for the current dimension.
4084 * If all the offsets are the same (for those domains that do not have
4085 * an obviously fixed value for the current dimension), then we do not
4086 * apply the transformation.
4087 * If none of the domains were skipped, then there is nothing to do.
4088 * If some of them were skipped, then if we apply separation, the schedule
4089 * domain should get split in pieces with a (non-shifted) stride.
4091 * Otherwise, we apply a shift to expose the stride in
4092 * generate_shift_component.
4094 static __isl_give isl_ast_graft_list
*generate_component(
4095 struct isl_set_map_pair
*domain
, int *order
, int n
,
4096 __isl_take isl_ast_build
*build
)
4103 isl_val
*gcd
= NULL
;
4107 isl_ast_graft_list
*list
;
4110 depth
= isl_ast_build_get_depth(build
);
4113 if (skip
>= 0 && !skip
)
4114 skip
= at_most_one_non_fixed(domain
, order
, n
, depth
);
4115 if (skip
>= 0 && !skip
) {
4116 if (isl_ast_build_has_schedule_node(build
))
4117 skip
= has_anchored_subtree(build
);
4119 skip
= isl_ast_build_options_involve_depth(build
);
4124 return generate_shifted_component_from_list(domain
,
4127 base
= eliminate_non_fixed(domain
, order
, n
, depth
, build
);
4131 ctx
= isl_ast_build_get_ctx(build
);
4133 mv
= isl_multi_val_zero(isl_space_set_alloc(ctx
, 0, n
));
4136 for (i
= 0; i
< n
; ++i
) {
4139 map
= isl_map_from_domain_and_range(
4140 isl_set_copy(domain
[order
[base
]].set
),
4141 isl_set_copy(domain
[order
[i
]].set
));
4142 for (d
= 0; d
< depth
; ++d
)
4143 map
= isl_map_equate(map
, isl_dim_in
, d
,
4145 deltas
= isl_map_deltas(map
);
4146 res
= isl_set_dim_residue_class_val(deltas
, depth
, &m
, &r
);
4147 isl_set_free(deltas
);
4154 gcd
= isl_val_gcd(gcd
, m
);
4155 if (isl_val_is_one(gcd
)) {
4159 mv
= isl_multi_val_set_val(mv
, i
, r
);
4161 res
= dim_is_fixed(domain
[order
[i
]].set
, depth
);
4167 if (fixed
&& i
> base
) {
4169 a
= isl_multi_val_get_val(mv
, i
);
4170 b
= isl_multi_val_get_val(mv
, base
);
4171 if (isl_val_ne(a
, b
))
4178 if (res
< 0 || !gcd
) {
4179 isl_ast_build_free(build
);
4181 } else if (i
< n
|| fixed
|| isl_val_is_zero(gcd
)) {
4182 list
= generate_shifted_component_from_list(domain
,
4185 list
= generate_shift_component(domain
, order
, n
, gcd
, mv
,
4190 isl_multi_val_free(mv
);
4194 isl_ast_build_free(build
);
4198 /* Store both "map" itself and its domain in the
4199 * structure pointed to by *next and advance to the next array element.
4201 static isl_stat
extract_domain(__isl_take isl_map
*map
, void *user
)
4203 struct isl_set_map_pair
**next
= user
;
4205 (*next
)->map
= isl_map_copy(map
);
4206 (*next
)->set
= isl_map_domain(map
);
4212 static int after_in_tree(__isl_keep isl_union_map
*umap
,
4213 __isl_keep isl_schedule_node
*node
);
4215 /* Is any domain element of "umap" scheduled after any of
4216 * the corresponding image elements by the tree rooted at
4217 * the child of "node"?
4219 static int after_in_child(__isl_keep isl_union_map
*umap
,
4220 __isl_keep isl_schedule_node
*node
)
4222 isl_schedule_node
*child
;
4225 child
= isl_schedule_node_get_child(node
, 0);
4226 after
= after_in_tree(umap
, child
);
4227 isl_schedule_node_free(child
);
4232 /* Is any domain element of "umap" scheduled after any of
4233 * the corresponding image elements by the tree rooted at
4234 * the band node "node"?
4236 * We first check if any domain element is scheduled after any
4237 * of the corresponding image elements by the band node itself.
4238 * If not, we restrict "map" to those pairs of element that
4239 * are scheduled together by the band node and continue with
4240 * the child of the band node.
4241 * If there are no such pairs then the map passed to after_in_child
4242 * will be empty causing it to return 0.
4244 static int after_in_band(__isl_keep isl_union_map
*umap
,
4245 __isl_keep isl_schedule_node
*node
)
4247 isl_multi_union_pw_aff
*mupa
;
4248 isl_union_map
*partial
, *test
, *gt
, *universe
, *umap1
, *umap2
;
4249 isl_union_set
*domain
, *range
;
4254 if (isl_schedule_node_band_n_member(node
) == 0)
4255 return after_in_child(umap
, node
);
4257 mupa
= isl_schedule_node_band_get_partial_schedule(node
);
4258 space
= isl_multi_union_pw_aff_get_space(mupa
);
4259 partial
= isl_union_map_from_multi_union_pw_aff(mupa
);
4260 test
= isl_union_map_copy(umap
);
4261 test
= isl_union_map_apply_domain(test
, isl_union_map_copy(partial
));
4262 test
= isl_union_map_apply_range(test
, isl_union_map_copy(partial
));
4263 gt
= isl_union_map_from_map(isl_map_lex_gt(space
));
4264 test
= isl_union_map_intersect(test
, gt
);
4265 empty
= isl_union_map_is_empty(test
);
4266 isl_union_map_free(test
);
4268 if (empty
< 0 || !empty
) {
4269 isl_union_map_free(partial
);
4270 return empty
< 0 ? -1 : 1;
4273 universe
= isl_union_map_universe(isl_union_map_copy(umap
));
4274 domain
= isl_union_map_domain(isl_union_map_copy(universe
));
4275 range
= isl_union_map_range(universe
);
4276 umap1
= isl_union_map_copy(partial
);
4277 umap1
= isl_union_map_intersect_domain(umap1
, domain
);
4278 umap2
= isl_union_map_intersect_domain(partial
, range
);
4279 test
= isl_union_map_apply_range(umap1
, isl_union_map_reverse(umap2
));
4280 test
= isl_union_map_intersect(test
, isl_union_map_copy(umap
));
4281 after
= after_in_child(test
, node
);
4282 isl_union_map_free(test
);
4286 /* Is any domain element of "umap" scheduled after any of
4287 * the corresponding image elements by the tree rooted at
4288 * the context node "node"?
4290 * The context constraints apply to the schedule domain,
4291 * so we cannot apply them directly to "umap", which contains
4292 * pairs of statement instances. Instead, we add them
4293 * to the range of the prefix schedule for both domain and
4296 static int after_in_context(__isl_keep isl_union_map
*umap
,
4297 __isl_keep isl_schedule_node
*node
)
4299 isl_union_map
*prefix
, *universe
, *umap1
, *umap2
;
4300 isl_union_set
*domain
, *range
;
4304 umap
= isl_union_map_copy(umap
);
4305 context
= isl_schedule_node_context_get_context(node
);
4306 prefix
= isl_schedule_node_get_prefix_schedule_union_map(node
);
4307 universe
= isl_union_map_universe(isl_union_map_copy(umap
));
4308 domain
= isl_union_map_domain(isl_union_map_copy(universe
));
4309 range
= isl_union_map_range(universe
);
4310 umap1
= isl_union_map_copy(prefix
);
4311 umap1
= isl_union_map_intersect_domain(umap1
, domain
);
4312 umap2
= isl_union_map_intersect_domain(prefix
, range
);
4313 umap1
= isl_union_map_intersect_range(umap1
,
4314 isl_union_set_from_set(context
));
4315 umap1
= isl_union_map_apply_range(umap1
, isl_union_map_reverse(umap2
));
4316 umap
= isl_union_map_intersect(umap
, umap1
);
4318 after
= after_in_child(umap
, node
);
4320 isl_union_map_free(umap
);
4325 /* Is any domain element of "umap" scheduled after any of
4326 * the corresponding image elements by the tree rooted at
4327 * the expansion node "node"?
4329 * We apply the expansion to domain and range of "umap" and
4330 * continue with its child.
4332 static int after_in_expansion(__isl_keep isl_union_map
*umap
,
4333 __isl_keep isl_schedule_node
*node
)
4335 isl_union_map
*expansion
;
4338 expansion
= isl_schedule_node_expansion_get_expansion(node
);
4339 umap
= isl_union_map_copy(umap
);
4340 umap
= isl_union_map_apply_domain(umap
, isl_union_map_copy(expansion
));
4341 umap
= isl_union_map_apply_range(umap
, expansion
);
4343 after
= after_in_child(umap
, node
);
4345 isl_union_map_free(umap
);
4350 /* Is any domain element of "umap" scheduled after any of
4351 * the corresponding image elements by the tree rooted at
4352 * the extension node "node"?
4354 * Since the extension node may add statement instances before or
4355 * after the pairs of statement instances in "umap", we return 1
4356 * to ensure that these pairs are not broken up.
4358 static int after_in_extension(__isl_keep isl_union_map
*umap
,
4359 __isl_keep isl_schedule_node
*node
)
4364 /* Is any domain element of "umap" scheduled after any of
4365 * the corresponding image elements by the tree rooted at
4366 * the filter node "node"?
4368 * We intersect domain and range of "umap" with the filter and
4369 * continue with its child.
4371 static int after_in_filter(__isl_keep isl_union_map
*umap
,
4372 __isl_keep isl_schedule_node
*node
)
4374 isl_union_set
*filter
;
4377 umap
= isl_union_map_copy(umap
);
4378 filter
= isl_schedule_node_filter_get_filter(node
);
4379 umap
= isl_union_map_intersect_domain(umap
, isl_union_set_copy(filter
));
4380 umap
= isl_union_map_intersect_range(umap
, filter
);
4382 after
= after_in_child(umap
, node
);
4384 isl_union_map_free(umap
);
4389 /* Is any domain element of "umap" scheduled after any of
4390 * the corresponding image elements by the tree rooted at
4391 * the set node "node"?
4393 * This is only the case if this condition holds in any
4394 * of the (filter) children of the set node.
4395 * In particular, if the domain and the range of "umap"
4396 * are contained in different children, then the condition
4399 static int after_in_set(__isl_keep isl_union_map
*umap
,
4400 __isl_keep isl_schedule_node
*node
)
4404 n
= isl_schedule_node_n_children(node
);
4405 for (i
= 0; i
< n
; ++i
) {
4406 isl_schedule_node
*child
;
4409 child
= isl_schedule_node_get_child(node
, i
);
4410 after
= after_in_tree(umap
, child
);
4411 isl_schedule_node_free(child
);
4413 if (after
< 0 || after
)
4420 /* Return the filter of child "i" of "node".
4422 static __isl_give isl_union_set
*child_filter(
4423 __isl_keep isl_schedule_node
*node
, int i
)
4425 isl_schedule_node
*child
;
4426 isl_union_set
*filter
;
4428 child
= isl_schedule_node_get_child(node
, i
);
4429 filter
= isl_schedule_node_filter_get_filter(child
);
4430 isl_schedule_node_free(child
);
4435 /* Is any domain element of "umap" scheduled after any of
4436 * the corresponding image elements by the tree rooted at
4437 * the sequence node "node"?
4439 * This happens in particular if any domain element is
4440 * contained in a later child than one containing a range element or
4441 * if the condition holds within a given child in the sequence.
4442 * The later part of the condition is checked by after_in_set.
4444 static int after_in_sequence(__isl_keep isl_union_map
*umap
,
4445 __isl_keep isl_schedule_node
*node
)
4448 isl_union_map
*umap_i
;
4449 int empty
, after
= 0;
4451 n
= isl_schedule_node_n_children(node
);
4452 for (i
= 1; i
< n
; ++i
) {
4453 isl_union_set
*filter_i
;
4455 umap_i
= isl_union_map_copy(umap
);
4456 filter_i
= child_filter(node
, i
);
4457 umap_i
= isl_union_map_intersect_domain(umap_i
, filter_i
);
4458 empty
= isl_union_map_is_empty(umap_i
);
4462 isl_union_map_free(umap_i
);
4466 for (j
= 0; j
< i
; ++j
) {
4467 isl_union_set
*filter_j
;
4468 isl_union_map
*umap_ij
;
4470 umap_ij
= isl_union_map_copy(umap_i
);
4471 filter_j
= child_filter(node
, j
);
4472 umap_ij
= isl_union_map_intersect_range(umap_ij
,
4474 empty
= isl_union_map_is_empty(umap_ij
);
4475 isl_union_map_free(umap_ij
);
4485 isl_union_map_free(umap_i
);
4490 if (after
< 0 || after
)
4493 return after_in_set(umap
, node
);
4495 isl_union_map_free(umap_i
);
4499 /* Is any domain element of "umap" scheduled after any of
4500 * the corresponding image elements by the tree rooted at "node"?
4502 * If "umap" is empty, then clearly there is no such element.
4503 * Otherwise, consider the different types of nodes separately.
4505 static int after_in_tree(__isl_keep isl_union_map
*umap
,
4506 __isl_keep isl_schedule_node
*node
)
4509 enum isl_schedule_node_type type
;
4511 empty
= isl_union_map_is_empty(umap
);
4519 type
= isl_schedule_node_get_type(node
);
4521 case isl_schedule_node_error
:
4523 case isl_schedule_node_leaf
:
4525 case isl_schedule_node_band
:
4526 return after_in_band(umap
, node
);
4527 case isl_schedule_node_domain
:
4528 isl_die(isl_schedule_node_get_ctx(node
), isl_error_internal
,
4529 "unexpected internal domain node", return -1);
4530 case isl_schedule_node_context
:
4531 return after_in_context(umap
, node
);
4532 case isl_schedule_node_expansion
:
4533 return after_in_expansion(umap
, node
);
4534 case isl_schedule_node_extension
:
4535 return after_in_extension(umap
, node
);
4536 case isl_schedule_node_filter
:
4537 return after_in_filter(umap
, node
);
4538 case isl_schedule_node_guard
:
4539 case isl_schedule_node_mark
:
4540 return after_in_child(umap
, node
);
4541 case isl_schedule_node_set
:
4542 return after_in_set(umap
, node
);
4543 case isl_schedule_node_sequence
:
4544 return after_in_sequence(umap
, node
);
4550 /* Is any domain element of "map1" scheduled after any domain
4551 * element of "map2" by the subtree underneath the current band node,
4552 * while at the same time being scheduled together by the current
4553 * band node, i.e., by "map1" and "map2?
4555 * If the child of the current band node is a leaf, then
4556 * no element can be scheduled after any other element.
4558 * Otherwise, we construct a relation between domain elements
4559 * of "map1" and domain elements of "map2" that are scheduled
4560 * together and then check if the subtree underneath the current
4561 * band node determines their relative order.
4563 static int after_in_subtree(__isl_keep isl_ast_build
*build
,
4564 __isl_keep isl_map
*map1
, __isl_keep isl_map
*map2
)
4566 isl_schedule_node
*node
;
4568 isl_union_map
*umap
;
4571 node
= isl_ast_build_get_schedule_node(build
);
4574 node
= isl_schedule_node_child(node
, 0);
4575 if (isl_schedule_node_get_type(node
) == isl_schedule_node_leaf
) {
4576 isl_schedule_node_free(node
);
4579 map
= isl_map_copy(map2
);
4580 map
= isl_map_apply_domain(map
, isl_map_copy(map1
));
4581 umap
= isl_union_map_from_map(map
);
4582 after
= after_in_tree(umap
, node
);
4583 isl_union_map_free(umap
);
4584 isl_schedule_node_free(node
);
4588 /* Internal data for any_scheduled_after.
4590 * "build" is the build in which the AST is constructed.
4591 * "depth" is the number of loops that have already been generated
4592 * "group_coscheduled" is a local copy of options->ast_build_group_coscheduled
4593 * "domain" is an array of set-map pairs corresponding to the different
4594 * iteration domains. The set is the schedule domain, i.e., the domain
4595 * of the inverse schedule, while the map is the inverse schedule itself.
4597 struct isl_any_scheduled_after_data
{
4598 isl_ast_build
*build
;
4600 int group_coscheduled
;
4601 struct isl_set_map_pair
*domain
;
4604 /* Is any element of domain "i" scheduled after any element of domain "j"
4605 * (for a common iteration of the first data->depth loops)?
4607 * data->domain[i].set contains the domain of the inverse schedule
4608 * for domain "i", i.e., elements in the schedule domain.
4610 * If we are inside a band of a schedule tree and there is a pair
4611 * of elements in the two domains that is schedule together by
4612 * the current band, then we check if any element of "i" may be schedule
4613 * after element of "j" by the descendants of the band node.
4615 * If data->group_coscheduled is set, then we also return 1 if there
4616 * is any pair of elements in the two domains that are scheduled together.
4618 static isl_bool
any_scheduled_after(int i
, int j
, void *user
)
4620 struct isl_any_scheduled_after_data
*data
= user
;
4621 int dim
= isl_set_dim(data
->domain
[i
].set
, isl_dim_set
);
4624 for (pos
= data
->depth
; pos
< dim
; ++pos
) {
4627 follows
= isl_set_follows_at(data
->domain
[i
].set
,
4628 data
->domain
[j
].set
, pos
);
4631 return isl_bool_error
;
4633 return isl_bool_true
;
4635 return isl_bool_false
;
4638 if (isl_ast_build_has_schedule_node(data
->build
)) {
4641 after
= after_in_subtree(data
->build
, data
->domain
[i
].map
,
4642 data
->domain
[j
].map
);
4643 if (after
< 0 || after
)
4647 return data
->group_coscheduled
;
4650 /* Look for independent components at the current depth and generate code
4651 * for each component separately. The resulting lists of grafts are
4652 * merged in an attempt to combine grafts with identical guards.
4654 * Code for two domains can be generated separately if all the elements
4655 * of one domain are scheduled before (or together with) all the elements
4656 * of the other domain. We therefore consider the graph with as nodes
4657 * the domains and an edge between two nodes if any element of the first
4658 * node is scheduled after any element of the second node.
4659 * If the ast_build_group_coscheduled is set, then we also add an edge if
4660 * there is any pair of elements in the two domains that are scheduled
4662 * Code is then generated (by generate_component)
4663 * for each of the strongly connected components in this graph
4664 * in their topological order.
4666 * Since the test is performed on the domain of the inverse schedules of
4667 * the different domains, we precompute these domains and store
4668 * them in data.domain.
4670 static __isl_give isl_ast_graft_list
*generate_components(
4671 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
4674 isl_ctx
*ctx
= isl_ast_build_get_ctx(build
);
4675 int n
= isl_union_map_n_map(executed
);
4676 struct isl_any_scheduled_after_data data
;
4677 struct isl_set_map_pair
*next
;
4678 struct isl_tarjan_graph
*g
= NULL
;
4679 isl_ast_graft_list
*list
= NULL
;
4682 data
.domain
= isl_calloc_array(ctx
, struct isl_set_map_pair
, n
);
4688 if (isl_union_map_foreach_map(executed
, &extract_domain
, &next
) < 0)
4694 data
.depth
= isl_ast_build_get_depth(build
);
4695 data
.group_coscheduled
= isl_options_get_ast_build_group_coscheduled(ctx
);
4696 g
= isl_tarjan_graph_init(ctx
, n
, &any_scheduled_after
, &data
);
4700 list
= isl_ast_graft_list_alloc(ctx
, 0);
4704 isl_ast_graft_list
*list_c
;
4707 if (g
->order
[i
] == -1)
4708 isl_die(ctx
, isl_error_internal
, "cannot happen",
4711 while (g
->order
[i
] != -1) {
4715 list_c
= generate_component(data
.domain
,
4716 g
->order
+ first
, i
- first
,
4717 isl_ast_build_copy(build
));
4718 list
= isl_ast_graft_list_merge(list
, list_c
, build
);
4724 error
: list
= isl_ast_graft_list_free(list
);
4725 isl_tarjan_graph_free(g
);
4726 for (i
= 0; i
< n_domain
; ++i
) {
4727 isl_map_free(data
.domain
[i
].map
);
4728 isl_set_free(data
.domain
[i
].set
);
4731 isl_union_map_free(executed
);
4732 isl_ast_build_free(build
);
4737 /* Generate code for the next level (and all inner levels).
4739 * If "executed" is empty, i.e., no code needs to be generated,
4740 * then we return an empty list.
4742 * If we have already generated code for all loop levels, then we pass
4743 * control to generate_inner_level.
4745 * If "executed" lives in a single space, i.e., if code needs to be
4746 * generated for a single domain, then there can only be a single
4747 * component and we go directly to generate_shifted_component.
4748 * Otherwise, we call generate_components to detect the components
4749 * and to call generate_component on each of them separately.
4751 static __isl_give isl_ast_graft_list
*generate_next_level(
4752 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
4756 if (!build
|| !executed
)
4759 if (isl_union_map_is_empty(executed
)) {
4760 isl_ctx
*ctx
= isl_ast_build_get_ctx(build
);
4761 isl_union_map_free(executed
);
4762 isl_ast_build_free(build
);
4763 return isl_ast_graft_list_alloc(ctx
, 0);
4766 depth
= isl_ast_build_get_depth(build
);
4767 if (depth
>= isl_ast_build_dim(build
, isl_dim_set
))
4768 return generate_inner_level(executed
, build
);
4770 if (isl_union_map_n_map(executed
) == 1)
4771 return generate_shifted_component(executed
, build
);
4773 return generate_components(executed
, build
);
4775 isl_union_map_free(executed
);
4776 isl_ast_build_free(build
);
4780 /* Internal data structure used by isl_ast_build_node_from_schedule_map.
4781 * internal, executed and build are the inputs to generate_code.
4782 * list collects the output.
4784 struct isl_generate_code_data
{
4786 isl_union_map
*executed
;
4787 isl_ast_build
*build
;
4789 isl_ast_graft_list
*list
;
4792 /* Given an inverse schedule in terms of the external build schedule, i.e.,
4796 * with E the external build schedule and S the additional schedule "space",
4797 * reformulate the inverse schedule in terms of the internal schedule domain,
4802 * We first obtain a mapping
4806 * take the inverse and the product with S -> S, resulting in
4808 * [I -> S] -> [E -> S]
4810 * Applying the map to the input produces the desired result.
4812 static __isl_give isl_union_map
*internal_executed(
4813 __isl_take isl_union_map
*executed
, __isl_keep isl_space
*space
,
4814 __isl_keep isl_ast_build
*build
)
4818 proj
= isl_ast_build_get_schedule_map(build
);
4819 proj
= isl_map_reverse(proj
);
4820 space
= isl_space_map_from_set(isl_space_copy(space
));
4821 id
= isl_map_identity(space
);
4822 proj
= isl_map_product(proj
, id
);
4823 executed
= isl_union_map_apply_domain(executed
,
4824 isl_union_map_from_map(proj
));
4828 /* Generate an AST that visits the elements in the range of data->executed
4829 * in the relative order specified by the corresponding domain element(s)
4830 * for those domain elements that belong to "set".
4831 * Add the result to data->list.
4833 * The caller ensures that "set" is a universe domain.
4834 * "space" is the space of the additional part of the schedule.
4835 * It is equal to the space of "set" if build->domain is parametric.
4836 * Otherwise, it is equal to the range of the wrapped space of "set".
4838 * If the build space is not parametric and
4839 * if isl_ast_build_node_from_schedule_map
4840 * was called from an outside user (data->internal not set), then
4841 * the (inverse) schedule refers to the external build domain and needs to
4842 * be transformed to refer to the internal build domain.
4844 * If the build space is parametric, then we add some of the parameter
4845 * constraints to the executed relation. Adding these constraints
4846 * allows for an earlier detection of conflicts in some cases.
4847 * However, we do not want to divide the executed relation into
4848 * more disjuncts than necessary. We therefore approximate
4849 * the constraints on the parameters by a single disjunct set.
4851 * The build is extended to include the additional part of the schedule.
4852 * If the original build space was not parametric, then the options
4853 * in data->build refer only to the additional part of the schedule
4854 * and they need to be adjusted to refer to the complete AST build
4857 * After having adjusted inverse schedule and build, we start generating
4858 * code with the outer loop of the current code generation
4859 * in generate_next_level.
4861 * If the original build space was not parametric, we undo the embedding
4862 * on the resulting isl_ast_node_list so that it can be used within
4863 * the outer AST build.
4865 static isl_stat
generate_code_in_space(struct isl_generate_code_data
*data
,
4866 __isl_take isl_set
*set
, __isl_take isl_space
*space
)
4868 isl_union_map
*executed
;
4869 isl_ast_build
*build
;
4870 isl_ast_graft_list
*list
;
4873 executed
= isl_union_map_copy(data
->executed
);
4874 executed
= isl_union_map_intersect_domain(executed
,
4875 isl_union_set_from_set(set
));
4877 embed
= !isl_set_is_params(data
->build
->domain
);
4878 if (embed
&& !data
->internal
)
4879 executed
= internal_executed(executed
, space
, data
->build
);
4882 domain
= isl_ast_build_get_domain(data
->build
);
4883 domain
= isl_set_from_basic_set(isl_set_simple_hull(domain
));
4884 executed
= isl_union_map_intersect_params(executed
, domain
);
4887 build
= isl_ast_build_copy(data
->build
);
4888 build
= isl_ast_build_product(build
, space
);
4890 list
= generate_next_level(executed
, build
);
4892 list
= isl_ast_graft_list_unembed(list
, embed
);
4894 data
->list
= isl_ast_graft_list_concat(data
->list
, list
);
4899 /* Generate an AST that visits the elements in the range of data->executed
4900 * in the relative order specified by the corresponding domain element(s)
4901 * for those domain elements that belong to "set".
4902 * Add the result to data->list.
4904 * The caller ensures that "set" is a universe domain.
4906 * If the build space S is not parametric, then the space of "set"
4907 * need to be a wrapped relation with S as domain. That is, it needs
4912 * Check this property and pass control to generate_code_in_space
4914 * If the build space is not parametric, then T is the space of "set".
4916 static isl_stat
generate_code_set(__isl_take isl_set
*set
, void *user
)
4918 struct isl_generate_code_data
*data
= user
;
4919 isl_space
*space
, *build_space
;
4922 space
= isl_set_get_space(set
);
4924 if (isl_set_is_params(data
->build
->domain
))
4925 return generate_code_in_space(data
, set
, space
);
4927 build_space
= isl_ast_build_get_space(data
->build
, data
->internal
);
4928 space
= isl_space_unwrap(space
);
4929 is_domain
= isl_space_is_domain(build_space
, space
);
4930 isl_space_free(build_space
);
4931 space
= isl_space_range(space
);
4936 isl_die(isl_set_get_ctx(set
), isl_error_invalid
,
4937 "invalid nested schedule space", goto error
);
4939 return generate_code_in_space(data
, set
, space
);
4942 isl_space_free(space
);
4943 return isl_stat_error
;
4946 /* Generate an AST that visits the elements in the range of "executed"
4947 * in the relative order specified by the corresponding domain element(s).
4949 * "build" is an isl_ast_build that has either been constructed by
4950 * isl_ast_build_from_context or passed to a callback set by
4951 * isl_ast_build_set_create_leaf.
4952 * In the first case, the space of the isl_ast_build is typically
4953 * a parametric space, although this is currently not enforced.
4954 * In the second case, the space is never a parametric space.
4955 * If the space S is not parametric, then the domain space(s) of "executed"
4956 * need to be wrapped relations with S as domain.
4958 * If the domain of "executed" consists of several spaces, then an AST
4959 * is generated for each of them (in arbitrary order) and the results
4962 * If "internal" is set, then the domain "S" above refers to the internal
4963 * schedule domain representation. Otherwise, it refers to the external
4964 * representation, as returned by isl_ast_build_get_schedule_space.
4966 * We essentially run over all the spaces in the domain of "executed"
4967 * and call generate_code_set on each of them.
4969 static __isl_give isl_ast_graft_list
*generate_code(
4970 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
,
4974 struct isl_generate_code_data data
= { 0 };
4976 isl_union_set
*schedule_domain
;
4977 isl_union_map
*universe
;
4981 space
= isl_ast_build_get_space(build
, 1);
4982 space
= isl_space_align_params(space
,
4983 isl_union_map_get_space(executed
));
4984 space
= isl_space_align_params(space
,
4985 isl_union_map_get_space(build
->options
));
4986 build
= isl_ast_build_align_params(build
, isl_space_copy(space
));
4987 executed
= isl_union_map_align_params(executed
, space
);
4988 if (!executed
|| !build
)
4991 ctx
= isl_ast_build_get_ctx(build
);
4993 data
.internal
= internal
;
4994 data
.executed
= executed
;
4996 data
.list
= isl_ast_graft_list_alloc(ctx
, 0);
4998 universe
= isl_union_map_universe(isl_union_map_copy(executed
));
4999 schedule_domain
= isl_union_map_domain(universe
);
5000 if (isl_union_set_foreach_set(schedule_domain
, &generate_code_set
,
5002 data
.list
= isl_ast_graft_list_free(data
.list
);
5004 isl_union_set_free(schedule_domain
);
5005 isl_union_map_free(executed
);
5007 isl_ast_build_free(build
);
5010 isl_union_map_free(executed
);
5011 isl_ast_build_free(build
);
5015 /* Generate an AST that visits the elements in the domain of "schedule"
5016 * in the relative order specified by the corresponding image element(s).
5018 * "build" is an isl_ast_build that has either been constructed by
5019 * isl_ast_build_from_context or passed to a callback set by
5020 * isl_ast_build_set_create_leaf.
5021 * In the first case, the space of the isl_ast_build is typically
5022 * a parametric space, although this is currently not enforced.
5023 * In the second case, the space is never a parametric space.
5024 * If the space S is not parametric, then the range space(s) of "schedule"
5025 * need to be wrapped relations with S as domain.
5027 * If the range of "schedule" consists of several spaces, then an AST
5028 * is generated for each of them (in arbitrary order) and the results
5031 * We first initialize the local copies of the relevant options.
5032 * We do this here rather than when the isl_ast_build is created
5033 * because the options may have changed between the construction
5034 * of the isl_ast_build and the call to isl_generate_code.
5036 * The main computation is performed on an inverse schedule (with
5037 * the schedule domain in the domain and the elements to be executed
5038 * in the range) called "executed".
5040 __isl_give isl_ast_node
*isl_ast_build_node_from_schedule_map(
5041 __isl_keep isl_ast_build
*build
, __isl_take isl_union_map
*schedule
)
5043 isl_ast_graft_list
*list
;
5045 isl_union_map
*executed
;
5047 build
= isl_ast_build_copy(build
);
5048 build
= isl_ast_build_set_single_valued(build
, 0);
5049 schedule
= isl_union_map_coalesce(schedule
);
5050 schedule
= isl_union_map_remove_redundancies(schedule
);
5051 executed
= isl_union_map_reverse(schedule
);
5052 list
= generate_code(executed
, isl_ast_build_copy(build
), 0);
5053 node
= isl_ast_node_from_graft_list(list
, build
);
5054 isl_ast_build_free(build
);
5059 /* The old name for isl_ast_build_node_from_schedule_map.
5060 * It is being kept for backward compatibility, but
5061 * it will be removed in the future.
5063 __isl_give isl_ast_node
*isl_ast_build_ast_from_schedule(
5064 __isl_keep isl_ast_build
*build
, __isl_take isl_union_map
*schedule
)
5066 return isl_ast_build_node_from_schedule_map(build
, schedule
);
5069 /* Generate an AST that visits the elements in the domain of "executed"
5070 * in the relative order specified by the band node "node" and its descendants.
5072 * The relation "executed" maps the outer generated loop iterators
5073 * to the domain elements executed by those iterations.
5075 * If the band is empty, we continue with its descendants.
5076 * Otherwise, we extend the build and the inverse schedule with
5077 * the additional space/partial schedule and continue generating
5078 * an AST in generate_next_level.
5079 * As soon as we have extended the inverse schedule with the additional
5080 * partial schedule, we look for equalities that may exists between
5081 * the old and the new part.
5083 static __isl_give isl_ast_graft_list
*build_ast_from_band(
5084 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5085 __isl_take isl_union_map
*executed
)
5088 isl_multi_union_pw_aff
*extra
;
5089 isl_union_map
*extra_umap
;
5090 isl_ast_graft_list
*list
;
5093 if (!build
|| !node
|| !executed
)
5096 if (isl_schedule_node_band_n_member(node
) == 0)
5097 return build_ast_from_child(build
, node
, executed
);
5099 extra
= isl_schedule_node_band_get_partial_schedule(node
);
5100 extra
= isl_multi_union_pw_aff_align_params(extra
,
5101 isl_ast_build_get_space(build
, 1));
5102 space
= isl_multi_union_pw_aff_get_space(extra
);
5104 extra_umap
= isl_union_map_from_multi_union_pw_aff(extra
);
5105 extra_umap
= isl_union_map_reverse(extra_umap
);
5107 executed
= isl_union_map_domain_product(executed
, extra_umap
);
5108 executed
= isl_union_map_detect_equalities(executed
);
5110 n1
= isl_ast_build_dim(build
, isl_dim_param
);
5111 build
= isl_ast_build_product(build
, space
);
5112 n2
= isl_ast_build_dim(build
, isl_dim_param
);
5114 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
5115 "band node is not allowed to introduce new parameters",
5116 build
= isl_ast_build_free(build
));
5117 build
= isl_ast_build_set_schedule_node(build
, node
);
5119 list
= generate_next_level(executed
, build
);
5121 list
= isl_ast_graft_list_unembed(list
, 1);
5125 isl_schedule_node_free(node
);
5126 isl_union_map_free(executed
);
5127 isl_ast_build_free(build
);
5131 /* Hoist a list of grafts (in practice containing a single graft)
5132 * from "sub_build" (which includes extra context information)
5135 * In particular, project out all additional parameters introduced
5136 * by the context node from the enforced constraints and the guard
5137 * of the single graft.
5139 static __isl_give isl_ast_graft_list
*hoist_out_of_context(
5140 __isl_take isl_ast_graft_list
*list
, __isl_keep isl_ast_build
*build
,
5141 __isl_keep isl_ast_build
*sub_build
)
5143 isl_ast_graft
*graft
;
5144 isl_basic_set
*enforced
;
5146 unsigned n_param
, extra_param
;
5148 if (!build
|| !sub_build
)
5149 return isl_ast_graft_list_free(list
);
5151 n_param
= isl_ast_build_dim(build
, isl_dim_param
);
5152 extra_param
= isl_ast_build_dim(sub_build
, isl_dim_param
);
5154 if (extra_param
== n_param
)
5157 extra_param
-= n_param
;
5158 enforced
= isl_ast_graft_list_extract_shared_enforced(list
, sub_build
);
5159 enforced
= isl_basic_set_project_out(enforced
, isl_dim_param
,
5160 n_param
, extra_param
);
5161 enforced
= isl_basic_set_remove_unknown_divs(enforced
);
5162 guard
= isl_ast_graft_list_extract_hoistable_guard(list
, sub_build
);
5163 guard
= isl_set_remove_divs_involving_dims(guard
, isl_dim_param
,
5164 n_param
, extra_param
);
5165 guard
= isl_set_project_out(guard
, isl_dim_param
, n_param
, extra_param
);
5166 guard
= isl_set_compute_divs(guard
);
5167 graft
= isl_ast_graft_alloc_from_children(list
, guard
, enforced
,
5169 list
= isl_ast_graft_list_from_ast_graft(graft
);
5174 /* Generate an AST that visits the elements in the domain of "executed"
5175 * in the relative order specified by the context node "node"
5176 * and its descendants.
5178 * The relation "executed" maps the outer generated loop iterators
5179 * to the domain elements executed by those iterations.
5181 * The context node may introduce additional parameters as well as
5182 * constraints on the outer schedule dimenions or original parameters.
5184 * We add the extra parameters to a new build and the context
5185 * constraints to both the build and (as a single disjunct)
5186 * to the domain of "executed". Since the context constraints
5187 * are specified in terms of the input schedule, we first need
5188 * to map them to the internal schedule domain.
5190 * After constructing the AST from the descendants of "node",
5191 * we combine the list of grafts into a single graft within
5192 * the new build, in order to be able to exploit the additional
5193 * context constraints during this combination.
5195 * Additionally, if the current node is the outermost node in
5196 * the schedule tree (apart from the root domain node), we generate
5197 * all pending guards, again to be able to exploit the additional
5198 * context constraints. We currently do not do this for internal
5199 * context nodes since we may still want to hoist conditions
5200 * to outer AST nodes.
5202 * If the context node introduced any new parameters, then they
5203 * are removed from the set of enforced constraints and guard
5204 * in hoist_out_of_context.
5206 static __isl_give isl_ast_graft_list
*build_ast_from_context(
5207 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5208 __isl_take isl_union_map
*executed
)
5212 isl_multi_aff
*internal2input
;
5213 isl_ast_build
*sub_build
;
5214 isl_ast_graft_list
*list
;
5217 depth
= isl_schedule_node_get_tree_depth(node
);
5218 space
= isl_ast_build_get_space(build
, 1);
5219 context
= isl_schedule_node_context_get_context(node
);
5220 context
= isl_set_align_params(context
, space
);
5221 sub_build
= isl_ast_build_copy(build
);
5222 space
= isl_set_get_space(context
);
5223 sub_build
= isl_ast_build_align_params(sub_build
, space
);
5224 internal2input
= isl_ast_build_get_internal2input(sub_build
);
5225 context
= isl_set_preimage_multi_aff(context
, internal2input
);
5226 sub_build
= isl_ast_build_restrict_generated(sub_build
,
5227 isl_set_copy(context
));
5228 context
= isl_set_from_basic_set(isl_set_simple_hull(context
));
5229 executed
= isl_union_map_intersect_domain(executed
,
5230 isl_union_set_from_set(context
));
5232 list
= build_ast_from_child(isl_ast_build_copy(sub_build
),
5234 n
= isl_ast_graft_list_n_ast_graft(list
);
5236 list
= isl_ast_graft_list_free(list
);
5238 list
= isl_ast_graft_list_fuse(list
, sub_build
);
5240 list
= isl_ast_graft_list_insert_pending_guard_nodes(list
,
5243 list
= hoist_out_of_context(list
, build
, sub_build
);
5245 isl_ast_build_free(build
);
5246 isl_ast_build_free(sub_build
);
5251 /* Generate an AST that visits the elements in the domain of "executed"
5252 * in the relative order specified by the expansion node "node" and
5255 * The relation "executed" maps the outer generated loop iterators
5256 * to the domain elements executed by those iterations.
5258 * We expand the domain elements by the expansion and
5259 * continue with the descendants of the node.
5261 static __isl_give isl_ast_graft_list
*build_ast_from_expansion(
5262 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5263 __isl_take isl_union_map
*executed
)
5265 isl_union_map
*expansion
;
5268 expansion
= isl_schedule_node_expansion_get_expansion(node
);
5269 expansion
= isl_union_map_align_params(expansion
,
5270 isl_union_map_get_space(executed
));
5272 n1
= isl_union_map_dim(executed
, isl_dim_param
);
5273 executed
= isl_union_map_apply_range(executed
, expansion
);
5274 n2
= isl_union_map_dim(executed
, isl_dim_param
);
5276 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
5277 "expansion node is not allowed to introduce "
5278 "new parameters", goto error
);
5280 return build_ast_from_child(build
, node
, executed
);
5282 isl_ast_build_free(build
);
5283 isl_schedule_node_free(node
);
5284 isl_union_map_free(executed
);
5288 /* Generate an AST that visits the elements in the domain of "executed"
5289 * in the relative order specified by the extension node "node" and
5292 * The relation "executed" maps the outer generated loop iterators
5293 * to the domain elements executed by those iterations.
5295 * Extend the inverse schedule with the extension applied to current
5296 * set of generated constraints. Since the extension if formulated
5297 * in terms of the input schedule, it first needs to be transformed
5298 * to refer to the internal schedule.
5300 static __isl_give isl_ast_graft_list
*build_ast_from_extension(
5301 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5302 __isl_take isl_union_map
*executed
)
5304 isl_union_set
*schedule_domain
;
5305 isl_union_map
*extension
;
5308 set
= isl_ast_build_get_generated(build
);
5309 set
= isl_set_from_basic_set(isl_set_simple_hull(set
));
5310 schedule_domain
= isl_union_set_from_set(set
);
5312 extension
= isl_schedule_node_extension_get_extension(node
);
5314 extension
= isl_union_map_preimage_domain_multi_aff(extension
,
5315 isl_multi_aff_copy(build
->internal2input
));
5316 extension
= isl_union_map_intersect_domain(extension
, schedule_domain
);
5317 extension
= isl_ast_build_substitute_values_union_map_domain(build
,
5319 executed
= isl_union_map_union(executed
, extension
);
5321 return build_ast_from_child(build
, node
, executed
);
5324 /* Generate an AST that visits the elements in the domain of "executed"
5325 * in the relative order specified by the filter node "node" and
5328 * The relation "executed" maps the outer generated loop iterators
5329 * to the domain elements executed by those iterations.
5331 * We simply intersect the iteration domain (i.e., the range of "executed")
5332 * with the filter and continue with the descendants of the node,
5333 * unless the resulting inverse schedule is empty, in which
5334 * case we return an empty list.
5336 * If the result of the intersection is equal to the original "executed"
5337 * relation, then keep the original representation since the intersection
5338 * may have unnecessarily broken up the relation into a greater number
5341 static __isl_give isl_ast_graft_list
*build_ast_from_filter(
5342 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5343 __isl_take isl_union_map
*executed
)
5346 isl_union_set
*filter
;
5347 isl_union_map
*orig
;
5348 isl_ast_graft_list
*list
;
5353 orig
= isl_union_map_copy(executed
);
5354 if (!build
|| !node
|| !executed
)
5357 filter
= isl_schedule_node_filter_get_filter(node
);
5358 filter
= isl_union_set_align_params(filter
,
5359 isl_union_map_get_space(executed
));
5360 n1
= isl_union_map_dim(executed
, isl_dim_param
);
5361 executed
= isl_union_map_intersect_range(executed
, filter
);
5362 n2
= isl_union_map_dim(executed
, isl_dim_param
);
5364 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
5365 "filter node is not allowed to introduce "
5366 "new parameters", goto error
);
5368 unchanged
= isl_union_map_is_subset(orig
, executed
);
5369 empty
= isl_union_map_is_empty(executed
);
5370 if (unchanged
< 0 || empty
< 0)
5373 isl_union_map_free(executed
);
5374 return build_ast_from_child(build
, node
, orig
);
5376 isl_union_map_free(orig
);
5378 return build_ast_from_child(build
, node
, executed
);
5380 ctx
= isl_ast_build_get_ctx(build
);
5381 list
= isl_ast_graft_list_alloc(ctx
, 0);
5382 isl_ast_build_free(build
);
5383 isl_schedule_node_free(node
);
5384 isl_union_map_free(executed
);
5387 isl_ast_build_free(build
);
5388 isl_schedule_node_free(node
);
5389 isl_union_map_free(executed
);
5390 isl_union_map_free(orig
);
5394 /* Generate an AST that visits the elements in the domain of "executed"
5395 * in the relative order specified by the guard node "node" and
5398 * The relation "executed" maps the outer generated loop iterators
5399 * to the domain elements executed by those iterations.
5401 * Ensure that the associated guard is enforced by the outer AST
5402 * constructs by adding it to the guard of the graft.
5403 * Since we know that we will enforce the guard, we can also include it
5404 * in the generated constraints used to construct an AST for
5405 * the descendant nodes.
5407 static __isl_give isl_ast_graft_list
*build_ast_from_guard(
5408 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5409 __isl_take isl_union_map
*executed
)
5412 isl_set
*guard
, *hoisted
;
5413 isl_basic_set
*enforced
;
5414 isl_ast_build
*sub_build
;
5415 isl_ast_graft
*graft
;
5416 isl_ast_graft_list
*list
;
5419 space
= isl_ast_build_get_space(build
, 1);
5420 guard
= isl_schedule_node_guard_get_guard(node
);
5421 n1
= isl_space_dim(space
, isl_dim_param
);
5422 guard
= isl_set_align_params(guard
, space
);
5423 n2
= isl_set_dim(guard
, isl_dim_param
);
5425 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
5426 "guard node is not allowed to introduce "
5427 "new parameters", guard
= isl_set_free(guard
));
5428 guard
= isl_set_preimage_multi_aff(guard
,
5429 isl_multi_aff_copy(build
->internal2input
));
5430 guard
= isl_ast_build_specialize(build
, guard
);
5431 guard
= isl_set_gist(guard
, isl_set_copy(build
->generated
));
5433 sub_build
= isl_ast_build_copy(build
);
5434 sub_build
= isl_ast_build_restrict_generated(sub_build
,
5435 isl_set_copy(guard
));
5437 list
= build_ast_from_child(isl_ast_build_copy(sub_build
),
5440 hoisted
= isl_ast_graft_list_extract_hoistable_guard(list
, sub_build
);
5441 if (isl_set_n_basic_set(hoisted
) > 1)
5442 list
= isl_ast_graft_list_gist_guards(list
,
5443 isl_set_copy(hoisted
));
5444 guard
= isl_set_intersect(guard
, hoisted
);
5445 enforced
= extract_shared_enforced(list
, build
);
5446 graft
= isl_ast_graft_alloc_from_children(list
, guard
, enforced
,
5449 isl_ast_build_free(sub_build
);
5450 isl_ast_build_free(build
);
5451 return isl_ast_graft_list_from_ast_graft(graft
);
5454 /* Call the before_each_mark callback, if requested by the user.
5456 * Return 0 on success and -1 on error.
5458 * The caller is responsible for recording the current inverse schedule
5461 static isl_stat
before_each_mark(__isl_keep isl_id
*mark
,
5462 __isl_keep isl_ast_build
*build
)
5465 return isl_stat_error
;
5466 if (!build
->before_each_mark
)
5468 return build
->before_each_mark(mark
, build
,
5469 build
->before_each_mark_user
);
5472 /* Call the after_each_mark callback, if requested by the user.
5474 * The caller is responsible for recording the current inverse schedule
5477 static __isl_give isl_ast_graft
*after_each_mark(
5478 __isl_take isl_ast_graft
*graft
, __isl_keep isl_ast_build
*build
)
5480 if (!graft
|| !build
)
5481 return isl_ast_graft_free(graft
);
5482 if (!build
->after_each_mark
)
5484 graft
->node
= build
->after_each_mark(graft
->node
, build
,
5485 build
->after_each_mark_user
);
5487 return isl_ast_graft_free(graft
);
5492 /* Generate an AST that visits the elements in the domain of "executed"
5493 * in the relative order specified by the mark node "node" and
5496 * The relation "executed" maps the outer generated loop iterators
5497 * to the domain elements executed by those iterations.
5499 * Since we may be calling before_each_mark and after_each_mark
5500 * callbacks, we record the current inverse schedule in the build.
5502 * We generate an AST for the child of the mark node, combine
5503 * the graft list into a single graft and then insert the mark
5504 * in the AST of that single graft.
5506 static __isl_give isl_ast_graft_list
*build_ast_from_mark(
5507 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5508 __isl_take isl_union_map
*executed
)
5511 isl_ast_graft
*graft
;
5512 isl_ast_graft_list
*list
;
5515 build
= isl_ast_build_set_executed(build
, isl_union_map_copy(executed
));
5517 mark
= isl_schedule_node_mark_get_id(node
);
5518 if (before_each_mark(mark
, build
) < 0)
5519 node
= isl_schedule_node_free(node
);
5521 list
= build_ast_from_child(isl_ast_build_copy(build
), node
, executed
);
5522 list
= isl_ast_graft_list_fuse(list
, build
);
5523 n
= isl_ast_graft_list_n_ast_graft(list
);
5525 list
= isl_ast_graft_list_free(list
);
5529 graft
= isl_ast_graft_list_get_ast_graft(list
, 0);
5530 graft
= isl_ast_graft_insert_mark(graft
, mark
);
5531 graft
= after_each_mark(graft
, build
);
5532 list
= isl_ast_graft_list_set_ast_graft(list
, 0, graft
);
5534 isl_ast_build_free(build
);
5539 static __isl_give isl_ast_graft_list
*build_ast_from_schedule_node(
5540 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5541 __isl_take isl_union_map
*executed
);
5543 /* Generate an AST that visits the elements in the domain of "executed"
5544 * in the relative order specified by the sequence (or set) node "node" and
5547 * The relation "executed" maps the outer generated loop iterators
5548 * to the domain elements executed by those iterations.
5550 * We simply generate an AST for each of the children and concatenate
5553 static __isl_give isl_ast_graft_list
*build_ast_from_sequence(
5554 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5555 __isl_take isl_union_map
*executed
)
5559 isl_ast_graft_list
*list
;
5561 ctx
= isl_ast_build_get_ctx(build
);
5562 list
= isl_ast_graft_list_alloc(ctx
, 0);
5564 n
= isl_schedule_node_n_children(node
);
5565 for (i
= 0; i
< n
; ++i
) {
5566 isl_schedule_node
*child
;
5567 isl_ast_graft_list
*list_i
;
5569 child
= isl_schedule_node_get_child(node
, i
);
5570 list_i
= build_ast_from_schedule_node(isl_ast_build_copy(build
),
5571 child
, isl_union_map_copy(executed
));
5572 list
= isl_ast_graft_list_concat(list
, list_i
);
5574 isl_ast_build_free(build
);
5575 isl_schedule_node_free(node
);
5576 isl_union_map_free(executed
);
5581 /* Generate an AST that visits the elements in the domain of "executed"
5582 * in the relative order specified by the node "node" and its descendants.
5584 * The relation "executed" maps the outer generated loop iterators
5585 * to the domain elements executed by those iterations.
5587 * If the node is a leaf, then we pass control to generate_inner_level.
5588 * Note that the current build does not refer to any band node, so
5589 * that generate_inner_level will not try to visit the child of
5592 * The other node types are handled in separate functions.
5593 * Set nodes are currently treated in the same way as sequence nodes.
5594 * The children of a set node may be executed in any order,
5595 * including the order of the children.
5597 static __isl_give isl_ast_graft_list
*build_ast_from_schedule_node(
5598 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5599 __isl_take isl_union_map
*executed
)
5601 enum isl_schedule_node_type type
;
5603 type
= isl_schedule_node_get_type(node
);
5606 case isl_schedule_node_error
:
5608 case isl_schedule_node_leaf
:
5609 isl_schedule_node_free(node
);
5610 return generate_inner_level(executed
, build
);
5611 case isl_schedule_node_band
:
5612 return build_ast_from_band(build
, node
, executed
);
5613 case isl_schedule_node_context
:
5614 return build_ast_from_context(build
, node
, executed
);
5615 case isl_schedule_node_domain
:
5616 isl_die(isl_schedule_node_get_ctx(node
), isl_error_unsupported
,
5617 "unexpected internal domain node", goto error
);
5618 case isl_schedule_node_expansion
:
5619 return build_ast_from_expansion(build
, node
, executed
);
5620 case isl_schedule_node_extension
:
5621 return build_ast_from_extension(build
, node
, executed
);
5622 case isl_schedule_node_filter
:
5623 return build_ast_from_filter(build
, node
, executed
);
5624 case isl_schedule_node_guard
:
5625 return build_ast_from_guard(build
, node
, executed
);
5626 case isl_schedule_node_mark
:
5627 return build_ast_from_mark(build
, node
, executed
);
5628 case isl_schedule_node_sequence
:
5629 case isl_schedule_node_set
:
5630 return build_ast_from_sequence(build
, node
, executed
);
5633 isl_die(isl_ast_build_get_ctx(build
), isl_error_internal
,
5634 "unhandled type", goto error
);
5636 isl_union_map_free(executed
);
5637 isl_schedule_node_free(node
);
5638 isl_ast_build_free(build
);
5643 /* Generate an AST that visits the elements in the domain of "executed"
5644 * in the relative order specified by the (single) child of "node" and
5647 * The relation "executed" maps the outer generated loop iterators
5648 * to the domain elements executed by those iterations.
5650 * This function is never called on a leaf, set or sequence node,
5651 * so the node always has exactly one child.
5653 static __isl_give isl_ast_graft_list
*build_ast_from_child(
5654 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5655 __isl_take isl_union_map
*executed
)
5657 node
= isl_schedule_node_child(node
, 0);
5658 return build_ast_from_schedule_node(build
, node
, executed
);
5661 /* Generate an AST that visits the elements in the domain of the domain
5662 * node "node" in the relative order specified by its descendants.
5664 * An initial inverse schedule is created that maps a zero-dimensional
5665 * schedule space to the node domain.
5666 * The input "build" is assumed to have a parametric domain and
5667 * is replaced by the same zero-dimensional schedule space.
5669 * We also add some of the parameter constraints in the build domain
5670 * to the executed relation. Adding these constraints
5671 * allows for an earlier detection of conflicts in some cases.
5672 * However, we do not want to divide the executed relation into
5673 * more disjuncts than necessary. We therefore approximate
5674 * the constraints on the parameters by a single disjunct set.
5676 static __isl_give isl_ast_node
*build_ast_from_domain(
5677 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
)
5680 isl_union_set
*domain
, *schedule_domain
;
5681 isl_union_map
*executed
;
5684 isl_ast_graft_list
*list
;
5691 ctx
= isl_ast_build_get_ctx(build
);
5692 space
= isl_ast_build_get_space(build
, 1);
5693 is_params
= isl_space_is_params(space
);
5694 isl_space_free(space
);
5698 isl_die(ctx
, isl_error_unsupported
,
5699 "expecting parametric initial context", goto error
);
5701 domain
= isl_schedule_node_domain_get_domain(node
);
5702 domain
= isl_union_set_coalesce(domain
);
5704 space
= isl_union_set_get_space(domain
);
5705 space
= isl_space_set_from_params(space
);
5706 build
= isl_ast_build_product(build
, space
);
5708 set
= isl_ast_build_get_domain(build
);
5709 set
= isl_set_from_basic_set(isl_set_simple_hull(set
));
5710 schedule_domain
= isl_union_set_from_set(set
);
5712 executed
= isl_union_map_from_domain_and_range(schedule_domain
, domain
);
5713 list
= build_ast_from_child(isl_ast_build_copy(build
), node
, executed
);
5714 ast
= isl_ast_node_from_graft_list(list
, build
);
5715 isl_ast_build_free(build
);
5719 isl_schedule_node_free(node
);
5720 isl_ast_build_free(build
);
5724 /* Generate an AST that visits the elements in the domain of "schedule"
5725 * in the relative order specified by the schedule tree.
5727 * "build" is an isl_ast_build that has been created using
5728 * isl_ast_build_alloc or isl_ast_build_from_context based
5729 * on a parametric set.
5731 * The construction starts at the root node of the schedule,
5732 * which is assumed to be a domain node.
5734 __isl_give isl_ast_node
*isl_ast_build_node_from_schedule(
5735 __isl_keep isl_ast_build
*build
, __isl_take isl_schedule
*schedule
)
5738 isl_schedule_node
*node
;
5740 if (!build
|| !schedule
)
5743 ctx
= isl_ast_build_get_ctx(build
);
5745 node
= isl_schedule_get_root(schedule
);
5746 isl_schedule_free(schedule
);
5748 build
= isl_ast_build_copy(build
);
5749 build
= isl_ast_build_set_single_valued(build
, 0);
5750 if (isl_schedule_node_get_type(node
) != isl_schedule_node_domain
)
5751 isl_die(ctx
, isl_error_unsupported
,
5752 "expecting root domain node",
5753 build
= isl_ast_build_free(build
));
5754 return build_ast_from_domain(build
, node
);
5756 isl_schedule_free(schedule
);