2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
5 * Use of this software is governed by the GNU LGPLv2.1 license
7 * Written by Sven Verdoolaege, K.U.Leuven, Departement
8 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
10 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
13 #include <isl_ctx_private.h>
14 #include "isl_map_private.h"
17 #include "isl_sample.h"
18 #include <isl_mat_private.h>
19 #include <isl_aff_private.h>
20 #include <isl_config.h>
23 * The implementation of parametric integer linear programming in this file
24 * was inspired by the paper "Parametric Integer Programming" and the
25 * report "Solving systems of affine (in)equalities" by Paul Feautrier
28 * The strategy used for obtaining a feasible solution is different
29 * from the one used in isl_tab.c. In particular, in isl_tab.c,
30 * upon finding a constraint that is not yet satisfied, we pivot
31 * in a row that increases the constant term of the row holding the
32 * constraint, making sure the sample solution remains feasible
33 * for all the constraints it already satisfied.
34 * Here, we always pivot in the row holding the constraint,
35 * choosing a column that induces the lexicographically smallest
36 * increment to the sample solution.
38 * By starting out from a sample value that is lexicographically
39 * smaller than any integer point in the problem space, the first
40 * feasible integer sample point we find will also be the lexicographically
41 * smallest. If all variables can be assumed to be non-negative,
42 * then the initial sample value may be chosen equal to zero.
43 * However, we will not make this assumption. Instead, we apply
44 * the "big parameter" trick. Any variable x is then not directly
45 * used in the tableau, but instead it is represented by another
46 * variable x' = M + x, where M is an arbitrarily large (positive)
47 * value. x' is therefore always non-negative, whatever the value of x.
48 * Taking as initial sample value x' = 0 corresponds to x = -M,
49 * which is always smaller than any possible value of x.
51 * The big parameter trick is used in the main tableau and
52 * also in the context tableau if isl_context_lex is used.
53 * In this case, each tableaus has its own big parameter.
54 * Before doing any real work, we check if all the parameters
55 * happen to be non-negative. If so, we drop the column corresponding
56 * to M from the initial context tableau.
57 * If isl_context_gbr is used, then the big parameter trick is only
58 * used in the main tableau.
62 struct isl_context_op
{
63 /* detect nonnegative parameters in context and mark them in tab */
64 struct isl_tab
*(*detect_nonnegative_parameters
)(
65 struct isl_context
*context
, struct isl_tab
*tab
);
66 /* return temporary reference to basic set representation of context */
67 struct isl_basic_set
*(*peek_basic_set
)(struct isl_context
*context
);
68 /* return temporary reference to tableau representation of context */
69 struct isl_tab
*(*peek_tab
)(struct isl_context
*context
);
70 /* add equality; check is 1 if eq may not be valid;
71 * update is 1 if we may want to call ineq_sign on context later.
73 void (*add_eq
)(struct isl_context
*context
, isl_int
*eq
,
74 int check
, int update
);
75 /* add inequality; check is 1 if ineq may not be valid;
76 * update is 1 if we may want to call ineq_sign on context later.
78 void (*add_ineq
)(struct isl_context
*context
, isl_int
*ineq
,
79 int check
, int update
);
80 /* check sign of ineq based on previous information.
81 * strict is 1 if saturation should be treated as a positive sign.
83 enum isl_tab_row_sign (*ineq_sign
)(struct isl_context
*context
,
84 isl_int
*ineq
, int strict
);
85 /* check if inequality maintains feasibility */
86 int (*test_ineq
)(struct isl_context
*context
, isl_int
*ineq
);
87 /* return index of a div that corresponds to "div" */
88 int (*get_div
)(struct isl_context
*context
, struct isl_tab
*tab
,
90 /* add div "div" to context and return non-negativity */
91 int (*add_div
)(struct isl_context
*context
, struct isl_vec
*div
);
92 int (*detect_equalities
)(struct isl_context
*context
,
94 /* return row index of "best" split */
95 int (*best_split
)(struct isl_context
*context
, struct isl_tab
*tab
);
96 /* check if context has already been determined to be empty */
97 int (*is_empty
)(struct isl_context
*context
);
98 /* check if context is still usable */
99 int (*is_ok
)(struct isl_context
*context
);
100 /* save a copy/snapshot of context */
101 void *(*save
)(struct isl_context
*context
);
102 /* restore saved context */
103 void (*restore
)(struct isl_context
*context
, void *);
104 /* invalidate context */
105 void (*invalidate
)(struct isl_context
*context
);
107 void (*free
)(struct isl_context
*context
);
111 struct isl_context_op
*op
;
114 struct isl_context_lex
{
115 struct isl_context context
;
119 struct isl_partial_sol
{
121 struct isl_basic_set
*dom
;
124 struct isl_partial_sol
*next
;
128 struct isl_sol_callback
{
129 struct isl_tab_callback callback
;
133 /* isl_sol is an interface for constructing a solution to
134 * a parametric integer linear programming problem.
135 * Every time the algorithm reaches a state where a solution
136 * can be read off from the tableau (including cases where the tableau
137 * is empty), the function "add" is called on the isl_sol passed
138 * to find_solutions_main.
140 * The context tableau is owned by isl_sol and is updated incrementally.
142 * There are currently two implementations of this interface,
143 * isl_sol_map, which simply collects the solutions in an isl_map
144 * and (optionally) the parts of the context where there is no solution
146 * isl_sol_for, which calls a user-defined function for each part of
155 struct isl_context
*context
;
156 struct isl_partial_sol
*partial
;
157 void (*add
)(struct isl_sol
*sol
,
158 struct isl_basic_set
*dom
, struct isl_mat
*M
);
159 void (*add_empty
)(struct isl_sol
*sol
, struct isl_basic_set
*bset
);
160 void (*free
)(struct isl_sol
*sol
);
161 struct isl_sol_callback dec_level
;
164 static void sol_free(struct isl_sol
*sol
)
166 struct isl_partial_sol
*partial
, *next
;
169 for (partial
= sol
->partial
; partial
; partial
= next
) {
170 next
= partial
->next
;
171 isl_basic_set_free(partial
->dom
);
172 isl_mat_free(partial
->M
);
178 /* Push a partial solution represented by a domain and mapping M
179 * onto the stack of partial solutions.
181 static void sol_push_sol(struct isl_sol
*sol
,
182 struct isl_basic_set
*dom
, struct isl_mat
*M
)
184 struct isl_partial_sol
*partial
;
186 if (sol
->error
|| !dom
)
189 partial
= isl_alloc_type(dom
->ctx
, struct isl_partial_sol
);
193 partial
->level
= sol
->level
;
196 partial
->next
= sol
->partial
;
198 sol
->partial
= partial
;
202 isl_basic_set_free(dom
);
206 /* Pop one partial solution from the partial solution stack and
207 * pass it on to sol->add or sol->add_empty.
209 static void sol_pop_one(struct isl_sol
*sol
)
211 struct isl_partial_sol
*partial
;
213 partial
= sol
->partial
;
214 sol
->partial
= partial
->next
;
217 sol
->add(sol
, partial
->dom
, partial
->M
);
219 sol
->add_empty(sol
, partial
->dom
);
223 /* Return a fresh copy of the domain represented by the context tableau.
225 static struct isl_basic_set
*sol_domain(struct isl_sol
*sol
)
227 struct isl_basic_set
*bset
;
232 bset
= isl_basic_set_dup(sol
->context
->op
->peek_basic_set(sol
->context
));
233 bset
= isl_basic_set_update_from_tab(bset
,
234 sol
->context
->op
->peek_tab(sol
->context
));
239 /* Check whether two partial solutions have the same mapping, where n_div
240 * is the number of divs that the two partial solutions have in common.
242 static int same_solution(struct isl_partial_sol
*s1
, struct isl_partial_sol
*s2
,
248 if (!s1
->M
!= !s2
->M
)
253 dim
= isl_basic_set_total_dim(s1
->dom
) - s1
->dom
->n_div
;
255 for (i
= 0; i
< s1
->M
->n_row
; ++i
) {
256 if (isl_seq_first_non_zero(s1
->M
->row
[i
]+1+dim
+n_div
,
257 s1
->M
->n_col
-1-dim
-n_div
) != -1)
259 if (isl_seq_first_non_zero(s2
->M
->row
[i
]+1+dim
+n_div
,
260 s2
->M
->n_col
-1-dim
-n_div
) != -1)
262 if (!isl_seq_eq(s1
->M
->row
[i
], s2
->M
->row
[i
], 1+dim
+n_div
))
268 /* Pop all solutions from the partial solution stack that were pushed onto
269 * the stack at levels that are deeper than the current level.
270 * If the two topmost elements on the stack have the same level
271 * and represent the same solution, then their domains are combined.
272 * This combined domain is the same as the current context domain
273 * as sol_pop is called each time we move back to a higher level.
275 static void sol_pop(struct isl_sol
*sol
)
277 struct isl_partial_sol
*partial
;
283 if (sol
->level
== 0) {
284 for (partial
= sol
->partial
; partial
; partial
= sol
->partial
)
289 partial
= sol
->partial
;
293 if (partial
->level
<= sol
->level
)
296 if (partial
->next
&& partial
->next
->level
== partial
->level
) {
297 n_div
= isl_basic_set_dim(
298 sol
->context
->op
->peek_basic_set(sol
->context
),
301 if (!same_solution(partial
, partial
->next
, n_div
)) {
305 struct isl_basic_set
*bset
;
307 bset
= sol_domain(sol
);
309 isl_basic_set_free(partial
->next
->dom
);
310 partial
->next
->dom
= bset
;
311 partial
->next
->level
= sol
->level
;
313 sol
->partial
= partial
->next
;
314 isl_basic_set_free(partial
->dom
);
315 isl_mat_free(partial
->M
);
322 static void sol_dec_level(struct isl_sol
*sol
)
332 static int sol_dec_level_wrap(struct isl_tab_callback
*cb
)
334 struct isl_sol_callback
*callback
= (struct isl_sol_callback
*)cb
;
336 sol_dec_level(callback
->sol
);
338 return callback
->sol
->error
? -1 : 0;
341 /* Move down to next level and push callback onto context tableau
342 * to decrease the level again when it gets rolled back across
343 * the current state. That is, dec_level will be called with
344 * the context tableau in the same state as it is when inc_level
347 static void sol_inc_level(struct isl_sol
*sol
)
355 tab
= sol
->context
->op
->peek_tab(sol
->context
);
356 if (isl_tab_push_callback(tab
, &sol
->dec_level
.callback
) < 0)
360 static void scale_rows(struct isl_mat
*mat
, isl_int m
, int n_row
)
364 if (isl_int_is_one(m
))
367 for (i
= 0; i
< n_row
; ++i
)
368 isl_seq_scale(mat
->row
[i
], mat
->row
[i
], m
, mat
->n_col
);
371 /* Add the solution identified by the tableau and the context tableau.
373 * The layout of the variables is as follows.
374 * tab->n_var is equal to the total number of variables in the input
375 * map (including divs that were copied from the context)
376 * + the number of extra divs constructed
377 * Of these, the first tab->n_param and the last tab->n_div variables
378 * correspond to the variables in the context, i.e.,
379 * tab->n_param + tab->n_div = context_tab->n_var
380 * tab->n_param is equal to the number of parameters and input
381 * dimensions in the input map
382 * tab->n_div is equal to the number of divs in the context
384 * If there is no solution, then call add_empty with a basic set
385 * that corresponds to the context tableau. (If add_empty is NULL,
388 * If there is a solution, then first construct a matrix that maps
389 * all dimensions of the context to the output variables, i.e.,
390 * the output dimensions in the input map.
391 * The divs in the input map (if any) that do not correspond to any
392 * div in the context do not appear in the solution.
393 * The algorithm will make sure that they have an integer value,
394 * but these values themselves are of no interest.
395 * We have to be careful not to drop or rearrange any divs in the
396 * context because that would change the meaning of the matrix.
398 * To extract the value of the output variables, it should be noted
399 * that we always use a big parameter M in the main tableau and so
400 * the variable stored in this tableau is not an output variable x itself, but
401 * x' = M + x (in case of minimization)
403 * x' = M - x (in case of maximization)
404 * If x' appears in a column, then its optimal value is zero,
405 * which means that the optimal value of x is an unbounded number
406 * (-M for minimization and M for maximization).
407 * We currently assume that the output dimensions in the original map
408 * are bounded, so this cannot occur.
409 * Similarly, when x' appears in a row, then the coefficient of M in that
410 * row is necessarily 1.
411 * If the row in the tableau represents
412 * d x' = c + d M + e(y)
413 * then, in case of minimization, the corresponding row in the matrix
416 * with a d = m, the (updated) common denominator of the matrix.
417 * In case of maximization, the row will be
420 static void sol_add(struct isl_sol
*sol
, struct isl_tab
*tab
)
422 struct isl_basic_set
*bset
= NULL
;
423 struct isl_mat
*mat
= NULL
;
428 if (sol
->error
|| !tab
)
431 if (tab
->empty
&& !sol
->add_empty
)
434 bset
= sol_domain(sol
);
437 sol_push_sol(sol
, bset
, NULL
);
443 mat
= isl_mat_alloc(tab
->mat
->ctx
, 1 + sol
->n_out
,
444 1 + tab
->n_param
+ tab
->n_div
);
450 isl_seq_clr(mat
->row
[0] + 1, mat
->n_col
- 1);
451 isl_int_set_si(mat
->row
[0][0], 1);
452 for (row
= 0; row
< sol
->n_out
; ++row
) {
453 int i
= tab
->n_param
+ row
;
456 isl_seq_clr(mat
->row
[1 + row
], mat
->n_col
);
457 if (!tab
->var
[i
].is_row
) {
459 isl_die(mat
->ctx
, isl_error_invalid
,
460 "unbounded optimum", goto error2
);
464 r
= tab
->var
[i
].index
;
466 isl_int_ne(tab
->mat
->row
[r
][2], tab
->mat
->row
[r
][0]))
467 isl_die(mat
->ctx
, isl_error_invalid
,
468 "unbounded optimum", goto error2
);
469 isl_int_gcd(m
, mat
->row
[0][0], tab
->mat
->row
[r
][0]);
470 isl_int_divexact(m
, tab
->mat
->row
[r
][0], m
);
471 scale_rows(mat
, m
, 1 + row
);
472 isl_int_divexact(m
, mat
->row
[0][0], tab
->mat
->row
[r
][0]);
473 isl_int_mul(mat
->row
[1 + row
][0], m
, tab
->mat
->row
[r
][1]);
474 for (j
= 0; j
< tab
->n_param
; ++j
) {
476 if (tab
->var
[j
].is_row
)
478 col
= tab
->var
[j
].index
;
479 isl_int_mul(mat
->row
[1 + row
][1 + j
], m
,
480 tab
->mat
->row
[r
][off
+ col
]);
482 for (j
= 0; j
< tab
->n_div
; ++j
) {
484 if (tab
->var
[tab
->n_var
- tab
->n_div
+j
].is_row
)
486 col
= tab
->var
[tab
->n_var
- tab
->n_div
+j
].index
;
487 isl_int_mul(mat
->row
[1 + row
][1 + tab
->n_param
+ j
], m
,
488 tab
->mat
->row
[r
][off
+ col
]);
491 isl_seq_neg(mat
->row
[1 + row
], mat
->row
[1 + row
],
497 sol_push_sol(sol
, bset
, mat
);
502 isl_basic_set_free(bset
);
510 struct isl_set
*empty
;
513 static void sol_map_free(struct isl_sol_map
*sol_map
)
517 if (sol_map
->sol
.context
)
518 sol_map
->sol
.context
->op
->free(sol_map
->sol
.context
);
519 isl_map_free(sol_map
->map
);
520 isl_set_free(sol_map
->empty
);
524 static void sol_map_free_wrap(struct isl_sol
*sol
)
526 sol_map_free((struct isl_sol_map
*)sol
);
529 /* This function is called for parts of the context where there is
530 * no solution, with "bset" corresponding to the context tableau.
531 * Simply add the basic set to the set "empty".
533 static void sol_map_add_empty(struct isl_sol_map
*sol
,
534 struct isl_basic_set
*bset
)
538 isl_assert(bset
->ctx
, sol
->empty
, goto error
);
540 sol
->empty
= isl_set_grow(sol
->empty
, 1);
541 bset
= isl_basic_set_simplify(bset
);
542 bset
= isl_basic_set_finalize(bset
);
543 sol
->empty
= isl_set_add_basic_set(sol
->empty
, isl_basic_set_copy(bset
));
546 isl_basic_set_free(bset
);
549 isl_basic_set_free(bset
);
553 static void sol_map_add_empty_wrap(struct isl_sol
*sol
,
554 struct isl_basic_set
*bset
)
556 sol_map_add_empty((struct isl_sol_map
*)sol
, bset
);
559 /* Given a basic map "dom" that represents the context and an affine
560 * matrix "M" that maps the dimensions of the context to the
561 * output variables, construct a basic map with the same parameters
562 * and divs as the context, the dimensions of the context as input
563 * dimensions and a number of output dimensions that is equal to
564 * the number of output dimensions in the input map.
566 * The constraints and divs of the context are simply copied
567 * from "dom". For each row
571 * is added, with d the common denominator of M.
573 static void sol_map_add(struct isl_sol_map
*sol
,
574 struct isl_basic_set
*dom
, struct isl_mat
*M
)
577 struct isl_basic_map
*bmap
= NULL
;
585 if (sol
->sol
.error
|| !dom
|| !M
)
588 n_out
= sol
->sol
.n_out
;
589 n_eq
= dom
->n_eq
+ n_out
;
590 n_ineq
= dom
->n_ineq
;
592 nparam
= isl_basic_set_total_dim(dom
) - n_div
;
593 total
= isl_map_dim(sol
->map
, isl_dim_all
);
594 bmap
= isl_basic_map_alloc_space(isl_map_get_space(sol
->map
),
595 n_div
, n_eq
, 2 * n_div
+ n_ineq
);
598 if (sol
->sol
.rational
)
599 ISL_F_SET(bmap
, ISL_BASIC_MAP_RATIONAL
);
600 for (i
= 0; i
< dom
->n_div
; ++i
) {
601 int k
= isl_basic_map_alloc_div(bmap
);
604 isl_seq_cpy(bmap
->div
[k
], dom
->div
[i
], 1 + 1 + nparam
);
605 isl_seq_clr(bmap
->div
[k
] + 1 + 1 + nparam
, total
- nparam
);
606 isl_seq_cpy(bmap
->div
[k
] + 1 + 1 + total
,
607 dom
->div
[i
] + 1 + 1 + nparam
, i
);
609 for (i
= 0; i
< dom
->n_eq
; ++i
) {
610 int k
= isl_basic_map_alloc_equality(bmap
);
613 isl_seq_cpy(bmap
->eq
[k
], dom
->eq
[i
], 1 + nparam
);
614 isl_seq_clr(bmap
->eq
[k
] + 1 + nparam
, total
- nparam
);
615 isl_seq_cpy(bmap
->eq
[k
] + 1 + total
,
616 dom
->eq
[i
] + 1 + nparam
, n_div
);
618 for (i
= 0; i
< dom
->n_ineq
; ++i
) {
619 int k
= isl_basic_map_alloc_inequality(bmap
);
622 isl_seq_cpy(bmap
->ineq
[k
], dom
->ineq
[i
], 1 + nparam
);
623 isl_seq_clr(bmap
->ineq
[k
] + 1 + nparam
, total
- nparam
);
624 isl_seq_cpy(bmap
->ineq
[k
] + 1 + total
,
625 dom
->ineq
[i
] + 1 + nparam
, n_div
);
627 for (i
= 0; i
< M
->n_row
- 1; ++i
) {
628 int k
= isl_basic_map_alloc_equality(bmap
);
631 isl_seq_cpy(bmap
->eq
[k
], M
->row
[1 + i
], 1 + nparam
);
632 isl_seq_clr(bmap
->eq
[k
] + 1 + nparam
, n_out
);
633 isl_int_neg(bmap
->eq
[k
][1 + nparam
+ i
], M
->row
[0][0]);
634 isl_seq_cpy(bmap
->eq
[k
] + 1 + nparam
+ n_out
,
635 M
->row
[1 + i
] + 1 + nparam
, n_div
);
637 bmap
= isl_basic_map_simplify(bmap
);
638 bmap
= isl_basic_map_finalize(bmap
);
639 sol
->map
= isl_map_grow(sol
->map
, 1);
640 sol
->map
= isl_map_add_basic_map(sol
->map
, bmap
);
641 isl_basic_set_free(dom
);
647 isl_basic_set_free(dom
);
649 isl_basic_map_free(bmap
);
653 static void sol_map_add_wrap(struct isl_sol
*sol
,
654 struct isl_basic_set
*dom
, struct isl_mat
*M
)
656 sol_map_add((struct isl_sol_map
*)sol
, dom
, M
);
660 /* Store the "parametric constant" of row "row" of tableau "tab" in "line",
661 * i.e., the constant term and the coefficients of all variables that
662 * appear in the context tableau.
663 * Note that the coefficient of the big parameter M is NOT copied.
664 * The context tableau may not have a big parameter and even when it
665 * does, it is a different big parameter.
667 static void get_row_parameter_line(struct isl_tab
*tab
, int row
, isl_int
*line
)
670 unsigned off
= 2 + tab
->M
;
672 isl_int_set(line
[0], tab
->mat
->row
[row
][1]);
673 for (i
= 0; i
< tab
->n_param
; ++i
) {
674 if (tab
->var
[i
].is_row
)
675 isl_int_set_si(line
[1 + i
], 0);
677 int col
= tab
->var
[i
].index
;
678 isl_int_set(line
[1 + i
], tab
->mat
->row
[row
][off
+ col
]);
681 for (i
= 0; i
< tab
->n_div
; ++i
) {
682 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
683 isl_int_set_si(line
[1 + tab
->n_param
+ i
], 0);
685 int col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
686 isl_int_set(line
[1 + tab
->n_param
+ i
],
687 tab
->mat
->row
[row
][off
+ col
]);
692 /* Check if rows "row1" and "row2" have identical "parametric constants",
693 * as explained above.
694 * In this case, we also insist that the coefficients of the big parameter
695 * be the same as the values of the constants will only be the same
696 * if these coefficients are also the same.
698 static int identical_parameter_line(struct isl_tab
*tab
, int row1
, int row2
)
701 unsigned off
= 2 + tab
->M
;
703 if (isl_int_ne(tab
->mat
->row
[row1
][1], tab
->mat
->row
[row2
][1]))
706 if (tab
->M
&& isl_int_ne(tab
->mat
->row
[row1
][2],
707 tab
->mat
->row
[row2
][2]))
710 for (i
= 0; i
< tab
->n_param
+ tab
->n_div
; ++i
) {
711 int pos
= i
< tab
->n_param
? i
:
712 tab
->n_var
- tab
->n_div
+ i
- tab
->n_param
;
715 if (tab
->var
[pos
].is_row
)
717 col
= tab
->var
[pos
].index
;
718 if (isl_int_ne(tab
->mat
->row
[row1
][off
+ col
],
719 tab
->mat
->row
[row2
][off
+ col
]))
725 /* Return an inequality that expresses that the "parametric constant"
726 * should be non-negative.
727 * This function is only called when the coefficient of the big parameter
730 static struct isl_vec
*get_row_parameter_ineq(struct isl_tab
*tab
, int row
)
732 struct isl_vec
*ineq
;
734 ineq
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_param
+ tab
->n_div
);
738 get_row_parameter_line(tab
, row
, ineq
->el
);
740 ineq
= isl_vec_normalize(ineq
);
745 /* Return a integer division for use in a parametric cut based on the given row.
746 * In particular, let the parametric constant of the row be
750 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
751 * The div returned is equal to
753 * floor(\sum_i {-a_i} y_i) = floor((\sum_i (-a_i mod d) y_i)/d)
755 static struct isl_vec
*get_row_parameter_div(struct isl_tab
*tab
, int row
)
759 div
= isl_vec_alloc(tab
->mat
->ctx
, 1 + 1 + tab
->n_param
+ tab
->n_div
);
763 isl_int_set(div
->el
[0], tab
->mat
->row
[row
][0]);
764 get_row_parameter_line(tab
, row
, div
->el
+ 1);
765 div
= isl_vec_normalize(div
);
766 isl_seq_neg(div
->el
+ 1, div
->el
+ 1, div
->size
- 1);
767 isl_seq_fdiv_r(div
->el
+ 1, div
->el
+ 1, div
->el
[0], div
->size
- 1);
772 /* Return a integer division for use in transferring an integrality constraint
774 * In particular, let the parametric constant of the row be
778 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
779 * The the returned div is equal to
781 * floor(\sum_i {a_i} y_i) = floor((\sum_i (a_i mod d) y_i)/d)
783 static struct isl_vec
*get_row_split_div(struct isl_tab
*tab
, int row
)
787 div
= isl_vec_alloc(tab
->mat
->ctx
, 1 + 1 + tab
->n_param
+ tab
->n_div
);
791 isl_int_set(div
->el
[0], tab
->mat
->row
[row
][0]);
792 get_row_parameter_line(tab
, row
, div
->el
+ 1);
793 div
= isl_vec_normalize(div
);
794 isl_seq_fdiv_r(div
->el
+ 1, div
->el
+ 1, div
->el
[0], div
->size
- 1);
799 /* Construct and return an inequality that expresses an upper bound
801 * In particular, if the div is given by
805 * then the inequality expresses
809 static struct isl_vec
*ineq_for_div(struct isl_basic_set
*bset
, unsigned div
)
813 struct isl_vec
*ineq
;
818 total
= isl_basic_set_total_dim(bset
);
819 div_pos
= 1 + total
- bset
->n_div
+ div
;
821 ineq
= isl_vec_alloc(bset
->ctx
, 1 + total
);
825 isl_seq_cpy(ineq
->el
, bset
->div
[div
] + 1, 1 + total
);
826 isl_int_neg(ineq
->el
[div_pos
], bset
->div
[div
][0]);
830 /* Given a row in the tableau and a div that was created
831 * using get_row_split_div and that been constrained to equality, i.e.,
833 * d = floor(\sum_i {a_i} y_i) = \sum_i {a_i} y_i
835 * replace the expression "\sum_i {a_i} y_i" in the row by d,
836 * i.e., we subtract "\sum_i {a_i} y_i" and add 1 d.
837 * The coefficients of the non-parameters in the tableau have been
838 * verified to be integral. We can therefore simply replace coefficient b
839 * by floor(b). For the coefficients of the parameters we have
840 * floor(a_i) = a_i - {a_i}, while for the other coefficients, we have
843 static struct isl_tab
*set_row_cst_to_div(struct isl_tab
*tab
, int row
, int div
)
845 isl_seq_fdiv_q(tab
->mat
->row
[row
] + 1, tab
->mat
->row
[row
] + 1,
846 tab
->mat
->row
[row
][0], 1 + tab
->M
+ tab
->n_col
);
848 isl_int_set_si(tab
->mat
->row
[row
][0], 1);
850 if (tab
->var
[tab
->n_var
- tab
->n_div
+ div
].is_row
) {
851 int drow
= tab
->var
[tab
->n_var
- tab
->n_div
+ div
].index
;
853 isl_assert(tab
->mat
->ctx
,
854 isl_int_is_one(tab
->mat
->row
[drow
][0]), goto error
);
855 isl_seq_combine(tab
->mat
->row
[row
] + 1,
856 tab
->mat
->ctx
->one
, tab
->mat
->row
[row
] + 1,
857 tab
->mat
->ctx
->one
, tab
->mat
->row
[drow
] + 1,
858 1 + tab
->M
+ tab
->n_col
);
860 int dcol
= tab
->var
[tab
->n_var
- tab
->n_div
+ div
].index
;
862 isl_int_set_si(tab
->mat
->row
[row
][2 + tab
->M
+ dcol
], 1);
871 /* Check if the (parametric) constant of the given row is obviously
872 * negative, meaning that we don't need to consult the context tableau.
873 * If there is a big parameter and its coefficient is non-zero,
874 * then this coefficient determines the outcome.
875 * Otherwise, we check whether the constant is negative and
876 * all non-zero coefficients of parameters are negative and
877 * belong to non-negative parameters.
879 static int is_obviously_neg(struct isl_tab
*tab
, int row
)
883 unsigned off
= 2 + tab
->M
;
886 if (isl_int_is_pos(tab
->mat
->row
[row
][2]))
888 if (isl_int_is_neg(tab
->mat
->row
[row
][2]))
892 if (isl_int_is_nonneg(tab
->mat
->row
[row
][1]))
894 for (i
= 0; i
< tab
->n_param
; ++i
) {
895 /* Eliminated parameter */
896 if (tab
->var
[i
].is_row
)
898 col
= tab
->var
[i
].index
;
899 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
901 if (!tab
->var
[i
].is_nonneg
)
903 if (isl_int_is_pos(tab
->mat
->row
[row
][off
+ col
]))
906 for (i
= 0; i
< tab
->n_div
; ++i
) {
907 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
909 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
910 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
912 if (!tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_nonneg
)
914 if (isl_int_is_pos(tab
->mat
->row
[row
][off
+ col
]))
920 /* Check if the (parametric) constant of the given row is obviously
921 * non-negative, meaning that we don't need to consult the context tableau.
922 * If there is a big parameter and its coefficient is non-zero,
923 * then this coefficient determines the outcome.
924 * Otherwise, we check whether the constant is non-negative and
925 * all non-zero coefficients of parameters are positive and
926 * belong to non-negative parameters.
928 static int is_obviously_nonneg(struct isl_tab
*tab
, int row
)
932 unsigned off
= 2 + tab
->M
;
935 if (isl_int_is_pos(tab
->mat
->row
[row
][2]))
937 if (isl_int_is_neg(tab
->mat
->row
[row
][2]))
941 if (isl_int_is_neg(tab
->mat
->row
[row
][1]))
943 for (i
= 0; i
< tab
->n_param
; ++i
) {
944 /* Eliminated parameter */
945 if (tab
->var
[i
].is_row
)
947 col
= tab
->var
[i
].index
;
948 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
950 if (!tab
->var
[i
].is_nonneg
)
952 if (isl_int_is_neg(tab
->mat
->row
[row
][off
+ col
]))
955 for (i
= 0; i
< tab
->n_div
; ++i
) {
956 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
958 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
959 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
961 if (!tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_nonneg
)
963 if (isl_int_is_neg(tab
->mat
->row
[row
][off
+ col
]))
969 /* Given a row r and two columns, return the column that would
970 * lead to the lexicographically smallest increment in the sample
971 * solution when leaving the basis in favor of the row.
972 * Pivoting with column c will increment the sample value by a non-negative
973 * constant times a_{V,c}/a_{r,c}, with a_{V,c} the elements of column c
974 * corresponding to the non-parametric variables.
975 * If variable v appears in a column c_v, the a_{v,c} = 1 iff c = c_v,
976 * with all other entries in this virtual row equal to zero.
977 * If variable v appears in a row, then a_{v,c} is the element in column c
980 * Let v be the first variable with a_{v,c1}/a_{r,c1} != a_{v,c2}/a_{r,c2}.
981 * Then if a_{v,c1}/a_{r,c1} < a_{v,c2}/a_{r,c2}, i.e.,
982 * a_{v,c2} a_{r,c1} - a_{v,c1} a_{r,c2} > 0, c1 results in the minimal
983 * increment. Otherwise, it's c2.
985 static int lexmin_col_pair(struct isl_tab
*tab
,
986 int row
, int col1
, int col2
, isl_int tmp
)
991 tr
= tab
->mat
->row
[row
] + 2 + tab
->M
;
993 for (i
= tab
->n_param
; i
< tab
->n_var
- tab
->n_div
; ++i
) {
997 if (!tab
->var
[i
].is_row
) {
998 if (tab
->var
[i
].index
== col1
)
1000 if (tab
->var
[i
].index
== col2
)
1005 if (tab
->var
[i
].index
== row
)
1008 r
= tab
->mat
->row
[tab
->var
[i
].index
] + 2 + tab
->M
;
1009 s1
= isl_int_sgn(r
[col1
]);
1010 s2
= isl_int_sgn(r
[col2
]);
1011 if (s1
== 0 && s2
== 0)
1018 isl_int_mul(tmp
, r
[col2
], tr
[col1
]);
1019 isl_int_submul(tmp
, r
[col1
], tr
[col2
]);
1020 if (isl_int_is_pos(tmp
))
1022 if (isl_int_is_neg(tmp
))
1028 /* Given a row in the tableau, find and return the column that would
1029 * result in the lexicographically smallest, but positive, increment
1030 * in the sample point.
1031 * If there is no such column, then return tab->n_col.
1032 * If anything goes wrong, return -1.
1034 static int lexmin_pivot_col(struct isl_tab
*tab
, int row
)
1037 int col
= tab
->n_col
;
1041 tr
= tab
->mat
->row
[row
] + 2 + tab
->M
;
1045 for (j
= tab
->n_dead
; j
< tab
->n_col
; ++j
) {
1046 if (tab
->col_var
[j
] >= 0 &&
1047 (tab
->col_var
[j
] < tab
->n_param
||
1048 tab
->col_var
[j
] >= tab
->n_var
- tab
->n_div
))
1051 if (!isl_int_is_pos(tr
[j
]))
1054 if (col
== tab
->n_col
)
1057 col
= lexmin_col_pair(tab
, row
, col
, j
, tmp
);
1058 isl_assert(tab
->mat
->ctx
, col
>= 0, goto error
);
1068 /* Return the first known violated constraint, i.e., a non-negative
1069 * constraint that currently has an either obviously negative value
1070 * or a previously determined to be negative value.
1072 * If any constraint has a negative coefficient for the big parameter,
1073 * if any, then we return one of these first.
1075 static int first_neg(struct isl_tab
*tab
)
1080 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
1081 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
1083 if (!isl_int_is_neg(tab
->mat
->row
[row
][2]))
1086 tab
->row_sign
[row
] = isl_tab_row_neg
;
1089 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
1090 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
1092 if (tab
->row_sign
) {
1093 if (tab
->row_sign
[row
] == 0 &&
1094 is_obviously_neg(tab
, row
))
1095 tab
->row_sign
[row
] = isl_tab_row_neg
;
1096 if (tab
->row_sign
[row
] != isl_tab_row_neg
)
1098 } else if (!is_obviously_neg(tab
, row
))
1105 /* Check whether the invariant that all columns are lexico-positive
1106 * is satisfied. This function is not called from the current code
1107 * but is useful during debugging.
1109 static void check_lexpos(struct isl_tab
*tab
) __attribute__ ((unused
));
1110 static void check_lexpos(struct isl_tab
*tab
)
1112 unsigned off
= 2 + tab
->M
;
1117 for (col
= tab
->n_dead
; col
< tab
->n_col
; ++col
) {
1118 if (tab
->col_var
[col
] >= 0 &&
1119 (tab
->col_var
[col
] < tab
->n_param
||
1120 tab
->col_var
[col
] >= tab
->n_var
- tab
->n_div
))
1122 for (var
= tab
->n_param
; var
< tab
->n_var
- tab
->n_div
; ++var
) {
1123 if (!tab
->var
[var
].is_row
) {
1124 if (tab
->var
[var
].index
== col
)
1129 row
= tab
->var
[var
].index
;
1130 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
1132 if (isl_int_is_pos(tab
->mat
->row
[row
][off
+ col
]))
1134 fprintf(stderr
, "lexneg column %d (row %d)\n",
1137 if (var
>= tab
->n_var
- tab
->n_div
)
1138 fprintf(stderr
, "zero column %d\n", col
);
1142 /* Report to the caller that the given constraint is part of an encountered
1145 static int report_conflicting_constraint(struct isl_tab
*tab
, int con
)
1147 return tab
->conflict(con
, tab
->conflict_user
);
1150 /* Given a conflicting row in the tableau, report all constraints
1151 * involved in the row to the caller. That is, the row itself
1152 * (if represents a constraint) and all constraint columns with
1153 * non-zero (and therefore negative) coefficient.
1155 static int report_conflict(struct isl_tab
*tab
, int row
)
1163 if (tab
->row_var
[row
] < 0 &&
1164 report_conflicting_constraint(tab
, ~tab
->row_var
[row
]) < 0)
1167 tr
= tab
->mat
->row
[row
] + 2 + tab
->M
;
1169 for (j
= tab
->n_dead
; j
< tab
->n_col
; ++j
) {
1170 if (tab
->col_var
[j
] >= 0 &&
1171 (tab
->col_var
[j
] < tab
->n_param
||
1172 tab
->col_var
[j
] >= tab
->n_var
- tab
->n_div
))
1175 if (!isl_int_is_neg(tr
[j
]))
1178 if (tab
->col_var
[j
] < 0 &&
1179 report_conflicting_constraint(tab
, ~tab
->col_var
[j
]) < 0)
1186 /* Resolve all known or obviously violated constraints through pivoting.
1187 * In particular, as long as we can find any violated constraint, we
1188 * look for a pivoting column that would result in the lexicographically
1189 * smallest increment in the sample point. If there is no such column
1190 * then the tableau is infeasible.
1192 static int restore_lexmin(struct isl_tab
*tab
) WARN_UNUSED
;
1193 static int restore_lexmin(struct isl_tab
*tab
)
1201 while ((row
= first_neg(tab
)) != -1) {
1202 col
= lexmin_pivot_col(tab
, row
);
1203 if (col
>= tab
->n_col
) {
1204 if (report_conflict(tab
, row
) < 0)
1206 if (isl_tab_mark_empty(tab
) < 0)
1212 if (isl_tab_pivot(tab
, row
, col
) < 0)
1218 /* Given a row that represents an equality, look for an appropriate
1220 * In particular, if there are any non-zero coefficients among
1221 * the non-parameter variables, then we take the last of these
1222 * variables. Eliminating this variable in terms of the other
1223 * variables and/or parameters does not influence the property
1224 * that all column in the initial tableau are lexicographically
1225 * positive. The row corresponding to the eliminated variable
1226 * will only have non-zero entries below the diagonal of the
1227 * initial tableau. That is, we transform
1233 * If there is no such non-parameter variable, then we are dealing with
1234 * pure parameter equality and we pick any parameter with coefficient 1 or -1
1235 * for elimination. This will ensure that the eliminated parameter
1236 * always has an integer value whenever all the other parameters are integral.
1237 * If there is no such parameter then we return -1.
1239 static int last_var_col_or_int_par_col(struct isl_tab
*tab
, int row
)
1241 unsigned off
= 2 + tab
->M
;
1244 for (i
= tab
->n_var
- tab
->n_div
- 1; i
>= 0 && i
>= tab
->n_param
; --i
) {
1246 if (tab
->var
[i
].is_row
)
1248 col
= tab
->var
[i
].index
;
1249 if (col
<= tab
->n_dead
)
1251 if (!isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
1254 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
1255 if (isl_int_is_one(tab
->mat
->row
[row
][off
+ i
]))
1257 if (isl_int_is_negone(tab
->mat
->row
[row
][off
+ i
]))
1263 /* Add an equality that is known to be valid to the tableau.
1264 * We first check if we can eliminate a variable or a parameter.
1265 * If not, we add the equality as two inequalities.
1266 * In this case, the equality was a pure parameter equality and there
1267 * is no need to resolve any constraint violations.
1269 static struct isl_tab
*add_lexmin_valid_eq(struct isl_tab
*tab
, isl_int
*eq
)
1276 r
= isl_tab_add_row(tab
, eq
);
1280 r
= tab
->con
[r
].index
;
1281 i
= last_var_col_or_int_par_col(tab
, r
);
1283 tab
->con
[r
].is_nonneg
= 1;
1284 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1286 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
1287 r
= isl_tab_add_row(tab
, eq
);
1290 tab
->con
[r
].is_nonneg
= 1;
1291 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1294 if (isl_tab_pivot(tab
, r
, i
) < 0)
1296 if (isl_tab_kill_col(tab
, i
) < 0)
1307 /* Check if the given row is a pure constant.
1309 static int is_constant(struct isl_tab
*tab
, int row
)
1311 unsigned off
= 2 + tab
->M
;
1313 return isl_seq_first_non_zero(tab
->mat
->row
[row
] + off
+ tab
->n_dead
,
1314 tab
->n_col
- tab
->n_dead
) == -1;
1317 /* Add an equality that may or may not be valid to the tableau.
1318 * If the resulting row is a pure constant, then it must be zero.
1319 * Otherwise, the resulting tableau is empty.
1321 * If the row is not a pure constant, then we add two inequalities,
1322 * each time checking that they can be satisfied.
1323 * In the end we try to use one of the two constraints to eliminate
1326 static int add_lexmin_eq(struct isl_tab
*tab
, isl_int
*eq
) WARN_UNUSED
;
1327 static int add_lexmin_eq(struct isl_tab
*tab
, isl_int
*eq
)
1331 struct isl_tab_undo
*snap
;
1335 snap
= isl_tab_snap(tab
);
1336 r1
= isl_tab_add_row(tab
, eq
);
1339 tab
->con
[r1
].is_nonneg
= 1;
1340 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r1
]) < 0)
1343 row
= tab
->con
[r1
].index
;
1344 if (is_constant(tab
, row
)) {
1345 if (!isl_int_is_zero(tab
->mat
->row
[row
][1]) ||
1346 (tab
->M
&& !isl_int_is_zero(tab
->mat
->row
[row
][2]))) {
1347 if (isl_tab_mark_empty(tab
) < 0)
1351 if (isl_tab_rollback(tab
, snap
) < 0)
1356 if (restore_lexmin(tab
) < 0)
1361 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
1363 r2
= isl_tab_add_row(tab
, eq
);
1366 tab
->con
[r2
].is_nonneg
= 1;
1367 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r2
]) < 0)
1370 if (restore_lexmin(tab
) < 0)
1375 if (!tab
->con
[r1
].is_row
) {
1376 if (isl_tab_kill_col(tab
, tab
->con
[r1
].index
) < 0)
1378 } else if (!tab
->con
[r2
].is_row
) {
1379 if (isl_tab_kill_col(tab
, tab
->con
[r2
].index
) < 0)
1384 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, eq
);
1385 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
1387 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
1388 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, eq
);
1389 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
1390 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
1399 /* Add an inequality to the tableau, resolving violations using
1402 static struct isl_tab
*add_lexmin_ineq(struct isl_tab
*tab
, isl_int
*ineq
)
1409 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, ineq
);
1410 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
1415 r
= isl_tab_add_row(tab
, ineq
);
1418 tab
->con
[r
].is_nonneg
= 1;
1419 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1421 if (isl_tab_row_is_redundant(tab
, tab
->con
[r
].index
)) {
1422 if (isl_tab_mark_redundant(tab
, tab
->con
[r
].index
) < 0)
1427 if (restore_lexmin(tab
) < 0)
1429 if (!tab
->empty
&& tab
->con
[r
].is_row
&&
1430 isl_tab_row_is_redundant(tab
, tab
->con
[r
].index
))
1431 if (isl_tab_mark_redundant(tab
, tab
->con
[r
].index
) < 0)
1439 /* Check if the coefficients of the parameters are all integral.
1441 static int integer_parameter(struct isl_tab
*tab
, int row
)
1445 unsigned off
= 2 + tab
->M
;
1447 for (i
= 0; i
< tab
->n_param
; ++i
) {
1448 /* Eliminated parameter */
1449 if (tab
->var
[i
].is_row
)
1451 col
= tab
->var
[i
].index
;
1452 if (!isl_int_is_divisible_by(tab
->mat
->row
[row
][off
+ col
],
1453 tab
->mat
->row
[row
][0]))
1456 for (i
= 0; i
< tab
->n_div
; ++i
) {
1457 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
1459 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
1460 if (!isl_int_is_divisible_by(tab
->mat
->row
[row
][off
+ col
],
1461 tab
->mat
->row
[row
][0]))
1467 /* Check if the coefficients of the non-parameter variables are all integral.
1469 static int integer_variable(struct isl_tab
*tab
, int row
)
1472 unsigned off
= 2 + tab
->M
;
1474 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
1475 if (tab
->col_var
[i
] >= 0 &&
1476 (tab
->col_var
[i
] < tab
->n_param
||
1477 tab
->col_var
[i
] >= tab
->n_var
- tab
->n_div
))
1479 if (!isl_int_is_divisible_by(tab
->mat
->row
[row
][off
+ i
],
1480 tab
->mat
->row
[row
][0]))
1486 /* Check if the constant term is integral.
1488 static int integer_constant(struct isl_tab
*tab
, int row
)
1490 return isl_int_is_divisible_by(tab
->mat
->row
[row
][1],
1491 tab
->mat
->row
[row
][0]);
1494 #define I_CST 1 << 0
1495 #define I_PAR 1 << 1
1496 #define I_VAR 1 << 2
1498 /* Check for next (non-parameter) variable after "var" (first if var == -1)
1499 * that is non-integer and therefore requires a cut and return
1500 * the index of the variable.
1501 * For parametric tableaus, there are three parts in a row,
1502 * the constant, the coefficients of the parameters and the rest.
1503 * For each part, we check whether the coefficients in that part
1504 * are all integral and if so, set the corresponding flag in *f.
1505 * If the constant and the parameter part are integral, then the
1506 * current sample value is integral and no cut is required
1507 * (irrespective of whether the variable part is integral).
1509 static int next_non_integer_var(struct isl_tab
*tab
, int var
, int *f
)
1511 var
= var
< 0 ? tab
->n_param
: var
+ 1;
1513 for (; var
< tab
->n_var
- tab
->n_div
; ++var
) {
1516 if (!tab
->var
[var
].is_row
)
1518 row
= tab
->var
[var
].index
;
1519 if (integer_constant(tab
, row
))
1520 ISL_FL_SET(flags
, I_CST
);
1521 if (integer_parameter(tab
, row
))
1522 ISL_FL_SET(flags
, I_PAR
);
1523 if (ISL_FL_ISSET(flags
, I_CST
) && ISL_FL_ISSET(flags
, I_PAR
))
1525 if (integer_variable(tab
, row
))
1526 ISL_FL_SET(flags
, I_VAR
);
1533 /* Check for first (non-parameter) variable that is non-integer and
1534 * therefore requires a cut and return the corresponding row.
1535 * For parametric tableaus, there are three parts in a row,
1536 * the constant, the coefficients of the parameters and the rest.
1537 * For each part, we check whether the coefficients in that part
1538 * are all integral and if so, set the corresponding flag in *f.
1539 * If the constant and the parameter part are integral, then the
1540 * current sample value is integral and no cut is required
1541 * (irrespective of whether the variable part is integral).
1543 static int first_non_integer_row(struct isl_tab
*tab
, int *f
)
1545 int var
= next_non_integer_var(tab
, -1, f
);
1547 return var
< 0 ? -1 : tab
->var
[var
].index
;
1550 /* Add a (non-parametric) cut to cut away the non-integral sample
1551 * value of the given row.
1553 * If the row is given by
1555 * m r = f + \sum_i a_i y_i
1559 * c = - {-f/m} + \sum_i {a_i/m} y_i >= 0
1561 * The big parameter, if any, is ignored, since it is assumed to be big
1562 * enough to be divisible by any integer.
1563 * If the tableau is actually a parametric tableau, then this function
1564 * is only called when all coefficients of the parameters are integral.
1565 * The cut therefore has zero coefficients for the parameters.
1567 * The current value is known to be negative, so row_sign, if it
1568 * exists, is set accordingly.
1570 * Return the row of the cut or -1.
1572 static int add_cut(struct isl_tab
*tab
, int row
)
1577 unsigned off
= 2 + tab
->M
;
1579 if (isl_tab_extend_cons(tab
, 1) < 0)
1581 r
= isl_tab_allocate_con(tab
);
1585 r_row
= tab
->mat
->row
[tab
->con
[r
].index
];
1586 isl_int_set(r_row
[0], tab
->mat
->row
[row
][0]);
1587 isl_int_neg(r_row
[1], tab
->mat
->row
[row
][1]);
1588 isl_int_fdiv_r(r_row
[1], r_row
[1], tab
->mat
->row
[row
][0]);
1589 isl_int_neg(r_row
[1], r_row
[1]);
1591 isl_int_set_si(r_row
[2], 0);
1592 for (i
= 0; i
< tab
->n_col
; ++i
)
1593 isl_int_fdiv_r(r_row
[off
+ i
],
1594 tab
->mat
->row
[row
][off
+ i
], tab
->mat
->row
[row
][0]);
1596 tab
->con
[r
].is_nonneg
= 1;
1597 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1600 tab
->row_sign
[tab
->con
[r
].index
] = isl_tab_row_neg
;
1602 return tab
->con
[r
].index
;
1605 /* Given a non-parametric tableau, add cuts until an integer
1606 * sample point is obtained or until the tableau is determined
1607 * to be integer infeasible.
1608 * As long as there is any non-integer value in the sample point,
1609 * we add appropriate cuts, if possible, for each of these
1610 * non-integer values and then resolve the violated
1611 * cut constraints using restore_lexmin.
1612 * If one of the corresponding rows is equal to an integral
1613 * combination of variables/constraints plus a non-integral constant,
1614 * then there is no way to obtain an integer point and we return
1615 * a tableau that is marked empty.
1617 static struct isl_tab
*cut_to_integer_lexmin(struct isl_tab
*tab
)
1628 while ((var
= next_non_integer_var(tab
, -1, &flags
)) != -1) {
1630 if (ISL_FL_ISSET(flags
, I_VAR
)) {
1631 if (isl_tab_mark_empty(tab
) < 0)
1635 row
= tab
->var
[var
].index
;
1636 row
= add_cut(tab
, row
);
1639 } while ((var
= next_non_integer_var(tab
, var
, &flags
)) != -1);
1640 if (restore_lexmin(tab
) < 0)
1651 /* Check whether all the currently active samples also satisfy the inequality
1652 * "ineq" (treated as an equality if eq is set).
1653 * Remove those samples that do not.
1655 static struct isl_tab
*check_samples(struct isl_tab
*tab
, isl_int
*ineq
, int eq
)
1663 isl_assert(tab
->mat
->ctx
, tab
->bmap
, goto error
);
1664 isl_assert(tab
->mat
->ctx
, tab
->samples
, goto error
);
1665 isl_assert(tab
->mat
->ctx
, tab
->samples
->n_col
== 1 + tab
->n_var
, goto error
);
1668 for (i
= tab
->n_outside
; i
< tab
->n_sample
; ++i
) {
1670 isl_seq_inner_product(ineq
, tab
->samples
->row
[i
],
1671 1 + tab
->n_var
, &v
);
1672 sgn
= isl_int_sgn(v
);
1673 if (eq
? (sgn
== 0) : (sgn
>= 0))
1675 tab
= isl_tab_drop_sample(tab
, i
);
1687 /* Check whether the sample value of the tableau is finite,
1688 * i.e., either the tableau does not use a big parameter, or
1689 * all values of the variables are equal to the big parameter plus
1690 * some constant. This constant is the actual sample value.
1692 static int sample_is_finite(struct isl_tab
*tab
)
1699 for (i
= 0; i
< tab
->n_var
; ++i
) {
1701 if (!tab
->var
[i
].is_row
)
1703 row
= tab
->var
[i
].index
;
1704 if (isl_int_ne(tab
->mat
->row
[row
][0], tab
->mat
->row
[row
][2]))
1710 /* Check if the context tableau of sol has any integer points.
1711 * Leave tab in empty state if no integer point can be found.
1712 * If an integer point can be found and if moreover it is finite,
1713 * then it is added to the list of sample values.
1715 * This function is only called when none of the currently active sample
1716 * values satisfies the most recently added constraint.
1718 static struct isl_tab
*check_integer_feasible(struct isl_tab
*tab
)
1720 struct isl_tab_undo
*snap
;
1725 snap
= isl_tab_snap(tab
);
1726 if (isl_tab_push_basis(tab
) < 0)
1729 tab
= cut_to_integer_lexmin(tab
);
1733 if (!tab
->empty
&& sample_is_finite(tab
)) {
1734 struct isl_vec
*sample
;
1736 sample
= isl_tab_get_sample_value(tab
);
1738 tab
= isl_tab_add_sample(tab
, sample
);
1741 if (!tab
->empty
&& isl_tab_rollback(tab
, snap
) < 0)
1750 /* Check if any of the currently active sample values satisfies
1751 * the inequality "ineq" (an equality if eq is set).
1753 static int tab_has_valid_sample(struct isl_tab
*tab
, isl_int
*ineq
, int eq
)
1761 isl_assert(tab
->mat
->ctx
, tab
->bmap
, return -1);
1762 isl_assert(tab
->mat
->ctx
, tab
->samples
, return -1);
1763 isl_assert(tab
->mat
->ctx
, tab
->samples
->n_col
== 1 + tab
->n_var
, return -1);
1766 for (i
= tab
->n_outside
; i
< tab
->n_sample
; ++i
) {
1768 isl_seq_inner_product(ineq
, tab
->samples
->row
[i
],
1769 1 + tab
->n_var
, &v
);
1770 sgn
= isl_int_sgn(v
);
1771 if (eq
? (sgn
== 0) : (sgn
>= 0))
1776 return i
< tab
->n_sample
;
1779 /* Add a div specified by "div" to the tableau "tab" and return
1780 * 1 if the div is obviously non-negative.
1782 static int context_tab_add_div(struct isl_tab
*tab
, struct isl_vec
*div
,
1783 int (*add_ineq
)(void *user
, isl_int
*), void *user
)
1787 struct isl_mat
*samples
;
1790 r
= isl_tab_add_div(tab
, div
, add_ineq
, user
);
1793 nonneg
= tab
->var
[r
].is_nonneg
;
1794 tab
->var
[r
].frozen
= 1;
1796 samples
= isl_mat_extend(tab
->samples
,
1797 tab
->n_sample
, 1 + tab
->n_var
);
1798 tab
->samples
= samples
;
1801 for (i
= tab
->n_outside
; i
< samples
->n_row
; ++i
) {
1802 isl_seq_inner_product(div
->el
+ 1, samples
->row
[i
],
1803 div
->size
- 1, &samples
->row
[i
][samples
->n_col
- 1]);
1804 isl_int_fdiv_q(samples
->row
[i
][samples
->n_col
- 1],
1805 samples
->row
[i
][samples
->n_col
- 1], div
->el
[0]);
1811 /* Add a div specified by "div" to both the main tableau and
1812 * the context tableau. In case of the main tableau, we only
1813 * need to add an extra div. In the context tableau, we also
1814 * need to express the meaning of the div.
1815 * Return the index of the div or -1 if anything went wrong.
1817 static int add_div(struct isl_tab
*tab
, struct isl_context
*context
,
1818 struct isl_vec
*div
)
1823 if ((nonneg
= context
->op
->add_div(context
, div
)) < 0)
1826 if (!context
->op
->is_ok(context
))
1829 if (isl_tab_extend_vars(tab
, 1) < 0)
1831 r
= isl_tab_allocate_var(tab
);
1835 tab
->var
[r
].is_nonneg
= 1;
1836 tab
->var
[r
].frozen
= 1;
1839 return tab
->n_div
- 1;
1841 context
->op
->invalidate(context
);
1845 static int find_div(struct isl_tab
*tab
, isl_int
*div
, isl_int denom
)
1848 unsigned total
= isl_basic_map_total_dim(tab
->bmap
);
1850 for (i
= 0; i
< tab
->bmap
->n_div
; ++i
) {
1851 if (isl_int_ne(tab
->bmap
->div
[i
][0], denom
))
1853 if (!isl_seq_eq(tab
->bmap
->div
[i
] + 1, div
, 1 + total
))
1860 /* Return the index of a div that corresponds to "div".
1861 * We first check if we already have such a div and if not, we create one.
1863 static int get_div(struct isl_tab
*tab
, struct isl_context
*context
,
1864 struct isl_vec
*div
)
1867 struct isl_tab
*context_tab
= context
->op
->peek_tab(context
);
1872 d
= find_div(context_tab
, div
->el
+ 1, div
->el
[0]);
1876 return add_div(tab
, context
, div
);
1879 /* Add a parametric cut to cut away the non-integral sample value
1881 * Let a_i be the coefficients of the constant term and the parameters
1882 * and let b_i be the coefficients of the variables or constraints
1883 * in basis of the tableau.
1884 * Let q be the div q = floor(\sum_i {-a_i} y_i).
1886 * The cut is expressed as
1888 * c = \sum_i -{-a_i} y_i + \sum_i {b_i} x_i + q >= 0
1890 * If q did not already exist in the context tableau, then it is added first.
1891 * If q is in a column of the main tableau then the "+ q" can be accomplished
1892 * by setting the corresponding entry to the denominator of the constraint.
1893 * If q happens to be in a row of the main tableau, then the corresponding
1894 * row needs to be added instead (taking care of the denominators).
1895 * Note that this is very unlikely, but perhaps not entirely impossible.
1897 * The current value of the cut is known to be negative (or at least
1898 * non-positive), so row_sign is set accordingly.
1900 * Return the row of the cut or -1.
1902 static int add_parametric_cut(struct isl_tab
*tab
, int row
,
1903 struct isl_context
*context
)
1905 struct isl_vec
*div
;
1912 unsigned off
= 2 + tab
->M
;
1917 div
= get_row_parameter_div(tab
, row
);
1922 d
= context
->op
->get_div(context
, tab
, div
);
1926 if (isl_tab_extend_cons(tab
, 1) < 0)
1928 r
= isl_tab_allocate_con(tab
);
1932 r_row
= tab
->mat
->row
[tab
->con
[r
].index
];
1933 isl_int_set(r_row
[0], tab
->mat
->row
[row
][0]);
1934 isl_int_neg(r_row
[1], tab
->mat
->row
[row
][1]);
1935 isl_int_fdiv_r(r_row
[1], r_row
[1], tab
->mat
->row
[row
][0]);
1936 isl_int_neg(r_row
[1], r_row
[1]);
1938 isl_int_set_si(r_row
[2], 0);
1939 for (i
= 0; i
< tab
->n_param
; ++i
) {
1940 if (tab
->var
[i
].is_row
)
1942 col
= tab
->var
[i
].index
;
1943 isl_int_neg(r_row
[off
+ col
], tab
->mat
->row
[row
][off
+ col
]);
1944 isl_int_fdiv_r(r_row
[off
+ col
], r_row
[off
+ col
],
1945 tab
->mat
->row
[row
][0]);
1946 isl_int_neg(r_row
[off
+ col
], r_row
[off
+ col
]);
1948 for (i
= 0; i
< tab
->n_div
; ++i
) {
1949 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
1951 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
1952 isl_int_neg(r_row
[off
+ col
], tab
->mat
->row
[row
][off
+ col
]);
1953 isl_int_fdiv_r(r_row
[off
+ col
], r_row
[off
+ col
],
1954 tab
->mat
->row
[row
][0]);
1955 isl_int_neg(r_row
[off
+ col
], r_row
[off
+ col
]);
1957 for (i
= 0; i
< tab
->n_col
; ++i
) {
1958 if (tab
->col_var
[i
] >= 0 &&
1959 (tab
->col_var
[i
] < tab
->n_param
||
1960 tab
->col_var
[i
] >= tab
->n_var
- tab
->n_div
))
1962 isl_int_fdiv_r(r_row
[off
+ i
],
1963 tab
->mat
->row
[row
][off
+ i
], tab
->mat
->row
[row
][0]);
1965 if (tab
->var
[tab
->n_var
- tab
->n_div
+ d
].is_row
) {
1967 int d_row
= tab
->var
[tab
->n_var
- tab
->n_div
+ d
].index
;
1969 isl_int_gcd(gcd
, tab
->mat
->row
[d_row
][0], r_row
[0]);
1970 isl_int_divexact(r_row
[0], r_row
[0], gcd
);
1971 isl_int_divexact(gcd
, tab
->mat
->row
[d_row
][0], gcd
);
1972 isl_seq_combine(r_row
+ 1, gcd
, r_row
+ 1,
1973 r_row
[0], tab
->mat
->row
[d_row
] + 1,
1974 off
- 1 + tab
->n_col
);
1975 isl_int_mul(r_row
[0], r_row
[0], tab
->mat
->row
[d_row
][0]);
1978 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ d
].index
;
1979 isl_int_set(r_row
[off
+ col
], tab
->mat
->row
[row
][0]);
1982 tab
->con
[r
].is_nonneg
= 1;
1983 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1986 tab
->row_sign
[tab
->con
[r
].index
] = isl_tab_row_neg
;
1990 row
= tab
->con
[r
].index
;
1992 if (d
>= n
&& context
->op
->detect_equalities(context
, tab
) < 0)
1998 /* Construct a tableau for bmap that can be used for computing
1999 * the lexicographic minimum (or maximum) of bmap.
2000 * If not NULL, then dom is the domain where the minimum
2001 * should be computed. In this case, we set up a parametric
2002 * tableau with row signs (initialized to "unknown").
2003 * If M is set, then the tableau will use a big parameter.
2004 * If max is set, then a maximum should be computed instead of a minimum.
2005 * This means that for each variable x, the tableau will contain the variable
2006 * x' = M - x, rather than x' = M + x. This in turn means that the coefficient
2007 * of the variables in all constraints are negated prior to adding them
2010 static struct isl_tab
*tab_for_lexmin(struct isl_basic_map
*bmap
,
2011 struct isl_basic_set
*dom
, unsigned M
, int max
)
2014 struct isl_tab
*tab
;
2016 tab
= isl_tab_alloc(bmap
->ctx
, 2 * bmap
->n_eq
+ bmap
->n_ineq
+ 1,
2017 isl_basic_map_total_dim(bmap
), M
);
2021 tab
->rational
= ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
);
2023 tab
->n_param
= isl_basic_set_total_dim(dom
) - dom
->n_div
;
2024 tab
->n_div
= dom
->n_div
;
2025 tab
->row_sign
= isl_calloc_array(bmap
->ctx
,
2026 enum isl_tab_row_sign
, tab
->mat
->n_row
);
2030 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
)) {
2031 if (isl_tab_mark_empty(tab
) < 0)
2036 for (i
= tab
->n_param
; i
< tab
->n_var
- tab
->n_div
; ++i
) {
2037 tab
->var
[i
].is_nonneg
= 1;
2038 tab
->var
[i
].frozen
= 1;
2040 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
2042 isl_seq_neg(bmap
->eq
[i
] + 1 + tab
->n_param
,
2043 bmap
->eq
[i
] + 1 + tab
->n_param
,
2044 tab
->n_var
- tab
->n_param
- tab
->n_div
);
2045 tab
= add_lexmin_valid_eq(tab
, bmap
->eq
[i
]);
2047 isl_seq_neg(bmap
->eq
[i
] + 1 + tab
->n_param
,
2048 bmap
->eq
[i
] + 1 + tab
->n_param
,
2049 tab
->n_var
- tab
->n_param
- tab
->n_div
);
2050 if (!tab
|| tab
->empty
)
2053 if (bmap
->n_eq
&& restore_lexmin(tab
) < 0)
2055 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
2057 isl_seq_neg(bmap
->ineq
[i
] + 1 + tab
->n_param
,
2058 bmap
->ineq
[i
] + 1 + tab
->n_param
,
2059 tab
->n_var
- tab
->n_param
- tab
->n_div
);
2060 tab
= add_lexmin_ineq(tab
, bmap
->ineq
[i
]);
2062 isl_seq_neg(bmap
->ineq
[i
] + 1 + tab
->n_param
,
2063 bmap
->ineq
[i
] + 1 + tab
->n_param
,
2064 tab
->n_var
- tab
->n_param
- tab
->n_div
);
2065 if (!tab
|| tab
->empty
)
2074 /* Given a main tableau where more than one row requires a split,
2075 * determine and return the "best" row to split on.
2077 * Given two rows in the main tableau, if the inequality corresponding
2078 * to the first row is redundant with respect to that of the second row
2079 * in the current tableau, then it is better to split on the second row,
2080 * since in the positive part, both row will be positive.
2081 * (In the negative part a pivot will have to be performed and just about
2082 * anything can happen to the sign of the other row.)
2084 * As a simple heuristic, we therefore select the row that makes the most
2085 * of the other rows redundant.
2087 * Perhaps it would also be useful to look at the number of constraints
2088 * that conflict with any given constraint.
2090 static int best_split(struct isl_tab
*tab
, struct isl_tab
*context_tab
)
2092 struct isl_tab_undo
*snap
;
2098 if (isl_tab_extend_cons(context_tab
, 2) < 0)
2101 snap
= isl_tab_snap(context_tab
);
2103 for (split
= tab
->n_redundant
; split
< tab
->n_row
; ++split
) {
2104 struct isl_tab_undo
*snap2
;
2105 struct isl_vec
*ineq
= NULL
;
2109 if (!isl_tab_var_from_row(tab
, split
)->is_nonneg
)
2111 if (tab
->row_sign
[split
] != isl_tab_row_any
)
2114 ineq
= get_row_parameter_ineq(tab
, split
);
2117 ok
= isl_tab_add_ineq(context_tab
, ineq
->el
) >= 0;
2122 snap2
= isl_tab_snap(context_tab
);
2124 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
2125 struct isl_tab_var
*var
;
2129 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
2131 if (tab
->row_sign
[row
] != isl_tab_row_any
)
2134 ineq
= get_row_parameter_ineq(tab
, row
);
2137 ok
= isl_tab_add_ineq(context_tab
, ineq
->el
) >= 0;
2141 var
= &context_tab
->con
[context_tab
->n_con
- 1];
2142 if (!context_tab
->empty
&&
2143 !isl_tab_min_at_most_neg_one(context_tab
, var
))
2145 if (isl_tab_rollback(context_tab
, snap2
) < 0)
2148 if (best
== -1 || r
> best_r
) {
2152 if (isl_tab_rollback(context_tab
, snap
) < 0)
2159 static struct isl_basic_set
*context_lex_peek_basic_set(
2160 struct isl_context
*context
)
2162 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2165 return isl_tab_peek_bset(clex
->tab
);
2168 static struct isl_tab
*context_lex_peek_tab(struct isl_context
*context
)
2170 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2174 static void context_lex_add_eq(struct isl_context
*context
, isl_int
*eq
,
2175 int check
, int update
)
2177 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2178 if (isl_tab_extend_cons(clex
->tab
, 2) < 0)
2180 if (add_lexmin_eq(clex
->tab
, eq
) < 0)
2183 int v
= tab_has_valid_sample(clex
->tab
, eq
, 1);
2187 clex
->tab
= check_integer_feasible(clex
->tab
);
2190 clex
->tab
= check_samples(clex
->tab
, eq
, 1);
2193 isl_tab_free(clex
->tab
);
2197 static void context_lex_add_ineq(struct isl_context
*context
, isl_int
*ineq
,
2198 int check
, int update
)
2200 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2201 if (isl_tab_extend_cons(clex
->tab
, 1) < 0)
2203 clex
->tab
= add_lexmin_ineq(clex
->tab
, ineq
);
2205 int v
= tab_has_valid_sample(clex
->tab
, ineq
, 0);
2209 clex
->tab
= check_integer_feasible(clex
->tab
);
2212 clex
->tab
= check_samples(clex
->tab
, ineq
, 0);
2215 isl_tab_free(clex
->tab
);
2219 static int context_lex_add_ineq_wrap(void *user
, isl_int
*ineq
)
2221 struct isl_context
*context
= (struct isl_context
*)user
;
2222 context_lex_add_ineq(context
, ineq
, 0, 0);
2223 return context
->op
->is_ok(context
) ? 0 : -1;
2226 /* Check which signs can be obtained by "ineq" on all the currently
2227 * active sample values. See row_sign for more information.
2229 static enum isl_tab_row_sign
tab_ineq_sign(struct isl_tab
*tab
, isl_int
*ineq
,
2235 enum isl_tab_row_sign res
= isl_tab_row_unknown
;
2237 isl_assert(tab
->mat
->ctx
, tab
->samples
, return isl_tab_row_unknown
);
2238 isl_assert(tab
->mat
->ctx
, tab
->samples
->n_col
== 1 + tab
->n_var
,
2239 return isl_tab_row_unknown
);
2242 for (i
= tab
->n_outside
; i
< tab
->n_sample
; ++i
) {
2243 isl_seq_inner_product(tab
->samples
->row
[i
], ineq
,
2244 1 + tab
->n_var
, &tmp
);
2245 sgn
= isl_int_sgn(tmp
);
2246 if (sgn
> 0 || (sgn
== 0 && strict
)) {
2247 if (res
== isl_tab_row_unknown
)
2248 res
= isl_tab_row_pos
;
2249 if (res
== isl_tab_row_neg
)
2250 res
= isl_tab_row_any
;
2253 if (res
== isl_tab_row_unknown
)
2254 res
= isl_tab_row_neg
;
2255 if (res
== isl_tab_row_pos
)
2256 res
= isl_tab_row_any
;
2258 if (res
== isl_tab_row_any
)
2266 static enum isl_tab_row_sign
context_lex_ineq_sign(struct isl_context
*context
,
2267 isl_int
*ineq
, int strict
)
2269 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2270 return tab_ineq_sign(clex
->tab
, ineq
, strict
);
2273 /* Check whether "ineq" can be added to the tableau without rendering
2276 static int context_lex_test_ineq(struct isl_context
*context
, isl_int
*ineq
)
2278 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2279 struct isl_tab_undo
*snap
;
2285 if (isl_tab_extend_cons(clex
->tab
, 1) < 0)
2288 snap
= isl_tab_snap(clex
->tab
);
2289 if (isl_tab_push_basis(clex
->tab
) < 0)
2291 clex
->tab
= add_lexmin_ineq(clex
->tab
, ineq
);
2292 clex
->tab
= check_integer_feasible(clex
->tab
);
2295 feasible
= !clex
->tab
->empty
;
2296 if (isl_tab_rollback(clex
->tab
, snap
) < 0)
2302 static int context_lex_get_div(struct isl_context
*context
, struct isl_tab
*tab
,
2303 struct isl_vec
*div
)
2305 return get_div(tab
, context
, div
);
2308 /* Add a div specified by "div" to the context tableau and return
2309 * 1 if the div is obviously non-negative.
2310 * context_tab_add_div will always return 1, because all variables
2311 * in a isl_context_lex tableau are non-negative.
2312 * However, if we are using a big parameter in the context, then this only
2313 * reflects the non-negativity of the variable used to _encode_ the
2314 * div, i.e., div' = M + div, so we can't draw any conclusions.
2316 static int context_lex_add_div(struct isl_context
*context
, struct isl_vec
*div
)
2318 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2320 nonneg
= context_tab_add_div(clex
->tab
, div
,
2321 context_lex_add_ineq_wrap
, context
);
2329 static int context_lex_detect_equalities(struct isl_context
*context
,
2330 struct isl_tab
*tab
)
2335 static int context_lex_best_split(struct isl_context
*context
,
2336 struct isl_tab
*tab
)
2338 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2339 struct isl_tab_undo
*snap
;
2342 snap
= isl_tab_snap(clex
->tab
);
2343 if (isl_tab_push_basis(clex
->tab
) < 0)
2345 r
= best_split(tab
, clex
->tab
);
2347 if (r
>= 0 && isl_tab_rollback(clex
->tab
, snap
) < 0)
2353 static int context_lex_is_empty(struct isl_context
*context
)
2355 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2358 return clex
->tab
->empty
;
2361 static void *context_lex_save(struct isl_context
*context
)
2363 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2364 struct isl_tab_undo
*snap
;
2366 snap
= isl_tab_snap(clex
->tab
);
2367 if (isl_tab_push_basis(clex
->tab
) < 0)
2369 if (isl_tab_save_samples(clex
->tab
) < 0)
2375 static void context_lex_restore(struct isl_context
*context
, void *save
)
2377 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2378 if (isl_tab_rollback(clex
->tab
, (struct isl_tab_undo
*)save
) < 0) {
2379 isl_tab_free(clex
->tab
);
2384 static int context_lex_is_ok(struct isl_context
*context
)
2386 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2390 /* For each variable in the context tableau, check if the variable can
2391 * only attain non-negative values. If so, mark the parameter as non-negative
2392 * in the main tableau. This allows for a more direct identification of some
2393 * cases of violated constraints.
2395 static struct isl_tab
*tab_detect_nonnegative_parameters(struct isl_tab
*tab
,
2396 struct isl_tab
*context_tab
)
2399 struct isl_tab_undo
*snap
;
2400 struct isl_vec
*ineq
= NULL
;
2401 struct isl_tab_var
*var
;
2404 if (context_tab
->n_var
== 0)
2407 ineq
= isl_vec_alloc(tab
->mat
->ctx
, 1 + context_tab
->n_var
);
2411 if (isl_tab_extend_cons(context_tab
, 1) < 0)
2414 snap
= isl_tab_snap(context_tab
);
2417 isl_seq_clr(ineq
->el
, ineq
->size
);
2418 for (i
= 0; i
< context_tab
->n_var
; ++i
) {
2419 isl_int_set_si(ineq
->el
[1 + i
], 1);
2420 if (isl_tab_add_ineq(context_tab
, ineq
->el
) < 0)
2422 var
= &context_tab
->con
[context_tab
->n_con
- 1];
2423 if (!context_tab
->empty
&&
2424 !isl_tab_min_at_most_neg_one(context_tab
, var
)) {
2426 if (i
>= tab
->n_param
)
2427 j
= i
- tab
->n_param
+ tab
->n_var
- tab
->n_div
;
2428 tab
->var
[j
].is_nonneg
= 1;
2431 isl_int_set_si(ineq
->el
[1 + i
], 0);
2432 if (isl_tab_rollback(context_tab
, snap
) < 0)
2436 if (context_tab
->M
&& n
== context_tab
->n_var
) {
2437 context_tab
->mat
= isl_mat_drop_cols(context_tab
->mat
, 2, 1);
2449 static struct isl_tab
*context_lex_detect_nonnegative_parameters(
2450 struct isl_context
*context
, struct isl_tab
*tab
)
2452 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2453 struct isl_tab_undo
*snap
;
2458 snap
= isl_tab_snap(clex
->tab
);
2459 if (isl_tab_push_basis(clex
->tab
) < 0)
2462 tab
= tab_detect_nonnegative_parameters(tab
, clex
->tab
);
2464 if (isl_tab_rollback(clex
->tab
, snap
) < 0)
2473 static void context_lex_invalidate(struct isl_context
*context
)
2475 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2476 isl_tab_free(clex
->tab
);
2480 static void context_lex_free(struct isl_context
*context
)
2482 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2483 isl_tab_free(clex
->tab
);
2487 struct isl_context_op isl_context_lex_op
= {
2488 context_lex_detect_nonnegative_parameters
,
2489 context_lex_peek_basic_set
,
2490 context_lex_peek_tab
,
2492 context_lex_add_ineq
,
2493 context_lex_ineq_sign
,
2494 context_lex_test_ineq
,
2495 context_lex_get_div
,
2496 context_lex_add_div
,
2497 context_lex_detect_equalities
,
2498 context_lex_best_split
,
2499 context_lex_is_empty
,
2502 context_lex_restore
,
2503 context_lex_invalidate
,
2507 static struct isl_tab
*context_tab_for_lexmin(struct isl_basic_set
*bset
)
2509 struct isl_tab
*tab
;
2511 bset
= isl_basic_set_cow(bset
);
2514 tab
= tab_for_lexmin((struct isl_basic_map
*)bset
, NULL
, 1, 0);
2517 if (isl_tab_track_bset(tab
, bset
) < 0)
2519 tab
= isl_tab_init_samples(tab
);
2522 isl_basic_set_free(bset
);
2526 static struct isl_context
*isl_context_lex_alloc(struct isl_basic_set
*dom
)
2528 struct isl_context_lex
*clex
;
2533 clex
= isl_alloc_type(dom
->ctx
, struct isl_context_lex
);
2537 clex
->context
.op
= &isl_context_lex_op
;
2539 clex
->tab
= context_tab_for_lexmin(isl_basic_set_copy(dom
));
2540 if (restore_lexmin(clex
->tab
) < 0)
2542 clex
->tab
= check_integer_feasible(clex
->tab
);
2546 return &clex
->context
;
2548 clex
->context
.op
->free(&clex
->context
);
2552 struct isl_context_gbr
{
2553 struct isl_context context
;
2554 struct isl_tab
*tab
;
2555 struct isl_tab
*shifted
;
2556 struct isl_tab
*cone
;
2559 static struct isl_tab
*context_gbr_detect_nonnegative_parameters(
2560 struct isl_context
*context
, struct isl_tab
*tab
)
2562 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2565 return tab_detect_nonnegative_parameters(tab
, cgbr
->tab
);
2568 static struct isl_basic_set
*context_gbr_peek_basic_set(
2569 struct isl_context
*context
)
2571 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2574 return isl_tab_peek_bset(cgbr
->tab
);
2577 static struct isl_tab
*context_gbr_peek_tab(struct isl_context
*context
)
2579 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2583 /* Initialize the "shifted" tableau of the context, which
2584 * contains the constraints of the original tableau shifted
2585 * by the sum of all negative coefficients. This ensures
2586 * that any rational point in the shifted tableau can
2587 * be rounded up to yield an integer point in the original tableau.
2589 static void gbr_init_shifted(struct isl_context_gbr
*cgbr
)
2592 struct isl_vec
*cst
;
2593 struct isl_basic_set
*bset
= isl_tab_peek_bset(cgbr
->tab
);
2594 unsigned dim
= isl_basic_set_total_dim(bset
);
2596 cst
= isl_vec_alloc(cgbr
->tab
->mat
->ctx
, bset
->n_ineq
);
2600 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
2601 isl_int_set(cst
->el
[i
], bset
->ineq
[i
][0]);
2602 for (j
= 0; j
< dim
; ++j
) {
2603 if (!isl_int_is_neg(bset
->ineq
[i
][1 + j
]))
2605 isl_int_add(bset
->ineq
[i
][0], bset
->ineq
[i
][0],
2606 bset
->ineq
[i
][1 + j
]);
2610 cgbr
->shifted
= isl_tab_from_basic_set(bset
);
2612 for (i
= 0; i
< bset
->n_ineq
; ++i
)
2613 isl_int_set(bset
->ineq
[i
][0], cst
->el
[i
]);
2618 /* Check if the shifted tableau is non-empty, and if so
2619 * use the sample point to construct an integer point
2620 * of the context tableau.
2622 static struct isl_vec
*gbr_get_shifted_sample(struct isl_context_gbr
*cgbr
)
2624 struct isl_vec
*sample
;
2627 gbr_init_shifted(cgbr
);
2630 if (cgbr
->shifted
->empty
)
2631 return isl_vec_alloc(cgbr
->tab
->mat
->ctx
, 0);
2633 sample
= isl_tab_get_sample_value(cgbr
->shifted
);
2634 sample
= isl_vec_ceil(sample
);
2639 static struct isl_basic_set
*drop_constant_terms(struct isl_basic_set
*bset
)
2646 for (i
= 0; i
< bset
->n_eq
; ++i
)
2647 isl_int_set_si(bset
->eq
[i
][0], 0);
2649 for (i
= 0; i
< bset
->n_ineq
; ++i
)
2650 isl_int_set_si(bset
->ineq
[i
][0], 0);
2655 static int use_shifted(struct isl_context_gbr
*cgbr
)
2657 return cgbr
->tab
->bmap
->n_eq
== 0 && cgbr
->tab
->bmap
->n_div
== 0;
2660 static struct isl_vec
*gbr_get_sample(struct isl_context_gbr
*cgbr
)
2662 struct isl_basic_set
*bset
;
2663 struct isl_basic_set
*cone
;
2665 if (isl_tab_sample_is_integer(cgbr
->tab
))
2666 return isl_tab_get_sample_value(cgbr
->tab
);
2668 if (use_shifted(cgbr
)) {
2669 struct isl_vec
*sample
;
2671 sample
= gbr_get_shifted_sample(cgbr
);
2672 if (!sample
|| sample
->size
> 0)
2675 isl_vec_free(sample
);
2679 bset
= isl_tab_peek_bset(cgbr
->tab
);
2680 cgbr
->cone
= isl_tab_from_recession_cone(bset
, 0);
2683 if (isl_tab_track_bset(cgbr
->cone
, isl_basic_set_dup(bset
)) < 0)
2686 if (isl_tab_detect_implicit_equalities(cgbr
->cone
) < 0)
2689 if (cgbr
->cone
->n_dead
== cgbr
->cone
->n_col
) {
2690 struct isl_vec
*sample
;
2691 struct isl_tab_undo
*snap
;
2693 if (cgbr
->tab
->basis
) {
2694 if (cgbr
->tab
->basis
->n_col
!= 1 + cgbr
->tab
->n_var
) {
2695 isl_mat_free(cgbr
->tab
->basis
);
2696 cgbr
->tab
->basis
= NULL
;
2698 cgbr
->tab
->n_zero
= 0;
2699 cgbr
->tab
->n_unbounded
= 0;
2702 snap
= isl_tab_snap(cgbr
->tab
);
2704 sample
= isl_tab_sample(cgbr
->tab
);
2706 if (isl_tab_rollback(cgbr
->tab
, snap
) < 0) {
2707 isl_vec_free(sample
);
2714 cone
= isl_basic_set_dup(isl_tab_peek_bset(cgbr
->cone
));
2715 cone
= drop_constant_terms(cone
);
2716 cone
= isl_basic_set_update_from_tab(cone
, cgbr
->cone
);
2717 cone
= isl_basic_set_underlying_set(cone
);
2718 cone
= isl_basic_set_gauss(cone
, NULL
);
2720 bset
= isl_basic_set_dup(isl_tab_peek_bset(cgbr
->tab
));
2721 bset
= isl_basic_set_update_from_tab(bset
, cgbr
->tab
);
2722 bset
= isl_basic_set_underlying_set(bset
);
2723 bset
= isl_basic_set_gauss(bset
, NULL
);
2725 return isl_basic_set_sample_with_cone(bset
, cone
);
2728 static void check_gbr_integer_feasible(struct isl_context_gbr
*cgbr
)
2730 struct isl_vec
*sample
;
2735 if (cgbr
->tab
->empty
)
2738 sample
= gbr_get_sample(cgbr
);
2742 if (sample
->size
== 0) {
2743 isl_vec_free(sample
);
2744 if (isl_tab_mark_empty(cgbr
->tab
) < 0)
2749 cgbr
->tab
= isl_tab_add_sample(cgbr
->tab
, sample
);
2753 isl_tab_free(cgbr
->tab
);
2757 static struct isl_tab
*add_gbr_eq(struct isl_tab
*tab
, isl_int
*eq
)
2762 if (isl_tab_extend_cons(tab
, 2) < 0)
2765 if (isl_tab_add_eq(tab
, eq
) < 0)
2774 static void context_gbr_add_eq(struct isl_context
*context
, isl_int
*eq
,
2775 int check
, int update
)
2777 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2779 cgbr
->tab
= add_gbr_eq(cgbr
->tab
, eq
);
2781 if (cgbr
->cone
&& cgbr
->cone
->n_col
!= cgbr
->cone
->n_dead
) {
2782 if (isl_tab_extend_cons(cgbr
->cone
, 2) < 0)
2784 if (isl_tab_add_eq(cgbr
->cone
, eq
) < 0)
2789 int v
= tab_has_valid_sample(cgbr
->tab
, eq
, 1);
2793 check_gbr_integer_feasible(cgbr
);
2796 cgbr
->tab
= check_samples(cgbr
->tab
, eq
, 1);
2799 isl_tab_free(cgbr
->tab
);
2803 static void add_gbr_ineq(struct isl_context_gbr
*cgbr
, isl_int
*ineq
)
2808 if (isl_tab_extend_cons(cgbr
->tab
, 1) < 0)
2811 if (isl_tab_add_ineq(cgbr
->tab
, ineq
) < 0)
2814 if (cgbr
->shifted
&& !cgbr
->shifted
->empty
&& use_shifted(cgbr
)) {
2817 dim
= isl_basic_map_total_dim(cgbr
->tab
->bmap
);
2819 if (isl_tab_extend_cons(cgbr
->shifted
, 1) < 0)
2822 for (i
= 0; i
< dim
; ++i
) {
2823 if (!isl_int_is_neg(ineq
[1 + i
]))
2825 isl_int_add(ineq
[0], ineq
[0], ineq
[1 + i
]);
2828 if (isl_tab_add_ineq(cgbr
->shifted
, ineq
) < 0)
2831 for (i
= 0; i
< dim
; ++i
) {
2832 if (!isl_int_is_neg(ineq
[1 + i
]))
2834 isl_int_sub(ineq
[0], ineq
[0], ineq
[1 + i
]);
2838 if (cgbr
->cone
&& cgbr
->cone
->n_col
!= cgbr
->cone
->n_dead
) {
2839 if (isl_tab_extend_cons(cgbr
->cone
, 1) < 0)
2841 if (isl_tab_add_ineq(cgbr
->cone
, ineq
) < 0)
2847 isl_tab_free(cgbr
->tab
);
2851 static void context_gbr_add_ineq(struct isl_context
*context
, isl_int
*ineq
,
2852 int check
, int update
)
2854 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2856 add_gbr_ineq(cgbr
, ineq
);
2861 int v
= tab_has_valid_sample(cgbr
->tab
, ineq
, 0);
2865 check_gbr_integer_feasible(cgbr
);
2868 cgbr
->tab
= check_samples(cgbr
->tab
, ineq
, 0);
2871 isl_tab_free(cgbr
->tab
);
2875 static int context_gbr_add_ineq_wrap(void *user
, isl_int
*ineq
)
2877 struct isl_context
*context
= (struct isl_context
*)user
;
2878 context_gbr_add_ineq(context
, ineq
, 0, 0);
2879 return context
->op
->is_ok(context
) ? 0 : -1;
2882 static enum isl_tab_row_sign
context_gbr_ineq_sign(struct isl_context
*context
,
2883 isl_int
*ineq
, int strict
)
2885 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2886 return tab_ineq_sign(cgbr
->tab
, ineq
, strict
);
2889 /* Check whether "ineq" can be added to the tableau without rendering
2892 static int context_gbr_test_ineq(struct isl_context
*context
, isl_int
*ineq
)
2894 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2895 struct isl_tab_undo
*snap
;
2896 struct isl_tab_undo
*shifted_snap
= NULL
;
2897 struct isl_tab_undo
*cone_snap
= NULL
;
2903 if (isl_tab_extend_cons(cgbr
->tab
, 1) < 0)
2906 snap
= isl_tab_snap(cgbr
->tab
);
2908 shifted_snap
= isl_tab_snap(cgbr
->shifted
);
2910 cone_snap
= isl_tab_snap(cgbr
->cone
);
2911 add_gbr_ineq(cgbr
, ineq
);
2912 check_gbr_integer_feasible(cgbr
);
2915 feasible
= !cgbr
->tab
->empty
;
2916 if (isl_tab_rollback(cgbr
->tab
, snap
) < 0)
2919 if (isl_tab_rollback(cgbr
->shifted
, shifted_snap
))
2921 } else if (cgbr
->shifted
) {
2922 isl_tab_free(cgbr
->shifted
);
2923 cgbr
->shifted
= NULL
;
2926 if (isl_tab_rollback(cgbr
->cone
, cone_snap
))
2928 } else if (cgbr
->cone
) {
2929 isl_tab_free(cgbr
->cone
);
2936 /* Return the column of the last of the variables associated to
2937 * a column that has a non-zero coefficient.
2938 * This function is called in a context where only coefficients
2939 * of parameters or divs can be non-zero.
2941 static int last_non_zero_var_col(struct isl_tab
*tab
, isl_int
*p
)
2946 if (tab
->n_var
== 0)
2949 for (i
= tab
->n_var
- 1; i
>= 0; --i
) {
2950 if (i
>= tab
->n_param
&& i
< tab
->n_var
- tab
->n_div
)
2952 if (tab
->var
[i
].is_row
)
2954 col
= tab
->var
[i
].index
;
2955 if (!isl_int_is_zero(p
[col
]))
2962 /* Look through all the recently added equalities in the context
2963 * to see if we can propagate any of them to the main tableau.
2965 * The newly added equalities in the context are encoded as pairs
2966 * of inequalities starting at inequality "first".
2968 * We tentatively add each of these equalities to the main tableau
2969 * and if this happens to result in a row with a final coefficient
2970 * that is one or negative one, we use it to kill a column
2971 * in the main tableau. Otherwise, we discard the tentatively
2974 static void propagate_equalities(struct isl_context_gbr
*cgbr
,
2975 struct isl_tab
*tab
, unsigned first
)
2978 struct isl_vec
*eq
= NULL
;
2980 eq
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_var
);
2984 if (isl_tab_extend_cons(tab
, (cgbr
->tab
->bmap
->n_ineq
- first
)/2) < 0)
2987 isl_seq_clr(eq
->el
+ 1 + tab
->n_param
,
2988 tab
->n_var
- tab
->n_param
- tab
->n_div
);
2989 for (i
= first
; i
< cgbr
->tab
->bmap
->n_ineq
; i
+= 2) {
2992 struct isl_tab_undo
*snap
;
2993 snap
= isl_tab_snap(tab
);
2995 isl_seq_cpy(eq
->el
, cgbr
->tab
->bmap
->ineq
[i
], 1 + tab
->n_param
);
2996 isl_seq_cpy(eq
->el
+ 1 + tab
->n_var
- tab
->n_div
,
2997 cgbr
->tab
->bmap
->ineq
[i
] + 1 + tab
->n_param
,
3000 r
= isl_tab_add_row(tab
, eq
->el
);
3003 r
= tab
->con
[r
].index
;
3004 j
= last_non_zero_var_col(tab
, tab
->mat
->row
[r
] + 2 + tab
->M
);
3005 if (j
< 0 || j
< tab
->n_dead
||
3006 !isl_int_is_one(tab
->mat
->row
[r
][0]) ||
3007 (!isl_int_is_one(tab
->mat
->row
[r
][2 + tab
->M
+ j
]) &&
3008 !isl_int_is_negone(tab
->mat
->row
[r
][2 + tab
->M
+ j
]))) {
3009 if (isl_tab_rollback(tab
, snap
) < 0)
3013 if (isl_tab_pivot(tab
, r
, j
) < 0)
3015 if (isl_tab_kill_col(tab
, j
) < 0)
3018 if (restore_lexmin(tab
) < 0)
3027 isl_tab_free(cgbr
->tab
);
3031 static int context_gbr_detect_equalities(struct isl_context
*context
,
3032 struct isl_tab
*tab
)
3034 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3035 struct isl_ctx
*ctx
;
3038 ctx
= cgbr
->tab
->mat
->ctx
;
3041 struct isl_basic_set
*bset
= isl_tab_peek_bset(cgbr
->tab
);
3042 cgbr
->cone
= isl_tab_from_recession_cone(bset
, 0);
3045 if (isl_tab_track_bset(cgbr
->cone
, isl_basic_set_dup(bset
)) < 0)
3048 if (isl_tab_detect_implicit_equalities(cgbr
->cone
) < 0)
3051 n_ineq
= cgbr
->tab
->bmap
->n_ineq
;
3052 cgbr
->tab
= isl_tab_detect_equalities(cgbr
->tab
, cgbr
->cone
);
3053 if (cgbr
->tab
&& cgbr
->tab
->bmap
->n_ineq
> n_ineq
)
3054 propagate_equalities(cgbr
, tab
, n_ineq
);
3058 isl_tab_free(cgbr
->tab
);
3063 static int context_gbr_get_div(struct isl_context
*context
, struct isl_tab
*tab
,
3064 struct isl_vec
*div
)
3066 return get_div(tab
, context
, div
);
3069 static int context_gbr_add_div(struct isl_context
*context
, struct isl_vec
*div
)
3071 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3075 if (isl_tab_extend_cons(cgbr
->cone
, 3) < 0)
3077 if (isl_tab_extend_vars(cgbr
->cone
, 1) < 0)
3079 if (isl_tab_allocate_var(cgbr
->cone
) <0)
3082 cgbr
->cone
->bmap
= isl_basic_map_extend_space(cgbr
->cone
->bmap
,
3083 isl_basic_map_get_space(cgbr
->cone
->bmap
), 1, 0, 2);
3084 k
= isl_basic_map_alloc_div(cgbr
->cone
->bmap
);
3087 isl_seq_cpy(cgbr
->cone
->bmap
->div
[k
], div
->el
, div
->size
);
3088 if (isl_tab_push(cgbr
->cone
, isl_tab_undo_bmap_div
) < 0)
3091 return context_tab_add_div(cgbr
->tab
, div
,
3092 context_gbr_add_ineq_wrap
, context
);
3095 static int context_gbr_best_split(struct isl_context
*context
,
3096 struct isl_tab
*tab
)
3098 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3099 struct isl_tab_undo
*snap
;
3102 snap
= isl_tab_snap(cgbr
->tab
);
3103 r
= best_split(tab
, cgbr
->tab
);
3105 if (r
>= 0 && isl_tab_rollback(cgbr
->tab
, snap
) < 0)
3111 static int context_gbr_is_empty(struct isl_context
*context
)
3113 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3116 return cgbr
->tab
->empty
;
3119 struct isl_gbr_tab_undo
{
3120 struct isl_tab_undo
*tab_snap
;
3121 struct isl_tab_undo
*shifted_snap
;
3122 struct isl_tab_undo
*cone_snap
;
3125 static void *context_gbr_save(struct isl_context
*context
)
3127 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3128 struct isl_gbr_tab_undo
*snap
;
3130 snap
= isl_alloc_type(cgbr
->tab
->mat
->ctx
, struct isl_gbr_tab_undo
);
3134 snap
->tab_snap
= isl_tab_snap(cgbr
->tab
);
3135 if (isl_tab_save_samples(cgbr
->tab
) < 0)
3139 snap
->shifted_snap
= isl_tab_snap(cgbr
->shifted
);
3141 snap
->shifted_snap
= NULL
;
3144 snap
->cone_snap
= isl_tab_snap(cgbr
->cone
);
3146 snap
->cone_snap
= NULL
;
3154 static void context_gbr_restore(struct isl_context
*context
, void *save
)
3156 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3157 struct isl_gbr_tab_undo
*snap
= (struct isl_gbr_tab_undo
*)save
;
3160 if (isl_tab_rollback(cgbr
->tab
, snap
->tab_snap
) < 0) {
3161 isl_tab_free(cgbr
->tab
);
3165 if (snap
->shifted_snap
) {
3166 if (isl_tab_rollback(cgbr
->shifted
, snap
->shifted_snap
) < 0)
3168 } else if (cgbr
->shifted
) {
3169 isl_tab_free(cgbr
->shifted
);
3170 cgbr
->shifted
= NULL
;
3173 if (snap
->cone_snap
) {
3174 if (isl_tab_rollback(cgbr
->cone
, snap
->cone_snap
) < 0)
3176 } else if (cgbr
->cone
) {
3177 isl_tab_free(cgbr
->cone
);
3186 isl_tab_free(cgbr
->tab
);
3190 static int context_gbr_is_ok(struct isl_context
*context
)
3192 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3196 static void context_gbr_invalidate(struct isl_context
*context
)
3198 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3199 isl_tab_free(cgbr
->tab
);
3203 static void context_gbr_free(struct isl_context
*context
)
3205 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3206 isl_tab_free(cgbr
->tab
);
3207 isl_tab_free(cgbr
->shifted
);
3208 isl_tab_free(cgbr
->cone
);
3212 struct isl_context_op isl_context_gbr_op
= {
3213 context_gbr_detect_nonnegative_parameters
,
3214 context_gbr_peek_basic_set
,
3215 context_gbr_peek_tab
,
3217 context_gbr_add_ineq
,
3218 context_gbr_ineq_sign
,
3219 context_gbr_test_ineq
,
3220 context_gbr_get_div
,
3221 context_gbr_add_div
,
3222 context_gbr_detect_equalities
,
3223 context_gbr_best_split
,
3224 context_gbr_is_empty
,
3227 context_gbr_restore
,
3228 context_gbr_invalidate
,
3232 static struct isl_context
*isl_context_gbr_alloc(struct isl_basic_set
*dom
)
3234 struct isl_context_gbr
*cgbr
;
3239 cgbr
= isl_calloc_type(dom
->ctx
, struct isl_context_gbr
);
3243 cgbr
->context
.op
= &isl_context_gbr_op
;
3245 cgbr
->shifted
= NULL
;
3247 cgbr
->tab
= isl_tab_from_basic_set(dom
);
3248 cgbr
->tab
= isl_tab_init_samples(cgbr
->tab
);
3251 if (isl_tab_track_bset(cgbr
->tab
,
3252 isl_basic_set_cow(isl_basic_set_copy(dom
))) < 0)
3254 check_gbr_integer_feasible(cgbr
);
3256 return &cgbr
->context
;
3258 cgbr
->context
.op
->free(&cgbr
->context
);
3262 static struct isl_context
*isl_context_alloc(struct isl_basic_set
*dom
)
3267 if (dom
->ctx
->opt
->context
== ISL_CONTEXT_LEXMIN
)
3268 return isl_context_lex_alloc(dom
);
3270 return isl_context_gbr_alloc(dom
);
3273 /* Construct an isl_sol_map structure for accumulating the solution.
3274 * If track_empty is set, then we also keep track of the parts
3275 * of the context where there is no solution.
3276 * If max is set, then we are solving a maximization, rather than
3277 * a minimization problem, which means that the variables in the
3278 * tableau have value "M - x" rather than "M + x".
3280 static struct isl_sol
*sol_map_init(struct isl_basic_map
*bmap
,
3281 struct isl_basic_set
*dom
, int track_empty
, int max
)
3283 struct isl_sol_map
*sol_map
= NULL
;
3288 sol_map
= isl_calloc_type(bmap
->ctx
, struct isl_sol_map
);
3292 sol_map
->sol
.rational
= ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
);
3293 sol_map
->sol
.dec_level
.callback
.run
= &sol_dec_level_wrap
;
3294 sol_map
->sol
.dec_level
.sol
= &sol_map
->sol
;
3295 sol_map
->sol
.max
= max
;
3296 sol_map
->sol
.n_out
= isl_basic_map_dim(bmap
, isl_dim_out
);
3297 sol_map
->sol
.add
= &sol_map_add_wrap
;
3298 sol_map
->sol
.add_empty
= track_empty
? &sol_map_add_empty_wrap
: NULL
;
3299 sol_map
->sol
.free
= &sol_map_free_wrap
;
3300 sol_map
->map
= isl_map_alloc_space(isl_basic_map_get_space(bmap
), 1,
3305 sol_map
->sol
.context
= isl_context_alloc(dom
);
3306 if (!sol_map
->sol
.context
)
3310 sol_map
->empty
= isl_set_alloc_space(isl_basic_set_get_space(dom
),
3311 1, ISL_SET_DISJOINT
);
3312 if (!sol_map
->empty
)
3316 isl_basic_set_free(dom
);
3317 return &sol_map
->sol
;
3319 isl_basic_set_free(dom
);
3320 sol_map_free(sol_map
);
3324 /* Check whether all coefficients of (non-parameter) variables
3325 * are non-positive, meaning that no pivots can be performed on the row.
3327 static int is_critical(struct isl_tab
*tab
, int row
)
3330 unsigned off
= 2 + tab
->M
;
3332 for (j
= tab
->n_dead
; j
< tab
->n_col
; ++j
) {
3333 if (tab
->col_var
[j
] >= 0 &&
3334 (tab
->col_var
[j
] < tab
->n_param
||
3335 tab
->col_var
[j
] >= tab
->n_var
- tab
->n_div
))
3338 if (isl_int_is_pos(tab
->mat
->row
[row
][off
+ j
]))
3345 /* Check whether the inequality represented by vec is strict over the integers,
3346 * i.e., there are no integer values satisfying the constraint with
3347 * equality. This happens if the gcd of the coefficients is not a divisor
3348 * of the constant term. If so, scale the constraint down by the gcd
3349 * of the coefficients.
3351 static int is_strict(struct isl_vec
*vec
)
3357 isl_seq_gcd(vec
->el
+ 1, vec
->size
- 1, &gcd
);
3358 if (!isl_int_is_one(gcd
)) {
3359 strict
= !isl_int_is_divisible_by(vec
->el
[0], gcd
);
3360 isl_int_fdiv_q(vec
->el
[0], vec
->el
[0], gcd
);
3361 isl_seq_scale_down(vec
->el
+ 1, vec
->el
+ 1, gcd
, vec
->size
-1);
3368 /* Determine the sign of the given row of the main tableau.
3369 * The result is one of
3370 * isl_tab_row_pos: always non-negative; no pivot needed
3371 * isl_tab_row_neg: always non-positive; pivot
3372 * isl_tab_row_any: can be both positive and negative; split
3374 * We first handle some simple cases
3375 * - the row sign may be known already
3376 * - the row may be obviously non-negative
3377 * - the parametric constant may be equal to that of another row
3378 * for which we know the sign. This sign will be either "pos" or
3379 * "any". If it had been "neg" then we would have pivoted before.
3381 * If none of these cases hold, we check the value of the row for each
3382 * of the currently active samples. Based on the signs of these values
3383 * we make an initial determination of the sign of the row.
3385 * all zero -> unk(nown)
3386 * all non-negative -> pos
3387 * all non-positive -> neg
3388 * both negative and positive -> all
3390 * If we end up with "all", we are done.
3391 * Otherwise, we perform a check for positive and/or negative
3392 * values as follows.
3394 * samples neg unk pos
3400 * There is no special sign for "zero", because we can usually treat zero
3401 * as either non-negative or non-positive, whatever works out best.
3402 * However, if the row is "critical", meaning that pivoting is impossible
3403 * then we don't want to limp zero with the non-positive case, because
3404 * then we we would lose the solution for those values of the parameters
3405 * where the value of the row is zero. Instead, we treat 0 as non-negative
3406 * ensuring a split if the row can attain both zero and negative values.
3407 * The same happens when the original constraint was one that could not
3408 * be satisfied with equality by any integer values of the parameters.
3409 * In this case, we normalize the constraint, but then a value of zero
3410 * for the normalized constraint is actually a positive value for the
3411 * original constraint, so again we need to treat zero as non-negative.
3412 * In both these cases, we have the following decision tree instead:
3414 * all non-negative -> pos
3415 * all negative -> neg
3416 * both negative and non-negative -> all
3424 static enum isl_tab_row_sign
row_sign(struct isl_tab
*tab
,
3425 struct isl_sol
*sol
, int row
)
3427 struct isl_vec
*ineq
= NULL
;
3428 enum isl_tab_row_sign res
= isl_tab_row_unknown
;
3433 if (tab
->row_sign
[row
] != isl_tab_row_unknown
)
3434 return tab
->row_sign
[row
];
3435 if (is_obviously_nonneg(tab
, row
))
3436 return isl_tab_row_pos
;
3437 for (row2
= tab
->n_redundant
; row2
< tab
->n_row
; ++row2
) {
3438 if (tab
->row_sign
[row2
] == isl_tab_row_unknown
)
3440 if (identical_parameter_line(tab
, row
, row2
))
3441 return tab
->row_sign
[row2
];
3444 critical
= is_critical(tab
, row
);
3446 ineq
= get_row_parameter_ineq(tab
, row
);
3450 strict
= is_strict(ineq
);
3452 res
= sol
->context
->op
->ineq_sign(sol
->context
, ineq
->el
,
3453 critical
|| strict
);
3455 if (res
== isl_tab_row_unknown
|| res
== isl_tab_row_pos
) {
3456 /* test for negative values */
3458 isl_seq_neg(ineq
->el
, ineq
->el
, ineq
->size
);
3459 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3461 feasible
= sol
->context
->op
->test_ineq(sol
->context
, ineq
->el
);
3465 res
= isl_tab_row_pos
;
3467 res
= (res
== isl_tab_row_unknown
) ? isl_tab_row_neg
3469 if (res
== isl_tab_row_neg
) {
3470 isl_seq_neg(ineq
->el
, ineq
->el
, ineq
->size
);
3471 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3475 if (res
== isl_tab_row_neg
) {
3476 /* test for positive values */
3478 if (!critical
&& !strict
)
3479 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3481 feasible
= sol
->context
->op
->test_ineq(sol
->context
, ineq
->el
);
3485 res
= isl_tab_row_any
;
3492 return isl_tab_row_unknown
;
3495 static void find_solutions(struct isl_sol
*sol
, struct isl_tab
*tab
);
3497 /* Find solutions for values of the parameters that satisfy the given
3500 * We currently take a snapshot of the context tableau that is reset
3501 * when we return from this function, while we make a copy of the main
3502 * tableau, leaving the original main tableau untouched.
3503 * These are fairly arbitrary choices. Making a copy also of the context
3504 * tableau would obviate the need to undo any changes made to it later,
3505 * while taking a snapshot of the main tableau could reduce memory usage.
3506 * If we were to switch to taking a snapshot of the main tableau,
3507 * we would have to keep in mind that we need to save the row signs
3508 * and that we need to do this before saving the current basis
3509 * such that the basis has been restore before we restore the row signs.
3511 static void find_in_pos(struct isl_sol
*sol
, struct isl_tab
*tab
, isl_int
*ineq
)
3517 saved
= sol
->context
->op
->save(sol
->context
);
3519 tab
= isl_tab_dup(tab
);
3523 sol
->context
->op
->add_ineq(sol
->context
, ineq
, 0, 1);
3525 find_solutions(sol
, tab
);
3528 sol
->context
->op
->restore(sol
->context
, saved
);
3534 /* Record the absence of solutions for those values of the parameters
3535 * that do not satisfy the given inequality with equality.
3537 static void no_sol_in_strict(struct isl_sol
*sol
,
3538 struct isl_tab
*tab
, struct isl_vec
*ineq
)
3543 if (!sol
->context
|| sol
->error
)
3545 saved
= sol
->context
->op
->save(sol
->context
);
3547 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3549 sol
->context
->op
->add_ineq(sol
->context
, ineq
->el
, 1, 0);
3558 isl_int_add_ui(ineq
->el
[0], ineq
->el
[0], 1);
3560 sol
->context
->op
->restore(sol
->context
, saved
);
3566 /* Compute the lexicographic minimum of the set represented by the main
3567 * tableau "tab" within the context "sol->context_tab".
3568 * On entry the sample value of the main tableau is lexicographically
3569 * less than or equal to this lexicographic minimum.
3570 * Pivots are performed until a feasible point is found, which is then
3571 * necessarily equal to the minimum, or until the tableau is found to
3572 * be infeasible. Some pivots may need to be performed for only some
3573 * feasible values of the context tableau. If so, the context tableau
3574 * is split into a part where the pivot is needed and a part where it is not.
3576 * Whenever we enter the main loop, the main tableau is such that no
3577 * "obvious" pivots need to be performed on it, where "obvious" means
3578 * that the given row can be seen to be negative without looking at
3579 * the context tableau. In particular, for non-parametric problems,
3580 * no pivots need to be performed on the main tableau.
3581 * The caller of find_solutions is responsible for making this property
3582 * hold prior to the first iteration of the loop, while restore_lexmin
3583 * is called before every other iteration.
3585 * Inside the main loop, we first examine the signs of the rows of
3586 * the main tableau within the context of the context tableau.
3587 * If we find a row that is always non-positive for all values of
3588 * the parameters satisfying the context tableau and negative for at
3589 * least one value of the parameters, we perform the appropriate pivot
3590 * and start over. An exception is the case where no pivot can be
3591 * performed on the row. In this case, we require that the sign of
3592 * the row is negative for all values of the parameters (rather than just
3593 * non-positive). This special case is handled inside row_sign, which
3594 * will say that the row can have any sign if it determines that it can
3595 * attain both negative and zero values.
3597 * If we can't find a row that always requires a pivot, but we can find
3598 * one or more rows that require a pivot for some values of the parameters
3599 * (i.e., the row can attain both positive and negative signs), then we split
3600 * the context tableau into two parts, one where we force the sign to be
3601 * non-negative and one where we force is to be negative.
3602 * The non-negative part is handled by a recursive call (through find_in_pos).
3603 * Upon returning from this call, we continue with the negative part and
3604 * perform the required pivot.
3606 * If no such rows can be found, all rows are non-negative and we have
3607 * found a (rational) feasible point. If we only wanted a rational point
3609 * Otherwise, we check if all values of the sample point of the tableau
3610 * are integral for the variables. If so, we have found the minimal
3611 * integral point and we are done.
3612 * If the sample point is not integral, then we need to make a distinction
3613 * based on whether the constant term is non-integral or the coefficients
3614 * of the parameters. Furthermore, in order to decide how to handle
3615 * the non-integrality, we also need to know whether the coefficients
3616 * of the other columns in the tableau are integral. This leads
3617 * to the following table. The first two rows do not correspond
3618 * to a non-integral sample point and are only mentioned for completeness.
3620 * constant parameters other
3623 * int int rat | -> no problem
3625 * rat int int -> fail
3627 * rat int rat -> cut
3630 * rat rat rat | -> parametric cut
3633 * rat rat int | -> split context
3635 * If the parametric constant is completely integral, then there is nothing
3636 * to be done. If the constant term is non-integral, but all the other
3637 * coefficient are integral, then there is nothing that can be done
3638 * and the tableau has no integral solution.
3639 * If, on the other hand, one or more of the other columns have rational
3640 * coefficients, but the parameter coefficients are all integral, then
3641 * we can perform a regular (non-parametric) cut.
3642 * Finally, if there is any parameter coefficient that is non-integral,
3643 * then we need to involve the context tableau. There are two cases here.
3644 * If at least one other column has a rational coefficient, then we
3645 * can perform a parametric cut in the main tableau by adding a new
3646 * integer division in the context tableau.
3647 * If all other columns have integral coefficients, then we need to
3648 * enforce that the rational combination of parameters (c + \sum a_i y_i)/m
3649 * is always integral. We do this by introducing an integer division
3650 * q = floor((c + \sum a_i y_i)/m) and stipulating that its argument should
3651 * always be integral in the context tableau, i.e., m q = c + \sum a_i y_i.
3652 * Since q is expressed in the tableau as
3653 * c + \sum a_i y_i - m q >= 0
3654 * -c - \sum a_i y_i + m q + m - 1 >= 0
3655 * it is sufficient to add the inequality
3656 * -c - \sum a_i y_i + m q >= 0
3657 * In the part of the context where this inequality does not hold, the
3658 * main tableau is marked as being empty.
3660 static void find_solutions(struct isl_sol
*sol
, struct isl_tab
*tab
)
3662 struct isl_context
*context
;
3665 if (!tab
|| sol
->error
)
3668 context
= sol
->context
;
3672 if (context
->op
->is_empty(context
))
3675 for (r
= 0; r
>= 0 && tab
&& !tab
->empty
; r
= restore_lexmin(tab
)) {
3678 enum isl_tab_row_sign sgn
;
3682 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
3683 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
3685 sgn
= row_sign(tab
, sol
, row
);
3688 tab
->row_sign
[row
] = sgn
;
3689 if (sgn
== isl_tab_row_any
)
3691 if (sgn
== isl_tab_row_any
&& split
== -1)
3693 if (sgn
== isl_tab_row_neg
)
3696 if (row
< tab
->n_row
)
3699 struct isl_vec
*ineq
;
3701 split
= context
->op
->best_split(context
, tab
);
3704 ineq
= get_row_parameter_ineq(tab
, split
);
3708 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
3709 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
3711 if (tab
->row_sign
[row
] == isl_tab_row_any
)
3712 tab
->row_sign
[row
] = isl_tab_row_unknown
;
3714 tab
->row_sign
[split
] = isl_tab_row_pos
;
3716 find_in_pos(sol
, tab
, ineq
->el
);
3717 tab
->row_sign
[split
] = isl_tab_row_neg
;
3719 isl_seq_neg(ineq
->el
, ineq
->el
, ineq
->size
);
3720 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3722 context
->op
->add_ineq(context
, ineq
->el
, 0, 1);
3730 row
= first_non_integer_row(tab
, &flags
);
3733 if (ISL_FL_ISSET(flags
, I_PAR
)) {
3734 if (ISL_FL_ISSET(flags
, I_VAR
)) {
3735 if (isl_tab_mark_empty(tab
) < 0)
3739 row
= add_cut(tab
, row
);
3740 } else if (ISL_FL_ISSET(flags
, I_VAR
)) {
3741 struct isl_vec
*div
;
3742 struct isl_vec
*ineq
;
3744 div
= get_row_split_div(tab
, row
);
3747 d
= context
->op
->get_div(context
, tab
, div
);
3751 ineq
= ineq_for_div(context
->op
->peek_basic_set(context
), d
);
3755 no_sol_in_strict(sol
, tab
, ineq
);
3756 isl_seq_neg(ineq
->el
, ineq
->el
, ineq
->size
);
3757 context
->op
->add_ineq(context
, ineq
->el
, 1, 1);
3759 if (sol
->error
|| !context
->op
->is_ok(context
))
3761 tab
= set_row_cst_to_div(tab
, row
, d
);
3762 if (context
->op
->is_empty(context
))
3765 row
= add_parametric_cut(tab
, row
, context
);
3780 /* Compute the lexicographic minimum of the set represented by the main
3781 * tableau "tab" within the context "sol->context_tab".
3783 * As a preprocessing step, we first transfer all the purely parametric
3784 * equalities from the main tableau to the context tableau, i.e.,
3785 * parameters that have been pivoted to a row.
3786 * These equalities are ignored by the main algorithm, because the
3787 * corresponding rows may not be marked as being non-negative.
3788 * In parts of the context where the added equality does not hold,
3789 * the main tableau is marked as being empty.
3791 static void find_solutions_main(struct isl_sol
*sol
, struct isl_tab
*tab
)
3800 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
3804 if (tab
->row_var
[row
] < 0)
3806 if (tab
->row_var
[row
] >= tab
->n_param
&&
3807 tab
->row_var
[row
] < tab
->n_var
- tab
->n_div
)
3809 if (tab
->row_var
[row
] < tab
->n_param
)
3810 p
= tab
->row_var
[row
];
3812 p
= tab
->row_var
[row
]
3813 + tab
->n_param
- (tab
->n_var
- tab
->n_div
);
3815 eq
= isl_vec_alloc(tab
->mat
->ctx
, 1+tab
->n_param
+tab
->n_div
);
3818 get_row_parameter_line(tab
, row
, eq
->el
);
3819 isl_int_neg(eq
->el
[1 + p
], tab
->mat
->row
[row
][0]);
3820 eq
= isl_vec_normalize(eq
);
3823 no_sol_in_strict(sol
, tab
, eq
);
3825 isl_seq_neg(eq
->el
, eq
->el
, eq
->size
);
3827 no_sol_in_strict(sol
, tab
, eq
);
3828 isl_seq_neg(eq
->el
, eq
->el
, eq
->size
);
3830 sol
->context
->op
->add_eq(sol
->context
, eq
->el
, 1, 1);
3834 if (isl_tab_mark_redundant(tab
, row
) < 0)
3837 if (sol
->context
->op
->is_empty(sol
->context
))
3840 row
= tab
->n_redundant
- 1;
3843 find_solutions(sol
, tab
);
3854 /* Check if integer division "div" of "dom" also occurs in "bmap".
3855 * If so, return its position within the divs.
3856 * If not, return -1.
3858 static int find_context_div(struct isl_basic_map
*bmap
,
3859 struct isl_basic_set
*dom
, unsigned div
)
3862 unsigned b_dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
3863 unsigned d_dim
= isl_space_dim(dom
->dim
, isl_dim_all
);
3865 if (isl_int_is_zero(dom
->div
[div
][0]))
3867 if (isl_seq_first_non_zero(dom
->div
[div
] + 2 + d_dim
, dom
->n_div
) != -1)
3870 for (i
= 0; i
< bmap
->n_div
; ++i
) {
3871 if (isl_int_is_zero(bmap
->div
[i
][0]))
3873 if (isl_seq_first_non_zero(bmap
->div
[i
] + 2 + d_dim
,
3874 (b_dim
- d_dim
) + bmap
->n_div
) != -1)
3876 if (isl_seq_eq(bmap
->div
[i
], dom
->div
[div
], 2 + d_dim
))
3882 /* The correspondence between the variables in the main tableau,
3883 * the context tableau, and the input map and domain is as follows.
3884 * The first n_param and the last n_div variables of the main tableau
3885 * form the variables of the context tableau.
3886 * In the basic map, these n_param variables correspond to the
3887 * parameters and the input dimensions. In the domain, they correspond
3888 * to the parameters and the set dimensions.
3889 * The n_div variables correspond to the integer divisions in the domain.
3890 * To ensure that everything lines up, we may need to copy some of the
3891 * integer divisions of the domain to the map. These have to be placed
3892 * in the same order as those in the context and they have to be placed
3893 * after any other integer divisions that the map may have.
3894 * This function performs the required reordering.
3896 static struct isl_basic_map
*align_context_divs(struct isl_basic_map
*bmap
,
3897 struct isl_basic_set
*dom
)
3903 for (i
= 0; i
< dom
->n_div
; ++i
)
3904 if (find_context_div(bmap
, dom
, i
) != -1)
3906 other
= bmap
->n_div
- common
;
3907 if (dom
->n_div
- common
> 0) {
3908 bmap
= isl_basic_map_extend_space(bmap
, isl_space_copy(bmap
->dim
),
3909 dom
->n_div
- common
, 0, 0);
3913 for (i
= 0; i
< dom
->n_div
; ++i
) {
3914 int pos
= find_context_div(bmap
, dom
, i
);
3916 pos
= isl_basic_map_alloc_div(bmap
);
3919 isl_int_set_si(bmap
->div
[pos
][0], 0);
3921 if (pos
!= other
+ i
)
3922 isl_basic_map_swap_div(bmap
, pos
, other
+ i
);
3926 isl_basic_map_free(bmap
);
3930 /* Base case of isl_tab_basic_map_partial_lexopt, after removing
3931 * some obvious symmetries.
3933 * We make sure the divs in the domain are properly ordered,
3934 * because they will be added one by one in the given order
3935 * during the construction of the solution map.
3937 static struct isl_sol
*basic_map_partial_lexopt_base(
3938 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
3939 __isl_give isl_set
**empty
, int max
,
3940 struct isl_sol
*(*init
)(__isl_keep isl_basic_map
*bmap
,
3941 __isl_take isl_basic_set
*dom
, int track_empty
, int max
))
3943 struct isl_tab
*tab
;
3944 struct isl_sol
*sol
= NULL
;
3945 struct isl_context
*context
;
3948 dom
= isl_basic_set_order_divs(dom
);
3949 bmap
= align_context_divs(bmap
, dom
);
3951 sol
= init(bmap
, dom
, !!empty
, max
);
3955 context
= sol
->context
;
3956 if (isl_basic_set_plain_is_empty(context
->op
->peek_basic_set(context
)))
3958 else if (isl_basic_map_plain_is_empty(bmap
)) {
3961 isl_basic_set_copy(context
->op
->peek_basic_set(context
)));
3963 tab
= tab_for_lexmin(bmap
,
3964 context
->op
->peek_basic_set(context
), 1, max
);
3965 tab
= context
->op
->detect_nonnegative_parameters(context
, tab
);
3966 find_solutions_main(sol
, tab
);
3971 isl_basic_map_free(bmap
);
3975 isl_basic_map_free(bmap
);
3979 /* Base case of isl_tab_basic_map_partial_lexopt, after removing
3980 * some obvious symmetries.
3982 * We call basic_map_partial_lexopt_base and extract the results.
3984 static __isl_give isl_map
*basic_map_partial_lexopt_base_map(
3985 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
3986 __isl_give isl_set
**empty
, int max
)
3988 isl_map
*result
= NULL
;
3989 struct isl_sol
*sol
;
3990 struct isl_sol_map
*sol_map
;
3992 sol
= basic_map_partial_lexopt_base(bmap
, dom
, empty
, max
,
3996 sol_map
= (struct isl_sol_map
*) sol
;
3998 result
= isl_map_copy(sol_map
->map
);
4000 *empty
= isl_set_copy(sol_map
->empty
);
4001 sol_free(&sol_map
->sol
);
4005 /* Structure used during detection of parallel constraints.
4006 * n_in: number of "input" variables: isl_dim_param + isl_dim_in
4007 * n_out: number of "output" variables: isl_dim_out + isl_dim_div
4008 * val: the coefficients of the output variables
4010 struct isl_constraint_equal_info
{
4011 isl_basic_map
*bmap
;
4017 /* Check whether the coefficients of the output variables
4018 * of the constraint in "entry" are equal to info->val.
4020 static int constraint_equal(const void *entry
, const void *val
)
4022 isl_int
**row
= (isl_int
**)entry
;
4023 const struct isl_constraint_equal_info
*info
= val
;
4025 return isl_seq_eq((*row
) + 1 + info
->n_in
, info
->val
, info
->n_out
);
4028 /* Check whether "bmap" has a pair of constraints that have
4029 * the same coefficients for the output variables.
4030 * Note that the coefficients of the existentially quantified
4031 * variables need to be zero since the existentially quantified
4032 * of the result are usually not the same as those of the input.
4033 * the isl_dim_out and isl_dim_div dimensions.
4034 * If so, return 1 and return the row indices of the two constraints
4035 * in *first and *second.
4037 static int parallel_constraints(__isl_keep isl_basic_map
*bmap
,
4038 int *first
, int *second
)
4041 isl_ctx
*ctx
= isl_basic_map_get_ctx(bmap
);
4042 struct isl_hash_table
*table
= NULL
;
4043 struct isl_hash_table_entry
*entry
;
4044 struct isl_constraint_equal_info info
;
4048 ctx
= isl_basic_map_get_ctx(bmap
);
4049 table
= isl_hash_table_alloc(ctx
, bmap
->n_ineq
);
4053 info
.n_in
= isl_basic_map_dim(bmap
, isl_dim_param
) +
4054 isl_basic_map_dim(bmap
, isl_dim_in
);
4056 n_out
= isl_basic_map_dim(bmap
, isl_dim_out
);
4057 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
4058 info
.n_out
= n_out
+ n_div
;
4059 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
4062 info
.val
= bmap
->ineq
[i
] + 1 + info
.n_in
;
4063 if (isl_seq_first_non_zero(info
.val
, n_out
) < 0)
4065 if (isl_seq_first_non_zero(info
.val
+ n_out
, n_div
) >= 0)
4067 hash
= isl_seq_get_hash(info
.val
, info
.n_out
);
4068 entry
= isl_hash_table_find(ctx
, table
, hash
,
4069 constraint_equal
, &info
, 1);
4074 entry
->data
= &bmap
->ineq
[i
];
4077 if (i
< bmap
->n_ineq
) {
4078 *first
= ((isl_int
**)entry
->data
) - bmap
->ineq
;
4082 isl_hash_table_free(ctx
, table
);
4084 return i
< bmap
->n_ineq
;
4086 isl_hash_table_free(ctx
, table
);
4090 /* Given a set of upper bounds in "var", add constraints to "bset"
4091 * that make the i-th bound smallest.
4093 * In particular, if there are n bounds b_i, then add the constraints
4095 * b_i <= b_j for j > i
4096 * b_i < b_j for j < i
4098 static __isl_give isl_basic_set
*select_minimum(__isl_take isl_basic_set
*bset
,
4099 __isl_keep isl_mat
*var
, int i
)
4104 ctx
= isl_mat_get_ctx(var
);
4106 for (j
= 0; j
< var
->n_row
; ++j
) {
4109 k
= isl_basic_set_alloc_inequality(bset
);
4112 isl_seq_combine(bset
->ineq
[k
], ctx
->one
, var
->row
[j
],
4113 ctx
->negone
, var
->row
[i
], var
->n_col
);
4114 isl_int_set_si(bset
->ineq
[k
][var
->n_col
], 0);
4116 isl_int_sub_ui(bset
->ineq
[k
][0], bset
->ineq
[k
][0], 1);
4119 bset
= isl_basic_set_finalize(bset
);
4123 isl_basic_set_free(bset
);
4127 /* Given a set of upper bounds on the last "input" variable m,
4128 * construct a set that assigns the minimal upper bound to m, i.e.,
4129 * construct a set that divides the space into cells where one
4130 * of the upper bounds is smaller than all the others and assign
4131 * this upper bound to m.
4133 * In particular, if there are n bounds b_i, then the result
4134 * consists of n basic sets, each one of the form
4137 * b_i <= b_j for j > i
4138 * b_i < b_j for j < i
4140 static __isl_give isl_set
*set_minimum(__isl_take isl_space
*dim
,
4141 __isl_take isl_mat
*var
)
4144 isl_basic_set
*bset
= NULL
;
4146 isl_set
*set
= NULL
;
4151 ctx
= isl_space_get_ctx(dim
);
4152 set
= isl_set_alloc_space(isl_space_copy(dim
),
4153 var
->n_row
, ISL_SET_DISJOINT
);
4155 for (i
= 0; i
< var
->n_row
; ++i
) {
4156 bset
= isl_basic_set_alloc_space(isl_space_copy(dim
), 0,
4158 k
= isl_basic_set_alloc_equality(bset
);
4161 isl_seq_cpy(bset
->eq
[k
], var
->row
[i
], var
->n_col
);
4162 isl_int_set_si(bset
->eq
[k
][var
->n_col
], -1);
4163 bset
= select_minimum(bset
, var
, i
);
4164 set
= isl_set_add_basic_set(set
, bset
);
4167 isl_space_free(dim
);
4171 isl_basic_set_free(bset
);
4173 isl_space_free(dim
);
4178 /* Given that the last input variable of "bmap" represents the minimum
4179 * of the bounds in "cst", check whether we need to split the domain
4180 * based on which bound attains the minimum.
4182 * A split is needed when the minimum appears in an integer division
4183 * or in an equality. Otherwise, it is only needed if it appears in
4184 * an upper bound that is different from the upper bounds on which it
4187 static int need_split_basic_map(__isl_keep isl_basic_map
*bmap
,
4188 __isl_keep isl_mat
*cst
)
4194 pos
= cst
->n_col
- 1;
4195 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
4197 for (i
= 0; i
< bmap
->n_div
; ++i
)
4198 if (!isl_int_is_zero(bmap
->div
[i
][2 + pos
]))
4201 for (i
= 0; i
< bmap
->n_eq
; ++i
)
4202 if (!isl_int_is_zero(bmap
->eq
[i
][1 + pos
]))
4205 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
4206 if (isl_int_is_nonneg(bmap
->ineq
[i
][1 + pos
]))
4208 if (!isl_int_is_negone(bmap
->ineq
[i
][1 + pos
]))
4210 if (isl_seq_first_non_zero(bmap
->ineq
[i
] + 1 + pos
+ 1,
4211 total
- pos
- 1) >= 0)
4214 for (j
= 0; j
< cst
->n_row
; ++j
)
4215 if (isl_seq_eq(bmap
->ineq
[i
], cst
->row
[j
], cst
->n_col
))
4217 if (j
>= cst
->n_row
)
4224 /* Given that the last set variable of "bset" represents the minimum
4225 * of the bounds in "cst", check whether we need to split the domain
4226 * based on which bound attains the minimum.
4228 * We simply call need_split_basic_map here. This is safe because
4229 * the position of the minimum is computed from "cst" and not
4232 static int need_split_basic_set(__isl_keep isl_basic_set
*bset
,
4233 __isl_keep isl_mat
*cst
)
4235 return need_split_basic_map((isl_basic_map
*)bset
, cst
);
4238 /* Given that the last set variable of "set" represents the minimum
4239 * of the bounds in "cst", check whether we need to split the domain
4240 * based on which bound attains the minimum.
4242 static int need_split_set(__isl_keep isl_set
*set
, __isl_keep isl_mat
*cst
)
4246 for (i
= 0; i
< set
->n
; ++i
)
4247 if (need_split_basic_set(set
->p
[i
], cst
))
4253 /* Given a set of which the last set variable is the minimum
4254 * of the bounds in "cst", split each basic set in the set
4255 * in pieces where one of the bounds is (strictly) smaller than the others.
4256 * This subdivision is given in "min_expr".
4257 * The variable is subsequently projected out.
4259 * We only do the split when it is needed.
4260 * For example if the last input variable m = min(a,b) and the only
4261 * constraints in the given basic set are lower bounds on m,
4262 * i.e., l <= m = min(a,b), then we can simply project out m
4263 * to obtain l <= a and l <= b, without having to split on whether
4264 * m is equal to a or b.
4266 static __isl_give isl_set
*split(__isl_take isl_set
*empty
,
4267 __isl_take isl_set
*min_expr
, __isl_take isl_mat
*cst
)
4274 if (!empty
|| !min_expr
|| !cst
)
4277 n_in
= isl_set_dim(empty
, isl_dim_set
);
4278 dim
= isl_set_get_space(empty
);
4279 dim
= isl_space_drop_dims(dim
, isl_dim_set
, n_in
- 1, 1);
4280 res
= isl_set_empty(dim
);
4282 for (i
= 0; i
< empty
->n
; ++i
) {
4285 set
= isl_set_from_basic_set(isl_basic_set_copy(empty
->p
[i
]));
4286 if (need_split_basic_set(empty
->p
[i
], cst
))
4287 set
= isl_set_intersect(set
, isl_set_copy(min_expr
));
4288 set
= isl_set_remove_dims(set
, isl_dim_set
, n_in
- 1, 1);
4290 res
= isl_set_union_disjoint(res
, set
);
4293 isl_set_free(empty
);
4294 isl_set_free(min_expr
);
4298 isl_set_free(empty
);
4299 isl_set_free(min_expr
);
4304 /* Given a map of which the last input variable is the minimum
4305 * of the bounds in "cst", split each basic set in the set
4306 * in pieces where one of the bounds is (strictly) smaller than the others.
4307 * This subdivision is given in "min_expr".
4308 * The variable is subsequently projected out.
4310 * The implementation is essentially the same as that of "split".
4312 static __isl_give isl_map
*split_domain(__isl_take isl_map
*opt
,
4313 __isl_take isl_set
*min_expr
, __isl_take isl_mat
*cst
)
4320 if (!opt
|| !min_expr
|| !cst
)
4323 n_in
= isl_map_dim(opt
, isl_dim_in
);
4324 dim
= isl_map_get_space(opt
);
4325 dim
= isl_space_drop_dims(dim
, isl_dim_in
, n_in
- 1, 1);
4326 res
= isl_map_empty(dim
);
4328 for (i
= 0; i
< opt
->n
; ++i
) {
4331 map
= isl_map_from_basic_map(isl_basic_map_copy(opt
->p
[i
]));
4332 if (need_split_basic_map(opt
->p
[i
], cst
))
4333 map
= isl_map_intersect_domain(map
,
4334 isl_set_copy(min_expr
));
4335 map
= isl_map_remove_dims(map
, isl_dim_in
, n_in
- 1, 1);
4337 res
= isl_map_union_disjoint(res
, map
);
4341 isl_set_free(min_expr
);
4346 isl_set_free(min_expr
);
4351 static __isl_give isl_map
*basic_map_partial_lexopt(
4352 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
4353 __isl_give isl_set
**empty
, int max
);
4358 isl_pw_multi_aff
*pma
;
4361 /* This function is called from basic_map_partial_lexopt_symm.
4362 * The last variable of "bmap" and "dom" corresponds to the minimum
4363 * of the bounds in "cst". "map_space" is the space of the original
4364 * input relation (of basic_map_partial_lexopt_symm) and "set_space"
4365 * is the space of the original domain.
4367 * We recursively call basic_map_partial_lexopt and then plug in
4368 * the definition of the minimum in the result.
4370 static __isl_give
union isl_lex_res
basic_map_partial_lexopt_symm_map_core(
4371 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
4372 __isl_give isl_set
**empty
, int max
, __isl_take isl_mat
*cst
,
4373 __isl_take isl_space
*map_space
, __isl_take isl_space
*set_space
)
4377 union isl_lex_res res
;
4379 min_expr
= set_minimum(isl_basic_set_get_space(dom
), isl_mat_copy(cst
));
4381 opt
= basic_map_partial_lexopt(bmap
, dom
, empty
, max
);
4384 *empty
= split(*empty
,
4385 isl_set_copy(min_expr
), isl_mat_copy(cst
));
4386 *empty
= isl_set_reset_space(*empty
, set_space
);
4389 opt
= split_domain(opt
, min_expr
, cst
);
4390 opt
= isl_map_reset_space(opt
, map_space
);
4396 /* Given a basic map with at least two parallel constraints (as found
4397 * by the function parallel_constraints), first look for more constraints
4398 * parallel to the two constraint and replace the found list of parallel
4399 * constraints by a single constraint with as "input" part the minimum
4400 * of the input parts of the list of constraints. Then, recursively call
4401 * basic_map_partial_lexopt (possibly finding more parallel constraints)
4402 * and plug in the definition of the minimum in the result.
4404 * More specifically, given a set of constraints
4408 * Replace this set by a single constraint
4412 * with u a new parameter with constraints
4416 * Any solution to the new system is also a solution for the original system
4419 * a x >= -u >= -b_i(p)
4421 * Moreover, m = min_i(b_i(p)) satisfies the constraints on u and can
4422 * therefore be plugged into the solution.
4424 static union isl_lex_res
basic_map_partial_lexopt_symm(
4425 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
4426 __isl_give isl_set
**empty
, int max
, int first
, int second
,
4427 __isl_give
union isl_lex_res (*core
)(__isl_take isl_basic_map
*bmap
,
4428 __isl_take isl_basic_set
*dom
,
4429 __isl_give isl_set
**empty
,
4430 int max
, __isl_take isl_mat
*cst
,
4431 __isl_take isl_space
*map_space
,
4432 __isl_take isl_space
*set_space
))
4436 unsigned n_in
, n_out
, n_div
;
4438 isl_vec
*var
= NULL
;
4439 isl_mat
*cst
= NULL
;
4440 isl_space
*map_space
, *set_space
;
4441 union isl_lex_res res
;
4443 map_space
= isl_basic_map_get_space(bmap
);
4444 set_space
= empty
? isl_basic_set_get_space(dom
) : NULL
;
4446 n_in
= isl_basic_map_dim(bmap
, isl_dim_param
) +
4447 isl_basic_map_dim(bmap
, isl_dim_in
);
4448 n_out
= isl_basic_map_dim(bmap
, isl_dim_all
) - n_in
;
4450 ctx
= isl_basic_map_get_ctx(bmap
);
4451 list
= isl_alloc_array(ctx
, int, bmap
->n_ineq
);
4452 var
= isl_vec_alloc(ctx
, n_out
);
4458 isl_seq_cpy(var
->el
, bmap
->ineq
[first
] + 1 + n_in
, n_out
);
4459 for (i
= second
+ 1, n
= 2; i
< bmap
->n_ineq
; ++i
) {
4460 if (isl_seq_eq(var
->el
, bmap
->ineq
[i
] + 1 + n_in
, n_out
))
4464 cst
= isl_mat_alloc(ctx
, n
, 1 + n_in
);
4468 for (i
= 0; i
< n
; ++i
)
4469 isl_seq_cpy(cst
->row
[i
], bmap
->ineq
[list
[i
]], 1 + n_in
);
4471 bmap
= isl_basic_map_cow(bmap
);
4474 for (i
= n
- 1; i
>= 0; --i
)
4475 if (isl_basic_map_drop_inequality(bmap
, list
[i
]) < 0)
4478 bmap
= isl_basic_map_add(bmap
, isl_dim_in
, 1);
4479 bmap
= isl_basic_map_extend_constraints(bmap
, 0, 1);
4480 k
= isl_basic_map_alloc_inequality(bmap
);
4483 isl_seq_clr(bmap
->ineq
[k
], 1 + n_in
);
4484 isl_int_set_si(bmap
->ineq
[k
][1 + n_in
], 1);
4485 isl_seq_cpy(bmap
->ineq
[k
] + 1 + n_in
+ 1, var
->el
, n_out
);
4486 bmap
= isl_basic_map_finalize(bmap
);
4488 n_div
= isl_basic_set_dim(dom
, isl_dim_div
);
4489 dom
= isl_basic_set_add(dom
, isl_dim_set
, 1);
4490 dom
= isl_basic_set_extend_constraints(dom
, 0, n
);
4491 for (i
= 0; i
< n
; ++i
) {
4492 k
= isl_basic_set_alloc_inequality(dom
);
4495 isl_seq_cpy(dom
->ineq
[k
], cst
->row
[i
], 1 + n_in
);
4496 isl_int_set_si(dom
->ineq
[k
][1 + n_in
], -1);
4497 isl_seq_clr(dom
->ineq
[k
] + 1 + n_in
+ 1, n_div
);
4503 return core(bmap
, dom
, empty
, max
, cst
, map_space
, set_space
);
4505 isl_space_free(map_space
);
4506 isl_space_free(set_space
);
4510 isl_basic_set_free(dom
);
4511 isl_basic_map_free(bmap
);
4516 static __isl_give isl_map
*basic_map_partial_lexopt_symm_map(
4517 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
4518 __isl_give isl_set
**empty
, int max
, int first
, int second
)
4520 return basic_map_partial_lexopt_symm(bmap
, dom
, empty
, max
,
4521 first
, second
, &basic_map_partial_lexopt_symm_map_core
).map
;
4524 /* Recursive part of isl_tab_basic_map_partial_lexopt, after detecting
4525 * equalities and removing redundant constraints.
4527 * We first check if there are any parallel constraints (left).
4528 * If not, we are in the base case.
4529 * If there are parallel constraints, we replace them by a single
4530 * constraint in basic_map_partial_lexopt_symm and then call
4531 * this function recursively to look for more parallel constraints.
4533 static __isl_give isl_map
*basic_map_partial_lexopt(
4534 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
4535 __isl_give isl_set
**empty
, int max
)
4543 if (bmap
->ctx
->opt
->pip_symmetry
)
4544 par
= parallel_constraints(bmap
, &first
, &second
);
4548 return basic_map_partial_lexopt_base_map(bmap
, dom
, empty
, max
);
4550 return basic_map_partial_lexopt_symm_map(bmap
, dom
, empty
, max
,
4553 isl_basic_set_free(dom
);
4554 isl_basic_map_free(bmap
);
4558 /* Compute the lexicographic minimum (or maximum if "max" is set)
4559 * of "bmap" over the domain "dom" and return the result as a map.
4560 * If "empty" is not NULL, then *empty is assigned a set that
4561 * contains those parts of the domain where there is no solution.
4562 * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL),
4563 * then we compute the rational optimum. Otherwise, we compute
4564 * the integral optimum.
4566 * We perform some preprocessing. As the PILP solver does not
4567 * handle implicit equalities very well, we first make sure all
4568 * the equalities are explicitly available.
4570 * We also add context constraints to the basic map and remove
4571 * redundant constraints. This is only needed because of the
4572 * way we handle simple symmetries. In particular, we currently look
4573 * for symmetries on the constraints, before we set up the main tableau.
4574 * It is then no good to look for symmetries on possibly redundant constraints.
4576 struct isl_map
*isl_tab_basic_map_partial_lexopt(
4577 struct isl_basic_map
*bmap
, struct isl_basic_set
*dom
,
4578 struct isl_set
**empty
, int max
)
4585 isl_assert(bmap
->ctx
,
4586 isl_basic_map_compatible_domain(bmap
, dom
), goto error
);
4588 if (isl_basic_set_dim(dom
, isl_dim_all
) == 0)
4589 return basic_map_partial_lexopt(bmap
, dom
, empty
, max
);
4591 bmap
= isl_basic_map_intersect_domain(bmap
, isl_basic_set_copy(dom
));
4592 bmap
= isl_basic_map_detect_equalities(bmap
);
4593 bmap
= isl_basic_map_remove_redundancies(bmap
);
4595 return basic_map_partial_lexopt(bmap
, dom
, empty
, max
);
4597 isl_basic_set_free(dom
);
4598 isl_basic_map_free(bmap
);
4602 struct isl_sol_for
{
4604 int (*fn
)(__isl_take isl_basic_set
*dom
,
4605 __isl_take isl_aff_list
*list
, void *user
);
4609 static void sol_for_free(struct isl_sol_for
*sol_for
)
4611 if (sol_for
->sol
.context
)
4612 sol_for
->sol
.context
->op
->free(sol_for
->sol
.context
);
4616 static void sol_for_free_wrap(struct isl_sol
*sol
)
4618 sol_for_free((struct isl_sol_for
*)sol
);
4621 /* Add the solution identified by the tableau and the context tableau.
4623 * See documentation of sol_add for more details.
4625 * Instead of constructing a basic map, this function calls a user
4626 * defined function with the current context as a basic set and
4627 * a list of affine expressions representing the relation between
4628 * the input and output. The space over which the affine expressions
4629 * are defined is the same as that of the domain. The number of
4630 * affine expressions in the list is equal to the number of output variables.
4632 static void sol_for_add(struct isl_sol_for
*sol
,
4633 struct isl_basic_set
*dom
, struct isl_mat
*M
)
4637 isl_local_space
*ls
;
4641 if (sol
->sol
.error
|| !dom
|| !M
)
4644 ctx
= isl_basic_set_get_ctx(dom
);
4645 ls
= isl_basic_set_get_local_space(dom
);
4646 list
= isl_aff_list_alloc(ctx
, M
->n_row
- 1);
4647 for (i
= 1; i
< M
->n_row
; ++i
) {
4648 aff
= isl_aff_alloc(isl_local_space_copy(ls
));
4650 isl_int_set(aff
->v
->el
[0], M
->row
[0][0]);
4651 isl_seq_cpy(aff
->v
->el
+ 1, M
->row
[i
], M
->n_col
);
4653 list
= isl_aff_list_add(list
, aff
);
4655 isl_local_space_free(ls
);
4657 dom
= isl_basic_set_finalize(dom
);
4659 if (sol
->fn(isl_basic_set_copy(dom
), list
, sol
->user
) < 0)
4662 isl_basic_set_free(dom
);
4666 isl_basic_set_free(dom
);
4671 static void sol_for_add_wrap(struct isl_sol
*sol
,
4672 struct isl_basic_set
*dom
, struct isl_mat
*M
)
4674 sol_for_add((struct isl_sol_for
*)sol
, dom
, M
);
4677 static struct isl_sol_for
*sol_for_init(struct isl_basic_map
*bmap
, int max
,
4678 int (*fn
)(__isl_take isl_basic_set
*dom
, __isl_take isl_aff_list
*list
,
4682 struct isl_sol_for
*sol_for
= NULL
;
4684 struct isl_basic_set
*dom
= NULL
;
4686 sol_for
= isl_calloc_type(bmap
->ctx
, struct isl_sol_for
);
4690 dom_dim
= isl_space_domain(isl_space_copy(bmap
->dim
));
4691 dom
= isl_basic_set_universe(dom_dim
);
4693 sol_for
->sol
.rational
= ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
);
4694 sol_for
->sol
.dec_level
.callback
.run
= &sol_dec_level_wrap
;
4695 sol_for
->sol
.dec_level
.sol
= &sol_for
->sol
;
4697 sol_for
->user
= user
;
4698 sol_for
->sol
.max
= max
;
4699 sol_for
->sol
.n_out
= isl_basic_map_dim(bmap
, isl_dim_out
);
4700 sol_for
->sol
.add
= &sol_for_add_wrap
;
4701 sol_for
->sol
.add_empty
= NULL
;
4702 sol_for
->sol
.free
= &sol_for_free_wrap
;
4704 sol_for
->sol
.context
= isl_context_alloc(dom
);
4705 if (!sol_for
->sol
.context
)
4708 isl_basic_set_free(dom
);
4711 isl_basic_set_free(dom
);
4712 sol_for_free(sol_for
);
4716 static void sol_for_find_solutions(struct isl_sol_for
*sol_for
,
4717 struct isl_tab
*tab
)
4719 find_solutions_main(&sol_for
->sol
, tab
);
4722 int isl_basic_map_foreach_lexopt(__isl_keep isl_basic_map
*bmap
, int max
,
4723 int (*fn
)(__isl_take isl_basic_set
*dom
, __isl_take isl_aff_list
*list
,
4727 struct isl_sol_for
*sol_for
= NULL
;
4729 bmap
= isl_basic_map_copy(bmap
);
4733 bmap
= isl_basic_map_detect_equalities(bmap
);
4734 sol_for
= sol_for_init(bmap
, max
, fn
, user
);
4736 if (isl_basic_map_plain_is_empty(bmap
))
4739 struct isl_tab
*tab
;
4740 struct isl_context
*context
= sol_for
->sol
.context
;
4741 tab
= tab_for_lexmin(bmap
,
4742 context
->op
->peek_basic_set(context
), 1, max
);
4743 tab
= context
->op
->detect_nonnegative_parameters(context
, tab
);
4744 sol_for_find_solutions(sol_for
, tab
);
4745 if (sol_for
->sol
.error
)
4749 sol_free(&sol_for
->sol
);
4750 isl_basic_map_free(bmap
);
4753 sol_free(&sol_for
->sol
);
4754 isl_basic_map_free(bmap
);
4758 int isl_basic_set_foreach_lexopt(__isl_keep isl_basic_set
*bset
, int max
,
4759 int (*fn
)(__isl_take isl_basic_set
*dom
, __isl_take isl_aff_list
*list
,
4763 return isl_basic_map_foreach_lexopt(bset
, max
, fn
, user
);
4766 int isl_basic_map_foreach_lexmin(__isl_keep isl_basic_map
*bmap
,
4767 int (*fn
)(__isl_take isl_basic_set
*dom
, __isl_take isl_aff_list
*list
,
4771 return isl_basic_map_foreach_lexopt(bmap
, 0, fn
, user
);
4774 int isl_basic_map_foreach_lexmax(__isl_keep isl_basic_map
*bmap
,
4775 int (*fn
)(__isl_take isl_basic_set
*dom
, __isl_take isl_aff_list
*list
,
4779 return isl_basic_map_foreach_lexopt(bmap
, 1, fn
, user
);
4782 int isl_basic_set_foreach_lexmax(__isl_keep isl_basic_set
*bset
,
4783 int (*fn
)(__isl_take isl_basic_set
*dom
, __isl_take isl_aff_list
*list
,
4787 return isl_basic_map_foreach_lexmax(bset
, fn
, user
);
4790 /* Check if the given sequence of len variables starting at pos
4791 * represents a trivial (i.e., zero) solution.
4792 * The variables are assumed to be non-negative and to come in pairs,
4793 * with each pair representing a variable of unrestricted sign.
4794 * The solution is trivial if each such pair in the sequence consists
4795 * of two identical values, meaning that the variable being represented
4798 static int region_is_trivial(struct isl_tab
*tab
, int pos
, int len
)
4805 for (i
= 0; i
< len
; i
+= 2) {
4809 neg_row
= tab
->var
[pos
+ i
].is_row
?
4810 tab
->var
[pos
+ i
].index
: -1;
4811 pos_row
= tab
->var
[pos
+ i
+ 1].is_row
?
4812 tab
->var
[pos
+ i
+ 1].index
: -1;
4815 isl_int_is_zero(tab
->mat
->row
[neg_row
][1])) &&
4817 isl_int_is_zero(tab
->mat
->row
[pos_row
][1])))
4820 if (neg_row
< 0 || pos_row
< 0)
4822 if (isl_int_ne(tab
->mat
->row
[neg_row
][1],
4823 tab
->mat
->row
[pos_row
][1]))
4830 /* Return the index of the first trivial region or -1 if all regions
4833 static int first_trivial_region(struct isl_tab
*tab
,
4834 int n_region
, struct isl_region
*region
)
4838 for (i
= 0; i
< n_region
; ++i
) {
4839 if (region_is_trivial(tab
, region
[i
].pos
, region
[i
].len
))
4846 /* Check if the solution is optimal, i.e., whether the first
4847 * n_op entries are zero.
4849 static int is_optimal(__isl_keep isl_vec
*sol
, int n_op
)
4853 for (i
= 0; i
< n_op
; ++i
)
4854 if (!isl_int_is_zero(sol
->el
[1 + i
]))
4859 /* Add constraints to "tab" that ensure that any solution is significantly
4860 * better that that represented by "sol". That is, find the first
4861 * relevant (within first n_op) non-zero coefficient and force it (along
4862 * with all previous coefficients) to be zero.
4863 * If the solution is already optimal (all relevant coefficients are zero),
4864 * then just mark the table as empty.
4866 static int force_better_solution(struct isl_tab
*tab
,
4867 __isl_keep isl_vec
*sol
, int n_op
)
4876 for (i
= 0; i
< n_op
; ++i
)
4877 if (!isl_int_is_zero(sol
->el
[1 + i
]))
4881 if (isl_tab_mark_empty(tab
) < 0)
4886 ctx
= isl_vec_get_ctx(sol
);
4887 v
= isl_vec_alloc(ctx
, 1 + tab
->n_var
);
4891 for (; i
>= 0; --i
) {
4893 isl_int_set_si(v
->el
[1 + i
], -1);
4894 if (add_lexmin_eq(tab
, v
->el
) < 0)
4905 struct isl_trivial
{
4909 struct isl_tab_undo
*snap
;
4912 /* Return the lexicographically smallest non-trivial solution of the
4913 * given ILP problem.
4915 * All variables are assumed to be non-negative.
4917 * n_op is the number of initial coordinates to optimize.
4918 * That is, once a solution has been found, we will only continue looking
4919 * for solution that result in significantly better values for those
4920 * initial coordinates. That is, we only continue looking for solutions
4921 * that increase the number of initial zeros in this sequence.
4923 * A solution is non-trivial, if it is non-trivial on each of the
4924 * specified regions. Each region represents a sequence of pairs
4925 * of variables. A solution is non-trivial on such a region if
4926 * at least one of these pairs consists of different values, i.e.,
4927 * such that the non-negative variable represented by the pair is non-zero.
4929 * Whenever a conflict is encountered, all constraints involved are
4930 * reported to the caller through a call to "conflict".
4932 * We perform a simple branch-and-bound backtracking search.
4933 * Each level in the search represents initially trivial region that is forced
4934 * to be non-trivial.
4935 * At each level we consider n cases, where n is the length of the region.
4936 * In terms of the n/2 variables of unrestricted signs being encoded by
4937 * the region, we consider the cases
4940 * x_0 = 0 and x_1 >= 1
4941 * x_0 = 0 and x_1 <= -1
4942 * x_0 = 0 and x_1 = 0 and x_2 >= 1
4943 * x_0 = 0 and x_1 = 0 and x_2 <= -1
4945 * The cases are considered in this order, assuming that each pair
4946 * x_i_a x_i_b represents the value x_i_b - x_i_a.
4947 * That is, x_0 >= 1 is enforced by adding the constraint
4948 * x_0_b - x_0_a >= 1
4950 __isl_give isl_vec
*isl_tab_basic_set_non_trivial_lexmin(
4951 __isl_take isl_basic_set
*bset
, int n_op
, int n_region
,
4952 struct isl_region
*region
,
4953 int (*conflict
)(int con
, void *user
), void *user
)
4957 isl_ctx
*ctx
= isl_basic_set_get_ctx(bset
);
4959 isl_vec
*sol
= isl_vec_alloc(ctx
, 0);
4960 struct isl_tab
*tab
;
4961 struct isl_trivial
*triv
= NULL
;
4964 tab
= tab_for_lexmin(bset
, NULL
, 0, 0);
4967 tab
->conflict
= conflict
;
4968 tab
->conflict_user
= user
;
4970 v
= isl_vec_alloc(ctx
, 1 + tab
->n_var
);
4971 triv
= isl_calloc_array(ctx
, struct isl_trivial
, n_region
);
4978 while (level
>= 0) {
4982 tab
= cut_to_integer_lexmin(tab
);
4987 r
= first_trivial_region(tab
, n_region
, region
);
4989 for (i
= 0; i
< level
; ++i
)
4992 sol
= isl_tab_get_sample_value(tab
);
4995 if (is_optimal(sol
, n_op
))
4999 if (level
>= n_region
)
5000 isl_die(ctx
, isl_error_internal
,
5001 "nesting level too deep", goto error
);
5002 if (isl_tab_extend_cons(tab
,
5003 2 * region
[r
].len
+ 2 * n_op
) < 0)
5005 triv
[level
].region
= r
;
5006 triv
[level
].side
= 0;
5009 r
= triv
[level
].region
;
5010 side
= triv
[level
].side
;
5011 base
= 2 * (side
/2);
5013 if (side
>= region
[r
].len
) {
5018 if (isl_tab_rollback(tab
, triv
[level
].snap
) < 0)
5023 if (triv
[level
].update
) {
5024 if (force_better_solution(tab
, sol
, n_op
) < 0)
5026 triv
[level
].update
= 0;
5029 if (side
== base
&& base
>= 2) {
5030 for (j
= base
- 2; j
< base
; ++j
) {
5032 isl_int_set_si(v
->el
[1 + region
[r
].pos
+ j
], 1);
5033 if (add_lexmin_eq(tab
, v
->el
) < 0)
5038 triv
[level
].snap
= isl_tab_snap(tab
);
5039 if (isl_tab_push_basis(tab
) < 0)
5043 isl_int_set_si(v
->el
[0], -1);
5044 isl_int_set_si(v
->el
[1 + region
[r
].pos
+ side
], -1);
5045 isl_int_set_si(v
->el
[1 + region
[r
].pos
+ (side
^ 1)], 1);
5046 tab
= add_lexmin_ineq(tab
, v
->el
);
5056 isl_basic_set_free(bset
);
5063 isl_basic_set_free(bset
);
5068 /* Return the lexicographically smallest rational point in "bset",
5069 * assuming that all variables are non-negative.
5070 * If "bset" is empty, then return a zero-length vector.
5072 __isl_give isl_vec
*isl_tab_basic_set_non_neg_lexmin(
5073 __isl_take isl_basic_set
*bset
)
5075 struct isl_tab
*tab
;
5076 isl_ctx
*ctx
= isl_basic_set_get_ctx(bset
);
5079 tab
= tab_for_lexmin(bset
, NULL
, 0, 0);
5083 sol
= isl_vec_alloc(ctx
, 0);
5085 sol
= isl_tab_get_sample_value(tab
);
5087 isl_basic_set_free(bset
);
5091 isl_basic_set_free(bset
);
5095 struct isl_sol_pma
{
5097 isl_pw_multi_aff
*pma
;
5101 static void sol_pma_free(struct isl_sol_pma
*sol_pma
)
5105 if (sol_pma
->sol
.context
)
5106 sol_pma
->sol
.context
->op
->free(sol_pma
->sol
.context
);
5107 isl_pw_multi_aff_free(sol_pma
->pma
);
5108 isl_set_free(sol_pma
->empty
);
5112 /* This function is called for parts of the context where there is
5113 * no solution, with "bset" corresponding to the context tableau.
5114 * Simply add the basic set to the set "empty".
5116 static void sol_pma_add_empty(struct isl_sol_pma
*sol
,
5117 __isl_take isl_basic_set
*bset
)
5121 isl_assert(bset
->ctx
, sol
->empty
, goto error
);
5123 sol
->empty
= isl_set_grow(sol
->empty
, 1);
5124 bset
= isl_basic_set_simplify(bset
);
5125 bset
= isl_basic_set_finalize(bset
);
5126 sol
->empty
= isl_set_add_basic_set(sol
->empty
, bset
);
5131 isl_basic_set_free(bset
);
5135 /* Given a basic map "dom" that represents the context and an affine
5136 * matrix "M" that maps the dimensions of the context to the
5137 * output variables, construct an isl_pw_multi_aff with a single
5138 * cell corresponding to "dom" and affine expressions copied from "M".
5140 static void sol_pma_add(struct isl_sol_pma
*sol
,
5141 __isl_take isl_basic_set
*dom
, __isl_take isl_mat
*M
)
5144 isl_local_space
*ls
;
5146 isl_multi_aff
*maff
;
5147 isl_pw_multi_aff
*pma
;
5149 maff
= isl_multi_aff_alloc(isl_pw_multi_aff_get_space(sol
->pma
));
5150 ls
= isl_basic_set_get_local_space(dom
);
5151 for (i
= 1; i
< M
->n_row
; ++i
) {
5152 aff
= isl_aff_alloc(isl_local_space_copy(ls
));
5154 isl_int_set(aff
->v
->el
[0], M
->row
[0][0]);
5155 isl_seq_cpy(aff
->v
->el
+ 1, M
->row
[i
], M
->n_col
);
5157 maff
= isl_multi_aff_set_aff(maff
, i
- 1, aff
);
5159 isl_local_space_free(ls
);
5161 dom
= isl_basic_set_simplify(dom
);
5162 pma
= isl_pw_multi_aff_alloc(isl_set_from_basic_set(dom
), maff
);
5163 sol
->pma
= isl_pw_multi_aff_add_disjoint(sol
->pma
, pma
);
5168 static void sol_pma_free_wrap(struct isl_sol
*sol
)
5170 sol_pma_free((struct isl_sol_pma
*)sol
);
5173 static void sol_pma_add_empty_wrap(struct isl_sol
*sol
,
5174 __isl_take isl_basic_set
*bset
)
5176 sol_pma_add_empty((struct isl_sol_pma
*)sol
, bset
);
5179 static void sol_pma_add_wrap(struct isl_sol
*sol
,
5180 __isl_take isl_basic_set
*dom
, __isl_take isl_mat
*M
)
5182 sol_pma_add((struct isl_sol_pma
*)sol
, dom
, M
);
5185 /* Construct an isl_sol_pma structure for accumulating the solution.
5186 * If track_empty is set, then we also keep track of the parts
5187 * of the context where there is no solution.
5188 * If max is set, then we are solving a maximization, rather than
5189 * a minimization problem, which means that the variables in the
5190 * tableau have value "M - x" rather than "M + x".
5192 static struct isl_sol
*sol_pma_init(__isl_keep isl_basic_map
*bmap
,
5193 __isl_take isl_basic_set
*dom
, int track_empty
, int max
)
5195 struct isl_sol_pma
*sol_pma
= NULL
;
5200 sol_pma
= isl_calloc_type(bmap
->ctx
, struct isl_sol_pma
);
5204 sol_pma
->sol
.rational
= ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
);
5205 sol_pma
->sol
.dec_level
.callback
.run
= &sol_dec_level_wrap
;
5206 sol_pma
->sol
.dec_level
.sol
= &sol_pma
->sol
;
5207 sol_pma
->sol
.max
= max
;
5208 sol_pma
->sol
.n_out
= isl_basic_map_dim(bmap
, isl_dim_out
);
5209 sol_pma
->sol
.add
= &sol_pma_add_wrap
;
5210 sol_pma
->sol
.add_empty
= track_empty
? &sol_pma_add_empty_wrap
: NULL
;
5211 sol_pma
->sol
.free
= &sol_pma_free_wrap
;
5212 sol_pma
->pma
= isl_pw_multi_aff_empty(isl_basic_map_get_space(bmap
));
5216 sol_pma
->sol
.context
= isl_context_alloc(dom
);
5217 if (!sol_pma
->sol
.context
)
5221 sol_pma
->empty
= isl_set_alloc_space(isl_basic_set_get_space(dom
),
5222 1, ISL_SET_DISJOINT
);
5223 if (!sol_pma
->empty
)
5227 isl_basic_set_free(dom
);
5228 return &sol_pma
->sol
;
5230 isl_basic_set_free(dom
);
5231 sol_pma_free(sol_pma
);
5235 /* Base case of isl_tab_basic_map_partial_lexopt, after removing
5236 * some obvious symmetries.
5238 * We call basic_map_partial_lexopt_base and extract the results.
5240 static __isl_give isl_pw_multi_aff
*basic_map_partial_lexopt_base_pma(
5241 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
5242 __isl_give isl_set
**empty
, int max
)
5244 isl_pw_multi_aff
*result
= NULL
;
5245 struct isl_sol
*sol
;
5246 struct isl_sol_pma
*sol_pma
;
5248 sol
= basic_map_partial_lexopt_base(bmap
, dom
, empty
, max
,
5252 sol_pma
= (struct isl_sol_pma
*) sol
;
5254 result
= isl_pw_multi_aff_copy(sol_pma
->pma
);
5256 *empty
= isl_set_copy(sol_pma
->empty
);
5257 sol_free(&sol_pma
->sol
);
5261 /* Given that the last input variable of "maff" represents the minimum
5262 * of some bounds, check whether we need to plug in the expression
5265 * In particular, check if the last input variable appears in any
5266 * of the expressions in "maff".
5268 static int need_substitution(__isl_keep isl_multi_aff
*maff
)
5273 pos
= isl_multi_aff_dim(maff
, isl_dim_in
) - 1;
5275 for (i
= 0; i
< maff
->n
; ++i
)
5276 if (isl_aff_involves_dims(maff
->p
[i
], isl_dim_in
, pos
, 1))
5282 /* Given a set of upper bounds on the last "input" variable m,
5283 * construct a piecewise affine expression that selects
5284 * the minimal upper bound to m, i.e.,
5285 * divide the space into cells where one
5286 * of the upper bounds is smaller than all the others and select
5287 * this upper bound on that cell.
5289 * In particular, if there are n bounds b_i, then the result
5290 * consists of n cell, each one of the form
5292 * b_i <= b_j for j > i
5293 * b_i < b_j for j < i
5295 * The affine expression on this cell is
5299 static __isl_give isl_pw_aff
*set_minimum_pa(__isl_take isl_space
*space
,
5300 __isl_take isl_mat
*var
)
5303 isl_aff
*aff
= NULL
;
5304 isl_basic_set
*bset
= NULL
;
5306 isl_pw_aff
*paff
= NULL
;
5307 isl_space
*pw_space
;
5308 isl_local_space
*ls
= NULL
;
5313 ctx
= isl_space_get_ctx(space
);
5314 ls
= isl_local_space_from_space(isl_space_copy(space
));
5315 pw_space
= isl_space_copy(space
);
5316 pw_space
= isl_space_from_domain(pw_space
);
5317 pw_space
= isl_space_add_dims(pw_space
, isl_dim_out
, 1);
5318 paff
= isl_pw_aff_alloc_size(pw_space
, var
->n_row
);
5320 for (i
= 0; i
< var
->n_row
; ++i
) {
5323 aff
= isl_aff_alloc(isl_local_space_copy(ls
));
5324 bset
= isl_basic_set_alloc_space(isl_space_copy(space
), 0,
5328 isl_int_set_si(aff
->v
->el
[0], 1);
5329 isl_seq_cpy(aff
->v
->el
+ 1, var
->row
[i
], var
->n_col
);
5330 isl_int_set_si(aff
->v
->el
[1 + var
->n_col
], 0);
5331 bset
= select_minimum(bset
, var
, i
);
5332 paff_i
= isl_pw_aff_alloc(isl_set_from_basic_set(bset
), aff
);
5333 paff
= isl_pw_aff_add_disjoint(paff
, paff_i
);
5336 isl_local_space_free(ls
);
5337 isl_space_free(space
);
5342 isl_basic_set_free(bset
);
5343 isl_pw_aff_free(paff
);
5344 isl_local_space_free(ls
);
5345 isl_space_free(space
);
5350 /* Given a piecewise multi-affine expression of which the last input variable
5351 * is the minimum of the bounds in "cst", plug in the value of the minimum.
5352 * This minimum expression is given in "min_expr_pa".
5353 * The set "min_expr" contains the same information, but in the form of a set.
5354 * The variable is subsequently projected out.
5356 * The implementation is similar to those of "split" and "split_domain".
5357 * If the variable appears in a given expression, then minimum expression
5358 * is plugged in. Otherwise, if the variable appears in the constraints
5359 * and a split is required, then the domain is split. Otherwise, no split
5362 static __isl_give isl_pw_multi_aff
*split_domain_pma(
5363 __isl_take isl_pw_multi_aff
*opt
, __isl_take isl_pw_aff
*min_expr_pa
,
5364 __isl_take isl_set
*min_expr
, __isl_take isl_mat
*cst
)
5369 isl_pw_multi_aff
*res
;
5371 if (!opt
|| !min_expr
|| !cst
)
5374 n_in
= isl_pw_multi_aff_dim(opt
, isl_dim_in
);
5375 space
= isl_pw_multi_aff_get_space(opt
);
5376 space
= isl_space_drop_dims(space
, isl_dim_in
, n_in
- 1, 1);
5377 res
= isl_pw_multi_aff_empty(space
);
5379 for (i
= 0; i
< opt
->n
; ++i
) {
5380 isl_pw_multi_aff
*pma
;
5382 pma
= isl_pw_multi_aff_alloc(isl_set_copy(opt
->p
[i
].set
),
5383 isl_multi_aff_copy(opt
->p
[i
].maff
));
5384 if (need_substitution(opt
->p
[i
].maff
))
5385 pma
= isl_pw_multi_aff_substitute(pma
,
5386 isl_dim_in
, n_in
- 1, min_expr_pa
);
5387 else if (need_split_set(opt
->p
[i
].set
, cst
))
5388 pma
= isl_pw_multi_aff_intersect_domain(pma
,
5389 isl_set_copy(min_expr
));
5390 pma
= isl_pw_multi_aff_project_out(pma
,
5391 isl_dim_in
, n_in
- 1, 1);
5393 res
= isl_pw_multi_aff_add_disjoint(res
, pma
);
5396 isl_pw_multi_aff_free(opt
);
5397 isl_pw_aff_free(min_expr_pa
);
5398 isl_set_free(min_expr
);
5402 isl_pw_multi_aff_free(opt
);
5403 isl_pw_aff_free(min_expr_pa
);
5404 isl_set_free(min_expr
);
5409 static __isl_give isl_pw_multi_aff
*basic_map_partial_lexopt_pma(
5410 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
5411 __isl_give isl_set
**empty
, int max
);
5413 /* This function is called from basic_map_partial_lexopt_symm.
5414 * The last variable of "bmap" and "dom" corresponds to the minimum
5415 * of the bounds in "cst". "map_space" is the space of the original
5416 * input relation (of basic_map_partial_lexopt_symm) and "set_space"
5417 * is the space of the original domain.
5419 * We recursively call basic_map_partial_lexopt and then plug in
5420 * the definition of the minimum in the result.
5422 static __isl_give
union isl_lex_res
basic_map_partial_lexopt_symm_pma_core(
5423 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
5424 __isl_give isl_set
**empty
, int max
, __isl_take isl_mat
*cst
,
5425 __isl_take isl_space
*map_space
, __isl_take isl_space
*set_space
)
5427 isl_pw_multi_aff
*opt
;
5428 isl_pw_aff
*min_expr_pa
;
5430 union isl_lex_res res
;
5432 min_expr
= set_minimum(isl_basic_set_get_space(dom
), isl_mat_copy(cst
));
5433 min_expr_pa
= set_minimum_pa(isl_basic_set_get_space(dom
),
5436 opt
= basic_map_partial_lexopt_pma(bmap
, dom
, empty
, max
);
5439 *empty
= split(*empty
,
5440 isl_set_copy(min_expr
), isl_mat_copy(cst
));
5441 *empty
= isl_set_reset_space(*empty
, set_space
);
5444 opt
= split_domain_pma(opt
, min_expr_pa
, min_expr
, cst
);
5445 opt
= isl_pw_multi_aff_reset_space(opt
, map_space
);
5451 static __isl_give isl_pw_multi_aff
*basic_map_partial_lexopt_symm_pma(
5452 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
5453 __isl_give isl_set
**empty
, int max
, int first
, int second
)
5455 return basic_map_partial_lexopt_symm(bmap
, dom
, empty
, max
,
5456 first
, second
, &basic_map_partial_lexopt_symm_pma_core
).pma
;
5459 /* Recursive part of isl_basic_map_partial_lexopt_pw_multi_aff, after detecting
5460 * equalities and removing redundant constraints.
5462 * We first check if there are any parallel constraints (left).
5463 * If not, we are in the base case.
5464 * If there are parallel constraints, we replace them by a single
5465 * constraint in basic_map_partial_lexopt_symm_pma and then call
5466 * this function recursively to look for more parallel constraints.
5468 static __isl_give isl_pw_multi_aff
*basic_map_partial_lexopt_pma(
5469 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
5470 __isl_give isl_set
**empty
, int max
)
5478 if (bmap
->ctx
->opt
->pip_symmetry
)
5479 par
= parallel_constraints(bmap
, &first
, &second
);
5483 return basic_map_partial_lexopt_base_pma(bmap
, dom
, empty
, max
);
5485 return basic_map_partial_lexopt_symm_pma(bmap
, dom
, empty
, max
,
5488 isl_basic_set_free(dom
);
5489 isl_basic_map_free(bmap
);
5493 /* Compute the lexicographic minimum (or maximum if "max" is set)
5494 * of "bmap" over the domain "dom" and return the result as a piecewise
5495 * multi-affine expression.
5496 * If "empty" is not NULL, then *empty is assigned a set that
5497 * contains those parts of the domain where there is no solution.
5498 * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL),
5499 * then we compute the rational optimum. Otherwise, we compute
5500 * the integral optimum.
5502 * We perform some preprocessing. As the PILP solver does not
5503 * handle implicit equalities very well, we first make sure all
5504 * the equalities are explicitly available.
5506 * We also add context constraints to the basic map and remove
5507 * redundant constraints. This is only needed because of the
5508 * way we handle simple symmetries. In particular, we currently look
5509 * for symmetries on the constraints, before we set up the main tableau.
5510 * It is then no good to look for symmetries on possibly redundant constraints.
5512 __isl_give isl_pw_multi_aff
*isl_basic_map_partial_lexopt_pw_multi_aff(
5513 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
5514 __isl_give isl_set
**empty
, int max
)
5521 isl_assert(bmap
->ctx
,
5522 isl_basic_map_compatible_domain(bmap
, dom
), goto error
);
5524 if (isl_basic_set_dim(dom
, isl_dim_all
) == 0)
5525 return basic_map_partial_lexopt_pma(bmap
, dom
, empty
, max
);
5527 bmap
= isl_basic_map_intersect_domain(bmap
, isl_basic_set_copy(dom
));
5528 bmap
= isl_basic_map_detect_equalities(bmap
);
5529 bmap
= isl_basic_map_remove_redundancies(bmap
);
5531 return basic_map_partial_lexopt_pma(bmap
, dom
, empty
, max
);
5533 isl_basic_set_free(dom
);
5534 isl_basic_map_free(bmap
);