add extract_interface for constructing interfaces to other languages
[isl.git] / isl_morph.c
blob69aababf239b061ab121fd2f9c32b95b934b4d16
1 /*
2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
8 * 91893 Orsay, France
9 */
11 #include <isl_map_private.h>
12 #include <isl_morph.h>
13 #include <isl/seq.h>
14 #include <isl_mat_private.h>
15 #include <isl_space_private.h>
16 #include <isl_equalities.h>
18 __isl_give isl_morph *isl_morph_alloc(
19 __isl_take isl_basic_set *dom, __isl_take isl_basic_set *ran,
20 __isl_take isl_mat *map, __isl_take isl_mat *inv)
22 isl_morph *morph;
24 if (!dom || !ran || !map || !inv)
25 goto error;
27 morph = isl_alloc_type(dom->ctx, struct isl_morph);
28 if (!morph)
29 goto error;
31 morph->ref = 1;
32 morph->dom = dom;
33 morph->ran = ran;
34 morph->map = map;
35 morph->inv = inv;
37 return morph;
38 error:
39 isl_basic_set_free(dom);
40 isl_basic_set_free(ran);
41 isl_mat_free(map);
42 isl_mat_free(inv);
43 return NULL;
46 __isl_give isl_morph *isl_morph_copy(__isl_keep isl_morph *morph)
48 if (!morph)
49 return NULL;
51 morph->ref++;
52 return morph;
55 __isl_give isl_morph *isl_morph_dup(__isl_keep isl_morph *morph)
57 if (!morph)
58 return NULL;
60 return isl_morph_alloc(isl_basic_set_copy(morph->dom),
61 isl_basic_set_copy(morph->ran),
62 isl_mat_copy(morph->map), isl_mat_copy(morph->inv));
65 __isl_give isl_morph *isl_morph_cow(__isl_take isl_morph *morph)
67 if (!morph)
68 return NULL;
70 if (morph->ref == 1)
71 return morph;
72 morph->ref--;
73 return isl_morph_dup(morph);
76 void isl_morph_free(__isl_take isl_morph *morph)
78 if (!morph)
79 return;
81 if (--morph->ref > 0)
82 return;
84 isl_basic_set_free(morph->dom);
85 isl_basic_set_free(morph->ran);
86 isl_mat_free(morph->map);
87 isl_mat_free(morph->inv);
88 free(morph);
91 __isl_give isl_space *isl_morph_get_ran_space(__isl_keep isl_morph *morph)
93 if (!morph)
94 return NULL;
96 return isl_space_copy(morph->ran->dim);
99 unsigned isl_morph_dom_dim(__isl_keep isl_morph *morph, enum isl_dim_type type)
101 if (!morph)
102 return 0;
104 return isl_basic_set_dim(morph->dom, type);
107 unsigned isl_morph_ran_dim(__isl_keep isl_morph *morph, enum isl_dim_type type)
109 if (!morph)
110 return 0;
112 return isl_basic_set_dim(morph->ran, type);
115 __isl_give isl_morph *isl_morph_remove_dom_dims(__isl_take isl_morph *morph,
116 enum isl_dim_type type, unsigned first, unsigned n)
118 unsigned dom_offset;
120 if (n == 0)
121 return morph;
123 morph = isl_morph_cow(morph);
124 if (!morph)
125 return NULL;
127 dom_offset = 1 + isl_space_offset(morph->dom->dim, type);
129 morph->dom = isl_basic_set_remove_dims(morph->dom, type, first, n);
131 morph->map = isl_mat_drop_cols(morph->map, dom_offset + first, n);
133 morph->inv = isl_mat_drop_rows(morph->inv, dom_offset + first, n);
135 if (morph->dom && morph->ran && morph->map && morph->inv)
136 return morph;
138 isl_morph_free(morph);
139 return NULL;
142 __isl_give isl_morph *isl_morph_remove_ran_dims(__isl_take isl_morph *morph,
143 enum isl_dim_type type, unsigned first, unsigned n)
145 unsigned ran_offset;
147 if (n == 0)
148 return morph;
150 morph = isl_morph_cow(morph);
151 if (!morph)
152 return NULL;
154 ran_offset = 1 + isl_space_offset(morph->ran->dim, type);
156 morph->ran = isl_basic_set_remove_dims(morph->ran, type, first, n);
158 morph->map = isl_mat_drop_rows(morph->map, ran_offset + first, n);
160 morph->inv = isl_mat_drop_cols(morph->inv, ran_offset + first, n);
162 if (morph->dom && morph->ran && morph->map && morph->inv)
163 return morph;
165 isl_morph_free(morph);
166 return NULL;
169 /* Project domain of morph onto its parameter domain.
171 __isl_give isl_morph *isl_morph_dom_params(__isl_take isl_morph *morph)
173 unsigned n;
175 if (!morph)
176 return NULL;
177 n = isl_basic_set_dim(morph->dom, isl_dim_set);
178 morph = isl_morph_remove_dom_dims(morph, isl_dim_set, 0, n);
179 if (!morph)
180 return NULL;
181 morph->dom = isl_basic_set_params(morph->dom);
182 if (morph->dom)
183 return morph;
185 isl_morph_free(morph);
186 return NULL;
189 /* Project range of morph onto its parameter domain.
191 __isl_give isl_morph *isl_morph_ran_params(__isl_take isl_morph *morph)
193 unsigned n;
195 if (!morph)
196 return NULL;
197 n = isl_basic_set_dim(morph->ran, isl_dim_set);
198 morph = isl_morph_remove_ran_dims(morph, isl_dim_set, 0, n);
199 if (!morph)
200 return NULL;
201 morph->ran = isl_basic_set_params(morph->ran);
202 if (morph->ran)
203 return morph;
205 isl_morph_free(morph);
206 return NULL;
209 void isl_morph_dump(__isl_take isl_morph *morph, FILE *out)
211 if (!morph)
212 return;
214 isl_basic_set_print(morph->dom, out, 0, "", "", ISL_FORMAT_ISL);
215 isl_basic_set_print(morph->ran, out, 0, "", "", ISL_FORMAT_ISL);
216 isl_mat_print_internal(morph->map, out, 4);
217 isl_mat_print_internal(morph->inv, out, 4);
220 __isl_give isl_morph *isl_morph_identity(__isl_keep isl_basic_set *bset)
222 isl_mat *id;
223 isl_basic_set *universe;
224 unsigned total;
226 if (!bset)
227 return NULL;
229 total = isl_basic_set_total_dim(bset);
230 id = isl_mat_identity(bset->ctx, 1 + total);
231 universe = isl_basic_set_universe(isl_space_copy(bset->dim));
233 return isl_morph_alloc(universe, isl_basic_set_copy(universe),
234 id, isl_mat_copy(id));
237 /* Create a(n identity) morphism between empty sets of the same dimension
238 * a "bset".
240 __isl_give isl_morph *isl_morph_empty(__isl_keep isl_basic_set *bset)
242 isl_mat *id;
243 isl_basic_set *empty;
244 unsigned total;
246 if (!bset)
247 return NULL;
249 total = isl_basic_set_total_dim(bset);
250 id = isl_mat_identity(bset->ctx, 1 + total);
251 empty = isl_basic_set_empty(isl_space_copy(bset->dim));
253 return isl_morph_alloc(empty, isl_basic_set_copy(empty),
254 id, isl_mat_copy(id));
257 /* Given a matrix that maps a (possibly) parametric domain to
258 * a parametric domain, add in rows that map the "nparam" parameters onto
259 * themselves.
261 static __isl_give isl_mat *insert_parameter_rows(__isl_take isl_mat *mat,
262 unsigned nparam)
264 int i;
266 if (nparam == 0)
267 return mat;
268 if (!mat)
269 return NULL;
271 mat = isl_mat_insert_rows(mat, 1, nparam);
272 if (!mat)
273 return NULL;
275 for (i = 0; i < nparam; ++i) {
276 isl_seq_clr(mat->row[1 + i], mat->n_col);
277 isl_int_set(mat->row[1 + i][1 + i], mat->row[0][0]);
280 return mat;
283 /* Construct a basic set described by the "n" equalities of "bset" starting
284 * at "first".
286 static __isl_give isl_basic_set *copy_equalities(__isl_keep isl_basic_set *bset,
287 unsigned first, unsigned n)
289 int i, k;
290 isl_basic_set *eq;
291 unsigned total;
293 isl_assert(bset->ctx, bset->n_div == 0, return NULL);
295 total = isl_basic_set_total_dim(bset);
296 eq = isl_basic_set_alloc_space(isl_space_copy(bset->dim), 0, n, 0);
297 if (!eq)
298 return NULL;
299 for (i = 0; i < n; ++i) {
300 k = isl_basic_set_alloc_equality(eq);
301 if (k < 0)
302 goto error;
303 isl_seq_cpy(eq->eq[k], bset->eq[first + k], 1 + total);
306 return eq;
307 error:
308 isl_basic_set_free(eq);
309 return NULL;
312 /* Given a basic set, exploit the equalties in the a basic set to construct
313 * a morphishm that maps the basic set to a lower-dimensional space.
314 * Specifically, the morphism reduces the number of dimensions of type "type".
316 * This function is a slight generalization of isl_mat_variable_compression
317 * in that it allows the input to be parametric and that it allows for the
318 * compression of either parameters or set variables.
320 * We first select the equalities of interest, that is those that involve
321 * variables of type "type" and no later variables.
322 * Denote those equalities as
324 * -C(p) + M x = 0
326 * where C(p) depends on the parameters if type == isl_dim_set and
327 * is a constant if type == isl_dim_param.
329 * First compute the (left) Hermite normal form of M,
331 * M [U1 U2] = M U = H = [H1 0]
332 * or
333 * M = H Q = [H1 0] [Q1]
334 * [Q2]
336 * with U, Q unimodular, Q = U^{-1} (and H lower triangular).
337 * Define the transformed variables as
339 * x = [U1 U2] [ x1' ] = [U1 U2] [Q1] x
340 * [ x2' ] [Q2]
342 * The equalities then become
344 * -C(p) + H1 x1' = 0 or x1' = H1^{-1} C(p) = C'(p)
346 * If the denominator of the constant term does not divide the
347 * the common denominator of the parametric terms, then every
348 * integer point is mapped to a non-integer point and then the original set has no
349 * integer solutions (since the x' are a unimodular transformation
350 * of the x). In this case, an empty morphism is returned.
351 * Otherwise, the transformation is given by
353 * x = U1 H1^{-1} C(p) + U2 x2'
355 * The inverse transformation is simply
357 * x2' = Q2 x
359 * Both matrices are extended to map the full original space to the full
360 * compressed space.
362 __isl_give isl_morph *isl_basic_set_variable_compression(
363 __isl_keep isl_basic_set *bset, enum isl_dim_type type)
365 unsigned otype;
366 unsigned ntype;
367 unsigned orest;
368 unsigned nrest;
369 int f_eq, n_eq;
370 isl_space *dim;
371 isl_mat *H, *U, *Q, *C = NULL, *H1, *U1, *U2;
372 isl_basic_set *dom, *ran;
374 if (!bset)
375 return NULL;
377 if (isl_basic_set_plain_is_empty(bset))
378 return isl_morph_empty(bset);
380 isl_assert(bset->ctx, bset->n_div == 0, return NULL);
382 otype = 1 + isl_space_offset(bset->dim, type);
383 ntype = isl_basic_set_dim(bset, type);
384 orest = otype + ntype;
385 nrest = isl_basic_set_total_dim(bset) - (orest - 1);
387 for (f_eq = 0; f_eq < bset->n_eq; ++f_eq)
388 if (isl_seq_first_non_zero(bset->eq[f_eq] + orest, nrest) == -1)
389 break;
390 for (n_eq = 0; f_eq + n_eq < bset->n_eq; ++n_eq)
391 if (isl_seq_first_non_zero(bset->eq[f_eq + n_eq] + otype, ntype) == -1)
392 break;
393 if (n_eq == 0)
394 return isl_morph_identity(bset);
396 H = isl_mat_sub_alloc6(bset->ctx, bset->eq, f_eq, n_eq, otype, ntype);
397 H = isl_mat_left_hermite(H, 0, &U, &Q);
398 if (!H || !U || !Q)
399 goto error;
400 Q = isl_mat_drop_rows(Q, 0, n_eq);
401 Q = isl_mat_diagonal(isl_mat_identity(bset->ctx, otype), Q);
402 Q = isl_mat_diagonal(Q, isl_mat_identity(bset->ctx, nrest));
403 C = isl_mat_alloc(bset->ctx, 1 + n_eq, otype);
404 if (!C)
405 goto error;
406 isl_int_set_si(C->row[0][0], 1);
407 isl_seq_clr(C->row[0] + 1, otype - 1);
408 isl_mat_sub_neg(C->ctx, C->row + 1, bset->eq + f_eq, n_eq, 0, 0, otype);
409 H1 = isl_mat_sub_alloc(H, 0, H->n_row, 0, H->n_row);
410 H1 = isl_mat_lin_to_aff(H1);
411 C = isl_mat_inverse_product(H1, C);
412 if (!C)
413 goto error;
414 isl_mat_free(H);
416 if (!isl_int_is_one(C->row[0][0])) {
417 int i;
418 isl_int g;
420 isl_int_init(g);
421 for (i = 0; i < n_eq; ++i) {
422 isl_seq_gcd(C->row[1 + i] + 1, otype - 1, &g);
423 isl_int_gcd(g, g, C->row[0][0]);
424 if (!isl_int_is_divisible_by(C->row[1 + i][0], g))
425 break;
427 isl_int_clear(g);
429 if (i < n_eq) {
430 isl_mat_free(C);
431 isl_mat_free(U);
432 isl_mat_free(Q);
433 return isl_morph_empty(bset);
436 C = isl_mat_normalize(C);
439 U1 = isl_mat_sub_alloc(U, 0, U->n_row, 0, n_eq);
440 U1 = isl_mat_lin_to_aff(U1);
441 U2 = isl_mat_sub_alloc(U, 0, U->n_row, n_eq, U->n_row - n_eq);
442 U2 = isl_mat_lin_to_aff(U2);
443 isl_mat_free(U);
445 C = isl_mat_product(U1, C);
446 C = isl_mat_aff_direct_sum(C, U2);
447 C = insert_parameter_rows(C, otype - 1);
448 C = isl_mat_diagonal(C, isl_mat_identity(bset->ctx, nrest));
450 dim = isl_space_copy(bset->dim);
451 dim = isl_space_drop_dims(dim, type, 0, ntype);
452 dim = isl_space_add_dims(dim, type, ntype - n_eq);
453 ran = isl_basic_set_universe(dim);
454 dom = copy_equalities(bset, f_eq, n_eq);
456 return isl_morph_alloc(dom, ran, Q, C);
457 error:
458 isl_mat_free(C);
459 isl_mat_free(H);
460 isl_mat_free(U);
461 isl_mat_free(Q);
462 return NULL;
465 /* Construct a parameter compression for "bset".
466 * We basically just call isl_mat_parameter_compression with the right input
467 * and then extend the resulting matrix to include the variables.
469 * Let the equalities be given as
471 * B(p) + A x = 0
473 * and let [H 0] be the Hermite Normal Form of A, then
475 * H^-1 B(p)
477 * needs to be integer, so we impose that each row is divisible by
478 * the denominator.
480 __isl_give isl_morph *isl_basic_set_parameter_compression(
481 __isl_keep isl_basic_set *bset)
483 unsigned nparam;
484 unsigned nvar;
485 int n_eq;
486 isl_mat *H, *B;
487 isl_vec *d;
488 isl_mat *map, *inv;
489 isl_basic_set *dom, *ran;
491 if (!bset)
492 return NULL;
494 if (isl_basic_set_plain_is_empty(bset))
495 return isl_morph_empty(bset);
496 if (bset->n_eq == 0)
497 return isl_morph_identity(bset);
499 isl_assert(bset->ctx, bset->n_div == 0, return NULL);
501 n_eq = bset->n_eq;
502 nparam = isl_basic_set_dim(bset, isl_dim_param);
503 nvar = isl_basic_set_dim(bset, isl_dim_set);
505 isl_assert(bset->ctx, n_eq <= nvar, return NULL);
507 d = isl_vec_alloc(bset->ctx, n_eq);
508 B = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, n_eq, 0, 1 + nparam);
509 H = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, n_eq, 1 + nparam, nvar);
510 H = isl_mat_left_hermite(H, 0, NULL, NULL);
511 H = isl_mat_drop_cols(H, n_eq, nvar - n_eq);
512 H = isl_mat_lin_to_aff(H);
513 H = isl_mat_right_inverse(H);
514 if (!H || !d)
515 goto error;
516 isl_seq_set(d->el, H->row[0][0], d->size);
517 H = isl_mat_drop_rows(H, 0, 1);
518 H = isl_mat_drop_cols(H, 0, 1);
519 B = isl_mat_product(H, B);
520 inv = isl_mat_parameter_compression(B, d);
521 inv = isl_mat_diagonal(inv, isl_mat_identity(bset->ctx, nvar));
522 map = isl_mat_right_inverse(isl_mat_copy(inv));
524 dom = isl_basic_set_universe(isl_space_copy(bset->dim));
525 ran = isl_basic_set_universe(isl_space_copy(bset->dim));
527 return isl_morph_alloc(dom, ran, map, inv);
528 error:
529 isl_mat_free(H);
530 isl_mat_free(B);
531 isl_vec_free(d);
532 return NULL;
535 /* Add stride constraints to "bset" based on the inverse mapping
536 * that was plugged in. In particular, if morph maps x' to x,
537 * the the constraints of the original input
539 * A x' + b >= 0
541 * have been rewritten to
543 * A inv x + b >= 0
545 * However, this substitution may loose information on the integrality of x',
546 * so we need to impose that
548 * inv x
550 * is integral. If inv = B/d, this means that we need to impose that
552 * B x = 0 mod d
554 * or
556 * exists alpha in Z^m: B x = d alpha
559 static __isl_give isl_basic_set *add_strides(__isl_take isl_basic_set *bset,
560 __isl_keep isl_morph *morph)
562 int i, div, k;
563 isl_int gcd;
565 if (isl_int_is_one(morph->inv->row[0][0]))
566 return bset;
568 isl_int_init(gcd);
570 for (i = 0; 1 + i < morph->inv->n_row; ++i) {
571 isl_seq_gcd(morph->inv->row[1 + i], morph->inv->n_col, &gcd);
572 if (isl_int_is_divisible_by(gcd, morph->inv->row[0][0]))
573 continue;
574 div = isl_basic_set_alloc_div(bset);
575 if (div < 0)
576 goto error;
577 k = isl_basic_set_alloc_equality(bset);
578 if (k < 0)
579 goto error;
580 isl_seq_cpy(bset->eq[k], morph->inv->row[1 + i],
581 morph->inv->n_col);
582 isl_seq_clr(bset->eq[k] + morph->inv->n_col, bset->n_div);
583 isl_int_set(bset->eq[k][morph->inv->n_col + div],
584 morph->inv->row[0][0]);
587 isl_int_clear(gcd);
589 return bset;
590 error:
591 isl_int_clear(gcd);
592 isl_basic_set_free(bset);
593 return NULL;
596 /* Apply the morphism to the basic set.
597 * We basically just compute the preimage of "bset" under the inverse mapping
598 * in morph, add in stride constraints and intersect with the range
599 * of the morphism.
601 __isl_give isl_basic_set *isl_morph_basic_set(__isl_take isl_morph *morph,
602 __isl_take isl_basic_set *bset)
604 isl_basic_set *res = NULL;
605 isl_mat *mat = NULL;
606 int i, k;
607 int max_stride;
609 if (!morph || !bset)
610 goto error;
612 isl_assert(bset->ctx, isl_space_is_equal(bset->dim, morph->dom->dim),
613 goto error);
615 max_stride = morph->inv->n_row - 1;
616 if (isl_int_is_one(morph->inv->row[0][0]))
617 max_stride = 0;
618 res = isl_basic_set_alloc_space(isl_space_copy(morph->ran->dim),
619 bset->n_div + max_stride, bset->n_eq + max_stride, bset->n_ineq);
621 for (i = 0; i < bset->n_div; ++i)
622 if (isl_basic_set_alloc_div(res) < 0)
623 goto error;
625 mat = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, bset->n_eq,
626 0, morph->inv->n_row);
627 mat = isl_mat_product(mat, isl_mat_copy(morph->inv));
628 if (!mat)
629 goto error;
630 for (i = 0; i < bset->n_eq; ++i) {
631 k = isl_basic_set_alloc_equality(res);
632 if (k < 0)
633 goto error;
634 isl_seq_cpy(res->eq[k], mat->row[i], mat->n_col);
635 isl_seq_scale(res->eq[k] + mat->n_col, bset->eq[i] + mat->n_col,
636 morph->inv->row[0][0], bset->n_div);
638 isl_mat_free(mat);
640 mat = isl_mat_sub_alloc6(bset->ctx, bset->ineq, 0, bset->n_ineq,
641 0, morph->inv->n_row);
642 mat = isl_mat_product(mat, isl_mat_copy(morph->inv));
643 if (!mat)
644 goto error;
645 for (i = 0; i < bset->n_ineq; ++i) {
646 k = isl_basic_set_alloc_inequality(res);
647 if (k < 0)
648 goto error;
649 isl_seq_cpy(res->ineq[k], mat->row[i], mat->n_col);
650 isl_seq_scale(res->ineq[k] + mat->n_col,
651 bset->ineq[i] + mat->n_col,
652 morph->inv->row[0][0], bset->n_div);
654 isl_mat_free(mat);
656 mat = isl_mat_sub_alloc6(bset->ctx, bset->div, 0, bset->n_div,
657 1, morph->inv->n_row);
658 mat = isl_mat_product(mat, isl_mat_copy(morph->inv));
659 if (!mat)
660 goto error;
661 for (i = 0; i < bset->n_div; ++i) {
662 isl_int_mul(res->div[i][0],
663 morph->inv->row[0][0], bset->div[i][0]);
664 isl_seq_cpy(res->div[i] + 1, mat->row[i], mat->n_col);
665 isl_seq_scale(res->div[i] + 1 + mat->n_col,
666 bset->div[i] + 1 + mat->n_col,
667 morph->inv->row[0][0], bset->n_div);
669 isl_mat_free(mat);
671 res = add_strides(res, morph);
673 if (isl_basic_set_is_rational(bset))
674 res = isl_basic_set_set_rational(res);
676 res = isl_basic_set_simplify(res);
677 res = isl_basic_set_finalize(res);
679 res = isl_basic_set_intersect(res, isl_basic_set_copy(morph->ran));
681 isl_morph_free(morph);
682 isl_basic_set_free(bset);
683 return res;
684 error:
685 isl_mat_free(mat);
686 isl_morph_free(morph);
687 isl_basic_set_free(bset);
688 isl_basic_set_free(res);
689 return NULL;
692 /* Apply the morphism to the set.
694 __isl_give isl_set *isl_morph_set(__isl_take isl_morph *morph,
695 __isl_take isl_set *set)
697 int i;
699 if (!morph || !set)
700 goto error;
702 isl_assert(set->ctx, isl_space_is_equal(set->dim, morph->dom->dim), goto error);
704 set = isl_set_cow(set);
705 if (!set)
706 goto error;
708 isl_space_free(set->dim);
709 set->dim = isl_space_copy(morph->ran->dim);
710 if (!set->dim)
711 goto error;
713 for (i = 0; i < set->n; ++i) {
714 set->p[i] = isl_morph_basic_set(isl_morph_copy(morph), set->p[i]);
715 if (!set->p[i])
716 goto error;
719 isl_morph_free(morph);
721 ISL_F_CLR(set, ISL_SET_NORMALIZED);
723 return set;
724 error:
725 isl_set_free(set);
726 isl_morph_free(morph);
727 return NULL;
730 /* Construct a morphism that first does morph2 and then morph1.
732 __isl_give isl_morph *isl_morph_compose(__isl_take isl_morph *morph1,
733 __isl_take isl_morph *morph2)
735 isl_mat *map, *inv;
736 isl_basic_set *dom, *ran;
738 if (!morph1 || !morph2)
739 goto error;
741 map = isl_mat_product(isl_mat_copy(morph1->map), isl_mat_copy(morph2->map));
742 inv = isl_mat_product(isl_mat_copy(morph2->inv), isl_mat_copy(morph1->inv));
743 dom = isl_morph_basic_set(isl_morph_inverse(isl_morph_copy(morph2)),
744 isl_basic_set_copy(morph1->dom));
745 dom = isl_basic_set_intersect(dom, isl_basic_set_copy(morph2->dom));
746 ran = isl_morph_basic_set(isl_morph_copy(morph1),
747 isl_basic_set_copy(morph2->ran));
748 ran = isl_basic_set_intersect(ran, isl_basic_set_copy(morph1->ran));
750 isl_morph_free(morph1);
751 isl_morph_free(morph2);
753 return isl_morph_alloc(dom, ran, map, inv);
754 error:
755 isl_morph_free(morph1);
756 isl_morph_free(morph2);
757 return NULL;
760 __isl_give isl_morph *isl_morph_inverse(__isl_take isl_morph *morph)
762 isl_basic_set *bset;
763 isl_mat *mat;
765 morph = isl_morph_cow(morph);
766 if (!morph)
767 return NULL;
769 bset = morph->dom;
770 morph->dom = morph->ran;
771 morph->ran = bset;
773 mat = morph->map;
774 morph->map = morph->inv;
775 morph->inv = mat;
777 return morph;
780 __isl_give isl_morph *isl_basic_set_full_compression(
781 __isl_keep isl_basic_set *bset)
783 isl_morph *morph, *morph2;
785 bset = isl_basic_set_copy(bset);
787 morph = isl_basic_set_variable_compression(bset, isl_dim_param);
788 bset = isl_morph_basic_set(isl_morph_copy(morph), bset);
790 morph2 = isl_basic_set_parameter_compression(bset);
791 bset = isl_morph_basic_set(isl_morph_copy(morph2), bset);
793 morph = isl_morph_compose(morph2, morph);
795 morph2 = isl_basic_set_variable_compression(bset, isl_dim_set);
796 isl_basic_set_free(bset);
798 morph = isl_morph_compose(morph2, morph);
800 return morph;
803 __isl_give isl_vec *isl_morph_vec(__isl_take isl_morph *morph,
804 __isl_take isl_vec *vec)
806 if (!morph)
807 goto error;
809 vec = isl_mat_vec_product(isl_mat_copy(morph->map), vec);
811 isl_morph_free(morph);
812 return vec;
813 error:
814 isl_morph_free(morph);
815 isl_vec_free(vec);
816 return NULL;