2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
11 #include <isl_ctx_private.h>
12 #include <isl_map_private.h>
15 #include <isl_space_private.h>
17 #include <isl/union_map.h>
18 #include <isl_mat_private.h>
19 #include <isl_options_private.h>
20 #include <isl_tarjan.h>
22 int isl_map_is_transitively_closed(__isl_keep isl_map
*map
)
27 map2
= isl_map_apply_range(isl_map_copy(map
), isl_map_copy(map
));
28 closed
= isl_map_is_subset(map2
, map
);
34 int isl_union_map_is_transitively_closed(__isl_keep isl_union_map
*umap
)
39 umap2
= isl_union_map_apply_range(isl_union_map_copy(umap
),
40 isl_union_map_copy(umap
));
41 closed
= isl_union_map_is_subset(umap2
, umap
);
42 isl_union_map_free(umap2
);
47 /* Given a map that represents a path with the length of the path
48 * encoded as the difference between the last output coordindate
49 * and the last input coordinate, set this length to either
50 * exactly "length" (if "exactly" is set) or at least "length"
51 * (if "exactly" is not set).
53 static __isl_give isl_map
*set_path_length(__isl_take isl_map
*map
,
54 int exactly
, int length
)
57 struct isl_basic_map
*bmap
;
66 dim
= isl_map_get_space(map
);
67 d
= isl_space_dim(dim
, isl_dim_in
);
68 nparam
= isl_space_dim(dim
, isl_dim_param
);
69 bmap
= isl_basic_map_alloc_space(dim
, 0, 1, 1);
71 k
= isl_basic_map_alloc_equality(bmap
);
74 k
= isl_basic_map_alloc_inequality(bmap
);
79 isl_seq_clr(c
, 1 + isl_basic_map_total_dim(bmap
));
80 isl_int_set_si(c
[0], -length
);
81 isl_int_set_si(c
[1 + nparam
+ d
- 1], -1);
82 isl_int_set_si(c
[1 + nparam
+ d
+ d
- 1], 1);
84 bmap
= isl_basic_map_finalize(bmap
);
85 map
= isl_map_intersect(map
, isl_map_from_basic_map(bmap
));
89 isl_basic_map_free(bmap
);
94 /* Check whether the overapproximation of the power of "map" is exactly
95 * the power of "map". Let R be "map" and A_k the overapproximation.
96 * The approximation is exact if
99 * A_k = A_{k-1} \circ R k >= 2
101 * Since A_k is known to be an overapproximation, we only need to check
104 * A_k \subset A_{k-1} \circ R k >= 2
106 * In practice, "app" has an extra input and output coordinate
107 * to encode the length of the path. So, we first need to add
108 * this coordinate to "map" and set the length of the path to
111 static int check_power_exactness(__isl_take isl_map
*map
,
112 __isl_take isl_map
*app
)
118 map
= isl_map_add_dims(map
, isl_dim_in
, 1);
119 map
= isl_map_add_dims(map
, isl_dim_out
, 1);
120 map
= set_path_length(map
, 1, 1);
122 app_1
= set_path_length(isl_map_copy(app
), 1, 1);
124 exact
= isl_map_is_subset(app_1
, map
);
127 if (!exact
|| exact
< 0) {
133 app_1
= set_path_length(isl_map_copy(app
), 0, 1);
134 app_2
= set_path_length(app
, 0, 2);
135 app_1
= isl_map_apply_range(map
, app_1
);
137 exact
= isl_map_is_subset(app_2
, app_1
);
145 /* Check whether the overapproximation of the power of "map" is exactly
146 * the power of "map", possibly after projecting out the power (if "project"
149 * If "project" is set and if "steps" can only result in acyclic paths,
152 * A = R \cup (A \circ R)
154 * where A is the overapproximation with the power projected out, i.e.,
155 * an overapproximation of the transitive closure.
156 * More specifically, since A is known to be an overapproximation, we check
158 * A \subset R \cup (A \circ R)
160 * Otherwise, we check if the power is exact.
162 * Note that "app" has an extra input and output coordinate to encode
163 * the length of the part. If we are only interested in the transitive
164 * closure, then we can simply project out these coordinates first.
166 static int check_exactness(__isl_take isl_map
*map
, __isl_take isl_map
*app
,
174 return check_power_exactness(map
, app
);
176 d
= isl_map_dim(map
, isl_dim_in
);
177 app
= set_path_length(app
, 0, 1);
178 app
= isl_map_project_out(app
, isl_dim_in
, d
, 1);
179 app
= isl_map_project_out(app
, isl_dim_out
, d
, 1);
181 app
= isl_map_reset_space(app
, isl_map_get_space(map
));
183 test
= isl_map_apply_range(isl_map_copy(map
), isl_map_copy(app
));
184 test
= isl_map_union(test
, isl_map_copy(map
));
186 exact
= isl_map_is_subset(app
, test
);
197 * The transitive closure implementation is based on the paper
198 * "Computing the Transitive Closure of a Union of Affine Integer
199 * Tuple Relations" by Anna Beletska, Denis Barthou, Wlodzimierz Bielecki and
203 /* Given a set of n offsets v_i (the rows of "steps"), construct a relation
204 * of the given dimension specification (Z^{n+1} -> Z^{n+1})
205 * that maps an element x to any element that can be reached
206 * by taking a non-negative number of steps along any of
207 * the extended offsets v'_i = [v_i 1].
210 * { [x] -> [y] : exists k_i >= 0, y = x + \sum_i k_i v'_i }
212 * For any element in this relation, the number of steps taken
213 * is equal to the difference in the final coordinates.
215 static __isl_give isl_map
*path_along_steps(__isl_take isl_space
*dim
,
216 __isl_keep isl_mat
*steps
)
219 struct isl_basic_map
*path
= NULL
;
227 d
= isl_space_dim(dim
, isl_dim_in
);
229 nparam
= isl_space_dim(dim
, isl_dim_param
);
231 path
= isl_basic_map_alloc_space(isl_space_copy(dim
), n
, d
, n
);
233 for (i
= 0; i
< n
; ++i
) {
234 k
= isl_basic_map_alloc_div(path
);
237 isl_assert(steps
->ctx
, i
== k
, goto error
);
238 isl_int_set_si(path
->div
[k
][0], 0);
241 for (i
= 0; i
< d
; ++i
) {
242 k
= isl_basic_map_alloc_equality(path
);
245 isl_seq_clr(path
->eq
[k
], 1 + isl_basic_map_total_dim(path
));
246 isl_int_set_si(path
->eq
[k
][1 + nparam
+ i
], 1);
247 isl_int_set_si(path
->eq
[k
][1 + nparam
+ d
+ i
], -1);
249 for (j
= 0; j
< n
; ++j
)
250 isl_int_set_si(path
->eq
[k
][1 + nparam
+ 2 * d
+ j
], 1);
252 for (j
= 0; j
< n
; ++j
)
253 isl_int_set(path
->eq
[k
][1 + nparam
+ 2 * d
+ j
],
257 for (i
= 0; i
< n
; ++i
) {
258 k
= isl_basic_map_alloc_inequality(path
);
261 isl_seq_clr(path
->ineq
[k
], 1 + isl_basic_map_total_dim(path
));
262 isl_int_set_si(path
->ineq
[k
][1 + nparam
+ 2 * d
+ i
], 1);
267 path
= isl_basic_map_simplify(path
);
268 path
= isl_basic_map_finalize(path
);
269 return isl_map_from_basic_map(path
);
272 isl_basic_map_free(path
);
281 /* Check whether the parametric constant term of constraint c is never
282 * positive in "bset".
284 static int parametric_constant_never_positive(__isl_keep isl_basic_set
*bset
,
285 isl_int
*c
, int *div_purity
)
294 n_div
= isl_basic_set_dim(bset
, isl_dim_div
);
295 d
= isl_basic_set_dim(bset
, isl_dim_set
);
296 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
298 bset
= isl_basic_set_copy(bset
);
299 bset
= isl_basic_set_cow(bset
);
300 bset
= isl_basic_set_extend_constraints(bset
, 0, 1);
301 k
= isl_basic_set_alloc_inequality(bset
);
304 isl_seq_clr(bset
->ineq
[k
], 1 + isl_basic_set_total_dim(bset
));
305 isl_seq_cpy(bset
->ineq
[k
], c
, 1 + nparam
);
306 for (i
= 0; i
< n_div
; ++i
) {
307 if (div_purity
[i
] != PURE_PARAM
)
309 isl_int_set(bset
->ineq
[k
][1 + nparam
+ d
+ i
],
310 c
[1 + nparam
+ d
+ i
]);
312 isl_int_sub_ui(bset
->ineq
[k
][0], bset
->ineq
[k
][0], 1);
313 empty
= isl_basic_set_is_empty(bset
);
314 isl_basic_set_free(bset
);
318 isl_basic_set_free(bset
);
322 /* Return PURE_PARAM if only the coefficients of the parameters are non-zero.
323 * Return PURE_VAR if only the coefficients of the set variables are non-zero.
324 * Return MIXED if only the coefficients of the parameters and the set
325 * variables are non-zero and if moreover the parametric constant
326 * can never attain positive values.
327 * Return IMPURE otherwise.
329 * If div_purity is NULL then we are dealing with a non-parametric set
330 * and so the constraint is obviously PURE_VAR.
332 static int purity(__isl_keep isl_basic_set
*bset
, isl_int
*c
, int *div_purity
,
345 n_div
= isl_basic_set_dim(bset
, isl_dim_div
);
346 d
= isl_basic_set_dim(bset
, isl_dim_set
);
347 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
349 for (i
= 0; i
< n_div
; ++i
) {
350 if (isl_int_is_zero(c
[1 + nparam
+ d
+ i
]))
352 switch (div_purity
[i
]) {
353 case PURE_PARAM
: p
= 1; break;
354 case PURE_VAR
: v
= 1; break;
355 default: return IMPURE
;
358 if (!p
&& isl_seq_first_non_zero(c
+ 1, nparam
) == -1)
360 if (!v
&& isl_seq_first_non_zero(c
+ 1 + nparam
, d
) == -1)
363 empty
= parametric_constant_never_positive(bset
, c
, div_purity
);
364 if (eq
&& empty
>= 0 && !empty
) {
365 isl_seq_neg(c
, c
, 1 + nparam
+ d
+ n_div
);
366 empty
= parametric_constant_never_positive(bset
, c
, div_purity
);
369 return empty
< 0 ? -1 : empty
? MIXED
: IMPURE
;
372 /* Return an array of integers indicating the type of each div in bset.
373 * If the div is (recursively) defined in terms of only the parameters,
374 * then the type is PURE_PARAM.
375 * If the div is (recursively) defined in terms of only the set variables,
376 * then the type is PURE_VAR.
377 * Otherwise, the type is IMPURE.
379 static __isl_give
int *get_div_purity(__isl_keep isl_basic_set
*bset
)
390 n_div
= isl_basic_set_dim(bset
, isl_dim_div
);
391 d
= isl_basic_set_dim(bset
, isl_dim_set
);
392 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
394 div_purity
= isl_alloc_array(bset
->ctx
, int, n_div
);
398 for (i
= 0; i
< bset
->n_div
; ++i
) {
400 if (isl_int_is_zero(bset
->div
[i
][0])) {
401 div_purity
[i
] = IMPURE
;
404 if (isl_seq_first_non_zero(bset
->div
[i
] + 2, nparam
) != -1)
406 if (isl_seq_first_non_zero(bset
->div
[i
] + 2 + nparam
, d
) != -1)
408 for (j
= 0; j
< i
; ++j
) {
409 if (isl_int_is_zero(bset
->div
[i
][2 + nparam
+ d
+ j
]))
411 switch (div_purity
[j
]) {
412 case PURE_PARAM
: p
= 1; break;
413 case PURE_VAR
: v
= 1; break;
414 default: p
= v
= 1; break;
417 div_purity
[i
] = v
? p
? IMPURE
: PURE_VAR
: PURE_PARAM
;
423 /* Given a path with the as yet unconstrained length at position "pos",
424 * check if setting the length to zero results in only the identity
427 static int empty_path_is_identity(__isl_keep isl_basic_map
*path
, unsigned pos
)
429 isl_basic_map
*test
= NULL
;
430 isl_basic_map
*id
= NULL
;
434 test
= isl_basic_map_copy(path
);
435 test
= isl_basic_map_extend_constraints(test
, 1, 0);
436 k
= isl_basic_map_alloc_equality(test
);
439 isl_seq_clr(test
->eq
[k
], 1 + isl_basic_map_total_dim(test
));
440 isl_int_set_si(test
->eq
[k
][pos
], 1);
441 id
= isl_basic_map_identity(isl_basic_map_get_space(path
));
442 is_id
= isl_basic_map_is_equal(test
, id
);
443 isl_basic_map_free(test
);
444 isl_basic_map_free(id
);
447 isl_basic_map_free(test
);
451 /* If any of the constraints is found to be impure then this function
452 * sets *impurity to 1.
454 static __isl_give isl_basic_map
*add_delta_constraints(
455 __isl_take isl_basic_map
*path
,
456 __isl_keep isl_basic_set
*delta
, unsigned off
, unsigned nparam
,
457 unsigned d
, int *div_purity
, int eq
, int *impurity
)
460 int n
= eq
? delta
->n_eq
: delta
->n_ineq
;
461 isl_int
**delta_c
= eq
? delta
->eq
: delta
->ineq
;
464 n_div
= isl_basic_set_dim(delta
, isl_dim_div
);
466 for (i
= 0; i
< n
; ++i
) {
468 int p
= purity(delta
, delta_c
[i
], div_purity
, eq
);
471 if (p
!= PURE_VAR
&& p
!= PURE_PARAM
&& !*impurity
)
475 if (eq
&& p
!= MIXED
) {
476 k
= isl_basic_map_alloc_equality(path
);
477 path_c
= path
->eq
[k
];
479 k
= isl_basic_map_alloc_inequality(path
);
480 path_c
= path
->ineq
[k
];
484 isl_seq_clr(path_c
, 1 + isl_basic_map_total_dim(path
));
486 isl_seq_cpy(path_c
+ off
,
487 delta_c
[i
] + 1 + nparam
, d
);
488 isl_int_set(path_c
[off
+ d
], delta_c
[i
][0]);
489 } else if (p
== PURE_PARAM
) {
490 isl_seq_cpy(path_c
, delta_c
[i
], 1 + nparam
);
492 isl_seq_cpy(path_c
+ off
,
493 delta_c
[i
] + 1 + nparam
, d
);
494 isl_seq_cpy(path_c
, delta_c
[i
], 1 + nparam
);
496 isl_seq_cpy(path_c
+ off
- n_div
,
497 delta_c
[i
] + 1 + nparam
+ d
, n_div
);
502 isl_basic_map_free(path
);
506 /* Given a set of offsets "delta", construct a relation of the
507 * given dimension specification (Z^{n+1} -> Z^{n+1}) that
508 * is an overapproximation of the relations that
509 * maps an element x to any element that can be reached
510 * by taking a non-negative number of steps along any of
511 * the elements in "delta".
512 * That is, construct an approximation of
514 * { [x] -> [y] : exists f \in \delta, k \in Z :
515 * y = x + k [f, 1] and k >= 0 }
517 * For any element in this relation, the number of steps taken
518 * is equal to the difference in the final coordinates.
520 * In particular, let delta be defined as
522 * \delta = [p] -> { [x] : A x + a >= 0 and B p + b >= 0 and
523 * C x + C'p + c >= 0 and
524 * D x + D'p + d >= 0 }
526 * where the constraints C x + C'p + c >= 0 are such that the parametric
527 * constant term of each constraint j, "C_j x + C'_j p + c_j",
528 * can never attain positive values, then the relation is constructed as
530 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
531 * A f + k a >= 0 and B p + b >= 0 and
532 * C f + C'p + c >= 0 and k >= 1 }
533 * union { [x] -> [x] }
535 * If the zero-length paths happen to correspond exactly to the identity
536 * mapping, then we return
538 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
539 * A f + k a >= 0 and B p + b >= 0 and
540 * C f + C'p + c >= 0 and k >= 0 }
544 * Existentially quantified variables in \delta are handled by
545 * classifying them as independent of the parameters, purely
546 * parameter dependent and others. Constraints containing
547 * any of the other existentially quantified variables are removed.
548 * This is safe, but leads to an additional overapproximation.
550 * If there are any impure constraints, then we also eliminate
551 * the parameters from \delta, resulting in a set
553 * \delta' = { [x] : E x + e >= 0 }
555 * and add the constraints
559 * to the constructed relation.
561 static __isl_give isl_map
*path_along_delta(__isl_take isl_space
*dim
,
562 __isl_take isl_basic_set
*delta
)
564 isl_basic_map
*path
= NULL
;
571 int *div_purity
= NULL
;
576 n_div
= isl_basic_set_dim(delta
, isl_dim_div
);
577 d
= isl_basic_set_dim(delta
, isl_dim_set
);
578 nparam
= isl_basic_set_dim(delta
, isl_dim_param
);
579 path
= isl_basic_map_alloc_space(isl_space_copy(dim
), n_div
+ d
+ 1,
580 d
+ 1 + delta
->n_eq
, delta
->n_eq
+ delta
->n_ineq
+ 1);
581 off
= 1 + nparam
+ 2 * (d
+ 1) + n_div
;
583 for (i
= 0; i
< n_div
+ d
+ 1; ++i
) {
584 k
= isl_basic_map_alloc_div(path
);
587 isl_int_set_si(path
->div
[k
][0], 0);
590 for (i
= 0; i
< d
+ 1; ++i
) {
591 k
= isl_basic_map_alloc_equality(path
);
594 isl_seq_clr(path
->eq
[k
], 1 + isl_basic_map_total_dim(path
));
595 isl_int_set_si(path
->eq
[k
][1 + nparam
+ i
], 1);
596 isl_int_set_si(path
->eq
[k
][1 + nparam
+ d
+ 1 + i
], -1);
597 isl_int_set_si(path
->eq
[k
][off
+ i
], 1);
600 div_purity
= get_div_purity(delta
);
604 path
= add_delta_constraints(path
, delta
, off
, nparam
, d
,
605 div_purity
, 1, &impurity
);
606 path
= add_delta_constraints(path
, delta
, off
, nparam
, d
,
607 div_purity
, 0, &impurity
);
609 isl_space
*dim
= isl_basic_set_get_space(delta
);
610 delta
= isl_basic_set_project_out(delta
,
611 isl_dim_param
, 0, nparam
);
612 delta
= isl_basic_set_add_dims(delta
, isl_dim_param
, nparam
);
613 delta
= isl_basic_set_reset_space(delta
, dim
);
616 path
= isl_basic_map_extend_constraints(path
, delta
->n_eq
,
618 path
= add_delta_constraints(path
, delta
, off
, nparam
, d
,
620 path
= add_delta_constraints(path
, delta
, off
, nparam
, d
,
622 path
= isl_basic_map_gauss(path
, NULL
);
625 is_id
= empty_path_is_identity(path
, off
+ d
);
629 k
= isl_basic_map_alloc_inequality(path
);
632 isl_seq_clr(path
->ineq
[k
], 1 + isl_basic_map_total_dim(path
));
634 isl_int_set_si(path
->ineq
[k
][0], -1);
635 isl_int_set_si(path
->ineq
[k
][off
+ d
], 1);
638 isl_basic_set_free(delta
);
639 path
= isl_basic_map_finalize(path
);
642 return isl_map_from_basic_map(path
);
644 return isl_basic_map_union(path
, isl_basic_map_identity(dim
));
648 isl_basic_set_free(delta
);
649 isl_basic_map_free(path
);
653 /* Given a dimension specification Z^{n+1} -> Z^{n+1} and a parameter "param",
654 * construct a map that equates the parameter to the difference
655 * in the final coordinates and imposes that this difference is positive.
658 * { [x,x_s] -> [y,y_s] : k = y_s - x_s > 0 }
660 static __isl_give isl_map
*equate_parameter_to_length(__isl_take isl_space
*dim
,
663 struct isl_basic_map
*bmap
;
668 d
= isl_space_dim(dim
, isl_dim_in
);
669 nparam
= isl_space_dim(dim
, isl_dim_param
);
670 bmap
= isl_basic_map_alloc_space(dim
, 0, 1, 1);
671 k
= isl_basic_map_alloc_equality(bmap
);
674 isl_seq_clr(bmap
->eq
[k
], 1 + isl_basic_map_total_dim(bmap
));
675 isl_int_set_si(bmap
->eq
[k
][1 + param
], -1);
676 isl_int_set_si(bmap
->eq
[k
][1 + nparam
+ d
- 1], -1);
677 isl_int_set_si(bmap
->eq
[k
][1 + nparam
+ d
+ d
- 1], 1);
679 k
= isl_basic_map_alloc_inequality(bmap
);
682 isl_seq_clr(bmap
->ineq
[k
], 1 + isl_basic_map_total_dim(bmap
));
683 isl_int_set_si(bmap
->ineq
[k
][1 + param
], 1);
684 isl_int_set_si(bmap
->ineq
[k
][0], -1);
686 bmap
= isl_basic_map_finalize(bmap
);
687 return isl_map_from_basic_map(bmap
);
689 isl_basic_map_free(bmap
);
693 /* Check whether "path" is acyclic, where the last coordinates of domain
694 * and range of path encode the number of steps taken.
695 * That is, check whether
697 * { d | d = y - x and (x,y) in path }
699 * does not contain any element with positive last coordinate (positive length)
700 * and zero remaining coordinates (cycle).
702 static int is_acyclic(__isl_take isl_map
*path
)
707 struct isl_set
*delta
;
709 delta
= isl_map_deltas(path
);
710 dim
= isl_set_dim(delta
, isl_dim_set
);
711 for (i
= 0; i
< dim
; ++i
) {
713 delta
= isl_set_lower_bound_si(delta
, isl_dim_set
, i
, 1);
715 delta
= isl_set_fix_si(delta
, isl_dim_set
, i
, 0);
718 acyclic
= isl_set_is_empty(delta
);
724 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
725 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
726 * construct a map that is an overapproximation of the map
727 * that takes an element from the space D \times Z to another
728 * element from the same space, such that the first n coordinates of the
729 * difference between them is a sum of differences between images
730 * and pre-images in one of the R_i and such that the last coordinate
731 * is equal to the number of steps taken.
734 * \Delta_i = { y - x | (x, y) in R_i }
736 * then the constructed map is an overapproximation of
738 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
739 * d = (\sum_i k_i \delta_i, \sum_i k_i) }
741 * The elements of the singleton \Delta_i's are collected as the
742 * rows of the steps matrix. For all these \Delta_i's together,
743 * a single path is constructed.
744 * For each of the other \Delta_i's, we compute an overapproximation
745 * of the paths along elements of \Delta_i.
746 * Since each of these paths performs an addition, composition is
747 * symmetric and we can simply compose all resulting paths in any order.
749 static __isl_give isl_map
*construct_extended_path(__isl_take isl_space
*dim
,
750 __isl_keep isl_map
*map
, int *project
)
752 struct isl_mat
*steps
= NULL
;
753 struct isl_map
*path
= NULL
;
757 d
= isl_map_dim(map
, isl_dim_in
);
759 path
= isl_map_identity(isl_space_copy(dim
));
761 steps
= isl_mat_alloc(map
->ctx
, map
->n
, d
);
766 for (i
= 0; i
< map
->n
; ++i
) {
767 struct isl_basic_set
*delta
;
769 delta
= isl_basic_map_deltas(isl_basic_map_copy(map
->p
[i
]));
771 for (j
= 0; j
< d
; ++j
) {
774 fixed
= isl_basic_set_plain_dim_is_fixed(delta
, j
,
777 isl_basic_set_free(delta
);
786 path
= isl_map_apply_range(path
,
787 path_along_delta(isl_space_copy(dim
), delta
));
788 path
= isl_map_coalesce(path
);
790 isl_basic_set_free(delta
);
797 path
= isl_map_apply_range(path
,
798 path_along_steps(isl_space_copy(dim
), steps
));
801 if (project
&& *project
) {
802 *project
= is_acyclic(isl_map_copy(path
));
817 static int isl_set_overlaps(__isl_keep isl_set
*set1
, __isl_keep isl_set
*set2
)
822 if (!isl_space_tuple_match(set1
->dim
, isl_dim_set
, set2
->dim
, isl_dim_set
))
825 i
= isl_set_intersect(isl_set_copy(set1
), isl_set_copy(set2
));
826 no_overlap
= isl_set_is_empty(i
);
829 return no_overlap
< 0 ? -1 : !no_overlap
;
832 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
833 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
834 * construct a map that is an overapproximation of the map
835 * that takes an element from the dom R \times Z to an
836 * element from ran R \times Z, such that the first n coordinates of the
837 * difference between them is a sum of differences between images
838 * and pre-images in one of the R_i and such that the last coordinate
839 * is equal to the number of steps taken.
842 * \Delta_i = { y - x | (x, y) in R_i }
844 * then the constructed map is an overapproximation of
846 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
847 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
848 * x in dom R and x + d in ran R and
851 static __isl_give isl_map
*construct_component(__isl_take isl_space
*dim
,
852 __isl_keep isl_map
*map
, int *exact
, int project
)
854 struct isl_set
*domain
= NULL
;
855 struct isl_set
*range
= NULL
;
856 struct isl_map
*app
= NULL
;
857 struct isl_map
*path
= NULL
;
859 domain
= isl_map_domain(isl_map_copy(map
));
860 domain
= isl_set_coalesce(domain
);
861 range
= isl_map_range(isl_map_copy(map
));
862 range
= isl_set_coalesce(range
);
863 if (!isl_set_overlaps(domain
, range
)) {
864 isl_set_free(domain
);
868 map
= isl_map_copy(map
);
869 map
= isl_map_add_dims(map
, isl_dim_in
, 1);
870 map
= isl_map_add_dims(map
, isl_dim_out
, 1);
871 map
= set_path_length(map
, 1, 1);
874 app
= isl_map_from_domain_and_range(domain
, range
);
875 app
= isl_map_add_dims(app
, isl_dim_in
, 1);
876 app
= isl_map_add_dims(app
, isl_dim_out
, 1);
878 path
= construct_extended_path(isl_space_copy(dim
), map
,
879 exact
&& *exact
? &project
: NULL
);
880 app
= isl_map_intersect(app
, path
);
882 if (exact
&& *exact
&&
883 (*exact
= check_exactness(isl_map_copy(map
), isl_map_copy(app
),
888 app
= set_path_length(app
, 0, 1);
896 /* Call construct_component and, if "project" is set, project out
897 * the final coordinates.
899 static __isl_give isl_map
*construct_projected_component(
900 __isl_take isl_space
*dim
,
901 __isl_keep isl_map
*map
, int *exact
, int project
)
908 d
= isl_space_dim(dim
, isl_dim_in
);
910 app
= construct_component(dim
, map
, exact
, project
);
912 app
= isl_map_project_out(app
, isl_dim_in
, d
- 1, 1);
913 app
= isl_map_project_out(app
, isl_dim_out
, d
- 1, 1);
918 /* Compute an extended version, i.e., with path lengths, of
919 * an overapproximation of the transitive closure of "bmap"
920 * with path lengths greater than or equal to zero and with
921 * domain and range equal to "dom".
923 static __isl_give isl_map
*q_closure(__isl_take isl_space
*dim
,
924 __isl_take isl_set
*dom
, __isl_keep isl_basic_map
*bmap
, int *exact
)
931 dom
= isl_set_add_dims(dom
, isl_dim_set
, 1);
932 app
= isl_map_from_domain_and_range(dom
, isl_set_copy(dom
));
933 map
= isl_map_from_basic_map(isl_basic_map_copy(bmap
));
934 path
= construct_extended_path(dim
, map
, &project
);
935 app
= isl_map_intersect(app
, path
);
937 if ((*exact
= check_exactness(map
, isl_map_copy(app
), project
)) < 0)
946 /* Check whether qc has any elements of length at least one
947 * with domain and/or range outside of dom and ran.
949 static int has_spurious_elements(__isl_keep isl_map
*qc
,
950 __isl_keep isl_set
*dom
, __isl_keep isl_set
*ran
)
956 if (!qc
|| !dom
|| !ran
)
959 d
= isl_map_dim(qc
, isl_dim_in
);
961 qc
= isl_map_copy(qc
);
962 qc
= set_path_length(qc
, 0, 1);
963 qc
= isl_map_project_out(qc
, isl_dim_in
, d
- 1, 1);
964 qc
= isl_map_project_out(qc
, isl_dim_out
, d
- 1, 1);
966 s
= isl_map_domain(isl_map_copy(qc
));
967 subset
= isl_set_is_subset(s
, dom
);
976 s
= isl_map_range(qc
);
977 subset
= isl_set_is_subset(s
, ran
);
980 return subset
< 0 ? -1 : !subset
;
989 /* For each basic map in "map", except i, check whether it combines
990 * with the transitive closure that is reflexive on C combines
991 * to the left and to the right.
995 * dom map_j \subseteq C
997 * then right[j] is set to 1. Otherwise, if
999 * ran map_i \cap dom map_j = \emptyset
1001 * then right[j] is set to 0. Otherwise, composing to the right
1004 * Similar, for composing to the left, we have if
1006 * ran map_j \subseteq C
1008 * then left[j] is set to 1. Otherwise, if
1010 * dom map_i \cap ran map_j = \emptyset
1012 * then left[j] is set to 0. Otherwise, composing to the left
1015 * The return value is or'd with LEFT if composing to the left
1016 * is possible and with RIGHT if composing to the right is possible.
1018 static int composability(__isl_keep isl_set
*C
, int i
,
1019 isl_set
**dom
, isl_set
**ran
, int *left
, int *right
,
1020 __isl_keep isl_map
*map
)
1026 for (j
= 0; j
< map
->n
&& ok
; ++j
) {
1027 int overlaps
, subset
;
1033 dom
[j
] = isl_set_from_basic_set(
1034 isl_basic_map_domain(
1035 isl_basic_map_copy(map
->p
[j
])));
1038 overlaps
= isl_set_overlaps(ran
[i
], dom
[j
]);
1044 subset
= isl_set_is_subset(dom
[j
], C
);
1056 ran
[j
] = isl_set_from_basic_set(
1057 isl_basic_map_range(
1058 isl_basic_map_copy(map
->p
[j
])));
1061 overlaps
= isl_set_overlaps(dom
[i
], ran
[j
]);
1067 subset
= isl_set_is_subset(ran
[j
], C
);
1081 static __isl_give isl_map
*anonymize(__isl_take isl_map
*map
)
1083 map
= isl_map_reset(map
, isl_dim_in
);
1084 map
= isl_map_reset(map
, isl_dim_out
);
1088 /* Return a map that is a union of the basic maps in "map", except i,
1089 * composed to left and right with qc based on the entries of "left"
1092 static __isl_give isl_map
*compose(__isl_keep isl_map
*map
, int i
,
1093 __isl_take isl_map
*qc
, int *left
, int *right
)
1098 comp
= isl_map_empty(isl_map_get_space(map
));
1099 for (j
= 0; j
< map
->n
; ++j
) {
1105 map_j
= isl_map_from_basic_map(isl_basic_map_copy(map
->p
[j
]));
1106 map_j
= anonymize(map_j
);
1107 if (left
&& left
[j
])
1108 map_j
= isl_map_apply_range(map_j
, isl_map_copy(qc
));
1109 if (right
&& right
[j
])
1110 map_j
= isl_map_apply_range(isl_map_copy(qc
), map_j
);
1111 comp
= isl_map_union(comp
, map_j
);
1114 comp
= isl_map_compute_divs(comp
);
1115 comp
= isl_map_coalesce(comp
);
1122 /* Compute the transitive closure of "map" incrementally by
1129 * map_i^+ \cup ((id \cup map_i^) \circ qc^+)
1133 * map_i^+ \cup (qc^+ \circ (id \cup map_i^))
1135 * depending on whether left or right are NULL.
1137 static __isl_give isl_map
*compute_incremental(
1138 __isl_take isl_space
*dim
, __isl_keep isl_map
*map
,
1139 int i
, __isl_take isl_map
*qc
, int *left
, int *right
, int *exact
)
1143 isl_map
*rtc
= NULL
;
1147 isl_assert(map
->ctx
, left
|| right
, goto error
);
1149 map_i
= isl_map_from_basic_map(isl_basic_map_copy(map
->p
[i
]));
1150 tc
= construct_projected_component(isl_space_copy(dim
), map_i
,
1152 isl_map_free(map_i
);
1155 qc
= isl_map_transitive_closure(qc
, exact
);
1158 isl_space_free(dim
);
1161 return isl_map_universe(isl_map_get_space(map
));
1164 if (!left
|| !right
)
1165 rtc
= isl_map_union(isl_map_copy(tc
),
1166 isl_map_identity(isl_map_get_space(tc
)));
1168 qc
= isl_map_apply_range(rtc
, qc
);
1170 qc
= isl_map_apply_range(qc
, rtc
);
1171 qc
= isl_map_union(tc
, qc
);
1173 isl_space_free(dim
);
1177 isl_space_free(dim
);
1182 /* Given a map "map", try to find a basic map such that
1183 * map^+ can be computed as
1185 * map^+ = map_i^+ \cup
1186 * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
1188 * with C the simple hull of the domain and range of the input map.
1189 * map_i^ \cup Id_C is computed by allowing the path lengths to be zero
1190 * and by intersecting domain and range with C.
1191 * Of course, we need to check that this is actually equal to map_i^ \cup Id_C.
1192 * Also, we only use the incremental computation if all the transitive
1193 * closures are exact and if the number of basic maps in the union,
1194 * after computing the integer divisions, is smaller than the number
1195 * of basic maps in the input map.
1197 static int incemental_on_entire_domain(__isl_keep isl_space
*dim
,
1198 __isl_keep isl_map
*map
,
1199 isl_set
**dom
, isl_set
**ran
, int *left
, int *right
,
1200 __isl_give isl_map
**res
)
1208 C
= isl_set_union(isl_map_domain(isl_map_copy(map
)),
1209 isl_map_range(isl_map_copy(map
)));
1210 C
= isl_set_from_basic_set(isl_set_simple_hull(C
));
1218 d
= isl_map_dim(map
, isl_dim_in
);
1220 for (i
= 0; i
< map
->n
; ++i
) {
1222 int exact_i
, spurious
;
1224 dom
[i
] = isl_set_from_basic_set(isl_basic_map_domain(
1225 isl_basic_map_copy(map
->p
[i
])));
1226 ran
[i
] = isl_set_from_basic_set(isl_basic_map_range(
1227 isl_basic_map_copy(map
->p
[i
])));
1228 qc
= q_closure(isl_space_copy(dim
), isl_set_copy(C
),
1229 map
->p
[i
], &exact_i
);
1236 spurious
= has_spurious_elements(qc
, dom
[i
], ran
[i
]);
1243 qc
= isl_map_project_out(qc
, isl_dim_in
, d
, 1);
1244 qc
= isl_map_project_out(qc
, isl_dim_out
, d
, 1);
1245 qc
= isl_map_compute_divs(qc
);
1246 for (j
= 0; j
< map
->n
; ++j
)
1247 left
[j
] = right
[j
] = 1;
1248 qc
= compose(map
, i
, qc
, left
, right
);
1251 if (qc
->n
>= map
->n
) {
1255 *res
= compute_incremental(isl_space_copy(dim
), map
, i
, qc
,
1256 left
, right
, &exact_i
);
1267 return *res
!= NULL
;
1273 /* Try and compute the transitive closure of "map" as
1275 * map^+ = map_i^+ \cup
1276 * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
1278 * with C either the simple hull of the domain and range of the entire
1279 * map or the simple hull of domain and range of map_i.
1281 static __isl_give isl_map
*incremental_closure(__isl_take isl_space
*dim
,
1282 __isl_keep isl_map
*map
, int *exact
, int project
)
1285 isl_set
**dom
= NULL
;
1286 isl_set
**ran
= NULL
;
1291 isl_map
*res
= NULL
;
1294 return construct_projected_component(dim
, map
, exact
, project
);
1299 return construct_projected_component(dim
, map
, exact
, project
);
1301 d
= isl_map_dim(map
, isl_dim_in
);
1303 dom
= isl_calloc_array(map
->ctx
, isl_set
*, map
->n
);
1304 ran
= isl_calloc_array(map
->ctx
, isl_set
*, map
->n
);
1305 left
= isl_calloc_array(map
->ctx
, int, map
->n
);
1306 right
= isl_calloc_array(map
->ctx
, int, map
->n
);
1307 if (!ran
|| !dom
|| !left
|| !right
)
1310 if (incemental_on_entire_domain(dim
, map
, dom
, ran
, left
, right
, &res
) < 0)
1313 for (i
= 0; !res
&& i
< map
->n
; ++i
) {
1315 int exact_i
, spurious
, comp
;
1317 dom
[i
] = isl_set_from_basic_set(
1318 isl_basic_map_domain(
1319 isl_basic_map_copy(map
->p
[i
])));
1323 ran
[i
] = isl_set_from_basic_set(
1324 isl_basic_map_range(
1325 isl_basic_map_copy(map
->p
[i
])));
1328 C
= isl_set_union(isl_set_copy(dom
[i
]),
1329 isl_set_copy(ran
[i
]));
1330 C
= isl_set_from_basic_set(isl_set_simple_hull(C
));
1337 comp
= composability(C
, i
, dom
, ran
, left
, right
, map
);
1338 if (!comp
|| comp
< 0) {
1344 qc
= q_closure(isl_space_copy(dim
), C
, map
->p
[i
], &exact_i
);
1351 spurious
= has_spurious_elements(qc
, dom
[i
], ran
[i
]);
1358 qc
= isl_map_project_out(qc
, isl_dim_in
, d
, 1);
1359 qc
= isl_map_project_out(qc
, isl_dim_out
, d
, 1);
1360 qc
= isl_map_compute_divs(qc
);
1361 qc
= compose(map
, i
, qc
, (comp
& LEFT
) ? left
: NULL
,
1362 (comp
& RIGHT
) ? right
: NULL
);
1365 if (qc
->n
>= map
->n
) {
1369 res
= compute_incremental(isl_space_copy(dim
), map
, i
, qc
,
1370 (comp
& LEFT
) ? left
: NULL
,
1371 (comp
& RIGHT
) ? right
: NULL
, &exact_i
);
1380 for (i
= 0; i
< map
->n
; ++i
) {
1381 isl_set_free(dom
[i
]);
1382 isl_set_free(ran
[i
]);
1390 isl_space_free(dim
);
1394 return construct_projected_component(dim
, map
, exact
, project
);
1397 for (i
= 0; i
< map
->n
; ++i
)
1398 isl_set_free(dom
[i
]);
1401 for (i
= 0; i
< map
->n
; ++i
)
1402 isl_set_free(ran
[i
]);
1406 isl_space_free(dim
);
1410 /* Given an array of sets "set", add "dom" at position "pos"
1411 * and search for elements at earlier positions that overlap with "dom".
1412 * If any can be found, then merge all of them, together with "dom", into
1413 * a single set and assign the union to the first in the array,
1414 * which becomes the new group leader for all groups involved in the merge.
1415 * During the search, we only consider group leaders, i.e., those with
1416 * group[i] = i, as the other sets have already been combined
1417 * with one of the group leaders.
1419 static int merge(isl_set
**set
, int *group
, __isl_take isl_set
*dom
, int pos
)
1424 set
[pos
] = isl_set_copy(dom
);
1426 for (i
= pos
- 1; i
>= 0; --i
) {
1432 o
= isl_set_overlaps(set
[i
], dom
);
1438 set
[i
] = isl_set_union(set
[i
], set
[group
[pos
]]);
1439 set
[group
[pos
]] = NULL
;
1442 group
[group
[pos
]] = i
;
1453 /* Replace each entry in the n by n grid of maps by the cross product
1454 * with the relation { [i] -> [i + 1] }.
1456 static int add_length(__isl_keep isl_map
*map
, isl_map
***grid
, int n
)
1460 isl_basic_map
*bstep
;
1467 dim
= isl_map_get_space(map
);
1468 nparam
= isl_space_dim(dim
, isl_dim_param
);
1469 dim
= isl_space_drop_dims(dim
, isl_dim_in
, 0, isl_space_dim(dim
, isl_dim_in
));
1470 dim
= isl_space_drop_dims(dim
, isl_dim_out
, 0, isl_space_dim(dim
, isl_dim_out
));
1471 dim
= isl_space_add_dims(dim
, isl_dim_in
, 1);
1472 dim
= isl_space_add_dims(dim
, isl_dim_out
, 1);
1473 bstep
= isl_basic_map_alloc_space(dim
, 0, 1, 0);
1474 k
= isl_basic_map_alloc_equality(bstep
);
1476 isl_basic_map_free(bstep
);
1479 isl_seq_clr(bstep
->eq
[k
], 1 + isl_basic_map_total_dim(bstep
));
1480 isl_int_set_si(bstep
->eq
[k
][0], 1);
1481 isl_int_set_si(bstep
->eq
[k
][1 + nparam
], 1);
1482 isl_int_set_si(bstep
->eq
[k
][1 + nparam
+ 1], -1);
1483 bstep
= isl_basic_map_finalize(bstep
);
1484 step
= isl_map_from_basic_map(bstep
);
1486 for (i
= 0; i
< n
; ++i
)
1487 for (j
= 0; j
< n
; ++j
)
1488 grid
[i
][j
] = isl_map_product(grid
[i
][j
],
1489 isl_map_copy(step
));
1496 /* The core of the Floyd-Warshall algorithm.
1497 * Updates the given n x x matrix of relations in place.
1499 * The algorithm iterates over all vertices. In each step, the whole
1500 * matrix is updated to include all paths that go to the current vertex,
1501 * possibly stay there a while (including passing through earlier vertices)
1502 * and then come back. At the start of each iteration, the diagonal
1503 * element corresponding to the current vertex is replaced by its
1504 * transitive closure to account for all indirect paths that stay
1505 * in the current vertex.
1507 static void floyd_warshall_iterate(isl_map
***grid
, int n
, int *exact
)
1511 for (r
= 0; r
< n
; ++r
) {
1513 grid
[r
][r
] = isl_map_transitive_closure(grid
[r
][r
],
1514 (exact
&& *exact
) ? &r_exact
: NULL
);
1515 if (exact
&& *exact
&& !r_exact
)
1518 for (p
= 0; p
< n
; ++p
)
1519 for (q
= 0; q
< n
; ++q
) {
1521 if (p
== r
&& q
== r
)
1523 loop
= isl_map_apply_range(
1524 isl_map_copy(grid
[p
][r
]),
1525 isl_map_copy(grid
[r
][q
]));
1526 grid
[p
][q
] = isl_map_union(grid
[p
][q
], loop
);
1527 loop
= isl_map_apply_range(
1528 isl_map_copy(grid
[p
][r
]),
1529 isl_map_apply_range(
1530 isl_map_copy(grid
[r
][r
]),
1531 isl_map_copy(grid
[r
][q
])));
1532 grid
[p
][q
] = isl_map_union(grid
[p
][q
], loop
);
1533 grid
[p
][q
] = isl_map_coalesce(grid
[p
][q
]);
1538 /* Given a partition of the domains and ranges of the basic maps in "map",
1539 * apply the Floyd-Warshall algorithm with the elements in the partition
1542 * In particular, there are "n" elements in the partition and "group" is
1543 * an array of length 2 * map->n with entries in [0,n-1].
1545 * We first construct a matrix of relations based on the partition information,
1546 * apply Floyd-Warshall on this matrix of relations and then take the
1547 * union of all entries in the matrix as the final result.
1549 * If we are actually computing the power instead of the transitive closure,
1550 * i.e., when "project" is not set, then the result should have the
1551 * path lengths encoded as the difference between an extra pair of
1552 * coordinates. We therefore apply the nested transitive closures
1553 * to relations that include these lengths. In particular, we replace
1554 * the input relation by the cross product with the unit length relation
1555 * { [i] -> [i + 1] }.
1557 static __isl_give isl_map
*floyd_warshall_with_groups(__isl_take isl_space
*dim
,
1558 __isl_keep isl_map
*map
, int *exact
, int project
, int *group
, int n
)
1561 isl_map
***grid
= NULL
;
1569 return incremental_closure(dim
, map
, exact
, project
);
1572 grid
= isl_calloc_array(map
->ctx
, isl_map
**, n
);
1575 for (i
= 0; i
< n
; ++i
) {
1576 grid
[i
] = isl_calloc_array(map
->ctx
, isl_map
*, n
);
1579 for (j
= 0; j
< n
; ++j
)
1580 grid
[i
][j
] = isl_map_empty(isl_map_get_space(map
));
1583 for (k
= 0; k
< map
->n
; ++k
) {
1585 j
= group
[2 * k
+ 1];
1586 grid
[i
][j
] = isl_map_union(grid
[i
][j
],
1587 isl_map_from_basic_map(
1588 isl_basic_map_copy(map
->p
[k
])));
1591 if (!project
&& add_length(map
, grid
, n
) < 0)
1594 floyd_warshall_iterate(grid
, n
, exact
);
1596 app
= isl_map_empty(isl_map_get_space(map
));
1598 for (i
= 0; i
< n
; ++i
) {
1599 for (j
= 0; j
< n
; ++j
)
1600 app
= isl_map_union(app
, grid
[i
][j
]);
1606 isl_space_free(dim
);
1611 for (i
= 0; i
< n
; ++i
) {
1614 for (j
= 0; j
< n
; ++j
)
1615 isl_map_free(grid
[i
][j
]);
1620 isl_space_free(dim
);
1624 /* Partition the domains and ranges of the n basic relations in list
1625 * into disjoint cells.
1627 * To find the partition, we simply consider all of the domains
1628 * and ranges in turn and combine those that overlap.
1629 * "set" contains the partition elements and "group" indicates
1630 * to which partition element a given domain or range belongs.
1631 * The domain of basic map i corresponds to element 2 * i in these arrays,
1632 * while the domain corresponds to element 2 * i + 1.
1633 * During the construction group[k] is either equal to k,
1634 * in which case set[k] contains the union of all the domains and
1635 * ranges in the corresponding group, or is equal to some l < k,
1636 * with l another domain or range in the same group.
1638 static int *setup_groups(isl_ctx
*ctx
, __isl_keep isl_basic_map
**list
, int n
,
1639 isl_set
***set
, int *n_group
)
1645 *set
= isl_calloc_array(ctx
, isl_set
*, 2 * n
);
1646 group
= isl_alloc_array(ctx
, int, 2 * n
);
1648 if (!*set
|| !group
)
1651 for (i
= 0; i
< n
; ++i
) {
1653 dom
= isl_set_from_basic_set(isl_basic_map_domain(
1654 isl_basic_map_copy(list
[i
])));
1655 if (merge(*set
, group
, dom
, 2 * i
) < 0)
1657 dom
= isl_set_from_basic_set(isl_basic_map_range(
1658 isl_basic_map_copy(list
[i
])));
1659 if (merge(*set
, group
, dom
, 2 * i
+ 1) < 0)
1664 for (i
= 0; i
< 2 * n
; ++i
)
1665 if (group
[i
] == i
) {
1667 (*set
)[g
] = (*set
)[i
];
1672 group
[i
] = group
[group
[i
]];
1679 for (i
= 0; i
< 2 * n
; ++i
)
1680 isl_set_free((*set
)[i
]);
1688 /* Check if the domains and ranges of the basic maps in "map" can
1689 * be partitioned, and if so, apply Floyd-Warshall on the elements
1690 * of the partition. Note that we also apply this algorithm
1691 * if we want to compute the power, i.e., when "project" is not set.
1692 * However, the results are unlikely to be exact since the recursive
1693 * calls inside the Floyd-Warshall algorithm typically result in
1694 * non-linear path lengths quite quickly.
1696 static __isl_give isl_map
*floyd_warshall(__isl_take isl_space
*dim
,
1697 __isl_keep isl_map
*map
, int *exact
, int project
)
1700 isl_set
**set
= NULL
;
1707 return incremental_closure(dim
, map
, exact
, project
);
1709 group
= setup_groups(map
->ctx
, map
->p
, map
->n
, &set
, &n
);
1713 for (i
= 0; i
< 2 * map
->n
; ++i
)
1714 isl_set_free(set
[i
]);
1718 return floyd_warshall_with_groups(dim
, map
, exact
, project
, group
, n
);
1720 isl_space_free(dim
);
1724 /* Structure for representing the nodes of the graph of which
1725 * strongly connected components are being computed.
1727 * list contains the actual nodes
1728 * check_closed is set if we may have used the fact that
1729 * a pair of basic maps can be interchanged
1731 struct isl_tc_follows_data
{
1732 isl_basic_map
**list
;
1736 /* Check whether in the computation of the transitive closure
1737 * "list[i]" (R_1) should follow (or be part of the same component as)
1740 * That is check whether
1748 * If so, then there is no reason for R_1 to immediately follow R_2
1751 * *check_closed is set if the subset relation holds while
1752 * R_1 \circ R_2 is not empty.
1754 static int basic_map_follows(int i
, int j
, void *user
)
1756 struct isl_tc_follows_data
*data
= user
;
1757 struct isl_map
*map12
= NULL
;
1758 struct isl_map
*map21
= NULL
;
1761 if (!isl_space_tuple_match(data
->list
[i
]->dim
, isl_dim_in
,
1762 data
->list
[j
]->dim
, isl_dim_out
))
1765 map21
= isl_map_from_basic_map(
1766 isl_basic_map_apply_range(
1767 isl_basic_map_copy(data
->list
[j
]),
1768 isl_basic_map_copy(data
->list
[i
])));
1769 subset
= isl_map_is_empty(map21
);
1773 isl_map_free(map21
);
1777 if (!isl_space_tuple_match(data
->list
[i
]->dim
, isl_dim_in
,
1778 data
->list
[i
]->dim
, isl_dim_out
) ||
1779 !isl_space_tuple_match(data
->list
[j
]->dim
, isl_dim_in
,
1780 data
->list
[j
]->dim
, isl_dim_out
)) {
1781 isl_map_free(map21
);
1785 map12
= isl_map_from_basic_map(
1786 isl_basic_map_apply_range(
1787 isl_basic_map_copy(data
->list
[i
]),
1788 isl_basic_map_copy(data
->list
[j
])));
1790 subset
= isl_map_is_subset(map21
, map12
);
1792 isl_map_free(map12
);
1793 isl_map_free(map21
);
1796 data
->check_closed
= 1;
1798 return subset
< 0 ? -1 : !subset
;
1800 isl_map_free(map21
);
1804 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
1805 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
1806 * construct a map that is an overapproximation of the map
1807 * that takes an element from the dom R \times Z to an
1808 * element from ran R \times Z, such that the first n coordinates of the
1809 * difference between them is a sum of differences between images
1810 * and pre-images in one of the R_i and such that the last coordinate
1811 * is equal to the number of steps taken.
1812 * If "project" is set, then these final coordinates are not included,
1813 * i.e., a relation of type Z^n -> Z^n is returned.
1816 * \Delta_i = { y - x | (x, y) in R_i }
1818 * then the constructed map is an overapproximation of
1820 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1821 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
1822 * x in dom R and x + d in ran R }
1826 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1827 * d = (\sum_i k_i \delta_i) and
1828 * x in dom R and x + d in ran R }
1830 * if "project" is set.
1832 * We first split the map into strongly connected components, perform
1833 * the above on each component and then join the results in the correct
1834 * order, at each join also taking in the union of both arguments
1835 * to allow for paths that do not go through one of the two arguments.
1837 static __isl_give isl_map
*construct_power_components(__isl_take isl_space
*dim
,
1838 __isl_keep isl_map
*map
, int *exact
, int project
)
1841 struct isl_map
*path
= NULL
;
1842 struct isl_tc_follows_data data
;
1843 struct isl_tarjan_graph
*g
= NULL
;
1850 return floyd_warshall(dim
, map
, exact
, project
);
1853 data
.check_closed
= 0;
1854 g
= isl_tarjan_graph_init(map
->ctx
, map
->n
, &basic_map_follows
, &data
);
1859 if (data
.check_closed
&& !exact
)
1860 exact
= &local_exact
;
1866 path
= isl_map_empty(isl_map_get_space(map
));
1868 path
= isl_map_empty(isl_space_copy(dim
));
1869 path
= anonymize(path
);
1871 struct isl_map
*comp
;
1872 isl_map
*path_comp
, *path_comb
;
1873 comp
= isl_map_alloc_space(isl_map_get_space(map
), n
, 0);
1874 while (g
->order
[i
] != -1) {
1875 comp
= isl_map_add_basic_map(comp
,
1876 isl_basic_map_copy(map
->p
[g
->order
[i
]]));
1880 path_comp
= floyd_warshall(isl_space_copy(dim
),
1881 comp
, exact
, project
);
1882 path_comp
= anonymize(path_comp
);
1883 path_comb
= isl_map_apply_range(isl_map_copy(path
),
1884 isl_map_copy(path_comp
));
1885 path
= isl_map_union(path
, path_comp
);
1886 path
= isl_map_union(path
, path_comb
);
1892 if (c
> 1 && data
.check_closed
&& !*exact
) {
1895 closed
= isl_map_is_transitively_closed(path
);
1899 isl_tarjan_graph_free(g
);
1901 return floyd_warshall(dim
, map
, orig_exact
, project
);
1905 isl_tarjan_graph_free(g
);
1906 isl_space_free(dim
);
1910 isl_tarjan_graph_free(g
);
1911 isl_space_free(dim
);
1916 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D,
1917 * construct a map that is an overapproximation of the map
1918 * that takes an element from the space D to another
1919 * element from the same space, such that the difference between
1920 * them is a strictly positive sum of differences between images
1921 * and pre-images in one of the R_i.
1922 * The number of differences in the sum is equated to parameter "param".
1925 * \Delta_i = { y - x | (x, y) in R_i }
1927 * then the constructed map is an overapproximation of
1929 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1930 * d = \sum_i k_i \delta_i and k = \sum_i k_i > 0 }
1933 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1934 * d = \sum_i k_i \delta_i and \sum_i k_i > 0 }
1936 * if "project" is set.
1938 * If "project" is not set, then
1939 * we construct an extended mapping with an extra coordinate
1940 * that indicates the number of steps taken. In particular,
1941 * the difference in the last coordinate is equal to the number
1942 * of steps taken to move from a domain element to the corresponding
1945 static __isl_give isl_map
*construct_power(__isl_keep isl_map
*map
,
1946 int *exact
, int project
)
1948 struct isl_map
*app
= NULL
;
1949 isl_space
*dim
= NULL
;
1955 dim
= isl_map_get_space(map
);
1957 d
= isl_space_dim(dim
, isl_dim_in
);
1958 dim
= isl_space_add_dims(dim
, isl_dim_in
, 1);
1959 dim
= isl_space_add_dims(dim
, isl_dim_out
, 1);
1961 app
= construct_power_components(isl_space_copy(dim
), map
,
1964 isl_space_free(dim
);
1969 /* Compute the positive powers of "map", or an overapproximation.
1970 * If the result is exact, then *exact is set to 1.
1972 * If project is set, then we are actually interested in the transitive
1973 * closure, so we can use a more relaxed exactness check.
1974 * The lengths of the paths are also projected out instead of being
1975 * encoded as the difference between an extra pair of final coordinates.
1977 static __isl_give isl_map
*map_power(__isl_take isl_map
*map
,
1978 int *exact
, int project
)
1980 struct isl_map
*app
= NULL
;
1988 isl_assert(map
->ctx
,
1989 isl_map_dim(map
, isl_dim_in
) == isl_map_dim(map
, isl_dim_out
),
1992 app
= construct_power(map
, exact
, project
);
2002 /* Compute the positive powers of "map", or an overapproximation.
2003 * The result maps the exponent to a nested copy of the corresponding power.
2004 * If the result is exact, then *exact is set to 1.
2005 * map_power constructs an extended relation with the path lengths
2006 * encoded as the difference between the final coordinates.
2007 * In the final step, this difference is equated to an extra parameter
2008 * and made positive. The extra coordinates are subsequently projected out
2009 * and the parameter is turned into the domain of the result.
2011 __isl_give isl_map
*isl_map_power(__isl_take isl_map
*map
, int *exact
)
2013 isl_space
*target_dim
;
2022 d
= isl_map_dim(map
, isl_dim_in
);
2023 param
= isl_map_dim(map
, isl_dim_param
);
2025 map
= isl_map_compute_divs(map
);
2026 map
= isl_map_coalesce(map
);
2028 if (isl_map_plain_is_empty(map
)) {
2029 map
= isl_map_from_range(isl_map_wrap(map
));
2030 map
= isl_map_add_dims(map
, isl_dim_in
, 1);
2031 map
= isl_map_set_dim_name(map
, isl_dim_in
, 0, "k");
2035 target_dim
= isl_map_get_space(map
);
2036 target_dim
= isl_space_from_range(isl_space_wrap(target_dim
));
2037 target_dim
= isl_space_add_dims(target_dim
, isl_dim_in
, 1);
2038 target_dim
= isl_space_set_dim_name(target_dim
, isl_dim_in
, 0, "k");
2040 map
= map_power(map
, exact
, 0);
2042 map
= isl_map_add_dims(map
, isl_dim_param
, 1);
2043 dim
= isl_map_get_space(map
);
2044 diff
= equate_parameter_to_length(dim
, param
);
2045 map
= isl_map_intersect(map
, diff
);
2046 map
= isl_map_project_out(map
, isl_dim_in
, d
, 1);
2047 map
= isl_map_project_out(map
, isl_dim_out
, d
, 1);
2048 map
= isl_map_from_range(isl_map_wrap(map
));
2049 map
= isl_map_move_dims(map
, isl_dim_in
, 0, isl_dim_param
, param
, 1);
2051 map
= isl_map_reset_space(map
, target_dim
);
2056 /* Compute a relation that maps each element in the range of the input
2057 * relation to the lengths of all paths composed of edges in the input
2058 * relation that end up in the given range element.
2059 * The result may be an overapproximation, in which case *exact is set to 0.
2060 * The resulting relation is very similar to the power relation.
2061 * The difference are that the domain has been projected out, the
2062 * range has become the domain and the exponent is the range instead
2065 __isl_give isl_map
*isl_map_reaching_path_lengths(__isl_take isl_map
*map
,
2076 d
= isl_map_dim(map
, isl_dim_in
);
2077 param
= isl_map_dim(map
, isl_dim_param
);
2079 map
= isl_map_compute_divs(map
);
2080 map
= isl_map_coalesce(map
);
2082 if (isl_map_plain_is_empty(map
)) {
2085 map
= isl_map_project_out(map
, isl_dim_out
, 0, d
);
2086 map
= isl_map_add_dims(map
, isl_dim_out
, 1);
2090 map
= map_power(map
, exact
, 0);
2092 map
= isl_map_add_dims(map
, isl_dim_param
, 1);
2093 dim
= isl_map_get_space(map
);
2094 diff
= equate_parameter_to_length(dim
, param
);
2095 map
= isl_map_intersect(map
, diff
);
2096 map
= isl_map_project_out(map
, isl_dim_in
, 0, d
+ 1);
2097 map
= isl_map_project_out(map
, isl_dim_out
, d
, 1);
2098 map
= isl_map_reverse(map
);
2099 map
= isl_map_move_dims(map
, isl_dim_out
, 0, isl_dim_param
, param
, 1);
2104 /* Check whether equality i of bset is a pure stride constraint
2105 * on a single dimensions, i.e., of the form
2109 * with k a constant and e an existentially quantified variable.
2111 static int is_eq_stride(__isl_keep isl_basic_set
*bset
, int i
)
2122 if (!isl_int_is_zero(bset
->eq
[i
][0]))
2125 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
2126 d
= isl_basic_set_dim(bset
, isl_dim_set
);
2127 n_div
= isl_basic_set_dim(bset
, isl_dim_div
);
2129 if (isl_seq_first_non_zero(bset
->eq
[i
] + 1, nparam
) != -1)
2131 pos1
= isl_seq_first_non_zero(bset
->eq
[i
] + 1 + nparam
, d
);
2134 if (isl_seq_first_non_zero(bset
->eq
[i
] + 1 + nparam
+ pos1
+ 1,
2135 d
- pos1
- 1) != -1)
2138 pos2
= isl_seq_first_non_zero(bset
->eq
[i
] + 1 + nparam
+ d
, n_div
);
2141 if (isl_seq_first_non_zero(bset
->eq
[i
] + 1 + nparam
+ d
+ pos2
+ 1,
2142 n_div
- pos2
- 1) != -1)
2144 if (!isl_int_is_one(bset
->eq
[i
][1 + nparam
+ pos1
]) &&
2145 !isl_int_is_negone(bset
->eq
[i
][1 + nparam
+ pos1
]))
2151 /* Given a map, compute the smallest superset of this map that is of the form
2153 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2155 * (where p ranges over the (non-parametric) dimensions),
2156 * compute the transitive closure of this map, i.e.,
2158 * { i -> j : exists k > 0:
2159 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2161 * and intersect domain and range of this transitive closure with
2162 * the given domain and range.
2164 * If with_id is set, then try to include as much of the identity mapping
2165 * as possible, by computing
2167 * { i -> j : exists k >= 0:
2168 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2170 * instead (i.e., allow k = 0).
2172 * In practice, we compute the difference set
2174 * delta = { j - i | i -> j in map },
2176 * look for stride constraint on the individual dimensions and compute
2177 * (constant) lower and upper bounds for each individual dimension,
2178 * adding a constraint for each bound not equal to infinity.
2180 static __isl_give isl_map
*box_closure_on_domain(__isl_take isl_map
*map
,
2181 __isl_take isl_set
*dom
, __isl_take isl_set
*ran
, int with_id
)
2190 isl_map
*app
= NULL
;
2191 isl_basic_set
*aff
= NULL
;
2192 isl_basic_map
*bmap
= NULL
;
2193 isl_vec
*obj
= NULL
;
2198 delta
= isl_map_deltas(isl_map_copy(map
));
2200 aff
= isl_set_affine_hull(isl_set_copy(delta
));
2203 dim
= isl_map_get_space(map
);
2204 d
= isl_space_dim(dim
, isl_dim_in
);
2205 nparam
= isl_space_dim(dim
, isl_dim_param
);
2206 total
= isl_space_dim(dim
, isl_dim_all
);
2207 bmap
= isl_basic_map_alloc_space(dim
,
2208 aff
->n_div
+ 1, aff
->n_div
, 2 * d
+ 1);
2209 for (i
= 0; i
< aff
->n_div
+ 1; ++i
) {
2210 k
= isl_basic_map_alloc_div(bmap
);
2213 isl_int_set_si(bmap
->div
[k
][0], 0);
2215 for (i
= 0; i
< aff
->n_eq
; ++i
) {
2216 if (!is_eq_stride(aff
, i
))
2218 k
= isl_basic_map_alloc_equality(bmap
);
2221 isl_seq_clr(bmap
->eq
[k
], 1 + nparam
);
2222 isl_seq_cpy(bmap
->eq
[k
] + 1 + nparam
+ d
,
2223 aff
->eq
[i
] + 1 + nparam
, d
);
2224 isl_seq_neg(bmap
->eq
[k
] + 1 + nparam
,
2225 aff
->eq
[i
] + 1 + nparam
, d
);
2226 isl_seq_cpy(bmap
->eq
[k
] + 1 + nparam
+ 2 * d
,
2227 aff
->eq
[i
] + 1 + nparam
+ d
, aff
->n_div
);
2228 isl_int_set_si(bmap
->eq
[k
][1 + total
+ aff
->n_div
], 0);
2230 obj
= isl_vec_alloc(map
->ctx
, 1 + nparam
+ d
);
2233 isl_seq_clr(obj
->el
, 1 + nparam
+ d
);
2234 for (i
= 0; i
< d
; ++ i
) {
2235 enum isl_lp_result res
;
2237 isl_int_set_si(obj
->el
[1 + nparam
+ i
], 1);
2239 res
= isl_set_solve_lp(delta
, 0, obj
->el
, map
->ctx
->one
, &opt
,
2241 if (res
== isl_lp_error
)
2243 if (res
== isl_lp_ok
) {
2244 k
= isl_basic_map_alloc_inequality(bmap
);
2247 isl_seq_clr(bmap
->ineq
[k
],
2248 1 + nparam
+ 2 * d
+ bmap
->n_div
);
2249 isl_int_set_si(bmap
->ineq
[k
][1 + nparam
+ i
], -1);
2250 isl_int_set_si(bmap
->ineq
[k
][1 + nparam
+ d
+ i
], 1);
2251 isl_int_neg(bmap
->ineq
[k
][1 + nparam
+ 2 * d
+ aff
->n_div
], opt
);
2254 res
= isl_set_solve_lp(delta
, 1, obj
->el
, map
->ctx
->one
, &opt
,
2256 if (res
== isl_lp_error
)
2258 if (res
== isl_lp_ok
) {
2259 k
= isl_basic_map_alloc_inequality(bmap
);
2262 isl_seq_clr(bmap
->ineq
[k
],
2263 1 + nparam
+ 2 * d
+ bmap
->n_div
);
2264 isl_int_set_si(bmap
->ineq
[k
][1 + nparam
+ i
], 1);
2265 isl_int_set_si(bmap
->ineq
[k
][1 + nparam
+ d
+ i
], -1);
2266 isl_int_set(bmap
->ineq
[k
][1 + nparam
+ 2 * d
+ aff
->n_div
], opt
);
2269 isl_int_set_si(obj
->el
[1 + nparam
+ i
], 0);
2271 k
= isl_basic_map_alloc_inequality(bmap
);
2274 isl_seq_clr(bmap
->ineq
[k
],
2275 1 + nparam
+ 2 * d
+ bmap
->n_div
);
2277 isl_int_set_si(bmap
->ineq
[k
][0], -1);
2278 isl_int_set_si(bmap
->ineq
[k
][1 + nparam
+ 2 * d
+ aff
->n_div
], 1);
2280 app
= isl_map_from_domain_and_range(dom
, ran
);
2283 isl_basic_set_free(aff
);
2285 bmap
= isl_basic_map_finalize(bmap
);
2286 isl_set_free(delta
);
2289 map
= isl_map_from_basic_map(bmap
);
2290 map
= isl_map_intersect(map
, app
);
2295 isl_basic_map_free(bmap
);
2296 isl_basic_set_free(aff
);
2300 isl_set_free(delta
);
2305 /* Given a map, compute the smallest superset of this map that is of the form
2307 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2309 * (where p ranges over the (non-parametric) dimensions),
2310 * compute the transitive closure of this map, i.e.,
2312 * { i -> j : exists k > 0:
2313 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2315 * and intersect domain and range of this transitive closure with
2316 * domain and range of the original map.
2318 static __isl_give isl_map
*box_closure(__isl_take isl_map
*map
)
2323 domain
= isl_map_domain(isl_map_copy(map
));
2324 domain
= isl_set_coalesce(domain
);
2325 range
= isl_map_range(isl_map_copy(map
));
2326 range
= isl_set_coalesce(range
);
2328 return box_closure_on_domain(map
, domain
, range
, 0);
2331 /* Given a map, compute the smallest superset of this map that is of the form
2333 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2335 * (where p ranges over the (non-parametric) dimensions),
2336 * compute the transitive and partially reflexive closure of this map, i.e.,
2338 * { i -> j : exists k >= 0:
2339 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2341 * and intersect domain and range of this transitive closure with
2344 static __isl_give isl_map
*box_closure_with_identity(__isl_take isl_map
*map
,
2345 __isl_take isl_set
*dom
)
2347 return box_closure_on_domain(map
, dom
, isl_set_copy(dom
), 1);
2350 /* Check whether app is the transitive closure of map.
2351 * In particular, check that app is acyclic and, if so,
2354 * app \subset (map \cup (map \circ app))
2356 static int check_exactness_omega(__isl_keep isl_map
*map
,
2357 __isl_keep isl_map
*app
)
2361 int is_empty
, is_exact
;
2365 delta
= isl_map_deltas(isl_map_copy(app
));
2366 d
= isl_set_dim(delta
, isl_dim_set
);
2367 for (i
= 0; i
< d
; ++i
)
2368 delta
= isl_set_fix_si(delta
, isl_dim_set
, i
, 0);
2369 is_empty
= isl_set_is_empty(delta
);
2370 isl_set_free(delta
);
2376 test
= isl_map_apply_range(isl_map_copy(app
), isl_map_copy(map
));
2377 test
= isl_map_union(test
, isl_map_copy(map
));
2378 is_exact
= isl_map_is_subset(app
, test
);
2384 /* Check if basic map M_i can be combined with all the other
2385 * basic maps such that
2389 * can be computed as
2391 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
2393 * In particular, check if we can compute a compact representation
2396 * M_i^* \circ M_j \circ M_i^*
2399 * Let M_i^? be an extension of M_i^+ that allows paths
2400 * of length zero, i.e., the result of box_closure(., 1).
2401 * The criterion, as proposed by Kelly et al., is that
2402 * id = M_i^? - M_i^+ can be represented as a basic map
2405 * id \circ M_j \circ id = M_j
2409 * If this function returns 1, then tc and qc are set to
2410 * M_i^+ and M_i^?, respectively.
2412 static int can_be_split_off(__isl_keep isl_map
*map
, int i
,
2413 __isl_give isl_map
**tc
, __isl_give isl_map
**qc
)
2415 isl_map
*map_i
, *id
= NULL
;
2422 C
= isl_set_union(isl_map_domain(isl_map_copy(map
)),
2423 isl_map_range(isl_map_copy(map
)));
2424 C
= isl_set_from_basic_set(isl_set_simple_hull(C
));
2428 map_i
= isl_map_from_basic_map(isl_basic_map_copy(map
->p
[i
]));
2429 *tc
= box_closure(isl_map_copy(map_i
));
2430 *qc
= box_closure_with_identity(map_i
, C
);
2431 id
= isl_map_subtract(isl_map_copy(*qc
), isl_map_copy(*tc
));
2435 if (id
->n
!= 1 || (*qc
)->n
!= 1)
2438 for (j
= 0; j
< map
->n
; ++j
) {
2439 isl_map
*map_j
, *test
;
2444 map_j
= isl_map_from_basic_map(
2445 isl_basic_map_copy(map
->p
[j
]));
2446 test
= isl_map_apply_range(isl_map_copy(id
),
2447 isl_map_copy(map_j
));
2448 test
= isl_map_apply_range(test
, isl_map_copy(id
));
2449 is_ok
= isl_map_is_equal(test
, map_j
);
2450 isl_map_free(map_j
);
2478 static __isl_give isl_map
*box_closure_with_check(__isl_take isl_map
*map
,
2483 app
= box_closure(isl_map_copy(map
));
2485 *exact
= check_exactness_omega(map
, app
);
2491 /* Compute an overapproximation of the transitive closure of "map"
2492 * using a variation of the algorithm from
2493 * "Transitive Closure of Infinite Graphs and its Applications"
2496 * We first check whether we can can split of any basic map M_i and
2503 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
2505 * using a recursive call on the remaining map.
2507 * If not, we simply call box_closure on the whole map.
2509 static __isl_give isl_map
*transitive_closure_omega(__isl_take isl_map
*map
,
2519 return box_closure_with_check(map
, exact
);
2521 for (i
= 0; i
< map
->n
; ++i
) {
2524 ok
= can_be_split_off(map
, i
, &tc
, &qc
);
2530 app
= isl_map_alloc_space(isl_map_get_space(map
), map
->n
- 1, 0);
2532 for (j
= 0; j
< map
->n
; ++j
) {
2535 app
= isl_map_add_basic_map(app
,
2536 isl_basic_map_copy(map
->p
[j
]));
2539 app
= isl_map_apply_range(isl_map_copy(qc
), app
);
2540 app
= isl_map_apply_range(app
, qc
);
2542 app
= isl_map_union(tc
, transitive_closure_omega(app
, NULL
));
2543 exact_i
= check_exactness_omega(map
, app
);
2555 return box_closure_with_check(map
, exact
);
2561 /* Compute the transitive closure of "map", or an overapproximation.
2562 * If the result is exact, then *exact is set to 1.
2563 * Simply use map_power to compute the powers of map, but tell
2564 * it to project out the lengths of the paths instead of equating
2565 * the length to a parameter.
2567 __isl_give isl_map
*isl_map_transitive_closure(__isl_take isl_map
*map
,
2570 isl_space
*target_dim
;
2576 if (map
->ctx
->opt
->closure
== ISL_CLOSURE_BOX
)
2577 return transitive_closure_omega(map
, exact
);
2579 map
= isl_map_compute_divs(map
);
2580 map
= isl_map_coalesce(map
);
2581 closed
= isl_map_is_transitively_closed(map
);
2590 target_dim
= isl_map_get_space(map
);
2591 map
= map_power(map
, exact
, 1);
2592 map
= isl_map_reset_space(map
, target_dim
);
2600 static int inc_count(__isl_take isl_map
*map
, void *user
)
2611 static int collect_basic_map(__isl_take isl_map
*map
, void *user
)
2614 isl_basic_map
***next
= user
;
2616 for (i
= 0; i
< map
->n
; ++i
) {
2617 **next
= isl_basic_map_copy(map
->p
[i
]);
2630 /* Perform Floyd-Warshall on the given list of basic relations.
2631 * The basic relations may live in different dimensions,
2632 * but basic relations that get assigned to the diagonal of the
2633 * grid have domains and ranges of the same dimension and so
2634 * the standard algorithm can be used because the nested transitive
2635 * closures are only applied to diagonal elements and because all
2636 * compositions are peformed on relations with compatible domains and ranges.
2638 static __isl_give isl_union_map
*union_floyd_warshall_on_list(isl_ctx
*ctx
,
2639 __isl_keep isl_basic_map
**list
, int n
, int *exact
)
2644 isl_set
**set
= NULL
;
2645 isl_map
***grid
= NULL
;
2648 group
= setup_groups(ctx
, list
, n
, &set
, &n_group
);
2652 grid
= isl_calloc_array(ctx
, isl_map
**, n_group
);
2655 for (i
= 0; i
< n_group
; ++i
) {
2656 grid
[i
] = isl_calloc_array(ctx
, isl_map
*, n_group
);
2659 for (j
= 0; j
< n_group
; ++j
) {
2660 isl_space
*dim1
, *dim2
, *dim
;
2661 dim1
= isl_space_reverse(isl_set_get_space(set
[i
]));
2662 dim2
= isl_set_get_space(set
[j
]);
2663 dim
= isl_space_join(dim1
, dim2
);
2664 grid
[i
][j
] = isl_map_empty(dim
);
2668 for (k
= 0; k
< n
; ++k
) {
2670 j
= group
[2 * k
+ 1];
2671 grid
[i
][j
] = isl_map_union(grid
[i
][j
],
2672 isl_map_from_basic_map(
2673 isl_basic_map_copy(list
[k
])));
2676 floyd_warshall_iterate(grid
, n_group
, exact
);
2678 app
= isl_union_map_empty(isl_map_get_space(grid
[0][0]));
2680 for (i
= 0; i
< n_group
; ++i
) {
2681 for (j
= 0; j
< n_group
; ++j
)
2682 app
= isl_union_map_add_map(app
, grid
[i
][j
]);
2687 for (i
= 0; i
< 2 * n
; ++i
)
2688 isl_set_free(set
[i
]);
2695 for (i
= 0; i
< n_group
; ++i
) {
2698 for (j
= 0; j
< n_group
; ++j
)
2699 isl_map_free(grid
[i
][j
]);
2704 for (i
= 0; i
< 2 * n
; ++i
)
2705 isl_set_free(set
[i
]);
2712 /* Perform Floyd-Warshall on the given union relation.
2713 * The implementation is very similar to that for non-unions.
2714 * The main difference is that it is applied unconditionally.
2715 * We first extract a list of basic maps from the union map
2716 * and then perform the algorithm on this list.
2718 static __isl_give isl_union_map
*union_floyd_warshall(
2719 __isl_take isl_union_map
*umap
, int *exact
)
2723 isl_basic_map
**list
= NULL
;
2724 isl_basic_map
**next
;
2728 if (isl_union_map_foreach_map(umap
, inc_count
, &n
) < 0)
2731 ctx
= isl_union_map_get_ctx(umap
);
2732 list
= isl_calloc_array(ctx
, isl_basic_map
*, n
);
2737 if (isl_union_map_foreach_map(umap
, collect_basic_map
, &next
) < 0)
2740 res
= union_floyd_warshall_on_list(ctx
, list
, n
, exact
);
2743 for (i
= 0; i
< n
; ++i
)
2744 isl_basic_map_free(list
[i
]);
2748 isl_union_map_free(umap
);
2752 for (i
= 0; i
< n
; ++i
)
2753 isl_basic_map_free(list
[i
]);
2756 isl_union_map_free(umap
);
2760 /* Decompose the give union relation into strongly connected components.
2761 * The implementation is essentially the same as that of
2762 * construct_power_components with the major difference that all
2763 * operations are performed on union maps.
2765 static __isl_give isl_union_map
*union_components(
2766 __isl_take isl_union_map
*umap
, int *exact
)
2771 isl_basic_map
**list
= NULL
;
2772 isl_basic_map
**next
;
2773 isl_union_map
*path
= NULL
;
2774 struct isl_tc_follows_data data
;
2775 struct isl_tarjan_graph
*g
= NULL
;
2780 if (isl_union_map_foreach_map(umap
, inc_count
, &n
) < 0)
2784 return union_floyd_warshall(umap
, exact
);
2786 ctx
= isl_union_map_get_ctx(umap
);
2787 list
= isl_calloc_array(ctx
, isl_basic_map
*, n
);
2792 if (isl_union_map_foreach_map(umap
, collect_basic_map
, &next
) < 0)
2796 data
.check_closed
= 0;
2797 g
= isl_tarjan_graph_init(ctx
, n
, &basic_map_follows
, &data
);
2804 path
= isl_union_map_empty(isl_union_map_get_space(umap
));
2806 isl_union_map
*comp
;
2807 isl_union_map
*path_comp
, *path_comb
;
2808 comp
= isl_union_map_empty(isl_union_map_get_space(umap
));
2809 while (g
->order
[i
] != -1) {
2810 comp
= isl_union_map_add_map(comp
,
2811 isl_map_from_basic_map(
2812 isl_basic_map_copy(list
[g
->order
[i
]])));
2816 path_comp
= union_floyd_warshall(comp
, exact
);
2817 path_comb
= isl_union_map_apply_range(isl_union_map_copy(path
),
2818 isl_union_map_copy(path_comp
));
2819 path
= isl_union_map_union(path
, path_comp
);
2820 path
= isl_union_map_union(path
, path_comb
);
2825 if (c
> 1 && data
.check_closed
&& !*exact
) {
2828 closed
= isl_union_map_is_transitively_closed(path
);
2834 isl_tarjan_graph_free(g
);
2836 for (i
= 0; i
< n
; ++i
)
2837 isl_basic_map_free(list
[i
]);
2841 isl_union_map_free(path
);
2842 return union_floyd_warshall(umap
, exact
);
2845 isl_union_map_free(umap
);
2849 isl_tarjan_graph_free(g
);
2851 for (i
= 0; i
< n
; ++i
)
2852 isl_basic_map_free(list
[i
]);
2855 isl_union_map_free(umap
);
2856 isl_union_map_free(path
);
2860 /* Compute the transitive closure of "umap", or an overapproximation.
2861 * If the result is exact, then *exact is set to 1.
2863 __isl_give isl_union_map
*isl_union_map_transitive_closure(
2864 __isl_take isl_union_map
*umap
, int *exact
)
2874 umap
= isl_union_map_compute_divs(umap
);
2875 umap
= isl_union_map_coalesce(umap
);
2876 closed
= isl_union_map_is_transitively_closed(umap
);
2881 umap
= union_components(umap
, exact
);
2884 isl_union_map_free(umap
);
2888 struct isl_union_power
{
2893 static int power(__isl_take isl_map
*map
, void *user
)
2895 struct isl_union_power
*up
= user
;
2897 map
= isl_map_power(map
, up
->exact
);
2898 up
->pow
= isl_union_map_from_map(map
);
2903 /* Construct a map [x] -> [x+1], with parameters prescribed by "dim".
2905 static __isl_give isl_union_map
*increment(__isl_take isl_space
*dim
)
2908 isl_basic_map
*bmap
;
2910 dim
= isl_space_add_dims(dim
, isl_dim_in
, 1);
2911 dim
= isl_space_add_dims(dim
, isl_dim_out
, 1);
2912 bmap
= isl_basic_map_alloc_space(dim
, 0, 1, 0);
2913 k
= isl_basic_map_alloc_equality(bmap
);
2916 isl_seq_clr(bmap
->eq
[k
], isl_basic_map_total_dim(bmap
));
2917 isl_int_set_si(bmap
->eq
[k
][0], 1);
2918 isl_int_set_si(bmap
->eq
[k
][isl_basic_map_offset(bmap
, isl_dim_in
)], 1);
2919 isl_int_set_si(bmap
->eq
[k
][isl_basic_map_offset(bmap
, isl_dim_out
)], -1);
2920 return isl_union_map_from_map(isl_map_from_basic_map(bmap
));
2922 isl_basic_map_free(bmap
);
2926 /* Construct a map [[x]->[y]] -> [y-x], with parameters prescribed by "dim".
2928 static __isl_give isl_union_map
*deltas_map(__isl_take isl_space
*dim
)
2930 isl_basic_map
*bmap
;
2932 dim
= isl_space_add_dims(dim
, isl_dim_in
, 1);
2933 dim
= isl_space_add_dims(dim
, isl_dim_out
, 1);
2934 bmap
= isl_basic_map_universe(dim
);
2935 bmap
= isl_basic_map_deltas_map(bmap
);
2937 return isl_union_map_from_map(isl_map_from_basic_map(bmap
));
2940 /* Compute the positive powers of "map", or an overapproximation.
2941 * The result maps the exponent to a nested copy of the corresponding power.
2942 * If the result is exact, then *exact is set to 1.
2944 __isl_give isl_union_map
*isl_union_map_power(__isl_take isl_union_map
*umap
,
2953 n
= isl_union_map_n_map(umap
);
2957 struct isl_union_power up
= { NULL
, exact
};
2958 isl_union_map_foreach_map(umap
, &power
, &up
);
2959 isl_union_map_free(umap
);
2962 inc
= increment(isl_union_map_get_space(umap
));
2963 umap
= isl_union_map_product(inc
, umap
);
2964 umap
= isl_union_map_transitive_closure(umap
, exact
);
2965 umap
= isl_union_map_zip(umap
);
2966 dm
= deltas_map(isl_union_map_get_space(umap
));
2967 umap
= isl_union_map_apply_domain(umap
, dm
);
2973 #define TYPE isl_map
2974 #include "isl_power_templ.c"
2977 #define TYPE isl_union_map
2978 #include "isl_power_templ.c"