2 * Copyright 2012-2014 Ecole Normale Superieure
3 * Copyright 2014 INRIA Rocquencourt
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege,
8 * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
9 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
10 * B.P. 105 - 78153 Le Chesnay, France
16 #include <isl/space.h>
18 #include <isl/constraint.h>
21 #include <isl/union_set.h>
22 #include <isl/union_map.h>
23 #include <isl/schedule_node.h>
24 #include <isl/options.h>
26 #include <isl_tarjan.h>
27 #include <isl_ast_private.h>
28 #include <isl_ast_build_expr.h>
29 #include <isl_ast_build_private.h>
30 #include <isl_ast_graft_private.h>
32 /* Try and reduce the number of disjuncts in the representation of "set",
33 * without dropping explicit representations of local variables.
35 static __isl_give isl_set
*isl_set_coalesce_preserve(__isl_take isl_set
*set
)
43 ctx
= isl_set_get_ctx(set
);
44 save_preserve
= isl_options_get_coalesce_preserve_locals(ctx
);
45 isl_options_set_coalesce_preserve_locals(ctx
, 1);
46 set
= isl_set_coalesce(set
);
47 isl_options_set_coalesce_preserve_locals(ctx
, save_preserve
);
51 /* Data used in generate_domain.
53 * "build" is the input build.
54 * "list" collects the results.
56 struct isl_generate_domain_data
{
59 isl_ast_graft_list
*list
;
62 static __isl_give isl_ast_graft_list
*generate_next_level(
63 __isl_take isl_union_map
*executed
,
64 __isl_take isl_ast_build
*build
);
65 static __isl_give isl_ast_graft_list
*generate_code(
66 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
,
69 /* Generate an AST for a single domain based on
70 * the (non single valued) inverse schedule "executed".
72 * We extend the schedule with the iteration domain
73 * and continue generating through a call to generate_code.
75 * In particular, if executed has the form
79 * then we continue generating code on
83 * The extended inverse schedule is clearly single valued
84 * ensuring that the nested generate_code will not reach this function,
85 * but will instead create calls to all elements of D that need
86 * to be executed from the current schedule domain.
88 static isl_stat
generate_non_single_valued(__isl_take isl_map
*executed
,
89 struct isl_generate_domain_data
*data
)
93 isl_ast_graft_list
*list
;
95 build
= isl_ast_build_copy(data
->build
);
97 identity
= isl_set_identity(isl_map_range(isl_map_copy(executed
)));
98 executed
= isl_map_domain_product(executed
, identity
);
99 build
= isl_ast_build_set_single_valued(build
, 1);
101 list
= generate_code(isl_union_map_from_map(executed
), build
, 1);
103 data
->list
= isl_ast_graft_list_concat(data
->list
, list
);
108 /* Call the at_each_domain callback, if requested by the user,
109 * after recording the current inverse schedule in the build.
111 static __isl_give isl_ast_graft
*at_each_domain(__isl_take isl_ast_graft
*graft
,
112 __isl_keep isl_map
*executed
, __isl_keep isl_ast_build
*build
)
114 if (!graft
|| !build
)
115 return isl_ast_graft_free(graft
);
116 if (!build
->at_each_domain
)
119 build
= isl_ast_build_copy(build
);
120 build
= isl_ast_build_set_executed(build
,
121 isl_union_map_from_map(isl_map_copy(executed
)));
123 return isl_ast_graft_free(graft
);
125 graft
->node
= build
->at_each_domain(graft
->node
,
126 build
, build
->at_each_domain_user
);
127 isl_ast_build_free(build
);
130 graft
= isl_ast_graft_free(graft
);
135 /* Generate a call expression for the single executed
136 * domain element "map" and put a guard around it based its (simplified)
137 * domain. "executed" is the original inverse schedule from which "map"
138 * has been derived. In particular, "map" is either identical to "executed"
139 * or it is the result of gisting "executed" with respect to the build domain.
140 * "executed" is only used if there is an at_each_domain callback.
142 * At this stage, any pending constraints in the build can no longer
143 * be simplified with respect to any enforced constraints since
144 * the call node does not have any enforced constraints.
145 * Since all pending constraints not covered by any enforced constraints
146 * will be added as a guard to the graft in create_node_scaled,
147 * even in the eliminated case, the pending constraints
148 * can be considered to have been generated by outer constructs.
150 * If the user has set an at_each_domain callback, it is called
151 * on the constructed call expression node.
153 static isl_stat
add_domain(__isl_take isl_map
*executed
,
154 __isl_take isl_map
*map
, struct isl_generate_domain_data
*data
)
156 isl_ast_build
*build
;
157 isl_ast_graft
*graft
;
158 isl_ast_graft_list
*list
;
159 isl_set
*guard
, *pending
;
161 build
= isl_ast_build_copy(data
->build
);
162 pending
= isl_ast_build_get_pending(build
);
163 build
= isl_ast_build_replace_pending_by_guard(build
, pending
);
165 guard
= isl_map_domain(isl_map_copy(map
));
166 guard
= isl_set_compute_divs(guard
);
167 guard
= isl_set_coalesce_preserve(guard
);
168 guard
= isl_set_gist(guard
, isl_ast_build_get_generated(build
));
169 guard
= isl_ast_build_specialize(build
, guard
);
171 graft
= isl_ast_graft_alloc_domain(map
, build
);
172 graft
= at_each_domain(graft
, executed
, build
);
173 isl_ast_build_free(build
);
174 isl_map_free(executed
);
175 graft
= isl_ast_graft_add_guard(graft
, guard
, data
->build
);
177 list
= isl_ast_graft_list_from_ast_graft(graft
);
178 data
->list
= isl_ast_graft_list_concat(data
->list
, list
);
183 /* Generate an AST for a single domain based on
184 * the inverse schedule "executed" and add it to data->list.
186 * If there is more than one domain element associated to the current
187 * schedule "time", then we need to continue the generation process
188 * in generate_non_single_valued.
189 * Note that the inverse schedule being single-valued may depend
190 * on constraints that are only available in the original context
191 * domain specified by the user. We therefore first introduce
192 * some of the constraints of data->build->domain. In particular,
193 * we intersect with a single-disjunct approximation of this set.
194 * We perform this approximation to avoid further splitting up
195 * the executed relation, possibly introducing a disjunctive guard
198 * On the other hand, we only perform the test after having taken the gist
199 * of the domain as the resulting map is the one from which the call
200 * expression is constructed. Using this map to construct the call
201 * expression usually yields simpler results in cases where the original
202 * map is not obviously single-valued.
203 * If the original map is obviously single-valued, then the gist
204 * operation is skipped.
206 * Because we perform the single-valuedness test on the gisted map,
207 * we may in rare cases fail to recognize that the inverse schedule
208 * is single-valued. This becomes problematic if this happens
209 * from the recursive call through generate_non_single_valued
210 * as we would then end up in an infinite recursion.
211 * We therefore check if we are inside a call to generate_non_single_valued
212 * and revert to the ungisted map if the gisted map turns out not to be
215 * Otherwise, call add_domain to generate a call expression (with guard) and
216 * to call the at_each_domain callback, if any.
218 static isl_stat
generate_domain(__isl_take isl_map
*executed
, void *user
)
220 struct isl_generate_domain_data
*data
= user
;
225 domain
= isl_ast_build_get_domain(data
->build
);
226 domain
= isl_set_from_basic_set(isl_set_simple_hull(domain
));
227 executed
= isl_map_intersect_domain(executed
, domain
);
228 empty
= isl_map_is_empty(executed
);
232 isl_map_free(executed
);
236 sv
= isl_map_plain_is_single_valued(executed
);
240 return add_domain(executed
, isl_map_copy(executed
), data
);
242 executed
= isl_map_coalesce(executed
);
243 map
= isl_map_copy(executed
);
244 map
= isl_ast_build_compute_gist_map_domain(data
->build
, map
);
245 sv
= isl_map_is_single_valued(map
);
250 if (data
->build
->single_valued
)
251 map
= isl_map_copy(executed
);
253 return generate_non_single_valued(executed
, data
);
256 return add_domain(executed
, map
, data
);
259 isl_map_free(executed
);
260 return isl_stat_error
;
263 /* Call build->create_leaf to a create "leaf" node in the AST,
264 * encapsulate the result in an isl_ast_graft and return the result
265 * as a 1-element list.
267 * Note that the node returned by the user may be an entire tree.
269 * Since the node itself cannot enforce any constraints, we turn
270 * all pending constraints into guards and add them to the resulting
271 * graft to ensure that they will be generated.
273 * Before we pass control to the user, we first clear some information
274 * from the build that is (presumbably) only meaningful
275 * for the current code generation.
276 * This includes the create_leaf callback itself, so we make a copy
277 * of the build first.
279 static __isl_give isl_ast_graft_list
*call_create_leaf(
280 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
284 isl_ast_graft
*graft
;
285 isl_ast_build
*user_build
;
287 guard
= isl_ast_build_get_pending(build
);
288 user_build
= isl_ast_build_copy(build
);
289 user_build
= isl_ast_build_replace_pending_by_guard(user_build
,
290 isl_set_copy(guard
));
291 user_build
= isl_ast_build_set_executed(user_build
, executed
);
292 user_build
= isl_ast_build_clear_local_info(user_build
);
296 node
= build
->create_leaf(user_build
, build
->create_leaf_user
);
297 graft
= isl_ast_graft_alloc(node
, build
);
298 graft
= isl_ast_graft_add_guard(graft
, guard
, build
);
299 isl_ast_build_free(build
);
300 return isl_ast_graft_list_from_ast_graft(graft
);
303 static __isl_give isl_ast_graft_list
*build_ast_from_child(
304 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
305 __isl_take isl_union_map
*executed
);
307 /* Generate an AST after having handled the complete schedule
308 * of this call to the code generator or the complete band
309 * if we are generating an AST from a schedule tree.
311 * If we are inside a band node, then move on to the child of the band.
313 * If the user has specified a create_leaf callback, control
314 * is passed to the user in call_create_leaf.
316 * Otherwise, we generate one or more calls for each individual
317 * domain in generate_domain.
319 static __isl_give isl_ast_graft_list
*generate_inner_level(
320 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
323 struct isl_generate_domain_data data
= { build
};
325 if (!build
|| !executed
)
328 if (isl_ast_build_has_schedule_node(build
)) {
329 isl_schedule_node
*node
;
330 node
= isl_ast_build_get_schedule_node(build
);
331 build
= isl_ast_build_reset_schedule_node(build
);
332 return build_ast_from_child(build
, node
, executed
);
335 if (build
->create_leaf
)
336 return call_create_leaf(executed
, build
);
338 ctx
= isl_union_map_get_ctx(executed
);
339 data
.list
= isl_ast_graft_list_alloc(ctx
, 0);
340 if (isl_union_map_foreach_map(executed
, &generate_domain
, &data
) < 0)
341 data
.list
= isl_ast_graft_list_free(data
.list
);
344 error
: data
.list
= NULL
;
345 isl_ast_build_free(build
);
346 isl_union_map_free(executed
);
350 /* Call the before_each_for callback, if requested by the user.
352 static __isl_give isl_ast_node
*before_each_for(__isl_take isl_ast_node
*node
,
353 __isl_keep isl_ast_build
*build
)
358 return isl_ast_node_free(node
);
359 if (!build
->before_each_for
)
361 id
= build
->before_each_for(build
, build
->before_each_for_user
);
362 node
= isl_ast_node_set_annotation(node
, id
);
366 /* Call the after_each_for callback, if requested by the user.
368 static __isl_give isl_ast_graft
*after_each_for(__isl_take isl_ast_graft
*graft
,
369 __isl_keep isl_ast_build
*build
)
371 if (!graft
|| !build
)
372 return isl_ast_graft_free(graft
);
373 if (!build
->after_each_for
)
375 graft
->node
= build
->after_each_for(graft
->node
, build
,
376 build
->after_each_for_user
);
378 return isl_ast_graft_free(graft
);
382 /* Plug in all the know values of the current and outer dimensions
383 * in the domain of "executed". In principle, we only need to plug
384 * in the known value of the current dimension since the values of
385 * outer dimensions have been plugged in already.
386 * However, it turns out to be easier to just plug in all known values.
388 static __isl_give isl_union_map
*plug_in_values(
389 __isl_take isl_union_map
*executed
, __isl_keep isl_ast_build
*build
)
391 return isl_ast_build_substitute_values_union_map_domain(build
,
395 /* Check if the constraint "c" is a lower bound on dimension "pos",
396 * an upper bound, or independent of dimension "pos".
398 static int constraint_type(isl_constraint
*c
, int pos
)
400 if (isl_constraint_is_lower_bound(c
, isl_dim_set
, pos
))
402 if (isl_constraint_is_upper_bound(c
, isl_dim_set
, pos
))
407 /* Compare the types of the constraints "a" and "b",
408 * resulting in constraints that are independent of "depth"
409 * to be sorted before the lower bounds on "depth", which in
410 * turn are sorted before the upper bounds on "depth".
412 static int cmp_constraint(__isl_keep isl_constraint
*a
,
413 __isl_keep isl_constraint
*b
, void *user
)
416 int t1
= constraint_type(a
, *depth
);
417 int t2
= constraint_type(b
, *depth
);
422 /* Extract a lower bound on dimension "pos" from constraint "c".
424 * If the constraint is of the form
428 * then we essentially return
430 * l = ceil(-f(...)/a)
432 * However, if the current dimension is strided, then we need to make
433 * sure that the lower bound we construct is of the form
437 * with f the offset and s the stride.
438 * We therefore compute
440 * f + s * ceil((l - f)/s)
442 static __isl_give isl_aff
*lower_bound(__isl_keep isl_constraint
*c
,
443 int pos
, __isl_keep isl_ast_build
*build
)
447 aff
= isl_constraint_get_bound(c
, isl_dim_set
, pos
);
448 aff
= isl_aff_ceil(aff
);
450 if (isl_ast_build_has_stride(build
, pos
)) {
454 offset
= isl_ast_build_get_offset(build
, pos
);
455 stride
= isl_ast_build_get_stride(build
, pos
);
457 aff
= isl_aff_sub(aff
, isl_aff_copy(offset
));
458 aff
= isl_aff_scale_down_val(aff
, isl_val_copy(stride
));
459 aff
= isl_aff_ceil(aff
);
460 aff
= isl_aff_scale_val(aff
, stride
);
461 aff
= isl_aff_add(aff
, offset
);
464 aff
= isl_ast_build_compute_gist_aff(build
, aff
);
469 /* Return the exact lower bound (or upper bound if "upper" is set)
470 * of "domain" as a piecewise affine expression.
472 * If we are computing a lower bound (of a strided dimension), then
473 * we need to make sure it is of the form
477 * where f is the offset and s is the stride.
478 * We therefore need to include the stride constraint before computing
481 static __isl_give isl_pw_aff
*exact_bound(__isl_keep isl_set
*domain
,
482 __isl_keep isl_ast_build
*build
, int upper
)
487 isl_pw_multi_aff
*pma
;
489 domain
= isl_set_copy(domain
);
491 stride
= isl_ast_build_get_stride_constraint(build
);
492 domain
= isl_set_intersect(domain
, stride
);
494 it_map
= isl_ast_build_map_to_iterator(build
, domain
);
496 pma
= isl_map_lexmax_pw_multi_aff(it_map
);
498 pma
= isl_map_lexmin_pw_multi_aff(it_map
);
499 pa
= isl_pw_multi_aff_get_pw_aff(pma
, 0);
500 isl_pw_multi_aff_free(pma
);
501 pa
= isl_ast_build_compute_gist_pw_aff(build
, pa
);
502 pa
= isl_pw_aff_coalesce(pa
);
507 /* Callback for sorting the isl_pw_aff_list passed to reduce_list and
508 * remove_redundant_lower_bounds.
510 static int reduce_list_cmp(__isl_keep isl_pw_aff
*a
, __isl_keep isl_pw_aff
*b
,
513 return isl_pw_aff_plain_cmp(a
, b
);
516 /* Given a list of lower bounds "list", remove those that are redundant
517 * with respect to the other bounds in "list" and the domain of "build".
519 * We first sort the bounds in the same way as they would be sorted
520 * by set_for_node_expressions so that we can try and remove the last
523 * For a lower bound to be effective, there needs to be at least
524 * one domain element for which it is larger than all other lower bounds.
525 * For each lower bound we therefore intersect the domain with
526 * the conditions that it is larger than all other bounds and
527 * check whether the result is empty. If so, the bound can be removed.
529 static __isl_give isl_pw_aff_list
*remove_redundant_lower_bounds(
530 __isl_take isl_pw_aff_list
*list
, __isl_keep isl_ast_build
*build
)
536 list
= isl_pw_aff_list_sort(list
, &reduce_list_cmp
, NULL
);
538 n
= isl_pw_aff_list_n_pw_aff(list
);
540 return isl_pw_aff_list_free(list
);
544 domain
= isl_ast_build_get_domain(build
);
546 for (i
= n
- 1; i
>= 0; --i
) {
551 domain_i
= isl_set_copy(domain
);
552 pa_i
= isl_pw_aff_list_get_pw_aff(list
, i
);
554 for (j
= 0; j
< n
; ++j
) {
561 pa_j
= isl_pw_aff_list_get_pw_aff(list
, j
);
562 better
= isl_pw_aff_gt_set(isl_pw_aff_copy(pa_i
), pa_j
);
563 domain_i
= isl_set_intersect(domain_i
, better
);
566 empty
= isl_set_is_empty(domain_i
);
568 isl_set_free(domain_i
);
569 isl_pw_aff_free(pa_i
);
575 list
= isl_pw_aff_list_drop(list
, i
, 1);
579 isl_set_free(domain
);
583 isl_set_free(domain
);
584 return isl_pw_aff_list_free(list
);
587 /* Extract a lower bound on dimension "pos" from each constraint
588 * in "constraints" and return the list of lower bounds.
589 * If "constraints" has zero elements, then we extract a lower bound
590 * from "domain" instead.
592 * If the current dimension is strided, then the lower bound
593 * is adjusted by lower_bound to match the stride information.
594 * This modification may make one or more lower bounds redundant
595 * with respect to the other lower bounds. We therefore check
596 * for this condition and remove the redundant lower bounds.
598 static __isl_give isl_pw_aff_list
*lower_bounds(
599 __isl_keep isl_constraint_list
*constraints
, int pos
,
600 __isl_keep isl_set
*domain
, __isl_keep isl_ast_build
*build
)
603 isl_pw_aff_list
*list
;
610 n
= isl_constraint_list_n_constraint(constraints
);
615 pa
= exact_bound(domain
, build
, 0);
616 return isl_pw_aff_list_from_pw_aff(pa
);
619 ctx
= isl_ast_build_get_ctx(build
);
620 list
= isl_pw_aff_list_alloc(ctx
,n
);
622 for (i
= 0; i
< n
; ++i
) {
626 c
= isl_constraint_list_get_constraint(constraints
, i
);
627 aff
= lower_bound(c
, pos
, build
);
628 isl_constraint_free(c
);
629 list
= isl_pw_aff_list_add(list
, isl_pw_aff_from_aff(aff
));
632 if (isl_ast_build_has_stride(build
, pos
))
633 list
= remove_redundant_lower_bounds(list
, build
);
638 /* Extract an upper bound on dimension "pos" from each constraint
639 * in "constraints" and return the list of upper bounds.
640 * If "constraints" has zero elements, then we extract an upper bound
641 * from "domain" instead.
643 static __isl_give isl_pw_aff_list
*upper_bounds(
644 __isl_keep isl_constraint_list
*constraints
, int pos
,
645 __isl_keep isl_set
*domain
, __isl_keep isl_ast_build
*build
)
648 isl_pw_aff_list
*list
;
652 n
= isl_constraint_list_n_constraint(constraints
);
657 pa
= exact_bound(domain
, build
, 1);
658 return isl_pw_aff_list_from_pw_aff(pa
);
661 ctx
= isl_ast_build_get_ctx(build
);
662 list
= isl_pw_aff_list_alloc(ctx
,n
);
664 for (i
= 0; i
< n
; ++i
) {
668 c
= isl_constraint_list_get_constraint(constraints
, i
);
669 aff
= isl_constraint_get_bound(c
, isl_dim_set
, pos
);
670 isl_constraint_free(c
);
671 aff
= isl_aff_floor(aff
);
672 list
= isl_pw_aff_list_add(list
, isl_pw_aff_from_aff(aff
));
678 /* Return an isl_ast_expr that performs the reduction of type "type"
679 * on AST expressions corresponding to the elements in "list".
681 * The list is assumed to contain at least one element.
682 * If the list contains exactly one element, then the returned isl_ast_expr
683 * simply computes that affine expression.
684 * If the list contains more than one element, then we sort it
685 * using a fairly arbitrary but hopefully reasonably stable order.
687 static __isl_give isl_ast_expr
*reduce_list(enum isl_ast_expr_op_type type
,
688 __isl_keep isl_pw_aff_list
*list
, __isl_keep isl_ast_build
*build
)
695 n
= isl_pw_aff_list_n_pw_aff(list
);
700 return isl_ast_build_expr_from_pw_aff_internal(build
,
701 isl_pw_aff_list_get_pw_aff(list
, 0));
703 ctx
= isl_pw_aff_list_get_ctx(list
);
704 expr
= isl_ast_expr_alloc_op(ctx
, type
, n
);
706 list
= isl_pw_aff_list_copy(list
);
707 list
= isl_pw_aff_list_sort(list
, &reduce_list_cmp
, NULL
);
709 return isl_ast_expr_free(expr
);
711 for (i
= 0; i
< n
; ++i
) {
712 isl_ast_expr
*expr_i
;
714 expr_i
= isl_ast_build_expr_from_pw_aff_internal(build
,
715 isl_pw_aff_list_get_pw_aff(list
, i
));
716 expr
= isl_ast_expr_op_add_arg(expr
, expr_i
);
719 isl_pw_aff_list_free(list
);
723 /* Add guards implied by the "generated constraints",
724 * but not (necessarily) enforced by the generated AST to "guard".
725 * In particular, if there is any stride constraints,
726 * then add the guard implied by those constraints.
727 * If we have generated a degenerate loop, then add the guard
728 * implied by "bounds" on the outer dimensions, i.e., the guard
729 * that ensures that the single value actually exists.
730 * Since there may also be guards implied by a combination
731 * of these constraints, we first combine them before
732 * deriving the implied constraints.
734 static __isl_give isl_set
*add_implied_guards(__isl_take isl_set
*guard
,
735 int degenerate
, __isl_keep isl_basic_set
*bounds
,
736 __isl_keep isl_ast_build
*build
)
743 depth
= isl_ast_build_get_depth(build
);
744 has_stride
= isl_ast_build_has_stride(build
, depth
);
745 if (depth
< 0 || has_stride
< 0)
746 return isl_set_free(guard
);
747 if (!has_stride
&& !degenerate
)
750 space
= isl_basic_set_get_space(bounds
);
751 dom
= isl_set_universe(space
);
754 bounds
= isl_basic_set_copy(bounds
);
755 bounds
= isl_basic_set_drop_constraints_not_involving_dims(
756 bounds
, isl_dim_set
, depth
, 1);
757 set
= isl_set_from_basic_set(bounds
);
758 dom
= isl_set_intersect(dom
, set
);
762 set
= isl_ast_build_get_stride_constraint(build
);
763 dom
= isl_set_intersect(dom
, set
);
766 dom
= isl_set_eliminate(dom
, isl_dim_set
, depth
, 1);
767 dom
= isl_ast_build_compute_gist(build
, dom
);
768 guard
= isl_set_intersect(guard
, dom
);
773 /* Update "graft" based on "sub_build" for the degenerate case.
775 * "build" is the build in which graft->node was created
776 * "sub_build" contains information about the current level itself,
777 * including the single value attained.
779 * We set the initialization part of the for loop to the single
780 * value attained by the current dimension.
781 * The increment and condition are not strictly needed as they are known
782 * to be "1" and "iterator <= value" respectively.
784 static __isl_give isl_ast_graft
*refine_degenerate(
785 __isl_take isl_ast_graft
*graft
, __isl_keep isl_ast_build
*build
,
786 __isl_keep isl_ast_build
*sub_build
)
791 if (!graft
|| !sub_build
)
792 return isl_ast_graft_free(graft
);
794 value
= isl_pw_aff_copy(sub_build
->value
);
796 init
= isl_ast_build_expr_from_pw_aff_internal(build
, value
);
797 graft
->node
= isl_ast_node_for_set_init(graft
->node
, init
);
799 return isl_ast_graft_free(graft
);
804 /* Return the intersection of constraints in "list" as a set.
806 static __isl_give isl_set
*intersect_constraints(
807 __isl_keep isl_constraint_list
*list
)
813 n
= isl_constraint_list_n_constraint(list
);
817 isl_die(isl_constraint_list_get_ctx(list
), isl_error_internal
,
818 "expecting at least one constraint", return NULL
);
820 bset
= isl_basic_set_from_constraint(
821 isl_constraint_list_get_constraint(list
, 0));
822 for (i
= 1; i
< n
; ++i
) {
823 isl_basic_set
*bset_i
;
825 bset_i
= isl_basic_set_from_constraint(
826 isl_constraint_list_get_constraint(list
, i
));
827 bset
= isl_basic_set_intersect(bset
, bset_i
);
830 return isl_set_from_basic_set(bset
);
833 /* Compute the constraints on the outer dimensions enforced by
834 * graft->node and add those constraints to graft->enforced,
835 * in case the upper bound is expressed as a set "upper".
837 * In particular, if l(...) is a lower bound in "lower", and
839 * -a i + f(...) >= 0 or a i <= f(...)
841 * is an upper bound ocnstraint on the current dimension i,
842 * then the for loop enforces the constraint
844 * -a l(...) + f(...) >= 0 or a l(...) <= f(...)
846 * We therefore simply take each lower bound in turn, plug it into
847 * the upper bounds and compute the intersection over all lower bounds.
849 * If a lower bound is a rational expression, then
850 * isl_basic_set_preimage_multi_aff will force this rational
851 * expression to have only integer values. However, the loop
852 * itself does not enforce this integrality constraint. We therefore
853 * use the ceil of the lower bounds instead of the lower bounds themselves.
854 * Other constraints will make sure that the for loop is only executed
855 * when each of the lower bounds attains an integral value.
856 * In particular, potentially rational values only occur in
857 * lower_bound if the offset is a (seemingly) rational expression,
858 * but then outer conditions will make sure that this rational expression
859 * only attains integer values.
861 static __isl_give isl_ast_graft
*set_enforced_from_set(
862 __isl_take isl_ast_graft
*graft
,
863 __isl_keep isl_pw_aff_list
*lower
, int pos
, __isl_keep isl_set
*upper
)
866 isl_basic_set
*enforced
;
867 isl_pw_multi_aff
*pma
;
871 n
= isl_pw_aff_list_n_pw_aff(lower
);
873 return isl_ast_graft_free(graft
);
875 space
= isl_set_get_space(upper
);
876 enforced
= isl_basic_set_universe(isl_space_copy(space
));
878 space
= isl_space_map_from_set(space
);
879 pma
= isl_pw_multi_aff_identity(space
);
881 for (i
= 0; i
< n
; ++i
) {
885 isl_pw_multi_aff
*pma_i
;
887 pa
= isl_pw_aff_list_get_pw_aff(lower
, i
);
888 pa
= isl_pw_aff_ceil(pa
);
889 pma_i
= isl_pw_multi_aff_copy(pma
);
890 pma_i
= isl_pw_multi_aff_set_pw_aff(pma_i
, pos
, pa
);
891 enforced_i
= isl_set_copy(upper
);
892 enforced_i
= isl_set_preimage_pw_multi_aff(enforced_i
, pma_i
);
893 hull
= isl_set_simple_hull(enforced_i
);
894 enforced
= isl_basic_set_intersect(enforced
, hull
);
897 isl_pw_multi_aff_free(pma
);
899 graft
= isl_ast_graft_enforce(graft
, enforced
);
904 /* Compute the constraints on the outer dimensions enforced by
905 * graft->node and add those constraints to graft->enforced,
906 * in case the upper bound is expressed as
907 * a list of affine expressions "upper".
909 * The enforced condition is that each lower bound expression is less
910 * than or equal to each upper bound expression.
912 static __isl_give isl_ast_graft
*set_enforced_from_list(
913 __isl_take isl_ast_graft
*graft
,
914 __isl_keep isl_pw_aff_list
*lower
, __isl_keep isl_pw_aff_list
*upper
)
917 isl_basic_set
*enforced
;
919 lower
= isl_pw_aff_list_copy(lower
);
920 upper
= isl_pw_aff_list_copy(upper
);
921 cond
= isl_pw_aff_list_le_set(lower
, upper
);
922 enforced
= isl_set_simple_hull(cond
);
923 graft
= isl_ast_graft_enforce(graft
, enforced
);
928 /* Does "aff" have a negative constant term?
930 static isl_bool
aff_constant_is_negative(__isl_keep isl_set
*set
,
931 __isl_keep isl_aff
*aff
, void *user
)
936 v
= isl_aff_get_constant_val(aff
);
937 is_neg
= isl_val_is_neg(v
);
943 /* Does "pa" have a negative constant term over its entire domain?
945 static isl_bool
pw_aff_constant_is_negative(__isl_keep isl_pw_aff
*pa
,
948 return isl_pw_aff_every_piece(pa
, &aff_constant_is_negative
, NULL
);
951 /* Does each element in "list" have a negative constant term?
953 static int list_constant_is_negative(__isl_keep isl_pw_aff_list
*list
)
955 return isl_pw_aff_list_every(list
, &pw_aff_constant_is_negative
, NULL
);
958 /* Add 1 to each of the elements in "list", where each of these elements
959 * is defined over the internal schedule space of "build".
961 static __isl_give isl_pw_aff_list
*list_add_one(
962 __isl_take isl_pw_aff_list
*list
, __isl_keep isl_ast_build
*build
)
970 n
= isl_pw_aff_list_n_pw_aff(list
);
972 return isl_pw_aff_list_free(list
);
974 space
= isl_ast_build_get_space(build
, 1);
975 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(space
));
976 aff
= isl_aff_add_constant_si(aff
, 1);
977 one
= isl_pw_aff_from_aff(aff
);
979 for (i
= 0; i
< n
; ++i
) {
981 pa
= isl_pw_aff_list_get_pw_aff(list
, i
);
982 pa
= isl_pw_aff_add(pa
, isl_pw_aff_copy(one
));
983 list
= isl_pw_aff_list_set_pw_aff(list
, i
, pa
);
986 isl_pw_aff_free(one
);
991 /* Set the condition part of the for node graft->node in case
992 * the upper bound is represented as a list of piecewise affine expressions.
994 * In particular, set the condition to
996 * iterator <= min(list of upper bounds)
998 * If each of the upper bounds has a negative constant term, then
999 * set the condition to
1001 * iterator < min(list of (upper bound + 1)s)
1004 static __isl_give isl_ast_graft
*set_for_cond_from_list(
1005 __isl_take isl_ast_graft
*graft
, __isl_keep isl_pw_aff_list
*list
,
1006 __isl_keep isl_ast_build
*build
)
1009 isl_ast_expr
*bound
, *iterator
, *cond
;
1010 enum isl_ast_expr_op_type type
= isl_ast_expr_op_le
;
1012 if (!graft
|| !list
)
1013 return isl_ast_graft_free(graft
);
1015 neg
= list_constant_is_negative(list
);
1017 return isl_ast_graft_free(graft
);
1018 list
= isl_pw_aff_list_copy(list
);
1020 list
= list_add_one(list
, build
);
1021 type
= isl_ast_expr_op_lt
;
1024 bound
= reduce_list(isl_ast_expr_op_min
, list
, build
);
1025 iterator
= isl_ast_expr_copy(graft
->node
->u
.f
.iterator
);
1026 cond
= isl_ast_expr_alloc_binary(type
, iterator
, bound
);
1027 graft
->node
= isl_ast_node_for_set_cond(graft
->node
, cond
);
1029 isl_pw_aff_list_free(list
);
1031 return isl_ast_graft_free(graft
);
1035 /* Set the condition part of the for node graft->node in case
1036 * the upper bound is represented as a set.
1038 static __isl_give isl_ast_graft
*set_for_cond_from_set(
1039 __isl_take isl_ast_graft
*graft
, __isl_keep isl_set
*set
,
1040 __isl_keep isl_ast_build
*build
)
1047 cond
= isl_ast_build_expr_from_set_internal(build
, isl_set_copy(set
));
1048 graft
->node
= isl_ast_node_for_set_cond(graft
->node
, cond
);
1050 return isl_ast_graft_free(graft
);
1054 /* Construct an isl_ast_expr for the increment (i.e., stride) of
1055 * the current dimension.
1057 static __isl_give isl_ast_expr
*for_inc(__isl_keep isl_ast_build
*build
)
1063 depth
= isl_ast_build_get_depth(build
);
1066 ctx
= isl_ast_build_get_ctx(build
);
1068 if (!isl_ast_build_has_stride(build
, depth
))
1069 return isl_ast_expr_alloc_int_si(ctx
, 1);
1071 v
= isl_ast_build_get_stride(build
, depth
);
1072 return isl_ast_expr_from_val(v
);
1075 /* Should we express the loop condition as
1077 * iterator <= min(list of upper bounds)
1079 * or as a conjunction of constraints?
1081 * The first is constructed from a list of upper bounds.
1082 * The second is constructed from a set.
1084 * If there are no upper bounds in "constraints", then this could mean
1085 * that "domain" simply doesn't have an upper bound or that we didn't
1086 * pick any upper bound. In the first case, we want to generate the
1087 * loop condition as a(n empty) conjunction of constraints
1088 * In the second case, we will compute
1089 * a single upper bound from "domain" and so we use the list form.
1091 * If there are upper bounds in "constraints",
1092 * then we use the list form iff the atomic_upper_bound option is set.
1094 static int use_upper_bound_list(isl_ctx
*ctx
, int n_upper
,
1095 __isl_keep isl_set
*domain
, int depth
)
1098 return isl_options_get_ast_build_atomic_upper_bound(ctx
);
1100 return isl_set_dim_has_upper_bound(domain
, isl_dim_set
, depth
);
1103 /* Fill in the expressions of the for node in graft->node.
1106 * - set the initialization part of the loop to the maximum of the lower bounds
1107 * - extract the increment from the stride of the current dimension
1108 * - construct the for condition either based on a list of upper bounds
1109 * or on a set of upper bound constraints.
1111 static __isl_give isl_ast_graft
*set_for_node_expressions(
1112 __isl_take isl_ast_graft
*graft
, __isl_keep isl_pw_aff_list
*lower
,
1113 int use_list
, __isl_keep isl_pw_aff_list
*upper_list
,
1114 __isl_keep isl_set
*upper_set
, __isl_keep isl_ast_build
*build
)
1121 init
= reduce_list(isl_ast_expr_op_max
, lower
, build
);
1122 graft
->node
= isl_ast_node_for_set_init(graft
->node
, init
);
1123 graft
->node
= isl_ast_node_for_set_inc(graft
->node
, for_inc(build
));
1126 graft
= isl_ast_graft_free(graft
);
1129 graft
= set_for_cond_from_list(graft
, upper_list
, build
);
1131 graft
= set_for_cond_from_set(graft
, upper_set
, build
);
1136 /* Update "graft" based on "bounds" and "domain" for the generic,
1137 * non-degenerate, case.
1139 * "c_lower" and "c_upper" contain the lower and upper bounds
1140 * that the loop node should express.
1141 * "domain" is the subset of the intersection of the constraints
1142 * for which some code is executed.
1144 * There may be zero lower bounds or zero upper bounds in "constraints"
1145 * in case the list of constraints was created
1146 * based on the atomic option or based on separation with explicit bounds.
1147 * In that case, we use "domain" to derive lower and/or upper bounds.
1149 * We first compute a list of one or more lower bounds.
1151 * Then we decide if we want to express the condition as
1153 * iterator <= min(list of upper bounds)
1155 * or as a conjunction of constraints.
1157 * The set of enforced constraints is then computed either based on
1158 * a list of upper bounds or on a set of upper bound constraints.
1159 * We do not compute any enforced constraints if we were forced
1160 * to compute a lower or upper bound using exact_bound. The domains
1161 * of the resulting expressions may imply some bounds on outer dimensions
1162 * that we do not want to appear in the enforced constraints since
1163 * they are not actually enforced by the corresponding code.
1165 * Finally, we fill in the expressions of the for node.
1167 static __isl_give isl_ast_graft
*refine_generic_bounds(
1168 __isl_take isl_ast_graft
*graft
,
1169 __isl_take isl_constraint_list
*c_lower
,
1170 __isl_take isl_constraint_list
*c_upper
,
1171 __isl_keep isl_set
*domain
, __isl_keep isl_ast_build
*build
)
1175 isl_pw_aff_list
*lower
;
1177 isl_set
*upper_set
= NULL
;
1178 isl_pw_aff_list
*upper_list
= NULL
;
1179 isl_size n_lower
, n_upper
;
1181 depth
= isl_ast_build_get_depth(build
);
1182 if (!graft
|| !c_lower
|| !c_upper
|| depth
< 0)
1185 ctx
= isl_ast_graft_get_ctx(graft
);
1187 n_lower
= isl_constraint_list_n_constraint(c_lower
);
1188 n_upper
= isl_constraint_list_n_constraint(c_upper
);
1189 if (n_lower
< 0 || n_upper
< 0)
1192 use_list
= use_upper_bound_list(ctx
, n_upper
, domain
, depth
);
1194 lower
= lower_bounds(c_lower
, depth
, domain
, build
);
1197 upper_list
= upper_bounds(c_upper
, depth
, domain
, build
);
1198 else if (n_upper
> 0)
1199 upper_set
= intersect_constraints(c_upper
);
1201 upper_set
= isl_set_universe(isl_set_get_space(domain
));
1203 if (n_lower
== 0 || n_upper
== 0)
1206 graft
= set_enforced_from_list(graft
, lower
, upper_list
);
1208 graft
= set_enforced_from_set(graft
, lower
, depth
, upper_set
);
1210 graft
= set_for_node_expressions(graft
, lower
, use_list
, upper_list
,
1213 isl_pw_aff_list_free(lower
);
1214 isl_pw_aff_list_free(upper_list
);
1215 isl_set_free(upper_set
);
1216 isl_constraint_list_free(c_lower
);
1217 isl_constraint_list_free(c_upper
);
1221 isl_constraint_list_free(c_lower
);
1222 isl_constraint_list_free(c_upper
);
1223 return isl_ast_graft_free(graft
);
1226 /* Internal data structure used inside count_constraints to keep
1227 * track of the number of constraints that are independent of dimension "pos",
1228 * the lower bounds in "pos" and the upper bounds in "pos".
1230 struct isl_ast_count_constraints_data
{
1238 /* Increment data->n_indep, data->lower or data->upper depending
1239 * on whether "c" is independent of dimensions data->pos,
1240 * a lower bound or an upper bound.
1242 static isl_stat
count_constraints(__isl_take isl_constraint
*c
, void *user
)
1244 struct isl_ast_count_constraints_data
*data
= user
;
1246 if (isl_constraint_is_lower_bound(c
, isl_dim_set
, data
->pos
))
1248 else if (isl_constraint_is_upper_bound(c
, isl_dim_set
, data
->pos
))
1253 isl_constraint_free(c
);
1258 /* Update "graft" based on "bounds" and "domain" for the generic,
1259 * non-degenerate, case.
1261 * "list" respresent the list of bounds that need to be encoded by
1262 * the for loop. Only the constraints that involve the iterator
1263 * are relevant here. The other constraints are taken care of by
1264 * the caller and are included in the generated constraints of "build".
1265 * "domain" is the subset of the intersection of the constraints
1266 * for which some code is executed.
1267 * "build" is the build in which graft->node was created.
1269 * We separate lower bounds, upper bounds and constraints that
1270 * are independent of the loop iterator.
1272 * The actual for loop bounds are generated in refine_generic_bounds.
1274 static __isl_give isl_ast_graft
*refine_generic_split(
1275 __isl_take isl_ast_graft
*graft
, __isl_take isl_constraint_list
*list
,
1276 __isl_keep isl_set
*domain
, __isl_keep isl_ast_build
*build
)
1278 struct isl_ast_count_constraints_data data
;
1280 isl_constraint_list
*lower
;
1281 isl_constraint_list
*upper
;
1283 depth
= isl_ast_build_get_depth(build
);
1285 list
= isl_constraint_list_free(list
);
1287 return isl_ast_graft_free(graft
);
1291 list
= isl_constraint_list_sort(list
, &cmp_constraint
, &data
.pos
);
1293 return isl_ast_graft_free(graft
);
1295 data
.n_indep
= data
.n_lower
= data
.n_upper
= 0;
1296 if (isl_constraint_list_foreach(list
, &count_constraints
, &data
) < 0) {
1297 isl_constraint_list_free(list
);
1298 return isl_ast_graft_free(graft
);
1301 lower
= isl_constraint_list_drop(list
, 0, data
.n_indep
);
1302 upper
= isl_constraint_list_copy(lower
);
1303 lower
= isl_constraint_list_drop(lower
, data
.n_lower
, data
.n_upper
);
1304 upper
= isl_constraint_list_drop(upper
, 0, data
.n_lower
);
1306 return refine_generic_bounds(graft
, lower
, upper
, domain
, build
);
1309 /* Update "graft" based on "bounds" and "domain" for the generic,
1310 * non-degenerate, case.
1312 * "bounds" respresent the bounds that need to be encoded by
1313 * the for loop (or a guard around the for loop).
1314 * "domain" is the subset of "bounds" for which some code is executed.
1315 * "build" is the build in which graft->node was created.
1317 * We break up "bounds" into a list of constraints and continue with
1318 * refine_generic_split.
1320 static __isl_give isl_ast_graft
*refine_generic(
1321 __isl_take isl_ast_graft
*graft
,
1322 __isl_keep isl_basic_set
*bounds
, __isl_keep isl_set
*domain
,
1323 __isl_keep isl_ast_build
*build
)
1325 isl_constraint_list
*list
;
1327 if (!build
|| !graft
)
1328 return isl_ast_graft_free(graft
);
1330 list
= isl_basic_set_get_constraint_list(bounds
);
1332 graft
= refine_generic_split(graft
, list
, domain
, build
);
1337 /* Create a for node for the current level.
1339 * Mark the for node degenerate if "degenerate" is set.
1341 static __isl_give isl_ast_node
*create_for(__isl_keep isl_ast_build
*build
,
1348 depth
= isl_ast_build_get_depth(build
);
1352 id
= isl_ast_build_get_iterator_id(build
, depth
);
1353 node
= isl_ast_node_alloc_for(id
);
1355 node
= isl_ast_node_for_mark_degenerate(node
);
1360 /* If the ast_build_exploit_nested_bounds option is set, then return
1361 * the constraints enforced by all elements in "list".
1362 * Otherwise, return the universe.
1364 static __isl_give isl_basic_set
*extract_shared_enforced(
1365 __isl_keep isl_ast_graft_list
*list
, __isl_keep isl_ast_build
*build
)
1373 ctx
= isl_ast_graft_list_get_ctx(list
);
1374 if (isl_options_get_ast_build_exploit_nested_bounds(ctx
))
1375 return isl_ast_graft_list_extract_shared_enforced(list
, build
);
1377 space
= isl_ast_build_get_space(build
, 1);
1378 return isl_basic_set_universe(space
);
1381 /* Return the pending constraints of "build" that are not already taken
1382 * care of (by a combination of "enforced" and the generated constraints
1385 static __isl_give isl_set
*extract_pending(__isl_keep isl_ast_build
*build
,
1386 __isl_keep isl_basic_set
*enforced
)
1388 isl_set
*guard
, *context
;
1390 guard
= isl_ast_build_get_pending(build
);
1391 context
= isl_set_from_basic_set(isl_basic_set_copy(enforced
));
1392 context
= isl_set_intersect(context
,
1393 isl_ast_build_get_generated(build
));
1394 return isl_set_gist(guard
, context
);
1397 /* Create an AST node for the current dimension based on
1398 * the schedule domain "bounds" and return the node encapsulated
1399 * in an isl_ast_graft.
1401 * "executed" is the current inverse schedule, taking into account
1402 * the bounds in "bounds"
1403 * "domain" is the domain of "executed", with inner dimensions projected out.
1404 * It may be a strict subset of "bounds" in case "bounds" was created
1405 * based on the atomic option or based on separation with explicit bounds.
1407 * "domain" may satisfy additional equalities that result
1408 * from intersecting "executed" with "bounds" in add_node.
1409 * It may also satisfy some global constraints that were dropped out because
1410 * we performed separation with explicit bounds.
1411 * The very first step is then to copy these constraints to "bounds".
1413 * Since we may be calling before_each_for and after_each_for
1414 * callbacks, we record the current inverse schedule in the build.
1416 * We consider three builds,
1417 * "build" is the one in which the current level is created,
1418 * "body_build" is the build in which the next level is created,
1419 * "sub_build" is essentially the same as "body_build", except that
1420 * the depth has not been increased yet.
1422 * "build" already contains information (in strides and offsets)
1423 * about the strides at the current level, but this information is not
1424 * reflected in the build->domain.
1425 * We first add this information and the "bounds" to the sub_build->domain.
1426 * isl_ast_build_set_loop_bounds adds the stride information and
1427 * checks whether the current dimension attains
1428 * only a single value and whether this single value can be represented using
1429 * a single affine expression.
1430 * In the first case, the current level is considered "degenerate".
1431 * In the second, sub-case, the current level is considered "eliminated".
1432 * Eliminated levels don't need to be reflected in the AST since we can
1433 * simply plug in the affine expression. For degenerate, but non-eliminated,
1434 * levels, we do introduce a for node, but mark is as degenerate so that
1435 * it can be printed as an assignment of the single value to the loop
1438 * If the current level is eliminated, we explicitly plug in the value
1439 * for the current level found by isl_ast_build_set_loop_bounds in the
1440 * inverse schedule. This ensures that if we are working on a slice
1441 * of the domain based on information available in the inverse schedule
1442 * and the build domain, that then this information is also reflected
1443 * in the inverse schedule. This operation also eliminates the current
1444 * dimension from the inverse schedule making sure no inner dimensions depend
1445 * on the current dimension. Otherwise, we create a for node, marking
1446 * it degenerate if appropriate. The initial for node is still incomplete
1447 * and will be completed in either refine_degenerate or refine_generic.
1449 * We then generate a sequence of grafts for the next level,
1450 * create a surrounding graft for the current level and insert
1451 * the for node we created (if the current level is not eliminated).
1452 * Before creating a graft for the current level, we first extract
1453 * hoistable constraints from the child guards and combine them
1454 * with the pending constraints in the build. These constraints
1455 * are used to simplify the child guards and then added to the guard
1456 * of the current graft to ensure that they will be generated.
1457 * If the hoisted guard is a disjunction, then we use it directly
1458 * to gist the guards on the children before intersect it with the
1459 * pending constraints. We do so because this disjunction is typically
1460 * identical to the guards on the children such that these guards
1461 * can be effectively removed completely. After the intersection,
1462 * the gist operation would have a harder time figuring this out.
1464 * Finally, we set the bounds of the for loop in either
1465 * refine_degenerate or refine_generic.
1466 * We do so in a context where the pending constraints of the build
1467 * have been replaced by the guard of the current graft.
1469 static __isl_give isl_ast_graft
*create_node_scaled(
1470 __isl_take isl_union_map
*executed
,
1471 __isl_take isl_basic_set
*bounds
, __isl_take isl_set
*domain
,
1472 __isl_take isl_ast_build
*build
)
1476 isl_bool eliminated
;
1478 isl_basic_set
*hull
;
1479 isl_basic_set
*enforced
;
1480 isl_set
*guard
, *hoisted
;
1481 isl_ast_node
*node
= NULL
;
1482 isl_ast_graft
*graft
;
1483 isl_ast_graft_list
*children
;
1484 isl_ast_build
*sub_build
;
1485 isl_ast_build
*body_build
;
1487 domain
= isl_ast_build_eliminate_divs(build
, domain
);
1488 domain
= isl_set_detect_equalities(domain
);
1489 hull
= isl_set_unshifted_simple_hull(isl_set_copy(domain
));
1490 bounds
= isl_basic_set_intersect(bounds
, hull
);
1491 build
= isl_ast_build_set_executed(build
, isl_union_map_copy(executed
));
1493 depth
= isl_ast_build_get_depth(build
);
1495 build
= isl_ast_build_free(build
);
1496 sub_build
= isl_ast_build_copy(build
);
1497 bounds
= isl_basic_set_remove_redundancies(bounds
);
1498 bounds
= isl_ast_build_specialize_basic_set(sub_build
, bounds
);
1499 sub_build
= isl_ast_build_set_loop_bounds(sub_build
,
1500 isl_basic_set_copy(bounds
));
1501 degenerate
= isl_ast_build_has_value(sub_build
);
1502 eliminated
= isl_ast_build_has_affine_value(sub_build
, depth
);
1503 if (degenerate
< 0 || eliminated
< 0)
1504 executed
= isl_union_map_free(executed
);
1506 bounds
= isl_ast_build_compute_gist_basic_set(build
, bounds
);
1507 sub_build
= isl_ast_build_set_pending_generated(sub_build
,
1508 isl_basic_set_copy(bounds
));
1510 executed
= plug_in_values(executed
, sub_build
);
1512 node
= create_for(build
, degenerate
);
1514 body_build
= isl_ast_build_copy(sub_build
);
1515 body_build
= isl_ast_build_increase_depth(body_build
);
1517 node
= before_each_for(node
, body_build
);
1518 children
= generate_next_level(executed
,
1519 isl_ast_build_copy(body_build
));
1521 enforced
= extract_shared_enforced(children
, build
);
1522 guard
= extract_pending(sub_build
, enforced
);
1523 hoisted
= isl_ast_graft_list_extract_hoistable_guard(children
, build
);
1524 n
= isl_set_n_basic_set(hoisted
);
1526 children
= isl_ast_graft_list_free(children
);
1528 children
= isl_ast_graft_list_gist_guards(children
,
1529 isl_set_copy(hoisted
));
1530 guard
= isl_set_intersect(guard
, hoisted
);
1532 guard
= add_implied_guards(guard
, degenerate
, bounds
, build
);
1534 graft
= isl_ast_graft_alloc_from_children(children
,
1535 isl_set_copy(guard
), enforced
, build
, sub_build
);
1538 isl_ast_build
*for_build
;
1540 graft
= isl_ast_graft_insert_for(graft
, node
);
1541 for_build
= isl_ast_build_copy(build
);
1542 for_build
= isl_ast_build_replace_pending_by_guard(for_build
,
1543 isl_set_copy(guard
));
1545 graft
= refine_degenerate(graft
, for_build
, sub_build
);
1547 graft
= refine_generic(graft
, bounds
,
1549 isl_ast_build_free(for_build
);
1551 isl_set_free(guard
);
1553 graft
= after_each_for(graft
, body_build
);
1555 isl_ast_build_free(body_build
);
1556 isl_ast_build_free(sub_build
);
1557 isl_ast_build_free(build
);
1558 isl_basic_set_free(bounds
);
1559 isl_set_free(domain
);
1564 /* Internal data structure for checking if all constraints involving
1565 * the input dimension "depth" are such that the other coefficients
1566 * are multiples of "m", reducing "m" if they are not.
1567 * If "m" is reduced all the way down to "1", then the check has failed
1568 * and we break out of the iteration.
1570 struct isl_check_scaled_data
{
1575 /* If constraint "c" involves the input dimension data->depth,
1576 * then make sure that all the other coefficients are multiples of data->m,
1577 * reducing data->m if needed.
1578 * Break out of the iteration if data->m has become equal to "1".
1580 static isl_stat
constraint_check_scaled(__isl_take isl_constraint
*c
,
1583 struct isl_check_scaled_data
*data
= user
;
1586 enum isl_dim_type t
[] = { isl_dim_param
, isl_dim_in
, isl_dim_out
,
1589 if (!isl_constraint_involves_dims(c
, isl_dim_in
, data
->depth
, 1)) {
1590 isl_constraint_free(c
);
1594 for (i
= 0; i
< 4; ++i
) {
1595 n
= isl_constraint_dim(c
, t
[i
]);
1598 for (j
= 0; j
< n
; ++j
) {
1601 if (t
[i
] == isl_dim_in
&& j
== data
->depth
)
1603 if (!isl_constraint_involves_dims(c
, t
[i
], j
, 1))
1605 d
= isl_constraint_get_coefficient_val(c
, t
[i
], j
);
1606 data
->m
= isl_val_gcd(data
->m
, d
);
1607 if (isl_val_is_one(data
->m
))
1614 isl_constraint_free(c
);
1616 return i
< 4 ? isl_stat_error
: isl_stat_ok
;
1619 /* For each constraint of "bmap" that involves the input dimension data->depth,
1620 * make sure that all the other coefficients are multiples of data->m,
1621 * reducing data->m if needed.
1622 * Break out of the iteration if data->m has become equal to "1".
1624 static isl_stat
basic_map_check_scaled(__isl_take isl_basic_map
*bmap
,
1629 r
= isl_basic_map_foreach_constraint(bmap
,
1630 &constraint_check_scaled
, user
);
1631 isl_basic_map_free(bmap
);
1636 /* For each constraint of "map" that involves the input dimension data->depth,
1637 * make sure that all the other coefficients are multiples of data->m,
1638 * reducing data->m if needed.
1639 * Break out of the iteration if data->m has become equal to "1".
1641 static isl_stat
map_check_scaled(__isl_take isl_map
*map
, void *user
)
1645 r
= isl_map_foreach_basic_map(map
, &basic_map_check_scaled
, user
);
1651 /* Create an AST node for the current dimension based on
1652 * the schedule domain "bounds" and return the node encapsulated
1653 * in an isl_ast_graft.
1655 * "executed" is the current inverse schedule, taking into account
1656 * the bounds in "bounds"
1657 * "domain" is the domain of "executed", with inner dimensions projected out.
1660 * Before moving on to the actual AST node construction in create_node_scaled,
1661 * we first check if the current dimension is strided and if we can scale
1662 * down this stride. Note that we only do this if the ast_build_scale_strides
1665 * In particular, let the current dimension take on values
1669 * with a an integer. We check if we can find an integer m that (obviously)
1670 * divides both f and s.
1672 * If so, we check if the current dimension only appears in constraints
1673 * where the coefficients of the other variables are multiples of m.
1674 * We perform this extra check to avoid the risk of introducing
1675 * divisions by scaling down the current dimension.
1677 * If so, we scale the current dimension down by a factor of m.
1678 * That is, we plug in
1682 * Note that in principle we could always scale down strided loops
1687 * but this may result in i' taking on larger values than the original i,
1688 * due to the shift by "f".
1689 * By constrast, the scaling in (1) can only reduce the (absolute) value "i".
1691 static __isl_give isl_ast_graft
*create_node(__isl_take isl_union_map
*executed
,
1692 __isl_take isl_basic_set
*bounds
, __isl_take isl_set
*domain
,
1693 __isl_take isl_ast_build
*build
)
1695 struct isl_check_scaled_data data
;
1701 ctx
= isl_ast_build_get_ctx(build
);
1702 if (!isl_options_get_ast_build_scale_strides(ctx
))
1703 return create_node_scaled(executed
, bounds
, domain
, build
);
1705 depth
= isl_ast_build_get_depth(build
);
1707 build
= isl_ast_build_free(build
);
1709 if (!isl_ast_build_has_stride(build
, data
.depth
))
1710 return create_node_scaled(executed
, bounds
, domain
, build
);
1712 offset
= isl_ast_build_get_offset(build
, data
.depth
);
1713 data
.m
= isl_ast_build_get_stride(build
, data
.depth
);
1715 offset
= isl_aff_free(offset
);
1716 offset
= isl_aff_scale_down_val(offset
, isl_val_copy(data
.m
));
1717 d
= isl_aff_get_denominator_val(offset
);
1719 executed
= isl_union_map_free(executed
);
1721 if (executed
&& isl_val_is_divisible_by(data
.m
, d
))
1722 data
.m
= isl_val_div(data
.m
, d
);
1724 data
.m
= isl_val_set_si(data
.m
, 1);
1728 if (!isl_val_is_one(data
.m
)) {
1729 if (isl_union_map_foreach_map(executed
, &map_check_scaled
,
1731 !isl_val_is_one(data
.m
))
1732 executed
= isl_union_map_free(executed
);
1735 if (!isl_val_is_one(data
.m
)) {
1740 isl_union_map
*umap
;
1742 space
= isl_ast_build_get_space(build
, 1);
1743 space
= isl_space_map_from_set(space
);
1744 ma
= isl_multi_aff_identity(space
);
1745 aff
= isl_multi_aff_get_aff(ma
, data
.depth
);
1746 aff
= isl_aff_scale_val(aff
, isl_val_copy(data
.m
));
1747 ma
= isl_multi_aff_set_aff(ma
, data
.depth
, aff
);
1749 bounds
= isl_basic_set_preimage_multi_aff(bounds
,
1750 isl_multi_aff_copy(ma
));
1751 domain
= isl_set_preimage_multi_aff(domain
,
1752 isl_multi_aff_copy(ma
));
1753 map
= isl_map_reverse(isl_map_from_multi_aff(ma
));
1754 umap
= isl_union_map_from_map(map
);
1755 executed
= isl_union_map_apply_domain(executed
,
1756 isl_union_map_copy(umap
));
1757 build
= isl_ast_build_scale_down(build
, isl_val_copy(data
.m
),
1760 isl_aff_free(offset
);
1761 isl_val_free(data
.m
);
1763 return create_node_scaled(executed
, bounds
, domain
, build
);
1766 /* Add the basic set to the list that "user" points to.
1768 static isl_stat
collect_basic_set(__isl_take isl_basic_set
*bset
, void *user
)
1770 isl_basic_set_list
**list
= user
;
1772 *list
= isl_basic_set_list_add(*list
, bset
);
1777 /* Extract the basic sets of "set" and collect them in an isl_basic_set_list.
1779 static __isl_give isl_basic_set_list
*isl_basic_set_list_from_set(
1780 __isl_take isl_set
*set
)
1784 isl_basic_set_list
*list
;
1786 n
= isl_set_n_basic_set(set
);
1788 set
= isl_set_free(set
);
1792 ctx
= isl_set_get_ctx(set
);
1794 list
= isl_basic_set_list_alloc(ctx
, n
);
1795 if (isl_set_foreach_basic_set(set
, &collect_basic_set
, &list
) < 0)
1796 list
= isl_basic_set_list_free(list
);
1802 /* Generate code for the schedule domain "bounds"
1803 * and add the result to "list".
1805 * We mainly detect strides here and check if the bounds do not
1806 * conflict with the current build domain
1807 * and then pass over control to create_node.
1809 * "bounds" reflects the bounds on the current dimension and possibly
1810 * some extra conditions on outer dimensions.
1811 * It does not, however, include any divs involving the current dimension,
1812 * so it does not capture any stride constraints.
1813 * We therefore need to compute that part of the schedule domain that
1814 * intersects with "bounds" and derive the strides from the result.
1816 static __isl_give isl_ast_graft_list
*add_node(
1817 __isl_take isl_ast_graft_list
*list
, __isl_take isl_union_map
*executed
,
1818 __isl_take isl_basic_set
*bounds
, __isl_take isl_ast_build
*build
)
1820 isl_ast_graft
*graft
;
1821 isl_set
*domain
= NULL
;
1822 isl_union_set
*uset
;
1823 int empty
, disjoint
;
1825 uset
= isl_union_set_from_basic_set(isl_basic_set_copy(bounds
));
1826 executed
= isl_union_map_intersect_domain(executed
, uset
);
1827 empty
= isl_union_map_is_empty(executed
);
1833 uset
= isl_union_map_domain(isl_union_map_copy(executed
));
1834 domain
= isl_set_from_union_set(uset
);
1835 domain
= isl_ast_build_specialize(build
, domain
);
1837 domain
= isl_set_compute_divs(domain
);
1838 domain
= isl_ast_build_eliminate_inner(build
, domain
);
1839 disjoint
= isl_set_is_disjoint(domain
, build
->domain
);
1845 build
= isl_ast_build_detect_strides(build
, isl_set_copy(domain
));
1847 graft
= create_node(executed
, bounds
, domain
,
1848 isl_ast_build_copy(build
));
1849 list
= isl_ast_graft_list_add(list
, graft
);
1850 isl_ast_build_free(build
);
1853 list
= isl_ast_graft_list_free(list
);
1855 isl_set_free(domain
);
1856 isl_basic_set_free(bounds
);
1857 isl_union_map_free(executed
);
1858 isl_ast_build_free(build
);
1862 /* Does any element of i follow or coincide with any element of j
1863 * at the current depth for equal values of the outer dimensions?
1865 static isl_bool
domain_follows_at_depth(__isl_keep isl_basic_set
*i
,
1866 __isl_keep isl_basic_set
*j
, void *user
)
1868 int depth
= *(int *) user
;
1869 isl_basic_map
*test
;
1873 test
= isl_basic_map_from_domain_and_range(isl_basic_set_copy(i
),
1874 isl_basic_set_copy(j
));
1875 for (l
= 0; l
< depth
; ++l
)
1876 test
= isl_basic_map_equate(test
, isl_dim_in
, l
,
1878 test
= isl_basic_map_order_ge(test
, isl_dim_in
, depth
,
1879 isl_dim_out
, depth
);
1880 empty
= isl_basic_map_is_empty(test
);
1881 isl_basic_map_free(test
);
1883 return isl_bool_not(empty
);
1886 /* Split up each element of "list" into a part that is related to "bset"
1887 * according to "gt" and a part that is not.
1888 * Return a list that consist of "bset" and all the pieces.
1890 static __isl_give isl_basic_set_list
*add_split_on(
1891 __isl_take isl_basic_set_list
*list
, __isl_take isl_basic_set
*bset
,
1892 __isl_keep isl_basic_map
*gt
)
1896 isl_basic_set_list
*res
;
1898 n
= isl_basic_set_list_n_basic_set(list
);
1900 bset
= isl_basic_set_free(bset
);
1902 gt
= isl_basic_map_copy(gt
);
1903 gt
= isl_basic_map_intersect_domain(gt
, isl_basic_set_copy(bset
));
1904 res
= isl_basic_set_list_from_basic_set(bset
);
1905 for (i
= 0; res
&& i
< n
; ++i
) {
1906 isl_basic_set
*bset
;
1907 isl_set
*set1
, *set2
;
1908 isl_basic_map
*bmap
;
1911 bset
= isl_basic_set_list_get_basic_set(list
, i
);
1912 bmap
= isl_basic_map_copy(gt
);
1913 bmap
= isl_basic_map_intersect_range(bmap
, bset
);
1914 bset
= isl_basic_map_range(bmap
);
1915 empty
= isl_basic_set_is_empty(bset
);
1917 res
= isl_basic_set_list_free(res
);
1919 isl_basic_set_free(bset
);
1920 bset
= isl_basic_set_list_get_basic_set(list
, i
);
1921 res
= isl_basic_set_list_add(res
, bset
);
1925 res
= isl_basic_set_list_add(res
, isl_basic_set_copy(bset
));
1926 set1
= isl_set_from_basic_set(bset
);
1927 bset
= isl_basic_set_list_get_basic_set(list
, i
);
1928 set2
= isl_set_from_basic_set(bset
);
1929 set1
= isl_set_subtract(set2
, set1
);
1930 set1
= isl_set_make_disjoint(set1
);
1932 res
= isl_basic_set_list_concat(res
,
1933 isl_basic_set_list_from_set(set1
));
1935 isl_basic_map_free(gt
);
1936 isl_basic_set_list_free(list
);
1940 static __isl_give isl_ast_graft_list
*generate_sorted_domains(
1941 __isl_keep isl_basic_set_list
*domain_list
,
1942 __isl_keep isl_union_map
*executed
,
1943 __isl_keep isl_ast_build
*build
);
1945 /* Internal data structure for add_nodes.
1947 * "executed" and "build" are extra arguments to be passed to add_node.
1948 * "list" collects the results.
1950 struct isl_add_nodes_data
{
1951 isl_union_map
*executed
;
1952 isl_ast_build
*build
;
1954 isl_ast_graft_list
*list
;
1957 /* Generate code for the schedule domains in "scc"
1958 * and add the results to "list".
1960 * The domains in "scc" form a strongly connected component in the ordering.
1961 * If the number of domains in "scc" is larger than 1, then this means
1962 * that we cannot determine a valid ordering for the domains in the component.
1963 * This should be fairly rare because the individual domains
1964 * have been made disjoint first.
1965 * The problem is that the domains may be integrally disjoint but not
1966 * rationally disjoint. For example, we may have domains
1968 * { [i,i] : 0 <= i <= 1 } and { [i,1-i] : 0 <= i <= 1 }
1970 * These two domains have an empty intersection, but their rational
1971 * relaxations do intersect. It is impossible to order these domains
1972 * in the second dimension because the first should be ordered before
1973 * the second for outer dimension equal to 0, while it should be ordered
1974 * after for outer dimension equal to 1.
1976 * This may happen in particular in case of unrolling since the domain
1977 * of each slice is replaced by its simple hull.
1979 * For each basic set i in "scc" and for each of the following basic sets j,
1980 * we split off that part of the basic set i that shares the outer dimensions
1981 * with j and lies before j in the current dimension.
1982 * We collect all the pieces in a new list that replaces "scc".
1984 * While the elements in "scc" should be disjoint, we double-check
1985 * this property to avoid running into an infinite recursion in case
1986 * they intersect due to some internal error.
1988 static isl_stat
add_nodes(__isl_take isl_basic_set_list
*scc
, void *user
)
1990 struct isl_add_nodes_data
*data
= user
;
1994 isl_basic_set
*bset
, *first
;
1995 isl_basic_set_list
*list
;
1999 n
= isl_basic_set_list_n_basic_set(scc
);
2002 bset
= isl_basic_set_list_get_basic_set(scc
, 0);
2004 isl_basic_set_list_free(scc
);
2005 data
->list
= add_node(data
->list
,
2006 isl_union_map_copy(data
->executed
), bset
,
2007 isl_ast_build_copy(data
->build
));
2008 return data
->list
? isl_stat_ok
: isl_stat_error
;
2011 depth
= isl_ast_build_get_depth(data
->build
);
2013 bset
= isl_basic_set_free(bset
);
2014 space
= isl_basic_set_get_space(bset
);
2015 space
= isl_space_map_from_set(space
);
2016 gt
= isl_basic_map_universe(space
);
2017 for (i
= 0; i
< depth
; ++i
)
2018 gt
= isl_basic_map_equate(gt
, isl_dim_in
, i
, isl_dim_out
, i
);
2019 gt
= isl_basic_map_order_gt(gt
, isl_dim_in
, depth
, isl_dim_out
, depth
);
2021 first
= isl_basic_set_copy(bset
);
2022 list
= isl_basic_set_list_from_basic_set(bset
);
2023 for (i
= 1; i
< n
; ++i
) {
2026 bset
= isl_basic_set_list_get_basic_set(scc
, i
);
2028 disjoint
= isl_basic_set_is_disjoint(bset
, first
);
2030 list
= isl_basic_set_list_free(list
);
2032 isl_die(isl_basic_set_list_get_ctx(scc
),
2034 "basic sets in scc are assumed to be disjoint",
2035 list
= isl_basic_set_list_free(list
));
2037 list
= add_split_on(list
, bset
, gt
);
2039 isl_basic_set_free(first
);
2040 isl_basic_map_free(gt
);
2041 isl_basic_set_list_free(scc
);
2043 data
->list
= isl_ast_graft_list_concat(data
->list
,
2044 generate_sorted_domains(scc
, data
->executed
, data
->build
));
2045 isl_basic_set_list_free(scc
);
2047 return data
->list
? isl_stat_ok
: isl_stat_error
;
2049 isl_basic_set_list_free(scc
);
2050 return isl_stat_error
;
2053 /* Sort the domains in "domain_list" according to the execution order
2054 * at the current depth (for equal values of the outer dimensions),
2055 * generate code for each of them, collecting the results in a list.
2056 * If no code is generated (because the intersection of the inverse schedule
2057 * with the domains turns out to be empty), then an empty list is returned.
2059 * The caller is responsible for ensuring that the basic sets in "domain_list"
2060 * are pair-wise disjoint. It can, however, in principle happen that
2061 * two basic sets should be ordered one way for one value of the outer
2062 * dimensions and the other way for some other value of the outer dimensions.
2063 * We therefore play safe and look for strongly connected components.
2064 * The function add_nodes takes care of handling non-trivial components.
2066 static __isl_give isl_ast_graft_list
*generate_sorted_domains(
2067 __isl_keep isl_basic_set_list
*domain_list
,
2068 __isl_keep isl_union_map
*executed
, __isl_keep isl_ast_build
*build
)
2071 struct isl_add_nodes_data data
;
2075 n
= isl_basic_set_list_n_basic_set(domain_list
);
2079 ctx
= isl_basic_set_list_get_ctx(domain_list
);
2080 data
.list
= isl_ast_graft_list_alloc(ctx
, n
);
2084 return add_node(data
.list
, isl_union_map_copy(executed
),
2085 isl_basic_set_list_get_basic_set(domain_list
, 0),
2086 isl_ast_build_copy(build
));
2088 depth
= isl_ast_build_get_depth(build
);
2089 data
.executed
= executed
;
2091 if (depth
< 0 || isl_basic_set_list_foreach_scc(domain_list
,
2092 &domain_follows_at_depth
, &depth
,
2093 &add_nodes
, &data
) < 0)
2094 data
.list
= isl_ast_graft_list_free(data
.list
);
2099 /* Do i and j share any values for the outer dimensions?
2101 static isl_bool
shared_outer(__isl_keep isl_basic_set
*i
,
2102 __isl_keep isl_basic_set
*j
, void *user
)
2104 int depth
= *(int *) user
;
2105 isl_basic_map
*test
;
2109 test
= isl_basic_map_from_domain_and_range(isl_basic_set_copy(i
),
2110 isl_basic_set_copy(j
));
2111 for (l
= 0; l
< depth
; ++l
)
2112 test
= isl_basic_map_equate(test
, isl_dim_in
, l
,
2114 empty
= isl_basic_map_is_empty(test
);
2115 isl_basic_map_free(test
);
2117 return isl_bool_not(empty
);
2120 /* Internal data structure for generate_sorted_domains_wrap.
2122 * "n" is the total number of basic sets
2123 * "executed" and "build" are extra arguments to be passed
2124 * to generate_sorted_domains.
2126 * "single" is set to 1 by generate_sorted_domains_wrap if there
2127 * is only a single component.
2128 * "list" collects the results.
2130 struct isl_ast_generate_parallel_domains_data
{
2132 isl_union_map
*executed
;
2133 isl_ast_build
*build
;
2136 isl_ast_graft_list
*list
;
2139 /* Call generate_sorted_domains on "scc", fuse the result into a list
2140 * with either zero or one graft and collect the these single element
2141 * lists into data->list.
2143 * If there is only one component, i.e., if the number of basic sets
2144 * in the current component is equal to the total number of basic sets,
2145 * then data->single is set to 1 and the result of generate_sorted_domains
2148 static isl_stat
generate_sorted_domains_wrap(__isl_take isl_basic_set_list
*scc
,
2151 struct isl_ast_generate_parallel_domains_data
*data
= user
;
2152 isl_ast_graft_list
*list
;
2155 n
= isl_basic_set_list_n_basic_set(scc
);
2157 scc
= isl_basic_set_list_free(scc
);
2158 list
= generate_sorted_domains(scc
, data
->executed
, data
->build
);
2159 data
->single
= n
== data
->n
;
2161 list
= isl_ast_graft_list_fuse(list
, data
->build
);
2165 data
->list
= isl_ast_graft_list_concat(data
->list
, list
);
2167 isl_basic_set_list_free(scc
);
2169 return isl_stat_error
;
2174 /* Look for any (weakly connected) components in the "domain_list"
2175 * of domains that share some values of the outer dimensions.
2176 * That is, domains in different components do not share any values
2177 * of the outer dimensions. This means that these components
2178 * can be freely reordered.
2179 * Within each of the components, we sort the domains according
2180 * to the execution order at the current depth.
2182 * If there is more than one component, then generate_sorted_domains_wrap
2183 * fuses the result of each call to generate_sorted_domains
2184 * into a list with either zero or one graft and collects these (at most)
2185 * single element lists into a bigger list. This means that the elements of the
2186 * final list can be freely reordered. In particular, we sort them
2187 * according to an arbitrary but fixed ordering to ease merging of
2188 * graft lists from different components.
2190 static __isl_give isl_ast_graft_list
*generate_parallel_domains(
2191 __isl_keep isl_basic_set_list
*domain_list
,
2192 __isl_keep isl_union_map
*executed
, __isl_keep isl_ast_build
*build
)
2195 struct isl_ast_generate_parallel_domains_data data
;
2197 data
.n
= isl_basic_set_list_n_basic_set(domain_list
);
2202 return generate_sorted_domains(domain_list
, executed
, build
);
2204 depth
= isl_ast_build_get_depth(build
);
2208 data
.executed
= executed
;
2211 if (isl_basic_set_list_foreach_scc(domain_list
, &shared_outer
, &depth
,
2212 &generate_sorted_domains_wrap
,
2214 data
.list
= isl_ast_graft_list_free(data
.list
);
2217 data
.list
= isl_ast_graft_list_sort_guard(data
.list
);
2222 /* Internal data for separate_domain.
2224 * "explicit" is set if we only want to use explicit bounds.
2226 * "domain" collects the separated domains.
2228 struct isl_separate_domain_data
{
2229 isl_ast_build
*build
;
2234 /* Extract implicit bounds on the current dimension for the executed "map".
2236 * The domain of "map" may involve inner dimensions, so we
2237 * need to eliminate them.
2239 static __isl_give isl_set
*implicit_bounds(__isl_take isl_map
*map
,
2240 __isl_keep isl_ast_build
*build
)
2244 domain
= isl_map_domain(map
);
2245 domain
= isl_ast_build_eliminate(build
, domain
);
2250 /* Extract explicit bounds on the current dimension for the executed "map".
2252 * Rather than eliminating the inner dimensions as in implicit_bounds,
2253 * we simply drop any constraints involving those inner dimensions.
2254 * The idea is that most bounds that are implied by constraints on the
2255 * inner dimensions will be enforced by for loops and not by explicit guards.
2256 * There is then no need to separate along those bounds.
2258 static __isl_give isl_set
*explicit_bounds(__isl_take isl_map
*map
,
2259 __isl_keep isl_ast_build
*build
)
2265 depth
= isl_ast_build_get_depth(build
);
2266 dim
= isl_map_dim(map
, isl_dim_out
);
2267 if (depth
< 0 || dim
< 0)
2268 return isl_map_domain(isl_map_free(map
));
2269 map
= isl_map_drop_constraints_involving_dims(map
, isl_dim_out
, 0, dim
);
2271 domain
= isl_map_domain(map
);
2272 dim
= isl_set_dim(domain
, isl_dim_set
);
2273 domain
= isl_set_detect_equalities(domain
);
2274 domain
= isl_set_drop_constraints_involving_dims(domain
,
2275 isl_dim_set
, depth
+ 1, dim
- (depth
+ 1));
2276 domain
= isl_set_remove_divs_involving_dims(domain
,
2277 isl_dim_set
, depth
, 1);
2278 domain
= isl_set_remove_unknown_divs(domain
);
2283 /* Split data->domain into pieces that intersect with the range of "map"
2284 * and pieces that do not intersect with the range of "map"
2285 * and then add that part of the range of "map" that does not intersect
2286 * with data->domain.
2288 static isl_stat
separate_domain(__isl_take isl_map
*map
, void *user
)
2290 struct isl_separate_domain_data
*data
= user
;
2295 domain
= explicit_bounds(map
, data
->build
);
2297 domain
= implicit_bounds(map
, data
->build
);
2299 domain
= isl_set_coalesce(domain
);
2300 domain
= isl_set_make_disjoint(domain
);
2301 d1
= isl_set_subtract(isl_set_copy(domain
), isl_set_copy(data
->domain
));
2302 d2
= isl_set_subtract(isl_set_copy(data
->domain
), isl_set_copy(domain
));
2303 data
->domain
= isl_set_intersect(data
->domain
, domain
);
2304 data
->domain
= isl_set_union(data
->domain
, d1
);
2305 data
->domain
= isl_set_union(data
->domain
, d2
);
2310 /* Separate the schedule domains of "executed".
2312 * That is, break up the domain of "executed" into basic sets,
2313 * such that for each basic set S, every element in S is associated with
2314 * the same domain spaces.
2316 * "space" is the (single) domain space of "executed".
2318 static __isl_give isl_set
*separate_schedule_domains(
2319 __isl_take isl_space
*space
, __isl_take isl_union_map
*executed
,
2320 __isl_keep isl_ast_build
*build
)
2322 struct isl_separate_domain_data data
= { build
};
2325 ctx
= isl_ast_build_get_ctx(build
);
2326 data
.explicit = isl_options_get_ast_build_separation_bounds(ctx
) ==
2327 ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT
;
2328 data
.domain
= isl_set_empty(space
);
2329 if (isl_union_map_foreach_map(executed
, &separate_domain
, &data
) < 0)
2330 data
.domain
= isl_set_free(data
.domain
);
2332 isl_union_map_free(executed
);
2336 /* Temporary data used during the search for a lower bound for unrolling.
2338 * "build" is the build in which the unrolling will be performed
2339 * "domain" is the original set for which to find a lower bound
2340 * "depth" is the dimension for which to find a lower boudn
2341 * "expansion" is the expansion that needs to be applied to "domain"
2342 * in the unrolling that will be performed
2344 * "lower" is the best lower bound found so far. It is NULL if we have not
2346 * "n" is the corresponding size. If lower is NULL, then the value of n
2348 * "n_div" is the maximal number of integer divisions in the first
2349 * unrolled iteration (after expansion). It is set to -1 if it hasn't
2350 * been computed yet.
2352 struct isl_find_unroll_data
{
2353 isl_ast_build
*build
;
2356 isl_basic_map
*expansion
;
2363 /* Return the constraint
2365 * i_"depth" = aff + offset
2367 static __isl_give isl_constraint
*at_offset(int depth
, __isl_keep isl_aff
*aff
,
2370 aff
= isl_aff_copy(aff
);
2371 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, depth
, -1);
2372 aff
= isl_aff_add_constant_si(aff
, offset
);
2373 return isl_equality_from_aff(aff
);
2376 /* Update *user to the number of integer divisions in the first element
2377 * of "ma", if it is larger than the current value.
2379 static isl_stat
update_n_div(__isl_take isl_set
*set
,
2380 __isl_take isl_multi_aff
*ma
, void *user
)
2386 aff
= isl_multi_aff_get_aff(ma
, 0);
2387 n_div
= isl_aff_dim(aff
, isl_dim_div
);
2389 isl_multi_aff_free(ma
);
2395 return n_div
>= 0 ? isl_stat_ok
: isl_stat_error
;
2398 /* Get the number of integer divisions in the expression for the iterator
2399 * value at the first slice in the unrolling based on lower bound "lower",
2400 * taking into account the expansion that needs to be performed on this slice.
2402 static int get_expanded_n_div(struct isl_find_unroll_data
*data
,
2403 __isl_keep isl_aff
*lower
)
2407 isl_map
*it_map
, *expansion
;
2408 isl_pw_multi_aff
*pma
;
2411 c
= at_offset(data
->depth
, lower
, 0);
2412 set
= isl_set_copy(data
->domain
);
2413 set
= isl_set_add_constraint(set
, c
);
2414 expansion
= isl_map_from_basic_map(isl_basic_map_copy(data
->expansion
));
2415 set
= isl_set_apply(set
, expansion
);
2416 it_map
= isl_ast_build_map_to_iterator(data
->build
, set
);
2417 pma
= isl_pw_multi_aff_from_map(it_map
);
2419 if (isl_pw_multi_aff_foreach_piece(pma
, &update_n_div
, &n
) < 0)
2421 isl_pw_multi_aff_free(pma
);
2426 /* Is the lower bound "lower" with corresponding iteration count "n"
2427 * better than the one stored in "data"?
2428 * If there is no upper bound on the iteration count ("n" is infinity) or
2429 * if the count is too large, then we cannot use this lower bound.
2430 * Otherwise, if there was no previous lower bound or
2431 * if the iteration count of the new lower bound is smaller than
2432 * the iteration count of the previous lower bound, then we consider
2433 * the new lower bound to be better.
2434 * If the iteration count is the same, then compare the number
2435 * of integer divisions that would be needed to express
2436 * the iterator value at the first slice in the unrolling
2437 * according to the lower bound. If we end up computing this
2438 * number, then store the lowest value in data->n_div.
2440 static int is_better_lower_bound(struct isl_find_unroll_data
*data
,
2441 __isl_keep isl_aff
*lower
, __isl_keep isl_val
*n
)
2448 if (isl_val_is_infty(n
))
2450 if (isl_val_cmp_si(n
, INT_MAX
) > 0)
2454 cmp
= isl_val_cmp_si(n
, *data
->n
);
2459 if (data
->n_div
< 0)
2460 data
->n_div
= get_expanded_n_div(data
, data
->lower
);
2461 if (data
->n_div
< 0)
2463 if (data
->n_div
== 0)
2465 n_div
= get_expanded_n_div(data
, lower
);
2468 if (n_div
>= data
->n_div
)
2470 data
->n_div
= n_div
;
2475 /* Check if we can use "c" as a lower bound and if it is better than
2476 * any previously found lower bound.
2478 * If "c" does not involve the dimension at the current depth,
2479 * then we cannot use it.
2480 * Otherwise, let "c" be of the form
2484 * We compute the maximal value of
2486 * -ceil(f(j)/a)) + i + 1
2488 * over the domain. If there is such a value "n", then we know
2490 * -ceil(f(j)/a)) + i + 1 <= n
2494 * i < ceil(f(j)/a)) + n
2496 * meaning that we can use ceil(f(j)/a)) as a lower bound for unrolling.
2497 * We just need to check if we have found any lower bound before and
2498 * if the new lower bound is better (smaller n or fewer integer divisions)
2499 * than the previously found lower bounds.
2501 static isl_stat
update_unrolling_lower_bound(struct isl_find_unroll_data
*data
,
2502 __isl_keep isl_constraint
*c
)
2504 isl_aff
*aff
, *lower
;
2508 if (!isl_constraint_is_lower_bound(c
, isl_dim_set
, data
->depth
))
2511 lower
= isl_constraint_get_bound(c
, isl_dim_set
, data
->depth
);
2512 lower
= isl_aff_ceil(lower
);
2513 aff
= isl_aff_copy(lower
);
2514 aff
= isl_aff_neg(aff
);
2515 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, data
->depth
, 1);
2516 aff
= isl_aff_add_constant_si(aff
, 1);
2517 max
= isl_set_max_val(data
->domain
, aff
);
2520 better
= is_better_lower_bound(data
, lower
, max
);
2521 if (better
< 0 || !better
) {
2523 isl_aff_free(lower
);
2524 return better
< 0 ? isl_stat_error
: isl_stat_ok
;
2527 isl_aff_free(data
->lower
);
2528 data
->lower
= lower
;
2529 *data
->n
= isl_val_get_num_si(max
);
2535 /* Check if we can use "c" as a lower bound and if it is better than
2536 * any previously found lower bound.
2538 static isl_stat
constraint_find_unroll(__isl_take isl_constraint
*c
, void *user
)
2540 struct isl_find_unroll_data
*data
;
2543 data
= (struct isl_find_unroll_data
*) user
;
2544 r
= update_unrolling_lower_bound(data
, c
);
2545 isl_constraint_free(c
);
2550 /* Look for a lower bound l(i) on the dimension at "depth"
2551 * and a size n such that "domain" is a subset of
2553 * { [i] : l(i) <= i_d < l(i) + n }
2555 * where d is "depth" and l(i) depends only on earlier dimensions.
2556 * Furthermore, try and find a lower bound such that n is as small as possible.
2557 * In particular, "n" needs to be finite.
2558 * "build" is the build in which the unrolling will be performed.
2559 * "expansion" is the expansion that needs to be applied to "domain"
2560 * in the unrolling that will be performed.
2562 * Inner dimensions have been eliminated from "domain" by the caller.
2564 * We first construct a collection of lower bounds on the input set
2565 * by computing its simple hull. We then iterate through them,
2566 * discarding those that we cannot use (either because they do not
2567 * involve the dimension at "depth" or because they have no corresponding
2568 * upper bound, meaning that "n" would be unbounded) and pick out the
2569 * best from the remaining ones.
2571 * If we cannot find a suitable lower bound, then we consider that
2574 static __isl_give isl_aff
*find_unroll_lower_bound(
2575 __isl_keep isl_ast_build
*build
, __isl_keep isl_set
*domain
,
2576 int depth
, __isl_keep isl_basic_map
*expansion
, int *n
)
2578 struct isl_find_unroll_data data
=
2579 { build
, domain
, depth
, expansion
, NULL
, n
, -1 };
2580 isl_basic_set
*hull
;
2582 hull
= isl_set_simple_hull(isl_set_copy(domain
));
2584 if (isl_basic_set_foreach_constraint(hull
,
2585 &constraint_find_unroll
, &data
) < 0)
2588 isl_basic_set_free(hull
);
2591 isl_die(isl_set_get_ctx(domain
), isl_error_invalid
,
2592 "cannot find lower bound for unrolling", return NULL
);
2596 isl_basic_set_free(hull
);
2597 return isl_aff_free(data
.lower
);
2600 /* Call "fn" on each iteration of the current dimension of "domain".
2601 * If "init" is not NULL, then it is called with the number of
2602 * iterations before any call to "fn".
2603 * Return -1 on failure.
2605 * Since we are going to be iterating over the individual values,
2606 * we first check if there are any strides on the current dimension.
2607 * If there is, we rewrite the current dimension i as
2609 * i = stride i' + offset
2611 * and then iterate over individual values of i' instead.
2613 * We then look for a lower bound on i' and a size such that the domain
2616 * { [j,i'] : l(j) <= i' < l(j) + n }
2618 * and then take slices of the domain at values of i'
2619 * between l(j) and l(j) + n - 1.
2621 * We compute the unshifted simple hull of each slice to ensure that
2622 * we have a single basic set per offset. The slicing constraint
2623 * may get simplified away before the unshifted simple hull is taken
2624 * and may therefore in some rare cases disappear from the result.
2625 * We therefore explicitly add the constraint back after computing
2626 * the unshifted simple hull to ensure that the basic sets
2627 * remain disjoint. The constraints that are dropped by taking the hull
2628 * will be taken into account at the next level, as in the case of the
2631 * Finally, we map i' back to i and call "fn".
2633 static int foreach_iteration(__isl_take isl_set
*domain
,
2634 __isl_keep isl_ast_build
*build
, int (*init
)(int n
, void *user
),
2635 int (*fn
)(__isl_take isl_basic_set
*bset
, void *user
), void *user
)
2640 isl_multi_aff
*expansion
;
2641 isl_basic_map
*bmap
;
2642 isl_aff
*lower
= NULL
;
2643 isl_ast_build
*stride_build
;
2645 depth
= isl_ast_build_get_depth(build
);
2647 domain
= isl_set_free(domain
);
2649 domain
= isl_ast_build_eliminate_inner(build
, domain
);
2650 domain
= isl_set_intersect(domain
, isl_ast_build_get_domain(build
));
2651 stride_build
= isl_ast_build_copy(build
);
2652 stride_build
= isl_ast_build_detect_strides(stride_build
,
2653 isl_set_copy(domain
));
2654 expansion
= isl_ast_build_get_stride_expansion(stride_build
);
2656 domain
= isl_set_preimage_multi_aff(domain
,
2657 isl_multi_aff_copy(expansion
));
2658 domain
= isl_ast_build_eliminate_divs(stride_build
, domain
);
2659 isl_ast_build_free(stride_build
);
2661 bmap
= isl_basic_map_from_multi_aff(expansion
);
2663 empty
= isl_set_is_empty(domain
);
2669 lower
= find_unroll_lower_bound(build
, domain
, depth
, bmap
, &n
);
2673 if (n
>= 0 && init
&& init(n
, user
) < 0)
2675 for (i
= 0; i
< n
; ++i
) {
2677 isl_basic_set
*bset
;
2678 isl_constraint
*slice
;
2680 slice
= at_offset(depth
, lower
, i
);
2681 set
= isl_set_copy(domain
);
2682 set
= isl_set_add_constraint(set
, isl_constraint_copy(slice
));
2683 bset
= isl_set_unshifted_simple_hull(set
);
2684 bset
= isl_basic_set_add_constraint(bset
, slice
);
2685 bset
= isl_basic_set_apply(bset
, isl_basic_map_copy(bmap
));
2687 if (fn(bset
, user
) < 0)
2691 isl_aff_free(lower
);
2692 isl_set_free(domain
);
2693 isl_basic_map_free(bmap
);
2695 return n
< 0 || i
< n
? -1 : 0;
2698 /* Data structure for storing the results and the intermediate objects
2699 * of compute_domains.
2701 * "list" is the main result of the function and contains a list
2702 * of disjoint basic sets for which code should be generated.
2704 * "executed" and "build" are inputs to compute_domains.
2705 * "schedule_domain" is the domain of "executed".
2707 * "option" contains the domains at the current depth that should by
2708 * atomic, separated or unrolled. These domains are as specified by
2709 * the user, except that inner dimensions have been eliminated and
2710 * that they have been made pair-wise disjoint.
2712 * "sep_class" contains the user-specified split into separation classes
2713 * specialized to the current depth.
2714 * "done" contains the union of the separation domains that have already
2717 struct isl_codegen_domains
{
2718 isl_basic_set_list
*list
;
2720 isl_union_map
*executed
;
2721 isl_ast_build
*build
;
2722 isl_set
*schedule_domain
;
2730 /* Internal data structure for do_unroll.
2732 * "domains" stores the results of compute_domains.
2733 * "class_domain" is the original class domain passed to do_unroll.
2734 * "unroll_domain" collects the unrolled iterations.
2736 struct isl_ast_unroll_data
{
2737 struct isl_codegen_domains
*domains
;
2738 isl_set
*class_domain
;
2739 isl_set
*unroll_domain
;
2742 /* Given an iteration of an unrolled domain represented by "bset",
2743 * add it to data->domains->list.
2744 * Since we may have dropped some constraints, we intersect with
2745 * the class domain again to ensure that each element in the list
2746 * is disjoint from the other class domains.
2748 static int do_unroll_iteration(__isl_take isl_basic_set
*bset
, void *user
)
2750 struct isl_ast_unroll_data
*data
= user
;
2752 isl_basic_set_list
*list
;
2754 set
= isl_set_from_basic_set(bset
);
2755 data
->unroll_domain
= isl_set_union(data
->unroll_domain
,
2757 set
= isl_set_intersect(set
, isl_set_copy(data
->class_domain
));
2758 set
= isl_set_make_disjoint(set
);
2759 list
= isl_basic_set_list_from_set(set
);
2760 data
->domains
->list
= isl_basic_set_list_concat(data
->domains
->list
,
2766 /* Extend domains->list with a list of basic sets, one for each value
2767 * of the current dimension in "domain" and remove the corresponding
2768 * sets from the class domain. Return the updated class domain.
2769 * The divs that involve the current dimension have not been projected out
2772 * We call foreach_iteration to iterate over the individual values and
2773 * in do_unroll_iteration we collect the individual basic sets in
2774 * domains->list and their union in data->unroll_domain, which is then
2775 * used to update the class domain.
2777 static __isl_give isl_set
*do_unroll(struct isl_codegen_domains
*domains
,
2778 __isl_take isl_set
*domain
, __isl_take isl_set
*class_domain
)
2780 struct isl_ast_unroll_data data
;
2783 return isl_set_free(class_domain
);
2785 return isl_set_free(domain
);
2787 data
.domains
= domains
;
2788 data
.class_domain
= class_domain
;
2789 data
.unroll_domain
= isl_set_empty(isl_set_get_space(domain
));
2791 if (foreach_iteration(domain
, domains
->build
, NULL
,
2792 &do_unroll_iteration
, &data
) < 0)
2793 data
.unroll_domain
= isl_set_free(data
.unroll_domain
);
2795 class_domain
= isl_set_subtract(class_domain
, data
.unroll_domain
);
2797 return class_domain
;
2800 /* Add domains to domains->list for each individual value of the current
2801 * dimension, for that part of the schedule domain that lies in the
2802 * intersection of the option domain and the class domain.
2803 * Remove the corresponding sets from the class domain and
2804 * return the updated class domain.
2806 * We first break up the unroll option domain into individual pieces
2807 * and then handle each of them separately. The unroll option domain
2808 * has been made disjoint in compute_domains_init_options,
2810 * Note that we actively want to combine different pieces of the
2811 * schedule domain that have the same value at the current dimension.
2812 * We therefore need to break up the unroll option domain before
2813 * intersecting with class and schedule domain, hoping that the
2814 * unroll option domain specified by the user is relatively simple.
2816 static __isl_give isl_set
*compute_unroll_domains(
2817 struct isl_codegen_domains
*domains
, __isl_take isl_set
*class_domain
)
2819 isl_set
*unroll_domain
;
2820 isl_basic_set_list
*unroll_list
;
2825 empty
= isl_set_is_empty(domains
->option
[isl_ast_loop_unroll
]);
2827 return isl_set_free(class_domain
);
2829 return class_domain
;
2831 unroll_domain
= isl_set_copy(domains
->option
[isl_ast_loop_unroll
]);
2832 unroll_list
= isl_basic_set_list_from_set(unroll_domain
);
2834 n
= isl_basic_set_list_n_basic_set(unroll_list
);
2836 class_domain
= isl_set_free(class_domain
);
2837 for (i
= 0; i
< n
; ++i
) {
2838 isl_basic_set
*bset
;
2840 bset
= isl_basic_set_list_get_basic_set(unroll_list
, i
);
2841 unroll_domain
= isl_set_from_basic_set(bset
);
2842 unroll_domain
= isl_set_intersect(unroll_domain
,
2843 isl_set_copy(class_domain
));
2844 unroll_domain
= isl_set_intersect(unroll_domain
,
2845 isl_set_copy(domains
->schedule_domain
));
2847 empty
= isl_set_is_empty(unroll_domain
);
2848 if (empty
>= 0 && empty
) {
2849 isl_set_free(unroll_domain
);
2853 class_domain
= do_unroll(domains
, unroll_domain
, class_domain
);
2856 isl_basic_set_list_free(unroll_list
);
2858 return class_domain
;
2861 /* Try and construct a single basic set that includes the intersection of
2862 * the schedule domain, the atomic option domain and the class domain.
2863 * Add the resulting basic set(s) to domains->list and remove them
2864 * from class_domain. Return the updated class domain.
2866 * We construct a single domain rather than trying to combine
2867 * the schedule domains of individual domains because we are working
2868 * within a single component so that non-overlapping schedule domains
2869 * should already have been separated.
2870 * We do however need to make sure that this single domains is a subset
2871 * of the class domain so that it would not intersect with any other
2872 * class domains. This means that we may end up splitting up the atomic
2873 * domain in case separation classes are being used.
2875 * "domain" is the intersection of the schedule domain and the class domain,
2876 * with inner dimensions projected out.
2878 static __isl_give isl_set
*compute_atomic_domain(
2879 struct isl_codegen_domains
*domains
, __isl_take isl_set
*class_domain
)
2881 isl_basic_set
*bset
;
2882 isl_basic_set_list
*list
;
2883 isl_set
*domain
, *atomic_domain
;
2886 domain
= isl_set_copy(domains
->option
[isl_ast_loop_atomic
]);
2887 domain
= isl_set_intersect(domain
, isl_set_copy(class_domain
));
2888 domain
= isl_set_intersect(domain
,
2889 isl_set_copy(domains
->schedule_domain
));
2890 empty
= isl_set_is_empty(domain
);
2892 class_domain
= isl_set_free(class_domain
);
2894 isl_set_free(domain
);
2895 return class_domain
;
2898 domain
= isl_ast_build_eliminate(domains
->build
, domain
);
2899 domain
= isl_set_coalesce_preserve(domain
);
2900 bset
= isl_set_unshifted_simple_hull(domain
);
2901 domain
= isl_set_from_basic_set(bset
);
2902 atomic_domain
= isl_set_copy(domain
);
2903 domain
= isl_set_intersect(domain
, isl_set_copy(class_domain
));
2904 class_domain
= isl_set_subtract(class_domain
, atomic_domain
);
2905 domain
= isl_set_make_disjoint(domain
);
2906 list
= isl_basic_set_list_from_set(domain
);
2907 domains
->list
= isl_basic_set_list_concat(domains
->list
, list
);
2909 return class_domain
;
2912 /* Split up the schedule domain into uniform basic sets,
2913 * in the sense that each element in a basic set is associated to
2914 * elements of the same domains, and add the result to domains->list.
2915 * Do this for that part of the schedule domain that lies in the
2916 * intersection of "class_domain" and the separate option domain.
2918 * "class_domain" may or may not include the constraints
2919 * of the schedule domain, but this does not make a difference
2920 * since we are going to intersect it with the domain of the inverse schedule.
2921 * If it includes schedule domain constraints, then they may involve
2922 * inner dimensions, but we will eliminate them in separation_domain.
2924 static int compute_separate_domain(struct isl_codegen_domains
*domains
,
2925 __isl_keep isl_set
*class_domain
)
2929 isl_union_map
*executed
;
2930 isl_basic_set_list
*list
;
2933 domain
= isl_set_copy(domains
->option
[isl_ast_loop_separate
]);
2934 domain
= isl_set_intersect(domain
, isl_set_copy(class_domain
));
2935 executed
= isl_union_map_copy(domains
->executed
);
2936 executed
= isl_union_map_intersect_domain(executed
,
2937 isl_union_set_from_set(domain
));
2938 empty
= isl_union_map_is_empty(executed
);
2939 if (empty
< 0 || empty
) {
2940 isl_union_map_free(executed
);
2941 return empty
< 0 ? -1 : 0;
2944 space
= isl_set_get_space(class_domain
);
2945 domain
= separate_schedule_domains(space
, executed
, domains
->build
);
2947 list
= isl_basic_set_list_from_set(domain
);
2948 domains
->list
= isl_basic_set_list_concat(domains
->list
, list
);
2953 /* Split up the domain at the current depth into disjoint
2954 * basic sets for which code should be generated separately
2955 * for the given separation class domain.
2957 * If any separation classes have been defined, then "class_domain"
2958 * is the domain of the current class and does not refer to inner dimensions.
2959 * Otherwise, "class_domain" is the universe domain.
2961 * We first make sure that the class domain is disjoint from
2962 * previously considered class domains.
2964 * The separate domains can be computed directly from the "class_domain".
2966 * The unroll, atomic and remainder domains need the constraints
2967 * from the schedule domain.
2969 * For unrolling, the actual schedule domain is needed (with divs that
2970 * may refer to the current dimension) so that stride detection can be
2973 * For atomic and remainder domains, inner dimensions and divs involving
2974 * the current dimensions should be eliminated.
2975 * In case we are working within a separation class, we need to intersect
2976 * the result with the current "class_domain" to ensure that the domains
2977 * are disjoint from those generated from other class domains.
2979 * The domain that has been made atomic may be larger than specified
2980 * by the user since it needs to be representable as a single basic set.
2981 * This possibly larger domain is removed from class_domain by
2982 * compute_atomic_domain. It is computed first so that the extended domain
2983 * would not overlap with any domains computed before.
2984 * Similary, the unrolled domains may have some constraints removed and
2985 * may therefore also be larger than specified by the user.
2987 * If anything is left after handling separate, unroll and atomic,
2988 * we split it up into basic sets and append the basic sets to domains->list.
2990 static isl_stat
compute_partial_domains(struct isl_codegen_domains
*domains
,
2991 __isl_take isl_set
*class_domain
)
2993 isl_basic_set_list
*list
;
2996 class_domain
= isl_set_subtract(class_domain
,
2997 isl_set_copy(domains
->done
));
2998 domains
->done
= isl_set_union(domains
->done
,
2999 isl_set_copy(class_domain
));
3001 class_domain
= compute_atomic_domain(domains
, class_domain
);
3002 class_domain
= compute_unroll_domains(domains
, class_domain
);
3004 domain
= isl_set_copy(class_domain
);
3006 if (compute_separate_domain(domains
, domain
) < 0)
3008 domain
= isl_set_subtract(domain
,
3009 isl_set_copy(domains
->option
[isl_ast_loop_separate
]));
3011 domain
= isl_set_intersect(domain
,
3012 isl_set_copy(domains
->schedule_domain
));
3014 domain
= isl_ast_build_eliminate(domains
->build
, domain
);
3015 domain
= isl_set_intersect(domain
, isl_set_copy(class_domain
));
3017 domain
= isl_set_coalesce_preserve(domain
);
3018 domain
= isl_set_make_disjoint(domain
);
3020 list
= isl_basic_set_list_from_set(domain
);
3021 domains
->list
= isl_basic_set_list_concat(domains
->list
, list
);
3023 isl_set_free(class_domain
);
3027 isl_set_free(domain
);
3028 isl_set_free(class_domain
);
3029 return isl_stat_error
;
3032 /* Split up the domain at the current depth into disjoint
3033 * basic sets for which code should be generated separately
3034 * for the separation class identified by "pnt".
3036 * We extract the corresponding class domain from domains->sep_class,
3037 * eliminate inner dimensions and pass control to compute_partial_domains.
3039 static isl_stat
compute_class_domains(__isl_take isl_point
*pnt
, void *user
)
3041 struct isl_codegen_domains
*domains
= user
;
3046 class_set
= isl_set_from_point(pnt
);
3047 domain
= isl_map_domain(isl_map_intersect_range(
3048 isl_map_copy(domains
->sep_class
), class_set
));
3049 domain
= isl_ast_build_compute_gist(domains
->build
, domain
);
3050 domain
= isl_ast_build_eliminate(domains
->build
, domain
);
3052 disjoint
= isl_set_plain_is_disjoint(domain
, domains
->schedule_domain
);
3054 return isl_stat_error
;
3056 isl_set_free(domain
);
3060 return compute_partial_domains(domains
, domain
);
3063 /* Extract the domains at the current depth that should be atomic,
3064 * separated or unrolled and store them in option.
3066 * The domains specified by the user might overlap, so we make
3067 * them disjoint by subtracting earlier domains from later domains.
3069 static void compute_domains_init_options(isl_set
*option
[4],
3070 __isl_keep isl_ast_build
*build
)
3072 enum isl_ast_loop_type type
, type2
;
3075 for (type
= isl_ast_loop_atomic
;
3076 type
<= isl_ast_loop_separate
; ++type
) {
3077 option
[type
] = isl_ast_build_get_option_domain(build
, type
);
3078 for (type2
= isl_ast_loop_atomic
; type2
< type
; ++type2
)
3079 option
[type
] = isl_set_subtract(option
[type
],
3080 isl_set_copy(option
[type2
]));
3083 unroll
= option
[isl_ast_loop_unroll
];
3084 unroll
= isl_set_coalesce(unroll
);
3085 unroll
= isl_set_make_disjoint(unroll
);
3086 option
[isl_ast_loop_unroll
] = unroll
;
3089 /* Split up the domain at the current depth into disjoint
3090 * basic sets for which code should be generated separately,
3091 * based on the user-specified options.
3092 * Return the list of disjoint basic sets.
3094 * There are three kinds of domains that we need to keep track of.
3095 * - the "schedule domain" is the domain of "executed"
3096 * - the "class domain" is the domain corresponding to the currrent
3098 * - the "option domain" is the domain corresponding to one of the options
3099 * atomic, unroll or separate
3101 * We first consider the individial values of the separation classes
3102 * and split up the domain for each of them separately.
3103 * Finally, we consider the remainder. If no separation classes were
3104 * specified, then we call compute_partial_domains with the universe
3105 * "class_domain". Otherwise, we take the "schedule_domain" as "class_domain",
3106 * with inner dimensions removed. We do this because we want to
3107 * avoid computing the complement of the class domains (i.e., the difference
3108 * between the universe and domains->done).
3110 static __isl_give isl_basic_set_list
*compute_domains(
3111 __isl_keep isl_union_map
*executed
, __isl_keep isl_ast_build
*build
)
3113 struct isl_codegen_domains domains
;
3116 isl_union_set
*schedule_domain
;
3120 enum isl_ast_loop_type type
;
3126 ctx
= isl_union_map_get_ctx(executed
);
3127 domains
.list
= isl_basic_set_list_alloc(ctx
, 0);
3129 schedule_domain
= isl_union_map_domain(isl_union_map_copy(executed
));
3130 domain
= isl_set_from_union_set(schedule_domain
);
3132 compute_domains_init_options(domains
.option
, build
);
3134 domains
.sep_class
= isl_ast_build_get_separation_class(build
);
3135 classes
= isl_map_range(isl_map_copy(domains
.sep_class
));
3136 n_param
= isl_set_dim(classes
, isl_dim_param
);
3138 classes
= isl_set_free(classes
);
3139 classes
= isl_set_project_out(classes
, isl_dim_param
, 0, n_param
);
3141 space
= isl_set_get_space(domain
);
3142 domains
.build
= build
;
3143 domains
.schedule_domain
= isl_set_copy(domain
);
3144 domains
.executed
= executed
;
3145 domains
.done
= isl_set_empty(space
);
3147 if (isl_set_foreach_point(classes
, &compute_class_domains
, &domains
) < 0)
3148 domains
.list
= isl_basic_set_list_free(domains
.list
);
3149 isl_set_free(classes
);
3151 empty
= isl_set_is_empty(domains
.done
);
3153 domains
.list
= isl_basic_set_list_free(domains
.list
);
3154 domain
= isl_set_free(domain
);
3156 isl_set_free(domain
);
3157 domain
= isl_set_universe(isl_set_get_space(domains
.done
));
3159 domain
= isl_ast_build_eliminate(build
, domain
);
3161 if (compute_partial_domains(&domains
, domain
) < 0)
3162 domains
.list
= isl_basic_set_list_free(domains
.list
);
3164 isl_set_free(domains
.schedule_domain
);
3165 isl_set_free(domains
.done
);
3166 isl_map_free(domains
.sep_class
);
3167 for (type
= isl_ast_loop_atomic
; type
<= isl_ast_loop_separate
; ++type
)
3168 isl_set_free(domains
.option
[type
]);
3170 return domains
.list
;
3173 /* Generate code for a single component, after shifting (if any)
3174 * has been applied, in case the schedule was specified as a union map.
3176 * We first split up the domain at the current depth into disjoint
3177 * basic sets based on the user-specified options.
3178 * Then we generated code for each of them and concatenate the results.
3180 static __isl_give isl_ast_graft_list
*generate_shifted_component_flat(
3181 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
3183 isl_basic_set_list
*domain_list
;
3184 isl_ast_graft_list
*list
= NULL
;
3186 domain_list
= compute_domains(executed
, build
);
3187 list
= generate_parallel_domains(domain_list
, executed
, build
);
3189 isl_basic_set_list_free(domain_list
);
3190 isl_union_map_free(executed
);
3191 isl_ast_build_free(build
);
3196 /* Generate code for a single component, after shifting (if any)
3197 * has been applied, in case the schedule was specified as a schedule tree
3198 * and the separate option was specified.
3200 * We perform separation on the domain of "executed" and then generate
3201 * an AST for each of the resulting disjoint basic sets.
3203 static __isl_give isl_ast_graft_list
*generate_shifted_component_tree_separate(
3204 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
3208 isl_basic_set_list
*domain_list
;
3209 isl_ast_graft_list
*list
;
3211 space
= isl_ast_build_get_space(build
, 1);
3212 domain
= separate_schedule_domains(space
,
3213 isl_union_map_copy(executed
), build
);
3214 domain_list
= isl_basic_set_list_from_set(domain
);
3216 list
= generate_parallel_domains(domain_list
, executed
, build
);
3218 isl_basic_set_list_free(domain_list
);
3219 isl_union_map_free(executed
);
3220 isl_ast_build_free(build
);
3225 /* Internal data structure for generate_shifted_component_tree_unroll.
3227 * "executed" and "build" are inputs to generate_shifted_component_tree_unroll.
3228 * "list" collects the constructs grafts.
3230 struct isl_ast_unroll_tree_data
{
3231 isl_union_map
*executed
;
3232 isl_ast_build
*build
;
3233 isl_ast_graft_list
*list
;
3236 /* Initialize data->list to a list of "n" elements.
3238 static int init_unroll_tree(int n
, void *user
)
3240 struct isl_ast_unroll_tree_data
*data
= user
;
3243 ctx
= isl_ast_build_get_ctx(data
->build
);
3244 data
->list
= isl_ast_graft_list_alloc(ctx
, n
);
3249 /* Given an iteration of an unrolled domain represented by "bset",
3250 * generate the corresponding AST and add the result to data->list.
3252 static int do_unroll_tree_iteration(__isl_take isl_basic_set
*bset
, void *user
)
3254 struct isl_ast_unroll_tree_data
*data
= user
;
3256 data
->list
= add_node(data
->list
, isl_union_map_copy(data
->executed
),
3257 bset
, isl_ast_build_copy(data
->build
));
3262 /* Generate code for a single component, after shifting (if any)
3263 * has been applied, in case the schedule was specified as a schedule tree
3264 * and the unroll option was specified.
3266 * We call foreach_iteration to iterate over the individual values and
3267 * construct and collect the corresponding grafts in do_unroll_tree_iteration.
3269 static __isl_give isl_ast_graft_list
*generate_shifted_component_tree_unroll(
3270 __isl_take isl_union_map
*executed
, __isl_take isl_set
*domain
,
3271 __isl_take isl_ast_build
*build
)
3273 struct isl_ast_unroll_tree_data data
= { executed
, build
, NULL
};
3275 if (foreach_iteration(domain
, build
, &init_unroll_tree
,
3276 &do_unroll_tree_iteration
, &data
) < 0)
3277 data
.list
= isl_ast_graft_list_free(data
.list
);
3279 isl_union_map_free(executed
);
3280 isl_ast_build_free(build
);
3285 /* Does "domain" involve a disjunction that is purely based on
3286 * constraints involving only outer dimension?
3288 * In particular, is there a disjunction such that the constraints
3289 * involving the current and later dimensions are the same over
3290 * all the disjuncts?
3292 static isl_bool
has_pure_outer_disjunction(__isl_keep isl_set
*domain
,
3293 __isl_keep isl_ast_build
*build
)
3295 isl_basic_set
*hull
;
3296 isl_set
*shared
, *inner
;
3302 n
= isl_set_n_basic_set(domain
);
3304 return isl_bool_error
;
3306 return isl_bool_false
;
3307 dim
= isl_set_dim(domain
, isl_dim_set
);
3308 depth
= isl_ast_build_get_depth(build
);
3309 if (dim
< 0 || depth
< 0)
3310 return isl_bool_error
;
3312 inner
= isl_set_copy(domain
);
3313 inner
= isl_set_drop_constraints_not_involving_dims(inner
,
3314 isl_dim_set
, depth
, dim
- depth
);
3315 hull
= isl_set_plain_unshifted_simple_hull(isl_set_copy(inner
));
3316 shared
= isl_set_from_basic_set(hull
);
3317 equal
= isl_set_plain_is_equal(inner
, shared
);
3318 isl_set_free(inner
);
3319 isl_set_free(shared
);
3324 /* Generate code for a single component, after shifting (if any)
3325 * has been applied, in case the schedule was specified as a schedule tree.
3326 * In particular, handle the base case where there is either no isolated
3327 * set or we are within the isolated set (in which case "isolated" is set)
3328 * or the iterations that precede or follow the isolated set.
3330 * The schedule domain is broken up or combined into basic sets
3331 * according to the AST generation option specified in the current
3332 * schedule node, which may be either atomic, separate, unroll or
3333 * unspecified. If the option is unspecified, then we currently simply
3334 * split the schedule domain into disjoint basic sets.
3336 * In case the separate option is specified, the AST generation is
3337 * handled by generate_shifted_component_tree_separate.
3338 * In the other cases, we need the global schedule domain.
3339 * In the unroll case, the AST generation is then handled by
3340 * generate_shifted_component_tree_unroll which needs the actual
3341 * schedule domain (with divs that may refer to the current dimension)
3342 * so that stride detection can be performed.
3343 * In the atomic or unspecified case, inner dimensions and divs involving
3344 * the current dimensions should be eliminated.
3345 * The result is then either combined into a single basic set or
3346 * split up into disjoint basic sets.
3347 * Finally an AST is generated for each basic set and the results are
3350 * If the schedule domain involves a disjunction that is purely based on
3351 * constraints involving only outer dimension, then it is treated as
3352 * if atomic was specified. This ensures that only a single loop
3353 * is generated instead of a sequence of identical loops with
3356 static __isl_give isl_ast_graft_list
*generate_shifted_component_tree_base(
3357 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
,
3360 isl_bool outer_disjunction
;
3361 isl_union_set
*schedule_domain
;
3363 isl_basic_set_list
*domain_list
;
3364 isl_ast_graft_list
*list
;
3365 enum isl_ast_loop_type type
;
3367 type
= isl_ast_build_get_loop_type(build
, isolated
);
3371 if (type
== isl_ast_loop_separate
)
3372 return generate_shifted_component_tree_separate(executed
,
3375 schedule_domain
= isl_union_map_domain(isl_union_map_copy(executed
));
3376 domain
= isl_set_from_union_set(schedule_domain
);
3378 if (type
== isl_ast_loop_unroll
)
3379 return generate_shifted_component_tree_unroll(executed
, domain
,
3382 domain
= isl_ast_build_eliminate(build
, domain
);
3383 domain
= isl_set_coalesce_preserve(domain
);
3385 outer_disjunction
= has_pure_outer_disjunction(domain
, build
);
3386 if (outer_disjunction
< 0)
3387 domain
= isl_set_free(domain
);
3389 if (outer_disjunction
|| type
== isl_ast_loop_atomic
) {
3390 isl_basic_set
*hull
;
3391 hull
= isl_set_unshifted_simple_hull(domain
);
3392 domain_list
= isl_basic_set_list_from_basic_set(hull
);
3394 domain
= isl_set_make_disjoint(domain
);
3395 domain_list
= isl_basic_set_list_from_set(domain
);
3398 list
= generate_parallel_domains(domain_list
, executed
, build
);
3400 isl_basic_set_list_free(domain_list
);
3401 isl_union_map_free(executed
);
3402 isl_ast_build_free(build
);
3406 isl_union_map_free(executed
);
3407 isl_ast_build_free(build
);
3411 /* Extract out the disjunction imposed by "domain" on the outer
3412 * schedule dimensions.
3414 * In particular, remove all inner dimensions from "domain" (including
3415 * the current dimension) and then remove the constraints that are shared
3416 * by all disjuncts in the result.
3418 static __isl_give isl_set
*extract_disjunction(__isl_take isl_set
*domain
,
3419 __isl_keep isl_ast_build
*build
)
3425 domain
= isl_ast_build_specialize(build
, domain
);
3426 depth
= isl_ast_build_get_depth(build
);
3427 dim
= isl_set_dim(domain
, isl_dim_set
);
3428 if (depth
< 0 || dim
< 0)
3429 return isl_set_free(domain
);
3430 domain
= isl_set_eliminate(domain
, isl_dim_set
, depth
, dim
- depth
);
3431 domain
= isl_set_remove_unknown_divs(domain
);
3432 hull
= isl_set_copy(domain
);
3433 hull
= isl_set_from_basic_set(isl_set_unshifted_simple_hull(hull
));
3434 domain
= isl_set_gist(domain
, hull
);
3439 /* Add "guard" to the grafts in "list".
3440 * "build" is the outer AST build, while "sub_build" includes "guard"
3441 * in its generated domain.
3443 * First combine the grafts into a single graft and then add the guard.
3444 * If the list is empty, or if some error occurred, then simply return
3447 static __isl_give isl_ast_graft_list
*list_add_guard(
3448 __isl_take isl_ast_graft_list
*list
, __isl_keep isl_set
*guard
,
3449 __isl_keep isl_ast_build
*build
, __isl_keep isl_ast_build
*sub_build
)
3451 isl_ast_graft
*graft
;
3454 list
= isl_ast_graft_list_fuse(list
, sub_build
);
3456 n
= isl_ast_graft_list_n_ast_graft(list
);
3458 return isl_ast_graft_list_free(list
);
3462 graft
= isl_ast_graft_list_get_ast_graft(list
, 0);
3463 graft
= isl_ast_graft_add_guard(graft
, isl_set_copy(guard
), build
);
3464 list
= isl_ast_graft_list_set_ast_graft(list
, 0, graft
);
3469 /* Generate code for a single component, after shifting (if any)
3470 * has been applied, in case the schedule was specified as a schedule tree.
3471 * In particular, do so for the specified subset of the schedule domain.
3473 * If we are outside of the isolated part, then "domain" may include
3474 * a disjunction. Explicitly generate this disjunction at this point
3475 * instead of relying on the disjunction getting hoisted back up
3478 static __isl_give isl_ast_graft_list
*generate_shifted_component_tree_part(
3479 __isl_keep isl_union_map
*executed
, __isl_take isl_set
*domain
,
3480 __isl_keep isl_ast_build
*build
, int isolated
)
3482 isl_union_set
*uset
;
3483 isl_ast_graft_list
*list
;
3484 isl_ast_build
*sub_build
;
3487 uset
= isl_union_set_from_set(isl_set_copy(domain
));
3488 executed
= isl_union_map_copy(executed
);
3489 executed
= isl_union_map_intersect_domain(executed
, uset
);
3490 empty
= isl_union_map_is_empty(executed
);
3495 isl_union_map_free(executed
);
3496 isl_set_free(domain
);
3497 ctx
= isl_ast_build_get_ctx(build
);
3498 return isl_ast_graft_list_alloc(ctx
, 0);
3501 sub_build
= isl_ast_build_copy(build
);
3503 domain
= extract_disjunction(domain
, build
);
3504 sub_build
= isl_ast_build_restrict_generated(sub_build
,
3505 isl_set_copy(domain
));
3507 list
= generate_shifted_component_tree_base(executed
,
3508 isl_ast_build_copy(sub_build
), isolated
);
3510 list
= list_add_guard(list
, domain
, build
, sub_build
);
3511 isl_ast_build_free(sub_build
);
3512 isl_set_free(domain
);
3515 isl_union_map_free(executed
);
3516 isl_set_free(domain
);
3520 /* Generate code for a single component, after shifting (if any)
3521 * has been applied, in case the schedule was specified as a schedule tree.
3522 * In particular, do so for the specified sequence of subsets
3523 * of the schedule domain, "before", "isolated", "after" and "other",
3524 * where only the "isolated" part is considered to be isolated.
3526 static __isl_give isl_ast_graft_list
*generate_shifted_component_parts(
3527 __isl_take isl_union_map
*executed
, __isl_take isl_set
*before
,
3528 __isl_take isl_set
*isolated
, __isl_take isl_set
*after
,
3529 __isl_take isl_set
*other
, __isl_take isl_ast_build
*build
)
3531 isl_ast_graft_list
*list
, *res
;
3533 res
= generate_shifted_component_tree_part(executed
, before
, build
, 0);
3534 list
= generate_shifted_component_tree_part(executed
, isolated
,
3536 res
= isl_ast_graft_list_concat(res
, list
);
3537 list
= generate_shifted_component_tree_part(executed
, after
, build
, 0);
3538 res
= isl_ast_graft_list_concat(res
, list
);
3539 list
= generate_shifted_component_tree_part(executed
, other
, build
, 0);
3540 res
= isl_ast_graft_list_concat(res
, list
);
3542 isl_union_map_free(executed
);
3543 isl_ast_build_free(build
);
3548 /* Does "set" intersect "first", but not "second"?
3550 static isl_bool
only_intersects_first(__isl_keep isl_set
*set
,
3551 __isl_keep isl_set
*first
, __isl_keep isl_set
*second
)
3555 disjoint
= isl_set_is_disjoint(set
, first
);
3557 return isl_bool_error
;
3559 return isl_bool_false
;
3561 return isl_set_is_disjoint(set
, second
);
3564 /* Generate code for a single component, after shifting (if any)
3565 * has been applied, in case the schedule was specified as a schedule tree.
3566 * In particular, do so in case of isolation where there is
3567 * only an "isolated" part and an "after" part.
3568 * "dead1" and "dead2" are freed by this function in order to simplify
3571 * The "before" and "other" parts are set to empty sets.
3573 static __isl_give isl_ast_graft_list
*generate_shifted_component_only_after(
3574 __isl_take isl_union_map
*executed
, __isl_take isl_set
*isolated
,
3575 __isl_take isl_set
*after
, __isl_take isl_ast_build
*build
,
3576 __isl_take isl_set
*dead1
, __isl_take isl_set
*dead2
)
3580 empty
= isl_set_empty(isl_set_get_space(after
));
3581 isl_set_free(dead1
);
3582 isl_set_free(dead2
);
3583 return generate_shifted_component_parts(executed
, isl_set_copy(empty
),
3584 isolated
, after
, empty
, build
);
3587 /* Generate code for a single component, after shifting (if any)
3588 * has been applied, in case the schedule was specified as a schedule tree.
3590 * We first check if the user has specified an isolated schedule domain
3591 * and that we are not already outside of this isolated schedule domain.
3592 * If so, we break up the schedule domain into iterations that
3593 * precede the isolated domain, the isolated domain itself,
3594 * the iterations that follow the isolated domain and
3595 * the remaining iterations (those that are incomparable
3596 * to the isolated domain).
3597 * We generate an AST for each piece and concatenate the results.
3599 * If the isolated domain is not convex, then it is replaced
3600 * by a convex superset to ensure that the sets of preceding and
3601 * following iterations are properly defined and, in particular,
3602 * that there are no intermediate iterations that do not belong
3603 * to the isolated domain.
3605 * In the special case where at least one element of the schedule
3606 * domain that does not belong to the isolated domain needs
3607 * to be scheduled after this isolated domain, but none of those
3608 * elements need to be scheduled before, break up the schedule domain
3609 * in only two parts, the isolated domain, and a part that will be
3610 * scheduled after the isolated domain.
3612 * If no isolated set has been specified, then we generate an
3613 * AST for the entire inverse schedule.
3615 static __isl_give isl_ast_graft_list
*generate_shifted_component_tree(
3616 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
3620 int empty
, has_isolate
;
3622 isl_union_set
*schedule_domain
;
3624 isl_basic_set
*hull
;
3625 isl_set
*isolated
, *before
, *after
, *test
;
3629 build
= isl_ast_build_extract_isolated(build
);
3630 has_isolate
= isl_ast_build_has_isolated(build
);
3631 if (has_isolate
< 0)
3632 executed
= isl_union_map_free(executed
);
3633 else if (!has_isolate
)
3634 return generate_shifted_component_tree_base(executed
, build
, 0);
3636 schedule_domain
= isl_union_map_domain(isl_union_map_copy(executed
));
3637 domain
= isl_set_from_union_set(schedule_domain
);
3639 isolated
= isl_ast_build_get_isolated(build
);
3640 isolated
= isl_set_intersect(isolated
, isl_set_copy(domain
));
3641 test
= isl_ast_build_specialize(build
, isl_set_copy(isolated
));
3642 empty
= isl_set_is_empty(test
);
3647 isl_set_free(isolated
);
3648 isl_set_free(domain
);
3649 return generate_shifted_component_tree_base(executed
, build
, 0);
3651 depth
= isl_ast_build_get_depth(build
);
3655 isolated
= isl_ast_build_eliminate(build
, isolated
);
3656 hull
= isl_set_unshifted_simple_hull(isolated
);
3657 isolated
= isl_set_from_basic_set(hull
);
3659 space
= isl_space_map_from_set(isl_set_get_space(isolated
));
3660 gt
= isl_map_universe(space
);
3661 for (i
= 0; i
< depth
; ++i
)
3662 gt
= isl_map_equate(gt
, isl_dim_in
, i
, isl_dim_out
, i
);
3663 gt
= isl_map_order_gt(gt
, isl_dim_in
, depth
, isl_dim_out
, depth
);
3664 lt
= isl_map_reverse(isl_map_copy(gt
));
3665 before
= isl_set_apply(isl_set_copy(isolated
), gt
);
3666 after
= isl_set_apply(isl_set_copy(isolated
), lt
);
3668 domain
= isl_set_subtract(domain
, isl_set_copy(isolated
));
3669 pure
= only_intersects_first(domain
, after
, before
);
3671 executed
= isl_union_map_free(executed
);
3673 return generate_shifted_component_only_after(executed
, isolated
,
3674 domain
, build
, before
, after
);
3675 domain
= isl_set_subtract(domain
, isl_set_copy(before
));
3676 domain
= isl_set_subtract(domain
, isl_set_copy(after
));
3677 after
= isl_set_subtract(after
, isl_set_copy(isolated
));
3678 after
= isl_set_subtract(after
, isl_set_copy(before
));
3679 before
= isl_set_subtract(before
, isl_set_copy(isolated
));
3681 return generate_shifted_component_parts(executed
, before
, isolated
,
3682 after
, domain
, build
);
3684 isl_set_free(domain
);
3685 isl_set_free(isolated
);
3686 isl_union_map_free(executed
);
3687 isl_ast_build_free(build
);
3691 /* Generate code for a single component, after shifting (if any)
3694 * Call generate_shifted_component_tree or generate_shifted_component_flat
3695 * depending on whether the schedule was specified as a schedule tree.
3697 static __isl_give isl_ast_graft_list
*generate_shifted_component(
3698 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
3700 if (isl_ast_build_has_schedule_node(build
))
3701 return generate_shifted_component_tree(executed
, build
);
3703 return generate_shifted_component_flat(executed
, build
);
3706 struct isl_set_map_pair
{
3711 /* Given an array "domain" of isl_set_map_pairs and an array "order"
3712 * of indices into the "domain" array,
3713 * return the union of the "map" fields of the elements
3714 * indexed by the first "n" elements of "order".
3716 static __isl_give isl_union_map
*construct_component_executed(
3717 struct isl_set_map_pair
*domain
, int *order
, int n
)
3721 isl_union_map
*executed
;
3723 map
= isl_map_copy(domain
[order
[0]].map
);
3724 executed
= isl_union_map_from_map(map
);
3725 for (i
= 1; i
< n
; ++i
) {
3726 map
= isl_map_copy(domain
[order
[i
]].map
);
3727 executed
= isl_union_map_add_map(executed
, map
);
3733 /* Generate code for a single component, after shifting (if any)
3736 * The component inverse schedule is specified as the "map" fields
3737 * of the elements of "domain" indexed by the first "n" elements of "order".
3739 static __isl_give isl_ast_graft_list
*generate_shifted_component_from_list(
3740 struct isl_set_map_pair
*domain
, int *order
, int n
,
3741 __isl_take isl_ast_build
*build
)
3743 isl_union_map
*executed
;
3745 executed
= construct_component_executed(domain
, order
, n
);
3746 return generate_shifted_component(executed
, build
);
3749 /* Does set dimension "pos" of "set" have an obviously fixed value?
3751 static int dim_is_fixed(__isl_keep isl_set
*set
, int pos
)
3756 v
= isl_set_plain_get_val_if_fixed(set
, isl_dim_set
, pos
);
3759 fixed
= !isl_val_is_nan(v
);
3765 /* Given an array "domain" of isl_set_map_pairs and an array "order"
3766 * of indices into the "domain" array,
3767 * do all (except for at most one) of the "set" field of the elements
3768 * indexed by the first "n" elements of "order" have a fixed value
3769 * at position "depth"?
3771 static int at_most_one_non_fixed(struct isl_set_map_pair
*domain
,
3772 int *order
, int n
, int depth
)
3777 for (i
= 0; i
< n
; ++i
) {
3780 f
= dim_is_fixed(domain
[order
[i
]].set
, depth
);
3793 /* Given an array "domain" of isl_set_map_pairs and an array "order"
3794 * of indices into the "domain" array,
3795 * eliminate the inner dimensions from the "set" field of the elements
3796 * indexed by the first "n" elements of "order", provided the current
3797 * dimension does not have a fixed value.
3799 * Return the index of the first element in "order" with a corresponding
3800 * "set" field that does not have an (obviously) fixed value.
3802 static int eliminate_non_fixed(struct isl_set_map_pair
*domain
,
3803 int *order
, int n
, int depth
, __isl_keep isl_ast_build
*build
)
3808 for (i
= n
- 1; i
>= 0; --i
) {
3810 f
= dim_is_fixed(domain
[order
[i
]].set
, depth
);
3815 domain
[order
[i
]].set
= isl_ast_build_eliminate_inner(build
,
3816 domain
[order
[i
]].set
);
3823 /* Given an array "domain" of isl_set_map_pairs and an array "order"
3824 * of indices into the "domain" array,
3825 * find the element of "domain" (amongst those indexed by the first "n"
3826 * elements of "order") with the "set" field that has the smallest
3827 * value for the current iterator.
3829 * Note that the domain with the smallest value may depend on the parameters
3830 * and/or outer loop dimension. Since the result of this function is only
3831 * used as heuristic, we only make a reasonable attempt at finding the best
3832 * domain, one that should work in case a single domain provides the smallest
3833 * value for the current dimension over all values of the parameters
3834 * and outer dimensions.
3836 * In particular, we compute the smallest value of the first domain
3837 * and replace it by that of any later domain if that later domain
3838 * has a smallest value that is smaller for at least some value
3839 * of the parameters and outer dimensions.
3841 static int first_offset(struct isl_set_map_pair
*domain
, int *order
, int n
,
3842 __isl_keep isl_ast_build
*build
)
3848 min_first
= isl_ast_build_map_to_iterator(build
,
3849 isl_set_copy(domain
[order
[0]].set
));
3850 min_first
= isl_map_lexmin(min_first
);
3852 for (i
= 1; i
< n
; ++i
) {
3853 isl_map
*min
, *test
;
3856 min
= isl_ast_build_map_to_iterator(build
,
3857 isl_set_copy(domain
[order
[i
]].set
));
3858 min
= isl_map_lexmin(min
);
3859 test
= isl_map_copy(min
);
3860 test
= isl_map_apply_domain(isl_map_copy(min_first
), test
);
3861 test
= isl_map_order_lt(test
, isl_dim_in
, 0, isl_dim_out
, 0);
3862 empty
= isl_map_is_empty(test
);
3864 if (empty
>= 0 && !empty
) {
3865 isl_map_free(min_first
);
3875 isl_map_free(min_first
);
3877 return i
< n
? -1 : first
;
3880 /* Construct a shifted inverse schedule based on the original inverse schedule,
3881 * the stride and the offset.
3883 * The original inverse schedule is specified as the "map" fields
3884 * of the elements of "domain" indexed by the first "n" elements of "order".
3886 * "stride" and "offset" are such that the difference
3887 * between the values of the current dimension of domain "i"
3888 * and the values of the current dimension for some reference domain are
3891 * stride * integer + offset[i]
3893 * Moreover, 0 <= offset[i] < stride.
3895 * For each domain, we create a map
3897 * { [..., j, ...] -> [..., j - offset[i], offset[i], ....] }
3899 * where j refers to the current dimension and the other dimensions are
3900 * unchanged, and apply this map to the original schedule domain.
3902 * For example, for the original schedule
3904 * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
3906 * and assuming the offset is 0 for the A domain and 1 for the B domain,
3907 * we apply the mapping
3911 * to the schedule of the "A" domain and the mapping
3913 * { [j - 1] -> [j, 1] }
3915 * to the schedule of the "B" domain.
3918 * Note that after the transformation, the differences between pairs
3919 * of values of the current dimension over all domains are multiples
3920 * of stride and that we have therefore exposed the stride.
3923 * To see that the mapping preserves the lexicographic order,
3924 * first note that each of the individual maps above preserves the order.
3925 * If the value of the current iterator is j1 in one domain and j2 in another,
3926 * then if j1 = j2, we know that the same map is applied to both domains
3927 * and the order is preserved.
3928 * Otherwise, let us assume, without loss of generality, that j1 < j2.
3929 * If c1 >= c2 (with c1 and c2 the corresponding offsets), then
3933 * and the order is preserved.
3934 * If c1 < c2, then we know
3940 * j2 - j1 = n * s + r
3942 * with n >= 0 and 0 <= r < s.
3943 * In other words, r = c2 - c1.
3954 * (j1 - c1, c1) << (j2 - c2, c2)
3956 * with "<<" the lexicographic order, proving that the order is preserved
3959 static __isl_give isl_union_map
*construct_shifted_executed(
3960 struct isl_set_map_pair
*domain
, int *order
, int n
,
3961 __isl_keep isl_val
*stride
, __isl_keep isl_multi_val
*offset
,
3962 __isl_keep isl_ast_build
*build
)
3965 isl_union_map
*executed
;
3971 depth
= isl_ast_build_get_depth(build
);
3974 space
= isl_ast_build_get_space(build
, 1);
3975 executed
= isl_union_map_empty(isl_space_copy(space
));
3976 space
= isl_space_map_from_set(space
);
3977 map
= isl_map_identity(isl_space_copy(space
));
3978 map
= isl_map_eliminate(map
, isl_dim_out
, depth
, 1);
3979 map
= isl_map_insert_dims(map
, isl_dim_out
, depth
+ 1, 1);
3980 space
= isl_space_insert_dims(space
, isl_dim_out
, depth
+ 1, 1);
3982 c
= isl_constraint_alloc_equality(isl_local_space_from_space(space
));
3983 c
= isl_constraint_set_coefficient_si(c
, isl_dim_in
, depth
, 1);
3984 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, depth
, -1);
3986 for (i
= 0; i
< n
; ++i
) {
3990 v
= isl_multi_val_get_val(offset
, i
);
3993 map_i
= isl_map_copy(map
);
3994 map_i
= isl_map_fix_val(map_i
, isl_dim_out
, depth
+ 1,
3997 c
= isl_constraint_set_constant_val(c
, v
);
3998 map_i
= isl_map_add_constraint(map_i
, isl_constraint_copy(c
));
4000 map_i
= isl_map_apply_domain(isl_map_copy(domain
[order
[i
]].map
),
4002 executed
= isl_union_map_add_map(executed
, map_i
);
4005 isl_constraint_free(c
);
4009 executed
= isl_union_map_free(executed
);
4014 /* Generate code for a single component, after exposing the stride,
4015 * given that the schedule domain is "shifted strided".
4017 * The component inverse schedule is specified as the "map" fields
4018 * of the elements of "domain" indexed by the first "n" elements of "order".
4020 * The schedule domain being "shifted strided" means that the differences
4021 * between the values of the current dimension of domain "i"
4022 * and the values of the current dimension for some reference domain are
4025 * stride * integer + offset[i]
4027 * We first look for the domain with the "smallest" value for the current
4028 * dimension and adjust the offsets such that the offset of the "smallest"
4029 * domain is equal to zero. The other offsets are reduced modulo stride.
4031 * Based on this information, we construct a new inverse schedule in
4032 * construct_shifted_executed that exposes the stride.
4033 * Since this involves the introduction of a new schedule dimension,
4034 * the build needs to be changed accordingly.
4035 * After computing the AST, the newly introduced dimension needs
4036 * to be removed again from the list of grafts. We do this by plugging
4037 * in a mapping that represents the new schedule domain in terms of the
4038 * old schedule domain.
4040 static __isl_give isl_ast_graft_list
*generate_shift_component(
4041 struct isl_set_map_pair
*domain
, int *order
, int n
,
4042 __isl_keep isl_val
*stride
, __isl_keep isl_multi_val
*offset
,
4043 __isl_take isl_ast_build
*build
)
4045 isl_ast_graft_list
*list
;
4051 isl_multi_aff
*ma
, *zero
;
4052 isl_union_map
*executed
;
4054 depth
= isl_ast_build_get_depth(build
);
4056 first
= first_offset(domain
, order
, n
, build
);
4057 if (depth
< 0 || first
< 0)
4060 mv
= isl_multi_val_copy(offset
);
4061 val
= isl_multi_val_get_val(offset
, first
);
4062 val
= isl_val_neg(val
);
4063 mv
= isl_multi_val_add_val(mv
, val
);
4064 mv
= isl_multi_val_mod_val(mv
, isl_val_copy(stride
));
4066 executed
= construct_shifted_executed(domain
, order
, n
, stride
, mv
,
4068 space
= isl_ast_build_get_space(build
, 1);
4069 space
= isl_space_map_from_set(space
);
4070 ma
= isl_multi_aff_identity(isl_space_copy(space
));
4071 space
= isl_space_from_domain(isl_space_domain(space
));
4072 space
= isl_space_add_dims(space
, isl_dim_out
, 1);
4073 zero
= isl_multi_aff_zero(space
);
4074 ma
= isl_multi_aff_range_splice(ma
, depth
+ 1, zero
);
4075 build
= isl_ast_build_insert_dim(build
, depth
+ 1);
4076 list
= generate_shifted_component(executed
, build
);
4078 list
= isl_ast_graft_list_preimage_multi_aff(list
, ma
);
4080 isl_multi_val_free(mv
);
4084 isl_ast_build_free(build
);
4088 /* Does any node in the schedule tree rooted at the current schedule node
4089 * of "build" depend on outer schedule nodes?
4091 static int has_anchored_subtree(__isl_keep isl_ast_build
*build
)
4093 isl_schedule_node
*node
;
4096 node
= isl_ast_build_get_schedule_node(build
);
4097 dependent
= isl_schedule_node_is_subtree_anchored(node
);
4098 isl_schedule_node_free(node
);
4103 /* Generate code for a single component.
4105 * The component inverse schedule is specified as the "map" fields
4106 * of the elements of "domain" indexed by the first "n" elements of "order".
4108 * This function may modify the "set" fields of "domain".
4110 * Before proceeding with the actual code generation for the component,
4111 * we first check if there are any "shifted" strides, meaning that
4112 * the schedule domains of the individual domains are all strided,
4113 * but that they have different offsets, resulting in the union
4114 * of schedule domains not being strided anymore.
4116 * The simplest example is the schedule
4118 * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
4120 * Both schedule domains are strided, but their union is not.
4121 * This function detects such cases and then rewrites the schedule to
4123 * { A[i] -> [2i, 0]: 0 <= i < 10; B[i] -> [2i, 1] : 0 <= i < 10 }
4125 * In the new schedule, the schedule domains have the same offset (modulo
4126 * the stride), ensuring that the union of schedule domains is also strided.
4129 * If there is only a single domain in the component, then there is
4130 * nothing to do. Similarly, if the current schedule dimension has
4131 * a fixed value for almost all domains then there is nothing to be done.
4132 * In particular, we need at least two domains where the current schedule
4133 * dimension does not have a fixed value.
4134 * Finally, in case of a schedule map input,
4135 * if any of the options refer to the current schedule dimension,
4136 * then we bail out as well. It would be possible to reformulate the options
4137 * in terms of the new schedule domain, but that would introduce constraints
4138 * that separate the domains in the options and that is something we would
4140 * In the case of a schedule tree input, we bail out if any of
4141 * the descendants of the current schedule node refer to outer
4142 * schedule nodes in any way.
4145 * To see if there is any shifted stride, we look at the differences
4146 * between the values of the current dimension in pairs of domains
4147 * for equal values of outer dimensions. These differences should be
4152 * with "m" the stride and "r" a constant. Note that we cannot perform
4153 * this analysis on individual domains as the lower bound in each domain
4154 * may depend on parameters or outer dimensions and so the current dimension
4155 * itself may not have a fixed remainder on division by the stride.
4157 * In particular, we compare the first domain that does not have an
4158 * obviously fixed value for the current dimension to itself and all
4159 * other domains and collect the offsets and the gcd of the strides.
4160 * If the gcd becomes one, then we failed to find shifted strides.
4161 * If the gcd is zero, then the differences were all fixed, meaning
4162 * that some domains had non-obviously fixed values for the current dimension.
4163 * If all the offsets are the same (for those domains that do not have
4164 * an obviously fixed value for the current dimension), then we do not
4165 * apply the transformation.
4166 * If none of the domains were skipped, then there is nothing to do.
4167 * If some of them were skipped, then if we apply separation, the schedule
4168 * domain should get split in pieces with a (non-shifted) stride.
4170 * Otherwise, we apply a shift to expose the stride in
4171 * generate_shift_component.
4173 static __isl_give isl_ast_graft_list
*generate_component(
4174 struct isl_set_map_pair
*domain
, int *order
, int n
,
4175 __isl_take isl_ast_build
*build
)
4182 isl_val
*gcd
= NULL
;
4186 isl_ast_graft_list
*list
;
4189 depth
= isl_ast_build_get_depth(build
);
4194 if (skip
>= 0 && !skip
)
4195 skip
= at_most_one_non_fixed(domain
, order
, n
, depth
);
4196 if (skip
>= 0 && !skip
) {
4197 if (isl_ast_build_has_schedule_node(build
))
4198 skip
= has_anchored_subtree(build
);
4200 skip
= isl_ast_build_options_involve_depth(build
);
4205 return generate_shifted_component_from_list(domain
,
4208 base
= eliminate_non_fixed(domain
, order
, n
, depth
, build
);
4212 ctx
= isl_ast_build_get_ctx(build
);
4214 mv
= isl_multi_val_zero(isl_space_set_alloc(ctx
, 0, n
));
4217 for (i
= 0; i
< n
; ++i
) {
4220 map
= isl_map_from_domain_and_range(
4221 isl_set_copy(domain
[order
[base
]].set
),
4222 isl_set_copy(domain
[order
[i
]].set
));
4223 for (d
= 0; d
< depth
; ++d
)
4224 map
= isl_map_equate(map
, isl_dim_in
, d
,
4226 deltas
= isl_map_deltas(map
);
4227 res
= isl_set_dim_residue_class_val(deltas
, depth
, &m
, &r
);
4228 isl_set_free(deltas
);
4235 gcd
= isl_val_gcd(gcd
, m
);
4236 if (isl_val_is_one(gcd
)) {
4240 mv
= isl_multi_val_set_val(mv
, i
, r
);
4242 res
= dim_is_fixed(domain
[order
[i
]].set
, depth
);
4248 if (fixed
&& i
> base
) {
4250 a
= isl_multi_val_get_val(mv
, i
);
4251 b
= isl_multi_val_get_val(mv
, base
);
4252 if (isl_val_ne(a
, b
))
4259 if (res
< 0 || !gcd
) {
4260 isl_ast_build_free(build
);
4262 } else if (i
< n
|| fixed
|| isl_val_is_zero(gcd
)) {
4263 list
= generate_shifted_component_from_list(domain
,
4266 list
= generate_shift_component(domain
, order
, n
, gcd
, mv
,
4271 isl_multi_val_free(mv
);
4275 isl_ast_build_free(build
);
4279 /* Store both "map" itself and its domain in the
4280 * structure pointed to by *next and advance to the next array element.
4282 static isl_stat
extract_domain(__isl_take isl_map
*map
, void *user
)
4284 struct isl_set_map_pair
**next
= user
;
4286 (*next
)->map
= isl_map_copy(map
);
4287 (*next
)->set
= isl_map_domain(map
);
4293 static isl_bool
after_in_tree(__isl_keep isl_union_map
*umap
,
4294 __isl_keep isl_schedule_node
*node
);
4296 /* Is any domain element of "umap" scheduled after any of
4297 * the corresponding image elements by the tree rooted at
4298 * the child of "node"?
4300 static isl_bool
after_in_child(__isl_keep isl_union_map
*umap
,
4301 __isl_keep isl_schedule_node
*node
)
4303 isl_schedule_node
*child
;
4306 child
= isl_schedule_node_get_child(node
, 0);
4307 after
= after_in_tree(umap
, child
);
4308 isl_schedule_node_free(child
);
4313 /* Is any domain element of "umap" scheduled after any of
4314 * the corresponding image elements by the tree rooted at
4315 * the band node "node"?
4317 * We first check if any domain element is scheduled after any
4318 * of the corresponding image elements by the band node itself.
4319 * If not, we restrict "map" to those pairs of element that
4320 * are scheduled together by the band node and continue with
4321 * the child of the band node.
4322 * If there are no such pairs then the map passed to after_in_child
4323 * will be empty causing it to return 0.
4325 static isl_bool
after_in_band(__isl_keep isl_union_map
*umap
,
4326 __isl_keep isl_schedule_node
*node
)
4328 isl_multi_union_pw_aff
*mupa
;
4329 isl_union_map
*partial
, *test
, *gt
, *universe
, *umap1
, *umap2
;
4330 isl_union_set
*domain
, *range
;
4336 n
= isl_schedule_node_band_n_member(node
);
4338 return isl_bool_error
;
4340 return after_in_child(umap
, node
);
4342 mupa
= isl_schedule_node_band_get_partial_schedule(node
);
4343 space
= isl_multi_union_pw_aff_get_space(mupa
);
4344 partial
= isl_union_map_from_multi_union_pw_aff(mupa
);
4345 test
= isl_union_map_copy(umap
);
4346 test
= isl_union_map_apply_domain(test
, isl_union_map_copy(partial
));
4347 test
= isl_union_map_apply_range(test
, isl_union_map_copy(partial
));
4348 gt
= isl_union_map_from_map(isl_map_lex_gt(space
));
4349 test
= isl_union_map_intersect(test
, gt
);
4350 empty
= isl_union_map_is_empty(test
);
4351 isl_union_map_free(test
);
4353 if (empty
< 0 || !empty
) {
4354 isl_union_map_free(partial
);
4355 return isl_bool_not(empty
);
4358 universe
= isl_union_map_universe(isl_union_map_copy(umap
));
4359 domain
= isl_union_map_domain(isl_union_map_copy(universe
));
4360 range
= isl_union_map_range(universe
);
4361 umap1
= isl_union_map_copy(partial
);
4362 umap1
= isl_union_map_intersect_domain(umap1
, domain
);
4363 umap2
= isl_union_map_intersect_domain(partial
, range
);
4364 test
= isl_union_map_apply_range(umap1
, isl_union_map_reverse(umap2
));
4365 test
= isl_union_map_intersect(test
, isl_union_map_copy(umap
));
4366 after
= after_in_child(test
, node
);
4367 isl_union_map_free(test
);
4371 /* Is any domain element of "umap" scheduled after any of
4372 * the corresponding image elements by the tree rooted at
4373 * the context node "node"?
4375 * The context constraints apply to the schedule domain,
4376 * so we cannot apply them directly to "umap", which contains
4377 * pairs of statement instances. Instead, we add them
4378 * to the range of the prefix schedule for both domain and
4381 static isl_bool
after_in_context(__isl_keep isl_union_map
*umap
,
4382 __isl_keep isl_schedule_node
*node
)
4384 isl_union_map
*prefix
, *universe
, *umap1
, *umap2
;
4385 isl_union_set
*domain
, *range
;
4389 umap
= isl_union_map_copy(umap
);
4390 context
= isl_schedule_node_context_get_context(node
);
4391 prefix
= isl_schedule_node_get_prefix_schedule_union_map(node
);
4392 universe
= isl_union_map_universe(isl_union_map_copy(umap
));
4393 domain
= isl_union_map_domain(isl_union_map_copy(universe
));
4394 range
= isl_union_map_range(universe
);
4395 umap1
= isl_union_map_copy(prefix
);
4396 umap1
= isl_union_map_intersect_domain(umap1
, domain
);
4397 umap2
= isl_union_map_intersect_domain(prefix
, range
);
4398 umap1
= isl_union_map_intersect_range(umap1
,
4399 isl_union_set_from_set(context
));
4400 umap1
= isl_union_map_apply_range(umap1
, isl_union_map_reverse(umap2
));
4401 umap
= isl_union_map_intersect(umap
, umap1
);
4403 after
= after_in_child(umap
, node
);
4405 isl_union_map_free(umap
);
4410 /* Is any domain element of "umap" scheduled after any of
4411 * the corresponding image elements by the tree rooted at
4412 * the expansion node "node"?
4414 * We apply the expansion to domain and range of "umap" and
4415 * continue with its child.
4417 static isl_bool
after_in_expansion(__isl_keep isl_union_map
*umap
,
4418 __isl_keep isl_schedule_node
*node
)
4420 isl_union_map
*expansion
;
4423 expansion
= isl_schedule_node_expansion_get_expansion(node
);
4424 umap
= isl_union_map_copy(umap
);
4425 umap
= isl_union_map_apply_domain(umap
, isl_union_map_copy(expansion
));
4426 umap
= isl_union_map_apply_range(umap
, expansion
);
4428 after
= after_in_child(umap
, node
);
4430 isl_union_map_free(umap
);
4435 /* Is any domain element of "umap" scheduled after any of
4436 * the corresponding image elements by the tree rooted at
4437 * the extension node "node"?
4439 * Since the extension node may add statement instances before or
4440 * after the pairs of statement instances in "umap", we return isl_bool_true
4441 * to ensure that these pairs are not broken up.
4443 static isl_bool
after_in_extension(__isl_keep isl_union_map
*umap
,
4444 __isl_keep isl_schedule_node
*node
)
4446 return isl_bool_true
;
4449 /* Is any domain element of "umap" scheduled after any of
4450 * the corresponding image elements by the tree rooted at
4451 * the filter node "node"?
4453 * We intersect domain and range of "umap" with the filter and
4454 * continue with its child.
4456 static isl_bool
after_in_filter(__isl_keep isl_union_map
*umap
,
4457 __isl_keep isl_schedule_node
*node
)
4459 isl_union_set
*filter
;
4462 umap
= isl_union_map_copy(umap
);
4463 filter
= isl_schedule_node_filter_get_filter(node
);
4464 umap
= isl_union_map_intersect_domain(umap
, isl_union_set_copy(filter
));
4465 umap
= isl_union_map_intersect_range(umap
, filter
);
4467 after
= after_in_child(umap
, node
);
4469 isl_union_map_free(umap
);
4474 /* Is any domain element of "umap" scheduled after any of
4475 * the corresponding image elements by the tree rooted at
4476 * the set node "node"?
4478 * This is only the case if this condition holds in any
4479 * of the (filter) children of the set node.
4480 * In particular, if the domain and the range of "umap"
4481 * are contained in different children, then the condition
4484 static isl_bool
after_in_set(__isl_keep isl_union_map
*umap
,
4485 __isl_keep isl_schedule_node
*node
)
4490 n
= isl_schedule_node_n_children(node
);
4492 return isl_bool_error
;
4493 for (i
= 0; i
< n
; ++i
) {
4494 isl_schedule_node
*child
;
4497 child
= isl_schedule_node_get_child(node
, i
);
4498 after
= after_in_tree(umap
, child
);
4499 isl_schedule_node_free(child
);
4501 if (after
< 0 || after
)
4505 return isl_bool_false
;
4508 /* Return the filter of child "i" of "node".
4510 static __isl_give isl_union_set
*child_filter(
4511 __isl_keep isl_schedule_node
*node
, int i
)
4513 isl_schedule_node
*child
;
4514 isl_union_set
*filter
;
4516 child
= isl_schedule_node_get_child(node
, i
);
4517 filter
= isl_schedule_node_filter_get_filter(child
);
4518 isl_schedule_node_free(child
);
4523 /* Is any domain element of "umap" scheduled after any of
4524 * the corresponding image elements by the tree rooted at
4525 * the sequence node "node"?
4527 * This happens in particular if any domain element is
4528 * contained in a later child than one containing a range element or
4529 * if the condition holds within a given child in the sequence.
4530 * The later part of the condition is checked by after_in_set.
4532 static isl_bool
after_in_sequence(__isl_keep isl_union_map
*umap
,
4533 __isl_keep isl_schedule_node
*node
)
4537 isl_union_map
*umap_i
;
4539 isl_bool after
= isl_bool_false
;
4541 n
= isl_schedule_node_n_children(node
);
4543 return isl_bool_error
;
4544 for (i
= 1; i
< n
; ++i
) {
4545 isl_union_set
*filter_i
;
4547 umap_i
= isl_union_map_copy(umap
);
4548 filter_i
= child_filter(node
, i
);
4549 umap_i
= isl_union_map_intersect_domain(umap_i
, filter_i
);
4550 empty
= isl_union_map_is_empty(umap_i
);
4554 isl_union_map_free(umap_i
);
4558 for (j
= 0; j
< i
; ++j
) {
4559 isl_union_set
*filter_j
;
4560 isl_union_map
*umap_ij
;
4562 umap_ij
= isl_union_map_copy(umap_i
);
4563 filter_j
= child_filter(node
, j
);
4564 umap_ij
= isl_union_map_intersect_range(umap_ij
,
4566 empty
= isl_union_map_is_empty(umap_ij
);
4567 isl_union_map_free(umap_ij
);
4572 after
= isl_bool_true
;
4577 isl_union_map_free(umap_i
);
4582 if (after
< 0 || after
)
4585 return after_in_set(umap
, node
);
4587 isl_union_map_free(umap_i
);
4588 return isl_bool_error
;
4591 /* Is any domain element of "umap" scheduled after any of
4592 * the corresponding image elements by the tree rooted at "node"?
4594 * If "umap" is empty, then clearly there is no such element.
4595 * Otherwise, consider the different types of nodes separately.
4597 static isl_bool
after_in_tree(__isl_keep isl_union_map
*umap
,
4598 __isl_keep isl_schedule_node
*node
)
4601 enum isl_schedule_node_type type
;
4603 empty
= isl_union_map_is_empty(umap
);
4605 return isl_bool_error
;
4607 return isl_bool_false
;
4609 return isl_bool_error
;
4611 type
= isl_schedule_node_get_type(node
);
4613 case isl_schedule_node_error
:
4614 return isl_bool_error
;
4615 case isl_schedule_node_leaf
:
4616 return isl_bool_false
;
4617 case isl_schedule_node_band
:
4618 return after_in_band(umap
, node
);
4619 case isl_schedule_node_domain
:
4620 isl_die(isl_schedule_node_get_ctx(node
), isl_error_internal
,
4621 "unexpected internal domain node",
4622 return isl_bool_error
);
4623 case isl_schedule_node_context
:
4624 return after_in_context(umap
, node
);
4625 case isl_schedule_node_expansion
:
4626 return after_in_expansion(umap
, node
);
4627 case isl_schedule_node_extension
:
4628 return after_in_extension(umap
, node
);
4629 case isl_schedule_node_filter
:
4630 return after_in_filter(umap
, node
);
4631 case isl_schedule_node_guard
:
4632 case isl_schedule_node_mark
:
4633 return after_in_child(umap
, node
);
4634 case isl_schedule_node_set
:
4635 return after_in_set(umap
, node
);
4636 case isl_schedule_node_sequence
:
4637 return after_in_sequence(umap
, node
);
4640 return isl_bool_true
;
4643 /* Is any domain element of "map1" scheduled after any domain
4644 * element of "map2" by the subtree underneath the current band node,
4645 * while at the same time being scheduled together by the current
4646 * band node, i.e., by "map1" and "map2?
4648 * If the child of the current band node is a leaf, then
4649 * no element can be scheduled after any other element.
4651 * Otherwise, we construct a relation between domain elements
4652 * of "map1" and domain elements of "map2" that are scheduled
4653 * together and then check if the subtree underneath the current
4654 * band node determines their relative order.
4656 static isl_bool
after_in_subtree(__isl_keep isl_ast_build
*build
,
4657 __isl_keep isl_map
*map1
, __isl_keep isl_map
*map2
)
4659 isl_schedule_node
*node
;
4661 isl_union_map
*umap
;
4664 node
= isl_ast_build_get_schedule_node(build
);
4666 return isl_bool_error
;
4667 node
= isl_schedule_node_child(node
, 0);
4668 if (isl_schedule_node_get_type(node
) == isl_schedule_node_leaf
) {
4669 isl_schedule_node_free(node
);
4670 return isl_bool_false
;
4672 map
= isl_map_copy(map2
);
4673 map
= isl_map_apply_domain(map
, isl_map_copy(map1
));
4674 umap
= isl_union_map_from_map(map
);
4675 after
= after_in_tree(umap
, node
);
4676 isl_union_map_free(umap
);
4677 isl_schedule_node_free(node
);
4681 /* Internal data for any_scheduled_after.
4683 * "build" is the build in which the AST is constructed.
4684 * "depth" is the number of loops that have already been generated
4685 * "group_coscheduled" is a local copy of options->ast_build_group_coscheduled
4686 * "domain" is an array of set-map pairs corresponding to the different
4687 * iteration domains. The set is the schedule domain, i.e., the domain
4688 * of the inverse schedule, while the map is the inverse schedule itself.
4690 struct isl_any_scheduled_after_data
{
4691 isl_ast_build
*build
;
4693 int group_coscheduled
;
4694 struct isl_set_map_pair
*domain
;
4697 /* Is any element of domain "i" scheduled after any element of domain "j"
4698 * (for a common iteration of the first data->depth loops)?
4700 * data->domain[i].set contains the domain of the inverse schedule
4701 * for domain "i", i.e., elements in the schedule domain.
4703 * If we are inside a band of a schedule tree and there is a pair
4704 * of elements in the two domains that is schedule together by
4705 * the current band, then we check if any element of "i" may be schedule
4706 * after element of "j" by the descendants of the band node.
4708 * If data->group_coscheduled is set, then we also return 1 if there
4709 * is any pair of elements in the two domains that are scheduled together.
4711 static isl_bool
any_scheduled_after(int i
, int j
, void *user
)
4713 struct isl_any_scheduled_after_data
*data
= user
;
4714 isl_size dim
= isl_set_dim(data
->domain
[i
].set
, isl_dim_set
);
4718 return isl_bool_error
;
4720 for (pos
= data
->depth
; pos
< dim
; ++pos
) {
4723 follows
= isl_set_follows_at(data
->domain
[i
].set
,
4724 data
->domain
[j
].set
, pos
);
4727 return isl_bool_error
;
4729 return isl_bool_true
;
4731 return isl_bool_false
;
4734 if (isl_ast_build_has_schedule_node(data
->build
)) {
4737 after
= after_in_subtree(data
->build
, data
->domain
[i
].map
,
4738 data
->domain
[j
].map
);
4739 if (after
< 0 || after
)
4743 return isl_bool_ok(data
->group_coscheduled
);
4746 /* Look for independent components at the current depth and generate code
4747 * for each component separately. The resulting lists of grafts are
4748 * merged in an attempt to combine grafts with identical guards.
4750 * Code for two domains can be generated separately if all the elements
4751 * of one domain are scheduled before (or together with) all the elements
4752 * of the other domain. We therefore consider the graph with as nodes
4753 * the domains and an edge between two nodes if any element of the first
4754 * node is scheduled after any element of the second node.
4755 * If the ast_build_group_coscheduled is set, then we also add an edge if
4756 * there is any pair of elements in the two domains that are scheduled
4758 * Code is then generated (by generate_component)
4759 * for each of the strongly connected components in this graph
4760 * in their topological order.
4762 * Since the test is performed on the domain of the inverse schedules of
4763 * the different domains, we precompute these domains and store
4764 * them in data.domain.
4766 static __isl_give isl_ast_graft_list
*generate_components(
4767 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
4770 isl_ctx
*ctx
= isl_ast_build_get_ctx(build
);
4771 isl_size n
= isl_union_map_n_map(executed
);
4773 struct isl_any_scheduled_after_data data
;
4774 struct isl_set_map_pair
*next
;
4775 struct isl_tarjan_graph
*g
= NULL
;
4776 isl_ast_graft_list
*list
= NULL
;
4782 data
.domain
= isl_calloc_array(ctx
, struct isl_set_map_pair
, n
);
4788 if (isl_union_map_foreach_map(executed
, &extract_domain
, &next
) < 0)
4791 depth
= isl_ast_build_get_depth(build
);
4796 data
.group_coscheduled
= isl_options_get_ast_build_group_coscheduled(ctx
);
4797 g
= isl_tarjan_graph_init(ctx
, n
, &any_scheduled_after
, &data
);
4801 list
= isl_ast_graft_list_alloc(ctx
, 0);
4805 isl_ast_graft_list
*list_c
;
4808 if (g
->order
[i
] == -1)
4809 isl_die(ctx
, isl_error_internal
, "cannot happen",
4812 while (g
->order
[i
] != -1) {
4816 list_c
= generate_component(data
.domain
,
4817 g
->order
+ first
, i
- first
,
4818 isl_ast_build_copy(build
));
4819 list
= isl_ast_graft_list_merge(list
, list_c
, build
);
4825 error
: list
= isl_ast_graft_list_free(list
);
4826 isl_tarjan_graph_free(g
);
4827 for (i
= 0; i
< n_domain
; ++i
) {
4828 isl_map_free(data
.domain
[i
].map
);
4829 isl_set_free(data
.domain
[i
].set
);
4832 isl_union_map_free(executed
);
4833 isl_ast_build_free(build
);
4838 /* Generate code for the next level (and all inner levels).
4840 * If "executed" is empty, i.e., no code needs to be generated,
4841 * then we return an empty list.
4843 * If we have already generated code for all loop levels, then we pass
4844 * control to generate_inner_level.
4846 * If "executed" lives in a single space, i.e., if code needs to be
4847 * generated for a single domain, then there can only be a single
4848 * component and we go directly to generate_shifted_component.
4849 * Otherwise, we call generate_components to detect the components
4850 * and to call generate_component on each of them separately.
4852 static __isl_give isl_ast_graft_list
*generate_next_level(
4853 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
4859 if (!build
|| !executed
)
4862 if (isl_union_map_is_empty(executed
)) {
4863 isl_ctx
*ctx
= isl_ast_build_get_ctx(build
);
4864 isl_union_map_free(executed
);
4865 isl_ast_build_free(build
);
4866 return isl_ast_graft_list_alloc(ctx
, 0);
4869 depth
= isl_ast_build_get_depth(build
);
4870 dim
= isl_ast_build_dim(build
, isl_dim_set
);
4871 if (depth
< 0 || dim
< 0)
4874 return generate_inner_level(executed
, build
);
4876 n
= isl_union_map_n_map(executed
);
4880 return generate_shifted_component(executed
, build
);
4882 return generate_components(executed
, build
);
4884 isl_union_map_free(executed
);
4885 isl_ast_build_free(build
);
4889 /* Internal data structure used by isl_ast_build_node_from_schedule_map.
4890 * internal, executed and build are the inputs to generate_code.
4891 * list collects the output.
4893 struct isl_generate_code_data
{
4895 isl_union_map
*executed
;
4896 isl_ast_build
*build
;
4898 isl_ast_graft_list
*list
;
4901 /* Given an inverse schedule in terms of the external build schedule, i.e.,
4905 * with E the external build schedule and S the additional schedule "space",
4906 * reformulate the inverse schedule in terms of the internal schedule domain,
4911 * We first obtain a mapping
4915 * take the inverse and the product with S -> S, resulting in
4917 * [I -> S] -> [E -> S]
4919 * Applying the map to the input produces the desired result.
4921 static __isl_give isl_union_map
*internal_executed(
4922 __isl_take isl_union_map
*executed
, __isl_keep isl_space
*space
,
4923 __isl_keep isl_ast_build
*build
)
4927 proj
= isl_ast_build_get_schedule_map(build
);
4928 proj
= isl_map_reverse(proj
);
4929 space
= isl_space_map_from_set(isl_space_copy(space
));
4930 id
= isl_map_identity(space
);
4931 proj
= isl_map_product(proj
, id
);
4932 executed
= isl_union_map_apply_domain(executed
,
4933 isl_union_map_from_map(proj
));
4937 /* Generate an AST that visits the elements in the range of data->executed
4938 * in the relative order specified by the corresponding domain element(s)
4939 * for those domain elements that belong to "set".
4940 * Add the result to data->list.
4942 * The caller ensures that "set" is a universe domain.
4943 * "space" is the space of the additional part of the schedule.
4944 * It is equal to the space of "set" if build->domain is parametric.
4945 * Otherwise, it is equal to the range of the wrapped space of "set".
4947 * If the build space is not parametric and
4948 * if isl_ast_build_node_from_schedule_map
4949 * was called from an outside user (data->internal not set), then
4950 * the (inverse) schedule refers to the external build domain and needs to
4951 * be transformed to refer to the internal build domain.
4953 * If the build space is parametric, then we add some of the parameter
4954 * constraints to the executed relation. Adding these constraints
4955 * allows for an earlier detection of conflicts in some cases.
4956 * However, we do not want to divide the executed relation into
4957 * more disjuncts than necessary. We therefore approximate
4958 * the constraints on the parameters by a single disjunct set.
4960 * The build is extended to include the additional part of the schedule.
4961 * If the original build space was not parametric, then the options
4962 * in data->build refer only to the additional part of the schedule
4963 * and they need to be adjusted to refer to the complete AST build
4966 * After having adjusted inverse schedule and build, we start generating
4967 * code with the outer loop of the current code generation
4968 * in generate_next_level.
4970 * If the original build space was not parametric, we undo the embedding
4971 * on the resulting isl_ast_node_list so that it can be used within
4972 * the outer AST build.
4974 static isl_stat
generate_code_in_space(struct isl_generate_code_data
*data
,
4975 __isl_take isl_set
*set
, __isl_take isl_space
*space
)
4977 isl_union_map
*executed
;
4978 isl_ast_build
*build
;
4979 isl_ast_graft_list
*list
;
4982 executed
= isl_union_map_copy(data
->executed
);
4983 executed
= isl_union_map_intersect_domain(executed
,
4984 isl_union_set_from_set(set
));
4986 embed
= !isl_set_is_params(data
->build
->domain
);
4987 if (embed
&& !data
->internal
)
4988 executed
= internal_executed(executed
, space
, data
->build
);
4991 domain
= isl_ast_build_get_domain(data
->build
);
4992 domain
= isl_set_from_basic_set(isl_set_simple_hull(domain
));
4993 executed
= isl_union_map_intersect_params(executed
, domain
);
4996 build
= isl_ast_build_copy(data
->build
);
4997 build
= isl_ast_build_product(build
, space
);
4999 list
= generate_next_level(executed
, build
);
5001 list
= isl_ast_graft_list_unembed(list
, embed
);
5003 data
->list
= isl_ast_graft_list_concat(data
->list
, list
);
5008 /* Generate an AST that visits the elements in the range of data->executed
5009 * in the relative order specified by the corresponding domain element(s)
5010 * for those domain elements that belong to "set".
5011 * Add the result to data->list.
5013 * The caller ensures that "set" is a universe domain.
5015 * If the build space S is not parametric, then the space of "set"
5016 * need to be a wrapped relation with S as domain. That is, it needs
5021 * Check this property and pass control to generate_code_in_space
5023 * If the build space is not parametric, then T is the space of "set".
5025 static isl_stat
generate_code_set(__isl_take isl_set
*set
, void *user
)
5027 struct isl_generate_code_data
*data
= user
;
5028 isl_space
*space
, *build_space
;
5031 space
= isl_set_get_space(set
);
5033 if (isl_set_is_params(data
->build
->domain
))
5034 return generate_code_in_space(data
, set
, space
);
5036 build_space
= isl_ast_build_get_space(data
->build
, data
->internal
);
5037 space
= isl_space_unwrap(space
);
5038 is_domain
= isl_space_is_domain(build_space
, space
);
5039 isl_space_free(build_space
);
5040 space
= isl_space_range(space
);
5045 isl_die(isl_set_get_ctx(set
), isl_error_invalid
,
5046 "invalid nested schedule space", goto error
);
5048 return generate_code_in_space(data
, set
, space
);
5051 isl_space_free(space
);
5052 return isl_stat_error
;
5055 /* Generate an AST that visits the elements in the range of "executed"
5056 * in the relative order specified by the corresponding domain element(s).
5058 * "build" is an isl_ast_build that has either been constructed by
5059 * isl_ast_build_from_context or passed to a callback set by
5060 * isl_ast_build_set_create_leaf.
5061 * In the first case, the space of the isl_ast_build is typically
5062 * a parametric space, although this is currently not enforced.
5063 * In the second case, the space is never a parametric space.
5064 * If the space S is not parametric, then the domain space(s) of "executed"
5065 * need to be wrapped relations with S as domain.
5067 * If the domain of "executed" consists of several spaces, then an AST
5068 * is generated for each of them (in arbitrary order) and the results
5071 * If "internal" is set, then the domain "S" above refers to the internal
5072 * schedule domain representation. Otherwise, it refers to the external
5073 * representation, as returned by isl_ast_build_get_schedule_space.
5075 * We essentially run over all the spaces in the domain of "executed"
5076 * and call generate_code_set on each of them.
5078 static __isl_give isl_ast_graft_list
*generate_code(
5079 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
,
5083 struct isl_generate_code_data data
= { 0 };
5085 isl_union_set
*schedule_domain
;
5086 isl_union_map
*universe
;
5090 space
= isl_ast_build_get_space(build
, 1);
5091 space
= isl_space_align_params(space
,
5092 isl_union_map_get_space(executed
));
5093 space
= isl_space_align_params(space
,
5094 isl_union_map_get_space(build
->options
));
5095 build
= isl_ast_build_align_params(build
, isl_space_copy(space
));
5096 executed
= isl_union_map_align_params(executed
, space
);
5097 if (!executed
|| !build
)
5100 ctx
= isl_ast_build_get_ctx(build
);
5102 data
.internal
= internal
;
5103 data
.executed
= executed
;
5105 data
.list
= isl_ast_graft_list_alloc(ctx
, 0);
5107 universe
= isl_union_map_universe(isl_union_map_copy(executed
));
5108 schedule_domain
= isl_union_map_domain(universe
);
5109 if (isl_union_set_foreach_set(schedule_domain
, &generate_code_set
,
5111 data
.list
= isl_ast_graft_list_free(data
.list
);
5113 isl_union_set_free(schedule_domain
);
5114 isl_union_map_free(executed
);
5116 isl_ast_build_free(build
);
5119 isl_union_map_free(executed
);
5120 isl_ast_build_free(build
);
5124 /* Generate an AST that visits the elements in the domain of "schedule"
5125 * in the relative order specified by the corresponding image element(s).
5127 * "build" is an isl_ast_build that has either been constructed by
5128 * isl_ast_build_from_context or passed to a callback set by
5129 * isl_ast_build_set_create_leaf.
5130 * In the first case, the space of the isl_ast_build is typically
5131 * a parametric space, although this is currently not enforced.
5132 * In the second case, the space is never a parametric space.
5133 * If the space S is not parametric, then the range space(s) of "schedule"
5134 * need to be wrapped relations with S as domain.
5136 * If the range of "schedule" consists of several spaces, then an AST
5137 * is generated for each of them (in arbitrary order) and the results
5140 * We first initialize the local copies of the relevant options.
5141 * We do this here rather than when the isl_ast_build is created
5142 * because the options may have changed between the construction
5143 * of the isl_ast_build and the call to isl_generate_code.
5145 * The main computation is performed on an inverse schedule (with
5146 * the schedule domain in the domain and the elements to be executed
5147 * in the range) called "executed".
5149 __isl_give isl_ast_node
*isl_ast_build_node_from_schedule_map(
5150 __isl_keep isl_ast_build
*build
, __isl_take isl_union_map
*schedule
)
5152 isl_ast_graft_list
*list
;
5154 isl_union_map
*executed
;
5156 build
= isl_ast_build_copy(build
);
5157 build
= isl_ast_build_set_single_valued(build
, 0);
5158 schedule
= isl_union_map_coalesce(schedule
);
5159 schedule
= isl_union_map_remove_redundancies(schedule
);
5160 executed
= isl_union_map_reverse(schedule
);
5161 list
= generate_code(executed
, isl_ast_build_copy(build
), 0);
5162 node
= isl_ast_node_from_graft_list(list
, build
);
5163 isl_ast_build_free(build
);
5168 /* The old name for isl_ast_build_node_from_schedule_map.
5169 * It is being kept for backward compatibility, but
5170 * it will be removed in the future.
5172 __isl_give isl_ast_node
*isl_ast_build_ast_from_schedule(
5173 __isl_keep isl_ast_build
*build
, __isl_take isl_union_map
*schedule
)
5175 return isl_ast_build_node_from_schedule_map(build
, schedule
);
5178 /* Generate an AST that visits the elements in the domain of "executed"
5179 * in the relative order specified by the leaf node "node".
5181 * The relation "executed" maps the outer generated loop iterators
5182 * to the domain elements executed by those iterations.
5184 * Simply pass control to generate_inner_level.
5185 * Note that the current build does not refer to any band node, so
5186 * that generate_inner_level will not try to visit the child of
5189 * If multiple statement instances reach a leaf,
5190 * then they can be executed in any order.
5191 * Group the list of grafts based on shared guards
5192 * such that identical guards are only generated once
5193 * when the list is eventually passed on to isl_ast_graft_list_fuse.
5195 static __isl_give isl_ast_graft_list
*build_ast_from_leaf(
5196 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5197 __isl_take isl_union_map
*executed
)
5199 isl_ast_graft_list
*list
;
5201 isl_schedule_node_free(node
);
5202 list
= generate_inner_level(executed
, isl_ast_build_copy(build
));
5203 list
= isl_ast_graft_list_group_on_guard(list
, build
);
5204 isl_ast_build_free(build
);
5209 /* Check that the band partial schedule "partial" does not filter out
5210 * any statement instances, as specified by the range of "executed".
5212 static isl_stat
check_band_schedule_total_on_instances(
5213 __isl_keep isl_multi_union_pw_aff
*partial
,
5214 __isl_keep isl_union_map
*executed
)
5217 isl_union_set
*domain
, *instances
;
5219 instances
= isl_union_map_range(isl_union_map_copy(executed
));
5220 partial
= isl_multi_union_pw_aff_copy(partial
);
5221 domain
= isl_multi_union_pw_aff_domain(partial
);
5222 subset
= isl_union_set_is_subset(instances
, domain
);
5223 isl_union_set_free(domain
);
5224 isl_union_set_free(instances
);
5227 return isl_stat_error
;
5229 isl_die(isl_union_map_get_ctx(executed
), isl_error_invalid
,
5230 "band node is not allowed to drop statement instances",
5231 return isl_stat_error
);
5235 /* Generate an AST that visits the elements in the domain of "executed"
5236 * in the relative order specified by the band node "node" and its descendants.
5238 * The relation "executed" maps the outer generated loop iterators
5239 * to the domain elements executed by those iterations.
5241 * If the band is empty, we continue with its descendants.
5242 * Otherwise, we extend the build and the inverse schedule with
5243 * the additional space/partial schedule and continue generating
5244 * an AST in generate_next_level.
5245 * As soon as we have extended the inverse schedule with the additional
5246 * partial schedule, we look for equalities that may exists between
5247 * the old and the new part.
5249 static __isl_give isl_ast_graft_list
*build_ast_from_band(
5250 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5251 __isl_take isl_union_map
*executed
)
5254 isl_multi_union_pw_aff
*extra
;
5255 isl_union_map
*extra_umap
;
5256 isl_ast_graft_list
*list
;
5260 n
= isl_schedule_node_band_n_member(node
);
5261 if (!build
|| n
< 0 || !executed
)
5265 return build_ast_from_child(build
, node
, executed
);
5267 extra
= isl_schedule_node_band_get_partial_schedule(node
);
5268 extra
= isl_multi_union_pw_aff_align_params(extra
,
5269 isl_ast_build_get_space(build
, 1));
5270 space
= isl_multi_union_pw_aff_get_space(extra
);
5272 if (check_band_schedule_total_on_instances(extra
, executed
) < 0)
5273 executed
= isl_union_map_free(executed
);
5275 extra_umap
= isl_union_map_from_multi_union_pw_aff(extra
);
5276 extra_umap
= isl_union_map_reverse(extra_umap
);
5278 executed
= isl_union_map_domain_product(executed
, extra_umap
);
5279 executed
= isl_union_map_detect_equalities(executed
);
5281 n1
= isl_ast_build_dim(build
, isl_dim_param
);
5282 build
= isl_ast_build_product(build
, space
);
5283 n2
= isl_ast_build_dim(build
, isl_dim_param
);
5284 if (n1
< 0 || n2
< 0)
5285 build
= isl_ast_build_free(build
);
5287 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
5288 "band node is not allowed to introduce new parameters",
5289 build
= isl_ast_build_free(build
));
5290 build
= isl_ast_build_set_schedule_node(build
, node
);
5292 list
= generate_next_level(executed
, build
);
5294 list
= isl_ast_graft_list_unembed(list
, 1);
5298 isl_schedule_node_free(node
);
5299 isl_union_map_free(executed
);
5300 isl_ast_build_free(build
);
5304 /* Hoist a list of grafts (in practice containing a single graft)
5305 * from "sub_build" (which includes extra context information)
5308 * In particular, project out all additional parameters introduced
5309 * by the context node from the enforced constraints and the guard
5310 * of the single graft.
5312 static __isl_give isl_ast_graft_list
*hoist_out_of_context(
5313 __isl_take isl_ast_graft_list
*list
, __isl_keep isl_ast_build
*build
,
5314 __isl_keep isl_ast_build
*sub_build
)
5316 isl_ast_graft
*graft
;
5317 isl_basic_set
*enforced
;
5319 isl_size n_param
, extra_param
;
5321 n_param
= isl_ast_build_dim(build
, isl_dim_param
);
5322 extra_param
= isl_ast_build_dim(sub_build
, isl_dim_param
);
5323 if (n_param
< 0 || extra_param
< 0)
5324 return isl_ast_graft_list_free(list
);
5326 if (extra_param
== n_param
)
5329 extra_param
-= n_param
;
5330 enforced
= isl_ast_graft_list_extract_shared_enforced(list
, sub_build
);
5331 enforced
= isl_basic_set_project_out(enforced
, isl_dim_param
,
5332 n_param
, extra_param
);
5333 enforced
= isl_basic_set_remove_unknown_divs(enforced
);
5334 guard
= isl_ast_graft_list_extract_hoistable_guard(list
, sub_build
);
5335 guard
= isl_set_remove_divs_involving_dims(guard
, isl_dim_param
,
5336 n_param
, extra_param
);
5337 guard
= isl_set_project_out(guard
, isl_dim_param
, n_param
, extra_param
);
5338 guard
= isl_set_compute_divs(guard
);
5339 graft
= isl_ast_graft_alloc_from_children(list
, guard
, enforced
,
5341 list
= isl_ast_graft_list_from_ast_graft(graft
);
5346 /* Generate an AST that visits the elements in the domain of "executed"
5347 * in the relative order specified by the context node "node"
5348 * and its descendants.
5350 * The relation "executed" maps the outer generated loop iterators
5351 * to the domain elements executed by those iterations.
5353 * The context node may introduce additional parameters as well as
5354 * constraints on the outer schedule dimensions or original parameters.
5356 * We add the extra parameters to a new build and the context
5357 * constraints to both the build and (as a single disjunct)
5358 * to the domain of "executed". Since the context constraints
5359 * are specified in terms of the input schedule, we first need
5360 * to map them to the internal schedule domain.
5362 * After constructing the AST from the descendants of "node",
5363 * we combine the list of grafts into a single graft within
5364 * the new build, in order to be able to exploit the additional
5365 * context constraints during this combination.
5367 * Additionally, if the current node is the outermost node in
5368 * the schedule tree (apart from the root domain node), we generate
5369 * all pending guards, again to be able to exploit the additional
5370 * context constraints. We currently do not do this for internal
5371 * context nodes since we may still want to hoist conditions
5372 * to outer AST nodes.
5374 * If the context node introduced any new parameters, then they
5375 * are removed from the set of enforced constraints and guard
5376 * in hoist_out_of_context.
5378 static __isl_give isl_ast_graft_list
*build_ast_from_context(
5379 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5380 __isl_take isl_union_map
*executed
)
5384 isl_multi_aff
*internal2input
;
5385 isl_ast_build
*sub_build
;
5386 isl_ast_graft_list
*list
;
5390 depth
= isl_schedule_node_get_tree_depth(node
);
5392 build
= isl_ast_build_free(build
);
5393 space
= isl_ast_build_get_space(build
, 1);
5394 context
= isl_schedule_node_context_get_context(node
);
5395 context
= isl_set_align_params(context
, space
);
5396 sub_build
= isl_ast_build_copy(build
);
5397 space
= isl_set_get_space(context
);
5398 sub_build
= isl_ast_build_align_params(sub_build
, space
);
5399 internal2input
= isl_ast_build_get_internal2input(sub_build
);
5400 context
= isl_set_preimage_multi_aff(context
, internal2input
);
5401 sub_build
= isl_ast_build_restrict_generated(sub_build
,
5402 isl_set_copy(context
));
5403 context
= isl_set_from_basic_set(isl_set_simple_hull(context
));
5404 executed
= isl_union_map_intersect_domain(executed
,
5405 isl_union_set_from_set(context
));
5407 list
= build_ast_from_child(isl_ast_build_copy(sub_build
),
5409 n
= isl_ast_graft_list_n_ast_graft(list
);
5411 list
= isl_ast_graft_list_free(list
);
5413 list
= isl_ast_graft_list_fuse(list
, sub_build
);
5415 list
= isl_ast_graft_list_insert_pending_guard_nodes(list
,
5418 list
= hoist_out_of_context(list
, build
, sub_build
);
5420 isl_ast_build_free(build
);
5421 isl_ast_build_free(sub_build
);
5426 /* Generate an AST that visits the elements in the domain of "executed"
5427 * in the relative order specified by the expansion node "node" and
5430 * The relation "executed" maps the outer generated loop iterators
5431 * to the domain elements executed by those iterations.
5433 * We expand the domain elements by the expansion and
5434 * continue with the descendants of the node.
5436 static __isl_give isl_ast_graft_list
*build_ast_from_expansion(
5437 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5438 __isl_take isl_union_map
*executed
)
5440 isl_union_map
*expansion
;
5443 expansion
= isl_schedule_node_expansion_get_expansion(node
);
5444 expansion
= isl_union_map_align_params(expansion
,
5445 isl_union_map_get_space(executed
));
5447 n1
= isl_union_map_dim(executed
, isl_dim_param
);
5448 executed
= isl_union_map_apply_range(executed
, expansion
);
5449 n2
= isl_union_map_dim(executed
, isl_dim_param
);
5450 if (n1
< 0 || n2
< 0)
5453 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
5454 "expansion node is not allowed to introduce "
5455 "new parameters", goto error
);
5457 return build_ast_from_child(build
, node
, executed
);
5459 isl_ast_build_free(build
);
5460 isl_schedule_node_free(node
);
5461 isl_union_map_free(executed
);
5465 /* Generate an AST that visits the elements in the domain of "executed"
5466 * in the relative order specified by the extension node "node" and
5469 * The relation "executed" maps the outer generated loop iterators
5470 * to the domain elements executed by those iterations.
5472 * Extend the inverse schedule with the extension applied to current
5473 * set of generated constraints. Since the extension if formulated
5474 * in terms of the input schedule, it first needs to be transformed
5475 * to refer to the internal schedule.
5477 static __isl_give isl_ast_graft_list
*build_ast_from_extension(
5478 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5479 __isl_take isl_union_map
*executed
)
5481 isl_union_set
*schedule_domain
;
5482 isl_union_map
*extension
;
5485 set
= isl_ast_build_get_generated(build
);
5486 set
= isl_set_from_basic_set(isl_set_simple_hull(set
));
5487 schedule_domain
= isl_union_set_from_set(set
);
5489 extension
= isl_schedule_node_extension_get_extension(node
);
5491 extension
= isl_union_map_preimage_domain_multi_aff(extension
,
5492 isl_multi_aff_copy(build
->internal2input
));
5493 extension
= isl_union_map_intersect_domain(extension
, schedule_domain
);
5494 extension
= isl_ast_build_substitute_values_union_map_domain(build
,
5496 executed
= isl_union_map_union(executed
, extension
);
5498 return build_ast_from_child(build
, node
, executed
);
5501 /* Generate an AST that visits the elements in the domain of "executed"
5502 * in the relative order specified by the filter node "node" and
5505 * The relation "executed" maps the outer generated loop iterators
5506 * to the domain elements executed by those iterations.
5508 * We simply intersect the iteration domain (i.e., the range of "executed")
5509 * with the filter and continue with the descendants of the node,
5510 * unless the resulting inverse schedule is empty, in which
5511 * case we return an empty list.
5513 * If the result of the intersection is equal to the original "executed"
5514 * relation, then keep the original representation since the intersection
5515 * may have unnecessarily broken up the relation into a greater number
5518 static __isl_give isl_ast_graft_list
*build_ast_from_filter(
5519 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5520 __isl_take isl_union_map
*executed
)
5523 isl_union_set
*filter
;
5524 isl_union_map
*orig
;
5525 isl_ast_graft_list
*list
;
5530 orig
= isl_union_map_copy(executed
);
5531 if (!build
|| !node
|| !executed
)
5534 filter
= isl_schedule_node_filter_get_filter(node
);
5535 filter
= isl_union_set_align_params(filter
,
5536 isl_union_map_get_space(executed
));
5537 n1
= isl_union_map_dim(executed
, isl_dim_param
);
5538 executed
= isl_union_map_intersect_range(executed
, filter
);
5539 n2
= isl_union_map_dim(executed
, isl_dim_param
);
5540 if (n1
< 0 || n2
< 0)
5543 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
5544 "filter node is not allowed to introduce "
5545 "new parameters", goto error
);
5547 unchanged
= isl_union_map_is_subset(orig
, executed
);
5548 empty
= isl_union_map_is_empty(executed
);
5549 if (unchanged
< 0 || empty
< 0)
5552 isl_union_map_free(executed
);
5553 return build_ast_from_child(build
, node
, orig
);
5555 isl_union_map_free(orig
);
5557 return build_ast_from_child(build
, node
, executed
);
5559 ctx
= isl_ast_build_get_ctx(build
);
5560 list
= isl_ast_graft_list_alloc(ctx
, 0);
5561 isl_ast_build_free(build
);
5562 isl_schedule_node_free(node
);
5563 isl_union_map_free(executed
);
5566 isl_ast_build_free(build
);
5567 isl_schedule_node_free(node
);
5568 isl_union_map_free(executed
);
5569 isl_union_map_free(orig
);
5573 /* Generate an AST that visits the elements in the domain of "executed"
5574 * in the relative order specified by the guard node "node" and
5577 * The relation "executed" maps the outer generated loop iterators
5578 * to the domain elements executed by those iterations.
5580 * Ensure that the associated guard is enforced by the outer AST
5581 * constructs by adding it to the guard of the graft.
5582 * Since we know that we will enforce the guard, we can also include it
5583 * in the generated constraints used to construct an AST for
5584 * the descendant nodes.
5586 static __isl_give isl_ast_graft_list
*build_ast_from_guard(
5587 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5588 __isl_take isl_union_map
*executed
)
5591 isl_set
*guard
, *hoisted
;
5592 isl_basic_set
*enforced
;
5593 isl_ast_build
*sub_build
;
5594 isl_ast_graft
*graft
;
5595 isl_ast_graft_list
*list
;
5598 space
= isl_ast_build_get_space(build
, 1);
5599 guard
= isl_schedule_node_guard_get_guard(node
);
5600 n1
= isl_space_dim(space
, isl_dim_param
);
5601 guard
= isl_set_align_params(guard
, space
);
5602 n2
= isl_set_dim(guard
, isl_dim_param
);
5603 if (n1
< 0 || n2
< 0)
5604 guard
= isl_set_free(guard
);
5606 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
5607 "guard node is not allowed to introduce "
5608 "new parameters", guard
= isl_set_free(guard
));
5609 guard
= isl_set_preimage_multi_aff(guard
,
5610 isl_multi_aff_copy(build
->internal2input
));
5611 guard
= isl_ast_build_specialize(build
, guard
);
5612 guard
= isl_set_gist(guard
, isl_set_copy(build
->generated
));
5614 sub_build
= isl_ast_build_copy(build
);
5615 sub_build
= isl_ast_build_restrict_generated(sub_build
,
5616 isl_set_copy(guard
));
5618 list
= build_ast_from_child(isl_ast_build_copy(sub_build
),
5621 hoisted
= isl_ast_graft_list_extract_hoistable_guard(list
, sub_build
);
5622 n
= isl_set_n_basic_set(hoisted
);
5624 list
= isl_ast_graft_list_free(list
);
5626 list
= isl_ast_graft_list_gist_guards(list
,
5627 isl_set_copy(hoisted
));
5628 guard
= isl_set_intersect(guard
, hoisted
);
5629 enforced
= extract_shared_enforced(list
, build
);
5630 graft
= isl_ast_graft_alloc_from_children(list
, guard
, enforced
,
5633 isl_ast_build_free(sub_build
);
5634 isl_ast_build_free(build
);
5635 return isl_ast_graft_list_from_ast_graft(graft
);
5638 /* Call the before_each_mark callback, if requested by the user.
5640 * Return 0 on success and -1 on error.
5642 * The caller is responsible for recording the current inverse schedule
5645 static isl_stat
before_each_mark(__isl_keep isl_id
*mark
,
5646 __isl_keep isl_ast_build
*build
)
5649 return isl_stat_error
;
5650 if (!build
->before_each_mark
)
5652 return build
->before_each_mark(mark
, build
,
5653 build
->before_each_mark_user
);
5656 /* Call the after_each_mark callback, if requested by the user.
5658 * The caller is responsible for recording the current inverse schedule
5661 static __isl_give isl_ast_graft
*after_each_mark(
5662 __isl_take isl_ast_graft
*graft
, __isl_keep isl_ast_build
*build
)
5664 if (!graft
|| !build
)
5665 return isl_ast_graft_free(graft
);
5666 if (!build
->after_each_mark
)
5668 graft
->node
= build
->after_each_mark(graft
->node
, build
,
5669 build
->after_each_mark_user
);
5671 return isl_ast_graft_free(graft
);
5676 /* Generate an AST that visits the elements in the domain of "executed"
5677 * in the relative order specified by the mark node "node" and
5680 * The relation "executed" maps the outer generated loop iterators
5681 * to the domain elements executed by those iterations.
5683 * Since we may be calling before_each_mark and after_each_mark
5684 * callbacks, we record the current inverse schedule in the build.
5686 * We generate an AST for the child of the mark node, combine
5687 * the graft list into a single graft and then insert the mark
5688 * in the AST of that single graft.
5690 static __isl_give isl_ast_graft_list
*build_ast_from_mark(
5691 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5692 __isl_take isl_union_map
*executed
)
5695 isl_ast_graft
*graft
;
5696 isl_ast_graft_list
*list
;
5699 build
= isl_ast_build_set_executed(build
, isl_union_map_copy(executed
));
5701 mark
= isl_schedule_node_mark_get_id(node
);
5702 if (before_each_mark(mark
, build
) < 0)
5703 node
= isl_schedule_node_free(node
);
5705 list
= build_ast_from_child(isl_ast_build_copy(build
), node
, executed
);
5706 list
= isl_ast_graft_list_fuse(list
, build
);
5707 n
= isl_ast_graft_list_n_ast_graft(list
);
5709 list
= isl_ast_graft_list_free(list
);
5713 graft
= isl_ast_graft_list_get_ast_graft(list
, 0);
5714 graft
= isl_ast_graft_insert_mark(graft
, mark
);
5715 graft
= after_each_mark(graft
, build
);
5716 list
= isl_ast_graft_list_set_ast_graft(list
, 0, graft
);
5718 isl_ast_build_free(build
);
5723 static __isl_give isl_ast_graft_list
*build_ast_from_schedule_node(
5724 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5725 __isl_take isl_union_map
*executed
);
5727 /* Generate an AST that visits the elements in the domain of "executed"
5728 * in the relative order specified by the sequence (or set) node "node" and
5731 * The relation "executed" maps the outer generated loop iterators
5732 * to the domain elements executed by those iterations.
5734 * We simply generate an AST for each of the children and concatenate
5737 static __isl_give isl_ast_graft_list
*build_ast_from_sequence(
5738 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5739 __isl_take isl_union_map
*executed
)
5744 isl_ast_graft_list
*list
;
5746 ctx
= isl_ast_build_get_ctx(build
);
5747 list
= isl_ast_graft_list_alloc(ctx
, 0);
5749 n
= isl_schedule_node_n_children(node
);
5751 list
= isl_ast_graft_list_free(list
);
5752 for (i
= 0; i
< n
; ++i
) {
5753 isl_schedule_node
*child
;
5754 isl_ast_graft_list
*list_i
;
5756 child
= isl_schedule_node_get_child(node
, i
);
5757 list_i
= build_ast_from_schedule_node(isl_ast_build_copy(build
),
5758 child
, isl_union_map_copy(executed
));
5759 list
= isl_ast_graft_list_concat(list
, list_i
);
5761 isl_ast_build_free(build
);
5762 isl_schedule_node_free(node
);
5763 isl_union_map_free(executed
);
5768 /* Generate an AST that visits the elements in the domain of "executed"
5769 * in the relative order specified by the node "node" and its descendants.
5771 * The relation "executed" maps the outer generated loop iterators
5772 * to the domain elements executed by those iterations.
5774 * The node types are handled in separate functions.
5775 * Set nodes are currently treated in the same way as sequence nodes.
5776 * The children of a set node may be executed in any order,
5777 * including the order of the children.
5779 static __isl_give isl_ast_graft_list
*build_ast_from_schedule_node(
5780 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5781 __isl_take isl_union_map
*executed
)
5783 enum isl_schedule_node_type type
;
5785 type
= isl_schedule_node_get_type(node
);
5788 case isl_schedule_node_error
:
5790 case isl_schedule_node_leaf
:
5791 return build_ast_from_leaf(build
, node
, executed
);
5792 case isl_schedule_node_band
:
5793 return build_ast_from_band(build
, node
, executed
);
5794 case isl_schedule_node_context
:
5795 return build_ast_from_context(build
, node
, executed
);
5796 case isl_schedule_node_domain
:
5797 isl_die(isl_schedule_node_get_ctx(node
), isl_error_unsupported
,
5798 "unexpected internal domain node", goto error
);
5799 case isl_schedule_node_expansion
:
5800 return build_ast_from_expansion(build
, node
, executed
);
5801 case isl_schedule_node_extension
:
5802 return build_ast_from_extension(build
, node
, executed
);
5803 case isl_schedule_node_filter
:
5804 return build_ast_from_filter(build
, node
, executed
);
5805 case isl_schedule_node_guard
:
5806 return build_ast_from_guard(build
, node
, executed
);
5807 case isl_schedule_node_mark
:
5808 return build_ast_from_mark(build
, node
, executed
);
5809 case isl_schedule_node_sequence
:
5810 case isl_schedule_node_set
:
5811 return build_ast_from_sequence(build
, node
, executed
);
5814 isl_die(isl_ast_build_get_ctx(build
), isl_error_internal
,
5815 "unhandled type", goto error
);
5817 isl_union_map_free(executed
);
5818 isl_schedule_node_free(node
);
5819 isl_ast_build_free(build
);
5824 /* Generate an AST that visits the elements in the domain of "executed"
5825 * in the relative order specified by the (single) child of "node" and
5828 * The relation "executed" maps the outer generated loop iterators
5829 * to the domain elements executed by those iterations.
5831 * This function is never called on a leaf, set or sequence node,
5832 * so the node always has exactly one child.
5834 static __isl_give isl_ast_graft_list
*build_ast_from_child(
5835 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5836 __isl_take isl_union_map
*executed
)
5838 node
= isl_schedule_node_child(node
, 0);
5839 return build_ast_from_schedule_node(build
, node
, executed
);
5842 /* Generate an AST that visits the elements in the domain of the domain
5843 * node "node" in the relative order specified by its descendants.
5845 * An initial inverse schedule is created that maps a zero-dimensional
5846 * schedule space to the node domain.
5847 * The input "build" is assumed to have a parametric domain and
5848 * is replaced by the same zero-dimensional schedule space.
5850 * We also add some of the parameter constraints in the build domain
5851 * to the executed relation. Adding these constraints
5852 * allows for an earlier detection of conflicts in some cases.
5853 * However, we do not want to divide the executed relation into
5854 * more disjuncts than necessary. We therefore approximate
5855 * the constraints on the parameters by a single disjunct set.
5857 static __isl_give isl_ast_node
*build_ast_from_domain(
5858 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
)
5861 isl_union_set
*domain
, *schedule_domain
;
5862 isl_union_map
*executed
;
5865 isl_ast_graft_list
*list
;
5872 ctx
= isl_ast_build_get_ctx(build
);
5873 space
= isl_ast_build_get_space(build
, 1);
5874 is_params
= isl_space_is_params(space
);
5875 isl_space_free(space
);
5879 isl_die(ctx
, isl_error_unsupported
,
5880 "expecting parametric initial context", goto error
);
5882 domain
= isl_schedule_node_domain_get_domain(node
);
5883 domain
= isl_union_set_coalesce(domain
);
5885 space
= isl_union_set_get_space(domain
);
5886 space
= isl_space_set_from_params(space
);
5887 build
= isl_ast_build_product(build
, space
);
5889 set
= isl_ast_build_get_domain(build
);
5890 set
= isl_set_from_basic_set(isl_set_simple_hull(set
));
5891 schedule_domain
= isl_union_set_from_set(set
);
5893 executed
= isl_union_map_from_domain_and_range(schedule_domain
, domain
);
5894 list
= build_ast_from_child(isl_ast_build_copy(build
), node
, executed
);
5895 ast
= isl_ast_node_from_graft_list(list
, build
);
5896 isl_ast_build_free(build
);
5900 isl_schedule_node_free(node
);
5901 isl_ast_build_free(build
);
5905 /* Generate an AST that visits the elements in the domain of "schedule"
5906 * in the relative order specified by the schedule tree.
5908 * "build" is an isl_ast_build that has been created using
5909 * isl_ast_build_alloc or isl_ast_build_from_context based
5910 * on a parametric set.
5912 * The construction starts at the root node of the schedule,
5913 * which is assumed to be a domain node.
5915 __isl_give isl_ast_node
*isl_ast_build_node_from_schedule(
5916 __isl_keep isl_ast_build
*build
, __isl_take isl_schedule
*schedule
)
5919 isl_schedule_node
*node
;
5921 if (!build
|| !schedule
)
5924 ctx
= isl_ast_build_get_ctx(build
);
5926 node
= isl_schedule_get_root(schedule
);
5929 isl_schedule_free(schedule
);
5931 build
= isl_ast_build_copy(build
);
5932 build
= isl_ast_build_set_single_valued(build
, 0);
5933 if (isl_schedule_node_get_type(node
) != isl_schedule_node_domain
)
5934 isl_die(ctx
, isl_error_unsupported
,
5935 "expecting root domain node",
5936 build
= isl_ast_build_free(build
));
5937 return build_ast_from_domain(build
, node
);
5939 isl_schedule_free(schedule
);