scheduler: solve for original schedule coefficients
[isl.git] / isl_scheduler.c
blob7ac88911819d04c8dad328d436ec2479ad28e43b
1 /*
2 * Copyright 2011 INRIA Saclay
3 * Copyright 2012-2014 Ecole Normale Superieure
4 * Copyright 2015-2016 Sven Verdoolaege
5 * Copyright 2016 INRIA Paris
6 * Copyright 2017 Sven Verdoolaege
8 * Use of this software is governed by the MIT license
10 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
11 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
12 * 91893 Orsay, France
13 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
14 * and Centre de Recherche Inria de Paris, 2 rue Simone Iff - Voie DQ12,
15 * CS 42112, 75589 Paris Cedex 12, France
18 #include <isl_ctx_private.h>
19 #include <isl_map_private.h>
20 #include <isl_space_private.h>
21 #include <isl_aff_private.h>
22 #include <isl/hash.h>
23 #include <isl/constraint.h>
24 #include <isl/schedule.h>
25 #include <isl_schedule_constraints.h>
26 #include <isl/schedule_node.h>
27 #include <isl_mat_private.h>
28 #include <isl_vec_private.h>
29 #include <isl/set.h>
30 #include <isl/union_set.h>
31 #include <isl_seq.h>
32 #include <isl_tab.h>
33 #include <isl_dim_map.h>
34 #include <isl/map_to_basic_set.h>
35 #include <isl_sort.h>
36 #include <isl_options_private.h>
37 #include <isl_tarjan.h>
38 #include <isl_morph.h>
39 #include <isl/ilp.h>
40 #include <isl_val_private.h>
43 * The scheduling algorithm implemented in this file was inspired by
44 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
45 * Parallelization and Locality Optimization in the Polyhedral Model".
49 /* Internal information about a node that is used during the construction
50 * of a schedule.
51 * space represents the original space in which the domain lives;
52 * that is, the space is not affected by compression
53 * sched is a matrix representation of the schedule being constructed
54 * for this node; if compressed is set, then this schedule is
55 * defined over the compressed domain space
56 * sched_map is an isl_map representation of the same (partial) schedule
57 * sched_map may be NULL; if compressed is set, then this map
58 * is defined over the uncompressed domain space
59 * rank is the number of linearly independent rows in the linear part
60 * of sched
61 * the columns of cmap represent a change of basis for the schedule
62 * coefficients; the first rank columns span the linear part of
63 * the schedule rows
64 * the rows of "indep" represent linear combinations of the schedule
65 * coefficients that are non-zero when the schedule coefficients are
66 * linearly independent of previously computed schedule rows.
67 * ctrans is the transpose of cmap.
68 * start is the first variable in the LP problem in the sequences that
69 * represents the schedule coefficients of this node
70 * nvar is the dimension of the domain
71 * nparam is the number of parameters or 0 if we are not constructing
72 * a parametric schedule
74 * If compressed is set, then hull represents the constraints
75 * that were used to derive the compression, while compress and
76 * decompress map the original space to the compressed space and
77 * vice versa.
79 * scc is the index of SCC (or WCC) this node belongs to
81 * "cluster" is only used inside extract_clusters and identifies
82 * the cluster of SCCs that the node belongs to.
84 * coincident contains a boolean for each of the rows of the schedule,
85 * indicating whether the corresponding scheduling dimension satisfies
86 * the coincidence constraints in the sense that the corresponding
87 * dependence distances are zero.
89 * If the schedule_treat_coalescing option is set, then
90 * "sizes" contains the sizes of the (compressed) instance set
91 * in each direction. If there is no fixed size in a given direction,
92 * then the corresponding size value is set to infinity.
93 * If the schedule_treat_coalescing option or the schedule_max_coefficient
94 * option is set, then "max" contains the maximal values for
95 * schedule coefficients of the (compressed) variables. If no bound
96 * needs to be imposed on a particular variable, then the corresponding
97 * value is negative.
99 struct isl_sched_node {
100 isl_space *space;
101 int compressed;
102 isl_set *hull;
103 isl_multi_aff *compress;
104 isl_multi_aff *decompress;
105 isl_mat *sched;
106 isl_map *sched_map;
107 int rank;
108 isl_mat *cmap;
109 isl_mat *indep;
110 isl_mat *ctrans;
111 int start;
112 int nvar;
113 int nparam;
115 int scc;
116 int cluster;
118 int *coincident;
120 isl_multi_val *sizes;
121 isl_vec *max;
124 static int node_has_tuples(const void *entry, const void *val)
126 struct isl_sched_node *node = (struct isl_sched_node *)entry;
127 isl_space *space = (isl_space *) val;
129 return isl_space_has_equal_tuples(node->space, space);
132 static int node_scc_exactly(struct isl_sched_node *node, int scc)
134 return node->scc == scc;
137 static int node_scc_at_most(struct isl_sched_node *node, int scc)
139 return node->scc <= scc;
142 static int node_scc_at_least(struct isl_sched_node *node, int scc)
144 return node->scc >= scc;
147 /* An edge in the dependence graph. An edge may be used to
148 * ensure validity of the generated schedule, to minimize the dependence
149 * distance or both
151 * map is the dependence relation, with i -> j in the map if j depends on i
152 * tagged_condition and tagged_validity contain the union of all tagged
153 * condition or conditional validity dependence relations that
154 * specialize the dependence relation "map"; that is,
155 * if (i -> a) -> (j -> b) is an element of "tagged_condition"
156 * or "tagged_validity", then i -> j is an element of "map".
157 * If these fields are NULL, then they represent the empty relation.
158 * src is the source node
159 * dst is the sink node
161 * types is a bit vector containing the types of this edge.
162 * validity is set if the edge is used to ensure correctness
163 * coincidence is used to enforce zero dependence distances
164 * proximity is set if the edge is used to minimize dependence distances
165 * condition is set if the edge represents a condition
166 * for a conditional validity schedule constraint
167 * local can only be set for condition edges and indicates that
168 * the dependence distance over the edge should be zero
169 * conditional_validity is set if the edge is used to conditionally
170 * ensure correctness
172 * For validity edges, start and end mark the sequence of inequality
173 * constraints in the LP problem that encode the validity constraint
174 * corresponding to this edge.
176 * During clustering, an edge may be marked "no_merge" if it should
177 * not be used to merge clusters.
178 * The weight is also only used during clustering and it is
179 * an indication of how many schedule dimensions on either side
180 * of the schedule constraints can be aligned.
181 * If the weight is negative, then this means that this edge was postponed
182 * by has_bounded_distances or any_no_merge. The original weight can
183 * be retrieved by adding 1 + graph->max_weight, with "graph"
184 * the graph containing this edge.
186 struct isl_sched_edge {
187 isl_map *map;
188 isl_union_map *tagged_condition;
189 isl_union_map *tagged_validity;
191 struct isl_sched_node *src;
192 struct isl_sched_node *dst;
194 unsigned types;
196 int start;
197 int end;
199 int no_merge;
200 int weight;
203 /* Is "edge" marked as being of type "type"?
205 static int is_type(struct isl_sched_edge *edge, enum isl_edge_type type)
207 return ISL_FL_ISSET(edge->types, 1 << type);
210 /* Mark "edge" as being of type "type".
212 static void set_type(struct isl_sched_edge *edge, enum isl_edge_type type)
214 ISL_FL_SET(edge->types, 1 << type);
217 /* No longer mark "edge" as being of type "type"?
219 static void clear_type(struct isl_sched_edge *edge, enum isl_edge_type type)
221 ISL_FL_CLR(edge->types, 1 << type);
224 /* Is "edge" marked as a validity edge?
226 static int is_validity(struct isl_sched_edge *edge)
228 return is_type(edge, isl_edge_validity);
231 /* Mark "edge" as a validity edge.
233 static void set_validity(struct isl_sched_edge *edge)
235 set_type(edge, isl_edge_validity);
238 /* Is "edge" marked as a proximity edge?
240 static int is_proximity(struct isl_sched_edge *edge)
242 return is_type(edge, isl_edge_proximity);
245 /* Is "edge" marked as a local edge?
247 static int is_local(struct isl_sched_edge *edge)
249 return is_type(edge, isl_edge_local);
252 /* Mark "edge" as a local edge.
254 static void set_local(struct isl_sched_edge *edge)
256 set_type(edge, isl_edge_local);
259 /* No longer mark "edge" as a local edge.
261 static void clear_local(struct isl_sched_edge *edge)
263 clear_type(edge, isl_edge_local);
266 /* Is "edge" marked as a coincidence edge?
268 static int is_coincidence(struct isl_sched_edge *edge)
270 return is_type(edge, isl_edge_coincidence);
273 /* Is "edge" marked as a condition edge?
275 static int is_condition(struct isl_sched_edge *edge)
277 return is_type(edge, isl_edge_condition);
280 /* Is "edge" marked as a conditional validity edge?
282 static int is_conditional_validity(struct isl_sched_edge *edge)
284 return is_type(edge, isl_edge_conditional_validity);
287 /* Internal information about the dependence graph used during
288 * the construction of the schedule.
290 * intra_hmap is a cache, mapping dependence relations to their dual,
291 * for dependences from a node to itself
292 * inter_hmap is a cache, mapping dependence relations to their dual,
293 * for dependences between distinct nodes
294 * if compression is involved then the key for these maps
295 * is the original, uncompressed dependence relation, while
296 * the value is the dual of the compressed dependence relation.
298 * n is the number of nodes
299 * node is the list of nodes
300 * maxvar is the maximal number of variables over all nodes
301 * max_row is the allocated number of rows in the schedule
302 * n_row is the current (maximal) number of linearly independent
303 * rows in the node schedules
304 * n_total_row is the current number of rows in the node schedules
305 * band_start is the starting row in the node schedules of the current band
306 * root is set if this graph is the original dependence graph,
307 * without any splitting
309 * sorted contains a list of node indices sorted according to the
310 * SCC to which a node belongs
312 * n_edge is the number of edges
313 * edge is the list of edges
314 * max_edge contains the maximal number of edges of each type;
315 * in particular, it contains the number of edges in the inital graph.
316 * edge_table contains pointers into the edge array, hashed on the source
317 * and sink spaces; there is one such table for each type;
318 * a given edge may be referenced from more than one table
319 * if the corresponding relation appears in more than one of the
320 * sets of dependences; however, for each type there is only
321 * a single edge between a given pair of source and sink space
322 * in the entire graph
324 * node_table contains pointers into the node array, hashed on the space tuples
326 * region contains a list of variable sequences that should be non-trivial
328 * lp contains the (I)LP problem used to obtain new schedule rows
330 * src_scc and dst_scc are the source and sink SCCs of an edge with
331 * conflicting constraints
333 * scc represents the number of components
334 * weak is set if the components are weakly connected
336 * max_weight is used during clustering and represents the maximal
337 * weight of the relevant proximity edges.
339 struct isl_sched_graph {
340 isl_map_to_basic_set *intra_hmap;
341 isl_map_to_basic_set *inter_hmap;
343 struct isl_sched_node *node;
344 int n;
345 int maxvar;
346 int max_row;
347 int n_row;
349 int *sorted;
351 int n_total_row;
352 int band_start;
354 int root;
356 struct isl_sched_edge *edge;
357 int n_edge;
358 int max_edge[isl_edge_last + 1];
359 struct isl_hash_table *edge_table[isl_edge_last + 1];
361 struct isl_hash_table *node_table;
362 struct isl_trivial_region *region;
364 isl_basic_set *lp;
366 int src_scc;
367 int dst_scc;
369 int scc;
370 int weak;
372 int max_weight;
375 /* Initialize node_table based on the list of nodes.
377 static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph)
379 int i;
381 graph->node_table = isl_hash_table_alloc(ctx, graph->n);
382 if (!graph->node_table)
383 return -1;
385 for (i = 0; i < graph->n; ++i) {
386 struct isl_hash_table_entry *entry;
387 uint32_t hash;
389 hash = isl_space_get_tuple_hash(graph->node[i].space);
390 entry = isl_hash_table_find(ctx, graph->node_table, hash,
391 &node_has_tuples,
392 graph->node[i].space, 1);
393 if (!entry)
394 return -1;
395 entry->data = &graph->node[i];
398 return 0;
401 /* Return a pointer to the node that lives within the given space,
402 * or NULL if there is no such node.
404 static struct isl_sched_node *graph_find_node(isl_ctx *ctx,
405 struct isl_sched_graph *graph, __isl_keep isl_space *space)
407 struct isl_hash_table_entry *entry;
408 uint32_t hash;
410 hash = isl_space_get_tuple_hash(space);
411 entry = isl_hash_table_find(ctx, graph->node_table, hash,
412 &node_has_tuples, space, 0);
414 return entry ? entry->data : NULL;
417 static int edge_has_src_and_dst(const void *entry, const void *val)
419 const struct isl_sched_edge *edge = entry;
420 const struct isl_sched_edge *temp = val;
422 return edge->src == temp->src && edge->dst == temp->dst;
425 /* Add the given edge to graph->edge_table[type].
427 static isl_stat graph_edge_table_add(isl_ctx *ctx,
428 struct isl_sched_graph *graph, enum isl_edge_type type,
429 struct isl_sched_edge *edge)
431 struct isl_hash_table_entry *entry;
432 uint32_t hash;
434 hash = isl_hash_init();
435 hash = isl_hash_builtin(hash, edge->src);
436 hash = isl_hash_builtin(hash, edge->dst);
437 entry = isl_hash_table_find(ctx, graph->edge_table[type], hash,
438 &edge_has_src_and_dst, edge, 1);
439 if (!entry)
440 return isl_stat_error;
441 entry->data = edge;
443 return isl_stat_ok;
446 /* Allocate the edge_tables based on the maximal number of edges of
447 * each type.
449 static int graph_init_edge_tables(isl_ctx *ctx, struct isl_sched_graph *graph)
451 int i;
453 for (i = 0; i <= isl_edge_last; ++i) {
454 graph->edge_table[i] = isl_hash_table_alloc(ctx,
455 graph->max_edge[i]);
456 if (!graph->edge_table[i])
457 return -1;
460 return 0;
463 /* If graph->edge_table[type] contains an edge from the given source
464 * to the given destination, then return the hash table entry of this edge.
465 * Otherwise, return NULL.
467 static struct isl_hash_table_entry *graph_find_edge_entry(
468 struct isl_sched_graph *graph,
469 enum isl_edge_type type,
470 struct isl_sched_node *src, struct isl_sched_node *dst)
472 isl_ctx *ctx = isl_space_get_ctx(src->space);
473 uint32_t hash;
474 struct isl_sched_edge temp = { .src = src, .dst = dst };
476 hash = isl_hash_init();
477 hash = isl_hash_builtin(hash, temp.src);
478 hash = isl_hash_builtin(hash, temp.dst);
479 return isl_hash_table_find(ctx, graph->edge_table[type], hash,
480 &edge_has_src_and_dst, &temp, 0);
484 /* If graph->edge_table[type] contains an edge from the given source
485 * to the given destination, then return this edge.
486 * Otherwise, return NULL.
488 static struct isl_sched_edge *graph_find_edge(struct isl_sched_graph *graph,
489 enum isl_edge_type type,
490 struct isl_sched_node *src, struct isl_sched_node *dst)
492 struct isl_hash_table_entry *entry;
494 entry = graph_find_edge_entry(graph, type, src, dst);
495 if (!entry)
496 return NULL;
498 return entry->data;
501 /* Check whether the dependence graph has an edge of the given type
502 * between the given two nodes.
504 static isl_bool graph_has_edge(struct isl_sched_graph *graph,
505 enum isl_edge_type type,
506 struct isl_sched_node *src, struct isl_sched_node *dst)
508 struct isl_sched_edge *edge;
509 isl_bool empty;
511 edge = graph_find_edge(graph, type, src, dst);
512 if (!edge)
513 return 0;
515 empty = isl_map_plain_is_empty(edge->map);
516 if (empty < 0)
517 return isl_bool_error;
519 return !empty;
522 /* Look for any edge with the same src, dst and map fields as "model".
524 * Return the matching edge if one can be found.
525 * Return "model" if no matching edge is found.
526 * Return NULL on error.
528 static struct isl_sched_edge *graph_find_matching_edge(
529 struct isl_sched_graph *graph, struct isl_sched_edge *model)
531 enum isl_edge_type i;
532 struct isl_sched_edge *edge;
534 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
535 int is_equal;
537 edge = graph_find_edge(graph, i, model->src, model->dst);
538 if (!edge)
539 continue;
540 is_equal = isl_map_plain_is_equal(model->map, edge->map);
541 if (is_equal < 0)
542 return NULL;
543 if (is_equal)
544 return edge;
547 return model;
550 /* Remove the given edge from all the edge_tables that refer to it.
552 static void graph_remove_edge(struct isl_sched_graph *graph,
553 struct isl_sched_edge *edge)
555 isl_ctx *ctx = isl_map_get_ctx(edge->map);
556 enum isl_edge_type i;
558 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
559 struct isl_hash_table_entry *entry;
561 entry = graph_find_edge_entry(graph, i, edge->src, edge->dst);
562 if (!entry)
563 continue;
564 if (entry->data != edge)
565 continue;
566 isl_hash_table_remove(ctx, graph->edge_table[i], entry);
570 /* Check whether the dependence graph has any edge
571 * between the given two nodes.
573 static isl_bool graph_has_any_edge(struct isl_sched_graph *graph,
574 struct isl_sched_node *src, struct isl_sched_node *dst)
576 enum isl_edge_type i;
577 isl_bool r;
579 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
580 r = graph_has_edge(graph, i, src, dst);
581 if (r < 0 || r)
582 return r;
585 return r;
588 /* Check whether the dependence graph has a validity edge
589 * between the given two nodes.
591 * Conditional validity edges are essentially validity edges that
592 * can be ignored if the corresponding condition edges are iteration private.
593 * Here, we are only checking for the presence of validity
594 * edges, so we need to consider the conditional validity edges too.
595 * In particular, this function is used during the detection
596 * of strongly connected components and we cannot ignore
597 * conditional validity edges during this detection.
599 static isl_bool graph_has_validity_edge(struct isl_sched_graph *graph,
600 struct isl_sched_node *src, struct isl_sched_node *dst)
602 isl_bool r;
604 r = graph_has_edge(graph, isl_edge_validity, src, dst);
605 if (r < 0 || r)
606 return r;
608 return graph_has_edge(graph, isl_edge_conditional_validity, src, dst);
611 static int graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph,
612 int n_node, int n_edge)
614 int i;
616 graph->n = n_node;
617 graph->n_edge = n_edge;
618 graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n);
619 graph->sorted = isl_calloc_array(ctx, int, graph->n);
620 graph->region = isl_alloc_array(ctx,
621 struct isl_trivial_region, graph->n);
622 graph->edge = isl_calloc_array(ctx,
623 struct isl_sched_edge, graph->n_edge);
625 graph->intra_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
626 graph->inter_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
628 if (!graph->node || !graph->region || (graph->n_edge && !graph->edge) ||
629 !graph->sorted)
630 return -1;
632 for(i = 0; i < graph->n; ++i)
633 graph->sorted[i] = i;
635 return 0;
638 static void graph_free(isl_ctx *ctx, struct isl_sched_graph *graph)
640 int i;
642 isl_map_to_basic_set_free(graph->intra_hmap);
643 isl_map_to_basic_set_free(graph->inter_hmap);
645 if (graph->node)
646 for (i = 0; i < graph->n; ++i) {
647 isl_space_free(graph->node[i].space);
648 isl_set_free(graph->node[i].hull);
649 isl_multi_aff_free(graph->node[i].compress);
650 isl_multi_aff_free(graph->node[i].decompress);
651 isl_mat_free(graph->node[i].sched);
652 isl_map_free(graph->node[i].sched_map);
653 isl_mat_free(graph->node[i].cmap);
654 isl_mat_free(graph->node[i].indep);
655 isl_mat_free(graph->node[i].ctrans);
656 if (graph->root)
657 free(graph->node[i].coincident);
658 isl_multi_val_free(graph->node[i].sizes);
659 isl_vec_free(graph->node[i].max);
661 free(graph->node);
662 free(graph->sorted);
663 if (graph->edge)
664 for (i = 0; i < graph->n_edge; ++i) {
665 isl_map_free(graph->edge[i].map);
666 isl_union_map_free(graph->edge[i].tagged_condition);
667 isl_union_map_free(graph->edge[i].tagged_validity);
669 free(graph->edge);
670 free(graph->region);
671 for (i = 0; i <= isl_edge_last; ++i)
672 isl_hash_table_free(ctx, graph->edge_table[i]);
673 isl_hash_table_free(ctx, graph->node_table);
674 isl_basic_set_free(graph->lp);
677 /* For each "set" on which this function is called, increment
678 * graph->n by one and update graph->maxvar.
680 static isl_stat init_n_maxvar(__isl_take isl_set *set, void *user)
682 struct isl_sched_graph *graph = user;
683 int nvar = isl_set_dim(set, isl_dim_set);
685 graph->n++;
686 if (nvar > graph->maxvar)
687 graph->maxvar = nvar;
689 isl_set_free(set);
691 return isl_stat_ok;
694 /* Compute the number of rows that should be allocated for the schedule.
695 * In particular, we need one row for each variable or one row
696 * for each basic map in the dependences.
697 * Note that it is practically impossible to exhaust both
698 * the number of dependences and the number of variables.
700 static isl_stat compute_max_row(struct isl_sched_graph *graph,
701 __isl_keep isl_schedule_constraints *sc)
703 int n_edge;
704 isl_stat r;
705 isl_union_set *domain;
707 graph->n = 0;
708 graph->maxvar = 0;
709 domain = isl_schedule_constraints_get_domain(sc);
710 r = isl_union_set_foreach_set(domain, &init_n_maxvar, graph);
711 isl_union_set_free(domain);
712 if (r < 0)
713 return isl_stat_error;
714 n_edge = isl_schedule_constraints_n_basic_map(sc);
715 if (n_edge < 0)
716 return isl_stat_error;
717 graph->max_row = n_edge + graph->maxvar;
719 return isl_stat_ok;
722 /* Does "bset" have any defining equalities for its set variables?
724 static isl_bool has_any_defining_equality(__isl_keep isl_basic_set *bset)
726 int i, n;
728 if (!bset)
729 return isl_bool_error;
731 n = isl_basic_set_dim(bset, isl_dim_set);
732 for (i = 0; i < n; ++i) {
733 isl_bool has;
735 has = isl_basic_set_has_defining_equality(bset, isl_dim_set, i,
736 NULL);
737 if (has < 0 || has)
738 return has;
741 return isl_bool_false;
744 /* Set the entries of node->max to the value of the schedule_max_coefficient
745 * option, if set.
747 static isl_stat set_max_coefficient(isl_ctx *ctx, struct isl_sched_node *node)
749 int max;
751 max = isl_options_get_schedule_max_coefficient(ctx);
752 if (max == -1)
753 return isl_stat_ok;
755 node->max = isl_vec_alloc(ctx, node->nvar);
756 node->max = isl_vec_set_si(node->max, max);
757 if (!node->max)
758 return isl_stat_error;
760 return isl_stat_ok;
763 /* Set the entries of node->max to the minimum of the schedule_max_coefficient
764 * option (if set) and half of the minimum of the sizes in the other
765 * dimensions. If the minimum of the sizes is one, half of the size
766 * is zero and this value is reset to one.
767 * If the global minimum is unbounded (i.e., if both
768 * the schedule_max_coefficient is not set and the sizes in the other
769 * dimensions are unbounded), then store a negative value.
770 * If the schedule coefficient is close to the size of the instance set
771 * in another dimension, then the schedule may represent a loop
772 * coalescing transformation (especially if the coefficient
773 * in that other dimension is one). Forcing the coefficient to be
774 * smaller than or equal to half the minimal size should avoid this
775 * situation.
777 static isl_stat compute_max_coefficient(isl_ctx *ctx,
778 struct isl_sched_node *node)
780 int max;
781 int i, j;
782 isl_vec *v;
784 max = isl_options_get_schedule_max_coefficient(ctx);
785 v = isl_vec_alloc(ctx, node->nvar);
786 if (!v)
787 return isl_stat_error;
789 for (i = 0; i < node->nvar; ++i) {
790 isl_int_set_si(v->el[i], max);
791 isl_int_mul_si(v->el[i], v->el[i], 2);
794 for (i = 0; i < node->nvar; ++i) {
795 isl_val *size;
797 size = isl_multi_val_get_val(node->sizes, i);
798 if (!size)
799 goto error;
800 if (!isl_val_is_int(size)) {
801 isl_val_free(size);
802 continue;
804 for (j = 0; j < node->nvar; ++j) {
805 if (j == i)
806 continue;
807 if (isl_int_is_neg(v->el[j]) ||
808 isl_int_gt(v->el[j], size->n))
809 isl_int_set(v->el[j], size->n);
811 isl_val_free(size);
814 for (i = 0; i < node->nvar; ++i) {
815 isl_int_fdiv_q_ui(v->el[i], v->el[i], 2);
816 if (isl_int_is_zero(v->el[i]))
817 isl_int_set_si(v->el[i], 1);
820 node->max = v;
821 return isl_stat_ok;
822 error:
823 isl_vec_free(v);
824 return isl_stat_error;
827 /* Compute and return the size of "set" in dimension "dim".
828 * The size is taken to be the difference in values for that variable
829 * for fixed values of the other variables.
830 * In particular, the variable is first isolated from the other variables
831 * in the range of a map
833 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [i_dim]
835 * and then duplicated
837 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [[i_dim] -> [i_dim']]
839 * The shared variables are then projected out and the maximal value
840 * of i_dim' - i_dim is computed.
842 static __isl_give isl_val *compute_size(__isl_take isl_set *set, int dim)
844 isl_map *map;
845 isl_local_space *ls;
846 isl_aff *obj;
847 isl_val *v;
849 map = isl_set_project_onto_map(set, isl_dim_set, dim, 1);
850 map = isl_map_project_out(map, isl_dim_in, dim, 1);
851 map = isl_map_range_product(map, isl_map_copy(map));
852 map = isl_set_unwrap(isl_map_range(map));
853 set = isl_map_deltas(map);
854 ls = isl_local_space_from_space(isl_set_get_space(set));
855 obj = isl_aff_var_on_domain(ls, isl_dim_set, 0);
856 v = isl_set_max_val(set, obj);
857 isl_aff_free(obj);
858 isl_set_free(set);
860 return v;
863 /* Compute the size of the instance set "set" of "node", after compression,
864 * as well as bounds on the corresponding coefficients, if needed.
866 * The sizes are needed when the schedule_treat_coalescing option is set.
867 * The bounds are needed when the schedule_treat_coalescing option or
868 * the schedule_max_coefficient option is set.
870 * If the schedule_treat_coalescing option is not set, then at most
871 * the bounds need to be set and this is done in set_max_coefficient.
872 * Otherwise, compress the domain if needed, compute the size
873 * in each direction and store the results in node->size.
874 * Finally, set the bounds on the coefficients based on the sizes
875 * and the schedule_max_coefficient option in compute_max_coefficient.
877 static isl_stat compute_sizes_and_max(isl_ctx *ctx, struct isl_sched_node *node,
878 __isl_take isl_set *set)
880 int j, n;
881 isl_multi_val *mv;
883 if (!isl_options_get_schedule_treat_coalescing(ctx)) {
884 isl_set_free(set);
885 return set_max_coefficient(ctx, node);
888 if (node->compressed)
889 set = isl_set_preimage_multi_aff(set,
890 isl_multi_aff_copy(node->decompress));
891 mv = isl_multi_val_zero(isl_set_get_space(set));
892 n = isl_set_dim(set, isl_dim_set);
893 for (j = 0; j < n; ++j) {
894 isl_val *v;
896 v = compute_size(isl_set_copy(set), j);
897 mv = isl_multi_val_set_val(mv, j, v);
899 node->sizes = mv;
900 isl_set_free(set);
901 if (!node->sizes)
902 return isl_stat_error;
903 return compute_max_coefficient(ctx, node);
906 /* Add a new node to the graph representing the given instance set.
907 * "nvar" is the (possibly compressed) number of variables and
908 * may be smaller than then number of set variables in "set"
909 * if "compressed" is set.
910 * If "compressed" is set, then "hull" represents the constraints
911 * that were used to derive the compression, while "compress" and
912 * "decompress" map the original space to the compressed space and
913 * vice versa.
914 * If "compressed" is not set, then "hull", "compress" and "decompress"
915 * should be NULL.
917 * Compute the size of the instance set and bounds on the coefficients,
918 * if needed.
920 static isl_stat add_node(struct isl_sched_graph *graph,
921 __isl_take isl_set *set, int nvar, int compressed,
922 __isl_take isl_set *hull, __isl_take isl_multi_aff *compress,
923 __isl_take isl_multi_aff *decompress)
925 int nparam;
926 isl_ctx *ctx;
927 isl_mat *sched;
928 isl_space *space;
929 int *coincident;
930 struct isl_sched_node *node;
932 if (!set)
933 return isl_stat_error;
935 ctx = isl_set_get_ctx(set);
936 nparam = isl_set_dim(set, isl_dim_param);
937 if (!ctx->opt->schedule_parametric)
938 nparam = 0;
939 sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar);
940 node = &graph->node[graph->n];
941 graph->n++;
942 space = isl_set_get_space(set);
943 node->space = space;
944 node->nvar = nvar;
945 node->nparam = nparam;
946 node->sched = sched;
947 node->sched_map = NULL;
948 coincident = isl_calloc_array(ctx, int, graph->max_row);
949 node->coincident = coincident;
950 node->compressed = compressed;
951 node->hull = hull;
952 node->compress = compress;
953 node->decompress = decompress;
954 if (compute_sizes_and_max(ctx, node, set) < 0)
955 return isl_stat_error;
957 if (!space || !sched || (graph->max_row && !coincident))
958 return isl_stat_error;
959 if (compressed && (!hull || !compress || !decompress))
960 return isl_stat_error;
962 return isl_stat_ok;
965 /* Construct an identifier for node "node", which will represent "set".
966 * The name of the identifier is either "compressed" or
967 * "compressed_<name>", with <name> the name of the space of "set".
968 * The user pointer of the identifier points to "node".
970 static __isl_give isl_id *construct_compressed_id(__isl_keep isl_set *set,
971 struct isl_sched_node *node)
973 isl_bool has_name;
974 isl_ctx *ctx;
975 isl_id *id;
976 isl_printer *p;
977 const char *name;
978 char *id_name;
980 has_name = isl_set_has_tuple_name(set);
981 if (has_name < 0)
982 return NULL;
984 ctx = isl_set_get_ctx(set);
985 if (!has_name)
986 return isl_id_alloc(ctx, "compressed", node);
988 p = isl_printer_to_str(ctx);
989 name = isl_set_get_tuple_name(set);
990 p = isl_printer_print_str(p, "compressed_");
991 p = isl_printer_print_str(p, name);
992 id_name = isl_printer_get_str(p);
993 isl_printer_free(p);
995 id = isl_id_alloc(ctx, id_name, node);
996 free(id_name);
998 return id;
1001 /* Add a new node to the graph representing the given set.
1003 * If any of the set variables is defined by an equality, then
1004 * we perform variable compression such that we can perform
1005 * the scheduling on the compressed domain.
1006 * In this case, an identifier is used that references the new node
1007 * such that each compressed space is unique and
1008 * such that the node can be recovered from the compressed space.
1010 static isl_stat extract_node(__isl_take isl_set *set, void *user)
1012 int nvar;
1013 isl_bool has_equality;
1014 isl_id *id;
1015 isl_basic_set *hull;
1016 isl_set *hull_set;
1017 isl_morph *morph;
1018 isl_multi_aff *compress, *decompress;
1019 struct isl_sched_graph *graph = user;
1021 hull = isl_set_affine_hull(isl_set_copy(set));
1022 hull = isl_basic_set_remove_divs(hull);
1023 nvar = isl_set_dim(set, isl_dim_set);
1024 has_equality = has_any_defining_equality(hull);
1026 if (has_equality < 0)
1027 goto error;
1028 if (!has_equality) {
1029 isl_basic_set_free(hull);
1030 return add_node(graph, set, nvar, 0, NULL, NULL, NULL);
1033 id = construct_compressed_id(set, &graph->node[graph->n]);
1034 morph = isl_basic_set_variable_compression_with_id(hull,
1035 isl_dim_set, id);
1036 isl_id_free(id);
1037 nvar = isl_morph_ran_dim(morph, isl_dim_set);
1038 compress = isl_morph_get_var_multi_aff(morph);
1039 morph = isl_morph_inverse(morph);
1040 decompress = isl_morph_get_var_multi_aff(morph);
1041 isl_morph_free(morph);
1043 hull_set = isl_set_from_basic_set(hull);
1044 return add_node(graph, set, nvar, 1, hull_set, compress, decompress);
1045 error:
1046 isl_basic_set_free(hull);
1047 isl_set_free(set);
1048 return isl_stat_error;
1051 struct isl_extract_edge_data {
1052 enum isl_edge_type type;
1053 struct isl_sched_graph *graph;
1056 /* Merge edge2 into edge1, freeing the contents of edge2.
1057 * Return 0 on success and -1 on failure.
1059 * edge1 and edge2 are assumed to have the same value for the map field.
1061 static int merge_edge(struct isl_sched_edge *edge1,
1062 struct isl_sched_edge *edge2)
1064 edge1->types |= edge2->types;
1065 isl_map_free(edge2->map);
1067 if (is_condition(edge2)) {
1068 if (!edge1->tagged_condition)
1069 edge1->tagged_condition = edge2->tagged_condition;
1070 else
1071 edge1->tagged_condition =
1072 isl_union_map_union(edge1->tagged_condition,
1073 edge2->tagged_condition);
1076 if (is_conditional_validity(edge2)) {
1077 if (!edge1->tagged_validity)
1078 edge1->tagged_validity = edge2->tagged_validity;
1079 else
1080 edge1->tagged_validity =
1081 isl_union_map_union(edge1->tagged_validity,
1082 edge2->tagged_validity);
1085 if (is_condition(edge2) && !edge1->tagged_condition)
1086 return -1;
1087 if (is_conditional_validity(edge2) && !edge1->tagged_validity)
1088 return -1;
1090 return 0;
1093 /* Insert dummy tags in domain and range of "map".
1095 * In particular, if "map" is of the form
1097 * A -> B
1099 * then return
1101 * [A -> dummy_tag] -> [B -> dummy_tag]
1103 * where the dummy_tags are identical and equal to any dummy tags
1104 * introduced by any other call to this function.
1106 static __isl_give isl_map *insert_dummy_tags(__isl_take isl_map *map)
1108 static char dummy;
1109 isl_ctx *ctx;
1110 isl_id *id;
1111 isl_space *space;
1112 isl_set *domain, *range;
1114 ctx = isl_map_get_ctx(map);
1116 id = isl_id_alloc(ctx, NULL, &dummy);
1117 space = isl_space_params(isl_map_get_space(map));
1118 space = isl_space_set_from_params(space);
1119 space = isl_space_set_tuple_id(space, isl_dim_set, id);
1120 space = isl_space_map_from_set(space);
1122 domain = isl_map_wrap(map);
1123 range = isl_map_wrap(isl_map_universe(space));
1124 map = isl_map_from_domain_and_range(domain, range);
1125 map = isl_map_zip(map);
1127 return map;
1130 /* Given that at least one of "src" or "dst" is compressed, return
1131 * a map between the spaces of these nodes restricted to the affine
1132 * hull that was used in the compression.
1134 static __isl_give isl_map *extract_hull(struct isl_sched_node *src,
1135 struct isl_sched_node *dst)
1137 isl_set *dom, *ran;
1139 if (src->compressed)
1140 dom = isl_set_copy(src->hull);
1141 else
1142 dom = isl_set_universe(isl_space_copy(src->space));
1143 if (dst->compressed)
1144 ran = isl_set_copy(dst->hull);
1145 else
1146 ran = isl_set_universe(isl_space_copy(dst->space));
1148 return isl_map_from_domain_and_range(dom, ran);
1151 /* Intersect the domains of the nested relations in domain and range
1152 * of "tagged" with "map".
1154 static __isl_give isl_map *map_intersect_domains(__isl_take isl_map *tagged,
1155 __isl_keep isl_map *map)
1157 isl_set *set;
1159 tagged = isl_map_zip(tagged);
1160 set = isl_map_wrap(isl_map_copy(map));
1161 tagged = isl_map_intersect_domain(tagged, set);
1162 tagged = isl_map_zip(tagged);
1163 return tagged;
1166 /* Return a pointer to the node that lives in the domain space of "map"
1167 * or NULL if there is no such node.
1169 static struct isl_sched_node *find_domain_node(isl_ctx *ctx,
1170 struct isl_sched_graph *graph, __isl_keep isl_map *map)
1172 struct isl_sched_node *node;
1173 isl_space *space;
1175 space = isl_space_domain(isl_map_get_space(map));
1176 node = graph_find_node(ctx, graph, space);
1177 isl_space_free(space);
1179 return node;
1182 /* Return a pointer to the node that lives in the range space of "map"
1183 * or NULL if there is no such node.
1185 static struct isl_sched_node *find_range_node(isl_ctx *ctx,
1186 struct isl_sched_graph *graph, __isl_keep isl_map *map)
1188 struct isl_sched_node *node;
1189 isl_space *space;
1191 space = isl_space_range(isl_map_get_space(map));
1192 node = graph_find_node(ctx, graph, space);
1193 isl_space_free(space);
1195 return node;
1198 /* Add a new edge to the graph based on the given map
1199 * and add it to data->graph->edge_table[data->type].
1200 * If a dependence relation of a given type happens to be identical
1201 * to one of the dependence relations of a type that was added before,
1202 * then we don't create a new edge, but instead mark the original edge
1203 * as also representing a dependence of the current type.
1205 * Edges of type isl_edge_condition or isl_edge_conditional_validity
1206 * may be specified as "tagged" dependence relations. That is, "map"
1207 * may contain elements (i -> a) -> (j -> b), where i -> j denotes
1208 * the dependence on iterations and a and b are tags.
1209 * edge->map is set to the relation containing the elements i -> j,
1210 * while edge->tagged_condition and edge->tagged_validity contain
1211 * the union of all the "map" relations
1212 * for which extract_edge is called that result in the same edge->map.
1214 * If the source or the destination node is compressed, then
1215 * intersect both "map" and "tagged" with the constraints that
1216 * were used to construct the compression.
1217 * This ensures that there are no schedule constraints defined
1218 * outside of these domains, while the scheduler no longer has
1219 * any control over those outside parts.
1221 static isl_stat extract_edge(__isl_take isl_map *map, void *user)
1223 isl_ctx *ctx = isl_map_get_ctx(map);
1224 struct isl_extract_edge_data *data = user;
1225 struct isl_sched_graph *graph = data->graph;
1226 struct isl_sched_node *src, *dst;
1227 struct isl_sched_edge *edge;
1228 isl_map *tagged = NULL;
1230 if (data->type == isl_edge_condition ||
1231 data->type == isl_edge_conditional_validity) {
1232 if (isl_map_can_zip(map)) {
1233 tagged = isl_map_copy(map);
1234 map = isl_set_unwrap(isl_map_domain(isl_map_zip(map)));
1235 } else {
1236 tagged = insert_dummy_tags(isl_map_copy(map));
1240 src = find_domain_node(ctx, graph, map);
1241 dst = find_range_node(ctx, graph, map);
1243 if (!src || !dst) {
1244 isl_map_free(map);
1245 isl_map_free(tagged);
1246 return isl_stat_ok;
1249 if (src->compressed || dst->compressed) {
1250 isl_map *hull;
1251 hull = extract_hull(src, dst);
1252 if (tagged)
1253 tagged = map_intersect_domains(tagged, hull);
1254 map = isl_map_intersect(map, hull);
1257 graph->edge[graph->n_edge].src = src;
1258 graph->edge[graph->n_edge].dst = dst;
1259 graph->edge[graph->n_edge].map = map;
1260 graph->edge[graph->n_edge].types = 0;
1261 graph->edge[graph->n_edge].tagged_condition = NULL;
1262 graph->edge[graph->n_edge].tagged_validity = NULL;
1263 set_type(&graph->edge[graph->n_edge], data->type);
1264 if (data->type == isl_edge_condition)
1265 graph->edge[graph->n_edge].tagged_condition =
1266 isl_union_map_from_map(tagged);
1267 if (data->type == isl_edge_conditional_validity)
1268 graph->edge[graph->n_edge].tagged_validity =
1269 isl_union_map_from_map(tagged);
1271 edge = graph_find_matching_edge(graph, &graph->edge[graph->n_edge]);
1272 if (!edge) {
1273 graph->n_edge++;
1274 return isl_stat_error;
1276 if (edge == &graph->edge[graph->n_edge])
1277 return graph_edge_table_add(ctx, graph, data->type,
1278 &graph->edge[graph->n_edge++]);
1280 if (merge_edge(edge, &graph->edge[graph->n_edge]) < 0)
1281 return -1;
1283 return graph_edge_table_add(ctx, graph, data->type, edge);
1286 /* Initialize the schedule graph "graph" from the schedule constraints "sc".
1288 * The context is included in the domain before the nodes of
1289 * the graphs are extracted in order to be able to exploit
1290 * any possible additional equalities.
1291 * Note that this intersection is only performed locally here.
1293 static isl_stat graph_init(struct isl_sched_graph *graph,
1294 __isl_keep isl_schedule_constraints *sc)
1296 isl_ctx *ctx;
1297 isl_union_set *domain;
1298 isl_union_map *c;
1299 struct isl_extract_edge_data data;
1300 enum isl_edge_type i;
1301 isl_stat r;
1303 if (!sc)
1304 return isl_stat_error;
1306 ctx = isl_schedule_constraints_get_ctx(sc);
1308 domain = isl_schedule_constraints_get_domain(sc);
1309 graph->n = isl_union_set_n_set(domain);
1310 isl_union_set_free(domain);
1312 if (graph_alloc(ctx, graph, graph->n,
1313 isl_schedule_constraints_n_map(sc)) < 0)
1314 return isl_stat_error;
1316 if (compute_max_row(graph, sc) < 0)
1317 return isl_stat_error;
1318 graph->root = 1;
1319 graph->n = 0;
1320 domain = isl_schedule_constraints_get_domain(sc);
1321 domain = isl_union_set_intersect_params(domain,
1322 isl_schedule_constraints_get_context(sc));
1323 r = isl_union_set_foreach_set(domain, &extract_node, graph);
1324 isl_union_set_free(domain);
1325 if (r < 0)
1326 return isl_stat_error;
1327 if (graph_init_table(ctx, graph) < 0)
1328 return isl_stat_error;
1329 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
1330 c = isl_schedule_constraints_get(sc, i);
1331 graph->max_edge[i] = isl_union_map_n_map(c);
1332 isl_union_map_free(c);
1333 if (!c)
1334 return isl_stat_error;
1336 if (graph_init_edge_tables(ctx, graph) < 0)
1337 return isl_stat_error;
1338 graph->n_edge = 0;
1339 data.graph = graph;
1340 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
1341 isl_stat r;
1343 data.type = i;
1344 c = isl_schedule_constraints_get(sc, i);
1345 r = isl_union_map_foreach_map(c, &extract_edge, &data);
1346 isl_union_map_free(c);
1347 if (r < 0)
1348 return isl_stat_error;
1351 return isl_stat_ok;
1354 /* Check whether there is any dependence from node[j] to node[i]
1355 * or from node[i] to node[j].
1357 static isl_bool node_follows_weak(int i, int j, void *user)
1359 isl_bool f;
1360 struct isl_sched_graph *graph = user;
1362 f = graph_has_any_edge(graph, &graph->node[j], &graph->node[i]);
1363 if (f < 0 || f)
1364 return f;
1365 return graph_has_any_edge(graph, &graph->node[i], &graph->node[j]);
1368 /* Check whether there is a (conditional) validity dependence from node[j]
1369 * to node[i], forcing node[i] to follow node[j].
1371 static isl_bool node_follows_strong(int i, int j, void *user)
1373 struct isl_sched_graph *graph = user;
1375 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
1378 /* Use Tarjan's algorithm for computing the strongly connected components
1379 * in the dependence graph only considering those edges defined by "follows".
1381 static int detect_ccs(isl_ctx *ctx, struct isl_sched_graph *graph,
1382 isl_bool (*follows)(int i, int j, void *user))
1384 int i, n;
1385 struct isl_tarjan_graph *g = NULL;
1387 g = isl_tarjan_graph_init(ctx, graph->n, follows, graph);
1388 if (!g)
1389 return -1;
1391 graph->scc = 0;
1392 i = 0;
1393 n = graph->n;
1394 while (n) {
1395 while (g->order[i] != -1) {
1396 graph->node[g->order[i]].scc = graph->scc;
1397 --n;
1398 ++i;
1400 ++i;
1401 graph->scc++;
1404 isl_tarjan_graph_free(g);
1406 return 0;
1409 /* Apply Tarjan's algorithm to detect the strongly connected components
1410 * in the dependence graph.
1411 * Only consider the (conditional) validity dependences and clear "weak".
1413 static int detect_sccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1415 graph->weak = 0;
1416 return detect_ccs(ctx, graph, &node_follows_strong);
1419 /* Apply Tarjan's algorithm to detect the (weakly) connected components
1420 * in the dependence graph.
1421 * Consider all dependences and set "weak".
1423 static int detect_wccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1425 graph->weak = 1;
1426 return detect_ccs(ctx, graph, &node_follows_weak);
1429 static int cmp_scc(const void *a, const void *b, void *data)
1431 struct isl_sched_graph *graph = data;
1432 const int *i1 = a;
1433 const int *i2 = b;
1435 return graph->node[*i1].scc - graph->node[*i2].scc;
1438 /* Sort the elements of graph->sorted according to the corresponding SCCs.
1440 static int sort_sccs(struct isl_sched_graph *graph)
1442 return isl_sort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph);
1445 /* Given a dependence relation R from "node" to itself,
1446 * construct the set of coefficients of valid constraints for elements
1447 * in that dependence relation.
1448 * In particular, the result contains tuples of coefficients
1449 * c_0, c_n, c_x such that
1451 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
1453 * or, equivalently,
1455 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
1457 * We choose here to compute the dual of delta R.
1458 * Alternatively, we could have computed the dual of R, resulting
1459 * in a set of tuples c_0, c_n, c_x, c_y, and then
1460 * plugged in (c_0, c_n, c_x, -c_x).
1462 * If "node" has been compressed, then the dependence relation
1463 * is also compressed before the set of coefficients is computed.
1465 static __isl_give isl_basic_set *intra_coefficients(
1466 struct isl_sched_graph *graph, struct isl_sched_node *node,
1467 __isl_take isl_map *map)
1469 isl_set *delta;
1470 isl_map *key;
1471 isl_basic_set *coef;
1472 isl_maybe_isl_basic_set m;
1474 m = isl_map_to_basic_set_try_get(graph->intra_hmap, map);
1475 if (m.valid < 0 || m.valid) {
1476 isl_map_free(map);
1477 return m.value;
1480 key = isl_map_copy(map);
1481 if (node->compressed) {
1482 map = isl_map_preimage_domain_multi_aff(map,
1483 isl_multi_aff_copy(node->decompress));
1484 map = isl_map_preimage_range_multi_aff(map,
1485 isl_multi_aff_copy(node->decompress));
1487 delta = isl_set_remove_divs(isl_map_deltas(map));
1488 coef = isl_set_coefficients(delta);
1489 graph->intra_hmap = isl_map_to_basic_set_set(graph->intra_hmap, key,
1490 isl_basic_set_copy(coef));
1492 return coef;
1495 /* Given a dependence relation R, construct the set of coefficients
1496 * of valid constraints for elements in that dependence relation.
1497 * In particular, the result contains tuples of coefficients
1498 * c_0, c_n, c_x, c_y such that
1500 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
1502 * If the source or destination nodes of "edge" have been compressed,
1503 * then the dependence relation is also compressed before
1504 * the set of coefficients is computed.
1506 static __isl_give isl_basic_set *inter_coefficients(
1507 struct isl_sched_graph *graph, struct isl_sched_edge *edge,
1508 __isl_take isl_map *map)
1510 isl_set *set;
1511 isl_map *key;
1512 isl_basic_set *coef;
1513 isl_maybe_isl_basic_set m;
1515 m = isl_map_to_basic_set_try_get(graph->inter_hmap, map);
1516 if (m.valid < 0 || m.valid) {
1517 isl_map_free(map);
1518 return m.value;
1521 key = isl_map_copy(map);
1522 if (edge->src->compressed)
1523 map = isl_map_preimage_domain_multi_aff(map,
1524 isl_multi_aff_copy(edge->src->decompress));
1525 if (edge->dst->compressed)
1526 map = isl_map_preimage_range_multi_aff(map,
1527 isl_multi_aff_copy(edge->dst->decompress));
1528 set = isl_map_wrap(isl_map_remove_divs(map));
1529 coef = isl_set_coefficients(set);
1530 graph->inter_hmap = isl_map_to_basic_set_set(graph->inter_hmap, key,
1531 isl_basic_set_copy(coef));
1533 return coef;
1536 /* Return the position of the coefficients of the variables in
1537 * the coefficients constraints "coef".
1539 * The space of "coef" is of the form
1541 * { coefficients[[cst, params] -> S] }
1543 * Return the position of S.
1545 static int coef_var_offset(__isl_keep isl_basic_set *coef)
1547 int offset;
1548 isl_space *space;
1550 space = isl_space_unwrap(isl_basic_set_get_space(coef));
1551 offset = isl_space_dim(space, isl_dim_in);
1552 isl_space_free(space);
1554 return offset;
1557 /* Return the offset of the coefficients of the variables of "node"
1558 * within the (I)LP.
1560 * Within each node, the coefficients have the following order:
1561 * - c_i_0
1562 * - c_i_n (if parametric)
1563 * - positive and negative parts of c_i_x
1565 static int node_var_coef_offset(struct isl_sched_node *node)
1567 return node->start + 1 + node->nparam;
1570 /* Return the position of the pair of variables encoding
1571 * coefficient "i" of "node".
1573 * The order of these variable pairs is the opposite of
1574 * that of the coefficients, with 2 variables per coefficient.
1576 static int node_var_coef_pos(struct isl_sched_node *node, int i)
1578 return node_var_coef_offset(node) + 2 * (node->nvar - 1 - i);
1581 /* Construct an isl_dim_map for mapping constraints on coefficients
1582 * for "node" to the corresponding positions in graph->lp.
1583 * "offset" is the offset of the coefficients for the variables
1584 * in the input constraints.
1585 * "s" is the sign of the mapping.
1587 * The input constraints are given in terms of the coefficients (c_0, c_n, c_x).
1588 * The mapping produced by this function essentially plugs in
1589 * (0, 0, c_i_x^+ - c_i_x^-) if s = 1 and
1590 * (0, 0, -c_i_x^+ + c_i_x^-) if s = -1.
1591 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1592 * Furthermore, the order of these pairs is the opposite of that
1593 * of the corresponding coefficients.
1595 * The caller can extend the mapping to also map the other coefficients
1596 * (and therefore not plug in 0).
1598 static __isl_give isl_dim_map *intra_dim_map(isl_ctx *ctx,
1599 struct isl_sched_graph *graph, struct isl_sched_node *node,
1600 int offset, int s)
1602 int pos;
1603 unsigned total;
1604 isl_dim_map *dim_map;
1606 if (!node)
1607 return NULL;
1609 total = isl_basic_set_total_dim(graph->lp);
1610 pos = node_var_coef_pos(node, 0);
1611 dim_map = isl_dim_map_alloc(ctx, total);
1612 isl_dim_map_range(dim_map, pos, -2, offset, 1, node->nvar, -s);
1613 isl_dim_map_range(dim_map, pos + 1, -2, offset, 1, node->nvar, s);
1615 return dim_map;
1618 /* Construct an isl_dim_map for mapping constraints on coefficients
1619 * for "src" (node i) and "dst" (node j) to the corresponding positions
1620 * in graph->lp.
1621 * "offset" is the offset of the coefficients for the variables of "src"
1622 * in the input constraints.
1623 * "s" is the sign of the mapping.
1625 * The input constraints are given in terms of the coefficients
1626 * (c_0, c_n, c_x, c_y).
1627 * The mapping produced by this function essentially plugs in
1628 * (c_j_0 - c_i_0, c_j_n - c_i_n,
1629 * -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-) if s = 1 and
1630 * (-c_j_0 + c_i_0, -c_j_n + c_i_n,
1631 * c_i_x^+ - c_i_x^-, -(c_j_x^+ - c_j_x^-)) if s = -1.
1632 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1633 * Furthermore, the order of these pairs is the opposite of that
1634 * of the corresponding coefficients.
1636 * The caller can further extend the mapping.
1638 static __isl_give isl_dim_map *inter_dim_map(isl_ctx *ctx,
1639 struct isl_sched_graph *graph, struct isl_sched_node *src,
1640 struct isl_sched_node *dst, int offset, int s)
1642 int pos;
1643 unsigned total;
1644 isl_dim_map *dim_map;
1646 if (!src || !dst)
1647 return NULL;
1649 total = isl_basic_set_total_dim(graph->lp);
1650 dim_map = isl_dim_map_alloc(ctx, total);
1652 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, s);
1653 isl_dim_map_range(dim_map, dst->start + 1, 1, 1, 1, dst->nparam, s);
1654 pos = node_var_coef_pos(dst, 0);
1655 isl_dim_map_range(dim_map, pos, -2, offset + src->nvar, 1,
1656 dst->nvar, -s);
1657 isl_dim_map_range(dim_map, pos + 1, -2, offset + src->nvar, 1,
1658 dst->nvar, s);
1660 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -s);
1661 isl_dim_map_range(dim_map, src->start + 1, 1, 1, 1, src->nparam, -s);
1662 pos = node_var_coef_pos(src, 0);
1663 isl_dim_map_range(dim_map, pos, -2, offset, 1, src->nvar, s);
1664 isl_dim_map_range(dim_map, pos + 1, -2, offset, 1, src->nvar, -s);
1666 return dim_map;
1669 /* Add the constraints from "src" to "dst" using "dim_map",
1670 * after making sure there is enough room in "dst" for the extra constraints.
1672 static __isl_give isl_basic_set *add_constraints_dim_map(
1673 __isl_take isl_basic_set *dst, __isl_take isl_basic_set *src,
1674 __isl_take isl_dim_map *dim_map)
1676 int n_eq, n_ineq;
1678 n_eq = isl_basic_set_n_equality(src);
1679 n_ineq = isl_basic_set_n_inequality(src);
1680 dst = isl_basic_set_extend_constraints(dst, n_eq, n_ineq);
1681 dst = isl_basic_set_add_constraints_dim_map(dst, src, dim_map);
1682 return dst;
1685 /* Add constraints to graph->lp that force validity for the given
1686 * dependence from a node i to itself.
1687 * That is, add constraints that enforce
1689 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
1690 * = c_i_x (y - x) >= 0
1692 * for each (x,y) in R.
1693 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1694 * of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-),
1695 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
1696 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1698 static isl_stat add_intra_validity_constraints(struct isl_sched_graph *graph,
1699 struct isl_sched_edge *edge)
1701 int offset;
1702 isl_map *map = isl_map_copy(edge->map);
1703 isl_ctx *ctx = isl_map_get_ctx(map);
1704 isl_dim_map *dim_map;
1705 isl_basic_set *coef;
1706 struct isl_sched_node *node = edge->src;
1708 coef = intra_coefficients(graph, node, map);
1710 offset = coef_var_offset(coef);
1712 if (!coef)
1713 return isl_stat_error;
1715 dim_map = intra_dim_map(ctx, graph, node, offset, 1);
1716 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
1718 return isl_stat_ok;
1721 /* Add constraints to graph->lp that force validity for the given
1722 * dependence from node i to node j.
1723 * That is, add constraints that enforce
1725 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
1727 * for each (x,y) in R.
1728 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1729 * of valid constraints for R and then plug in
1730 * (c_j_0 - c_i_0, c_j_n - c_i_n, -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-),
1731 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
1732 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1734 static isl_stat add_inter_validity_constraints(struct isl_sched_graph *graph,
1735 struct isl_sched_edge *edge)
1737 int offset;
1738 isl_map *map;
1739 isl_ctx *ctx;
1740 isl_dim_map *dim_map;
1741 isl_basic_set *coef;
1742 struct isl_sched_node *src = edge->src;
1743 struct isl_sched_node *dst = edge->dst;
1745 if (!graph->lp)
1746 return isl_stat_error;
1748 map = isl_map_copy(edge->map);
1749 ctx = isl_map_get_ctx(map);
1750 coef = inter_coefficients(graph, edge, map);
1752 offset = coef_var_offset(coef);
1754 if (!coef)
1755 return isl_stat_error;
1757 dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1);
1759 edge->start = graph->lp->n_ineq;
1760 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
1761 if (!graph->lp)
1762 return isl_stat_error;
1763 edge->end = graph->lp->n_ineq;
1765 return isl_stat_ok;
1768 /* Add constraints to graph->lp that bound the dependence distance for the given
1769 * dependence from a node i to itself.
1770 * If s = 1, we add the constraint
1772 * c_i_x (y - x) <= m_0 + m_n n
1774 * or
1776 * -c_i_x (y - x) + m_0 + m_n n >= 0
1778 * for each (x,y) in R.
1779 * If s = -1, we add the constraint
1781 * -c_i_x (y - x) <= m_0 + m_n n
1783 * or
1785 * c_i_x (y - x) + m_0 + m_n n >= 0
1787 * for each (x,y) in R.
1788 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1789 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
1790 * with each coefficient (except m_0) represented as a pair of non-negative
1791 * coefficients.
1794 * If "local" is set, then we add constraints
1796 * c_i_x (y - x) <= 0
1798 * or
1800 * -c_i_x (y - x) <= 0
1802 * instead, forcing the dependence distance to be (less than or) equal to 0.
1803 * That is, we plug in (0, 0, -s * c_i_x),
1804 * Note that dependences marked local are treated as validity constraints
1805 * by add_all_validity_constraints and therefore also have
1806 * their distances bounded by 0 from below.
1808 static isl_stat add_intra_proximity_constraints(struct isl_sched_graph *graph,
1809 struct isl_sched_edge *edge, int s, int local)
1811 int offset;
1812 unsigned nparam;
1813 isl_map *map = isl_map_copy(edge->map);
1814 isl_ctx *ctx = isl_map_get_ctx(map);
1815 isl_dim_map *dim_map;
1816 isl_basic_set *coef;
1817 struct isl_sched_node *node = edge->src;
1819 coef = intra_coefficients(graph, node, map);
1821 offset = coef_var_offset(coef);
1823 if (!coef)
1824 return isl_stat_error;
1826 nparam = isl_space_dim(node->space, isl_dim_param);
1827 dim_map = intra_dim_map(ctx, graph, node, offset, -s);
1829 if (!local) {
1830 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
1831 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
1832 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
1834 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
1836 return isl_stat_ok;
1839 /* Add constraints to graph->lp that bound the dependence distance for the given
1840 * dependence from node i to node j.
1841 * If s = 1, we add the constraint
1843 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
1844 * <= m_0 + m_n n
1846 * or
1848 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
1849 * m_0 + m_n n >= 0
1851 * for each (x,y) in R.
1852 * If s = -1, we add the constraint
1854 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
1855 * <= m_0 + m_n n
1857 * or
1859 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
1860 * m_0 + m_n n >= 0
1862 * for each (x,y) in R.
1863 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1864 * of valid constraints for R and then plug in
1865 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
1866 * s*c_i_x, -s*c_j_x)
1867 * with each coefficient (except m_0, c_*_0 and c_*_n)
1868 * represented as a pair of non-negative coefficients.
1871 * If "local" is set (and s = 1), then we add constraints
1873 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
1875 * or
1877 * -((c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x)) >= 0
1879 * instead, forcing the dependence distance to be (less than or) equal to 0.
1880 * That is, we plug in
1881 * (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, s*c_i_x, -s*c_j_x).
1882 * Note that dependences marked local are treated as validity constraints
1883 * by add_all_validity_constraints and therefore also have
1884 * their distances bounded by 0 from below.
1886 static isl_stat add_inter_proximity_constraints(struct isl_sched_graph *graph,
1887 struct isl_sched_edge *edge, int s, int local)
1889 int offset;
1890 unsigned nparam;
1891 isl_map *map = isl_map_copy(edge->map);
1892 isl_ctx *ctx = isl_map_get_ctx(map);
1893 isl_dim_map *dim_map;
1894 isl_basic_set *coef;
1895 struct isl_sched_node *src = edge->src;
1896 struct isl_sched_node *dst = edge->dst;
1898 coef = inter_coefficients(graph, edge, map);
1900 offset = coef_var_offset(coef);
1902 if (!coef)
1903 return isl_stat_error;
1905 nparam = isl_space_dim(src->space, isl_dim_param);
1906 dim_map = inter_dim_map(ctx, graph, src, dst, offset, -s);
1908 if (!local) {
1909 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
1910 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
1911 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
1914 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
1916 return isl_stat_ok;
1919 /* Add all validity constraints to graph->lp.
1921 * An edge that is forced to be local needs to have its dependence
1922 * distances equal to zero. We take care of bounding them by 0 from below
1923 * here. add_all_proximity_constraints takes care of bounding them by 0
1924 * from above.
1926 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1927 * Otherwise, we ignore them.
1929 static int add_all_validity_constraints(struct isl_sched_graph *graph,
1930 int use_coincidence)
1932 int i;
1934 for (i = 0; i < graph->n_edge; ++i) {
1935 struct isl_sched_edge *edge = &graph->edge[i];
1936 int local;
1938 local = is_local(edge) ||
1939 (is_coincidence(edge) && use_coincidence);
1940 if (!is_validity(edge) && !local)
1941 continue;
1942 if (edge->src != edge->dst)
1943 continue;
1944 if (add_intra_validity_constraints(graph, edge) < 0)
1945 return -1;
1948 for (i = 0; i < graph->n_edge; ++i) {
1949 struct isl_sched_edge *edge = &graph->edge[i];
1950 int local;
1952 local = is_local(edge) ||
1953 (is_coincidence(edge) && use_coincidence);
1954 if (!is_validity(edge) && !local)
1955 continue;
1956 if (edge->src == edge->dst)
1957 continue;
1958 if (add_inter_validity_constraints(graph, edge) < 0)
1959 return -1;
1962 return 0;
1965 /* Add constraints to graph->lp that bound the dependence distance
1966 * for all dependence relations.
1967 * If a given proximity dependence is identical to a validity
1968 * dependence, then the dependence distance is already bounded
1969 * from below (by zero), so we only need to bound the distance
1970 * from above. (This includes the case of "local" dependences
1971 * which are treated as validity dependence by add_all_validity_constraints.)
1972 * Otherwise, we need to bound the distance both from above and from below.
1974 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1975 * Otherwise, we ignore them.
1977 static int add_all_proximity_constraints(struct isl_sched_graph *graph,
1978 int use_coincidence)
1980 int i;
1982 for (i = 0; i < graph->n_edge; ++i) {
1983 struct isl_sched_edge *edge = &graph->edge[i];
1984 int local;
1986 local = is_local(edge) ||
1987 (is_coincidence(edge) && use_coincidence);
1988 if (!is_proximity(edge) && !local)
1989 continue;
1990 if (edge->src == edge->dst &&
1991 add_intra_proximity_constraints(graph, edge, 1, local) < 0)
1992 return -1;
1993 if (edge->src != edge->dst &&
1994 add_inter_proximity_constraints(graph, edge, 1, local) < 0)
1995 return -1;
1996 if (is_validity(edge) || local)
1997 continue;
1998 if (edge->src == edge->dst &&
1999 add_intra_proximity_constraints(graph, edge, -1, 0) < 0)
2000 return -1;
2001 if (edge->src != edge->dst &&
2002 add_inter_proximity_constraints(graph, edge, -1, 0) < 0)
2003 return -1;
2006 return 0;
2009 /* Normalize the rows of "indep" such that all rows are lexicographically
2010 * positive and such that each row contains as many final zeros as possible,
2011 * given the choice for the previous rows.
2012 * Do this by performing elementary row operations.
2014 static __isl_give isl_mat *normalize_independent(__isl_take isl_mat *indep)
2016 indep = isl_mat_reverse_gauss(indep);
2017 indep = isl_mat_lexnonneg_rows(indep);
2018 return indep;
2021 /* Compute a basis for the rows in the linear part of the schedule
2022 * and extend this basis to a full basis. The remaining rows
2023 * can then be used to force linear independence from the rows
2024 * in the schedule.
2026 * In particular, given the schedule rows S, we compute
2028 * S = H Q
2029 * S U = H
2031 * with H the Hermite normal form of S. That is, all but the
2032 * first rank columns of H are zero and so each row in S is
2033 * a linear combination of the first rank rows of Q.
2034 * The matrix Q is then transposed because we will write the
2035 * coefficients of the next schedule row as a column vector s
2036 * and express this s as a linear combination s = Q c of the
2037 * computed basis.
2038 * Transposing S U = H yields
2040 * U^T S^T = H^T
2042 * with all but the first rank rows of H^T zero.
2043 * The last rows of U^T are therefore linear combinations
2044 * of schedule coefficients that are all zero on schedule
2045 * coefficients that are linearly dependent on the rows of S.
2046 * At least one of these combinations is non-zero on
2047 * linearly independent schedule coefficients.
2048 * The rows are normalized to involve as few of the last
2049 * coefficients as possible and to have a positive initial value.
2051 static int node_update_cmap(struct isl_sched_node *node)
2053 isl_mat *H, *U, *Q;
2054 int n_row = isl_mat_rows(node->sched);
2056 H = isl_mat_sub_alloc(node->sched, 0, n_row,
2057 1 + node->nparam, node->nvar);
2059 H = isl_mat_left_hermite(H, 0, &U, &Q);
2060 isl_mat_free(node->cmap);
2061 isl_mat_free(node->indep);
2062 isl_mat_free(node->ctrans);
2063 node->ctrans = isl_mat_copy(Q);
2064 node->cmap = isl_mat_transpose(Q);
2065 node->indep = isl_mat_transpose(U);
2066 node->rank = isl_mat_initial_non_zero_cols(H);
2067 node->indep = isl_mat_drop_rows(node->indep, 0, node->rank);
2068 node->indep = normalize_independent(node->indep);
2069 isl_mat_free(H);
2071 if (!node->cmap || !node->indep || !node->ctrans || node->rank < 0)
2072 return -1;
2073 return 0;
2076 /* Is "edge" marked as a validity or a conditional validity edge?
2078 static int is_any_validity(struct isl_sched_edge *edge)
2080 return is_validity(edge) || is_conditional_validity(edge);
2083 /* How many times should we count the constraints in "edge"?
2085 * We count as follows
2086 * validity -> 1 (>= 0)
2087 * validity+proximity -> 2 (>= 0 and upper bound)
2088 * proximity -> 2 (lower and upper bound)
2089 * local(+any) -> 2 (>= 0 and <= 0)
2091 * If an edge is only marked conditional_validity then it counts
2092 * as zero since it is only checked afterwards.
2094 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2095 * Otherwise, we ignore them.
2097 static int edge_multiplicity(struct isl_sched_edge *edge, int use_coincidence)
2099 if (is_proximity(edge) || is_local(edge))
2100 return 2;
2101 if (use_coincidence && is_coincidence(edge))
2102 return 2;
2103 if (is_validity(edge))
2104 return 1;
2105 return 0;
2108 /* Count the number of equality and inequality constraints
2109 * that will be added for the given map.
2111 * "use_coincidence" is set if we should take into account coincidence edges.
2113 static isl_stat count_map_constraints(struct isl_sched_graph *graph,
2114 struct isl_sched_edge *edge, __isl_take isl_map *map,
2115 int *n_eq, int *n_ineq, int use_coincidence)
2117 isl_basic_set *coef;
2118 int f = edge_multiplicity(edge, use_coincidence);
2120 if (f == 0) {
2121 isl_map_free(map);
2122 return isl_stat_ok;
2125 if (edge->src == edge->dst)
2126 coef = intra_coefficients(graph, edge->src, map);
2127 else
2128 coef = inter_coefficients(graph, edge, map);
2129 if (!coef)
2130 return isl_stat_error;
2131 *n_eq += f * isl_basic_set_n_equality(coef);
2132 *n_ineq += f * isl_basic_set_n_inequality(coef);
2133 isl_basic_set_free(coef);
2135 return isl_stat_ok;
2138 /* Count the number of equality and inequality constraints
2139 * that will be added to the main lp problem.
2140 * We count as follows
2141 * validity -> 1 (>= 0)
2142 * validity+proximity -> 2 (>= 0 and upper bound)
2143 * proximity -> 2 (lower and upper bound)
2144 * local(+any) -> 2 (>= 0 and <= 0)
2146 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2147 * Otherwise, we ignore them.
2149 static int count_constraints(struct isl_sched_graph *graph,
2150 int *n_eq, int *n_ineq, int use_coincidence)
2152 int i;
2154 *n_eq = *n_ineq = 0;
2155 for (i = 0; i < graph->n_edge; ++i) {
2156 struct isl_sched_edge *edge = &graph->edge[i];
2157 isl_map *map = isl_map_copy(edge->map);
2159 if (count_map_constraints(graph, edge, map, n_eq, n_ineq,
2160 use_coincidence) < 0)
2161 return -1;
2164 return 0;
2167 /* Count the number of constraints that will be added by
2168 * add_bound_constant_constraints to bound the values of the constant terms
2169 * and increment *n_eq and *n_ineq accordingly.
2171 * In practice, add_bound_constant_constraints only adds inequalities.
2173 static isl_stat count_bound_constant_constraints(isl_ctx *ctx,
2174 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
2176 if (isl_options_get_schedule_max_constant_term(ctx) == -1)
2177 return isl_stat_ok;
2179 *n_ineq += graph->n;
2181 return isl_stat_ok;
2184 /* Add constraints to bound the values of the constant terms in the schedule,
2185 * if requested by the user.
2187 * The maximal value of the constant terms is defined by the option
2188 * "schedule_max_constant_term".
2190 * Within each node, the coefficients have the following order:
2191 * - c_i_0
2192 * - c_i_n (if parametric)
2193 * - positive and negative parts of c_i_x
2195 static isl_stat add_bound_constant_constraints(isl_ctx *ctx,
2196 struct isl_sched_graph *graph)
2198 int i, k;
2199 int max;
2200 int total;
2202 max = isl_options_get_schedule_max_constant_term(ctx);
2203 if (max == -1)
2204 return isl_stat_ok;
2206 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2208 for (i = 0; i < graph->n; ++i) {
2209 struct isl_sched_node *node = &graph->node[i];
2210 k = isl_basic_set_alloc_inequality(graph->lp);
2211 if (k < 0)
2212 return isl_stat_error;
2213 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2214 isl_int_set_si(graph->lp->ineq[k][1 + node->start], -1);
2215 isl_int_set_si(graph->lp->ineq[k][0], max);
2218 return isl_stat_ok;
2221 /* Count the number of constraints that will be added by
2222 * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
2223 * accordingly.
2225 * In practice, add_bound_coefficient_constraints only adds inequalities.
2227 static int count_bound_coefficient_constraints(isl_ctx *ctx,
2228 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
2230 int i;
2232 if (isl_options_get_schedule_max_coefficient(ctx) == -1 &&
2233 !isl_options_get_schedule_treat_coalescing(ctx))
2234 return 0;
2236 for (i = 0; i < graph->n; ++i)
2237 *n_ineq += graph->node[i].nparam + 2 * graph->node[i].nvar;
2239 return 0;
2242 /* Add constraints to graph->lp that bound the values of
2243 * the parameter schedule coefficients of "node" to "max" and
2244 * the variable schedule coefficients to the corresponding entry
2245 * in node->max.
2246 * In either case, a negative value means that no bound needs to be imposed.
2248 * For parameter coefficients, this amounts to adding a constraint
2250 * c_n <= max
2252 * i.e.,
2254 * -c_n + max >= 0
2256 * The variables coefficients are, however, not represented directly.
2257 * Instead, the variable coefficients c_x are written as differences
2258 * c_x = c_x^+ - c_x^-.
2259 * That is,
2261 * -max_i <= c_x_i <= max_i
2263 * is encoded as
2265 * -max_i <= c_x_i^+ - c_x_i^- <= max_i
2267 * or
2269 * -(c_x_i^+ - c_x_i^-) + max_i >= 0
2270 * c_x_i^+ - c_x_i^- + max_i >= 0
2272 static isl_stat node_add_coefficient_constraints(isl_ctx *ctx,
2273 struct isl_sched_graph *graph, struct isl_sched_node *node, int max)
2275 int i, j, k;
2276 int total;
2277 isl_vec *ineq;
2279 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2281 for (j = 0; j < node->nparam; ++j) {
2282 int dim;
2284 if (max < 0)
2285 continue;
2287 k = isl_basic_set_alloc_inequality(graph->lp);
2288 if (k < 0)
2289 return isl_stat_error;
2290 dim = 1 + node->start + 1 + j;
2291 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2292 isl_int_set_si(graph->lp->ineq[k][dim], -1);
2293 isl_int_set_si(graph->lp->ineq[k][0], max);
2296 ineq = isl_vec_alloc(ctx, 1 + total);
2297 ineq = isl_vec_clr(ineq);
2298 if (!ineq)
2299 return isl_stat_error;
2300 for (i = 0; i < node->nvar; ++i) {
2301 int pos = 1 + node_var_coef_pos(node, i);
2303 if (isl_int_is_neg(node->max->el[i]))
2304 continue;
2306 isl_int_set_si(ineq->el[pos], 1);
2307 isl_int_set_si(ineq->el[pos + 1], -1);
2308 isl_int_set(ineq->el[0], node->max->el[i]);
2310 k = isl_basic_set_alloc_inequality(graph->lp);
2311 if (k < 0)
2312 goto error;
2313 isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total);
2315 isl_seq_neg(ineq->el + pos, ineq->el + pos + 2 * i, 2);
2316 k = isl_basic_set_alloc_inequality(graph->lp);
2317 if (k < 0)
2318 goto error;
2319 isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total);
2321 isl_vec_free(ineq);
2323 return isl_stat_ok;
2324 error:
2325 isl_vec_free(ineq);
2326 return isl_stat_error;
2329 /* Add constraints that bound the values of the variable and parameter
2330 * coefficients of the schedule.
2332 * The maximal value of the coefficients is defined by the option
2333 * 'schedule_max_coefficient' and the entries in node->max.
2334 * These latter entries are only set if either the schedule_max_coefficient
2335 * option or the schedule_treat_coalescing option is set.
2337 static isl_stat add_bound_coefficient_constraints(isl_ctx *ctx,
2338 struct isl_sched_graph *graph)
2340 int i;
2341 int max;
2343 max = isl_options_get_schedule_max_coefficient(ctx);
2345 if (max == -1 && !isl_options_get_schedule_treat_coalescing(ctx))
2346 return isl_stat_ok;
2348 for (i = 0; i < graph->n; ++i) {
2349 struct isl_sched_node *node = &graph->node[i];
2351 if (node_add_coefficient_constraints(ctx, graph, node, max) < 0)
2352 return isl_stat_error;
2355 return isl_stat_ok;
2358 /* Add a constraint to graph->lp that equates the value at position
2359 * "sum_pos" to the sum of the "n" values starting at "first".
2361 static isl_stat add_sum_constraint(struct isl_sched_graph *graph,
2362 int sum_pos, int first, int n)
2364 int i, k;
2365 int total;
2367 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2369 k = isl_basic_set_alloc_equality(graph->lp);
2370 if (k < 0)
2371 return isl_stat_error;
2372 isl_seq_clr(graph->lp->eq[k], 1 + total);
2373 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2374 for (i = 0; i < n; ++i)
2375 isl_int_set_si(graph->lp->eq[k][1 + first + i], 1);
2377 return isl_stat_ok;
2380 /* Add a constraint to graph->lp that equates the value at position
2381 * "sum_pos" to the sum of the parameter coefficients of all nodes.
2383 * Within each node, the coefficients have the following order:
2384 * - c_i_0
2385 * - c_i_n (if parametric)
2386 * - positive and negative parts of c_i_x
2388 static isl_stat add_param_sum_constraint(struct isl_sched_graph *graph,
2389 int sum_pos)
2391 int i, j, k;
2392 int total;
2394 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2396 k = isl_basic_set_alloc_equality(graph->lp);
2397 if (k < 0)
2398 return isl_stat_error;
2399 isl_seq_clr(graph->lp->eq[k], 1 + total);
2400 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2401 for (i = 0; i < graph->n; ++i) {
2402 int pos = 1 + graph->node[i].start + 1;
2404 for (j = 0; j < graph->node[i].nparam; ++j)
2405 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2408 return isl_stat_ok;
2411 /* Add a constraint to graph->lp that equates the value at position
2412 * "sum_pos" to the sum of the variable coefficients of all nodes.
2414 * Within each node, the coefficients have the following order:
2415 * - c_i_0
2416 * - c_i_n (if parametric)
2417 * - positive and negative parts of c_i_x
2419 static isl_stat add_var_sum_constraint(struct isl_sched_graph *graph,
2420 int sum_pos)
2422 int i, j, k;
2423 int total;
2425 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2427 k = isl_basic_set_alloc_equality(graph->lp);
2428 if (k < 0)
2429 return isl_stat_error;
2430 isl_seq_clr(graph->lp->eq[k], 1 + total);
2431 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2432 for (i = 0; i < graph->n; ++i) {
2433 struct isl_sched_node *node = &graph->node[i];
2434 int pos = 1 + node_var_coef_offset(node);
2436 for (j = 0; j < 2 * node->nvar; ++j)
2437 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2440 return isl_stat_ok;
2443 /* Construct an ILP problem for finding schedule coefficients
2444 * that result in non-negative, but small dependence distances
2445 * over all dependences.
2446 * In particular, the dependence distances over proximity edges
2447 * are bounded by m_0 + m_n n and we compute schedule coefficients
2448 * with small values (preferably zero) of m_n and m_0.
2450 * All variables of the ILP are non-negative. The actual coefficients
2451 * may be negative, so each coefficient is represented as the difference
2452 * of two non-negative variables. The negative part always appears
2453 * immediately before the positive part.
2454 * Other than that, the variables have the following order
2456 * - sum of positive and negative parts of m_n coefficients
2457 * - m_0
2458 * - sum of all c_n coefficients
2459 * (unconstrained when computing non-parametric schedules)
2460 * - sum of positive and negative parts of all c_x coefficients
2461 * - positive and negative parts of m_n coefficients
2462 * - for each node
2463 * - c_i_0
2464 * - c_i_n (if parametric)
2465 * - positive and negative parts of c_i_x, in opposite order
2467 * The constraints are those from the edges plus two or three equalities
2468 * to express the sums.
2470 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2471 * Otherwise, we ignore them.
2473 static isl_stat setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
2474 int use_coincidence)
2476 int i;
2477 unsigned nparam;
2478 unsigned total;
2479 isl_space *space;
2480 int parametric;
2481 int param_pos;
2482 int n_eq, n_ineq;
2484 parametric = ctx->opt->schedule_parametric;
2485 nparam = isl_space_dim(graph->node[0].space, isl_dim_param);
2486 param_pos = 4;
2487 total = param_pos + 2 * nparam;
2488 for (i = 0; i < graph->n; ++i) {
2489 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
2490 if (node_update_cmap(node) < 0)
2491 return isl_stat_error;
2492 node->start = total;
2493 total += 1 + node->nparam + 2 * node->nvar;
2496 if (count_constraints(graph, &n_eq, &n_ineq, use_coincidence) < 0)
2497 return isl_stat_error;
2498 if (count_bound_constant_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2499 return isl_stat_error;
2500 if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2501 return isl_stat_error;
2503 space = isl_space_set_alloc(ctx, 0, total);
2504 isl_basic_set_free(graph->lp);
2505 n_eq += 2 + parametric;
2507 graph->lp = isl_basic_set_alloc_space(space, 0, n_eq, n_ineq);
2509 if (add_sum_constraint(graph, 0, param_pos, 2 * nparam) < 0)
2510 return isl_stat_error;
2511 if (parametric && add_param_sum_constraint(graph, 2) < 0)
2512 return isl_stat_error;
2513 if (add_var_sum_constraint(graph, 3) < 0)
2514 return isl_stat_error;
2515 if (add_bound_constant_constraints(ctx, graph) < 0)
2516 return isl_stat_error;
2517 if (add_bound_coefficient_constraints(ctx, graph) < 0)
2518 return isl_stat_error;
2519 if (add_all_validity_constraints(graph, use_coincidence) < 0)
2520 return isl_stat_error;
2521 if (add_all_proximity_constraints(graph, use_coincidence) < 0)
2522 return isl_stat_error;
2524 return isl_stat_ok;
2527 /* Analyze the conflicting constraint found by
2528 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
2529 * constraint of one of the edges between distinct nodes, living, moreover
2530 * in distinct SCCs, then record the source and sink SCC as this may
2531 * be a good place to cut between SCCs.
2533 static int check_conflict(int con, void *user)
2535 int i;
2536 struct isl_sched_graph *graph = user;
2538 if (graph->src_scc >= 0)
2539 return 0;
2541 con -= graph->lp->n_eq;
2543 if (con >= graph->lp->n_ineq)
2544 return 0;
2546 for (i = 0; i < graph->n_edge; ++i) {
2547 if (!is_validity(&graph->edge[i]))
2548 continue;
2549 if (graph->edge[i].src == graph->edge[i].dst)
2550 continue;
2551 if (graph->edge[i].src->scc == graph->edge[i].dst->scc)
2552 continue;
2553 if (graph->edge[i].start > con)
2554 continue;
2555 if (graph->edge[i].end <= con)
2556 continue;
2557 graph->src_scc = graph->edge[i].src->scc;
2558 graph->dst_scc = graph->edge[i].dst->scc;
2561 return 0;
2564 /* Check whether the next schedule row of the given node needs to be
2565 * non-trivial. Lower-dimensional domains may have some trivial rows,
2566 * but as soon as the number of remaining required non-trivial rows
2567 * is as large as the number or remaining rows to be computed,
2568 * all remaining rows need to be non-trivial.
2570 static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node)
2572 return node->nvar - node->rank >= graph->maxvar - graph->n_row;
2575 /* Construct a non-triviality region with triviality directions
2576 * corresponding to the rows of "indep".
2577 * The rows of "indep" are expressed in terms of the schedule coefficients c_i,
2578 * while the triviality directions are expressed in terms of
2579 * pairs of non-negative variables c^+_i - c^-_i, with c^-_i appearing
2580 * before c^+_i. Furthermore,
2581 * the pairs of non-negative variables representing the coefficients
2582 * are stored in the opposite order.
2584 static __isl_give isl_mat *construct_trivial(__isl_keep isl_mat *indep)
2586 isl_ctx *ctx;
2587 isl_mat *mat;
2588 int i, j, n, n_var;
2590 if (!indep)
2591 return NULL;
2593 ctx = isl_mat_get_ctx(indep);
2594 n = isl_mat_rows(indep);
2595 n_var = isl_mat_cols(indep);
2596 mat = isl_mat_alloc(ctx, n, 2 * n_var);
2597 if (!mat)
2598 return NULL;
2599 for (i = 0; i < n; ++i) {
2600 for (j = 0; j < n_var; ++j) {
2601 int nj = n_var - 1 - j;
2602 isl_int_neg(mat->row[i][2 * nj], indep->row[i][j]);
2603 isl_int_set(mat->row[i][2 * nj + 1], indep->row[i][j]);
2607 return mat;
2610 /* Solve the ILP problem constructed in setup_lp.
2611 * For each node such that all the remaining rows of its schedule
2612 * need to be non-trivial, we construct a non-triviality region.
2613 * This region imposes that the next row is independent of previous rows.
2614 * In particular, the non-triviality region enforces that at least
2615 * one of the linear combinations in the rows of node->indep is non-zero.
2617 static __isl_give isl_vec *solve_lp(isl_ctx *ctx, struct isl_sched_graph *graph)
2619 int i;
2620 isl_vec *sol;
2621 isl_basic_set *lp;
2623 for (i = 0; i < graph->n; ++i) {
2624 struct isl_sched_node *node = &graph->node[i];
2625 isl_mat *trivial;
2627 graph->region[i].pos = node_var_coef_offset(node);
2628 if (needs_row(graph, node))
2629 trivial = construct_trivial(node->indep);
2630 else
2631 trivial = isl_mat_zero(ctx, 0, 0);
2632 graph->region[i].trivial = trivial;
2634 lp = isl_basic_set_copy(graph->lp);
2635 sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n,
2636 graph->region, &check_conflict, graph);
2637 for (i = 0; i < graph->n; ++i)
2638 isl_mat_free(graph->region[i].trivial);
2639 return sol;
2642 /* Extract the coefficients for the variables of "node" from "sol".
2644 * Within each node, the coefficients have the following order:
2645 * - c_i_0
2646 * - c_i_n (if parametric)
2647 * - positive and negative parts of c_i_x
2649 * The c_i_x^- appear before their c_i_x^+ counterpart.
2650 * Furthermore, the order of these pairs is the opposite of that
2651 * of the corresponding coefficients.
2653 * Return c_i_x = c_i_x^+ - c_i_x^-
2655 static __isl_give isl_vec *extract_var_coef(struct isl_sched_node *node,
2656 __isl_keep isl_vec *sol)
2658 int i;
2659 int pos;
2660 isl_vec *csol;
2662 if (!sol)
2663 return NULL;
2664 csol = isl_vec_alloc(isl_vec_get_ctx(sol), node->nvar);
2665 if (!csol)
2666 return NULL;
2668 pos = 1 + node_var_coef_offset(node);
2669 for (i = 0; i < node->nvar; ++i)
2670 isl_int_sub(csol->el[node->nvar - 1 - i],
2671 sol->el[pos + 2 * i + 1], sol->el[pos + 2 * i]);
2673 return csol;
2676 /* Update the schedules of all nodes based on the given solution
2677 * of the LP problem.
2678 * The new row is added to the current band.
2679 * All possibly negative coefficients are encoded as a difference
2680 * of two non-negative variables, so we need to perform the subtraction
2681 * here. Moreover, if use_cmap is set, then the solution does
2682 * not refer to the actual coefficients c_i_x, but instead to variables
2683 * t_i_x such that c_i_x = Q t_i_x and Q is equal to node->cmap.
2684 * In this case, we then also need to perform this multiplication
2685 * to obtain the values of c_i_x.
2687 * If coincident is set, then the caller guarantees that the new
2688 * row satisfies the coincidence constraints.
2690 static int update_schedule(struct isl_sched_graph *graph,
2691 __isl_take isl_vec *sol, int use_cmap, int coincident)
2693 int i, j;
2694 isl_vec *csol = NULL;
2696 if (!sol)
2697 goto error;
2698 if (sol->size == 0)
2699 isl_die(sol->ctx, isl_error_internal,
2700 "no solution found", goto error);
2701 if (graph->n_total_row >= graph->max_row)
2702 isl_die(sol->ctx, isl_error_internal,
2703 "too many schedule rows", goto error);
2705 for (i = 0; i < graph->n; ++i) {
2706 struct isl_sched_node *node = &graph->node[i];
2707 int pos = node->start;
2708 int row = isl_mat_rows(node->sched);
2710 isl_vec_free(csol);
2711 csol = extract_var_coef(node, sol);
2712 if (!csol)
2713 goto error;
2715 isl_map_free(node->sched_map);
2716 node->sched_map = NULL;
2717 node->sched = isl_mat_add_rows(node->sched, 1);
2718 if (!node->sched)
2719 goto error;
2720 for (j = 0; j < 1 + node->nparam; ++j)
2721 node->sched = isl_mat_set_element(node->sched,
2722 row, j, sol->el[1 + pos + j]);
2723 if (use_cmap)
2724 csol = isl_mat_vec_product(isl_mat_copy(node->cmap),
2725 csol);
2726 if (!csol)
2727 goto error;
2728 for (j = 0; j < node->nvar; ++j)
2729 node->sched = isl_mat_set_element(node->sched,
2730 row, 1 + node->nparam + j, csol->el[j]);
2731 node->coincident[graph->n_total_row] = coincident;
2733 isl_vec_free(sol);
2734 isl_vec_free(csol);
2736 graph->n_row++;
2737 graph->n_total_row++;
2739 return 0;
2740 error:
2741 isl_vec_free(sol);
2742 isl_vec_free(csol);
2743 return -1;
2746 /* Convert row "row" of node->sched into an isl_aff living in "ls"
2747 * and return this isl_aff.
2749 static __isl_give isl_aff *extract_schedule_row(__isl_take isl_local_space *ls,
2750 struct isl_sched_node *node, int row)
2752 int j;
2753 isl_int v;
2754 isl_aff *aff;
2756 isl_int_init(v);
2758 aff = isl_aff_zero_on_domain(ls);
2759 isl_mat_get_element(node->sched, row, 0, &v);
2760 aff = isl_aff_set_constant(aff, v);
2761 for (j = 0; j < node->nparam; ++j) {
2762 isl_mat_get_element(node->sched, row, 1 + j, &v);
2763 aff = isl_aff_set_coefficient(aff, isl_dim_param, j, v);
2765 for (j = 0; j < node->nvar; ++j) {
2766 isl_mat_get_element(node->sched, row, 1 + node->nparam + j, &v);
2767 aff = isl_aff_set_coefficient(aff, isl_dim_in, j, v);
2770 isl_int_clear(v);
2772 return aff;
2775 /* Convert the "n" rows starting at "first" of node->sched into a multi_aff
2776 * and return this multi_aff.
2778 * The result is defined over the uncompressed node domain.
2780 static __isl_give isl_multi_aff *node_extract_partial_schedule_multi_aff(
2781 struct isl_sched_node *node, int first, int n)
2783 int i;
2784 isl_space *space;
2785 isl_local_space *ls;
2786 isl_aff *aff;
2787 isl_multi_aff *ma;
2788 int nrow;
2790 if (!node)
2791 return NULL;
2792 nrow = isl_mat_rows(node->sched);
2793 if (node->compressed)
2794 space = isl_multi_aff_get_domain_space(node->decompress);
2795 else
2796 space = isl_space_copy(node->space);
2797 ls = isl_local_space_from_space(isl_space_copy(space));
2798 space = isl_space_from_domain(space);
2799 space = isl_space_add_dims(space, isl_dim_out, n);
2800 ma = isl_multi_aff_zero(space);
2802 for (i = first; i < first + n; ++i) {
2803 aff = extract_schedule_row(isl_local_space_copy(ls), node, i);
2804 ma = isl_multi_aff_set_aff(ma, i - first, aff);
2807 isl_local_space_free(ls);
2809 if (node->compressed)
2810 ma = isl_multi_aff_pullback_multi_aff(ma,
2811 isl_multi_aff_copy(node->compress));
2813 return ma;
2816 /* Convert node->sched into a multi_aff and return this multi_aff.
2818 * The result is defined over the uncompressed node domain.
2820 static __isl_give isl_multi_aff *node_extract_schedule_multi_aff(
2821 struct isl_sched_node *node)
2823 int nrow;
2825 nrow = isl_mat_rows(node->sched);
2826 return node_extract_partial_schedule_multi_aff(node, 0, nrow);
2829 /* Convert node->sched into a map and return this map.
2831 * The result is cached in node->sched_map, which needs to be released
2832 * whenever node->sched is updated.
2833 * It is defined over the uncompressed node domain.
2835 static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node)
2837 if (!node->sched_map) {
2838 isl_multi_aff *ma;
2840 ma = node_extract_schedule_multi_aff(node);
2841 node->sched_map = isl_map_from_multi_aff(ma);
2844 return isl_map_copy(node->sched_map);
2847 /* Construct a map that can be used to update a dependence relation
2848 * based on the current schedule.
2849 * That is, construct a map expressing that source and sink
2850 * are executed within the same iteration of the current schedule.
2851 * This map can then be intersected with the dependence relation.
2852 * This is not the most efficient way, but this shouldn't be a critical
2853 * operation.
2855 static __isl_give isl_map *specializer(struct isl_sched_node *src,
2856 struct isl_sched_node *dst)
2858 isl_map *src_sched, *dst_sched;
2860 src_sched = node_extract_schedule(src);
2861 dst_sched = node_extract_schedule(dst);
2862 return isl_map_apply_range(src_sched, isl_map_reverse(dst_sched));
2865 /* Intersect the domains of the nested relations in domain and range
2866 * of "umap" with "map".
2868 static __isl_give isl_union_map *intersect_domains(
2869 __isl_take isl_union_map *umap, __isl_keep isl_map *map)
2871 isl_union_set *uset;
2873 umap = isl_union_map_zip(umap);
2874 uset = isl_union_set_from_set(isl_map_wrap(isl_map_copy(map)));
2875 umap = isl_union_map_intersect_domain(umap, uset);
2876 umap = isl_union_map_zip(umap);
2877 return umap;
2880 /* Update the dependence relation of the given edge based
2881 * on the current schedule.
2882 * If the dependence is carried completely by the current schedule, then
2883 * it is removed from the edge_tables. It is kept in the list of edges
2884 * as otherwise all edge_tables would have to be recomputed.
2886 static int update_edge(struct isl_sched_graph *graph,
2887 struct isl_sched_edge *edge)
2889 int empty;
2890 isl_map *id;
2892 id = specializer(edge->src, edge->dst);
2893 edge->map = isl_map_intersect(edge->map, isl_map_copy(id));
2894 if (!edge->map)
2895 goto error;
2897 if (edge->tagged_condition) {
2898 edge->tagged_condition =
2899 intersect_domains(edge->tagged_condition, id);
2900 if (!edge->tagged_condition)
2901 goto error;
2903 if (edge->tagged_validity) {
2904 edge->tagged_validity =
2905 intersect_domains(edge->tagged_validity, id);
2906 if (!edge->tagged_validity)
2907 goto error;
2910 empty = isl_map_plain_is_empty(edge->map);
2911 if (empty < 0)
2912 goto error;
2913 if (empty)
2914 graph_remove_edge(graph, edge);
2916 isl_map_free(id);
2917 return 0;
2918 error:
2919 isl_map_free(id);
2920 return -1;
2923 /* Does the domain of "umap" intersect "uset"?
2925 static int domain_intersects(__isl_keep isl_union_map *umap,
2926 __isl_keep isl_union_set *uset)
2928 int empty;
2930 umap = isl_union_map_copy(umap);
2931 umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(uset));
2932 empty = isl_union_map_is_empty(umap);
2933 isl_union_map_free(umap);
2935 return empty < 0 ? -1 : !empty;
2938 /* Does the range of "umap" intersect "uset"?
2940 static int range_intersects(__isl_keep isl_union_map *umap,
2941 __isl_keep isl_union_set *uset)
2943 int empty;
2945 umap = isl_union_map_copy(umap);
2946 umap = isl_union_map_intersect_range(umap, isl_union_set_copy(uset));
2947 empty = isl_union_map_is_empty(umap);
2948 isl_union_map_free(umap);
2950 return empty < 0 ? -1 : !empty;
2953 /* Are the condition dependences of "edge" local with respect to
2954 * the current schedule?
2956 * That is, are domain and range of the condition dependences mapped
2957 * to the same point?
2959 * In other words, is the condition false?
2961 static int is_condition_false(struct isl_sched_edge *edge)
2963 isl_union_map *umap;
2964 isl_map *map, *sched, *test;
2965 int empty, local;
2967 empty = isl_union_map_is_empty(edge->tagged_condition);
2968 if (empty < 0 || empty)
2969 return empty;
2971 umap = isl_union_map_copy(edge->tagged_condition);
2972 umap = isl_union_map_zip(umap);
2973 umap = isl_union_set_unwrap(isl_union_map_domain(umap));
2974 map = isl_map_from_union_map(umap);
2976 sched = node_extract_schedule(edge->src);
2977 map = isl_map_apply_domain(map, sched);
2978 sched = node_extract_schedule(edge->dst);
2979 map = isl_map_apply_range(map, sched);
2981 test = isl_map_identity(isl_map_get_space(map));
2982 local = isl_map_is_subset(map, test);
2983 isl_map_free(map);
2984 isl_map_free(test);
2986 return local;
2989 /* For each conditional validity constraint that is adjacent
2990 * to a condition with domain in condition_source or range in condition_sink,
2991 * turn it into an unconditional validity constraint.
2993 static int unconditionalize_adjacent_validity(struct isl_sched_graph *graph,
2994 __isl_take isl_union_set *condition_source,
2995 __isl_take isl_union_set *condition_sink)
2997 int i;
2999 condition_source = isl_union_set_coalesce(condition_source);
3000 condition_sink = isl_union_set_coalesce(condition_sink);
3002 for (i = 0; i < graph->n_edge; ++i) {
3003 int adjacent;
3004 isl_union_map *validity;
3006 if (!is_conditional_validity(&graph->edge[i]))
3007 continue;
3008 if (is_validity(&graph->edge[i]))
3009 continue;
3011 validity = graph->edge[i].tagged_validity;
3012 adjacent = domain_intersects(validity, condition_sink);
3013 if (adjacent >= 0 && !adjacent)
3014 adjacent = range_intersects(validity, condition_source);
3015 if (adjacent < 0)
3016 goto error;
3017 if (!adjacent)
3018 continue;
3020 set_validity(&graph->edge[i]);
3023 isl_union_set_free(condition_source);
3024 isl_union_set_free(condition_sink);
3025 return 0;
3026 error:
3027 isl_union_set_free(condition_source);
3028 isl_union_set_free(condition_sink);
3029 return -1;
3032 /* Update the dependence relations of all edges based on the current schedule
3033 * and enforce conditional validity constraints that are adjacent
3034 * to satisfied condition constraints.
3036 * First check if any of the condition constraints are satisfied
3037 * (i.e., not local to the outer schedule) and keep track of
3038 * their domain and range.
3039 * Then update all dependence relations (which removes the non-local
3040 * constraints).
3041 * Finally, if any condition constraints turned out to be satisfied,
3042 * then turn all adjacent conditional validity constraints into
3043 * unconditional validity constraints.
3045 static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph)
3047 int i;
3048 int any = 0;
3049 isl_union_set *source, *sink;
3051 source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
3052 sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
3053 for (i = 0; i < graph->n_edge; ++i) {
3054 int local;
3055 isl_union_set *uset;
3056 isl_union_map *umap;
3058 if (!is_condition(&graph->edge[i]))
3059 continue;
3060 if (is_local(&graph->edge[i]))
3061 continue;
3062 local = is_condition_false(&graph->edge[i]);
3063 if (local < 0)
3064 goto error;
3065 if (local)
3066 continue;
3068 any = 1;
3070 umap = isl_union_map_copy(graph->edge[i].tagged_condition);
3071 uset = isl_union_map_domain(umap);
3072 source = isl_union_set_union(source, uset);
3074 umap = isl_union_map_copy(graph->edge[i].tagged_condition);
3075 uset = isl_union_map_range(umap);
3076 sink = isl_union_set_union(sink, uset);
3079 for (i = graph->n_edge - 1; i >= 0; --i) {
3080 if (update_edge(graph, &graph->edge[i]) < 0)
3081 goto error;
3084 if (any)
3085 return unconditionalize_adjacent_validity(graph, source, sink);
3087 isl_union_set_free(source);
3088 isl_union_set_free(sink);
3089 return 0;
3090 error:
3091 isl_union_set_free(source);
3092 isl_union_set_free(sink);
3093 return -1;
3096 static void next_band(struct isl_sched_graph *graph)
3098 graph->band_start = graph->n_total_row;
3101 /* Return the union of the universe domains of the nodes in "graph"
3102 * that satisfy "pred".
3104 static __isl_give isl_union_set *isl_sched_graph_domain(isl_ctx *ctx,
3105 struct isl_sched_graph *graph,
3106 int (*pred)(struct isl_sched_node *node, int data), int data)
3108 int i;
3109 isl_set *set;
3110 isl_union_set *dom;
3112 for (i = 0; i < graph->n; ++i)
3113 if (pred(&graph->node[i], data))
3114 break;
3116 if (i >= graph->n)
3117 isl_die(ctx, isl_error_internal,
3118 "empty component", return NULL);
3120 set = isl_set_universe(isl_space_copy(graph->node[i].space));
3121 dom = isl_union_set_from_set(set);
3123 for (i = i + 1; i < graph->n; ++i) {
3124 if (!pred(&graph->node[i], data))
3125 continue;
3126 set = isl_set_universe(isl_space_copy(graph->node[i].space));
3127 dom = isl_union_set_union(dom, isl_union_set_from_set(set));
3130 return dom;
3133 /* Return a list of unions of universe domains, where each element
3134 * in the list corresponds to an SCC (or WCC) indexed by node->scc.
3136 static __isl_give isl_union_set_list *extract_sccs(isl_ctx *ctx,
3137 struct isl_sched_graph *graph)
3139 int i;
3140 isl_union_set_list *filters;
3142 filters = isl_union_set_list_alloc(ctx, graph->scc);
3143 for (i = 0; i < graph->scc; ++i) {
3144 isl_union_set *dom;
3146 dom = isl_sched_graph_domain(ctx, graph, &node_scc_exactly, i);
3147 filters = isl_union_set_list_add(filters, dom);
3150 return filters;
3153 /* Return a list of two unions of universe domains, one for the SCCs up
3154 * to and including graph->src_scc and another for the other SCCs.
3156 static __isl_give isl_union_set_list *extract_split(isl_ctx *ctx,
3157 struct isl_sched_graph *graph)
3159 isl_union_set *dom;
3160 isl_union_set_list *filters;
3162 filters = isl_union_set_list_alloc(ctx, 2);
3163 dom = isl_sched_graph_domain(ctx, graph,
3164 &node_scc_at_most, graph->src_scc);
3165 filters = isl_union_set_list_add(filters, dom);
3166 dom = isl_sched_graph_domain(ctx, graph,
3167 &node_scc_at_least, graph->src_scc + 1);
3168 filters = isl_union_set_list_add(filters, dom);
3170 return filters;
3173 /* Copy nodes that satisfy node_pred from the src dependence graph
3174 * to the dst dependence graph.
3176 static int copy_nodes(struct isl_sched_graph *dst, struct isl_sched_graph *src,
3177 int (*node_pred)(struct isl_sched_node *node, int data), int data)
3179 int i;
3181 dst->n = 0;
3182 for (i = 0; i < src->n; ++i) {
3183 int j;
3185 if (!node_pred(&src->node[i], data))
3186 continue;
3188 j = dst->n;
3189 dst->node[j].space = isl_space_copy(src->node[i].space);
3190 dst->node[j].compressed = src->node[i].compressed;
3191 dst->node[j].hull = isl_set_copy(src->node[i].hull);
3192 dst->node[j].compress =
3193 isl_multi_aff_copy(src->node[i].compress);
3194 dst->node[j].decompress =
3195 isl_multi_aff_copy(src->node[i].decompress);
3196 dst->node[j].nvar = src->node[i].nvar;
3197 dst->node[j].nparam = src->node[i].nparam;
3198 dst->node[j].sched = isl_mat_copy(src->node[i].sched);
3199 dst->node[j].sched_map = isl_map_copy(src->node[i].sched_map);
3200 dst->node[j].coincident = src->node[i].coincident;
3201 dst->node[j].sizes = isl_multi_val_copy(src->node[i].sizes);
3202 dst->node[j].max = isl_vec_copy(src->node[i].max);
3203 dst->n++;
3205 if (!dst->node[j].space || !dst->node[j].sched)
3206 return -1;
3207 if (dst->node[j].compressed &&
3208 (!dst->node[j].hull || !dst->node[j].compress ||
3209 !dst->node[j].decompress))
3210 return -1;
3213 return 0;
3216 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
3217 * to the dst dependence graph.
3218 * If the source or destination node of the edge is not in the destination
3219 * graph, then it must be a backward proximity edge and it should simply
3220 * be ignored.
3222 static int copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst,
3223 struct isl_sched_graph *src,
3224 int (*edge_pred)(struct isl_sched_edge *edge, int data), int data)
3226 int i;
3227 enum isl_edge_type t;
3229 dst->n_edge = 0;
3230 for (i = 0; i < src->n_edge; ++i) {
3231 struct isl_sched_edge *edge = &src->edge[i];
3232 isl_map *map;
3233 isl_union_map *tagged_condition;
3234 isl_union_map *tagged_validity;
3235 struct isl_sched_node *dst_src, *dst_dst;
3237 if (!edge_pred(edge, data))
3238 continue;
3240 if (isl_map_plain_is_empty(edge->map))
3241 continue;
3243 dst_src = graph_find_node(ctx, dst, edge->src->space);
3244 dst_dst = graph_find_node(ctx, dst, edge->dst->space);
3245 if (!dst_src || !dst_dst) {
3246 if (is_validity(edge) || is_conditional_validity(edge))
3247 isl_die(ctx, isl_error_internal,
3248 "backward (conditional) validity edge",
3249 return -1);
3250 continue;
3253 map = isl_map_copy(edge->map);
3254 tagged_condition = isl_union_map_copy(edge->tagged_condition);
3255 tagged_validity = isl_union_map_copy(edge->tagged_validity);
3257 dst->edge[dst->n_edge].src = dst_src;
3258 dst->edge[dst->n_edge].dst = dst_dst;
3259 dst->edge[dst->n_edge].map = map;
3260 dst->edge[dst->n_edge].tagged_condition = tagged_condition;
3261 dst->edge[dst->n_edge].tagged_validity = tagged_validity;
3262 dst->edge[dst->n_edge].types = edge->types;
3263 dst->n_edge++;
3265 if (edge->tagged_condition && !tagged_condition)
3266 return -1;
3267 if (edge->tagged_validity && !tagged_validity)
3268 return -1;
3270 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
3271 if (edge !=
3272 graph_find_edge(src, t, edge->src, edge->dst))
3273 continue;
3274 if (graph_edge_table_add(ctx, dst, t,
3275 &dst->edge[dst->n_edge - 1]) < 0)
3276 return -1;
3280 return 0;
3283 /* Compute the maximal number of variables over all nodes.
3284 * This is the maximal number of linearly independent schedule
3285 * rows that we need to compute.
3286 * Just in case we end up in a part of the dependence graph
3287 * with only lower-dimensional domains, we make sure we will
3288 * compute the required amount of extra linearly independent rows.
3290 static int compute_maxvar(struct isl_sched_graph *graph)
3292 int i;
3294 graph->maxvar = 0;
3295 for (i = 0; i < graph->n; ++i) {
3296 struct isl_sched_node *node = &graph->node[i];
3297 int nvar;
3299 if (node_update_cmap(node) < 0)
3300 return -1;
3301 nvar = node->nvar + graph->n_row - node->rank;
3302 if (nvar > graph->maxvar)
3303 graph->maxvar = nvar;
3306 return 0;
3309 /* Extract the subgraph of "graph" that consists of the node satisfying
3310 * "node_pred" and the edges satisfying "edge_pred" and store
3311 * the result in "sub".
3313 static int extract_sub_graph(isl_ctx *ctx, struct isl_sched_graph *graph,
3314 int (*node_pred)(struct isl_sched_node *node, int data),
3315 int (*edge_pred)(struct isl_sched_edge *edge, int data),
3316 int data, struct isl_sched_graph *sub)
3318 int i, n = 0, n_edge = 0;
3319 int t;
3321 for (i = 0; i < graph->n; ++i)
3322 if (node_pred(&graph->node[i], data))
3323 ++n;
3324 for (i = 0; i < graph->n_edge; ++i)
3325 if (edge_pred(&graph->edge[i], data))
3326 ++n_edge;
3327 if (graph_alloc(ctx, sub, n, n_edge) < 0)
3328 return -1;
3329 if (copy_nodes(sub, graph, node_pred, data) < 0)
3330 return -1;
3331 if (graph_init_table(ctx, sub) < 0)
3332 return -1;
3333 for (t = 0; t <= isl_edge_last; ++t)
3334 sub->max_edge[t] = graph->max_edge[t];
3335 if (graph_init_edge_tables(ctx, sub) < 0)
3336 return -1;
3337 if (copy_edges(ctx, sub, graph, edge_pred, data) < 0)
3338 return -1;
3339 sub->n_row = graph->n_row;
3340 sub->max_row = graph->max_row;
3341 sub->n_total_row = graph->n_total_row;
3342 sub->band_start = graph->band_start;
3344 return 0;
3347 static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
3348 struct isl_sched_graph *graph);
3349 static __isl_give isl_schedule_node *compute_schedule_wcc(
3350 isl_schedule_node *node, struct isl_sched_graph *graph);
3352 /* Compute a schedule for a subgraph of "graph". In particular, for
3353 * the graph composed of nodes that satisfy node_pred and edges that
3354 * that satisfy edge_pred.
3355 * If the subgraph is known to consist of a single component, then wcc should
3356 * be set and then we call compute_schedule_wcc on the constructed subgraph.
3357 * Otherwise, we call compute_schedule, which will check whether the subgraph
3358 * is connected.
3360 * The schedule is inserted at "node" and the updated schedule node
3361 * is returned.
3363 static __isl_give isl_schedule_node *compute_sub_schedule(
3364 __isl_take isl_schedule_node *node, isl_ctx *ctx,
3365 struct isl_sched_graph *graph,
3366 int (*node_pred)(struct isl_sched_node *node, int data),
3367 int (*edge_pred)(struct isl_sched_edge *edge, int data),
3368 int data, int wcc)
3370 struct isl_sched_graph split = { 0 };
3372 if (extract_sub_graph(ctx, graph, node_pred, edge_pred, data,
3373 &split) < 0)
3374 goto error;
3376 if (wcc)
3377 node = compute_schedule_wcc(node, &split);
3378 else
3379 node = compute_schedule(node, &split);
3381 graph_free(ctx, &split);
3382 return node;
3383 error:
3384 graph_free(ctx, &split);
3385 return isl_schedule_node_free(node);
3388 static int edge_scc_exactly(struct isl_sched_edge *edge, int scc)
3390 return edge->src->scc == scc && edge->dst->scc == scc;
3393 static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc)
3395 return edge->dst->scc <= scc;
3398 static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc)
3400 return edge->src->scc >= scc;
3403 /* Reset the current band by dropping all its schedule rows.
3405 static int reset_band(struct isl_sched_graph *graph)
3407 int i;
3408 int drop;
3410 drop = graph->n_total_row - graph->band_start;
3411 graph->n_total_row -= drop;
3412 graph->n_row -= drop;
3414 for (i = 0; i < graph->n; ++i) {
3415 struct isl_sched_node *node = &graph->node[i];
3417 isl_map_free(node->sched_map);
3418 node->sched_map = NULL;
3420 node->sched = isl_mat_drop_rows(node->sched,
3421 graph->band_start, drop);
3423 if (!node->sched)
3424 return -1;
3427 return 0;
3430 /* Split the current graph into two parts and compute a schedule for each
3431 * part individually. In particular, one part consists of all SCCs up
3432 * to and including graph->src_scc, while the other part contains the other
3433 * SCCs. The split is enforced by a sequence node inserted at position "node"
3434 * in the schedule tree. Return the updated schedule node.
3435 * If either of these two parts consists of a sequence, then it is spliced
3436 * into the sequence containing the two parts.
3438 * The current band is reset. It would be possible to reuse
3439 * the previously computed rows as the first rows in the next
3440 * band, but recomputing them may result in better rows as we are looking
3441 * at a smaller part of the dependence graph.
3443 static __isl_give isl_schedule_node *compute_split_schedule(
3444 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
3446 int is_seq;
3447 isl_ctx *ctx;
3448 isl_union_set_list *filters;
3450 if (!node)
3451 return NULL;
3453 if (reset_band(graph) < 0)
3454 return isl_schedule_node_free(node);
3456 next_band(graph);
3458 ctx = isl_schedule_node_get_ctx(node);
3459 filters = extract_split(ctx, graph);
3460 node = isl_schedule_node_insert_sequence(node, filters);
3461 node = isl_schedule_node_child(node, 1);
3462 node = isl_schedule_node_child(node, 0);
3464 node = compute_sub_schedule(node, ctx, graph,
3465 &node_scc_at_least, &edge_src_scc_at_least,
3466 graph->src_scc + 1, 0);
3467 is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence;
3468 node = isl_schedule_node_parent(node);
3469 node = isl_schedule_node_parent(node);
3470 if (is_seq)
3471 node = isl_schedule_node_sequence_splice_child(node, 1);
3472 node = isl_schedule_node_child(node, 0);
3473 node = isl_schedule_node_child(node, 0);
3474 node = compute_sub_schedule(node, ctx, graph,
3475 &node_scc_at_most, &edge_dst_scc_at_most,
3476 graph->src_scc, 0);
3477 is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence;
3478 node = isl_schedule_node_parent(node);
3479 node = isl_schedule_node_parent(node);
3480 if (is_seq)
3481 node = isl_schedule_node_sequence_splice_child(node, 0);
3483 return node;
3486 /* Insert a band node at position "node" in the schedule tree corresponding
3487 * to the current band in "graph". Mark the band node permutable
3488 * if "permutable" is set.
3489 * The partial schedules and the coincidence property are extracted
3490 * from the graph nodes.
3491 * Return the updated schedule node.
3493 static __isl_give isl_schedule_node *insert_current_band(
3494 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
3495 int permutable)
3497 int i;
3498 int start, end, n;
3499 isl_multi_aff *ma;
3500 isl_multi_pw_aff *mpa;
3501 isl_multi_union_pw_aff *mupa;
3503 if (!node)
3504 return NULL;
3506 if (graph->n < 1)
3507 isl_die(isl_schedule_node_get_ctx(node), isl_error_internal,
3508 "graph should have at least one node",
3509 return isl_schedule_node_free(node));
3511 start = graph->band_start;
3512 end = graph->n_total_row;
3513 n = end - start;
3515 ma = node_extract_partial_schedule_multi_aff(&graph->node[0], start, n);
3516 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3517 mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3519 for (i = 1; i < graph->n; ++i) {
3520 isl_multi_union_pw_aff *mupa_i;
3522 ma = node_extract_partial_schedule_multi_aff(&graph->node[i],
3523 start, n);
3524 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3525 mupa_i = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3526 mupa = isl_multi_union_pw_aff_union_add(mupa, mupa_i);
3528 node = isl_schedule_node_insert_partial_schedule(node, mupa);
3530 for (i = 0; i < n; ++i)
3531 node = isl_schedule_node_band_member_set_coincident(node, i,
3532 graph->node[0].coincident[start + i]);
3533 node = isl_schedule_node_band_set_permutable(node, permutable);
3535 return node;
3538 /* Update the dependence relations based on the current schedule,
3539 * add the current band to "node" and then continue with the computation
3540 * of the next band.
3541 * Return the updated schedule node.
3543 static __isl_give isl_schedule_node *compute_next_band(
3544 __isl_take isl_schedule_node *node,
3545 struct isl_sched_graph *graph, int permutable)
3547 isl_ctx *ctx;
3549 if (!node)
3550 return NULL;
3552 ctx = isl_schedule_node_get_ctx(node);
3553 if (update_edges(ctx, graph) < 0)
3554 return isl_schedule_node_free(node);
3555 node = insert_current_band(node, graph, permutable);
3556 next_band(graph);
3558 node = isl_schedule_node_child(node, 0);
3559 node = compute_schedule(node, graph);
3560 node = isl_schedule_node_parent(node);
3562 return node;
3565 /* Add the constraints "coef" derived from an edge from "node" to itself
3566 * to graph->lp in order to respect the dependences and to try and carry them.
3567 * "pos" is the sequence number of the edge that needs to be carried.
3568 * "coef" represents general constraints on coefficients (c_0, c_n, c_x)
3569 * of valid constraints for (y - x) with x and y instances of the node.
3571 * The constraints added to graph->lp need to enforce
3573 * (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x)
3574 * = c_j_x (y - x) >= e_i
3576 * for each (x,y) in the dependence relation of the edge.
3577 * That is, (-e_i, 0, c_j_x) needs to be plugged in for (c_0, c_n, c_x),
3578 * taking into account that each coefficient in c_j_x is represented
3579 * as a pair of non-negative coefficients.
3581 static isl_stat add_intra_constraints(struct isl_sched_graph *graph,
3582 struct isl_sched_node *node, __isl_take isl_basic_set *coef, int pos)
3584 int offset;
3585 isl_ctx *ctx;
3586 isl_dim_map *dim_map;
3588 if (!coef)
3589 return isl_stat_error;
3591 ctx = isl_basic_set_get_ctx(coef);
3592 offset = coef_var_offset(coef);
3593 dim_map = intra_dim_map(ctx, graph, node, offset, 1);
3594 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
3595 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
3597 return isl_stat_ok;
3600 /* Add the constraints "coef" derived from an edge from "src" to "dst"
3601 * to graph->lp in order to respect the dependences and to try and carry them.
3602 * "pos" is the sequence number of the edge that needs to be carried.
3603 * "coef" represents general constraints on coefficients (c_0, c_n, c_x, c_y)
3604 * of valid constraints for (x, y) with x and y instances of "src" and "dst".
3606 * The constraints added to graph->lp need to enforce
3608 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
3610 * for each (x,y) in the dependence relation of the edge.
3611 * That is,
3612 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
3613 * needs to be plugged in for (c_0, c_n, c_x, c_y),
3614 * taking into account that each coefficient in c_j_x and c_k_x is represented
3615 * as a pair of non-negative coefficients.
3617 static isl_stat add_inter_constraints(struct isl_sched_graph *graph,
3618 struct isl_sched_node *src, struct isl_sched_node *dst,
3619 __isl_take isl_basic_set *coef, int pos)
3621 int offset;
3622 isl_ctx *ctx;
3623 isl_dim_map *dim_map;
3625 if (!coef)
3626 return isl_stat_error;
3628 ctx = isl_basic_set_get_ctx(coef);
3629 offset = coef_var_offset(coef);
3630 dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1);
3631 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
3632 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
3634 return isl_stat_ok;
3637 /* Data structure collecting information used during the construction
3638 * of an LP for carrying dependences.
3640 * "intra" is a sequence of coefficient constraints for intra-node edges.
3641 * "inter" is a sequence of coefficient constraints for inter-node edges.
3643 struct isl_carry {
3644 isl_basic_set_list *intra;
3645 isl_basic_set_list *inter;
3648 /* Free all the data stored in "carry".
3650 static void isl_carry_clear(struct isl_carry *carry)
3652 isl_basic_set_list_free(carry->intra);
3653 isl_basic_set_list_free(carry->inter);
3656 /* Return a pointer to the node in "graph" that lives in "space".
3657 * If the requested node has been compressed, then "space"
3658 * corresponds to the compressed space.
3660 * First try and see if "space" is the space of an uncompressed node.
3661 * If so, return that node.
3662 * Otherwise, "space" was constructed by construct_compressed_id and
3663 * contains a user pointer pointing to the node in the tuple id.
3665 static struct isl_sched_node *graph_find_compressed_node(isl_ctx *ctx,
3666 struct isl_sched_graph *graph, __isl_keep isl_space *space)
3668 isl_id *id;
3669 struct isl_sched_node *node;
3671 if (!space)
3672 return NULL;
3674 node = graph_find_node(ctx, graph, space);
3675 if (node)
3676 return node;
3678 id = isl_space_get_tuple_id(space, isl_dim_set);
3679 node = isl_id_get_user(id);
3680 isl_id_free(id);
3682 if (!node)
3683 return NULL;
3685 if (!(node >= &graph->node[0] && node < &graph->node[graph->n]))
3686 isl_die(ctx, isl_error_internal,
3687 "space points to invalid node", return NULL);
3689 return node;
3692 /* Internal data structure for add_all_constraints.
3694 * "graph" is the schedule constraint graph for which an LP problem
3695 * is being constructed.
3696 * "pos" is the position of the next edge that needs to be carried.
3698 struct isl_add_all_constraints_data {
3699 isl_ctx *ctx;
3700 struct isl_sched_graph *graph;
3701 int pos;
3704 /* Add the constraints "coef" derived from an edge from a node to itself
3705 * to data->graph->lp in order to respect the dependences and
3706 * to try and carry them.
3708 * The space of "coef" is of the form
3710 * coefficients[[c_cst, c_n] -> S[c_x]]
3712 * with S[c_x] the (compressed) space of the node.
3713 * Extract the node from the space and call add_intra_constraints.
3715 static isl_stat lp_add_intra(__isl_take isl_basic_set *coef, void *user)
3717 struct isl_add_all_constraints_data *data = user;
3718 isl_space *space;
3719 struct isl_sched_node *node;
3721 space = isl_basic_set_get_space(coef);
3722 space = isl_space_range(isl_space_unwrap(space));
3723 node = graph_find_compressed_node(data->ctx, data->graph, space);
3724 isl_space_free(space);
3725 return add_intra_constraints(data->graph, node, coef, data->pos++);
3728 /* Add the constraints "coef" derived from an edge from a node j
3729 * to a node k to data->graph->lp in order to respect the dependences and
3730 * to try and carry them.
3732 * The space of "coef" is of the form
3734 * coefficients[[c_cst, c_n] -> [S_j[c_x] -> S_k[c_y]]]
3736 * with S_j[c_x] and S_k[c_y] the (compressed) spaces of the nodes.
3737 * Extract the nodes from the space and call add_inter_constraints.
3739 static isl_stat lp_add_inter(__isl_take isl_basic_set *coef, void *user)
3741 struct isl_add_all_constraints_data *data = user;
3742 isl_space *space, *dom;
3743 struct isl_sched_node *src, *dst;
3745 space = isl_basic_set_get_space(coef);
3746 space = isl_space_unwrap(isl_space_range(isl_space_unwrap(space)));
3747 dom = isl_space_domain(isl_space_copy(space));
3748 src = graph_find_compressed_node(data->ctx, data->graph, dom);
3749 isl_space_free(dom);
3750 space = isl_space_range(space);
3751 dst = graph_find_compressed_node(data->ctx, data->graph, space);
3752 isl_space_free(space);
3754 return add_inter_constraints(data->graph, src, dst, coef, data->pos++);
3757 /* Add constraints to graph->lp that force all (conditional) validity
3758 * dependences to be respected and attempt to carry them.
3759 * "intra" is the sequence of coefficient constraints for intra-node edges.
3760 * "inter" is the sequence of coefficient constraints for inter-node edges.
3762 static isl_stat add_all_constraints(isl_ctx *ctx, struct isl_sched_graph *graph,
3763 __isl_keep isl_basic_set_list *intra,
3764 __isl_keep isl_basic_set_list *inter)
3766 struct isl_add_all_constraints_data data = { ctx, graph };
3768 data.pos = 0;
3769 if (isl_basic_set_list_foreach(intra, &lp_add_intra, &data) < 0)
3770 return isl_stat_error;
3771 if (isl_basic_set_list_foreach(inter, &lp_add_inter, &data) < 0)
3772 return isl_stat_error;
3773 return isl_stat_ok;
3776 /* Internal data structure for count_all_constraints
3777 * for keeping track of the number of equality and inequality constraints.
3779 struct isl_sched_count {
3780 int n_eq;
3781 int n_ineq;
3784 /* Add the number of equality and inequality constraints of "bset"
3785 * to data->n_eq and data->n_ineq.
3787 static isl_stat bset_update_count(__isl_take isl_basic_set *bset, void *user)
3789 struct isl_sched_count *data = user;
3791 data->n_eq += isl_basic_set_n_equality(bset);
3792 data->n_ineq += isl_basic_set_n_inequality(bset);
3793 isl_basic_set_free(bset);
3795 return isl_stat_ok;
3798 /* Count the number of equality and inequality constraints
3799 * that will be added to the carry_lp problem.
3800 * We count each edge exactly once.
3801 * "intra" is the sequence of coefficient constraints for intra-node edges.
3802 * "inter" is the sequence of coefficient constraints for inter-node edges.
3804 static isl_stat count_all_constraints(__isl_keep isl_basic_set_list *intra,
3805 __isl_keep isl_basic_set_list *inter, int *n_eq, int *n_ineq)
3807 struct isl_sched_count data;
3809 data.n_eq = data.n_ineq = 0;
3810 if (isl_basic_set_list_foreach(inter, &bset_update_count, &data) < 0)
3811 return isl_stat_error;
3812 if (isl_basic_set_list_foreach(intra, &bset_update_count, &data) < 0)
3813 return isl_stat_error;
3815 *n_eq = data.n_eq;
3816 *n_ineq = data.n_ineq;
3818 return isl_stat_ok;
3821 /* Construct an LP problem for finding schedule coefficients
3822 * such that the schedule carries as many validity dependences as possible.
3823 * In particular, for each dependence i, we bound the dependence distance
3824 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
3825 * of all e_i's. Dependences with e_i = 0 in the solution are simply
3826 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
3827 * "intra" is the sequence of coefficient constraints for intra-node edges.
3828 * "inter" is the sequence of coefficient constraints for inter-node edges.
3829 * "n_edge" is the total number of edges.
3831 * All variables of the LP are non-negative. The actual coefficients
3832 * may be negative, so each coefficient is represented as the difference
3833 * of two non-negative variables. The negative part always appears
3834 * immediately before the positive part.
3835 * Other than that, the variables have the following order
3837 * - sum of (1 - e_i) over all edges
3838 * - sum of all c_n coefficients
3839 * (unconstrained when computing non-parametric schedules)
3840 * - sum of positive and negative parts of all c_x coefficients
3841 * - for each edge
3842 * - e_i
3843 * - for each node
3844 * - c_i_0
3845 * - c_i_n (if parametric)
3846 * - positive and negative parts of c_i_x, in opposite order
3848 * The constraints are those from the (validity) edges plus three equalities
3849 * to express the sums and n_edge inequalities to express e_i <= 1.
3851 static isl_stat setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
3852 int n_edge, __isl_keep isl_basic_set_list *intra,
3853 __isl_keep isl_basic_set_list *inter)
3855 int i;
3856 int k;
3857 isl_space *dim;
3858 unsigned total;
3859 int n_eq, n_ineq;
3861 total = 3 + n_edge;
3862 for (i = 0; i < graph->n; ++i) {
3863 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
3864 node->start = total;
3865 total += 1 + node->nparam + 2 * node->nvar;
3868 if (count_all_constraints(intra, inter, &n_eq, &n_ineq) < 0)
3869 return isl_stat_error;
3871 dim = isl_space_set_alloc(ctx, 0, total);
3872 isl_basic_set_free(graph->lp);
3873 n_eq += 3;
3874 n_ineq += n_edge;
3875 graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
3876 graph->lp = isl_basic_set_set_rational(graph->lp);
3878 k = isl_basic_set_alloc_equality(graph->lp);
3879 if (k < 0)
3880 return isl_stat_error;
3881 isl_seq_clr(graph->lp->eq[k], 1 + total);
3882 isl_int_set_si(graph->lp->eq[k][0], -n_edge);
3883 isl_int_set_si(graph->lp->eq[k][1], 1);
3884 for (i = 0; i < n_edge; ++i)
3885 isl_int_set_si(graph->lp->eq[k][4 + i], 1);
3887 if (add_param_sum_constraint(graph, 1) < 0)
3888 return isl_stat_error;
3889 if (add_var_sum_constraint(graph, 2) < 0)
3890 return isl_stat_error;
3892 for (i = 0; i < n_edge; ++i) {
3893 k = isl_basic_set_alloc_inequality(graph->lp);
3894 if (k < 0)
3895 return isl_stat_error;
3896 isl_seq_clr(graph->lp->ineq[k], 1 + total);
3897 isl_int_set_si(graph->lp->ineq[k][4 + i], -1);
3898 isl_int_set_si(graph->lp->ineq[k][0], 1);
3901 if (add_all_constraints(ctx, graph, intra, inter) < 0)
3902 return isl_stat_error;
3904 return isl_stat_ok;
3907 static __isl_give isl_schedule_node *compute_component_schedule(
3908 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
3909 int wcc);
3911 /* Comparison function for sorting the statements based on
3912 * the corresponding value in "r".
3914 static int smaller_value(const void *a, const void *b, void *data)
3916 isl_vec *r = data;
3917 const int *i1 = a;
3918 const int *i2 = b;
3920 return isl_int_cmp(r->el[*i1], r->el[*i2]);
3923 /* If the schedule_split_scaled option is set and if the linear
3924 * parts of the scheduling rows for all nodes in the graphs have
3925 * a non-trivial common divisor, then split off the remainder of the
3926 * constant term modulo this common divisor from the linear part.
3927 * Otherwise, insert a band node directly and continue with
3928 * the construction of the schedule.
3930 * If a non-trivial common divisor is found, then
3931 * the linear part is reduced and the remainder is enforced
3932 * by a sequence node with the children placed in the order
3933 * of this remainder.
3934 * In particular, we assign an scc index based on the remainder and
3935 * then rely on compute_component_schedule to insert the sequence and
3936 * to continue the schedule construction on each part.
3938 static __isl_give isl_schedule_node *split_scaled(
3939 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
3941 int i;
3942 int row;
3943 int scc;
3944 isl_ctx *ctx;
3945 isl_int gcd, gcd_i;
3946 isl_vec *r;
3947 int *order;
3949 if (!node)
3950 return NULL;
3952 ctx = isl_schedule_node_get_ctx(node);
3953 if (!ctx->opt->schedule_split_scaled)
3954 return compute_next_band(node, graph, 0);
3955 if (graph->n <= 1)
3956 return compute_next_band(node, graph, 0);
3958 isl_int_init(gcd);
3959 isl_int_init(gcd_i);
3961 isl_int_set_si(gcd, 0);
3963 row = isl_mat_rows(graph->node[0].sched) - 1;
3965 for (i = 0; i < graph->n; ++i) {
3966 struct isl_sched_node *node = &graph->node[i];
3967 int cols = isl_mat_cols(node->sched);
3969 isl_seq_gcd(node->sched->row[row] + 1, cols - 1, &gcd_i);
3970 isl_int_gcd(gcd, gcd, gcd_i);
3973 isl_int_clear(gcd_i);
3975 if (isl_int_cmp_si(gcd, 1) <= 0) {
3976 isl_int_clear(gcd);
3977 return compute_next_band(node, graph, 0);
3980 r = isl_vec_alloc(ctx, graph->n);
3981 order = isl_calloc_array(ctx, int, graph->n);
3982 if (!r || !order)
3983 goto error;
3985 for (i = 0; i < graph->n; ++i) {
3986 struct isl_sched_node *node = &graph->node[i];
3988 order[i] = i;
3989 isl_int_fdiv_r(r->el[i], node->sched->row[row][0], gcd);
3990 isl_int_fdiv_q(node->sched->row[row][0],
3991 node->sched->row[row][0], gcd);
3992 isl_int_mul(node->sched->row[row][0],
3993 node->sched->row[row][0], gcd);
3994 node->sched = isl_mat_scale_down_row(node->sched, row, gcd);
3995 if (!node->sched)
3996 goto error;
3999 if (isl_sort(order, graph->n, sizeof(order[0]), &smaller_value, r) < 0)
4000 goto error;
4002 scc = 0;
4003 for (i = 0; i < graph->n; ++i) {
4004 if (i > 0 && isl_int_ne(r->el[order[i - 1]], r->el[order[i]]))
4005 ++scc;
4006 graph->node[order[i]].scc = scc;
4008 graph->scc = ++scc;
4009 graph->weak = 0;
4011 isl_int_clear(gcd);
4012 isl_vec_free(r);
4013 free(order);
4015 if (update_edges(ctx, graph) < 0)
4016 return isl_schedule_node_free(node);
4017 node = insert_current_band(node, graph, 0);
4018 next_band(graph);
4020 node = isl_schedule_node_child(node, 0);
4021 node = compute_component_schedule(node, graph, 0);
4022 node = isl_schedule_node_parent(node);
4024 return node;
4025 error:
4026 isl_vec_free(r);
4027 free(order);
4028 isl_int_clear(gcd);
4029 return isl_schedule_node_free(node);
4032 /* Is the schedule row "sol" trivial on node "node"?
4033 * That is, is the solution zero on the dimensions linearly independent of
4034 * the previously found solutions?
4035 * Return 1 if the solution is trivial, 0 if it is not and -1 on error.
4037 * Each coefficient is represented as the difference between
4038 * two non-negative values in "sol".
4039 * We construct the schedule row s and check if it is linearly
4040 * independent of previously computed schedule rows
4041 * by computing T s, with T the linear combinations that are zero
4042 * on linearly dependent schedule rows.
4043 * If the result consists of all zeros, then the solution is trivial.
4045 static int is_trivial(struct isl_sched_node *node, __isl_keep isl_vec *sol)
4047 int trivial;
4048 isl_vec *node_sol;
4050 if (!sol)
4051 return -1;
4052 if (node->nvar == node->rank)
4053 return 0;
4055 node_sol = extract_var_coef(node, sol);
4056 node_sol = isl_mat_vec_product(isl_mat_copy(node->indep), node_sol);
4057 if (!node_sol)
4058 return -1;
4060 trivial = isl_seq_first_non_zero(node_sol->el,
4061 node->nvar - node->rank) == -1;
4063 isl_vec_free(node_sol);
4065 return trivial;
4068 /* Is the schedule row "sol" trivial on any node where it should
4069 * not be trivial?
4070 * Return 1 if any solution is trivial, 0 if they are not and -1 on error.
4072 static int is_any_trivial(struct isl_sched_graph *graph,
4073 __isl_keep isl_vec *sol)
4075 int i;
4077 for (i = 0; i < graph->n; ++i) {
4078 struct isl_sched_node *node = &graph->node[i];
4079 int trivial;
4081 if (!needs_row(graph, node))
4082 continue;
4083 trivial = is_trivial(node, sol);
4084 if (trivial < 0 || trivial)
4085 return trivial;
4088 return 0;
4091 /* Does the schedule represented by "sol" perform loop coalescing on "node"?
4092 * If so, return the position of the coalesced dimension.
4093 * Otherwise, return node->nvar or -1 on error.
4095 * In particular, look for pairs of coefficients c_i and c_j such that
4096 * |c_j/c_i| >= size_i, i.e., |c_j| >= |c_i * size_i|.
4097 * If any such pair is found, then return i.
4098 * If size_i is infinity, then no check on c_i needs to be performed.
4100 static int find_node_coalescing(struct isl_sched_node *node,
4101 __isl_keep isl_vec *sol)
4103 int i, j;
4104 isl_int max;
4105 isl_vec *csol;
4107 if (node->nvar <= 1)
4108 return node->nvar;
4110 csol = extract_var_coef(node, sol);
4111 if (!csol)
4112 return -1;
4113 isl_int_init(max);
4114 for (i = 0; i < node->nvar; ++i) {
4115 isl_val *v;
4117 if (isl_int_is_zero(csol->el[i]))
4118 continue;
4119 v = isl_multi_val_get_val(node->sizes, i);
4120 if (!v)
4121 goto error;
4122 if (!isl_val_is_int(v)) {
4123 isl_val_free(v);
4124 continue;
4126 isl_int_mul(max, v->n, csol->el[i]);
4127 isl_val_free(v);
4129 for (j = 0; j < node->nvar; ++j) {
4130 if (j == i)
4131 continue;
4132 if (isl_int_abs_ge(csol->el[j], max))
4133 break;
4135 if (j < node->nvar)
4136 break;
4139 isl_int_clear(max);
4140 isl_vec_free(csol);
4141 return i;
4142 error:
4143 isl_int_clear(max);
4144 isl_vec_free(csol);
4145 return -1;
4148 /* Force the schedule coefficient at position "pos" of "node" to be zero
4149 * in "tl".
4150 * The coefficient is encoded as the difference between two non-negative
4151 * variables. Force these two variables to have the same value.
4153 static __isl_give isl_tab_lexmin *zero_out_node_coef(
4154 __isl_take isl_tab_lexmin *tl, struct isl_sched_node *node, int pos)
4156 int dim;
4157 isl_ctx *ctx;
4158 isl_vec *eq;
4160 ctx = isl_space_get_ctx(node->space);
4161 dim = isl_tab_lexmin_dim(tl);
4162 if (dim < 0)
4163 return isl_tab_lexmin_free(tl);
4164 eq = isl_vec_alloc(ctx, 1 + dim);
4165 eq = isl_vec_clr(eq);
4166 if (!eq)
4167 return isl_tab_lexmin_free(tl);
4169 pos = 1 + node_var_coef_pos(node, pos);
4170 isl_int_set_si(eq->el[pos], 1);
4171 isl_int_set_si(eq->el[pos + 1], -1);
4172 tl = isl_tab_lexmin_add_eq(tl, eq->el);
4173 isl_vec_free(eq);
4175 return tl;
4178 /* Return the lexicographically smallest rational point in the basic set
4179 * from which "tl" was constructed, double checking that this input set
4180 * was not empty.
4182 static __isl_give isl_vec *non_empty_solution(__isl_keep isl_tab_lexmin *tl)
4184 isl_vec *sol;
4186 sol = isl_tab_lexmin_get_solution(tl);
4187 if (!sol)
4188 return NULL;
4189 if (sol->size == 0)
4190 isl_die(isl_vec_get_ctx(sol), isl_error_internal,
4191 "error in schedule construction",
4192 return isl_vec_free(sol));
4193 return sol;
4196 /* Does the solution "sol" of the LP problem constructed by setup_carry_lp
4197 * carry any of the "n_edge" groups of dependences?
4198 * The value in the first position is the sum of (1 - e_i) over all "n_edge"
4199 * edges, with 0 <= e_i <= 1 equal to 1 when the dependences represented
4200 * by the edge are carried by the solution.
4201 * If the sum of the (1 - e_i) is smaller than "n_edge" then at least
4202 * one of those is carried.
4204 * Note that despite the fact that the problem is solved using a rational
4205 * solver, the solution is guaranteed to be integral.
4206 * Specifically, the dependence distance lower bounds e_i (and therefore
4207 * also their sum) are integers. See Lemma 5 of [1].
4209 * Any potential denominator of the sum is cleared by this function.
4210 * The denominator is not relevant for any of the other elements
4211 * in the solution.
4213 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
4214 * Problem, Part II: Multi-Dimensional Time.
4215 * In Intl. Journal of Parallel Programming, 1992.
4217 static int carries_dependences(__isl_keep isl_vec *sol, int n_edge)
4219 isl_int_divexact(sol->el[1], sol->el[1], sol->el[0]);
4220 isl_int_set_si(sol->el[0], 1);
4221 return isl_int_cmp_si(sol->el[1], n_edge) < 0;
4224 /* Return the lexicographically smallest rational point in "lp",
4225 * assuming that all variables are non-negative and performing some
4226 * additional sanity checks.
4227 * If "want_integral" is set, then compute the lexicographically smallest
4228 * integer point instead.
4229 * In particular, "lp" should not be empty by construction.
4230 * Double check that this is the case.
4231 * If dependences are not carried for any of the "n_edge" edges,
4232 * then return an empty vector.
4234 * If the schedule_treat_coalescing option is set and
4235 * if the computed schedule performs loop coalescing on a given node,
4236 * i.e., if it is of the form
4238 * c_i i + c_j j + ...
4240 * with |c_j/c_i| >= size_i, then force the coefficient c_i to be zero
4241 * to cut out this solution. Repeat this process until no more loop
4242 * coalescing occurs or until no more dependences can be carried.
4243 * In the latter case, revert to the previously computed solution.
4245 * If the caller requests an integral solution and if coalescing should
4246 * be treated, then perform the coalescing treatment first as
4247 * an integral solution computed before coalescing treatment
4248 * would carry the same number of edges and would therefore probably
4249 * also be coalescing.
4251 * To allow the coalescing treatment to be performed first,
4252 * the initial solution is allowed to be rational and it is only
4253 * cut out (if needed) in the next iteration, if no coalescing measures
4254 * were taken.
4256 static __isl_give isl_vec *non_neg_lexmin(struct isl_sched_graph *graph,
4257 __isl_take isl_basic_set *lp, int n_edge, int want_integral)
4259 int i, pos, cut;
4260 isl_ctx *ctx;
4261 isl_tab_lexmin *tl;
4262 isl_vec *sol, *prev = NULL;
4263 int treat_coalescing;
4265 if (!lp)
4266 return NULL;
4267 ctx = isl_basic_set_get_ctx(lp);
4268 treat_coalescing = isl_options_get_schedule_treat_coalescing(ctx);
4269 tl = isl_tab_lexmin_from_basic_set(lp);
4271 cut = 0;
4272 do {
4273 int integral;
4275 if (cut)
4276 tl = isl_tab_lexmin_cut_to_integer(tl);
4277 sol = non_empty_solution(tl);
4278 if (!sol)
4279 goto error;
4281 integral = isl_int_is_one(sol->el[0]);
4282 if (!carries_dependences(sol, n_edge)) {
4283 if (!prev)
4284 prev = isl_vec_alloc(ctx, 0);
4285 isl_vec_free(sol);
4286 sol = prev;
4287 break;
4289 prev = isl_vec_free(prev);
4290 cut = want_integral && !integral;
4291 if (cut)
4292 prev = sol;
4293 if (!treat_coalescing)
4294 continue;
4295 for (i = 0; i < graph->n; ++i) {
4296 struct isl_sched_node *node = &graph->node[i];
4298 pos = find_node_coalescing(node, sol);
4299 if (pos < 0)
4300 goto error;
4301 if (pos < node->nvar)
4302 break;
4304 if (i < graph->n) {
4305 prev = sol;
4306 tl = zero_out_node_coef(tl, &graph->node[i], pos);
4307 cut = 0;
4309 } while (prev);
4311 isl_tab_lexmin_free(tl);
4313 return sol;
4314 error:
4315 isl_tab_lexmin_free(tl);
4316 isl_vec_free(prev);
4317 isl_vec_free(sol);
4318 return NULL;
4321 /* If "edge" is an edge from a node to itself, then add the corresponding
4322 * dependence relation to "umap".
4323 * If "node" has been compressed, then the dependence relation
4324 * is also compressed first.
4326 static __isl_give isl_union_map *add_intra(__isl_take isl_union_map *umap,
4327 struct isl_sched_edge *edge)
4329 isl_map *map;
4330 struct isl_sched_node *node = edge->src;
4332 if (edge->src != edge->dst)
4333 return umap;
4335 map = isl_map_copy(edge->map);
4336 if (node->compressed) {
4337 map = isl_map_preimage_domain_multi_aff(map,
4338 isl_multi_aff_copy(node->decompress));
4339 map = isl_map_preimage_range_multi_aff(map,
4340 isl_multi_aff_copy(node->decompress));
4342 umap = isl_union_map_add_map(umap, map);
4343 return umap;
4346 /* If "edge" is an edge from a node to another node, then add the corresponding
4347 * dependence relation to "umap".
4348 * If the source or destination nodes of "edge" have been compressed,
4349 * then the dependence relation is also compressed first.
4351 static __isl_give isl_union_map *add_inter(__isl_take isl_union_map *umap,
4352 struct isl_sched_edge *edge)
4354 isl_map *map;
4356 if (edge->src == edge->dst)
4357 return umap;
4359 map = isl_map_copy(edge->map);
4360 if (edge->src->compressed)
4361 map = isl_map_preimage_domain_multi_aff(map,
4362 isl_multi_aff_copy(edge->src->decompress));
4363 if (edge->dst->compressed)
4364 map = isl_map_preimage_range_multi_aff(map,
4365 isl_multi_aff_copy(edge->dst->decompress));
4366 umap = isl_union_map_add_map(umap, map);
4367 return umap;
4370 /* For each (conditional) validity edge in "graph",
4371 * add the corresponding dependence relation using "add"
4372 * to a collection of dependence relations and return the result.
4373 * If "coincidence" is set, then coincidence edges are considered as well.
4375 static __isl_give isl_union_map *collect_validity(struct isl_sched_graph *graph,
4376 __isl_give isl_union_map *(*add)(__isl_take isl_union_map *umap,
4377 struct isl_sched_edge *edge), int coincidence)
4379 int i;
4380 isl_space *space;
4381 isl_union_map *umap;
4383 space = isl_space_copy(graph->node[0].space);
4384 umap = isl_union_map_empty(space);
4386 for (i = 0; i < graph->n_edge; ++i) {
4387 struct isl_sched_edge *edge = &graph->edge[i];
4389 if (!is_any_validity(edge) &&
4390 (!coincidence || !is_coincidence(edge)))
4391 continue;
4393 umap = add(umap, edge);
4396 return umap;
4399 /* For each dependence relation on a (conditional) validity edge
4400 * from a node to itself,
4401 * construct the set of coefficients of valid constraints for elements
4402 * in that dependence relation and collect the results.
4403 * If "coincidence" is set, then coincidence edges are considered as well.
4405 * In particular, for each dependence relation R, constraints
4406 * on coefficients (c_0, c_n, c_x) are constructed such that
4408 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
4410 * This computation is essentially the same as that performed
4411 * by intra_coefficients, except that it operates on multiple
4412 * edges together.
4414 * Note that if a dependence relation is a union of basic maps,
4415 * then each basic map needs to be treated individually as it may only
4416 * be possible to carry the dependences expressed by some of those
4417 * basic maps and not all of them.
4418 * The collected validity constraints are therefore not coalesced and
4419 * it is assumed that they are not coalesced automatically.
4420 * Duplicate basic maps can be removed, however.
4421 * In particular, if the same basic map appears as a disjunct
4422 * in multiple edges, then it only needs to be carried once.
4424 static __isl_give isl_basic_set_list *collect_intra_validity(
4425 struct isl_sched_graph *graph, int coincidence)
4427 isl_union_map *intra;
4428 isl_union_set *delta;
4429 isl_basic_set_list *list;
4431 intra = collect_validity(graph, &add_intra, coincidence);
4432 delta = isl_union_map_deltas(intra);
4433 delta = isl_union_set_remove_divs(delta);
4434 list = isl_union_set_get_basic_set_list(delta);
4435 isl_union_set_free(delta);
4437 return isl_basic_set_list_coefficients(list);
4440 /* For each dependence relation on a (conditional) validity edge
4441 * from a node to some other node,
4442 * construct the set of coefficients of valid constraints for elements
4443 * in that dependence relation and collect the results.
4444 * If "coincidence" is set, then coincidence edges are considered as well.
4446 * In particular, for each dependence relation R, constraints
4447 * on coefficients (c_0, c_n, c_x, c_y) are constructed such that
4449 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
4451 * This computation is essentially the same as that performed
4452 * by inter_coefficients, except that it operates on multiple
4453 * edges together.
4455 * Note that if a dependence relation is a union of basic maps,
4456 * then each basic map needs to be treated individually as it may only
4457 * be possible to carry the dependences expressed by some of those
4458 * basic maps and not all of them.
4459 * The collected validity constraints are therefore not coalesced and
4460 * it is assumed that they are not coalesced automatically.
4461 * Duplicate basic maps can be removed, however.
4462 * In particular, if the same basic map appears as a disjunct
4463 * in multiple edges, then it only needs to be carried once.
4465 static __isl_give isl_basic_set_list *collect_inter_validity(
4466 struct isl_sched_graph *graph, int coincidence)
4468 isl_union_map *inter;
4469 isl_union_set *wrap;
4470 isl_basic_set_list *list;
4472 inter = collect_validity(graph, &add_inter, coincidence);
4473 inter = isl_union_map_remove_divs(inter);
4474 wrap = isl_union_map_wrap(inter);
4475 list = isl_union_set_get_basic_set_list(wrap);
4476 isl_union_set_free(wrap);
4477 return isl_basic_set_list_coefficients(list);
4480 /* Construct an LP problem for finding schedule coefficients
4481 * such that the schedule carries as many of the validity dependences
4482 * as possible and
4483 * return the lexicographically smallest non-trivial solution.
4484 * If "fallback" is set, then the carrying is performed as a fallback
4485 * for the Pluto-like scheduler.
4486 * If "coincidence" is set, then try and carry coincidence edges as well.
4488 * The variable "n_edge" stores the number of groups that should be carried.
4489 * If none of the "n_edge" groups can be carried
4490 * then return an empty vector.
4491 * If, moreover, "n_edge" is zero, then the LP problem does not even
4492 * need to be constructed.
4494 * If a fallback solution is being computed, then compute an integral solution
4495 * for the coefficients rather than using the numerators
4496 * of a rational solution.
4498 static __isl_give isl_vec *compute_carrying_sol(isl_ctx *ctx,
4499 struct isl_sched_graph *graph, int fallback, int coincidence)
4501 int n_intra, n_inter;
4502 int n_edge;
4503 isl_basic_set *lp;
4504 struct isl_carry carry = { 0 };
4506 carry.intra = collect_intra_validity(graph, coincidence);
4507 carry.inter = collect_inter_validity(graph, coincidence);
4508 if (!carry.intra || !carry.inter)
4509 goto error;
4510 n_intra = isl_basic_set_list_n_basic_set(carry.intra);
4511 n_inter = isl_basic_set_list_n_basic_set(carry.inter);
4512 n_edge = n_intra + n_inter;
4513 if (n_edge == 0) {
4514 isl_carry_clear(&carry);
4515 return isl_vec_alloc(ctx, 0);
4518 if (setup_carry_lp(ctx, graph, n_edge, carry.intra, carry.inter) < 0)
4519 goto error;
4521 isl_carry_clear(&carry);
4522 lp = isl_basic_set_copy(graph->lp);
4523 return non_neg_lexmin(graph, lp, n_edge, fallback);
4524 error:
4525 isl_carry_clear(&carry);
4526 return NULL;
4529 /* Construct a schedule row for each node such that as many validity dependences
4530 * as possible are carried and then continue with the next band.
4531 * If "fallback" is set, then the carrying is performed as a fallback
4532 * for the Pluto-like scheduler.
4533 * If "coincidence" is set, then try and carry coincidence edges as well.
4535 * If there are no validity dependences, then no dependence can be carried and
4536 * the procedure is guaranteed to fail. If there is more than one component,
4537 * then try computing a schedule on each component separately
4538 * to prevent or at least postpone this failure.
4540 * If a schedule row is computed, then check that dependences are carried
4541 * for at least one of the edges.
4543 * If the computed schedule row turns out to be trivial on one or
4544 * more nodes where it should not be trivial, then we throw it away
4545 * and try again on each component separately.
4547 * If there is only one component, then we accept the schedule row anyway,
4548 * but we do not consider it as a complete row and therefore do not
4549 * increment graph->n_row. Note that the ranks of the nodes that
4550 * do get a non-trivial schedule part will get updated regardless and
4551 * graph->maxvar is computed based on these ranks. The test for
4552 * whether more schedule rows are required in compute_schedule_wcc
4553 * is therefore not affected.
4555 * Insert a band corresponding to the schedule row at position "node"
4556 * of the schedule tree and continue with the construction of the schedule.
4557 * This insertion and the continued construction is performed by split_scaled
4558 * after optionally checking for non-trivial common divisors.
4560 static __isl_give isl_schedule_node *carry(__isl_take isl_schedule_node *node,
4561 struct isl_sched_graph *graph, int fallback, int coincidence)
4563 int trivial;
4564 isl_ctx *ctx;
4565 isl_vec *sol;
4567 if (!node)
4568 return NULL;
4570 ctx = isl_schedule_node_get_ctx(node);
4571 sol = compute_carrying_sol(ctx, graph, fallback, coincidence);
4572 if (!sol)
4573 return isl_schedule_node_free(node);
4574 if (sol->size == 0) {
4575 isl_vec_free(sol);
4576 if (graph->scc > 1)
4577 return compute_component_schedule(node, graph, 1);
4578 isl_die(ctx, isl_error_unknown, "unable to carry dependences",
4579 return isl_schedule_node_free(node));
4582 trivial = is_any_trivial(graph, sol);
4583 if (trivial < 0) {
4584 sol = isl_vec_free(sol);
4585 } else if (trivial && graph->scc > 1) {
4586 isl_vec_free(sol);
4587 return compute_component_schedule(node, graph, 1);
4590 if (update_schedule(graph, sol, 0, 0) < 0)
4591 return isl_schedule_node_free(node);
4592 if (trivial)
4593 graph->n_row--;
4595 return split_scaled(node, graph);
4598 /* Construct a schedule row for each node such that as many validity dependences
4599 * as possible are carried and then continue with the next band.
4600 * Do so as a fallback for the Pluto-like scheduler.
4601 * If "coincidence" is set, then try and carry coincidence edges as well.
4603 static __isl_give isl_schedule_node *carry_fallback(
4604 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
4605 int coincidence)
4607 return carry(node, graph, 1, coincidence);
4610 /* Construct a schedule row for each node such that as many validity dependences
4611 * as possible are carried and then continue with the next band.
4612 * Do so for the case where the Feautrier scheduler was selected
4613 * by the user.
4615 static __isl_give isl_schedule_node *carry_feautrier(
4616 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
4618 return carry(node, graph, 0, 0);
4621 /* Construct a schedule row for each node such that as many validity dependences
4622 * as possible are carried and then continue with the next band.
4623 * Do so as a fallback for the Pluto-like scheduler.
4625 static __isl_give isl_schedule_node *carry_dependences(
4626 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
4628 return carry_fallback(node, graph, 0);
4631 /* Construct a schedule row for each node such that as many validity or
4632 * coincidence dependences as possible are carried and
4633 * then continue with the next band.
4634 * Do so as a fallback for the Pluto-like scheduler.
4636 static __isl_give isl_schedule_node *carry_coincidence(
4637 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
4639 return carry_fallback(node, graph, 1);
4642 /* Topologically sort statements mapped to the same schedule iteration
4643 * and add insert a sequence node in front of "node"
4644 * corresponding to this order.
4645 * If "initialized" is set, then it may be assumed that compute_maxvar
4646 * has been called on the current band. Otherwise, call
4647 * compute_maxvar if and before carry_dependences gets called.
4649 * If it turns out to be impossible to sort the statements apart,
4650 * because different dependences impose different orderings
4651 * on the statements, then we extend the schedule such that
4652 * it carries at least one more dependence.
4654 static __isl_give isl_schedule_node *sort_statements(
4655 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
4656 int initialized)
4658 isl_ctx *ctx;
4659 isl_union_set_list *filters;
4661 if (!node)
4662 return NULL;
4664 ctx = isl_schedule_node_get_ctx(node);
4665 if (graph->n < 1)
4666 isl_die(ctx, isl_error_internal,
4667 "graph should have at least one node",
4668 return isl_schedule_node_free(node));
4670 if (graph->n == 1)
4671 return node;
4673 if (update_edges(ctx, graph) < 0)
4674 return isl_schedule_node_free(node);
4676 if (graph->n_edge == 0)
4677 return node;
4679 if (detect_sccs(ctx, graph) < 0)
4680 return isl_schedule_node_free(node);
4682 next_band(graph);
4683 if (graph->scc < graph->n) {
4684 if (!initialized && compute_maxvar(graph) < 0)
4685 return isl_schedule_node_free(node);
4686 return carry_dependences(node, graph);
4689 filters = extract_sccs(ctx, graph);
4690 node = isl_schedule_node_insert_sequence(node, filters);
4692 return node;
4695 /* Are there any (non-empty) (conditional) validity edges in the graph?
4697 static int has_validity_edges(struct isl_sched_graph *graph)
4699 int i;
4701 for (i = 0; i < graph->n_edge; ++i) {
4702 int empty;
4704 empty = isl_map_plain_is_empty(graph->edge[i].map);
4705 if (empty < 0)
4706 return -1;
4707 if (empty)
4708 continue;
4709 if (is_any_validity(&graph->edge[i]))
4710 return 1;
4713 return 0;
4716 /* Should we apply a Feautrier step?
4717 * That is, did the user request the Feautrier algorithm and are
4718 * there any validity dependences (left)?
4720 static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph)
4722 if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER)
4723 return 0;
4725 return has_validity_edges(graph);
4728 /* Compute a schedule for a connected dependence graph using Feautrier's
4729 * multi-dimensional scheduling algorithm and return the updated schedule node.
4731 * The original algorithm is described in [1].
4732 * The main idea is to minimize the number of scheduling dimensions, by
4733 * trying to satisfy as many dependences as possible per scheduling dimension.
4735 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
4736 * Problem, Part II: Multi-Dimensional Time.
4737 * In Intl. Journal of Parallel Programming, 1992.
4739 static __isl_give isl_schedule_node *compute_schedule_wcc_feautrier(
4740 isl_schedule_node *node, struct isl_sched_graph *graph)
4742 return carry_feautrier(node, graph);
4745 /* Turn off the "local" bit on all (condition) edges.
4747 static void clear_local_edges(struct isl_sched_graph *graph)
4749 int i;
4751 for (i = 0; i < graph->n_edge; ++i)
4752 if (is_condition(&graph->edge[i]))
4753 clear_local(&graph->edge[i]);
4756 /* Does "graph" have both condition and conditional validity edges?
4758 static int need_condition_check(struct isl_sched_graph *graph)
4760 int i;
4761 int any_condition = 0;
4762 int any_conditional_validity = 0;
4764 for (i = 0; i < graph->n_edge; ++i) {
4765 if (is_condition(&graph->edge[i]))
4766 any_condition = 1;
4767 if (is_conditional_validity(&graph->edge[i]))
4768 any_conditional_validity = 1;
4771 return any_condition && any_conditional_validity;
4774 /* Does "graph" contain any coincidence edge?
4776 static int has_any_coincidence(struct isl_sched_graph *graph)
4778 int i;
4780 for (i = 0; i < graph->n_edge; ++i)
4781 if (is_coincidence(&graph->edge[i]))
4782 return 1;
4784 return 0;
4787 /* Extract the final schedule row as a map with the iteration domain
4788 * of "node" as domain.
4790 static __isl_give isl_map *final_row(struct isl_sched_node *node)
4792 isl_multi_aff *ma;
4793 int row;
4795 row = isl_mat_rows(node->sched) - 1;
4796 ma = node_extract_partial_schedule_multi_aff(node, row, 1);
4797 return isl_map_from_multi_aff(ma);
4800 /* Is the conditional validity dependence in the edge with index "edge_index"
4801 * violated by the latest (i.e., final) row of the schedule?
4802 * That is, is i scheduled after j
4803 * for any conditional validity dependence i -> j?
4805 static int is_violated(struct isl_sched_graph *graph, int edge_index)
4807 isl_map *src_sched, *dst_sched, *map;
4808 struct isl_sched_edge *edge = &graph->edge[edge_index];
4809 int empty;
4811 src_sched = final_row(edge->src);
4812 dst_sched = final_row(edge->dst);
4813 map = isl_map_copy(edge->map);
4814 map = isl_map_apply_domain(map, src_sched);
4815 map = isl_map_apply_range(map, dst_sched);
4816 map = isl_map_order_gt(map, isl_dim_in, 0, isl_dim_out, 0);
4817 empty = isl_map_is_empty(map);
4818 isl_map_free(map);
4820 if (empty < 0)
4821 return -1;
4823 return !empty;
4826 /* Does "graph" have any satisfied condition edges that
4827 * are adjacent to the conditional validity constraint with
4828 * domain "conditional_source" and range "conditional_sink"?
4830 * A satisfied condition is one that is not local.
4831 * If a condition was forced to be local already (i.e., marked as local)
4832 * then there is no need to check if it is in fact local.
4834 * Additionally, mark all adjacent condition edges found as local.
4836 static int has_adjacent_true_conditions(struct isl_sched_graph *graph,
4837 __isl_keep isl_union_set *conditional_source,
4838 __isl_keep isl_union_set *conditional_sink)
4840 int i;
4841 int any = 0;
4843 for (i = 0; i < graph->n_edge; ++i) {
4844 int adjacent, local;
4845 isl_union_map *condition;
4847 if (!is_condition(&graph->edge[i]))
4848 continue;
4849 if (is_local(&graph->edge[i]))
4850 continue;
4852 condition = graph->edge[i].tagged_condition;
4853 adjacent = domain_intersects(condition, conditional_sink);
4854 if (adjacent >= 0 && !adjacent)
4855 adjacent = range_intersects(condition,
4856 conditional_source);
4857 if (adjacent < 0)
4858 return -1;
4859 if (!adjacent)
4860 continue;
4862 set_local(&graph->edge[i]);
4864 local = is_condition_false(&graph->edge[i]);
4865 if (local < 0)
4866 return -1;
4867 if (!local)
4868 any = 1;
4871 return any;
4874 /* Are there any violated conditional validity dependences with
4875 * adjacent condition dependences that are not local with respect
4876 * to the current schedule?
4877 * That is, is the conditional validity constraint violated?
4879 * Additionally, mark all those adjacent condition dependences as local.
4880 * We also mark those adjacent condition dependences that were not marked
4881 * as local before, but just happened to be local already. This ensures
4882 * that they remain local if the schedule is recomputed.
4884 * We first collect domain and range of all violated conditional validity
4885 * dependences and then check if there are any adjacent non-local
4886 * condition dependences.
4888 static int has_violated_conditional_constraint(isl_ctx *ctx,
4889 struct isl_sched_graph *graph)
4891 int i;
4892 int any = 0;
4893 isl_union_set *source, *sink;
4895 source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
4896 sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
4897 for (i = 0; i < graph->n_edge; ++i) {
4898 isl_union_set *uset;
4899 isl_union_map *umap;
4900 int violated;
4902 if (!is_conditional_validity(&graph->edge[i]))
4903 continue;
4905 violated = is_violated(graph, i);
4906 if (violated < 0)
4907 goto error;
4908 if (!violated)
4909 continue;
4911 any = 1;
4913 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
4914 uset = isl_union_map_domain(umap);
4915 source = isl_union_set_union(source, uset);
4916 source = isl_union_set_coalesce(source);
4918 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
4919 uset = isl_union_map_range(umap);
4920 sink = isl_union_set_union(sink, uset);
4921 sink = isl_union_set_coalesce(sink);
4924 if (any)
4925 any = has_adjacent_true_conditions(graph, source, sink);
4927 isl_union_set_free(source);
4928 isl_union_set_free(sink);
4929 return any;
4930 error:
4931 isl_union_set_free(source);
4932 isl_union_set_free(sink);
4933 return -1;
4936 /* Examine the current band (the rows between graph->band_start and
4937 * graph->n_total_row), deciding whether to drop it or add it to "node"
4938 * and then continue with the computation of the next band, if any.
4939 * If "initialized" is set, then it may be assumed that compute_maxvar
4940 * has been called on the current band. Otherwise, call
4941 * compute_maxvar if and before carry_dependences gets called.
4943 * The caller keeps looking for a new row as long as
4944 * graph->n_row < graph->maxvar. If the latest attempt to find
4945 * such a row failed (i.e., we still have graph->n_row < graph->maxvar),
4946 * then we either
4947 * - split between SCCs and start over (assuming we found an interesting
4948 * pair of SCCs between which to split)
4949 * - continue with the next band (assuming the current band has at least
4950 * one row)
4951 * - if outer coincidence needs to be enforced, then try to carry as many
4952 * validity or coincidence dependences as possible and
4953 * continue with the next band
4954 * - try to carry as many validity dependences as possible and
4955 * continue with the next band
4956 * In each case, we first insert a band node in the schedule tree
4957 * if any rows have been computed.
4959 * If the caller managed to complete the schedule, we insert a band node
4960 * (if any schedule rows were computed) and we finish off by topologically
4961 * sorting the statements based on the remaining dependences.
4963 static __isl_give isl_schedule_node *compute_schedule_finish_band(
4964 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
4965 int initialized)
4967 int insert;
4969 if (!node)
4970 return NULL;
4972 if (graph->n_row < graph->maxvar) {
4973 isl_ctx *ctx;
4974 int empty = graph->n_total_row == graph->band_start;
4976 ctx = isl_schedule_node_get_ctx(node);
4977 if (!ctx->opt->schedule_maximize_band_depth && !empty)
4978 return compute_next_band(node, graph, 1);
4979 if (graph->src_scc >= 0)
4980 return compute_split_schedule(node, graph);
4981 if (!empty)
4982 return compute_next_band(node, graph, 1);
4983 if (!initialized && compute_maxvar(graph) < 0)
4984 return isl_schedule_node_free(node);
4985 if (isl_options_get_schedule_outer_coincidence(ctx))
4986 return carry_coincidence(node, graph);
4987 return carry_dependences(node, graph);
4990 insert = graph->n_total_row > graph->band_start;
4991 if (insert) {
4992 node = insert_current_band(node, graph, 1);
4993 node = isl_schedule_node_child(node, 0);
4995 node = sort_statements(node, graph, initialized);
4996 if (insert)
4997 node = isl_schedule_node_parent(node);
4999 return node;
5002 /* Construct a band of schedule rows for a connected dependence graph.
5003 * The caller is responsible for determining the strongly connected
5004 * components and calling compute_maxvar first.
5006 * We try to find a sequence of as many schedule rows as possible that result
5007 * in non-negative dependence distances (independent of the previous rows
5008 * in the sequence, i.e., such that the sequence is tilable), with as
5009 * many of the initial rows as possible satisfying the coincidence constraints.
5010 * The computation stops if we can't find any more rows or if we have found
5011 * all the rows we wanted to find.
5013 * If ctx->opt->schedule_outer_coincidence is set, then we force the
5014 * outermost dimension to satisfy the coincidence constraints. If this
5015 * turns out to be impossible, we fall back on the general scheme above
5016 * and try to carry as many dependences as possible.
5018 * If "graph" contains both condition and conditional validity dependences,
5019 * then we need to check that that the conditional schedule constraint
5020 * is satisfied, i.e., there are no violated conditional validity dependences
5021 * that are adjacent to any non-local condition dependences.
5022 * If there are, then we mark all those adjacent condition dependences
5023 * as local and recompute the current band. Those dependences that
5024 * are marked local will then be forced to be local.
5025 * The initial computation is performed with no dependences marked as local.
5026 * If we are lucky, then there will be no violated conditional validity
5027 * dependences adjacent to any non-local condition dependences.
5028 * Otherwise, we mark some additional condition dependences as local and
5029 * recompute. We continue this process until there are no violations left or
5030 * until we are no longer able to compute a schedule.
5031 * Since there are only a finite number of dependences,
5032 * there will only be a finite number of iterations.
5034 static isl_stat compute_schedule_wcc_band(isl_ctx *ctx,
5035 struct isl_sched_graph *graph)
5037 int has_coincidence;
5038 int use_coincidence;
5039 int force_coincidence = 0;
5040 int check_conditional;
5042 if (sort_sccs(graph) < 0)
5043 return isl_stat_error;
5045 clear_local_edges(graph);
5046 check_conditional = need_condition_check(graph);
5047 has_coincidence = has_any_coincidence(graph);
5049 if (ctx->opt->schedule_outer_coincidence)
5050 force_coincidence = 1;
5052 use_coincidence = has_coincidence;
5053 while (graph->n_row < graph->maxvar) {
5054 isl_vec *sol;
5055 int violated;
5056 int coincident;
5058 graph->src_scc = -1;
5059 graph->dst_scc = -1;
5061 if (setup_lp(ctx, graph, use_coincidence) < 0)
5062 return isl_stat_error;
5063 sol = solve_lp(ctx, graph);
5064 if (!sol)
5065 return isl_stat_error;
5066 if (sol->size == 0) {
5067 int empty = graph->n_total_row == graph->band_start;
5069 isl_vec_free(sol);
5070 if (use_coincidence && (!force_coincidence || !empty)) {
5071 use_coincidence = 0;
5072 continue;
5074 return isl_stat_ok;
5076 coincident = !has_coincidence || use_coincidence;
5077 if (update_schedule(graph, sol, 0, coincident) < 0)
5078 return isl_stat_error;
5080 if (!check_conditional)
5081 continue;
5082 violated = has_violated_conditional_constraint(ctx, graph);
5083 if (violated < 0)
5084 return isl_stat_error;
5085 if (!violated)
5086 continue;
5087 if (reset_band(graph) < 0)
5088 return isl_stat_error;
5089 use_coincidence = has_coincidence;
5092 return isl_stat_ok;
5095 /* Compute a schedule for a connected dependence graph by considering
5096 * the graph as a whole and return the updated schedule node.
5098 * The actual schedule rows of the current band are computed by
5099 * compute_schedule_wcc_band. compute_schedule_finish_band takes
5100 * care of integrating the band into "node" and continuing
5101 * the computation.
5103 static __isl_give isl_schedule_node *compute_schedule_wcc_whole(
5104 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
5106 isl_ctx *ctx;
5108 if (!node)
5109 return NULL;
5111 ctx = isl_schedule_node_get_ctx(node);
5112 if (compute_schedule_wcc_band(ctx, graph) < 0)
5113 return isl_schedule_node_free(node);
5115 return compute_schedule_finish_band(node, graph, 1);
5118 /* Clustering information used by compute_schedule_wcc_clustering.
5120 * "n" is the number of SCCs in the original dependence graph
5121 * "scc" is an array of "n" elements, each representing an SCC
5122 * of the original dependence graph. All entries in the same cluster
5123 * have the same number of schedule rows.
5124 * "scc_cluster" maps each SCC index to the cluster to which it belongs,
5125 * where each cluster is represented by the index of the first SCC
5126 * in the cluster. Initially, each SCC belongs to a cluster containing
5127 * only that SCC.
5129 * "scc_in_merge" is used by merge_clusters_along_edge to keep
5130 * track of which SCCs need to be merged.
5132 * "cluster" contains the merged clusters of SCCs after the clustering
5133 * has completed.
5135 * "scc_node" is a temporary data structure used inside copy_partial.
5136 * For each SCC, it keeps track of the number of nodes in the SCC
5137 * that have already been copied.
5139 struct isl_clustering {
5140 int n;
5141 struct isl_sched_graph *scc;
5142 struct isl_sched_graph *cluster;
5143 int *scc_cluster;
5144 int *scc_node;
5145 int *scc_in_merge;
5148 /* Initialize the clustering data structure "c" from "graph".
5150 * In particular, allocate memory, extract the SCCs from "graph"
5151 * into c->scc, initialize scc_cluster and construct
5152 * a band of schedule rows for each SCC.
5153 * Within each SCC, there is only one SCC by definition.
5154 * Each SCC initially belongs to a cluster containing only that SCC.
5156 static isl_stat clustering_init(isl_ctx *ctx, struct isl_clustering *c,
5157 struct isl_sched_graph *graph)
5159 int i;
5161 c->n = graph->scc;
5162 c->scc = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
5163 c->cluster = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
5164 c->scc_cluster = isl_calloc_array(ctx, int, c->n);
5165 c->scc_node = isl_calloc_array(ctx, int, c->n);
5166 c->scc_in_merge = isl_calloc_array(ctx, int, c->n);
5167 if (!c->scc || !c->cluster ||
5168 !c->scc_cluster || !c->scc_node || !c->scc_in_merge)
5169 return isl_stat_error;
5171 for (i = 0; i < c->n; ++i) {
5172 if (extract_sub_graph(ctx, graph, &node_scc_exactly,
5173 &edge_scc_exactly, i, &c->scc[i]) < 0)
5174 return isl_stat_error;
5175 c->scc[i].scc = 1;
5176 if (compute_maxvar(&c->scc[i]) < 0)
5177 return isl_stat_error;
5178 if (compute_schedule_wcc_band(ctx, &c->scc[i]) < 0)
5179 return isl_stat_error;
5180 c->scc_cluster[i] = i;
5183 return isl_stat_ok;
5186 /* Free all memory allocated for "c".
5188 static void clustering_free(isl_ctx *ctx, struct isl_clustering *c)
5190 int i;
5192 if (c->scc)
5193 for (i = 0; i < c->n; ++i)
5194 graph_free(ctx, &c->scc[i]);
5195 free(c->scc);
5196 if (c->cluster)
5197 for (i = 0; i < c->n; ++i)
5198 graph_free(ctx, &c->cluster[i]);
5199 free(c->cluster);
5200 free(c->scc_cluster);
5201 free(c->scc_node);
5202 free(c->scc_in_merge);
5205 /* Should we refrain from merging the cluster in "graph" with
5206 * any other cluster?
5207 * In particular, is its current schedule band empty and incomplete.
5209 static int bad_cluster(struct isl_sched_graph *graph)
5211 return graph->n_row < graph->maxvar &&
5212 graph->n_total_row == graph->band_start;
5215 /* Is "edge" a proximity edge with a non-empty dependence relation?
5217 static isl_bool is_non_empty_proximity(struct isl_sched_edge *edge)
5219 if (!is_proximity(edge))
5220 return isl_bool_false;
5221 return isl_bool_not(isl_map_plain_is_empty(edge->map));
5224 /* Return the index of an edge in "graph" that can be used to merge
5225 * two clusters in "c".
5226 * Return graph->n_edge if no such edge can be found.
5227 * Return -1 on error.
5229 * In particular, return a proximity edge between two clusters
5230 * that is not marked "no_merge" and such that neither of the
5231 * two clusters has an incomplete, empty band.
5233 * If there are multiple such edges, then try and find the most
5234 * appropriate edge to use for merging. In particular, pick the edge
5235 * with the greatest weight. If there are multiple of those,
5236 * then pick one with the shortest distance between
5237 * the two cluster representatives.
5239 static int find_proximity(struct isl_sched_graph *graph,
5240 struct isl_clustering *c)
5242 int i, best = graph->n_edge, best_dist, best_weight;
5244 for (i = 0; i < graph->n_edge; ++i) {
5245 struct isl_sched_edge *edge = &graph->edge[i];
5246 int dist, weight;
5247 isl_bool prox;
5249 prox = is_non_empty_proximity(edge);
5250 if (prox < 0)
5251 return -1;
5252 if (!prox)
5253 continue;
5254 if (edge->no_merge)
5255 continue;
5256 if (bad_cluster(&c->scc[edge->src->scc]) ||
5257 bad_cluster(&c->scc[edge->dst->scc]))
5258 continue;
5259 dist = c->scc_cluster[edge->dst->scc] -
5260 c->scc_cluster[edge->src->scc];
5261 if (dist == 0)
5262 continue;
5263 weight = edge->weight;
5264 if (best < graph->n_edge) {
5265 if (best_weight > weight)
5266 continue;
5267 if (best_weight == weight && best_dist <= dist)
5268 continue;
5270 best = i;
5271 best_dist = dist;
5272 best_weight = weight;
5275 return best;
5278 /* Internal data structure used in mark_merge_sccs.
5280 * "graph" is the dependence graph in which a strongly connected
5281 * component is constructed.
5282 * "scc_cluster" maps each SCC index to the cluster to which it belongs.
5283 * "src" and "dst" are the indices of the nodes that are being merged.
5285 struct isl_mark_merge_sccs_data {
5286 struct isl_sched_graph *graph;
5287 int *scc_cluster;
5288 int src;
5289 int dst;
5292 /* Check whether the cluster containing node "i" depends on the cluster
5293 * containing node "j". If "i" and "j" belong to the same cluster,
5294 * then they are taken to depend on each other to ensure that
5295 * the resulting strongly connected component consists of complete
5296 * clusters. Furthermore, if "i" and "j" are the two nodes that
5297 * are being merged, then they are taken to depend on each other as well.
5298 * Otherwise, check if there is a (conditional) validity dependence
5299 * from node[j] to node[i], forcing node[i] to follow node[j].
5301 static isl_bool cluster_follows(int i, int j, void *user)
5303 struct isl_mark_merge_sccs_data *data = user;
5304 struct isl_sched_graph *graph = data->graph;
5305 int *scc_cluster = data->scc_cluster;
5307 if (data->src == i && data->dst == j)
5308 return isl_bool_true;
5309 if (data->src == j && data->dst == i)
5310 return isl_bool_true;
5311 if (scc_cluster[graph->node[i].scc] == scc_cluster[graph->node[j].scc])
5312 return isl_bool_true;
5314 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
5317 /* Mark all SCCs that belong to either of the two clusters in "c"
5318 * connected by the edge in "graph" with index "edge", or to any
5319 * of the intermediate clusters.
5320 * The marking is recorded in c->scc_in_merge.
5322 * The given edge has been selected for merging two clusters,
5323 * meaning that there is at least a proximity edge between the two nodes.
5324 * However, there may also be (indirect) validity dependences
5325 * between the two nodes. When merging the two clusters, all clusters
5326 * containing one or more of the intermediate nodes along the
5327 * indirect validity dependences need to be merged in as well.
5329 * First collect all such nodes by computing the strongly connected
5330 * component (SCC) containing the two nodes connected by the edge, where
5331 * the two nodes are considered to depend on each other to make
5332 * sure they end up in the same SCC. Similarly, each node is considered
5333 * to depend on every other node in the same cluster to ensure
5334 * that the SCC consists of complete clusters.
5336 * Then the original SCCs that contain any of these nodes are marked
5337 * in c->scc_in_merge.
5339 static isl_stat mark_merge_sccs(isl_ctx *ctx, struct isl_sched_graph *graph,
5340 int edge, struct isl_clustering *c)
5342 struct isl_mark_merge_sccs_data data;
5343 struct isl_tarjan_graph *g;
5344 int i;
5346 for (i = 0; i < c->n; ++i)
5347 c->scc_in_merge[i] = 0;
5349 data.graph = graph;
5350 data.scc_cluster = c->scc_cluster;
5351 data.src = graph->edge[edge].src - graph->node;
5352 data.dst = graph->edge[edge].dst - graph->node;
5354 g = isl_tarjan_graph_component(ctx, graph->n, data.dst,
5355 &cluster_follows, &data);
5356 if (!g)
5357 goto error;
5359 i = g->op;
5360 if (i < 3)
5361 isl_die(ctx, isl_error_internal,
5362 "expecting at least two nodes in component",
5363 goto error);
5364 if (g->order[--i] != -1)
5365 isl_die(ctx, isl_error_internal,
5366 "expecting end of component marker", goto error);
5368 for (--i; i >= 0 && g->order[i] != -1; --i) {
5369 int scc = graph->node[g->order[i]].scc;
5370 c->scc_in_merge[scc] = 1;
5373 isl_tarjan_graph_free(g);
5374 return isl_stat_ok;
5375 error:
5376 isl_tarjan_graph_free(g);
5377 return isl_stat_error;
5380 /* Construct the identifier "cluster_i".
5382 static __isl_give isl_id *cluster_id(isl_ctx *ctx, int i)
5384 char name[40];
5386 snprintf(name, sizeof(name), "cluster_%d", i);
5387 return isl_id_alloc(ctx, name, NULL);
5390 /* Construct the space of the cluster with index "i" containing
5391 * the strongly connected component "scc".
5393 * In particular, construct a space called cluster_i with dimension equal
5394 * to the number of schedule rows in the current band of "scc".
5396 static __isl_give isl_space *cluster_space(struct isl_sched_graph *scc, int i)
5398 int nvar;
5399 isl_space *space;
5400 isl_id *id;
5402 nvar = scc->n_total_row - scc->band_start;
5403 space = isl_space_copy(scc->node[0].space);
5404 space = isl_space_params(space);
5405 space = isl_space_set_from_params(space);
5406 space = isl_space_add_dims(space, isl_dim_set, nvar);
5407 id = cluster_id(isl_space_get_ctx(space), i);
5408 space = isl_space_set_tuple_id(space, isl_dim_set, id);
5410 return space;
5413 /* Collect the domain of the graph for merging clusters.
5415 * In particular, for each cluster with first SCC "i", construct
5416 * a set in the space called cluster_i with dimension equal
5417 * to the number of schedule rows in the current band of the cluster.
5419 static __isl_give isl_union_set *collect_domain(isl_ctx *ctx,
5420 struct isl_sched_graph *graph, struct isl_clustering *c)
5422 int i;
5423 isl_space *space;
5424 isl_union_set *domain;
5426 space = isl_space_params_alloc(ctx, 0);
5427 domain = isl_union_set_empty(space);
5429 for (i = 0; i < graph->scc; ++i) {
5430 isl_space *space;
5432 if (!c->scc_in_merge[i])
5433 continue;
5434 if (c->scc_cluster[i] != i)
5435 continue;
5436 space = cluster_space(&c->scc[i], i);
5437 domain = isl_union_set_add_set(domain, isl_set_universe(space));
5440 return domain;
5443 /* Construct a map from the original instances to the corresponding
5444 * cluster instance in the current bands of the clusters in "c".
5446 static __isl_give isl_union_map *collect_cluster_map(isl_ctx *ctx,
5447 struct isl_sched_graph *graph, struct isl_clustering *c)
5449 int i, j;
5450 isl_space *space;
5451 isl_union_map *cluster_map;
5453 space = isl_space_params_alloc(ctx, 0);
5454 cluster_map = isl_union_map_empty(space);
5455 for (i = 0; i < graph->scc; ++i) {
5456 int start, n;
5457 isl_id *id;
5459 if (!c->scc_in_merge[i])
5460 continue;
5462 id = cluster_id(ctx, c->scc_cluster[i]);
5463 start = c->scc[i].band_start;
5464 n = c->scc[i].n_total_row - start;
5465 for (j = 0; j < c->scc[i].n; ++j) {
5466 isl_multi_aff *ma;
5467 isl_map *map;
5468 struct isl_sched_node *node = &c->scc[i].node[j];
5470 ma = node_extract_partial_schedule_multi_aff(node,
5471 start, n);
5472 ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out,
5473 isl_id_copy(id));
5474 map = isl_map_from_multi_aff(ma);
5475 cluster_map = isl_union_map_add_map(cluster_map, map);
5477 isl_id_free(id);
5480 return cluster_map;
5483 /* Add "umap" to the schedule constraints "sc" of all types of "edge"
5484 * that are not isl_edge_condition or isl_edge_conditional_validity.
5486 static __isl_give isl_schedule_constraints *add_non_conditional_constraints(
5487 struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
5488 __isl_take isl_schedule_constraints *sc)
5490 enum isl_edge_type t;
5492 if (!sc)
5493 return NULL;
5495 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
5496 if (t == isl_edge_condition ||
5497 t == isl_edge_conditional_validity)
5498 continue;
5499 if (!is_type(edge, t))
5500 continue;
5501 sc = isl_schedule_constraints_add(sc, t,
5502 isl_union_map_copy(umap));
5505 return sc;
5508 /* Add schedule constraints of types isl_edge_condition and
5509 * isl_edge_conditional_validity to "sc" by applying "umap" to
5510 * the domains of the wrapped relations in domain and range
5511 * of the corresponding tagged constraints of "edge".
5513 static __isl_give isl_schedule_constraints *add_conditional_constraints(
5514 struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
5515 __isl_take isl_schedule_constraints *sc)
5517 enum isl_edge_type t;
5518 isl_union_map *tagged;
5520 for (t = isl_edge_condition; t <= isl_edge_conditional_validity; ++t) {
5521 if (!is_type(edge, t))
5522 continue;
5523 if (t == isl_edge_condition)
5524 tagged = isl_union_map_copy(edge->tagged_condition);
5525 else
5526 tagged = isl_union_map_copy(edge->tagged_validity);
5527 tagged = isl_union_map_zip(tagged);
5528 tagged = isl_union_map_apply_domain(tagged,
5529 isl_union_map_copy(umap));
5530 tagged = isl_union_map_zip(tagged);
5531 sc = isl_schedule_constraints_add(sc, t, tagged);
5532 if (!sc)
5533 return NULL;
5536 return sc;
5539 /* Given a mapping "cluster_map" from the original instances to
5540 * the cluster instances, add schedule constraints on the clusters
5541 * to "sc" corresponding to the original constraints represented by "edge".
5543 * For non-tagged dependence constraints, the cluster constraints
5544 * are obtained by applying "cluster_map" to the edge->map.
5546 * For tagged dependence constraints, "cluster_map" needs to be applied
5547 * to the domains of the wrapped relations in domain and range
5548 * of the tagged dependence constraints. Pick out the mappings
5549 * from these domains from "cluster_map" and construct their product.
5550 * This mapping can then be applied to the pair of domains.
5552 static __isl_give isl_schedule_constraints *collect_edge_constraints(
5553 struct isl_sched_edge *edge, __isl_keep isl_union_map *cluster_map,
5554 __isl_take isl_schedule_constraints *sc)
5556 isl_union_map *umap;
5557 isl_space *space;
5558 isl_union_set *uset;
5559 isl_union_map *umap1, *umap2;
5561 if (!sc)
5562 return NULL;
5564 umap = isl_union_map_from_map(isl_map_copy(edge->map));
5565 umap = isl_union_map_apply_domain(umap,
5566 isl_union_map_copy(cluster_map));
5567 umap = isl_union_map_apply_range(umap,
5568 isl_union_map_copy(cluster_map));
5569 sc = add_non_conditional_constraints(edge, umap, sc);
5570 isl_union_map_free(umap);
5572 if (!sc || (!is_condition(edge) && !is_conditional_validity(edge)))
5573 return sc;
5575 space = isl_space_domain(isl_map_get_space(edge->map));
5576 uset = isl_union_set_from_set(isl_set_universe(space));
5577 umap1 = isl_union_map_copy(cluster_map);
5578 umap1 = isl_union_map_intersect_domain(umap1, uset);
5579 space = isl_space_range(isl_map_get_space(edge->map));
5580 uset = isl_union_set_from_set(isl_set_universe(space));
5581 umap2 = isl_union_map_copy(cluster_map);
5582 umap2 = isl_union_map_intersect_domain(umap2, uset);
5583 umap = isl_union_map_product(umap1, umap2);
5585 sc = add_conditional_constraints(edge, umap, sc);
5587 isl_union_map_free(umap);
5588 return sc;
5591 /* Given a mapping "cluster_map" from the original instances to
5592 * the cluster instances, add schedule constraints on the clusters
5593 * to "sc" corresponding to all edges in "graph" between nodes that
5594 * belong to SCCs that are marked for merging in "scc_in_merge".
5596 static __isl_give isl_schedule_constraints *collect_constraints(
5597 struct isl_sched_graph *graph, int *scc_in_merge,
5598 __isl_keep isl_union_map *cluster_map,
5599 __isl_take isl_schedule_constraints *sc)
5601 int i;
5603 for (i = 0; i < graph->n_edge; ++i) {
5604 struct isl_sched_edge *edge = &graph->edge[i];
5606 if (!scc_in_merge[edge->src->scc])
5607 continue;
5608 if (!scc_in_merge[edge->dst->scc])
5609 continue;
5610 sc = collect_edge_constraints(edge, cluster_map, sc);
5613 return sc;
5616 /* Construct a dependence graph for scheduling clusters with respect
5617 * to each other and store the result in "merge_graph".
5618 * In particular, the nodes of the graph correspond to the schedule
5619 * dimensions of the current bands of those clusters that have been
5620 * marked for merging in "c".
5622 * First construct an isl_schedule_constraints object for this domain
5623 * by transforming the edges in "graph" to the domain.
5624 * Then initialize a dependence graph for scheduling from these
5625 * constraints.
5627 static isl_stat init_merge_graph(isl_ctx *ctx, struct isl_sched_graph *graph,
5628 struct isl_clustering *c, struct isl_sched_graph *merge_graph)
5630 isl_union_set *domain;
5631 isl_union_map *cluster_map;
5632 isl_schedule_constraints *sc;
5633 isl_stat r;
5635 domain = collect_domain(ctx, graph, c);
5636 sc = isl_schedule_constraints_on_domain(domain);
5637 if (!sc)
5638 return isl_stat_error;
5639 cluster_map = collect_cluster_map(ctx, graph, c);
5640 sc = collect_constraints(graph, c->scc_in_merge, cluster_map, sc);
5641 isl_union_map_free(cluster_map);
5643 r = graph_init(merge_graph, sc);
5645 isl_schedule_constraints_free(sc);
5647 return r;
5650 /* Compute the maximal number of remaining schedule rows that still need
5651 * to be computed for the nodes that belong to clusters with the maximal
5652 * dimension for the current band (i.e., the band that is to be merged).
5653 * Only clusters that are about to be merged are considered.
5654 * "maxvar" is the maximal dimension for the current band.
5655 * "c" contains information about the clusters.
5657 * Return the maximal number of remaining schedule rows or -1 on error.
5659 static int compute_maxvar_max_slack(int maxvar, struct isl_clustering *c)
5661 int i, j;
5662 int max_slack;
5664 max_slack = 0;
5665 for (i = 0; i < c->n; ++i) {
5666 int nvar;
5667 struct isl_sched_graph *scc;
5669 if (!c->scc_in_merge[i])
5670 continue;
5671 scc = &c->scc[i];
5672 nvar = scc->n_total_row - scc->band_start;
5673 if (nvar != maxvar)
5674 continue;
5675 for (j = 0; j < scc->n; ++j) {
5676 struct isl_sched_node *node = &scc->node[j];
5677 int slack;
5679 if (node_update_cmap(node) < 0)
5680 return -1;
5681 slack = node->nvar - node->rank;
5682 if (slack > max_slack)
5683 max_slack = slack;
5687 return max_slack;
5690 /* If there are any clusters where the dimension of the current band
5691 * (i.e., the band that is to be merged) is smaller than "maxvar" and
5692 * if there are any nodes in such a cluster where the number
5693 * of remaining schedule rows that still need to be computed
5694 * is greater than "max_slack", then return the smallest current band
5695 * dimension of all these clusters. Otherwise return the original value
5696 * of "maxvar". Return -1 in case of any error.
5697 * Only clusters that are about to be merged are considered.
5698 * "c" contains information about the clusters.
5700 static int limit_maxvar_to_slack(int maxvar, int max_slack,
5701 struct isl_clustering *c)
5703 int i, j;
5705 for (i = 0; i < c->n; ++i) {
5706 int nvar;
5707 struct isl_sched_graph *scc;
5709 if (!c->scc_in_merge[i])
5710 continue;
5711 scc = &c->scc[i];
5712 nvar = scc->n_total_row - scc->band_start;
5713 if (nvar >= maxvar)
5714 continue;
5715 for (j = 0; j < scc->n; ++j) {
5716 struct isl_sched_node *node = &scc->node[j];
5717 int slack;
5719 if (node_update_cmap(node) < 0)
5720 return -1;
5721 slack = node->nvar - node->rank;
5722 if (slack > max_slack) {
5723 maxvar = nvar;
5724 break;
5729 return maxvar;
5732 /* Adjust merge_graph->maxvar based on the number of remaining schedule rows
5733 * that still need to be computed. In particular, if there is a node
5734 * in a cluster where the dimension of the current band is smaller
5735 * than merge_graph->maxvar, but the number of remaining schedule rows
5736 * is greater than that of any node in a cluster with the maximal
5737 * dimension for the current band (i.e., merge_graph->maxvar),
5738 * then adjust merge_graph->maxvar to the (smallest) current band dimension
5739 * of those clusters. Without this adjustment, the total number of
5740 * schedule dimensions would be increased, resulting in a skewed view
5741 * of the number of coincident dimensions.
5742 * "c" contains information about the clusters.
5744 * If the maximize_band_depth option is set and merge_graph->maxvar is reduced,
5745 * then there is no point in attempting any merge since it will be rejected
5746 * anyway. Set merge_graph->maxvar to zero in such cases.
5748 static isl_stat adjust_maxvar_to_slack(isl_ctx *ctx,
5749 struct isl_sched_graph *merge_graph, struct isl_clustering *c)
5751 int max_slack, maxvar;
5753 max_slack = compute_maxvar_max_slack(merge_graph->maxvar, c);
5754 if (max_slack < 0)
5755 return isl_stat_error;
5756 maxvar = limit_maxvar_to_slack(merge_graph->maxvar, max_slack, c);
5757 if (maxvar < 0)
5758 return isl_stat_error;
5760 if (maxvar < merge_graph->maxvar) {
5761 if (isl_options_get_schedule_maximize_band_depth(ctx))
5762 merge_graph->maxvar = 0;
5763 else
5764 merge_graph->maxvar = maxvar;
5767 return isl_stat_ok;
5770 /* Return the number of coincident dimensions in the current band of "graph",
5771 * where the nodes of "graph" are assumed to be scheduled by a single band.
5773 static int get_n_coincident(struct isl_sched_graph *graph)
5775 int i;
5777 for (i = graph->band_start; i < graph->n_total_row; ++i)
5778 if (!graph->node[0].coincident[i])
5779 break;
5781 return i - graph->band_start;
5784 /* Should the clusters be merged based on the cluster schedule
5785 * in the current (and only) band of "merge_graph", given that
5786 * coincidence should be maximized?
5788 * If the number of coincident schedule dimensions in the merged band
5789 * would be less than the maximal number of coincident schedule dimensions
5790 * in any of the merged clusters, then the clusters should not be merged.
5792 static isl_bool ok_to_merge_coincident(struct isl_clustering *c,
5793 struct isl_sched_graph *merge_graph)
5795 int i;
5796 int n_coincident;
5797 int max_coincident;
5799 max_coincident = 0;
5800 for (i = 0; i < c->n; ++i) {
5801 if (!c->scc_in_merge[i])
5802 continue;
5803 n_coincident = get_n_coincident(&c->scc[i]);
5804 if (n_coincident > max_coincident)
5805 max_coincident = n_coincident;
5808 n_coincident = get_n_coincident(merge_graph);
5810 return n_coincident >= max_coincident;
5813 /* Return the transformation on "node" expressed by the current (and only)
5814 * band of "merge_graph" applied to the clusters in "c".
5816 * First find the representation of "node" in its SCC in "c" and
5817 * extract the transformation expressed by the current band.
5818 * Then extract the transformation applied by "merge_graph"
5819 * to the cluster to which this SCC belongs.
5820 * Combine the two to obtain the complete transformation on the node.
5822 * Note that the range of the first transformation is an anonymous space,
5823 * while the domain of the second is named "cluster_X". The range
5824 * of the former therefore needs to be adjusted before the two
5825 * can be combined.
5827 static __isl_give isl_map *extract_node_transformation(isl_ctx *ctx,
5828 struct isl_sched_node *node, struct isl_clustering *c,
5829 struct isl_sched_graph *merge_graph)
5831 struct isl_sched_node *scc_node, *cluster_node;
5832 int start, n;
5833 isl_id *id;
5834 isl_space *space;
5835 isl_multi_aff *ma, *ma2;
5837 scc_node = graph_find_node(ctx, &c->scc[node->scc], node->space);
5838 start = c->scc[node->scc].band_start;
5839 n = c->scc[node->scc].n_total_row - start;
5840 ma = node_extract_partial_schedule_multi_aff(scc_node, start, n);
5841 space = cluster_space(&c->scc[node->scc], c->scc_cluster[node->scc]);
5842 cluster_node = graph_find_node(ctx, merge_graph, space);
5843 if (space && !cluster_node)
5844 isl_die(ctx, isl_error_internal, "unable to find cluster",
5845 space = isl_space_free(space));
5846 id = isl_space_get_tuple_id(space, isl_dim_set);
5847 ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out, id);
5848 isl_space_free(space);
5849 n = merge_graph->n_total_row;
5850 ma2 = node_extract_partial_schedule_multi_aff(cluster_node, 0, n);
5851 ma = isl_multi_aff_pullback_multi_aff(ma2, ma);
5853 return isl_map_from_multi_aff(ma);
5856 /* Give a set of distances "set", are they bounded by a small constant
5857 * in direction "pos"?
5858 * In practice, check if they are bounded by 2 by checking that there
5859 * are no elements with a value greater than or equal to 3 or
5860 * smaller than or equal to -3.
5862 static isl_bool distance_is_bounded(__isl_keep isl_set *set, int pos)
5864 isl_bool bounded;
5865 isl_set *test;
5867 if (!set)
5868 return isl_bool_error;
5870 test = isl_set_copy(set);
5871 test = isl_set_lower_bound_si(test, isl_dim_set, pos, 3);
5872 bounded = isl_set_is_empty(test);
5873 isl_set_free(test);
5875 if (bounded < 0 || !bounded)
5876 return bounded;
5878 test = isl_set_copy(set);
5879 test = isl_set_upper_bound_si(test, isl_dim_set, pos, -3);
5880 bounded = isl_set_is_empty(test);
5881 isl_set_free(test);
5883 return bounded;
5886 /* Does the set "set" have a fixed (but possible parametric) value
5887 * at dimension "pos"?
5889 static isl_bool has_single_value(__isl_keep isl_set *set, int pos)
5891 int n;
5892 isl_bool single;
5894 if (!set)
5895 return isl_bool_error;
5896 set = isl_set_copy(set);
5897 n = isl_set_dim(set, isl_dim_set);
5898 set = isl_set_project_out(set, isl_dim_set, pos + 1, n - (pos + 1));
5899 set = isl_set_project_out(set, isl_dim_set, 0, pos);
5900 single = isl_set_is_singleton(set);
5901 isl_set_free(set);
5903 return single;
5906 /* Does "map" have a fixed (but possible parametric) value
5907 * at dimension "pos" of either its domain or its range?
5909 static isl_bool has_singular_src_or_dst(__isl_keep isl_map *map, int pos)
5911 isl_set *set;
5912 isl_bool single;
5914 set = isl_map_domain(isl_map_copy(map));
5915 single = has_single_value(set, pos);
5916 isl_set_free(set);
5918 if (single < 0 || single)
5919 return single;
5921 set = isl_map_range(isl_map_copy(map));
5922 single = has_single_value(set, pos);
5923 isl_set_free(set);
5925 return single;
5928 /* Does the edge "edge" from "graph" have bounded dependence distances
5929 * in the merged graph "merge_graph" of a selection of clusters in "c"?
5931 * Extract the complete transformations of the source and destination
5932 * nodes of the edge, apply them to the edge constraints and
5933 * compute the differences. Finally, check if these differences are bounded
5934 * in each direction.
5936 * If the dimension of the band is greater than the number of
5937 * dimensions that can be expected to be optimized by the edge
5938 * (based on its weight), then also allow the differences to be unbounded
5939 * in the remaining dimensions, but only if either the source or
5940 * the destination has a fixed value in that direction.
5941 * This allows a statement that produces values that are used by
5942 * several instances of another statement to be merged with that
5943 * other statement.
5944 * However, merging such clusters will introduce an inherently
5945 * large proximity distance inside the merged cluster, meaning
5946 * that proximity distances will no longer be optimized in
5947 * subsequent merges. These merges are therefore only allowed
5948 * after all other possible merges have been tried.
5949 * The first time such a merge is encountered, the weight of the edge
5950 * is replaced by a negative weight. The second time (i.e., after
5951 * all merges over edges with a non-negative weight have been tried),
5952 * the merge is allowed.
5954 static isl_bool has_bounded_distances(isl_ctx *ctx, struct isl_sched_edge *edge,
5955 struct isl_sched_graph *graph, struct isl_clustering *c,
5956 struct isl_sched_graph *merge_graph)
5958 int i, n, n_slack;
5959 isl_bool bounded;
5960 isl_map *map, *t;
5961 isl_set *dist;
5963 map = isl_map_copy(edge->map);
5964 t = extract_node_transformation(ctx, edge->src, c, merge_graph);
5965 map = isl_map_apply_domain(map, t);
5966 t = extract_node_transformation(ctx, edge->dst, c, merge_graph);
5967 map = isl_map_apply_range(map, t);
5968 dist = isl_map_deltas(isl_map_copy(map));
5970 bounded = isl_bool_true;
5971 n = isl_set_dim(dist, isl_dim_set);
5972 n_slack = n - edge->weight;
5973 if (edge->weight < 0)
5974 n_slack -= graph->max_weight + 1;
5975 for (i = 0; i < n; ++i) {
5976 isl_bool bounded_i, singular_i;
5978 bounded_i = distance_is_bounded(dist, i);
5979 if (bounded_i < 0)
5980 goto error;
5981 if (bounded_i)
5982 continue;
5983 if (edge->weight >= 0)
5984 bounded = isl_bool_false;
5985 n_slack--;
5986 if (n_slack < 0)
5987 break;
5988 singular_i = has_singular_src_or_dst(map, i);
5989 if (singular_i < 0)
5990 goto error;
5991 if (singular_i)
5992 continue;
5993 bounded = isl_bool_false;
5994 break;
5996 if (!bounded && i >= n && edge->weight >= 0)
5997 edge->weight -= graph->max_weight + 1;
5998 isl_map_free(map);
5999 isl_set_free(dist);
6001 return bounded;
6002 error:
6003 isl_map_free(map);
6004 isl_set_free(dist);
6005 return isl_bool_error;
6008 /* Should the clusters be merged based on the cluster schedule
6009 * in the current (and only) band of "merge_graph"?
6010 * "graph" is the original dependence graph, while "c" records
6011 * which SCCs are involved in the latest merge.
6013 * In particular, is there at least one proximity constraint
6014 * that is optimized by the merge?
6016 * A proximity constraint is considered to be optimized
6017 * if the dependence distances are small.
6019 static isl_bool ok_to_merge_proximity(isl_ctx *ctx,
6020 struct isl_sched_graph *graph, struct isl_clustering *c,
6021 struct isl_sched_graph *merge_graph)
6023 int i;
6025 for (i = 0; i < graph->n_edge; ++i) {
6026 struct isl_sched_edge *edge = &graph->edge[i];
6027 isl_bool bounded;
6029 if (!is_proximity(edge))
6030 continue;
6031 if (!c->scc_in_merge[edge->src->scc])
6032 continue;
6033 if (!c->scc_in_merge[edge->dst->scc])
6034 continue;
6035 if (c->scc_cluster[edge->dst->scc] ==
6036 c->scc_cluster[edge->src->scc])
6037 continue;
6038 bounded = has_bounded_distances(ctx, edge, graph, c,
6039 merge_graph);
6040 if (bounded < 0 || bounded)
6041 return bounded;
6044 return isl_bool_false;
6047 /* Should the clusters be merged based on the cluster schedule
6048 * in the current (and only) band of "merge_graph"?
6049 * "graph" is the original dependence graph, while "c" records
6050 * which SCCs are involved in the latest merge.
6052 * If the current band is empty, then the clusters should not be merged.
6054 * If the band depth should be maximized and the merge schedule
6055 * is incomplete (meaning that the dimension of some of the schedule
6056 * bands in the original schedule will be reduced), then the clusters
6057 * should not be merged.
6059 * If the schedule_maximize_coincidence option is set, then check that
6060 * the number of coincident schedule dimensions is not reduced.
6062 * Finally, only allow the merge if at least one proximity
6063 * constraint is optimized.
6065 static isl_bool ok_to_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
6066 struct isl_clustering *c, struct isl_sched_graph *merge_graph)
6068 if (merge_graph->n_total_row == merge_graph->band_start)
6069 return isl_bool_false;
6071 if (isl_options_get_schedule_maximize_band_depth(ctx) &&
6072 merge_graph->n_total_row < merge_graph->maxvar)
6073 return isl_bool_false;
6075 if (isl_options_get_schedule_maximize_coincidence(ctx)) {
6076 isl_bool ok;
6078 ok = ok_to_merge_coincident(c, merge_graph);
6079 if (ok < 0 || !ok)
6080 return ok;
6083 return ok_to_merge_proximity(ctx, graph, c, merge_graph);
6086 /* Apply the schedule in "t_node" to the "n" rows starting at "first"
6087 * of the schedule in "node" and return the result.
6089 * That is, essentially compute
6091 * T * N(first:first+n-1)
6093 * taking into account the constant term and the parameter coefficients
6094 * in "t_node".
6096 static __isl_give isl_mat *node_transformation(isl_ctx *ctx,
6097 struct isl_sched_node *t_node, struct isl_sched_node *node,
6098 int first, int n)
6100 int i, j;
6101 isl_mat *t;
6102 int n_row, n_col, n_param, n_var;
6104 n_param = node->nparam;
6105 n_var = node->nvar;
6106 n_row = isl_mat_rows(t_node->sched);
6107 n_col = isl_mat_cols(node->sched);
6108 t = isl_mat_alloc(ctx, n_row, n_col);
6109 if (!t)
6110 return NULL;
6111 for (i = 0; i < n_row; ++i) {
6112 isl_seq_cpy(t->row[i], t_node->sched->row[i], 1 + n_param);
6113 isl_seq_clr(t->row[i] + 1 + n_param, n_var);
6114 for (j = 0; j < n; ++j)
6115 isl_seq_addmul(t->row[i],
6116 t_node->sched->row[i][1 + n_param + j],
6117 node->sched->row[first + j],
6118 1 + n_param + n_var);
6120 return t;
6123 /* Apply the cluster schedule in "t_node" to the current band
6124 * schedule of the nodes in "graph".
6126 * In particular, replace the rows starting at band_start
6127 * by the result of applying the cluster schedule in "t_node"
6128 * to the original rows.
6130 * The coincidence of the schedule is determined by the coincidence
6131 * of the cluster schedule.
6133 static isl_stat transform(isl_ctx *ctx, struct isl_sched_graph *graph,
6134 struct isl_sched_node *t_node)
6136 int i, j;
6137 int n_new;
6138 int start, n;
6140 start = graph->band_start;
6141 n = graph->n_total_row - start;
6143 n_new = isl_mat_rows(t_node->sched);
6144 for (i = 0; i < graph->n; ++i) {
6145 struct isl_sched_node *node = &graph->node[i];
6146 isl_mat *t;
6148 t = node_transformation(ctx, t_node, node, start, n);
6149 node->sched = isl_mat_drop_rows(node->sched, start, n);
6150 node->sched = isl_mat_concat(node->sched, t);
6151 node->sched_map = isl_map_free(node->sched_map);
6152 if (!node->sched)
6153 return isl_stat_error;
6154 for (j = 0; j < n_new; ++j)
6155 node->coincident[start + j] = t_node->coincident[j];
6157 graph->n_total_row -= n;
6158 graph->n_row -= n;
6159 graph->n_total_row += n_new;
6160 graph->n_row += n_new;
6162 return isl_stat_ok;
6165 /* Merge the clusters marked for merging in "c" into a single
6166 * cluster using the cluster schedule in the current band of "merge_graph".
6167 * The representative SCC for the new cluster is the SCC with
6168 * the smallest index.
6170 * The current band schedule of each SCC in the new cluster is obtained
6171 * by applying the schedule of the corresponding original cluster
6172 * to the original band schedule.
6173 * All SCCs in the new cluster have the same number of schedule rows.
6175 static isl_stat merge(isl_ctx *ctx, struct isl_clustering *c,
6176 struct isl_sched_graph *merge_graph)
6178 int i;
6179 int cluster = -1;
6180 isl_space *space;
6182 for (i = 0; i < c->n; ++i) {
6183 struct isl_sched_node *node;
6185 if (!c->scc_in_merge[i])
6186 continue;
6187 if (cluster < 0)
6188 cluster = i;
6189 space = cluster_space(&c->scc[i], c->scc_cluster[i]);
6190 if (!space)
6191 return isl_stat_error;
6192 node = graph_find_node(ctx, merge_graph, space);
6193 isl_space_free(space);
6194 if (!node)
6195 isl_die(ctx, isl_error_internal,
6196 "unable to find cluster",
6197 return isl_stat_error);
6198 if (transform(ctx, &c->scc[i], node) < 0)
6199 return isl_stat_error;
6200 c->scc_cluster[i] = cluster;
6203 return isl_stat_ok;
6206 /* Try and merge the clusters of SCCs marked in c->scc_in_merge
6207 * by scheduling the current cluster bands with respect to each other.
6209 * Construct a dependence graph with a space for each cluster and
6210 * with the coordinates of each space corresponding to the schedule
6211 * dimensions of the current band of that cluster.
6212 * Construct a cluster schedule in this cluster dependence graph and
6213 * apply it to the current cluster bands if it is applicable
6214 * according to ok_to_merge.
6216 * If the number of remaining schedule dimensions in a cluster
6217 * with a non-maximal current schedule dimension is greater than
6218 * the number of remaining schedule dimensions in clusters
6219 * with a maximal current schedule dimension, then restrict
6220 * the number of rows to be computed in the cluster schedule
6221 * to the minimal such non-maximal current schedule dimension.
6222 * Do this by adjusting merge_graph.maxvar.
6224 * Return isl_bool_true if the clusters have effectively been merged
6225 * into a single cluster.
6227 * Note that since the standard scheduling algorithm minimizes the maximal
6228 * distance over proximity constraints, the proximity constraints between
6229 * the merged clusters may not be optimized any further than what is
6230 * sufficient to bring the distances within the limits of the internal
6231 * proximity constraints inside the individual clusters.
6232 * It may therefore make sense to perform an additional translation step
6233 * to bring the clusters closer to each other, while maintaining
6234 * the linear part of the merging schedule found using the standard
6235 * scheduling algorithm.
6237 static isl_bool try_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
6238 struct isl_clustering *c)
6240 struct isl_sched_graph merge_graph = { 0 };
6241 isl_bool merged;
6243 if (init_merge_graph(ctx, graph, c, &merge_graph) < 0)
6244 goto error;
6246 if (compute_maxvar(&merge_graph) < 0)
6247 goto error;
6248 if (adjust_maxvar_to_slack(ctx, &merge_graph,c) < 0)
6249 goto error;
6250 if (compute_schedule_wcc_band(ctx, &merge_graph) < 0)
6251 goto error;
6252 merged = ok_to_merge(ctx, graph, c, &merge_graph);
6253 if (merged && merge(ctx, c, &merge_graph) < 0)
6254 goto error;
6256 graph_free(ctx, &merge_graph);
6257 return merged;
6258 error:
6259 graph_free(ctx, &merge_graph);
6260 return isl_bool_error;
6263 /* Is there any edge marked "no_merge" between two SCCs that are
6264 * about to be merged (i.e., that are set in "scc_in_merge")?
6265 * "merge_edge" is the proximity edge along which the clusters of SCCs
6266 * are going to be merged.
6268 * If there is any edge between two SCCs with a negative weight,
6269 * while the weight of "merge_edge" is non-negative, then this
6270 * means that the edge was postponed. "merge_edge" should then
6271 * also be postponed since merging along the edge with negative weight should
6272 * be postponed until all edges with non-negative weight have been tried.
6273 * Replace the weight of "merge_edge" by a negative weight as well and
6274 * tell the caller not to attempt a merge.
6276 static int any_no_merge(struct isl_sched_graph *graph, int *scc_in_merge,
6277 struct isl_sched_edge *merge_edge)
6279 int i;
6281 for (i = 0; i < graph->n_edge; ++i) {
6282 struct isl_sched_edge *edge = &graph->edge[i];
6284 if (!scc_in_merge[edge->src->scc])
6285 continue;
6286 if (!scc_in_merge[edge->dst->scc])
6287 continue;
6288 if (edge->no_merge)
6289 return 1;
6290 if (merge_edge->weight >= 0 && edge->weight < 0) {
6291 merge_edge->weight -= graph->max_weight + 1;
6292 return 1;
6296 return 0;
6299 /* Merge the two clusters in "c" connected by the edge in "graph"
6300 * with index "edge" into a single cluster.
6301 * If it turns out to be impossible to merge these two clusters,
6302 * then mark the edge as "no_merge" such that it will not be
6303 * considered again.
6305 * First mark all SCCs that need to be merged. This includes the SCCs
6306 * in the two clusters, but it may also include the SCCs
6307 * of intermediate clusters.
6308 * If there is already a no_merge edge between any pair of such SCCs,
6309 * then simply mark the current edge as no_merge as well.
6310 * Likewise, if any of those edges was postponed by has_bounded_distances,
6311 * then postpone the current edge as well.
6312 * Otherwise, try and merge the clusters and mark "edge" as "no_merge"
6313 * if the clusters did not end up getting merged, unless the non-merge
6314 * is due to the fact that the edge was postponed. This postponement
6315 * can be recognized by a change in weight (from non-negative to negative).
6317 static isl_stat merge_clusters_along_edge(isl_ctx *ctx,
6318 struct isl_sched_graph *graph, int edge, struct isl_clustering *c)
6320 isl_bool merged;
6321 int edge_weight = graph->edge[edge].weight;
6323 if (mark_merge_sccs(ctx, graph, edge, c) < 0)
6324 return isl_stat_error;
6326 if (any_no_merge(graph, c->scc_in_merge, &graph->edge[edge]))
6327 merged = isl_bool_false;
6328 else
6329 merged = try_merge(ctx, graph, c);
6330 if (merged < 0)
6331 return isl_stat_error;
6332 if (!merged && edge_weight == graph->edge[edge].weight)
6333 graph->edge[edge].no_merge = 1;
6335 return isl_stat_ok;
6338 /* Does "node" belong to the cluster identified by "cluster"?
6340 static int node_cluster_exactly(struct isl_sched_node *node, int cluster)
6342 return node->cluster == cluster;
6345 /* Does "edge" connect two nodes belonging to the cluster
6346 * identified by "cluster"?
6348 static int edge_cluster_exactly(struct isl_sched_edge *edge, int cluster)
6350 return edge->src->cluster == cluster && edge->dst->cluster == cluster;
6353 /* Swap the schedule of "node1" and "node2".
6354 * Both nodes have been derived from the same node in a common parent graph.
6355 * Since the "coincident" field is shared with that node
6356 * in the parent graph, there is no need to also swap this field.
6358 static void swap_sched(struct isl_sched_node *node1,
6359 struct isl_sched_node *node2)
6361 isl_mat *sched;
6362 isl_map *sched_map;
6364 sched = node1->sched;
6365 node1->sched = node2->sched;
6366 node2->sched = sched;
6368 sched_map = node1->sched_map;
6369 node1->sched_map = node2->sched_map;
6370 node2->sched_map = sched_map;
6373 /* Copy the current band schedule from the SCCs that form the cluster
6374 * with index "pos" to the actual cluster at position "pos".
6375 * By construction, the index of the first SCC that belongs to the cluster
6376 * is also "pos".
6378 * The order of the nodes inside both the SCCs and the cluster
6379 * is assumed to be same as the order in the original "graph".
6381 * Since the SCC graphs will no longer be used after this function,
6382 * the schedules are actually swapped rather than copied.
6384 static isl_stat copy_partial(struct isl_sched_graph *graph,
6385 struct isl_clustering *c, int pos)
6387 int i, j;
6389 c->cluster[pos].n_total_row = c->scc[pos].n_total_row;
6390 c->cluster[pos].n_row = c->scc[pos].n_row;
6391 c->cluster[pos].maxvar = c->scc[pos].maxvar;
6392 j = 0;
6393 for (i = 0; i < graph->n; ++i) {
6394 int k;
6395 int s;
6397 if (graph->node[i].cluster != pos)
6398 continue;
6399 s = graph->node[i].scc;
6400 k = c->scc_node[s]++;
6401 swap_sched(&c->cluster[pos].node[j], &c->scc[s].node[k]);
6402 if (c->scc[s].maxvar > c->cluster[pos].maxvar)
6403 c->cluster[pos].maxvar = c->scc[s].maxvar;
6404 ++j;
6407 return isl_stat_ok;
6410 /* Is there a (conditional) validity dependence from node[j] to node[i],
6411 * forcing node[i] to follow node[j] or do the nodes belong to the same
6412 * cluster?
6414 static isl_bool node_follows_strong_or_same_cluster(int i, int j, void *user)
6416 struct isl_sched_graph *graph = user;
6418 if (graph->node[i].cluster == graph->node[j].cluster)
6419 return isl_bool_true;
6420 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
6423 /* Extract the merged clusters of SCCs in "graph", sort them, and
6424 * store them in c->clusters. Update c->scc_cluster accordingly.
6426 * First keep track of the cluster containing the SCC to which a node
6427 * belongs in the node itself.
6428 * Then extract the clusters into c->clusters, copying the current
6429 * band schedule from the SCCs that belong to the cluster.
6430 * Do this only once per cluster.
6432 * Finally, topologically sort the clusters and update c->scc_cluster
6433 * to match the new scc numbering. While the SCCs were originally
6434 * sorted already, some SCCs that depend on some other SCCs may
6435 * have been merged with SCCs that appear before these other SCCs.
6436 * A reordering may therefore be required.
6438 static isl_stat extract_clusters(isl_ctx *ctx, struct isl_sched_graph *graph,
6439 struct isl_clustering *c)
6441 int i;
6443 for (i = 0; i < graph->n; ++i)
6444 graph->node[i].cluster = c->scc_cluster[graph->node[i].scc];
6446 for (i = 0; i < graph->scc; ++i) {
6447 if (c->scc_cluster[i] != i)
6448 continue;
6449 if (extract_sub_graph(ctx, graph, &node_cluster_exactly,
6450 &edge_cluster_exactly, i, &c->cluster[i]) < 0)
6451 return isl_stat_error;
6452 c->cluster[i].src_scc = -1;
6453 c->cluster[i].dst_scc = -1;
6454 if (copy_partial(graph, c, i) < 0)
6455 return isl_stat_error;
6458 if (detect_ccs(ctx, graph, &node_follows_strong_or_same_cluster) < 0)
6459 return isl_stat_error;
6460 for (i = 0; i < graph->n; ++i)
6461 c->scc_cluster[graph->node[i].scc] = graph->node[i].cluster;
6463 return isl_stat_ok;
6466 /* Compute weights on the proximity edges of "graph" that can
6467 * be used by find_proximity to find the most appropriate
6468 * proximity edge to use to merge two clusters in "c".
6469 * The weights are also used by has_bounded_distances to determine
6470 * whether the merge should be allowed.
6471 * Store the maximum of the computed weights in graph->max_weight.
6473 * The computed weight is a measure for the number of remaining schedule
6474 * dimensions that can still be completely aligned.
6475 * In particular, compute the number of equalities between
6476 * input dimensions and output dimensions in the proximity constraints.
6477 * The directions that are already handled by outer schedule bands
6478 * are projected out prior to determining this number.
6480 * Edges that will never be considered by find_proximity are ignored.
6482 static isl_stat compute_weights(struct isl_sched_graph *graph,
6483 struct isl_clustering *c)
6485 int i;
6487 graph->max_weight = 0;
6489 for (i = 0; i < graph->n_edge; ++i) {
6490 struct isl_sched_edge *edge = &graph->edge[i];
6491 struct isl_sched_node *src = edge->src;
6492 struct isl_sched_node *dst = edge->dst;
6493 isl_basic_map *hull;
6494 isl_bool prox;
6495 int n_in, n_out;
6497 prox = is_non_empty_proximity(edge);
6498 if (prox < 0)
6499 return isl_stat_error;
6500 if (!prox)
6501 continue;
6502 if (bad_cluster(&c->scc[edge->src->scc]) ||
6503 bad_cluster(&c->scc[edge->dst->scc]))
6504 continue;
6505 if (c->scc_cluster[edge->dst->scc] ==
6506 c->scc_cluster[edge->src->scc])
6507 continue;
6509 hull = isl_map_affine_hull(isl_map_copy(edge->map));
6510 hull = isl_basic_map_transform_dims(hull, isl_dim_in, 0,
6511 isl_mat_copy(src->ctrans));
6512 hull = isl_basic_map_transform_dims(hull, isl_dim_out, 0,
6513 isl_mat_copy(dst->ctrans));
6514 hull = isl_basic_map_project_out(hull,
6515 isl_dim_in, 0, src->rank);
6516 hull = isl_basic_map_project_out(hull,
6517 isl_dim_out, 0, dst->rank);
6518 hull = isl_basic_map_remove_divs(hull);
6519 n_in = isl_basic_map_dim(hull, isl_dim_in);
6520 n_out = isl_basic_map_dim(hull, isl_dim_out);
6521 hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
6522 isl_dim_in, 0, n_in);
6523 hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
6524 isl_dim_out, 0, n_out);
6525 if (!hull)
6526 return isl_stat_error;
6527 edge->weight = isl_basic_map_n_equality(hull);
6528 isl_basic_map_free(hull);
6530 if (edge->weight > graph->max_weight)
6531 graph->max_weight = edge->weight;
6534 return isl_stat_ok;
6537 /* Call compute_schedule_finish_band on each of the clusters in "c"
6538 * in their topological order. This order is determined by the scc
6539 * fields of the nodes in "graph".
6540 * Combine the results in a sequence expressing the topological order.
6542 * If there is only one cluster left, then there is no need to introduce
6543 * a sequence node. Also, in this case, the cluster necessarily contains
6544 * the SCC at position 0 in the original graph and is therefore also
6545 * stored in the first cluster of "c".
6547 static __isl_give isl_schedule_node *finish_bands_clustering(
6548 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
6549 struct isl_clustering *c)
6551 int i;
6552 isl_ctx *ctx;
6553 isl_union_set_list *filters;
6555 if (graph->scc == 1)
6556 return compute_schedule_finish_band(node, &c->cluster[0], 0);
6558 ctx = isl_schedule_node_get_ctx(node);
6560 filters = extract_sccs(ctx, graph);
6561 node = isl_schedule_node_insert_sequence(node, filters);
6563 for (i = 0; i < graph->scc; ++i) {
6564 int j = c->scc_cluster[i];
6565 node = isl_schedule_node_child(node, i);
6566 node = isl_schedule_node_child(node, 0);
6567 node = compute_schedule_finish_band(node, &c->cluster[j], 0);
6568 node = isl_schedule_node_parent(node);
6569 node = isl_schedule_node_parent(node);
6572 return node;
6575 /* Compute a schedule for a connected dependence graph by first considering
6576 * each strongly connected component (SCC) in the graph separately and then
6577 * incrementally combining them into clusters.
6578 * Return the updated schedule node.
6580 * Initially, each cluster consists of a single SCC, each with its
6581 * own band schedule. The algorithm then tries to merge pairs
6582 * of clusters along a proximity edge until no more suitable
6583 * proximity edges can be found. During this merging, the schedule
6584 * is maintained in the individual SCCs.
6585 * After the merging is completed, the full resulting clusters
6586 * are extracted and in finish_bands_clustering,
6587 * compute_schedule_finish_band is called on each of them to integrate
6588 * the band into "node" and to continue the computation.
6590 * compute_weights initializes the weights that are used by find_proximity.
6592 static __isl_give isl_schedule_node *compute_schedule_wcc_clustering(
6593 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
6595 isl_ctx *ctx;
6596 struct isl_clustering c;
6597 int i;
6599 ctx = isl_schedule_node_get_ctx(node);
6601 if (clustering_init(ctx, &c, graph) < 0)
6602 goto error;
6604 if (compute_weights(graph, &c) < 0)
6605 goto error;
6607 for (;;) {
6608 i = find_proximity(graph, &c);
6609 if (i < 0)
6610 goto error;
6611 if (i >= graph->n_edge)
6612 break;
6613 if (merge_clusters_along_edge(ctx, graph, i, &c) < 0)
6614 goto error;
6617 if (extract_clusters(ctx, graph, &c) < 0)
6618 goto error;
6620 node = finish_bands_clustering(node, graph, &c);
6622 clustering_free(ctx, &c);
6623 return node;
6624 error:
6625 clustering_free(ctx, &c);
6626 return isl_schedule_node_free(node);
6629 /* Compute a schedule for a connected dependence graph and return
6630 * the updated schedule node.
6632 * If Feautrier's algorithm is selected, we first recursively try to satisfy
6633 * as many validity dependences as possible. When all validity dependences
6634 * are satisfied we extend the schedule to a full-dimensional schedule.
6636 * Call compute_schedule_wcc_whole or compute_schedule_wcc_clustering
6637 * depending on whether the user has selected the option to try and
6638 * compute a schedule for the entire (weakly connected) component first.
6639 * If there is only a single strongly connected component (SCC), then
6640 * there is no point in trying to combine SCCs
6641 * in compute_schedule_wcc_clustering, so compute_schedule_wcc_whole
6642 * is called instead.
6644 static __isl_give isl_schedule_node *compute_schedule_wcc(
6645 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
6647 isl_ctx *ctx;
6649 if (!node)
6650 return NULL;
6652 ctx = isl_schedule_node_get_ctx(node);
6653 if (detect_sccs(ctx, graph) < 0)
6654 return isl_schedule_node_free(node);
6656 if (compute_maxvar(graph) < 0)
6657 return isl_schedule_node_free(node);
6659 if (need_feautrier_step(ctx, graph))
6660 return compute_schedule_wcc_feautrier(node, graph);
6662 if (graph->scc <= 1 || isl_options_get_schedule_whole_component(ctx))
6663 return compute_schedule_wcc_whole(node, graph);
6664 else
6665 return compute_schedule_wcc_clustering(node, graph);
6668 /* Compute a schedule for each group of nodes identified by node->scc
6669 * separately and then combine them in a sequence node (or as set node
6670 * if graph->weak is set) inserted at position "node" of the schedule tree.
6671 * Return the updated schedule node.
6673 * If "wcc" is set then each of the groups belongs to a single
6674 * weakly connected component in the dependence graph so that
6675 * there is no need for compute_sub_schedule to look for weakly
6676 * connected components.
6678 static __isl_give isl_schedule_node *compute_component_schedule(
6679 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
6680 int wcc)
6682 int component;
6683 isl_ctx *ctx;
6684 isl_union_set_list *filters;
6686 if (!node)
6687 return NULL;
6688 ctx = isl_schedule_node_get_ctx(node);
6690 filters = extract_sccs(ctx, graph);
6691 if (graph->weak)
6692 node = isl_schedule_node_insert_set(node, filters);
6693 else
6694 node = isl_schedule_node_insert_sequence(node, filters);
6696 for (component = 0; component < graph->scc; ++component) {
6697 node = isl_schedule_node_child(node, component);
6698 node = isl_schedule_node_child(node, 0);
6699 node = compute_sub_schedule(node, ctx, graph,
6700 &node_scc_exactly,
6701 &edge_scc_exactly, component, wcc);
6702 node = isl_schedule_node_parent(node);
6703 node = isl_schedule_node_parent(node);
6706 return node;
6709 /* Compute a schedule for the given dependence graph and insert it at "node".
6710 * Return the updated schedule node.
6712 * We first check if the graph is connected (through validity and conditional
6713 * validity dependences) and, if not, compute a schedule
6714 * for each component separately.
6715 * If the schedule_serialize_sccs option is set, then we check for strongly
6716 * connected components instead and compute a separate schedule for
6717 * each such strongly connected component.
6719 static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
6720 struct isl_sched_graph *graph)
6722 isl_ctx *ctx;
6724 if (!node)
6725 return NULL;
6727 ctx = isl_schedule_node_get_ctx(node);
6728 if (isl_options_get_schedule_serialize_sccs(ctx)) {
6729 if (detect_sccs(ctx, graph) < 0)
6730 return isl_schedule_node_free(node);
6731 } else {
6732 if (detect_wccs(ctx, graph) < 0)
6733 return isl_schedule_node_free(node);
6736 if (graph->scc > 1)
6737 return compute_component_schedule(node, graph, 1);
6739 return compute_schedule_wcc(node, graph);
6742 /* Compute a schedule on sc->domain that respects the given schedule
6743 * constraints.
6745 * In particular, the schedule respects all the validity dependences.
6746 * If the default isl scheduling algorithm is used, it tries to minimize
6747 * the dependence distances over the proximity dependences.
6748 * If Feautrier's scheduling algorithm is used, the proximity dependence
6749 * distances are only minimized during the extension to a full-dimensional
6750 * schedule.
6752 * If there are any condition and conditional validity dependences,
6753 * then the conditional validity dependences may be violated inside
6754 * a tilable band, provided they have no adjacent non-local
6755 * condition dependences.
6757 __isl_give isl_schedule *isl_schedule_constraints_compute_schedule(
6758 __isl_take isl_schedule_constraints *sc)
6760 isl_ctx *ctx = isl_schedule_constraints_get_ctx(sc);
6761 struct isl_sched_graph graph = { 0 };
6762 isl_schedule *sched;
6763 isl_schedule_node *node;
6764 isl_union_set *domain;
6766 sc = isl_schedule_constraints_align_params(sc);
6768 domain = isl_schedule_constraints_get_domain(sc);
6769 if (isl_union_set_n_set(domain) == 0) {
6770 isl_schedule_constraints_free(sc);
6771 return isl_schedule_from_domain(domain);
6774 if (graph_init(&graph, sc) < 0)
6775 domain = isl_union_set_free(domain);
6777 node = isl_schedule_node_from_domain(domain);
6778 node = isl_schedule_node_child(node, 0);
6779 if (graph.n > 0)
6780 node = compute_schedule(node, &graph);
6781 sched = isl_schedule_node_get_schedule(node);
6782 isl_schedule_node_free(node);
6784 graph_free(ctx, &graph);
6785 isl_schedule_constraints_free(sc);
6787 return sched;
6790 /* Compute a schedule for the given union of domains that respects
6791 * all the validity dependences and minimizes
6792 * the dependence distances over the proximity dependences.
6794 * This function is kept for backward compatibility.
6796 __isl_give isl_schedule *isl_union_set_compute_schedule(
6797 __isl_take isl_union_set *domain,
6798 __isl_take isl_union_map *validity,
6799 __isl_take isl_union_map *proximity)
6801 isl_schedule_constraints *sc;
6803 sc = isl_schedule_constraints_on_domain(domain);
6804 sc = isl_schedule_constraints_set_validity(sc, validity);
6805 sc = isl_schedule_constraints_set_proximity(sc, proximity);
6807 return isl_schedule_constraints_compute_schedule(sc);