2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
12 #include <isl_ctx_private.h>
13 #include <isl_map_private.h>
14 #include <isl_factorization.h>
17 #include <isl_union_map_private.h>
18 #include <isl_polynomial_private.h>
19 #include <isl_point_private.h>
20 #include <isl_dim_private.h>
21 #include <isl_mat_private.h>
22 #include <isl_range.h>
24 static unsigned pos(__isl_keep isl_dim
*dim
, enum isl_dim_type type
)
27 case isl_dim_param
: return 0;
28 case isl_dim_in
: return dim
->nparam
;
29 case isl_dim_out
: return dim
->nparam
+ dim
->n_in
;
34 int isl_upoly_is_cst(__isl_keep
struct isl_upoly
*up
)
42 __isl_keep
struct isl_upoly_cst
*isl_upoly_as_cst(__isl_keep
struct isl_upoly
*up
)
47 isl_assert(up
->ctx
, up
->var
< 0, return NULL
);
49 return (struct isl_upoly_cst
*)up
;
52 __isl_keep
struct isl_upoly_rec
*isl_upoly_as_rec(__isl_keep
struct isl_upoly
*up
)
57 isl_assert(up
->ctx
, up
->var
>= 0, return NULL
);
59 return (struct isl_upoly_rec
*)up
;
62 int isl_upoly_is_equal(__isl_keep
struct isl_upoly
*up1
,
63 __isl_keep
struct isl_upoly
*up2
)
66 struct isl_upoly_rec
*rec1
, *rec2
;
72 if (up1
->var
!= up2
->var
)
74 if (isl_upoly_is_cst(up1
)) {
75 struct isl_upoly_cst
*cst1
, *cst2
;
76 cst1
= isl_upoly_as_cst(up1
);
77 cst2
= isl_upoly_as_cst(up2
);
80 return isl_int_eq(cst1
->n
, cst2
->n
) &&
81 isl_int_eq(cst1
->d
, cst2
->d
);
84 rec1
= isl_upoly_as_rec(up1
);
85 rec2
= isl_upoly_as_rec(up2
);
89 if (rec1
->n
!= rec2
->n
)
92 for (i
= 0; i
< rec1
->n
; ++i
) {
93 int eq
= isl_upoly_is_equal(rec1
->p
[i
], rec2
->p
[i
]);
101 int isl_upoly_is_zero(__isl_keep
struct isl_upoly
*up
)
103 struct isl_upoly_cst
*cst
;
107 if (!isl_upoly_is_cst(up
))
110 cst
= isl_upoly_as_cst(up
);
114 return isl_int_is_zero(cst
->n
) && isl_int_is_pos(cst
->d
);
117 int isl_upoly_sgn(__isl_keep
struct isl_upoly
*up
)
119 struct isl_upoly_cst
*cst
;
123 if (!isl_upoly_is_cst(up
))
126 cst
= isl_upoly_as_cst(up
);
130 return isl_int_sgn(cst
->n
);
133 int isl_upoly_is_nan(__isl_keep
struct isl_upoly
*up
)
135 struct isl_upoly_cst
*cst
;
139 if (!isl_upoly_is_cst(up
))
142 cst
= isl_upoly_as_cst(up
);
146 return isl_int_is_zero(cst
->n
) && isl_int_is_zero(cst
->d
);
149 int isl_upoly_is_infty(__isl_keep
struct isl_upoly
*up
)
151 struct isl_upoly_cst
*cst
;
155 if (!isl_upoly_is_cst(up
))
158 cst
= isl_upoly_as_cst(up
);
162 return isl_int_is_pos(cst
->n
) && isl_int_is_zero(cst
->d
);
165 int isl_upoly_is_neginfty(__isl_keep
struct isl_upoly
*up
)
167 struct isl_upoly_cst
*cst
;
171 if (!isl_upoly_is_cst(up
))
174 cst
= isl_upoly_as_cst(up
);
178 return isl_int_is_neg(cst
->n
) && isl_int_is_zero(cst
->d
);
181 int isl_upoly_is_one(__isl_keep
struct isl_upoly
*up
)
183 struct isl_upoly_cst
*cst
;
187 if (!isl_upoly_is_cst(up
))
190 cst
= isl_upoly_as_cst(up
);
194 return isl_int_eq(cst
->n
, cst
->d
) && isl_int_is_pos(cst
->d
);
197 int isl_upoly_is_negone(__isl_keep
struct isl_upoly
*up
)
199 struct isl_upoly_cst
*cst
;
203 if (!isl_upoly_is_cst(up
))
206 cst
= isl_upoly_as_cst(up
);
210 return isl_int_is_negone(cst
->n
) && isl_int_is_one(cst
->d
);
213 __isl_give
struct isl_upoly_cst
*isl_upoly_cst_alloc(struct isl_ctx
*ctx
)
215 struct isl_upoly_cst
*cst
;
217 cst
= isl_alloc_type(ctx
, struct isl_upoly_cst
);
226 isl_int_init(cst
->n
);
227 isl_int_init(cst
->d
);
232 __isl_give
struct isl_upoly
*isl_upoly_zero(struct isl_ctx
*ctx
)
234 struct isl_upoly_cst
*cst
;
236 cst
= isl_upoly_cst_alloc(ctx
);
240 isl_int_set_si(cst
->n
, 0);
241 isl_int_set_si(cst
->d
, 1);
246 __isl_give
struct isl_upoly
*isl_upoly_one(struct isl_ctx
*ctx
)
248 struct isl_upoly_cst
*cst
;
250 cst
= isl_upoly_cst_alloc(ctx
);
254 isl_int_set_si(cst
->n
, 1);
255 isl_int_set_si(cst
->d
, 1);
260 __isl_give
struct isl_upoly
*isl_upoly_infty(struct isl_ctx
*ctx
)
262 struct isl_upoly_cst
*cst
;
264 cst
= isl_upoly_cst_alloc(ctx
);
268 isl_int_set_si(cst
->n
, 1);
269 isl_int_set_si(cst
->d
, 0);
274 __isl_give
struct isl_upoly
*isl_upoly_neginfty(struct isl_ctx
*ctx
)
276 struct isl_upoly_cst
*cst
;
278 cst
= isl_upoly_cst_alloc(ctx
);
282 isl_int_set_si(cst
->n
, -1);
283 isl_int_set_si(cst
->d
, 0);
288 __isl_give
struct isl_upoly
*isl_upoly_nan(struct isl_ctx
*ctx
)
290 struct isl_upoly_cst
*cst
;
292 cst
= isl_upoly_cst_alloc(ctx
);
296 isl_int_set_si(cst
->n
, 0);
297 isl_int_set_si(cst
->d
, 0);
302 __isl_give
struct isl_upoly
*isl_upoly_rat_cst(struct isl_ctx
*ctx
,
303 isl_int n
, isl_int d
)
305 struct isl_upoly_cst
*cst
;
307 cst
= isl_upoly_cst_alloc(ctx
);
311 isl_int_set(cst
->n
, n
);
312 isl_int_set(cst
->d
, d
);
317 __isl_give
struct isl_upoly_rec
*isl_upoly_alloc_rec(struct isl_ctx
*ctx
,
320 struct isl_upoly_rec
*rec
;
322 isl_assert(ctx
, var
>= 0, return NULL
);
323 isl_assert(ctx
, size
>= 0, return NULL
);
324 rec
= isl_calloc(ctx
, struct isl_upoly_rec
,
325 sizeof(struct isl_upoly_rec
) +
326 (size
- 1) * sizeof(struct isl_upoly
*));
341 __isl_give isl_qpolynomial
*isl_qpolynomial_reset_dim(
342 __isl_take isl_qpolynomial
*qp
, __isl_take isl_dim
*dim
)
344 qp
= isl_qpolynomial_cow(qp
);
348 isl_dim_free(qp
->dim
);
353 isl_qpolynomial_free(qp
);
358 isl_ctx
*isl_qpolynomial_get_ctx(__isl_keep isl_qpolynomial
*qp
)
360 return qp
? qp
->dim
->ctx
: NULL
;
363 __isl_give isl_dim
*isl_qpolynomial_get_dim(__isl_keep isl_qpolynomial
*qp
)
365 return qp
? isl_dim_copy(qp
->dim
) : NULL
;
368 unsigned isl_qpolynomial_dim(__isl_keep isl_qpolynomial
*qp
,
369 enum isl_dim_type type
)
371 return qp
? isl_dim_size(qp
->dim
, type
) : 0;
374 int isl_qpolynomial_is_zero(__isl_keep isl_qpolynomial
*qp
)
376 return qp
? isl_upoly_is_zero(qp
->upoly
) : -1;
379 int isl_qpolynomial_is_one(__isl_keep isl_qpolynomial
*qp
)
381 return qp
? isl_upoly_is_one(qp
->upoly
) : -1;
384 int isl_qpolynomial_is_nan(__isl_keep isl_qpolynomial
*qp
)
386 return qp
? isl_upoly_is_nan(qp
->upoly
) : -1;
389 int isl_qpolynomial_is_infty(__isl_keep isl_qpolynomial
*qp
)
391 return qp
? isl_upoly_is_infty(qp
->upoly
) : -1;
394 int isl_qpolynomial_is_neginfty(__isl_keep isl_qpolynomial
*qp
)
396 return qp
? isl_upoly_is_neginfty(qp
->upoly
) : -1;
399 int isl_qpolynomial_sgn(__isl_keep isl_qpolynomial
*qp
)
401 return qp
? isl_upoly_sgn(qp
->upoly
) : 0;
404 static void upoly_free_cst(__isl_take
struct isl_upoly_cst
*cst
)
406 isl_int_clear(cst
->n
);
407 isl_int_clear(cst
->d
);
410 static void upoly_free_rec(__isl_take
struct isl_upoly_rec
*rec
)
414 for (i
= 0; i
< rec
->n
; ++i
)
415 isl_upoly_free(rec
->p
[i
]);
418 __isl_give
struct isl_upoly
*isl_upoly_copy(__isl_keep
struct isl_upoly
*up
)
427 __isl_give
struct isl_upoly
*isl_upoly_dup_cst(__isl_keep
struct isl_upoly
*up
)
429 struct isl_upoly_cst
*cst
;
430 struct isl_upoly_cst
*dup
;
432 cst
= isl_upoly_as_cst(up
);
436 dup
= isl_upoly_as_cst(isl_upoly_zero(up
->ctx
));
439 isl_int_set(dup
->n
, cst
->n
);
440 isl_int_set(dup
->d
, cst
->d
);
445 __isl_give
struct isl_upoly
*isl_upoly_dup_rec(__isl_keep
struct isl_upoly
*up
)
448 struct isl_upoly_rec
*rec
;
449 struct isl_upoly_rec
*dup
;
451 rec
= isl_upoly_as_rec(up
);
455 dup
= isl_upoly_alloc_rec(up
->ctx
, up
->var
, rec
->n
);
459 for (i
= 0; i
< rec
->n
; ++i
) {
460 dup
->p
[i
] = isl_upoly_copy(rec
->p
[i
]);
468 isl_upoly_free(&dup
->up
);
472 __isl_give
struct isl_upoly
*isl_upoly_dup(__isl_keep
struct isl_upoly
*up
)
474 struct isl_upoly
*dup
;
479 if (isl_upoly_is_cst(up
))
480 return isl_upoly_dup_cst(up
);
482 return isl_upoly_dup_rec(up
);
485 __isl_give
struct isl_upoly
*isl_upoly_cow(__isl_take
struct isl_upoly
*up
)
493 return isl_upoly_dup(up
);
496 void isl_upoly_free(__isl_take
struct isl_upoly
*up
)
505 upoly_free_cst((struct isl_upoly_cst
*)up
);
507 upoly_free_rec((struct isl_upoly_rec
*)up
);
509 isl_ctx_deref(up
->ctx
);
513 static void isl_upoly_cst_reduce(__isl_keep
struct isl_upoly_cst
*cst
)
518 isl_int_gcd(gcd
, cst
->n
, cst
->d
);
519 if (!isl_int_is_zero(gcd
) && !isl_int_is_one(gcd
)) {
520 isl_int_divexact(cst
->n
, cst
->n
, gcd
);
521 isl_int_divexact(cst
->d
, cst
->d
, gcd
);
526 __isl_give
struct isl_upoly
*isl_upoly_sum_cst(__isl_take
struct isl_upoly
*up1
,
527 __isl_take
struct isl_upoly
*up2
)
529 struct isl_upoly_cst
*cst1
;
530 struct isl_upoly_cst
*cst2
;
532 up1
= isl_upoly_cow(up1
);
536 cst1
= isl_upoly_as_cst(up1
);
537 cst2
= isl_upoly_as_cst(up2
);
539 if (isl_int_eq(cst1
->d
, cst2
->d
))
540 isl_int_add(cst1
->n
, cst1
->n
, cst2
->n
);
542 isl_int_mul(cst1
->n
, cst1
->n
, cst2
->d
);
543 isl_int_addmul(cst1
->n
, cst2
->n
, cst1
->d
);
544 isl_int_mul(cst1
->d
, cst1
->d
, cst2
->d
);
547 isl_upoly_cst_reduce(cst1
);
557 static __isl_give
struct isl_upoly
*replace_by_zero(
558 __isl_take
struct isl_upoly
*up
)
566 return isl_upoly_zero(ctx
);
569 static __isl_give
struct isl_upoly
*replace_by_constant_term(
570 __isl_take
struct isl_upoly
*up
)
572 struct isl_upoly_rec
*rec
;
573 struct isl_upoly
*cst
;
578 rec
= isl_upoly_as_rec(up
);
581 cst
= isl_upoly_copy(rec
->p
[0]);
589 __isl_give
struct isl_upoly
*isl_upoly_sum(__isl_take
struct isl_upoly
*up1
,
590 __isl_take
struct isl_upoly
*up2
)
593 struct isl_upoly_rec
*rec1
, *rec2
;
598 if (isl_upoly_is_nan(up1
)) {
603 if (isl_upoly_is_nan(up2
)) {
608 if (isl_upoly_is_zero(up1
)) {
613 if (isl_upoly_is_zero(up2
)) {
618 if (up1
->var
< up2
->var
)
619 return isl_upoly_sum(up2
, up1
);
621 if (up2
->var
< up1
->var
) {
622 struct isl_upoly_rec
*rec
;
623 if (isl_upoly_is_infty(up2
) || isl_upoly_is_neginfty(up2
)) {
627 up1
= isl_upoly_cow(up1
);
628 rec
= isl_upoly_as_rec(up1
);
631 rec
->p
[0] = isl_upoly_sum(rec
->p
[0], up2
);
633 up1
= replace_by_constant_term(up1
);
637 if (isl_upoly_is_cst(up1
))
638 return isl_upoly_sum_cst(up1
, up2
);
640 rec1
= isl_upoly_as_rec(up1
);
641 rec2
= isl_upoly_as_rec(up2
);
645 if (rec1
->n
< rec2
->n
)
646 return isl_upoly_sum(up2
, up1
);
648 up1
= isl_upoly_cow(up1
);
649 rec1
= isl_upoly_as_rec(up1
);
653 for (i
= rec2
->n
- 1; i
>= 0; --i
) {
654 rec1
->p
[i
] = isl_upoly_sum(rec1
->p
[i
],
655 isl_upoly_copy(rec2
->p
[i
]));
658 if (i
== rec1
->n
- 1 && isl_upoly_is_zero(rec1
->p
[i
])) {
659 isl_upoly_free(rec1
->p
[i
]);
665 up1
= replace_by_zero(up1
);
666 else if (rec1
->n
== 1)
667 up1
= replace_by_constant_term(up1
);
678 __isl_give
struct isl_upoly
*isl_upoly_cst_add_isl_int(
679 __isl_take
struct isl_upoly
*up
, isl_int v
)
681 struct isl_upoly_cst
*cst
;
683 up
= isl_upoly_cow(up
);
687 cst
= isl_upoly_as_cst(up
);
689 isl_int_addmul(cst
->n
, cst
->d
, v
);
694 __isl_give
struct isl_upoly
*isl_upoly_add_isl_int(
695 __isl_take
struct isl_upoly
*up
, isl_int v
)
697 struct isl_upoly_rec
*rec
;
702 if (isl_upoly_is_cst(up
))
703 return isl_upoly_cst_add_isl_int(up
, v
);
705 up
= isl_upoly_cow(up
);
706 rec
= isl_upoly_as_rec(up
);
710 rec
->p
[0] = isl_upoly_add_isl_int(rec
->p
[0], v
);
720 __isl_give
struct isl_upoly
*isl_upoly_cst_mul_isl_int(
721 __isl_take
struct isl_upoly
*up
, isl_int v
)
723 struct isl_upoly_cst
*cst
;
725 if (isl_upoly_is_zero(up
))
728 up
= isl_upoly_cow(up
);
732 cst
= isl_upoly_as_cst(up
);
734 isl_int_mul(cst
->n
, cst
->n
, v
);
739 __isl_give
struct isl_upoly
*isl_upoly_mul_isl_int(
740 __isl_take
struct isl_upoly
*up
, isl_int v
)
743 struct isl_upoly_rec
*rec
;
748 if (isl_upoly_is_cst(up
))
749 return isl_upoly_cst_mul_isl_int(up
, v
);
751 up
= isl_upoly_cow(up
);
752 rec
= isl_upoly_as_rec(up
);
756 for (i
= 0; i
< rec
->n
; ++i
) {
757 rec
->p
[i
] = isl_upoly_mul_isl_int(rec
->p
[i
], v
);
768 __isl_give
struct isl_upoly
*isl_upoly_mul_cst(__isl_take
struct isl_upoly
*up1
,
769 __isl_take
struct isl_upoly
*up2
)
771 struct isl_upoly_cst
*cst1
;
772 struct isl_upoly_cst
*cst2
;
774 up1
= isl_upoly_cow(up1
);
778 cst1
= isl_upoly_as_cst(up1
);
779 cst2
= isl_upoly_as_cst(up2
);
781 isl_int_mul(cst1
->n
, cst1
->n
, cst2
->n
);
782 isl_int_mul(cst1
->d
, cst1
->d
, cst2
->d
);
784 isl_upoly_cst_reduce(cst1
);
794 __isl_give
struct isl_upoly
*isl_upoly_mul_rec(__isl_take
struct isl_upoly
*up1
,
795 __isl_take
struct isl_upoly
*up2
)
797 struct isl_upoly_rec
*rec1
;
798 struct isl_upoly_rec
*rec2
;
799 struct isl_upoly_rec
*res
;
803 rec1
= isl_upoly_as_rec(up1
);
804 rec2
= isl_upoly_as_rec(up2
);
807 size
= rec1
->n
+ rec2
->n
- 1;
808 res
= isl_upoly_alloc_rec(up1
->ctx
, up1
->var
, size
);
812 for (i
= 0; i
< rec1
->n
; ++i
) {
813 res
->p
[i
] = isl_upoly_mul(isl_upoly_copy(rec2
->p
[0]),
814 isl_upoly_copy(rec1
->p
[i
]));
819 for (; i
< size
; ++i
) {
820 res
->p
[i
] = isl_upoly_zero(up1
->ctx
);
825 for (i
= 0; i
< rec1
->n
; ++i
) {
826 for (j
= 1; j
< rec2
->n
; ++j
) {
827 struct isl_upoly
*up
;
828 up
= isl_upoly_mul(isl_upoly_copy(rec2
->p
[j
]),
829 isl_upoly_copy(rec1
->p
[i
]));
830 res
->p
[i
+ j
] = isl_upoly_sum(res
->p
[i
+ j
], up
);
843 isl_upoly_free(&res
->up
);
847 __isl_give
struct isl_upoly
*isl_upoly_mul(__isl_take
struct isl_upoly
*up1
,
848 __isl_take
struct isl_upoly
*up2
)
853 if (isl_upoly_is_nan(up1
)) {
858 if (isl_upoly_is_nan(up2
)) {
863 if (isl_upoly_is_zero(up1
)) {
868 if (isl_upoly_is_zero(up2
)) {
873 if (isl_upoly_is_one(up1
)) {
878 if (isl_upoly_is_one(up2
)) {
883 if (up1
->var
< up2
->var
)
884 return isl_upoly_mul(up2
, up1
);
886 if (up2
->var
< up1
->var
) {
888 struct isl_upoly_rec
*rec
;
889 if (isl_upoly_is_infty(up2
) || isl_upoly_is_neginfty(up2
)) {
890 isl_ctx
*ctx
= up1
->ctx
;
893 return isl_upoly_nan(ctx
);
895 up1
= isl_upoly_cow(up1
);
896 rec
= isl_upoly_as_rec(up1
);
900 for (i
= 0; i
< rec
->n
; ++i
) {
901 rec
->p
[i
] = isl_upoly_mul(rec
->p
[i
],
902 isl_upoly_copy(up2
));
910 if (isl_upoly_is_cst(up1
))
911 return isl_upoly_mul_cst(up1
, up2
);
913 return isl_upoly_mul_rec(up1
, up2
);
920 __isl_give
struct isl_upoly
*isl_upoly_pow(__isl_take
struct isl_upoly
*up
,
923 struct isl_upoly
*res
;
931 res
= isl_upoly_copy(up
);
933 res
= isl_upoly_one(up
->ctx
);
935 while (power
>>= 1) {
936 up
= isl_upoly_mul(up
, isl_upoly_copy(up
));
938 res
= isl_upoly_mul(res
, isl_upoly_copy(up
));
945 __isl_give isl_qpolynomial
*isl_qpolynomial_alloc(__isl_take isl_dim
*dim
,
946 unsigned n_div
, __isl_take
struct isl_upoly
*up
)
948 struct isl_qpolynomial
*qp
= NULL
;
954 total
= isl_dim_total(dim
);
956 qp
= isl_calloc_type(dim
->ctx
, struct isl_qpolynomial
);
961 qp
->div
= isl_mat_alloc(dim
->ctx
, n_div
, 1 + 1 + total
+ n_div
);
972 isl_qpolynomial_free(qp
);
976 __isl_give isl_qpolynomial
*isl_qpolynomial_copy(__isl_keep isl_qpolynomial
*qp
)
985 __isl_give isl_qpolynomial
*isl_qpolynomial_dup(__isl_keep isl_qpolynomial
*qp
)
987 struct isl_qpolynomial
*dup
;
992 dup
= isl_qpolynomial_alloc(isl_dim_copy(qp
->dim
), qp
->div
->n_row
,
993 isl_upoly_copy(qp
->upoly
));
996 isl_mat_free(dup
->div
);
997 dup
->div
= isl_mat_copy(qp
->div
);
1003 isl_qpolynomial_free(dup
);
1007 __isl_give isl_qpolynomial
*isl_qpolynomial_cow(__isl_take isl_qpolynomial
*qp
)
1015 return isl_qpolynomial_dup(qp
);
1018 void isl_qpolynomial_free(__isl_take isl_qpolynomial
*qp
)
1026 isl_dim_free(qp
->dim
);
1027 isl_mat_free(qp
->div
);
1028 isl_upoly_free(qp
->upoly
);
1033 __isl_give
struct isl_upoly
*isl_upoly_var_pow(isl_ctx
*ctx
, int pos
, int power
)
1036 struct isl_upoly
*up
;
1037 struct isl_upoly_rec
*rec
;
1038 struct isl_upoly_cst
*cst
;
1040 rec
= isl_upoly_alloc_rec(ctx
, pos
, 1 + power
);
1043 for (i
= 0; i
< 1 + power
; ++i
) {
1044 rec
->p
[i
] = isl_upoly_zero(ctx
);
1049 cst
= isl_upoly_as_cst(rec
->p
[power
]);
1050 isl_int_set_si(cst
->n
, 1);
1054 isl_upoly_free(&rec
->up
);
1058 /* r array maps original positions to new positions.
1060 static __isl_give
struct isl_upoly
*reorder(__isl_take
struct isl_upoly
*up
,
1064 struct isl_upoly_rec
*rec
;
1065 struct isl_upoly
*base
;
1066 struct isl_upoly
*res
;
1068 if (isl_upoly_is_cst(up
))
1071 rec
= isl_upoly_as_rec(up
);
1075 isl_assert(up
->ctx
, rec
->n
>= 1, goto error
);
1077 base
= isl_upoly_var_pow(up
->ctx
, r
[up
->var
], 1);
1078 res
= reorder(isl_upoly_copy(rec
->p
[rec
->n
- 1]), r
);
1080 for (i
= rec
->n
- 2; i
>= 0; --i
) {
1081 res
= isl_upoly_mul(res
, isl_upoly_copy(base
));
1082 res
= isl_upoly_sum(res
, reorder(isl_upoly_copy(rec
->p
[i
]), r
));
1085 isl_upoly_free(base
);
1094 static int compatible_divs(__isl_keep isl_mat
*div1
, __isl_keep isl_mat
*div2
)
1099 isl_assert(div1
->ctx
, div1
->n_row
>= div2
->n_row
&&
1100 div1
->n_col
>= div2
->n_col
, return -1);
1102 if (div1
->n_row
== div2
->n_row
)
1103 return isl_mat_is_equal(div1
, div2
);
1105 n_row
= div1
->n_row
;
1106 n_col
= div1
->n_col
;
1107 div1
->n_row
= div2
->n_row
;
1108 div1
->n_col
= div2
->n_col
;
1110 equal
= isl_mat_is_equal(div1
, div2
);
1112 div1
->n_row
= n_row
;
1113 div1
->n_col
= n_col
;
1118 static void expand_row(__isl_keep isl_mat
*dst
, int d
,
1119 __isl_keep isl_mat
*src
, int s
, int *exp
)
1122 unsigned c
= src
->n_col
- src
->n_row
;
1124 isl_seq_cpy(dst
->row
[d
], src
->row
[s
], c
);
1125 isl_seq_clr(dst
->row
[d
] + c
, dst
->n_col
- c
);
1127 for (i
= 0; i
< s
; ++i
)
1128 isl_int_set(dst
->row
[d
][c
+ exp
[i
]], src
->row
[s
][c
+ i
]);
1131 static int cmp_row(__isl_keep isl_mat
*div
, int i
, int j
)
1135 li
= isl_seq_last_non_zero(div
->row
[i
], div
->n_col
);
1136 lj
= isl_seq_last_non_zero(div
->row
[j
], div
->n_col
);
1141 return isl_seq_cmp(div
->row
[i
], div
->row
[j
], div
->n_col
);
1144 struct isl_div_sort_info
{
1149 static int div_sort_cmp(const void *p1
, const void *p2
)
1151 const struct isl_div_sort_info
*i1
, *i2
;
1152 i1
= (const struct isl_div_sort_info
*) p1
;
1153 i2
= (const struct isl_div_sort_info
*) p2
;
1155 return cmp_row(i1
->div
, i1
->row
, i2
->row
);
1158 /* Sort divs and remove duplicates.
1160 static __isl_give isl_qpolynomial
*sort_divs(__isl_take isl_qpolynomial
*qp
)
1165 struct isl_div_sort_info
*array
= NULL
;
1166 int *pos
= NULL
, *at
= NULL
;
1167 int *reordering
= NULL
;
1172 if (qp
->div
->n_row
<= 1)
1175 div_pos
= isl_dim_total(qp
->dim
);
1177 array
= isl_alloc_array(qp
->div
->ctx
, struct isl_div_sort_info
,
1179 pos
= isl_alloc_array(qp
->div
->ctx
, int, qp
->div
->n_row
);
1180 at
= isl_alloc_array(qp
->div
->ctx
, int, qp
->div
->n_row
);
1181 len
= qp
->div
->n_col
- 2;
1182 reordering
= isl_alloc_array(qp
->div
->ctx
, int, len
);
1183 if (!array
|| !pos
|| !at
|| !reordering
)
1186 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
1187 array
[i
].div
= qp
->div
;
1193 qsort(array
, qp
->div
->n_row
, sizeof(struct isl_div_sort_info
),
1196 for (i
= 0; i
< div_pos
; ++i
)
1199 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
1200 if (pos
[array
[i
].row
] == i
)
1202 qp
->div
= isl_mat_swap_rows(qp
->div
, i
, pos
[array
[i
].row
]);
1203 pos
[at
[i
]] = pos
[array
[i
].row
];
1204 at
[pos
[array
[i
].row
]] = at
[i
];
1205 at
[i
] = array
[i
].row
;
1206 pos
[array
[i
].row
] = i
;
1210 for (i
= 0; i
< len
- div_pos
; ++i
) {
1212 isl_seq_eq(qp
->div
->row
[i
- skip
- 1],
1213 qp
->div
->row
[i
- skip
], qp
->div
->n_col
)) {
1214 qp
->div
= isl_mat_drop_rows(qp
->div
, i
- skip
, 1);
1215 isl_mat_col_add(qp
->div
, 2 + div_pos
+ i
- skip
- 1,
1216 2 + div_pos
+ i
- skip
);
1217 qp
->div
= isl_mat_drop_cols(qp
->div
,
1218 2 + div_pos
+ i
- skip
, 1);
1221 reordering
[div_pos
+ array
[i
].row
] = div_pos
+ i
- skip
;
1224 qp
->upoly
= reorder(qp
->upoly
, reordering
);
1226 if (!qp
->upoly
|| !qp
->div
)
1240 isl_qpolynomial_free(qp
);
1244 static __isl_give isl_mat
*merge_divs(__isl_keep isl_mat
*div1
,
1245 __isl_keep isl_mat
*div2
, int *exp1
, int *exp2
)
1248 isl_mat
*div
= NULL
;
1249 unsigned d
= div1
->n_col
- div1
->n_row
;
1251 div
= isl_mat_alloc(div1
->ctx
, 1 + div1
->n_row
+ div2
->n_row
,
1252 d
+ div1
->n_row
+ div2
->n_row
);
1256 for (i
= 0, j
= 0, k
= 0; i
< div1
->n_row
&& j
< div2
->n_row
; ++k
) {
1259 expand_row(div
, k
, div1
, i
, exp1
);
1260 expand_row(div
, k
+ 1, div2
, j
, exp2
);
1262 cmp
= cmp_row(div
, k
, k
+ 1);
1266 } else if (cmp
< 0) {
1270 isl_seq_cpy(div
->row
[k
], div
->row
[k
+ 1], div
->n_col
);
1273 for (; i
< div1
->n_row
; ++i
, ++k
) {
1274 expand_row(div
, k
, div1
, i
, exp1
);
1277 for (; j
< div2
->n_row
; ++j
, ++k
) {
1278 expand_row(div
, k
, div2
, j
, exp2
);
1288 static __isl_give
struct isl_upoly
*expand(__isl_take
struct isl_upoly
*up
,
1289 int *exp
, int first
)
1292 struct isl_upoly_rec
*rec
;
1294 if (isl_upoly_is_cst(up
))
1297 if (up
->var
< first
)
1300 if (exp
[up
->var
- first
] == up
->var
- first
)
1303 up
= isl_upoly_cow(up
);
1307 up
->var
= exp
[up
->var
- first
] + first
;
1309 rec
= isl_upoly_as_rec(up
);
1313 for (i
= 0; i
< rec
->n
; ++i
) {
1314 rec
->p
[i
] = expand(rec
->p
[i
], exp
, first
);
1325 static __isl_give isl_qpolynomial
*with_merged_divs(
1326 __isl_give isl_qpolynomial
*(*fn
)(__isl_take isl_qpolynomial
*qp1
,
1327 __isl_take isl_qpolynomial
*qp2
),
1328 __isl_take isl_qpolynomial
*qp1
, __isl_take isl_qpolynomial
*qp2
)
1332 isl_mat
*div
= NULL
;
1334 qp1
= isl_qpolynomial_cow(qp1
);
1335 qp2
= isl_qpolynomial_cow(qp2
);
1340 isl_assert(qp1
->div
->ctx
, qp1
->div
->n_row
>= qp2
->div
->n_row
&&
1341 qp1
->div
->n_col
>= qp2
->div
->n_col
, goto error
);
1343 exp1
= isl_alloc_array(qp1
->div
->ctx
, int, qp1
->div
->n_row
);
1344 exp2
= isl_alloc_array(qp2
->div
->ctx
, int, qp2
->div
->n_row
);
1348 div
= merge_divs(qp1
->div
, qp2
->div
, exp1
, exp2
);
1352 isl_mat_free(qp1
->div
);
1353 qp1
->div
= isl_mat_copy(div
);
1354 isl_mat_free(qp2
->div
);
1355 qp2
->div
= isl_mat_copy(div
);
1357 qp1
->upoly
= expand(qp1
->upoly
, exp1
, div
->n_col
- div
->n_row
- 2);
1358 qp2
->upoly
= expand(qp2
->upoly
, exp2
, div
->n_col
- div
->n_row
- 2);
1360 if (!qp1
->upoly
|| !qp2
->upoly
)
1367 return fn(qp1
, qp2
);
1372 isl_qpolynomial_free(qp1
);
1373 isl_qpolynomial_free(qp2
);
1377 __isl_give isl_qpolynomial
*isl_qpolynomial_add(__isl_take isl_qpolynomial
*qp1
,
1378 __isl_take isl_qpolynomial
*qp2
)
1380 qp1
= isl_qpolynomial_cow(qp1
);
1385 if (qp1
->div
->n_row
< qp2
->div
->n_row
)
1386 return isl_qpolynomial_add(qp2
, qp1
);
1388 isl_assert(qp1
->dim
->ctx
, isl_dim_equal(qp1
->dim
, qp2
->dim
), goto error
);
1389 if (!compatible_divs(qp1
->div
, qp2
->div
))
1390 return with_merged_divs(isl_qpolynomial_add
, qp1
, qp2
);
1392 qp1
->upoly
= isl_upoly_sum(qp1
->upoly
, isl_upoly_copy(qp2
->upoly
));
1396 isl_qpolynomial_free(qp2
);
1400 isl_qpolynomial_free(qp1
);
1401 isl_qpolynomial_free(qp2
);
1405 __isl_give isl_qpolynomial
*isl_qpolynomial_add_on_domain(
1406 __isl_keep isl_set
*dom
,
1407 __isl_take isl_qpolynomial
*qp1
,
1408 __isl_take isl_qpolynomial
*qp2
)
1410 qp1
= isl_qpolynomial_add(qp1
, qp2
);
1411 qp1
= isl_qpolynomial_gist(qp1
, isl_set_copy(dom
));
1415 __isl_give isl_qpolynomial
*isl_qpolynomial_sub(__isl_take isl_qpolynomial
*qp1
,
1416 __isl_take isl_qpolynomial
*qp2
)
1418 return isl_qpolynomial_add(qp1
, isl_qpolynomial_neg(qp2
));
1421 __isl_give isl_qpolynomial
*isl_qpolynomial_add_isl_int(
1422 __isl_take isl_qpolynomial
*qp
, isl_int v
)
1424 if (isl_int_is_zero(v
))
1427 qp
= isl_qpolynomial_cow(qp
);
1431 qp
->upoly
= isl_upoly_add_isl_int(qp
->upoly
, v
);
1437 isl_qpolynomial_free(qp
);
1442 __isl_give isl_qpolynomial
*isl_qpolynomial_neg(__isl_take isl_qpolynomial
*qp
)
1447 return isl_qpolynomial_mul_isl_int(qp
, qp
->dim
->ctx
->negone
);
1450 __isl_give isl_qpolynomial
*isl_qpolynomial_mul_isl_int(
1451 __isl_take isl_qpolynomial
*qp
, isl_int v
)
1453 if (isl_int_is_one(v
))
1456 if (qp
&& isl_int_is_zero(v
)) {
1457 isl_qpolynomial
*zero
;
1458 zero
= isl_qpolynomial_zero(isl_dim_copy(qp
->dim
));
1459 isl_qpolynomial_free(qp
);
1463 qp
= isl_qpolynomial_cow(qp
);
1467 qp
->upoly
= isl_upoly_mul_isl_int(qp
->upoly
, v
);
1473 isl_qpolynomial_free(qp
);
1477 __isl_give isl_qpolynomial
*isl_qpolynomial_mul(__isl_take isl_qpolynomial
*qp1
,
1478 __isl_take isl_qpolynomial
*qp2
)
1480 qp1
= isl_qpolynomial_cow(qp1
);
1485 if (qp1
->div
->n_row
< qp2
->div
->n_row
)
1486 return isl_qpolynomial_mul(qp2
, qp1
);
1488 isl_assert(qp1
->dim
->ctx
, isl_dim_equal(qp1
->dim
, qp2
->dim
), goto error
);
1489 if (!compatible_divs(qp1
->div
, qp2
->div
))
1490 return with_merged_divs(isl_qpolynomial_mul
, qp1
, qp2
);
1492 qp1
->upoly
= isl_upoly_mul(qp1
->upoly
, isl_upoly_copy(qp2
->upoly
));
1496 isl_qpolynomial_free(qp2
);
1500 isl_qpolynomial_free(qp1
);
1501 isl_qpolynomial_free(qp2
);
1505 __isl_give isl_qpolynomial
*isl_qpolynomial_pow(__isl_take isl_qpolynomial
*qp
,
1508 qp
= isl_qpolynomial_cow(qp
);
1513 qp
->upoly
= isl_upoly_pow(qp
->upoly
, power
);
1519 isl_qpolynomial_free(qp
);
1523 __isl_give isl_qpolynomial
*isl_qpolynomial_zero(__isl_take isl_dim
*dim
)
1525 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_zero(dim
->ctx
));
1528 __isl_give isl_qpolynomial
*isl_qpolynomial_one(__isl_take isl_dim
*dim
)
1530 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_one(dim
->ctx
));
1533 __isl_give isl_qpolynomial
*isl_qpolynomial_infty(__isl_take isl_dim
*dim
)
1535 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_infty(dim
->ctx
));
1538 __isl_give isl_qpolynomial
*isl_qpolynomial_neginfty(__isl_take isl_dim
*dim
)
1540 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_neginfty(dim
->ctx
));
1543 __isl_give isl_qpolynomial
*isl_qpolynomial_nan(__isl_take isl_dim
*dim
)
1545 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_nan(dim
->ctx
));
1548 __isl_give isl_qpolynomial
*isl_qpolynomial_cst(__isl_take isl_dim
*dim
,
1551 struct isl_qpolynomial
*qp
;
1552 struct isl_upoly_cst
*cst
;
1554 qp
= isl_qpolynomial_alloc(dim
, 0, isl_upoly_zero(dim
->ctx
));
1558 cst
= isl_upoly_as_cst(qp
->upoly
);
1559 isl_int_set(cst
->n
, v
);
1564 int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial
*qp
,
1565 isl_int
*n
, isl_int
*d
)
1567 struct isl_upoly_cst
*cst
;
1572 if (!isl_upoly_is_cst(qp
->upoly
))
1575 cst
= isl_upoly_as_cst(qp
->upoly
);
1580 isl_int_set(*n
, cst
->n
);
1582 isl_int_set(*d
, cst
->d
);
1587 int isl_upoly_is_affine(__isl_keep
struct isl_upoly
*up
)
1590 struct isl_upoly_rec
*rec
;
1598 rec
= isl_upoly_as_rec(up
);
1605 isl_assert(up
->ctx
, rec
->n
> 1, return -1);
1607 is_cst
= isl_upoly_is_cst(rec
->p
[1]);
1613 return isl_upoly_is_affine(rec
->p
[0]);
1616 int isl_qpolynomial_is_affine(__isl_keep isl_qpolynomial
*qp
)
1621 if (qp
->div
->n_row
> 0)
1624 return isl_upoly_is_affine(qp
->upoly
);
1627 static void update_coeff(__isl_keep isl_vec
*aff
,
1628 __isl_keep
struct isl_upoly_cst
*cst
, int pos
)
1633 if (isl_int_is_zero(cst
->n
))
1638 isl_int_gcd(gcd
, cst
->d
, aff
->el
[0]);
1639 isl_int_divexact(f
, cst
->d
, gcd
);
1640 isl_int_divexact(gcd
, aff
->el
[0], gcd
);
1641 isl_seq_scale(aff
->el
, aff
->el
, f
, aff
->size
);
1642 isl_int_mul(aff
->el
[1 + pos
], gcd
, cst
->n
);
1647 int isl_upoly_update_affine(__isl_keep
struct isl_upoly
*up
,
1648 __isl_keep isl_vec
*aff
)
1650 struct isl_upoly_cst
*cst
;
1651 struct isl_upoly_rec
*rec
;
1657 struct isl_upoly_cst
*cst
;
1659 cst
= isl_upoly_as_cst(up
);
1662 update_coeff(aff
, cst
, 0);
1666 rec
= isl_upoly_as_rec(up
);
1669 isl_assert(up
->ctx
, rec
->n
== 2, return -1);
1671 cst
= isl_upoly_as_cst(rec
->p
[1]);
1674 update_coeff(aff
, cst
, 1 + up
->var
);
1676 return isl_upoly_update_affine(rec
->p
[0], aff
);
1679 __isl_give isl_vec
*isl_qpolynomial_extract_affine(
1680 __isl_keep isl_qpolynomial
*qp
)
1688 d
= isl_dim_total(qp
->dim
);
1689 aff
= isl_vec_alloc(qp
->div
->ctx
, 2 + d
+ qp
->div
->n_row
);
1693 isl_seq_clr(aff
->el
+ 1, 1 + d
+ qp
->div
->n_row
);
1694 isl_int_set_si(aff
->el
[0], 1);
1696 if (isl_upoly_update_affine(qp
->upoly
, aff
) < 0)
1705 int isl_qpolynomial_is_equal(__isl_keep isl_qpolynomial
*qp1
,
1706 __isl_keep isl_qpolynomial
*qp2
)
1711 return isl_upoly_is_equal(qp1
->upoly
, qp2
->upoly
);
1714 static void upoly_update_den(__isl_keep
struct isl_upoly
*up
, isl_int
*d
)
1717 struct isl_upoly_rec
*rec
;
1719 if (isl_upoly_is_cst(up
)) {
1720 struct isl_upoly_cst
*cst
;
1721 cst
= isl_upoly_as_cst(up
);
1724 isl_int_lcm(*d
, *d
, cst
->d
);
1728 rec
= isl_upoly_as_rec(up
);
1732 for (i
= 0; i
< rec
->n
; ++i
)
1733 upoly_update_den(rec
->p
[i
], d
);
1736 void isl_qpolynomial_get_den(__isl_keep isl_qpolynomial
*qp
, isl_int
*d
)
1738 isl_int_set_si(*d
, 1);
1741 upoly_update_den(qp
->upoly
, d
);
1744 __isl_give isl_qpolynomial
*isl_qpolynomial_var_pow(__isl_take isl_dim
*dim
,
1747 struct isl_ctx
*ctx
;
1754 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_var_pow(ctx
, pos
, power
));
1757 __isl_give isl_qpolynomial
*isl_qpolynomial_var(__isl_take isl_dim
*dim
,
1758 enum isl_dim_type type
, unsigned pos
)
1763 isl_assert(dim
->ctx
, isl_dim_size(dim
, isl_dim_in
) == 0, goto error
);
1764 isl_assert(dim
->ctx
, pos
< isl_dim_size(dim
, type
), goto error
);
1766 if (type
== isl_dim_set
)
1767 pos
+= isl_dim_size(dim
, isl_dim_param
);
1769 return isl_qpolynomial_var_pow(dim
, pos
, 1);
1775 __isl_give
struct isl_upoly
*isl_upoly_subs(__isl_take
struct isl_upoly
*up
,
1776 unsigned first
, unsigned n
, __isl_keep
struct isl_upoly
**subs
)
1779 struct isl_upoly_rec
*rec
;
1780 struct isl_upoly
*base
, *res
;
1785 if (isl_upoly_is_cst(up
))
1788 if (up
->var
< first
)
1791 rec
= isl_upoly_as_rec(up
);
1795 isl_assert(up
->ctx
, rec
->n
>= 1, goto error
);
1797 if (up
->var
>= first
+ n
)
1798 base
= isl_upoly_var_pow(up
->ctx
, up
->var
, 1);
1800 base
= isl_upoly_copy(subs
[up
->var
- first
]);
1802 res
= isl_upoly_subs(isl_upoly_copy(rec
->p
[rec
->n
- 1]), first
, n
, subs
);
1803 for (i
= rec
->n
- 2; i
>= 0; --i
) {
1804 struct isl_upoly
*t
;
1805 t
= isl_upoly_subs(isl_upoly_copy(rec
->p
[i
]), first
, n
, subs
);
1806 res
= isl_upoly_mul(res
, isl_upoly_copy(base
));
1807 res
= isl_upoly_sum(res
, t
);
1810 isl_upoly_free(base
);
1819 __isl_give
struct isl_upoly
*isl_upoly_from_affine(isl_ctx
*ctx
, isl_int
*f
,
1820 isl_int denom
, unsigned len
)
1823 struct isl_upoly
*up
;
1825 isl_assert(ctx
, len
>= 1, return NULL
);
1827 up
= isl_upoly_rat_cst(ctx
, f
[0], denom
);
1828 for (i
= 0; i
< len
- 1; ++i
) {
1829 struct isl_upoly
*t
;
1830 struct isl_upoly
*c
;
1832 if (isl_int_is_zero(f
[1 + i
]))
1835 c
= isl_upoly_rat_cst(ctx
, f
[1 + i
], denom
);
1836 t
= isl_upoly_var_pow(ctx
, i
, 1);
1837 t
= isl_upoly_mul(c
, t
);
1838 up
= isl_upoly_sum(up
, t
);
1844 /* Remove common factor of non-constant terms and denominator.
1846 static void normalize_div(__isl_keep isl_qpolynomial
*qp
, int div
)
1848 isl_ctx
*ctx
= qp
->div
->ctx
;
1849 unsigned total
= qp
->div
->n_col
- 2;
1851 isl_seq_gcd(qp
->div
->row
[div
] + 2, total
, &ctx
->normalize_gcd
);
1852 isl_int_gcd(ctx
->normalize_gcd
,
1853 ctx
->normalize_gcd
, qp
->div
->row
[div
][0]);
1854 if (isl_int_is_one(ctx
->normalize_gcd
))
1857 isl_seq_scale_down(qp
->div
->row
[div
] + 2, qp
->div
->row
[div
] + 2,
1858 ctx
->normalize_gcd
, total
);
1859 isl_int_divexact(qp
->div
->row
[div
][0], qp
->div
->row
[div
][0],
1860 ctx
->normalize_gcd
);
1861 isl_int_fdiv_q(qp
->div
->row
[div
][1], qp
->div
->row
[div
][1],
1862 ctx
->normalize_gcd
);
1865 /* Replace the integer division identified by "div" by the polynomial "s".
1866 * The integer division is assumed not to appear in the definition
1867 * of any other integer divisions.
1869 static __isl_give isl_qpolynomial
*substitute_div(
1870 __isl_take isl_qpolynomial
*qp
,
1871 int div
, __isl_take
struct isl_upoly
*s
)
1880 qp
= isl_qpolynomial_cow(qp
);
1884 total
= isl_dim_total(qp
->dim
);
1885 qp
->upoly
= isl_upoly_subs(qp
->upoly
, total
+ div
, 1, &s
);
1889 reordering
= isl_alloc_array(qp
->dim
->ctx
, int, total
+ qp
->div
->n_row
);
1892 for (i
= 0; i
< total
+ div
; ++i
)
1894 for (i
= total
+ div
+ 1; i
< total
+ qp
->div
->n_row
; ++i
)
1895 reordering
[i
] = i
- 1;
1896 qp
->div
= isl_mat_drop_rows(qp
->div
, div
, 1);
1897 qp
->div
= isl_mat_drop_cols(qp
->div
, 2 + total
+ div
, 1);
1898 qp
->upoly
= reorder(qp
->upoly
, reordering
);
1901 if (!qp
->upoly
|| !qp
->div
)
1907 isl_qpolynomial_free(qp
);
1912 /* Replace all integer divisions [e/d] that turn out to not actually be integer
1913 * divisions because d is equal to 1 by their definition, i.e., e.
1915 static __isl_give isl_qpolynomial
*substitute_non_divs(
1916 __isl_take isl_qpolynomial
*qp
)
1920 struct isl_upoly
*s
;
1925 total
= isl_dim_total(qp
->dim
);
1926 for (i
= 0; qp
&& i
< qp
->div
->n_row
; ++i
) {
1927 if (!isl_int_is_one(qp
->div
->row
[i
][0]))
1929 for (j
= i
+ 1; j
< qp
->div
->n_row
; ++j
) {
1930 if (isl_int_is_zero(qp
->div
->row
[j
][2 + total
+ i
]))
1932 isl_seq_combine(qp
->div
->row
[j
] + 1,
1933 qp
->div
->ctx
->one
, qp
->div
->row
[j
] + 1,
1934 qp
->div
->row
[j
][2 + total
+ i
],
1935 qp
->div
->row
[i
] + 1, 1 + total
+ i
);
1936 isl_int_set_si(qp
->div
->row
[j
][2 + total
+ i
], 0);
1937 normalize_div(qp
, j
);
1939 s
= isl_upoly_from_affine(qp
->dim
->ctx
, qp
->div
->row
[i
] + 1,
1940 qp
->div
->row
[i
][0], qp
->div
->n_col
- 1);
1941 qp
= substitute_div(qp
, i
, s
);
1948 /* Reduce the coefficients of div "div" to lie in the interval [0, d-1],
1949 * with d the denominator. When replacing the coefficient e of x by
1950 * d * frac(e/d) = e - d * floor(e/d), we are subtracting d * floor(e/d) * x
1951 * inside the division, so we need to add floor(e/d) * x outside.
1952 * That is, we replace q by q' + floor(e/d) * x and we therefore need
1953 * to adjust the coefficient of x in each later div that depends on the
1954 * current div "div" and also in the affine expression "aff"
1955 * (if it too depends on "div").
1957 static void reduce_div(__isl_keep isl_qpolynomial
*qp
, int div
,
1958 __isl_keep isl_vec
*aff
)
1962 unsigned total
= qp
->div
->n_col
- qp
->div
->n_row
- 2;
1965 for (i
= 0; i
< 1 + total
+ div
; ++i
) {
1966 if (isl_int_is_nonneg(qp
->div
->row
[div
][1 + i
]) &&
1967 isl_int_lt(qp
->div
->row
[div
][1 + i
], qp
->div
->row
[div
][0]))
1969 isl_int_fdiv_q(v
, qp
->div
->row
[div
][1 + i
], qp
->div
->row
[div
][0]);
1970 isl_int_fdiv_r(qp
->div
->row
[div
][1 + i
],
1971 qp
->div
->row
[div
][1 + i
], qp
->div
->row
[div
][0]);
1972 if (!isl_int_is_zero(aff
->el
[1 + total
+ div
]))
1973 isl_int_addmul(aff
->el
[i
], v
, aff
->el
[1 + total
+ div
]);
1974 for (j
= div
+ 1; j
< qp
->div
->n_row
; ++j
) {
1975 if (isl_int_is_zero(qp
->div
->row
[j
][2 + total
+ div
]))
1977 isl_int_addmul(qp
->div
->row
[j
][1 + i
],
1978 v
, qp
->div
->row
[j
][2 + total
+ div
]);
1984 /* Check if the last non-zero coefficient is bigger that half of the
1985 * denominator. If so, we will invert the div to further reduce the number
1986 * of distinct divs that may appear.
1987 * If the last non-zero coefficient is exactly half the denominator,
1988 * then we continue looking for earlier coefficients that are bigger
1989 * than half the denominator.
1991 static int needs_invert(__isl_keep isl_mat
*div
, int row
)
1996 for (i
= div
->n_col
- 1; i
>= 1; --i
) {
1997 if (isl_int_is_zero(div
->row
[row
][i
]))
1999 isl_int_mul_ui(div
->row
[row
][i
], div
->row
[row
][i
], 2);
2000 cmp
= isl_int_cmp(div
->row
[row
][i
], div
->row
[row
][0]);
2001 isl_int_divexact_ui(div
->row
[row
][i
], div
->row
[row
][i
], 2);
2011 /* Replace div "div" q = [e/d] by -[(-e+(d-1))/d].
2012 * We only invert the coefficients of e (and the coefficient of q in
2013 * later divs and in "aff"). After calling this function, the
2014 * coefficients of e should be reduced again.
2016 static void invert_div(__isl_keep isl_qpolynomial
*qp
, int div
,
2017 __isl_keep isl_vec
*aff
)
2019 unsigned total
= qp
->div
->n_col
- qp
->div
->n_row
- 2;
2021 isl_seq_neg(qp
->div
->row
[div
] + 1,
2022 qp
->div
->row
[div
] + 1, qp
->div
->n_col
- 1);
2023 isl_int_sub_ui(qp
->div
->row
[div
][1], qp
->div
->row
[div
][1], 1);
2024 isl_int_add(qp
->div
->row
[div
][1],
2025 qp
->div
->row
[div
][1], qp
->div
->row
[div
][0]);
2026 if (!isl_int_is_zero(aff
->el
[1 + total
+ div
]))
2027 isl_int_neg(aff
->el
[1 + total
+ div
], aff
->el
[1 + total
+ div
]);
2028 isl_mat_col_mul(qp
->div
, 2 + total
+ div
,
2029 qp
->div
->ctx
->negone
, 2 + total
+ div
);
2032 /* Assuming "qp" is a monomial, reduce all its divs to have coefficients
2033 * in the interval [0, d-1], with d the denominator and such that the
2034 * last non-zero coefficient that is not equal to d/2 is smaller than d/2.
2036 * After the reduction, some divs may have become redundant or identical,
2037 * so we call substitute_non_divs and sort_divs. If these functions
2038 * eliminate divs of merge * two or more divs into one, the coefficients
2039 * of the enclosing divs may have to be reduced again, so we call
2040 * ourselves recursively if the number of divs decreases.
2042 static __isl_give isl_qpolynomial
*reduce_divs(__isl_take isl_qpolynomial
*qp
)
2045 isl_vec
*aff
= NULL
;
2046 struct isl_upoly
*s
;
2052 aff
= isl_vec_alloc(qp
->div
->ctx
, qp
->div
->n_col
- 1);
2053 aff
= isl_vec_clr(aff
);
2057 isl_int_set_si(aff
->el
[1 + qp
->upoly
->var
], 1);
2059 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
2060 normalize_div(qp
, i
);
2061 reduce_div(qp
, i
, aff
);
2062 if (needs_invert(qp
->div
, i
)) {
2063 invert_div(qp
, i
, aff
);
2064 reduce_div(qp
, i
, aff
);
2068 s
= isl_upoly_from_affine(qp
->div
->ctx
, aff
->el
,
2069 qp
->div
->ctx
->one
, aff
->size
);
2070 qp
->upoly
= isl_upoly_subs(qp
->upoly
, qp
->upoly
->var
, 1, &s
);
2077 n_div
= qp
->div
->n_row
;
2078 qp
= substitute_non_divs(qp
);
2080 if (qp
&& qp
->div
->n_row
< n_div
)
2081 return reduce_divs(qp
);
2085 isl_qpolynomial_free(qp
);
2090 /* Assumes each div only depends on earlier divs.
2092 __isl_give isl_qpolynomial
*isl_qpolynomial_div_pow(__isl_take isl_div
*div
,
2095 struct isl_qpolynomial
*qp
= NULL
;
2096 struct isl_upoly_rec
*rec
;
2097 struct isl_upoly_cst
*cst
;
2104 d
= div
->line
- div
->bmap
->div
;
2106 pos
= isl_dim_total(div
->bmap
->dim
) + d
;
2107 rec
= isl_upoly_alloc_rec(div
->ctx
, pos
, 1 + power
);
2108 qp
= isl_qpolynomial_alloc(isl_basic_map_get_dim(div
->bmap
),
2109 div
->bmap
->n_div
, &rec
->up
);
2113 for (i
= 0; i
< div
->bmap
->n_div
; ++i
)
2114 isl_seq_cpy(qp
->div
->row
[i
], div
->bmap
->div
[i
], qp
->div
->n_col
);
2116 for (i
= 0; i
< 1 + power
; ++i
) {
2117 rec
->p
[i
] = isl_upoly_zero(div
->ctx
);
2122 cst
= isl_upoly_as_cst(rec
->p
[power
]);
2123 isl_int_set_si(cst
->n
, 1);
2127 qp
= reduce_divs(qp
);
2131 isl_qpolynomial_free(qp
);
2136 __isl_give isl_qpolynomial
*isl_qpolynomial_div(__isl_take isl_div
*div
)
2138 return isl_qpolynomial_div_pow(div
, 1);
2141 __isl_give isl_qpolynomial
*isl_qpolynomial_rat_cst(__isl_take isl_dim
*dim
,
2142 const isl_int n
, const isl_int d
)
2144 struct isl_qpolynomial
*qp
;
2145 struct isl_upoly_cst
*cst
;
2147 qp
= isl_qpolynomial_alloc(dim
, 0, isl_upoly_zero(dim
->ctx
));
2151 cst
= isl_upoly_as_cst(qp
->upoly
);
2152 isl_int_set(cst
->n
, n
);
2153 isl_int_set(cst
->d
, d
);
2158 static int up_set_active(__isl_keep
struct isl_upoly
*up
, int *active
, int d
)
2160 struct isl_upoly_rec
*rec
;
2166 if (isl_upoly_is_cst(up
))
2170 active
[up
->var
] = 1;
2172 rec
= isl_upoly_as_rec(up
);
2173 for (i
= 0; i
< rec
->n
; ++i
)
2174 if (up_set_active(rec
->p
[i
], active
, d
) < 0)
2180 static int set_active(__isl_keep isl_qpolynomial
*qp
, int *active
)
2183 int d
= isl_dim_total(qp
->dim
);
2188 for (i
= 0; i
< d
; ++i
)
2189 for (j
= 0; j
< qp
->div
->n_row
; ++j
) {
2190 if (isl_int_is_zero(qp
->div
->row
[j
][2 + i
]))
2196 return up_set_active(qp
->upoly
, active
, d
);
2199 int isl_qpolynomial_involves_dims(__isl_keep isl_qpolynomial
*qp
,
2200 enum isl_dim_type type
, unsigned first
, unsigned n
)
2211 isl_assert(qp
->dim
->ctx
, first
+ n
<= isl_dim_size(qp
->dim
, type
),
2213 isl_assert(qp
->dim
->ctx
, type
== isl_dim_param
||
2214 type
== isl_dim_set
, return -1);
2216 active
= isl_calloc_array(set
->ctx
, int, isl_dim_total(qp
->dim
));
2217 if (set_active(qp
, active
) < 0)
2220 if (type
== isl_dim_set
)
2221 first
+= isl_dim_size(qp
->dim
, isl_dim_param
);
2222 for (i
= 0; i
< n
; ++i
)
2223 if (active
[first
+ i
]) {
2236 __isl_give
struct isl_upoly
*isl_upoly_drop(__isl_take
struct isl_upoly
*up
,
2237 unsigned first
, unsigned n
)
2240 struct isl_upoly_rec
*rec
;
2244 if (n
== 0 || up
->var
< 0 || up
->var
< first
)
2246 if (up
->var
< first
+ n
) {
2247 up
= replace_by_constant_term(up
);
2248 return isl_upoly_drop(up
, first
, n
);
2250 up
= isl_upoly_cow(up
);
2254 rec
= isl_upoly_as_rec(up
);
2258 for (i
= 0; i
< rec
->n
; ++i
) {
2259 rec
->p
[i
] = isl_upoly_drop(rec
->p
[i
], first
, n
);
2270 __isl_give isl_qpolynomial
*isl_qpolynomial_set_dim_name(
2271 __isl_take isl_qpolynomial
*qp
,
2272 enum isl_dim_type type
, unsigned pos
, const char *s
)
2274 qp
= isl_qpolynomial_cow(qp
);
2277 qp
->dim
= isl_dim_set_name(qp
->dim
, type
, pos
, s
);
2282 isl_qpolynomial_free(qp
);
2286 __isl_give isl_qpolynomial
*isl_qpolynomial_drop_dims(
2287 __isl_take isl_qpolynomial
*qp
,
2288 enum isl_dim_type type
, unsigned first
, unsigned n
)
2292 if (n
== 0 && !isl_dim_get_tuple_name(qp
->dim
, type
))
2295 qp
= isl_qpolynomial_cow(qp
);
2299 isl_assert(qp
->dim
->ctx
, first
+ n
<= isl_dim_size(qp
->dim
, type
),
2301 isl_assert(qp
->dim
->ctx
, type
== isl_dim_param
||
2302 type
== isl_dim_set
, goto error
);
2304 qp
->dim
= isl_dim_drop(qp
->dim
, type
, first
, n
);
2308 if (type
== isl_dim_set
)
2309 first
+= isl_dim_size(qp
->dim
, isl_dim_param
);
2311 qp
->div
= isl_mat_drop_cols(qp
->div
, 2 + first
, n
);
2315 qp
->upoly
= isl_upoly_drop(qp
->upoly
, first
, n
);
2321 isl_qpolynomial_free(qp
);
2325 __isl_give isl_qpolynomial
*isl_qpolynomial_substitute_equalities(
2326 __isl_take isl_qpolynomial
*qp
, __isl_take isl_basic_set
*eq
)
2332 struct isl_upoly
*up
;
2336 if (eq
->n_eq
== 0) {
2337 isl_basic_set_free(eq
);
2341 qp
= isl_qpolynomial_cow(qp
);
2344 qp
->div
= isl_mat_cow(qp
->div
);
2348 total
= 1 + isl_dim_total(eq
->dim
);
2350 isl_int_init(denom
);
2351 for (i
= 0; i
< eq
->n_eq
; ++i
) {
2352 j
= isl_seq_last_non_zero(eq
->eq
[i
], total
+ n_div
);
2353 if (j
< 0 || j
== 0 || j
>= total
)
2356 for (k
= 0; k
< qp
->div
->n_row
; ++k
) {
2357 if (isl_int_is_zero(qp
->div
->row
[k
][1 + j
]))
2359 isl_seq_elim(qp
->div
->row
[k
] + 1, eq
->eq
[i
], j
, total
,
2360 &qp
->div
->row
[k
][0]);
2361 normalize_div(qp
, k
);
2364 if (isl_int_is_pos(eq
->eq
[i
][j
]))
2365 isl_seq_neg(eq
->eq
[i
], eq
->eq
[i
], total
);
2366 isl_int_abs(denom
, eq
->eq
[i
][j
]);
2367 isl_int_set_si(eq
->eq
[i
][j
], 0);
2369 up
= isl_upoly_from_affine(qp
->dim
->ctx
,
2370 eq
->eq
[i
], denom
, total
);
2371 qp
->upoly
= isl_upoly_subs(qp
->upoly
, j
- 1, 1, &up
);
2374 isl_int_clear(denom
);
2379 isl_basic_set_free(eq
);
2381 qp
= substitute_non_divs(qp
);
2386 isl_basic_set_free(eq
);
2387 isl_qpolynomial_free(qp
);
2391 static __isl_give isl_basic_set
*add_div_constraints(
2392 __isl_take isl_basic_set
*bset
, __isl_take isl_mat
*div
)
2400 bset
= isl_basic_set_extend_constraints(bset
, 0, 2 * div
->n_row
);
2403 total
= isl_basic_set_total_dim(bset
);
2404 for (i
= 0; i
< div
->n_row
; ++i
)
2405 if (isl_basic_set_add_div_constraints_var(bset
,
2406 total
- div
->n_row
+ i
, div
->row
[i
]) < 0)
2413 isl_basic_set_free(bset
);
2417 /* Look for equalities among the variables shared by context and qp
2418 * and the integer divisions of qp, if any.
2419 * The equalities are then used to eliminate variables and/or integer
2420 * divisions from qp.
2422 __isl_give isl_qpolynomial
*isl_qpolynomial_gist(
2423 __isl_take isl_qpolynomial
*qp
, __isl_take isl_set
*context
)
2429 if (qp
->div
->n_row
> 0) {
2430 isl_basic_set
*bset
;
2431 context
= isl_set_add_dims(context
, isl_dim_set
,
2433 bset
= isl_basic_set_universe(isl_set_get_dim(context
));
2434 bset
= add_div_constraints(bset
, isl_mat_copy(qp
->div
));
2435 context
= isl_set_intersect(context
,
2436 isl_set_from_basic_set(bset
));
2439 aff
= isl_set_affine_hull(context
);
2440 return isl_qpolynomial_substitute_equalities(qp
, aff
);
2442 isl_qpolynomial_free(qp
);
2443 isl_set_free(context
);
2448 #define PW isl_pw_qpolynomial
2450 #define EL isl_qpolynomial
2452 #define IS_ZERO is_zero
2456 #include <isl_pw_templ.c>
2459 #define UNION isl_union_pw_qpolynomial
2461 #define PART isl_pw_qpolynomial
2463 #define PARTS pw_qpolynomial
2465 #include <isl_union_templ.c>
2467 int isl_pw_qpolynomial_is_one(__isl_keep isl_pw_qpolynomial
*pwqp
)
2475 if (!isl_set_fast_is_universe(pwqp
->p
[0].set
))
2478 return isl_qpolynomial_is_one(pwqp
->p
[0].qp
);
2481 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_mul(
2482 __isl_take isl_pw_qpolynomial
*pwqp1
,
2483 __isl_take isl_pw_qpolynomial
*pwqp2
)
2486 struct isl_pw_qpolynomial
*res
;
2489 if (!pwqp1
|| !pwqp2
)
2492 isl_assert(pwqp1
->dim
->ctx
, isl_dim_equal(pwqp1
->dim
, pwqp2
->dim
),
2495 if (isl_pw_qpolynomial_is_zero(pwqp1
)) {
2496 isl_pw_qpolynomial_free(pwqp2
);
2500 if (isl_pw_qpolynomial_is_zero(pwqp2
)) {
2501 isl_pw_qpolynomial_free(pwqp1
);
2505 if (isl_pw_qpolynomial_is_one(pwqp1
)) {
2506 isl_pw_qpolynomial_free(pwqp1
);
2510 if (isl_pw_qpolynomial_is_one(pwqp2
)) {
2511 isl_pw_qpolynomial_free(pwqp2
);
2515 n
= pwqp1
->n
* pwqp2
->n
;
2516 res
= isl_pw_qpolynomial_alloc_(isl_dim_copy(pwqp1
->dim
), n
);
2518 for (i
= 0; i
< pwqp1
->n
; ++i
) {
2519 for (j
= 0; j
< pwqp2
->n
; ++j
) {
2520 struct isl_set
*common
;
2521 struct isl_qpolynomial
*prod
;
2522 common
= isl_set_intersect(isl_set_copy(pwqp1
->p
[i
].set
),
2523 isl_set_copy(pwqp2
->p
[j
].set
));
2524 if (isl_set_fast_is_empty(common
)) {
2525 isl_set_free(common
);
2529 prod
= isl_qpolynomial_mul(
2530 isl_qpolynomial_copy(pwqp1
->p
[i
].qp
),
2531 isl_qpolynomial_copy(pwqp2
->p
[j
].qp
));
2533 res
= isl_pw_qpolynomial_add_piece(res
, common
, prod
);
2537 isl_pw_qpolynomial_free(pwqp1
);
2538 isl_pw_qpolynomial_free(pwqp2
);
2542 isl_pw_qpolynomial_free(pwqp1
);
2543 isl_pw_qpolynomial_free(pwqp2
);
2547 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_neg(
2548 __isl_take isl_pw_qpolynomial
*pwqp
)
2555 if (isl_pw_qpolynomial_is_zero(pwqp
))
2558 pwqp
= isl_pw_qpolynomial_cow(pwqp
);
2562 for (i
= 0; i
< pwqp
->n
; ++i
) {
2563 pwqp
->p
[i
].qp
= isl_qpolynomial_neg(pwqp
->p
[i
].qp
);
2570 isl_pw_qpolynomial_free(pwqp
);
2574 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_sub(
2575 __isl_take isl_pw_qpolynomial
*pwqp1
,
2576 __isl_take isl_pw_qpolynomial
*pwqp2
)
2578 return isl_pw_qpolynomial_add(pwqp1
, isl_pw_qpolynomial_neg(pwqp2
));
2581 __isl_give
struct isl_upoly
*isl_upoly_eval(
2582 __isl_take
struct isl_upoly
*up
, __isl_take isl_vec
*vec
)
2585 struct isl_upoly_rec
*rec
;
2586 struct isl_upoly
*res
;
2587 struct isl_upoly
*base
;
2589 if (isl_upoly_is_cst(up
)) {
2594 rec
= isl_upoly_as_rec(up
);
2598 isl_assert(up
->ctx
, rec
->n
>= 1, goto error
);
2600 base
= isl_upoly_rat_cst(up
->ctx
, vec
->el
[1 + up
->var
], vec
->el
[0]);
2602 res
= isl_upoly_eval(isl_upoly_copy(rec
->p
[rec
->n
- 1]),
2605 for (i
= rec
->n
- 2; i
>= 0; --i
) {
2606 res
= isl_upoly_mul(res
, isl_upoly_copy(base
));
2607 res
= isl_upoly_sum(res
,
2608 isl_upoly_eval(isl_upoly_copy(rec
->p
[i
]),
2609 isl_vec_copy(vec
)));
2612 isl_upoly_free(base
);
2622 __isl_give isl_qpolynomial
*isl_qpolynomial_eval(
2623 __isl_take isl_qpolynomial
*qp
, __isl_take isl_point
*pnt
)
2626 struct isl_upoly
*up
;
2631 isl_assert(pnt
->dim
->ctx
, isl_dim_equal(pnt
->dim
, qp
->dim
), goto error
);
2633 if (qp
->div
->n_row
== 0)
2634 ext
= isl_vec_copy(pnt
->vec
);
2637 unsigned dim
= isl_dim_total(qp
->dim
);
2638 ext
= isl_vec_alloc(qp
->dim
->ctx
, 1 + dim
+ qp
->div
->n_row
);
2642 isl_seq_cpy(ext
->el
, pnt
->vec
->el
, pnt
->vec
->size
);
2643 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
2644 isl_seq_inner_product(qp
->div
->row
[i
] + 1, ext
->el
,
2645 1 + dim
+ i
, &ext
->el
[1+dim
+i
]);
2646 isl_int_fdiv_q(ext
->el
[1+dim
+i
], ext
->el
[1+dim
+i
],
2647 qp
->div
->row
[i
][0]);
2651 up
= isl_upoly_eval(isl_upoly_copy(qp
->upoly
), ext
);
2655 dim
= isl_dim_copy(qp
->dim
);
2656 isl_qpolynomial_free(qp
);
2657 isl_point_free(pnt
);
2659 return isl_qpolynomial_alloc(dim
, 0, up
);
2661 isl_qpolynomial_free(qp
);
2662 isl_point_free(pnt
);
2666 int isl_upoly_cmp(__isl_keep
struct isl_upoly_cst
*cst1
,
2667 __isl_keep
struct isl_upoly_cst
*cst2
)
2672 isl_int_mul(t
, cst1
->n
, cst2
->d
);
2673 isl_int_submul(t
, cst2
->n
, cst1
->d
);
2674 cmp
= isl_int_sgn(t
);
2679 int isl_qpolynomial_le_cst(__isl_keep isl_qpolynomial
*qp1
,
2680 __isl_keep isl_qpolynomial
*qp2
)
2682 struct isl_upoly_cst
*cst1
, *cst2
;
2686 isl_assert(qp1
->dim
->ctx
, isl_upoly_is_cst(qp1
->upoly
), return -1);
2687 isl_assert(qp2
->dim
->ctx
, isl_upoly_is_cst(qp2
->upoly
), return -1);
2688 if (isl_qpolynomial_is_nan(qp1
))
2690 if (isl_qpolynomial_is_nan(qp2
))
2692 cst1
= isl_upoly_as_cst(qp1
->upoly
);
2693 cst2
= isl_upoly_as_cst(qp2
->upoly
);
2695 return isl_upoly_cmp(cst1
, cst2
) <= 0;
2698 __isl_give isl_qpolynomial
*isl_qpolynomial_min_cst(
2699 __isl_take isl_qpolynomial
*qp1
, __isl_take isl_qpolynomial
*qp2
)
2701 struct isl_upoly_cst
*cst1
, *cst2
;
2706 isl_assert(qp1
->dim
->ctx
, isl_upoly_is_cst(qp1
->upoly
), goto error
);
2707 isl_assert(qp2
->dim
->ctx
, isl_upoly_is_cst(qp2
->upoly
), goto error
);
2708 cst1
= isl_upoly_as_cst(qp1
->upoly
);
2709 cst2
= isl_upoly_as_cst(qp2
->upoly
);
2710 cmp
= isl_upoly_cmp(cst1
, cst2
);
2713 isl_qpolynomial_free(qp2
);
2715 isl_qpolynomial_free(qp1
);
2720 isl_qpolynomial_free(qp1
);
2721 isl_qpolynomial_free(qp2
);
2725 __isl_give isl_qpolynomial
*isl_qpolynomial_max_cst(
2726 __isl_take isl_qpolynomial
*qp1
, __isl_take isl_qpolynomial
*qp2
)
2728 struct isl_upoly_cst
*cst1
, *cst2
;
2733 isl_assert(qp1
->dim
->ctx
, isl_upoly_is_cst(qp1
->upoly
), goto error
);
2734 isl_assert(qp2
->dim
->ctx
, isl_upoly_is_cst(qp2
->upoly
), goto error
);
2735 cst1
= isl_upoly_as_cst(qp1
->upoly
);
2736 cst2
= isl_upoly_as_cst(qp2
->upoly
);
2737 cmp
= isl_upoly_cmp(cst1
, cst2
);
2740 isl_qpolynomial_free(qp2
);
2742 isl_qpolynomial_free(qp1
);
2747 isl_qpolynomial_free(qp1
);
2748 isl_qpolynomial_free(qp2
);
2752 __isl_give isl_qpolynomial
*isl_qpolynomial_insert_dims(
2753 __isl_take isl_qpolynomial
*qp
, enum isl_dim_type type
,
2754 unsigned first
, unsigned n
)
2763 qp
= isl_qpolynomial_cow(qp
);
2767 isl_assert(qp
->div
->ctx
, first
<= isl_dim_size(qp
->dim
, type
),
2770 g_pos
= pos(qp
->dim
, type
) + first
;
2772 qp
->div
= isl_mat_insert_cols(qp
->div
, 2 + g_pos
, n
);
2776 total
= qp
->div
->n_col
- 2;
2777 if (total
> g_pos
) {
2779 exp
= isl_alloc_array(qp
->div
->ctx
, int, total
- g_pos
);
2782 for (i
= 0; i
< total
- g_pos
; ++i
)
2784 qp
->upoly
= expand(qp
->upoly
, exp
, g_pos
);
2790 qp
->dim
= isl_dim_insert(qp
->dim
, type
, first
, n
);
2796 isl_qpolynomial_free(qp
);
2800 __isl_give isl_qpolynomial
*isl_qpolynomial_add_dims(
2801 __isl_take isl_qpolynomial
*qp
, enum isl_dim_type type
, unsigned n
)
2805 pos
= isl_qpolynomial_dim(qp
, type
);
2807 return isl_qpolynomial_insert_dims(qp
, type
, pos
, n
);
2810 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_add_dims(
2811 __isl_take isl_pw_qpolynomial
*pwqp
,
2812 enum isl_dim_type type
, unsigned n
)
2816 pos
= isl_pw_qpolynomial_dim(pwqp
, type
);
2818 return isl_pw_qpolynomial_insert_dims(pwqp
, type
, pos
, n
);
2821 static int *reordering_move(isl_ctx
*ctx
,
2822 unsigned len
, unsigned dst
, unsigned src
, unsigned n
)
2827 reordering
= isl_alloc_array(ctx
, int, len
);
2832 for (i
= 0; i
< dst
; ++i
)
2834 for (i
= 0; i
< n
; ++i
)
2835 reordering
[src
+ i
] = dst
+ i
;
2836 for (i
= 0; i
< src
- dst
; ++i
)
2837 reordering
[dst
+ i
] = dst
+ n
+ i
;
2838 for (i
= 0; i
< len
- src
- n
; ++i
)
2839 reordering
[src
+ n
+ i
] = src
+ n
+ i
;
2841 for (i
= 0; i
< src
; ++i
)
2843 for (i
= 0; i
< n
; ++i
)
2844 reordering
[src
+ i
] = dst
+ i
;
2845 for (i
= 0; i
< dst
- src
; ++i
)
2846 reordering
[src
+ n
+ i
] = src
+ i
;
2847 for (i
= 0; i
< len
- dst
- n
; ++i
)
2848 reordering
[dst
+ n
+ i
] = dst
+ n
+ i
;
2854 __isl_give isl_qpolynomial
*isl_qpolynomial_move_dims(
2855 __isl_take isl_qpolynomial
*qp
,
2856 enum isl_dim_type dst_type
, unsigned dst_pos
,
2857 enum isl_dim_type src_type
, unsigned src_pos
, unsigned n
)
2863 qp
= isl_qpolynomial_cow(qp
);
2867 isl_assert(qp
->dim
->ctx
, src_pos
+ n
<= isl_dim_size(qp
->dim
, src_type
),
2870 g_dst_pos
= pos(qp
->dim
, dst_type
) + dst_pos
;
2871 g_src_pos
= pos(qp
->dim
, src_type
) + src_pos
;
2872 if (dst_type
> src_type
)
2875 qp
->div
= isl_mat_move_cols(qp
->div
, 2 + g_dst_pos
, 2 + g_src_pos
, n
);
2882 reordering
= reordering_move(qp
->dim
->ctx
,
2883 qp
->div
->n_col
- 2, g_dst_pos
, g_src_pos
, n
);
2887 qp
->upoly
= reorder(qp
->upoly
, reordering
);
2892 qp
->dim
= isl_dim_move(qp
->dim
, dst_type
, dst_pos
, src_type
, src_pos
, n
);
2898 isl_qpolynomial_free(qp
);
2902 __isl_give isl_qpolynomial
*isl_qpolynomial_from_affine(__isl_take isl_dim
*dim
,
2903 isl_int
*f
, isl_int denom
)
2905 struct isl_upoly
*up
;
2910 up
= isl_upoly_from_affine(dim
->ctx
, f
, denom
, 1 + isl_dim_total(dim
));
2912 return isl_qpolynomial_alloc(dim
, 0, up
);
2915 __isl_give isl_qpolynomial
*isl_qpolynomial_from_constraint(
2916 __isl_take isl_constraint
*c
, enum isl_dim_type type
, unsigned pos
)
2920 struct isl_upoly
*up
;
2921 isl_qpolynomial
*qp
;
2927 isl_int_init(denom
);
2929 isl_constraint_get_coefficient(c
, type
, pos
, &denom
);
2930 isl_constraint_set_coefficient(c
, type
, pos
, c
->ctx
->zero
);
2931 sgn
= isl_int_sgn(denom
);
2932 isl_int_abs(denom
, denom
);
2933 up
= isl_upoly_from_affine(c
->ctx
, c
->line
[0], denom
,
2934 1 + isl_constraint_dim(c
, isl_dim_all
));
2936 isl_int_neg(denom
, denom
);
2937 isl_constraint_set_coefficient(c
, type
, pos
, denom
);
2939 dim
= isl_dim_copy(c
->bmap
->dim
);
2941 isl_int_clear(denom
);
2942 isl_constraint_free(c
);
2944 qp
= isl_qpolynomial_alloc(dim
, 0, up
);
2946 qp
= isl_qpolynomial_neg(qp
);
2950 /* For each 0 <= i < "n", replace variable "first" + i of type "type"
2951 * in "qp" by subs[i].
2953 __isl_give isl_qpolynomial
*isl_qpolynomial_substitute(
2954 __isl_take isl_qpolynomial
*qp
,
2955 enum isl_dim_type type
, unsigned first
, unsigned n
,
2956 __isl_keep isl_qpolynomial
**subs
)
2959 struct isl_upoly
**ups
;
2964 qp
= isl_qpolynomial_cow(qp
);
2967 for (i
= 0; i
< n
; ++i
)
2971 isl_assert(qp
->dim
->ctx
, first
+ n
<= isl_dim_size(qp
->dim
, type
),
2974 for (i
= 0; i
< n
; ++i
)
2975 isl_assert(qp
->dim
->ctx
, isl_dim_equal(qp
->dim
, subs
[i
]->dim
),
2978 isl_assert(qp
->dim
->ctx
, qp
->div
->n_row
== 0, goto error
);
2979 for (i
= 0; i
< n
; ++i
)
2980 isl_assert(qp
->dim
->ctx
, subs
[i
]->div
->n_row
== 0, goto error
);
2982 first
+= pos(qp
->dim
, type
);
2984 ups
= isl_alloc_array(qp
->dim
->ctx
, struct isl_upoly
*, n
);
2987 for (i
= 0; i
< n
; ++i
)
2988 ups
[i
] = subs
[i
]->upoly
;
2990 qp
->upoly
= isl_upoly_subs(qp
->upoly
, first
, n
, ups
);
2999 isl_qpolynomial_free(qp
);
3003 /* Extend "bset" with extra set dimensions for each integer division
3004 * in "qp" and then call "fn" with the extended bset and the polynomial
3005 * that results from replacing each of the integer divisions by the
3006 * corresponding extra set dimension.
3008 int isl_qpolynomial_as_polynomial_on_domain(__isl_keep isl_qpolynomial
*qp
,
3009 __isl_keep isl_basic_set
*bset
,
3010 int (*fn
)(__isl_take isl_basic_set
*bset
,
3011 __isl_take isl_qpolynomial
*poly
, void *user
), void *user
)
3015 isl_qpolynomial
*poly
;
3019 if (qp
->div
->n_row
== 0)
3020 return fn(isl_basic_set_copy(bset
), isl_qpolynomial_copy(qp
),
3023 div
= isl_mat_copy(qp
->div
);
3024 dim
= isl_dim_copy(qp
->dim
);
3025 dim
= isl_dim_add(dim
, isl_dim_set
, qp
->div
->n_row
);
3026 poly
= isl_qpolynomial_alloc(dim
, 0, isl_upoly_copy(qp
->upoly
));
3027 bset
= isl_basic_set_copy(bset
);
3028 bset
= isl_basic_set_add(bset
, isl_dim_set
, qp
->div
->n_row
);
3029 bset
= add_div_constraints(bset
, div
);
3031 return fn(bset
, poly
, user
);
3036 /* Return total degree in variables first (inclusive) up to last (exclusive).
3038 int isl_upoly_degree(__isl_keep
struct isl_upoly
*up
, int first
, int last
)
3042 struct isl_upoly_rec
*rec
;
3046 if (isl_upoly_is_zero(up
))
3048 if (isl_upoly_is_cst(up
) || up
->var
< first
)
3051 rec
= isl_upoly_as_rec(up
);
3055 for (i
= 0; i
< rec
->n
; ++i
) {
3058 if (isl_upoly_is_zero(rec
->p
[i
]))
3060 d
= isl_upoly_degree(rec
->p
[i
], first
, last
);
3070 /* Return total degree in set variables.
3072 int isl_qpolynomial_degree(__isl_keep isl_qpolynomial
*poly
)
3080 ovar
= isl_dim_offset(poly
->dim
, isl_dim_set
);
3081 nvar
= isl_dim_size(poly
->dim
, isl_dim_set
);
3082 return isl_upoly_degree(poly
->upoly
, ovar
, ovar
+ nvar
);
3085 __isl_give
struct isl_upoly
*isl_upoly_coeff(__isl_keep
struct isl_upoly
*up
,
3086 unsigned pos
, int deg
)
3089 struct isl_upoly_rec
*rec
;
3094 if (isl_upoly_is_cst(up
) || up
->var
< pos
) {
3096 return isl_upoly_copy(up
);
3098 return isl_upoly_zero(up
->ctx
);
3101 rec
= isl_upoly_as_rec(up
);
3105 if (up
->var
== pos
) {
3107 return isl_upoly_copy(rec
->p
[deg
]);
3109 return isl_upoly_zero(up
->ctx
);
3112 up
= isl_upoly_copy(up
);
3113 up
= isl_upoly_cow(up
);
3114 rec
= isl_upoly_as_rec(up
);
3118 for (i
= 0; i
< rec
->n
; ++i
) {
3119 struct isl_upoly
*t
;
3120 t
= isl_upoly_coeff(rec
->p
[i
], pos
, deg
);
3123 isl_upoly_free(rec
->p
[i
]);
3133 /* Return coefficient of power "deg" of variable "t_pos" of type "type".
3135 __isl_give isl_qpolynomial
*isl_qpolynomial_coeff(
3136 __isl_keep isl_qpolynomial
*qp
,
3137 enum isl_dim_type type
, unsigned t_pos
, int deg
)
3140 struct isl_upoly
*up
;
3146 isl_assert(qp
->div
->ctx
, t_pos
< isl_dim_size(qp
->dim
, type
),
3149 g_pos
= pos(qp
->dim
, type
) + t_pos
;
3150 up
= isl_upoly_coeff(qp
->upoly
, g_pos
, deg
);
3152 c
= isl_qpolynomial_alloc(isl_dim_copy(qp
->dim
), qp
->div
->n_row
, up
);
3155 isl_mat_free(c
->div
);
3156 c
->div
= isl_mat_copy(qp
->div
);
3161 isl_qpolynomial_free(c
);
3165 /* Homogenize the polynomial in the variables first (inclusive) up to
3166 * last (exclusive) by inserting powers of variable first.
3167 * Variable first is assumed not to appear in the input.
3169 __isl_give
struct isl_upoly
*isl_upoly_homogenize(
3170 __isl_take
struct isl_upoly
*up
, int deg
, int target
,
3171 int first
, int last
)
3174 struct isl_upoly_rec
*rec
;
3178 if (isl_upoly_is_zero(up
))
3182 if (isl_upoly_is_cst(up
) || up
->var
< first
) {
3183 struct isl_upoly
*hom
;
3185 hom
= isl_upoly_var_pow(up
->ctx
, first
, target
- deg
);
3188 rec
= isl_upoly_as_rec(hom
);
3189 rec
->p
[target
- deg
] = isl_upoly_mul(rec
->p
[target
- deg
], up
);
3194 up
= isl_upoly_cow(up
);
3195 rec
= isl_upoly_as_rec(up
);
3199 for (i
= 0; i
< rec
->n
; ++i
) {
3200 if (isl_upoly_is_zero(rec
->p
[i
]))
3202 rec
->p
[i
] = isl_upoly_homogenize(rec
->p
[i
],
3203 up
->var
< last
? deg
+ i
: i
, target
,
3215 /* Homogenize the polynomial in the set variables by introducing
3216 * powers of an extra set variable at position 0.
3218 __isl_give isl_qpolynomial
*isl_qpolynomial_homogenize(
3219 __isl_take isl_qpolynomial
*poly
)
3223 int deg
= isl_qpolynomial_degree(poly
);
3228 poly
= isl_qpolynomial_insert_dims(poly
, isl_dim_set
, 0, 1);
3229 poly
= isl_qpolynomial_cow(poly
);
3233 ovar
= isl_dim_offset(poly
->dim
, isl_dim_set
);
3234 nvar
= isl_dim_size(poly
->dim
, isl_dim_set
);
3235 poly
->upoly
= isl_upoly_homogenize(poly
->upoly
, 0, deg
,
3242 isl_qpolynomial_free(poly
);
3246 __isl_give isl_term
*isl_term_alloc(__isl_take isl_dim
*dim
,
3247 __isl_take isl_mat
*div
)
3255 n
= isl_dim_total(dim
) + div
->n_row
;
3257 term
= isl_calloc(dim
->ctx
, struct isl_term
,
3258 sizeof(struct isl_term
) + (n
- 1) * sizeof(int));
3265 isl_int_init(term
->n
);
3266 isl_int_init(term
->d
);
3275 __isl_give isl_term
*isl_term_copy(__isl_keep isl_term
*term
)
3284 __isl_give isl_term
*isl_term_dup(__isl_keep isl_term
*term
)
3293 total
= isl_dim_total(term
->dim
) + term
->div
->n_row
;
3295 dup
= isl_term_alloc(isl_dim_copy(term
->dim
), isl_mat_copy(term
->div
));
3299 isl_int_set(dup
->n
, term
->n
);
3300 isl_int_set(dup
->d
, term
->d
);
3302 for (i
= 0; i
< total
; ++i
)
3303 dup
->pow
[i
] = term
->pow
[i
];
3308 __isl_give isl_term
*isl_term_cow(__isl_take isl_term
*term
)
3316 return isl_term_dup(term
);
3319 void isl_term_free(__isl_take isl_term
*term
)
3324 if (--term
->ref
> 0)
3327 isl_dim_free(term
->dim
);
3328 isl_mat_free(term
->div
);
3329 isl_int_clear(term
->n
);
3330 isl_int_clear(term
->d
);
3334 unsigned isl_term_dim(__isl_keep isl_term
*term
, enum isl_dim_type type
)
3342 case isl_dim_out
: return isl_dim_size(term
->dim
, type
);
3343 case isl_dim_div
: return term
->div
->n_row
;
3344 case isl_dim_all
: return isl_dim_total(term
->dim
) + term
->div
->n_row
;
3349 isl_ctx
*isl_term_get_ctx(__isl_keep isl_term
*term
)
3351 return term
? term
->dim
->ctx
: NULL
;
3354 void isl_term_get_num(__isl_keep isl_term
*term
, isl_int
*n
)
3358 isl_int_set(*n
, term
->n
);
3361 void isl_term_get_den(__isl_keep isl_term
*term
, isl_int
*d
)
3365 isl_int_set(*d
, term
->d
);
3368 int isl_term_get_exp(__isl_keep isl_term
*term
,
3369 enum isl_dim_type type
, unsigned pos
)
3374 isl_assert(term
->dim
->ctx
, pos
< isl_term_dim(term
, type
), return -1);
3376 if (type
>= isl_dim_set
)
3377 pos
+= isl_dim_size(term
->dim
, isl_dim_param
);
3378 if (type
>= isl_dim_div
)
3379 pos
+= isl_dim_size(term
->dim
, isl_dim_set
);
3381 return term
->pow
[pos
];
3384 __isl_give isl_div
*isl_term_get_div(__isl_keep isl_term
*term
, unsigned pos
)
3386 isl_basic_map
*bmap
;
3393 isl_assert(term
->dim
->ctx
, pos
< isl_term_dim(term
, isl_dim_div
),
3396 total
= term
->div
->n_col
- term
->div
->n_row
- 2;
3397 /* No nested divs for now */
3398 isl_assert(term
->dim
->ctx
,
3399 isl_seq_first_non_zero(term
->div
->row
[pos
] + 2 + total
,
3400 term
->div
->n_row
) == -1,
3403 bmap
= isl_basic_map_alloc_dim(isl_dim_copy(term
->dim
), 1, 0, 0);
3404 if ((k
= isl_basic_map_alloc_div(bmap
)) < 0)
3407 isl_seq_cpy(bmap
->div
[k
], term
->div
->row
[pos
], 2 + total
);
3409 return isl_basic_map_div(bmap
, k
);
3411 isl_basic_map_free(bmap
);
3415 __isl_give isl_term
*isl_upoly_foreach_term(__isl_keep
struct isl_upoly
*up
,
3416 int (*fn
)(__isl_take isl_term
*term
, void *user
),
3417 __isl_take isl_term
*term
, void *user
)
3420 struct isl_upoly_rec
*rec
;
3425 if (isl_upoly_is_zero(up
))
3428 isl_assert(up
->ctx
, !isl_upoly_is_nan(up
), goto error
);
3429 isl_assert(up
->ctx
, !isl_upoly_is_infty(up
), goto error
);
3430 isl_assert(up
->ctx
, !isl_upoly_is_neginfty(up
), goto error
);
3432 if (isl_upoly_is_cst(up
)) {
3433 struct isl_upoly_cst
*cst
;
3434 cst
= isl_upoly_as_cst(up
);
3437 term
= isl_term_cow(term
);
3440 isl_int_set(term
->n
, cst
->n
);
3441 isl_int_set(term
->d
, cst
->d
);
3442 if (fn(isl_term_copy(term
), user
) < 0)
3447 rec
= isl_upoly_as_rec(up
);
3451 for (i
= 0; i
< rec
->n
; ++i
) {
3452 term
= isl_term_cow(term
);
3455 term
->pow
[up
->var
] = i
;
3456 term
= isl_upoly_foreach_term(rec
->p
[i
], fn
, term
, user
);
3460 term
->pow
[up
->var
] = 0;
3464 isl_term_free(term
);
3468 int isl_qpolynomial_foreach_term(__isl_keep isl_qpolynomial
*qp
,
3469 int (*fn
)(__isl_take isl_term
*term
, void *user
), void *user
)
3476 term
= isl_term_alloc(isl_dim_copy(qp
->dim
), isl_mat_copy(qp
->div
));
3480 term
= isl_upoly_foreach_term(qp
->upoly
, fn
, term
, user
);
3482 isl_term_free(term
);
3484 return term
? 0 : -1;
3487 __isl_give isl_qpolynomial
*isl_qpolynomial_from_term(__isl_take isl_term
*term
)
3489 struct isl_upoly
*up
;
3490 isl_qpolynomial
*qp
;
3496 n
= isl_dim_total(term
->dim
) + term
->div
->n_row
;
3498 up
= isl_upoly_rat_cst(term
->dim
->ctx
, term
->n
, term
->d
);
3499 for (i
= 0; i
< n
; ++i
) {
3502 up
= isl_upoly_mul(up
,
3503 isl_upoly_var_pow(term
->dim
->ctx
, i
, term
->pow
[i
]));
3506 qp
= isl_qpolynomial_alloc(isl_dim_copy(term
->dim
), term
->div
->n_row
, up
);
3509 isl_mat_free(qp
->div
);
3510 qp
->div
= isl_mat_copy(term
->div
);
3514 isl_term_free(term
);
3517 isl_qpolynomial_free(qp
);
3518 isl_term_free(term
);
3522 __isl_give isl_qpolynomial
*isl_qpolynomial_lift(__isl_take isl_qpolynomial
*qp
,
3523 __isl_take isl_dim
*dim
)
3532 if (isl_dim_equal(qp
->dim
, dim
)) {
3537 qp
= isl_qpolynomial_cow(qp
);
3541 extra
= isl_dim_size(dim
, isl_dim_set
) -
3542 isl_dim_size(qp
->dim
, isl_dim_set
);
3543 total
= isl_dim_total(qp
->dim
);
3544 if (qp
->div
->n_row
) {
3547 exp
= isl_alloc_array(qp
->div
->ctx
, int, qp
->div
->n_row
);
3550 for (i
= 0; i
< qp
->div
->n_row
; ++i
)
3552 qp
->upoly
= expand(qp
->upoly
, exp
, total
);
3557 qp
->div
= isl_mat_insert_cols(qp
->div
, 2 + total
, extra
);
3560 for (i
= 0; i
< qp
->div
->n_row
; ++i
)
3561 isl_seq_clr(qp
->div
->row
[i
] + 2 + total
, extra
);
3563 isl_dim_free(qp
->dim
);
3569 isl_qpolynomial_free(qp
);
3573 /* For each parameter or variable that does not appear in qp,
3574 * first eliminate the variable from all constraints and then set it to zero.
3576 static __isl_give isl_set
*fix_inactive(__isl_take isl_set
*set
,
3577 __isl_keep isl_qpolynomial
*qp
)
3588 d
= isl_dim_total(set
->dim
);
3589 active
= isl_calloc_array(set
->ctx
, int, d
);
3590 if (set_active(qp
, active
) < 0)
3593 for (i
= 0; i
< d
; ++i
)
3602 nparam
= isl_dim_size(set
->dim
, isl_dim_param
);
3603 nvar
= isl_dim_size(set
->dim
, isl_dim_set
);
3604 for (i
= 0; i
< nparam
; ++i
) {
3607 set
= isl_set_eliminate(set
, isl_dim_param
, i
, 1);
3608 set
= isl_set_fix_si(set
, isl_dim_param
, i
, 0);
3610 for (i
= 0; i
< nvar
; ++i
) {
3611 if (active
[nparam
+ i
])
3613 set
= isl_set_eliminate(set
, isl_dim_set
, i
, 1);
3614 set
= isl_set_fix_si(set
, isl_dim_set
, i
, 0);
3626 struct isl_opt_data
{
3627 isl_qpolynomial
*qp
;
3629 isl_qpolynomial
*opt
;
3633 static int opt_fn(__isl_take isl_point
*pnt
, void *user
)
3635 struct isl_opt_data
*data
= (struct isl_opt_data
*)user
;
3636 isl_qpolynomial
*val
;
3638 val
= isl_qpolynomial_eval(isl_qpolynomial_copy(data
->qp
), pnt
);
3642 } else if (data
->max
) {
3643 data
->opt
= isl_qpolynomial_max_cst(data
->opt
, val
);
3645 data
->opt
= isl_qpolynomial_min_cst(data
->opt
, val
);
3651 __isl_give isl_qpolynomial
*isl_qpolynomial_opt_on_domain(
3652 __isl_take isl_qpolynomial
*qp
, __isl_take isl_set
*set
, int max
)
3654 struct isl_opt_data data
= { NULL
, 1, NULL
, max
};
3659 if (isl_upoly_is_cst(qp
->upoly
)) {
3664 set
= fix_inactive(set
, qp
);
3667 if (isl_set_foreach_point(set
, opt_fn
, &data
) < 0)
3671 data
.opt
= isl_qpolynomial_zero(isl_qpolynomial_get_dim(qp
));
3674 isl_qpolynomial_free(qp
);
3678 isl_qpolynomial_free(qp
);
3679 isl_qpolynomial_free(data
.opt
);
3683 __isl_give isl_qpolynomial
*isl_qpolynomial_morph(__isl_take isl_qpolynomial
*qp
,
3684 __isl_take isl_morph
*morph
)
3689 struct isl_upoly
*up
;
3691 struct isl_upoly
**subs
;
3694 qp
= isl_qpolynomial_cow(qp
);
3699 isl_assert(ctx
, isl_dim_equal(qp
->dim
, morph
->dom
->dim
), goto error
);
3701 n_sub
= morph
->inv
->n_row
- 1;
3702 if (morph
->inv
->n_row
!= morph
->inv
->n_col
)
3703 n_sub
+= qp
->div
->n_row
;
3704 subs
= isl_calloc_array(ctx
, struct isl_upoly
*, n_sub
);
3708 for (i
= 0; 1 + i
< morph
->inv
->n_row
; ++i
)
3709 subs
[i
] = isl_upoly_from_affine(ctx
, morph
->inv
->row
[1 + i
],
3710 morph
->inv
->row
[0][0], morph
->inv
->n_col
);
3711 if (morph
->inv
->n_row
!= morph
->inv
->n_col
)
3712 for (i
= 0; i
< qp
->div
->n_row
; ++i
)
3713 subs
[morph
->inv
->n_row
- 1 + i
] =
3714 isl_upoly_var_pow(ctx
, morph
->inv
->n_col
- 1 + i
, 1);
3716 qp
->upoly
= isl_upoly_subs(qp
->upoly
, 0, n_sub
, subs
);
3718 for (i
= 0; i
< n_sub
; ++i
)
3719 isl_upoly_free(subs
[i
]);
3722 mat
= isl_mat_diagonal(isl_mat_identity(ctx
, 1), isl_mat_copy(morph
->inv
));
3723 mat
= isl_mat_diagonal(mat
, isl_mat_identity(ctx
, qp
->div
->n_row
));
3724 qp
->div
= isl_mat_product(qp
->div
, mat
);
3725 isl_dim_free(qp
->dim
);
3726 qp
->dim
= isl_dim_copy(morph
->ran
->dim
);
3728 if (!qp
->upoly
|| !qp
->div
|| !qp
->dim
)
3731 isl_morph_free(morph
);
3735 isl_qpolynomial_free(qp
);
3736 isl_morph_free(morph
);
3740 static int neg_entry(void **entry
, void *user
)
3742 isl_pw_qpolynomial
**pwqp
= (isl_pw_qpolynomial
**)entry
;
3744 *pwqp
= isl_pw_qpolynomial_neg(*pwqp
);
3746 return *pwqp
? 0 : -1;
3749 __isl_give isl_union_pw_qpolynomial
*isl_union_pw_qpolynomial_neg(
3750 __isl_take isl_union_pw_qpolynomial
*upwqp
)
3752 upwqp
= isl_union_pw_qpolynomial_cow(upwqp
);
3756 if (isl_hash_table_foreach(upwqp
->dim
->ctx
, &upwqp
->table
,
3757 &neg_entry
, NULL
) < 0)
3762 isl_union_pw_qpolynomial_free(upwqp
);
3766 __isl_give isl_union_pw_qpolynomial
*isl_union_pw_qpolynomial_sub(
3767 __isl_take isl_union_pw_qpolynomial
*upwqp1
,
3768 __isl_take isl_union_pw_qpolynomial
*upwqp2
)
3770 return isl_union_pw_qpolynomial_add(upwqp1
,
3771 isl_union_pw_qpolynomial_neg(upwqp2
));
3774 static int mul_entry(void **entry
, void *user
)
3776 struct isl_union_pw_qpolynomial_match_bin_data
*data
= user
;
3778 struct isl_hash_table_entry
*entry2
;
3779 isl_pw_qpolynomial
*pwpq
= *entry
;
3782 hash
= isl_dim_get_hash(pwpq
->dim
);
3783 entry2
= isl_hash_table_find(data
->u2
->dim
->ctx
, &data
->u2
->table
,
3784 hash
, &has_dim
, pwpq
->dim
, 0);
3788 pwpq
= isl_pw_qpolynomial_copy(pwpq
);
3789 pwpq
= isl_pw_qpolynomial_mul(pwpq
,
3790 isl_pw_qpolynomial_copy(entry2
->data
));
3792 empty
= isl_pw_qpolynomial_is_zero(pwpq
);
3794 isl_pw_qpolynomial_free(pwpq
);
3798 isl_pw_qpolynomial_free(pwpq
);
3802 data
->res
= isl_union_pw_qpolynomial_add_pw_qpolynomial(data
->res
, pwpq
);
3807 __isl_give isl_union_pw_qpolynomial
*isl_union_pw_qpolynomial_mul(
3808 __isl_take isl_union_pw_qpolynomial
*upwqp1
,
3809 __isl_take isl_union_pw_qpolynomial
*upwqp2
)
3811 return match_bin_op(upwqp1
, upwqp2
, &mul_entry
);
3814 /* Reorder the columns of the given div definitions according to the
3817 static __isl_give isl_mat
*reorder_divs(__isl_take isl_mat
*div
,
3818 __isl_take isl_reordering
*r
)
3827 extra
= isl_dim_total(r
->dim
) + div
->n_row
- r
->len
;
3828 mat
= isl_mat_alloc(div
->ctx
, div
->n_row
, div
->n_col
+ extra
);
3832 for (i
= 0; i
< div
->n_row
; ++i
) {
3833 isl_seq_cpy(mat
->row
[i
], div
->row
[i
], 2);
3834 isl_seq_clr(mat
->row
[i
] + 2, mat
->n_col
- 2);
3835 for (j
= 0; j
< r
->len
; ++j
)
3836 isl_int_set(mat
->row
[i
][2 + r
->pos
[j
]],
3837 div
->row
[i
][2 + j
]);
3840 isl_reordering_free(r
);
3844 isl_reordering_free(r
);
3849 /* Reorder the dimension of "qp" according to the given reordering.
3851 __isl_give isl_qpolynomial
*isl_qpolynomial_realign(
3852 __isl_take isl_qpolynomial
*qp
, __isl_take isl_reordering
*r
)
3854 qp
= isl_qpolynomial_cow(qp
);
3858 r
= isl_reordering_extend(r
, qp
->div
->n_row
);
3862 qp
->div
= reorder_divs(qp
->div
, isl_reordering_copy(r
));
3866 qp
->upoly
= reorder(qp
->upoly
, r
->pos
);
3870 qp
= isl_qpolynomial_reset_dim(qp
, isl_dim_copy(r
->dim
));
3872 isl_reordering_free(r
);
3875 isl_qpolynomial_free(qp
);
3876 isl_reordering_free(r
);
3880 struct isl_split_periods_data
{
3882 isl_pw_qpolynomial
*res
;
3885 /* Create a slice where the integer division "div" has the fixed value "v".
3886 * In particular, if "div" refers to floor(f/m), then create a slice
3888 * m v <= f <= m v + (m - 1)
3893 * -f + m v + (m - 1) >= 0
3895 static __isl_give isl_set
*set_div_slice(__isl_take isl_dim
*dim
,
3896 __isl_keep isl_qpolynomial
*qp
, int div
, isl_int v
)
3899 isl_basic_set
*bset
= NULL
;
3905 total
= isl_dim_total(dim
);
3906 bset
= isl_basic_set_alloc_dim(isl_dim_copy(dim
), 0, 0, 2);
3908 k
= isl_basic_set_alloc_inequality(bset
);
3911 isl_seq_cpy(bset
->ineq
[k
], qp
->div
->row
[div
] + 1, 1 + total
);
3912 isl_int_submul(bset
->ineq
[k
][0], v
, qp
->div
->row
[div
][0]);
3914 k
= isl_basic_set_alloc_inequality(bset
);
3917 isl_seq_neg(bset
->ineq
[k
], qp
->div
->row
[div
] + 1, 1 + total
);
3918 isl_int_addmul(bset
->ineq
[k
][0], v
, qp
->div
->row
[div
][0]);
3919 isl_int_add(bset
->ineq
[k
][0], bset
->ineq
[k
][0], qp
->div
->row
[div
][0]);
3920 isl_int_sub_ui(bset
->ineq
[k
][0], bset
->ineq
[k
][0], 1);
3923 return isl_set_from_basic_set(bset
);
3925 isl_basic_set_free(bset
);
3930 static int split_periods(__isl_take isl_set
*set
,
3931 __isl_take isl_qpolynomial
*qp
, void *user
);
3933 /* Create a slice of the domain "set" such that integer division "div"
3934 * has the fixed value "v" and add the results to data->res,
3935 * replacing the integer division by "v" in "qp".
3937 static int set_div(__isl_take isl_set
*set
,
3938 __isl_take isl_qpolynomial
*qp
, int div
, isl_int v
,
3939 struct isl_split_periods_data
*data
)
3944 struct isl_upoly
*cst
;
3946 slice
= set_div_slice(isl_set_get_dim(set
), qp
, div
, v
);
3947 set
= isl_set_intersect(set
, slice
);
3952 total
= isl_dim_total(qp
->dim
);
3954 for (i
= div
+ 1; i
< qp
->div
->n_row
; ++i
) {
3955 if (isl_int_is_zero(qp
->div
->row
[i
][2 + total
+ div
]))
3957 isl_int_addmul(qp
->div
->row
[i
][1],
3958 qp
->div
->row
[i
][2 + total
+ div
], v
);
3959 isl_int_set_si(qp
->div
->row
[i
][2 + total
+ div
], 0);
3962 cst
= isl_upoly_rat_cst(qp
->dim
->ctx
, v
, qp
->dim
->ctx
->one
);
3963 qp
= substitute_div(qp
, div
, cst
);
3965 return split_periods(set
, qp
, data
);
3968 isl_qpolynomial_free(qp
);
3972 /* Split the domain "set" such that integer division "div"
3973 * has a fixed value (ranging from "min" to "max") on each slice
3974 * and add the results to data->res.
3976 static int split_div(__isl_take isl_set
*set
,
3977 __isl_take isl_qpolynomial
*qp
, int div
, isl_int min
, isl_int max
,
3978 struct isl_split_periods_data
*data
)
3980 for (; isl_int_le(min
, max
); isl_int_add_ui(min
, min
, 1)) {
3981 isl_set
*set_i
= isl_set_copy(set
);
3982 isl_qpolynomial
*qp_i
= isl_qpolynomial_copy(qp
);
3984 if (set_div(set_i
, qp_i
, div
, min
, data
) < 0)
3988 isl_qpolynomial_free(qp
);
3992 isl_qpolynomial_free(qp
);
3996 /* If "qp" refers to any integer division
3997 * that can only attain "max_periods" distinct values on "set"
3998 * then split the domain along those distinct values.
3999 * Add the results (or the original if no splitting occurs)
4002 static int split_periods(__isl_take isl_set
*set
,
4003 __isl_take isl_qpolynomial
*qp
, void *user
)
4006 isl_pw_qpolynomial
*pwqp
;
4007 struct isl_split_periods_data
*data
;
4012 data
= (struct isl_split_periods_data
*)user
;
4017 if (qp
->div
->n_row
== 0) {
4018 pwqp
= isl_pw_qpolynomial_alloc(set
, qp
);
4019 data
->res
= isl_pw_qpolynomial_add_disjoint(data
->res
, pwqp
);
4025 total
= isl_dim_total(qp
->dim
);
4026 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
4027 enum isl_lp_result lp_res
;
4029 if (isl_seq_first_non_zero(qp
->div
->row
[i
] + 2 + total
,
4030 qp
->div
->n_row
) != -1)
4033 lp_res
= isl_set_solve_lp(set
, 0, qp
->div
->row
[i
] + 1,
4034 set
->ctx
->one
, &min
, NULL
, NULL
);
4035 if (lp_res
== isl_lp_error
)
4037 if (lp_res
== isl_lp_unbounded
|| lp_res
== isl_lp_empty
)
4039 isl_int_fdiv_q(min
, min
, qp
->div
->row
[i
][0]);
4041 lp_res
= isl_set_solve_lp(set
, 1, qp
->div
->row
[i
] + 1,
4042 set
->ctx
->one
, &max
, NULL
, NULL
);
4043 if (lp_res
== isl_lp_error
)
4045 if (lp_res
== isl_lp_unbounded
|| lp_res
== isl_lp_empty
)
4047 isl_int_fdiv_q(max
, max
, qp
->div
->row
[i
][0]);
4049 isl_int_sub(max
, max
, min
);
4050 if (isl_int_cmp_si(max
, data
->max_periods
) < 0) {
4051 isl_int_add(max
, max
, min
);
4056 if (i
< qp
->div
->n_row
) {
4057 r
= split_div(set
, qp
, i
, min
, max
, data
);
4059 pwqp
= isl_pw_qpolynomial_alloc(set
, qp
);
4060 data
->res
= isl_pw_qpolynomial_add_disjoint(data
->res
, pwqp
);
4072 isl_qpolynomial_free(qp
);
4076 /* If any quasi-polynomial in pwqp refers to any integer division
4077 * that can only attain "max_periods" distinct values on its domain
4078 * then split the domain along those distinct values.
4080 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_split_periods(
4081 __isl_take isl_pw_qpolynomial
*pwqp
, int max_periods
)
4083 struct isl_split_periods_data data
;
4085 data
.max_periods
= max_periods
;
4086 data
.res
= isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_dim(pwqp
));
4088 if (isl_pw_qpolynomial_foreach_piece(pwqp
, &split_periods
, &data
) < 0)
4091 isl_pw_qpolynomial_free(pwqp
);
4095 isl_pw_qpolynomial_free(data
.res
);
4096 isl_pw_qpolynomial_free(pwqp
);
4100 /* Construct a piecewise quasipolynomial that is constant on the given
4101 * domain. In particular, it is
4104 * infinity if cst == -1
4106 static __isl_give isl_pw_qpolynomial
*constant_on_domain(
4107 __isl_take isl_basic_set
*bset
, int cst
)
4110 isl_qpolynomial
*qp
;
4115 bset
= isl_basic_map_domain(isl_basic_map_from_range(bset
));
4116 dim
= isl_basic_set_get_dim(bset
);
4118 qp
= isl_qpolynomial_infty(dim
);
4120 qp
= isl_qpolynomial_zero(dim
);
4122 qp
= isl_qpolynomial_one(dim
);
4123 return isl_pw_qpolynomial_alloc(isl_set_from_basic_set(bset
), qp
);
4126 /* Factor bset, call fn on each of the factors and return the product.
4128 * If no factors can be found, simply call fn on the input.
4129 * Otherwise, construct the factors based on the factorizer,
4130 * call fn on each factor and compute the product.
4132 static __isl_give isl_pw_qpolynomial
*compressed_multiplicative_call(
4133 __isl_take isl_basic_set
*bset
,
4134 __isl_give isl_pw_qpolynomial
*(*fn
)(__isl_take isl_basic_set
*bset
))
4140 isl_qpolynomial
*qp
;
4141 isl_pw_qpolynomial
*pwqp
;
4145 f
= isl_basic_set_factorizer(bset
);
4148 if (f
->n_group
== 0) {
4149 isl_factorizer_free(f
);
4153 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
4154 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
4156 dim
= isl_basic_set_get_dim(bset
);
4157 dim
= isl_dim_domain(dim
);
4158 set
= isl_set_universe(isl_dim_copy(dim
));
4159 qp
= isl_qpolynomial_one(dim
);
4160 pwqp
= isl_pw_qpolynomial_alloc(set
, qp
);
4162 bset
= isl_morph_basic_set(isl_morph_copy(f
->morph
), bset
);
4164 for (i
= 0, n
= 0; i
< f
->n_group
; ++i
) {
4165 isl_basic_set
*bset_i
;
4166 isl_pw_qpolynomial
*pwqp_i
;
4168 bset_i
= isl_basic_set_copy(bset
);
4169 bset_i
= isl_basic_set_drop_constraints_involving(bset_i
,
4170 nparam
+ n
+ f
->len
[i
], nvar
- n
- f
->len
[i
]);
4171 bset_i
= isl_basic_set_drop_constraints_involving(bset_i
,
4173 bset_i
= isl_basic_set_drop(bset_i
, isl_dim_set
,
4174 n
+ f
->len
[i
], nvar
- n
- f
->len
[i
]);
4175 bset_i
= isl_basic_set_drop(bset_i
, isl_dim_set
, 0, n
);
4177 pwqp_i
= fn(bset_i
);
4178 pwqp
= isl_pw_qpolynomial_mul(pwqp
, pwqp_i
);
4183 isl_basic_set_free(bset
);
4184 isl_factorizer_free(f
);
4188 isl_basic_set_free(bset
);
4192 /* Factor bset, call fn on each of the factors and return the product.
4193 * The function is assumed to evaluate to zero on empty domains,
4194 * to one on zero-dimensional domains and to infinity on unbounded domains
4195 * and will not be called explicitly on zero-dimensional or unbounded domains.
4197 * We first check for some special cases and remove all equalities.
4198 * Then we hand over control to compressed_multiplicative_call.
4200 __isl_give isl_pw_qpolynomial
*isl_basic_set_multiplicative_call(
4201 __isl_take isl_basic_set
*bset
,
4202 __isl_give isl_pw_qpolynomial
*(*fn
)(__isl_take isl_basic_set
*bset
))
4206 isl_pw_qpolynomial
*pwqp
;
4207 unsigned orig_nvar
, final_nvar
;
4212 if (isl_basic_set_fast_is_empty(bset
))
4213 return constant_on_domain(bset
, 0);
4215 orig_nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
4218 return constant_on_domain(bset
, 1);
4220 bounded
= isl_basic_set_is_bounded(bset
);
4224 return constant_on_domain(bset
, -1);
4226 if (bset
->n_eq
== 0)
4227 return compressed_multiplicative_call(bset
, fn
);
4229 morph
= isl_basic_set_full_compression(bset
);
4230 bset
= isl_morph_basic_set(isl_morph_copy(morph
), bset
);
4232 final_nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
4234 pwqp
= compressed_multiplicative_call(bset
, fn
);
4236 morph
= isl_morph_remove_dom_dims(morph
, isl_dim_set
, 0, orig_nvar
);
4237 morph
= isl_morph_remove_ran_dims(morph
, isl_dim_set
, 0, final_nvar
);
4238 morph
= isl_morph_inverse(morph
);
4240 pwqp
= isl_pw_qpolynomial_morph(pwqp
, morph
);
4244 isl_basic_set_free(bset
);
4248 /* Drop all floors in "qp", turning each integer division [a/m] into
4249 * a rational division a/m. If "down" is set, then the integer division
4250 * is replaces by (a-(m-1))/m instead.
4252 static __isl_give isl_qpolynomial
*qp_drop_floors(
4253 __isl_take isl_qpolynomial
*qp
, int down
)
4256 struct isl_upoly
*s
;
4260 if (qp
->div
->n_row
== 0)
4263 qp
= isl_qpolynomial_cow(qp
);
4267 for (i
= qp
->div
->n_row
- 1; i
>= 0; --i
) {
4269 isl_int_sub(qp
->div
->row
[i
][1],
4270 qp
->div
->row
[i
][1], qp
->div
->row
[i
][0]);
4271 isl_int_add_ui(qp
->div
->row
[i
][1],
4272 qp
->div
->row
[i
][1], 1);
4274 s
= isl_upoly_from_affine(qp
->dim
->ctx
, qp
->div
->row
[i
] + 1,
4275 qp
->div
->row
[i
][0], qp
->div
->n_col
- 1);
4276 qp
= substitute_div(qp
, i
, s
);
4284 /* Drop all floors in "pwqp", turning each integer division [a/m] into
4285 * a rational division a/m.
4287 static __isl_give isl_pw_qpolynomial
*pwqp_drop_floors(
4288 __isl_take isl_pw_qpolynomial
*pwqp
)
4295 if (isl_pw_qpolynomial_is_zero(pwqp
))
4298 pwqp
= isl_pw_qpolynomial_cow(pwqp
);
4302 for (i
= 0; i
< pwqp
->n
; ++i
) {
4303 pwqp
->p
[i
].qp
= qp_drop_floors(pwqp
->p
[i
].qp
, 0);
4310 isl_pw_qpolynomial_free(pwqp
);
4314 /* Adjust all the integer divisions in "qp" such that they are at least
4315 * one over the given orthant (identified by "signs"). This ensures
4316 * that they will still be non-negative even after subtracting (m-1)/m.
4318 * In particular, f is replaced by f' + v, changing f = [a/m]
4319 * to f' = [(a - m v)/m].
4320 * If the constant term k in a is smaller than m,
4321 * the constant term of v is set to floor(k/m) - 1.
4322 * For any other term, if the coefficient c and the variable x have
4323 * the same sign, then no changes are needed.
4324 * Otherwise, if the variable is positive (and c is negative),
4325 * then the coefficient of x in v is set to floor(c/m).
4326 * If the variable is negative (and c is positive),
4327 * then the coefficient of x in v is set to ceil(c/m).
4329 static __isl_give isl_qpolynomial
*make_divs_pos(__isl_take isl_qpolynomial
*qp
,
4335 struct isl_upoly
*s
;
4337 qp
= isl_qpolynomial_cow(qp
);
4340 qp
->div
= isl_mat_cow(qp
->div
);
4344 total
= isl_dim_total(qp
->dim
);
4345 v
= isl_vec_alloc(qp
->div
->ctx
, qp
->div
->n_col
- 1);
4347 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
4348 isl_int
*row
= qp
->div
->row
[i
];
4352 if (isl_int_lt(row
[1], row
[0])) {
4353 isl_int_fdiv_q(v
->el
[0], row
[1], row
[0]);
4354 isl_int_sub_ui(v
->el
[0], v
->el
[0], 1);
4355 isl_int_submul(row
[1], row
[0], v
->el
[0]);
4357 for (j
= 0; j
< total
; ++j
) {
4358 if (isl_int_sgn(row
[2 + j
]) * signs
[j
] >= 0)
4361 isl_int_cdiv_q(v
->el
[1 + j
], row
[2 + j
], row
[0]);
4363 isl_int_fdiv_q(v
->el
[1 + j
], row
[2 + j
], row
[0]);
4364 isl_int_submul(row
[2 + j
], row
[0], v
->el
[1 + j
]);
4366 for (j
= 0; j
< i
; ++j
) {
4367 if (isl_int_sgn(row
[2 + total
+ j
]) >= 0)
4369 isl_int_fdiv_q(v
->el
[1 + total
+ j
],
4370 row
[2 + total
+ j
], row
[0]);
4371 isl_int_submul(row
[2 + total
+ j
],
4372 row
[0], v
->el
[1 + total
+ j
]);
4374 for (j
= i
+ 1; j
< qp
->div
->n_row
; ++j
) {
4375 if (isl_int_is_zero(qp
->div
->row
[j
][2 + total
+ i
]))
4377 isl_seq_combine(qp
->div
->row
[j
] + 1,
4378 qp
->div
->ctx
->one
, qp
->div
->row
[j
] + 1,
4379 qp
->div
->row
[j
][2 + total
+ i
], v
->el
, v
->size
);
4381 isl_int_set_si(v
->el
[1 + total
+ i
], 1);
4382 s
= isl_upoly_from_affine(qp
->dim
->ctx
, v
->el
,
4383 qp
->div
->ctx
->one
, v
->size
);
4384 qp
->upoly
= isl_upoly_subs(qp
->upoly
, total
+ i
, 1, &s
);
4394 isl_qpolynomial_free(qp
);
4398 struct isl_to_poly_data
{
4400 isl_pw_qpolynomial
*res
;
4401 isl_qpolynomial
*qp
;
4404 /* Appoximate data->qp by a polynomial on the orthant identified by "signs".
4405 * We first make all integer divisions positive and then split the
4406 * quasipolynomials into terms with sign data->sign (the direction
4407 * of the requested approximation) and terms with the opposite sign.
4408 * In the first set of terms, each integer division [a/m] is
4409 * overapproximated by a/m, while in the second it is underapproximated
4412 static int to_polynomial_on_orthant(__isl_take isl_set
*orthant
, int *signs
,
4415 struct isl_to_poly_data
*data
= user
;
4416 isl_pw_qpolynomial
*t
;
4417 isl_qpolynomial
*qp
, *up
, *down
;
4419 qp
= isl_qpolynomial_copy(data
->qp
);
4420 qp
= make_divs_pos(qp
, signs
);
4422 up
= isl_qpolynomial_terms_of_sign(qp
, signs
, data
->sign
);
4423 up
= qp_drop_floors(up
, 0);
4424 down
= isl_qpolynomial_terms_of_sign(qp
, signs
, -data
->sign
);
4425 down
= qp_drop_floors(down
, 1);
4427 isl_qpolynomial_free(qp
);
4428 qp
= isl_qpolynomial_add(up
, down
);
4430 t
= isl_pw_qpolynomial_alloc(orthant
, qp
);
4431 data
->res
= isl_pw_qpolynomial_add_disjoint(data
->res
, t
);
4436 /* Approximate each quasipolynomial by a polynomial. If "sign" is positive,
4437 * the polynomial will be an overapproximation. If "sign" is negative,
4438 * it will be an underapproximation. If "sign" is zero, the approximation
4439 * will lie somewhere in between.
4441 * In particular, is sign == 0, we simply drop the floors, turning
4442 * the integer divisions into rational divisions.
4443 * Otherwise, we split the domains into orthants, make all integer divisions
4444 * positive and then approximate each [a/m] by either a/m or (a-(m-1))/m,
4445 * depending on the requested sign and the sign of the term in which
4446 * the integer division appears.
4448 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_to_polynomial(
4449 __isl_take isl_pw_qpolynomial
*pwqp
, int sign
)
4452 struct isl_to_poly_data data
;
4455 return pwqp_drop_floors(pwqp
);
4461 data
.res
= isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_dim(pwqp
));
4463 for (i
= 0; i
< pwqp
->n
; ++i
) {
4464 if (pwqp
->p
[i
].qp
->div
->n_row
== 0) {
4465 isl_pw_qpolynomial
*t
;
4466 t
= isl_pw_qpolynomial_alloc(
4467 isl_set_copy(pwqp
->p
[i
].set
),
4468 isl_qpolynomial_copy(pwqp
->p
[i
].qp
));
4469 data
.res
= isl_pw_qpolynomial_add_disjoint(data
.res
, t
);
4472 data
.qp
= pwqp
->p
[i
].qp
;
4473 if (isl_set_foreach_orthant(pwqp
->p
[i
].set
,
4474 &to_polynomial_on_orthant
, &data
) < 0)
4478 isl_pw_qpolynomial_free(pwqp
);
4482 isl_pw_qpolynomial_free(pwqp
);
4483 isl_pw_qpolynomial_free(data
.res
);
4487 static int poly_entry(void **entry
, void *user
)
4490 isl_pw_qpolynomial
**pwqp
= (isl_pw_qpolynomial
**)entry
;
4492 *pwqp
= isl_pw_qpolynomial_to_polynomial(*pwqp
, *sign
);
4494 return *pwqp
? 0 : -1;
4497 __isl_give isl_union_pw_qpolynomial
*isl_union_pw_qpolynomial_to_polynomial(
4498 __isl_take isl_union_pw_qpolynomial
*upwqp
, int sign
)
4500 upwqp
= isl_union_pw_qpolynomial_cow(upwqp
);
4504 if (isl_hash_table_foreach(upwqp
->dim
->ctx
, &upwqp
->table
,
4505 &poly_entry
, &sign
) < 0)
4510 isl_union_pw_qpolynomial_free(upwqp
);
4514 __isl_give isl_basic_map
*isl_basic_map_from_qpolynomial(
4515 __isl_take isl_qpolynomial
*qp
)
4519 isl_vec
*aff
= NULL
;
4520 isl_basic_map
*bmap
= NULL
;
4526 if (!isl_upoly_is_affine(qp
->upoly
))
4527 isl_die(qp
->dim
->ctx
, isl_error_invalid
,
4528 "input quasi-polynomial not affine", goto error
);
4529 aff
= isl_qpolynomial_extract_affine(qp
);
4532 dim
= isl_qpolynomial_get_dim(qp
);
4533 dim
= isl_dim_from_domain(dim
);
4534 pos
= 1 + isl_dim_offset(dim
, isl_dim_out
);
4535 dim
= isl_dim_add(dim
, isl_dim_out
, 1);
4536 n_div
= qp
->div
->n_row
;
4537 bmap
= isl_basic_map_alloc_dim(dim
, n_div
, 1, 2 * n_div
);
4539 for (i
= 0; i
< n_div
; ++i
) {
4540 k
= isl_basic_map_alloc_div(bmap
);
4543 isl_seq_cpy(bmap
->div
[k
], qp
->div
->row
[i
], qp
->div
->n_col
);
4544 isl_int_set_si(bmap
->div
[k
][qp
->div
->n_col
], 0);
4545 if (isl_basic_map_add_div_constraints(bmap
, k
) < 0)
4548 k
= isl_basic_map_alloc_equality(bmap
);
4551 isl_int_neg(bmap
->eq
[k
][pos
], aff
->el
[0]);
4552 isl_seq_cpy(bmap
->eq
[k
], aff
->el
+ 1, pos
);
4553 isl_seq_cpy(bmap
->eq
[k
] + pos
+ 1, aff
->el
+ 1 + pos
, n_div
);
4556 isl_qpolynomial_free(qp
);
4557 bmap
= isl_basic_map_finalize(bmap
);
4561 isl_qpolynomial_free(qp
);
4562 isl_basic_map_free(bmap
);