isl_{set,map}_{,unshifted_}simple_hull: finalize result
[isl.git] / isl_map_simplify.c
blob25f635fbb4331a058e9233249572371945bbc3de
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2012 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, K.U.Leuven, Departement
8 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
12 #include <strings.h>
13 #include <isl_ctx_private.h>
14 #include <isl_map_private.h>
15 #include "isl_equalities.h"
16 #include <isl/map.h>
17 #include <isl_seq.h>
18 #include "isl_tab.h"
19 #include <isl_space_private.h>
20 #include <isl_mat_private.h>
21 #include <isl_vec_private.h>
23 static void swap_equality(struct isl_basic_map *bmap, int a, int b)
25 isl_int *t = bmap->eq[a];
26 bmap->eq[a] = bmap->eq[b];
27 bmap->eq[b] = t;
30 static void swap_inequality(struct isl_basic_map *bmap, int a, int b)
32 if (a != b) {
33 isl_int *t = bmap->ineq[a];
34 bmap->ineq[a] = bmap->ineq[b];
35 bmap->ineq[b] = t;
39 static void constraint_drop_vars(isl_int *c, unsigned n, unsigned rem)
41 isl_seq_cpy(c, c + n, rem);
42 isl_seq_clr(c + rem, n);
45 /* Drop n dimensions starting at first.
47 * In principle, this frees up some extra variables as the number
48 * of columns remains constant, but we would have to extend
49 * the div array too as the number of rows in this array is assumed
50 * to be equal to extra.
52 struct isl_basic_set *isl_basic_set_drop_dims(
53 struct isl_basic_set *bset, unsigned first, unsigned n)
55 int i;
57 if (!bset)
58 goto error;
60 isl_assert(bset->ctx, first + n <= bset->dim->n_out, goto error);
62 if (n == 0 && !isl_space_get_tuple_name(bset->dim, isl_dim_set))
63 return bset;
65 bset = isl_basic_set_cow(bset);
66 if (!bset)
67 return NULL;
69 for (i = 0; i < bset->n_eq; ++i)
70 constraint_drop_vars(bset->eq[i]+1+bset->dim->nparam+first, n,
71 (bset->dim->n_out-first-n)+bset->extra);
73 for (i = 0; i < bset->n_ineq; ++i)
74 constraint_drop_vars(bset->ineq[i]+1+bset->dim->nparam+first, n,
75 (bset->dim->n_out-first-n)+bset->extra);
77 for (i = 0; i < bset->n_div; ++i)
78 constraint_drop_vars(bset->div[i]+1+1+bset->dim->nparam+first, n,
79 (bset->dim->n_out-first-n)+bset->extra);
81 bset->dim = isl_space_drop_outputs(bset->dim, first, n);
82 if (!bset->dim)
83 goto error;
85 ISL_F_CLR(bset, ISL_BASIC_SET_NORMALIZED);
86 bset = isl_basic_set_simplify(bset);
87 return isl_basic_set_finalize(bset);
88 error:
89 isl_basic_set_free(bset);
90 return NULL;
93 struct isl_set *isl_set_drop_dims(
94 struct isl_set *set, unsigned first, unsigned n)
96 int i;
98 if (!set)
99 goto error;
101 isl_assert(set->ctx, first + n <= set->dim->n_out, goto error);
103 if (n == 0 && !isl_space_get_tuple_name(set->dim, isl_dim_set))
104 return set;
105 set = isl_set_cow(set);
106 if (!set)
107 goto error;
108 set->dim = isl_space_drop_outputs(set->dim, first, n);
109 if (!set->dim)
110 goto error;
112 for (i = 0; i < set->n; ++i) {
113 set->p[i] = isl_basic_set_drop_dims(set->p[i], first, n);
114 if (!set->p[i])
115 goto error;
118 ISL_F_CLR(set, ISL_SET_NORMALIZED);
119 return set;
120 error:
121 isl_set_free(set);
122 return NULL;
125 /* Move "n" divs starting at "first" to the end of the list of divs.
127 static struct isl_basic_map *move_divs_last(struct isl_basic_map *bmap,
128 unsigned first, unsigned n)
130 isl_int **div;
131 int i;
133 if (first + n == bmap->n_div)
134 return bmap;
136 div = isl_alloc_array(bmap->ctx, isl_int *, n);
137 if (!div)
138 goto error;
139 for (i = 0; i < n; ++i)
140 div[i] = bmap->div[first + i];
141 for (i = 0; i < bmap->n_div - first - n; ++i)
142 bmap->div[first + i] = bmap->div[first + n + i];
143 for (i = 0; i < n; ++i)
144 bmap->div[bmap->n_div - n + i] = div[i];
145 free(div);
146 return bmap;
147 error:
148 isl_basic_map_free(bmap);
149 return NULL;
152 /* Drop "n" dimensions of type "type" starting at "first".
154 * In principle, this frees up some extra variables as the number
155 * of columns remains constant, but we would have to extend
156 * the div array too as the number of rows in this array is assumed
157 * to be equal to extra.
159 struct isl_basic_map *isl_basic_map_drop(struct isl_basic_map *bmap,
160 enum isl_dim_type type, unsigned first, unsigned n)
162 int i;
163 unsigned dim;
164 unsigned offset;
165 unsigned left;
167 if (!bmap)
168 goto error;
170 dim = isl_basic_map_dim(bmap, type);
171 isl_assert(bmap->ctx, first + n <= dim, goto error);
173 if (n == 0 && !isl_space_is_named_or_nested(bmap->dim, type))
174 return bmap;
176 bmap = isl_basic_map_cow(bmap);
177 if (!bmap)
178 return NULL;
180 offset = isl_basic_map_offset(bmap, type) + first;
181 left = isl_basic_map_total_dim(bmap) - (offset - 1) - n;
182 for (i = 0; i < bmap->n_eq; ++i)
183 constraint_drop_vars(bmap->eq[i]+offset, n, left);
185 for (i = 0; i < bmap->n_ineq; ++i)
186 constraint_drop_vars(bmap->ineq[i]+offset, n, left);
188 for (i = 0; i < bmap->n_div; ++i)
189 constraint_drop_vars(bmap->div[i]+1+offset, n, left);
191 if (type == isl_dim_div) {
192 bmap = move_divs_last(bmap, first, n);
193 if (!bmap)
194 goto error;
195 isl_basic_map_free_div(bmap, n);
196 } else
197 bmap->dim = isl_space_drop_dims(bmap->dim, type, first, n);
198 if (!bmap->dim)
199 goto error;
201 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
202 bmap = isl_basic_map_simplify(bmap);
203 return isl_basic_map_finalize(bmap);
204 error:
205 isl_basic_map_free(bmap);
206 return NULL;
209 __isl_give isl_basic_set *isl_basic_set_drop(__isl_take isl_basic_set *bset,
210 enum isl_dim_type type, unsigned first, unsigned n)
212 return (isl_basic_set *)isl_basic_map_drop((isl_basic_map *)bset,
213 type, first, n);
216 struct isl_basic_map *isl_basic_map_drop_inputs(
217 struct isl_basic_map *bmap, unsigned first, unsigned n)
219 return isl_basic_map_drop(bmap, isl_dim_in, first, n);
222 struct isl_map *isl_map_drop(struct isl_map *map,
223 enum isl_dim_type type, unsigned first, unsigned n)
225 int i;
227 if (!map)
228 goto error;
230 isl_assert(map->ctx, first + n <= isl_map_dim(map, type), goto error);
232 if (n == 0 && !isl_space_get_tuple_name(map->dim, type))
233 return map;
234 map = isl_map_cow(map);
235 if (!map)
236 goto error;
237 map->dim = isl_space_drop_dims(map->dim, type, first, n);
238 if (!map->dim)
239 goto error;
241 for (i = 0; i < map->n; ++i) {
242 map->p[i] = isl_basic_map_drop(map->p[i], type, first, n);
243 if (!map->p[i])
244 goto error;
246 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
248 return map;
249 error:
250 isl_map_free(map);
251 return NULL;
254 struct isl_set *isl_set_drop(struct isl_set *set,
255 enum isl_dim_type type, unsigned first, unsigned n)
257 return (isl_set *)isl_map_drop((isl_map *)set, type, first, n);
260 struct isl_map *isl_map_drop_inputs(
261 struct isl_map *map, unsigned first, unsigned n)
263 return isl_map_drop(map, isl_dim_in, first, n);
267 * We don't cow, as the div is assumed to be redundant.
269 static struct isl_basic_map *isl_basic_map_drop_div(
270 struct isl_basic_map *bmap, unsigned div)
272 int i;
273 unsigned pos;
275 if (!bmap)
276 goto error;
278 pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
280 isl_assert(bmap->ctx, div < bmap->n_div, goto error);
282 for (i = 0; i < bmap->n_eq; ++i)
283 constraint_drop_vars(bmap->eq[i]+pos, 1, bmap->extra-div-1);
285 for (i = 0; i < bmap->n_ineq; ++i) {
286 if (!isl_int_is_zero(bmap->ineq[i][pos])) {
287 isl_basic_map_drop_inequality(bmap, i);
288 --i;
289 continue;
291 constraint_drop_vars(bmap->ineq[i]+pos, 1, bmap->extra-div-1);
294 for (i = 0; i < bmap->n_div; ++i)
295 constraint_drop_vars(bmap->div[i]+1+pos, 1, bmap->extra-div-1);
297 if (div != bmap->n_div - 1) {
298 int j;
299 isl_int *t = bmap->div[div];
301 for (j = div; j < bmap->n_div - 1; ++j)
302 bmap->div[j] = bmap->div[j+1];
304 bmap->div[bmap->n_div - 1] = t;
306 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
307 isl_basic_map_free_div(bmap, 1);
309 return bmap;
310 error:
311 isl_basic_map_free(bmap);
312 return NULL;
315 struct isl_basic_map *isl_basic_map_normalize_constraints(
316 struct isl_basic_map *bmap)
318 int i;
319 isl_int gcd;
320 unsigned total = isl_basic_map_total_dim(bmap);
322 if (!bmap)
323 return NULL;
325 isl_int_init(gcd);
326 for (i = bmap->n_eq - 1; i >= 0; --i) {
327 isl_seq_gcd(bmap->eq[i]+1, total, &gcd);
328 if (isl_int_is_zero(gcd)) {
329 if (!isl_int_is_zero(bmap->eq[i][0])) {
330 bmap = isl_basic_map_set_to_empty(bmap);
331 break;
333 isl_basic_map_drop_equality(bmap, i);
334 continue;
336 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
337 isl_int_gcd(gcd, gcd, bmap->eq[i][0]);
338 if (isl_int_is_one(gcd))
339 continue;
340 if (!isl_int_is_divisible_by(bmap->eq[i][0], gcd)) {
341 bmap = isl_basic_map_set_to_empty(bmap);
342 break;
344 isl_seq_scale_down(bmap->eq[i], bmap->eq[i], gcd, 1+total);
347 for (i = bmap->n_ineq - 1; i >= 0; --i) {
348 isl_seq_gcd(bmap->ineq[i]+1, total, &gcd);
349 if (isl_int_is_zero(gcd)) {
350 if (isl_int_is_neg(bmap->ineq[i][0])) {
351 bmap = isl_basic_map_set_to_empty(bmap);
352 break;
354 isl_basic_map_drop_inequality(bmap, i);
355 continue;
357 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
358 isl_int_gcd(gcd, gcd, bmap->ineq[i][0]);
359 if (isl_int_is_one(gcd))
360 continue;
361 isl_int_fdiv_q(bmap->ineq[i][0], bmap->ineq[i][0], gcd);
362 isl_seq_scale_down(bmap->ineq[i]+1, bmap->ineq[i]+1, gcd, total);
364 isl_int_clear(gcd);
366 return bmap;
369 struct isl_basic_set *isl_basic_set_normalize_constraints(
370 struct isl_basic_set *bset)
372 return (struct isl_basic_set *)isl_basic_map_normalize_constraints(
373 (struct isl_basic_map *)bset);
376 /* Remove any common factor in numerator and denominator of the div expression,
377 * not taking into account the constant term.
378 * That is, if the div is of the form
380 * floor((a + m f(x))/(m d))
382 * then replace it by
384 * floor((floor(a/m) + f(x))/d)
386 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
387 * and can therefore not influence the result of the floor.
389 static void normalize_div_expression(__isl_keep isl_basic_map *bmap, int div)
391 unsigned total = isl_basic_map_total_dim(bmap);
392 isl_ctx *ctx = bmap->ctx;
394 if (isl_int_is_zero(bmap->div[div][0]))
395 return;
396 isl_seq_gcd(bmap->div[div] + 2, total, &ctx->normalize_gcd);
397 isl_int_gcd(ctx->normalize_gcd, ctx->normalize_gcd, bmap->div[div][0]);
398 if (isl_int_is_one(ctx->normalize_gcd))
399 return;
400 isl_int_fdiv_q(bmap->div[div][1], bmap->div[div][1],
401 ctx->normalize_gcd);
402 isl_int_divexact(bmap->div[div][0], bmap->div[div][0],
403 ctx->normalize_gcd);
404 isl_seq_scale_down(bmap->div[div] + 2, bmap->div[div] + 2,
405 ctx->normalize_gcd, total);
408 /* Remove any common factor in numerator and denominator of a div expression,
409 * not taking into account the constant term.
410 * That is, look for any div of the form
412 * floor((a + m f(x))/(m d))
414 * and replace it by
416 * floor((floor(a/m) + f(x))/d)
418 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
419 * and can therefore not influence the result of the floor.
421 static __isl_give isl_basic_map *normalize_div_expressions(
422 __isl_take isl_basic_map *bmap)
424 int i;
426 if (!bmap)
427 return NULL;
428 if (bmap->n_div == 0)
429 return bmap;
431 for (i = 0; i < bmap->n_div; ++i)
432 normalize_div_expression(bmap, i);
434 return bmap;
437 /* Assumes divs have been ordered if keep_divs is set.
439 static void eliminate_var_using_equality(struct isl_basic_map *bmap,
440 unsigned pos, isl_int *eq, int keep_divs, int *progress)
442 unsigned total;
443 unsigned space_total;
444 int k;
445 int last_div;
447 total = isl_basic_map_total_dim(bmap);
448 space_total = isl_space_dim(bmap->dim, isl_dim_all);
449 last_div = isl_seq_last_non_zero(eq + 1 + space_total, bmap->n_div);
450 for (k = 0; k < bmap->n_eq; ++k) {
451 if (bmap->eq[k] == eq)
452 continue;
453 if (isl_int_is_zero(bmap->eq[k][1+pos]))
454 continue;
455 if (progress)
456 *progress = 1;
457 isl_seq_elim(bmap->eq[k], eq, 1+pos, 1+total, NULL);
458 isl_seq_normalize(bmap->ctx, bmap->eq[k], 1 + total);
461 for (k = 0; k < bmap->n_ineq; ++k) {
462 if (isl_int_is_zero(bmap->ineq[k][1+pos]))
463 continue;
464 if (progress)
465 *progress = 1;
466 isl_seq_elim(bmap->ineq[k], eq, 1+pos, 1+total, NULL);
467 isl_seq_normalize(bmap->ctx, bmap->ineq[k], 1 + total);
468 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
471 for (k = 0; k < bmap->n_div; ++k) {
472 if (isl_int_is_zero(bmap->div[k][0]))
473 continue;
474 if (isl_int_is_zero(bmap->div[k][1+1+pos]))
475 continue;
476 if (progress)
477 *progress = 1;
478 /* We need to be careful about circular definitions,
479 * so for now we just remove the definition of div k
480 * if the equality contains any divs.
481 * If keep_divs is set, then the divs have been ordered
482 * and we can keep the definition as long as the result
483 * is still ordered.
485 if (last_div == -1 || (keep_divs && last_div < k)) {
486 isl_seq_elim(bmap->div[k]+1, eq,
487 1+pos, 1+total, &bmap->div[k][0]);
488 normalize_div_expression(bmap, k);
489 } else
490 isl_seq_clr(bmap->div[k], 1 + total);
491 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
495 /* Assumes divs have been ordered if keep_divs is set.
497 static void eliminate_div(struct isl_basic_map *bmap, isl_int *eq,
498 unsigned div, int keep_divs)
500 unsigned pos = isl_space_dim(bmap->dim, isl_dim_all) + div;
502 eliminate_var_using_equality(bmap, pos, eq, keep_divs, NULL);
504 isl_basic_map_drop_div(bmap, div);
507 /* Check if elimination of div "div" using equality "eq" would not
508 * result in a div depending on a later div.
510 static int ok_to_eliminate_div(struct isl_basic_map *bmap, isl_int *eq,
511 unsigned div)
513 int k;
514 int last_div;
515 unsigned space_total = isl_space_dim(bmap->dim, isl_dim_all);
516 unsigned pos = space_total + div;
518 last_div = isl_seq_last_non_zero(eq + 1 + space_total, bmap->n_div);
519 if (last_div < 0 || last_div <= div)
520 return 1;
522 for (k = 0; k <= last_div; ++k) {
523 if (isl_int_is_zero(bmap->div[k][0]))
524 return 1;
525 if (!isl_int_is_zero(bmap->div[k][1 + 1 + pos]))
526 return 0;
529 return 1;
532 /* Elimininate divs based on equalities
534 static struct isl_basic_map *eliminate_divs_eq(
535 struct isl_basic_map *bmap, int *progress)
537 int d;
538 int i;
539 int modified = 0;
540 unsigned off;
542 bmap = isl_basic_map_order_divs(bmap);
544 if (!bmap)
545 return NULL;
547 off = 1 + isl_space_dim(bmap->dim, isl_dim_all);
549 for (d = bmap->n_div - 1; d >= 0 ; --d) {
550 for (i = 0; i < bmap->n_eq; ++i) {
551 if (!isl_int_is_one(bmap->eq[i][off + d]) &&
552 !isl_int_is_negone(bmap->eq[i][off + d]))
553 continue;
554 if (!ok_to_eliminate_div(bmap, bmap->eq[i], d))
555 continue;
556 modified = 1;
557 *progress = 1;
558 eliminate_div(bmap, bmap->eq[i], d, 1);
559 isl_basic_map_drop_equality(bmap, i);
560 break;
563 if (modified)
564 return eliminate_divs_eq(bmap, progress);
565 return bmap;
568 /* Elimininate divs based on inequalities
570 static struct isl_basic_map *eliminate_divs_ineq(
571 struct isl_basic_map *bmap, int *progress)
573 int d;
574 int i;
575 unsigned off;
576 struct isl_ctx *ctx;
578 if (!bmap)
579 return NULL;
581 ctx = bmap->ctx;
582 off = 1 + isl_space_dim(bmap->dim, isl_dim_all);
584 for (d = bmap->n_div - 1; d >= 0 ; --d) {
585 for (i = 0; i < bmap->n_eq; ++i)
586 if (!isl_int_is_zero(bmap->eq[i][off + d]))
587 break;
588 if (i < bmap->n_eq)
589 continue;
590 for (i = 0; i < bmap->n_ineq; ++i)
591 if (isl_int_abs_gt(bmap->ineq[i][off + d], ctx->one))
592 break;
593 if (i < bmap->n_ineq)
594 continue;
595 *progress = 1;
596 bmap = isl_basic_map_eliminate_vars(bmap, (off-1)+d, 1);
597 if (!bmap || ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
598 break;
599 bmap = isl_basic_map_drop_div(bmap, d);
600 if (!bmap)
601 break;
603 return bmap;
606 struct isl_basic_map *isl_basic_map_gauss(
607 struct isl_basic_map *bmap, int *progress)
609 int k;
610 int done;
611 int last_var;
612 unsigned total_var;
613 unsigned total;
615 bmap = isl_basic_map_order_divs(bmap);
617 if (!bmap)
618 return NULL;
620 total = isl_basic_map_total_dim(bmap);
621 total_var = total - bmap->n_div;
623 last_var = total - 1;
624 for (done = 0; done < bmap->n_eq; ++done) {
625 for (; last_var >= 0; --last_var) {
626 for (k = done; k < bmap->n_eq; ++k)
627 if (!isl_int_is_zero(bmap->eq[k][1+last_var]))
628 break;
629 if (k < bmap->n_eq)
630 break;
632 if (last_var < 0)
633 break;
634 if (k != done)
635 swap_equality(bmap, k, done);
636 if (isl_int_is_neg(bmap->eq[done][1+last_var]))
637 isl_seq_neg(bmap->eq[done], bmap->eq[done], 1+total);
639 eliminate_var_using_equality(bmap, last_var, bmap->eq[done], 1,
640 progress);
642 if (last_var >= total_var &&
643 isl_int_is_zero(bmap->div[last_var - total_var][0])) {
644 unsigned div = last_var - total_var;
645 isl_seq_neg(bmap->div[div]+1, bmap->eq[done], 1+total);
646 isl_int_set_si(bmap->div[div][1+1+last_var], 0);
647 isl_int_set(bmap->div[div][0],
648 bmap->eq[done][1+last_var]);
649 if (progress)
650 *progress = 1;
651 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
654 if (done == bmap->n_eq)
655 return bmap;
656 for (k = done; k < bmap->n_eq; ++k) {
657 if (isl_int_is_zero(bmap->eq[k][0]))
658 continue;
659 return isl_basic_map_set_to_empty(bmap);
661 isl_basic_map_free_equality(bmap, bmap->n_eq-done);
662 return bmap;
665 struct isl_basic_set *isl_basic_set_gauss(
666 struct isl_basic_set *bset, int *progress)
668 return (struct isl_basic_set*)isl_basic_map_gauss(
669 (struct isl_basic_map *)bset, progress);
673 static unsigned int round_up(unsigned int v)
675 int old_v = v;
677 while (v) {
678 old_v = v;
679 v ^= v & -v;
681 return old_v << 1;
684 static int hash_index(isl_int ***index, unsigned int size, int bits,
685 struct isl_basic_map *bmap, int k)
687 int h;
688 unsigned total = isl_basic_map_total_dim(bmap);
689 uint32_t hash = isl_seq_get_hash_bits(bmap->ineq[k]+1, total, bits);
690 for (h = hash; index[h]; h = (h+1) % size)
691 if (&bmap->ineq[k] != index[h] &&
692 isl_seq_eq(bmap->ineq[k]+1, index[h][0]+1, total))
693 break;
694 return h;
697 static int set_hash_index(isl_int ***index, unsigned int size, int bits,
698 struct isl_basic_set *bset, int k)
700 return hash_index(index, size, bits, (struct isl_basic_map *)bset, k);
703 /* If we can eliminate more than one div, then we need to make
704 * sure we do it from last div to first div, in order not to
705 * change the position of the other divs that still need to
706 * be removed.
708 static struct isl_basic_map *remove_duplicate_divs(
709 struct isl_basic_map *bmap, int *progress)
711 unsigned int size;
712 int *index;
713 int *elim_for;
714 int k, l, h;
715 int bits;
716 struct isl_blk eq;
717 unsigned total_var;
718 unsigned total;
719 struct isl_ctx *ctx;
721 bmap = isl_basic_map_order_divs(bmap);
722 if (!bmap || bmap->n_div <= 1)
723 return bmap;
725 total_var = isl_space_dim(bmap->dim, isl_dim_all);
726 total = total_var + bmap->n_div;
728 ctx = bmap->ctx;
729 for (k = bmap->n_div - 1; k >= 0; --k)
730 if (!isl_int_is_zero(bmap->div[k][0]))
731 break;
732 if (k <= 0)
733 return bmap;
735 elim_for = isl_calloc_array(ctx, int, bmap->n_div);
736 size = round_up(4 * bmap->n_div / 3 - 1);
737 bits = ffs(size) - 1;
738 index = isl_calloc_array(ctx, int, size);
739 if (!index)
740 return bmap;
741 eq = isl_blk_alloc(ctx, 1+total);
742 if (isl_blk_is_error(eq))
743 goto out;
745 isl_seq_clr(eq.data, 1+total);
746 index[isl_seq_get_hash_bits(bmap->div[k], 2+total, bits)] = k + 1;
747 for (--k; k >= 0; --k) {
748 uint32_t hash;
750 if (isl_int_is_zero(bmap->div[k][0]))
751 continue;
753 hash = isl_seq_get_hash_bits(bmap->div[k], 2+total, bits);
754 for (h = hash; index[h]; h = (h+1) % size)
755 if (isl_seq_eq(bmap->div[k],
756 bmap->div[index[h]-1], 2+total))
757 break;
758 if (index[h]) {
759 *progress = 1;
760 l = index[h] - 1;
761 elim_for[l] = k + 1;
763 index[h] = k+1;
765 for (l = bmap->n_div - 1; l >= 0; --l) {
766 if (!elim_for[l])
767 continue;
768 k = elim_for[l] - 1;
769 isl_int_set_si(eq.data[1+total_var+k], -1);
770 isl_int_set_si(eq.data[1+total_var+l], 1);
771 eliminate_div(bmap, eq.data, l, 1);
772 isl_int_set_si(eq.data[1+total_var+k], 0);
773 isl_int_set_si(eq.data[1+total_var+l], 0);
776 isl_blk_free(ctx, eq);
777 out:
778 free(index);
779 free(elim_for);
780 return bmap;
783 static int n_pure_div_eq(struct isl_basic_map *bmap)
785 int i, j;
786 unsigned total;
788 total = isl_space_dim(bmap->dim, isl_dim_all);
789 for (i = 0, j = bmap->n_div-1; i < bmap->n_eq; ++i) {
790 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
791 --j;
792 if (j < 0)
793 break;
794 if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total, j) != -1)
795 return 0;
797 return i;
800 /* Normalize divs that appear in equalities.
802 * In particular, we assume that bmap contains some equalities
803 * of the form
805 * a x = m * e_i
807 * and we want to replace the set of e_i by a minimal set and
808 * such that the new e_i have a canonical representation in terms
809 * of the vector x.
810 * If any of the equalities involves more than one divs, then
811 * we currently simply bail out.
813 * Let us first additionally assume that all equalities involve
814 * a div. The equalities then express modulo constraints on the
815 * remaining variables and we can use "parameter compression"
816 * to find a minimal set of constraints. The result is a transformation
818 * x = T(x') = x_0 + G x'
820 * with G a lower-triangular matrix with all elements below the diagonal
821 * non-negative and smaller than the diagonal element on the same row.
822 * We first normalize x_0 by making the same property hold in the affine
823 * T matrix.
824 * The rows i of G with a 1 on the diagonal do not impose any modulo
825 * constraint and simply express x_i = x'_i.
826 * For each of the remaining rows i, we introduce a div and a corresponding
827 * equality. In particular
829 * g_ii e_j = x_i - g_i(x')
831 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
832 * corresponding div (if g_kk != 1).
834 * If there are any equalities not involving any div, then we
835 * first apply a variable compression on the variables x:
837 * x = C x'' x'' = C_2 x
839 * and perform the above parameter compression on A C instead of on A.
840 * The resulting compression is then of the form
842 * x'' = T(x') = x_0 + G x'
844 * and in constructing the new divs and the corresponding equalities,
845 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
846 * by the corresponding row from C_2.
848 static struct isl_basic_map *normalize_divs(
849 struct isl_basic_map *bmap, int *progress)
851 int i, j, k;
852 int total;
853 int div_eq;
854 struct isl_mat *B;
855 struct isl_vec *d;
856 struct isl_mat *T = NULL;
857 struct isl_mat *C = NULL;
858 struct isl_mat *C2 = NULL;
859 isl_int v;
860 int *pos;
861 int dropped, needed;
863 if (!bmap)
864 return NULL;
866 if (bmap->n_div == 0)
867 return bmap;
869 if (bmap->n_eq == 0)
870 return bmap;
872 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS))
873 return bmap;
875 total = isl_space_dim(bmap->dim, isl_dim_all);
876 div_eq = n_pure_div_eq(bmap);
877 if (div_eq == 0)
878 return bmap;
880 if (div_eq < bmap->n_eq) {
881 B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, div_eq,
882 bmap->n_eq - div_eq, 0, 1 + total);
883 C = isl_mat_variable_compression(B, &C2);
884 if (!C || !C2)
885 goto error;
886 if (C->n_col == 0) {
887 bmap = isl_basic_map_set_to_empty(bmap);
888 isl_mat_free(C);
889 isl_mat_free(C2);
890 goto done;
894 d = isl_vec_alloc(bmap->ctx, div_eq);
895 if (!d)
896 goto error;
897 for (i = 0, j = bmap->n_div-1; i < div_eq; ++i) {
898 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
899 --j;
900 isl_int_set(d->block.data[i], bmap->eq[i][1 + total + j]);
902 B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, 0, div_eq, 0, 1 + total);
904 if (C) {
905 B = isl_mat_product(B, C);
906 C = NULL;
909 T = isl_mat_parameter_compression(B, d);
910 if (!T)
911 goto error;
912 if (T->n_col == 0) {
913 bmap = isl_basic_map_set_to_empty(bmap);
914 isl_mat_free(C2);
915 isl_mat_free(T);
916 goto done;
918 isl_int_init(v);
919 for (i = 0; i < T->n_row - 1; ++i) {
920 isl_int_fdiv_q(v, T->row[1 + i][0], T->row[1 + i][1 + i]);
921 if (isl_int_is_zero(v))
922 continue;
923 isl_mat_col_submul(T, 0, v, 1 + i);
925 isl_int_clear(v);
926 pos = isl_alloc_array(bmap->ctx, int, T->n_row);
927 if (!pos)
928 goto error;
929 /* We have to be careful because dropping equalities may reorder them */
930 dropped = 0;
931 for (j = bmap->n_div - 1; j >= 0; --j) {
932 for (i = 0; i < bmap->n_eq; ++i)
933 if (!isl_int_is_zero(bmap->eq[i][1 + total + j]))
934 break;
935 if (i < bmap->n_eq) {
936 bmap = isl_basic_map_drop_div(bmap, j);
937 isl_basic_map_drop_equality(bmap, i);
938 ++dropped;
941 pos[0] = 0;
942 needed = 0;
943 for (i = 1; i < T->n_row; ++i) {
944 if (isl_int_is_one(T->row[i][i]))
945 pos[i] = i;
946 else
947 needed++;
949 if (needed > dropped) {
950 bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim),
951 needed, needed, 0);
952 if (!bmap)
953 goto error;
955 for (i = 1; i < T->n_row; ++i) {
956 if (isl_int_is_one(T->row[i][i]))
957 continue;
958 k = isl_basic_map_alloc_div(bmap);
959 pos[i] = 1 + total + k;
960 isl_seq_clr(bmap->div[k] + 1, 1 + total + bmap->n_div);
961 isl_int_set(bmap->div[k][0], T->row[i][i]);
962 if (C2)
963 isl_seq_cpy(bmap->div[k] + 1, C2->row[i], 1 + total);
964 else
965 isl_int_set_si(bmap->div[k][1 + i], 1);
966 for (j = 0; j < i; ++j) {
967 if (isl_int_is_zero(T->row[i][j]))
968 continue;
969 if (pos[j] < T->n_row && C2)
970 isl_seq_submul(bmap->div[k] + 1, T->row[i][j],
971 C2->row[pos[j]], 1 + total);
972 else
973 isl_int_neg(bmap->div[k][1 + pos[j]],
974 T->row[i][j]);
976 j = isl_basic_map_alloc_equality(bmap);
977 isl_seq_neg(bmap->eq[j], bmap->div[k]+1, 1+total+bmap->n_div);
978 isl_int_set(bmap->eq[j][pos[i]], bmap->div[k][0]);
980 free(pos);
981 isl_mat_free(C2);
982 isl_mat_free(T);
984 if (progress)
985 *progress = 1;
986 done:
987 ISL_F_SET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS);
989 return bmap;
990 error:
991 isl_mat_free(C);
992 isl_mat_free(C2);
993 isl_mat_free(T);
994 return bmap;
997 static struct isl_basic_map *set_div_from_lower_bound(
998 struct isl_basic_map *bmap, int div, int ineq)
1000 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1002 isl_seq_neg(bmap->div[div] + 1, bmap->ineq[ineq], total + bmap->n_div);
1003 isl_int_set(bmap->div[div][0], bmap->ineq[ineq][total + div]);
1004 isl_int_add(bmap->div[div][1], bmap->div[div][1], bmap->div[div][0]);
1005 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1006 isl_int_set_si(bmap->div[div][1 + total + div], 0);
1008 return bmap;
1011 /* Check whether it is ok to define a div based on an inequality.
1012 * To avoid the introduction of circular definitions of divs, we
1013 * do not allow such a definition if the resulting expression would refer to
1014 * any other undefined divs or if any known div is defined in
1015 * terms of the unknown div.
1017 static int ok_to_set_div_from_bound(struct isl_basic_map *bmap,
1018 int div, int ineq)
1020 int j;
1021 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1023 /* Not defined in terms of unknown divs */
1024 for (j = 0; j < bmap->n_div; ++j) {
1025 if (div == j)
1026 continue;
1027 if (isl_int_is_zero(bmap->ineq[ineq][total + j]))
1028 continue;
1029 if (isl_int_is_zero(bmap->div[j][0]))
1030 return 0;
1033 /* No other div defined in terms of this one => avoid loops */
1034 for (j = 0; j < bmap->n_div; ++j) {
1035 if (div == j)
1036 continue;
1037 if (isl_int_is_zero(bmap->div[j][0]))
1038 continue;
1039 if (!isl_int_is_zero(bmap->div[j][1 + total + div]))
1040 return 0;
1043 return 1;
1046 /* Would an expression for div "div" based on inequality "ineq" of "bmap"
1047 * be a better expression than the current one?
1049 * If we do not have any expression yet, then any expression would be better.
1050 * Otherwise we check if the last variable involved in the inequality
1051 * (disregarding the div that it would define) is in an earlier position
1052 * than the last variable involved in the current div expression.
1054 static int better_div_constraint(__isl_keep isl_basic_map *bmap,
1055 int div, int ineq)
1057 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1058 int last_div;
1059 int last_ineq;
1061 if (isl_int_is_zero(bmap->div[div][0]))
1062 return 1;
1064 if (isl_seq_last_non_zero(bmap->ineq[ineq] + total + div + 1,
1065 bmap->n_div - (div + 1)) >= 0)
1066 return 0;
1068 last_ineq = isl_seq_last_non_zero(bmap->ineq[ineq], total + div);
1069 last_div = isl_seq_last_non_zero(bmap->div[div] + 1,
1070 total + bmap->n_div);
1072 return last_ineq < last_div;
1075 /* Given two constraints "k" and "l" that are opposite to each other,
1076 * except for the constant term, check if we can use them
1077 * to obtain an expression for one of the hitherto unknown divs or
1078 * a "better" expression for a div for which we already have an expression.
1079 * "sum" is the sum of the constant terms of the constraints.
1080 * If this sum is strictly smaller than the coefficient of one
1081 * of the divs, then this pair can be used define the div.
1082 * To avoid the introduction of circular definitions of divs, we
1083 * do not use the pair if the resulting expression would refer to
1084 * any other undefined divs or if any known div is defined in
1085 * terms of the unknown div.
1087 static struct isl_basic_map *check_for_div_constraints(
1088 struct isl_basic_map *bmap, int k, int l, isl_int sum, int *progress)
1090 int i;
1091 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1093 for (i = 0; i < bmap->n_div; ++i) {
1094 if (isl_int_is_zero(bmap->ineq[k][total + i]))
1095 continue;
1096 if (isl_int_abs_ge(sum, bmap->ineq[k][total + i]))
1097 continue;
1098 if (!better_div_constraint(bmap, i, k))
1099 continue;
1100 if (!ok_to_set_div_from_bound(bmap, i, k))
1101 break;
1102 if (isl_int_is_pos(bmap->ineq[k][total + i]))
1103 bmap = set_div_from_lower_bound(bmap, i, k);
1104 else
1105 bmap = set_div_from_lower_bound(bmap, i, l);
1106 if (progress)
1107 *progress = 1;
1108 break;
1110 return bmap;
1113 static struct isl_basic_map *remove_duplicate_constraints(
1114 struct isl_basic_map *bmap, int *progress, int detect_divs)
1116 unsigned int size;
1117 isl_int ***index;
1118 int k, l, h;
1119 int bits;
1120 unsigned total = isl_basic_map_total_dim(bmap);
1121 isl_int sum;
1122 isl_ctx *ctx;
1124 if (!bmap || bmap->n_ineq <= 1)
1125 return bmap;
1127 size = round_up(4 * (bmap->n_ineq+1) / 3 - 1);
1128 bits = ffs(size) - 1;
1129 ctx = isl_basic_map_get_ctx(bmap);
1130 index = isl_calloc_array(ctx, isl_int **, size);
1131 if (!index)
1132 return bmap;
1134 index[isl_seq_get_hash_bits(bmap->ineq[0]+1, total, bits)] = &bmap->ineq[0];
1135 for (k = 1; k < bmap->n_ineq; ++k) {
1136 h = hash_index(index, size, bits, bmap, k);
1137 if (!index[h]) {
1138 index[h] = &bmap->ineq[k];
1139 continue;
1141 if (progress)
1142 *progress = 1;
1143 l = index[h] - &bmap->ineq[0];
1144 if (isl_int_lt(bmap->ineq[k][0], bmap->ineq[l][0]))
1145 swap_inequality(bmap, k, l);
1146 isl_basic_map_drop_inequality(bmap, k);
1147 --k;
1149 isl_int_init(sum);
1150 for (k = 0; k < bmap->n_ineq-1; ++k) {
1151 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1152 h = hash_index(index, size, bits, bmap, k);
1153 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1154 if (!index[h])
1155 continue;
1156 l = index[h] - &bmap->ineq[0];
1157 isl_int_add(sum, bmap->ineq[k][0], bmap->ineq[l][0]);
1158 if (isl_int_is_pos(sum)) {
1159 if (detect_divs)
1160 bmap = check_for_div_constraints(bmap, k, l,
1161 sum, progress);
1162 continue;
1164 if (isl_int_is_zero(sum)) {
1165 /* We need to break out of the loop after these
1166 * changes since the contents of the hash
1167 * will no longer be valid.
1168 * Plus, we probably we want to regauss first.
1170 if (progress)
1171 *progress = 1;
1172 isl_basic_map_drop_inequality(bmap, l);
1173 isl_basic_map_inequality_to_equality(bmap, k);
1174 } else
1175 bmap = isl_basic_map_set_to_empty(bmap);
1176 break;
1178 isl_int_clear(sum);
1180 free(index);
1181 return bmap;
1185 /* Eliminate knowns divs from constraints where they appear with
1186 * a (positive or negative) unit coefficient.
1188 * That is, replace
1190 * floor(e/m) + f >= 0
1192 * by
1194 * e + m f >= 0
1196 * and
1198 * -floor(e/m) + f >= 0
1200 * by
1202 * -e + m f + m - 1 >= 0
1204 * The first conversion is valid because floor(e/m) >= -f is equivalent
1205 * to e/m >= -f because -f is an integral expression.
1206 * The second conversion follows from the fact that
1208 * -floor(e/m) = ceil(-e/m) = floor((-e + m - 1)/m)
1211 * Note that one of the div constraints may have been eliminated
1212 * due to being redundant with respect to the constraint that is
1213 * being modified by this function. The modified constraint may
1214 * no longer imply this div constraint, so we add it back to make
1215 * sure we do not lose any information.
1217 * We skip integral divs, i.e., those with denominator 1, as we would
1218 * risk eliminating the div from the div constraints. We do not need
1219 * to handle those divs here anyway since the div constraints will turn
1220 * out to form an equality and this equality can then be use to eliminate
1221 * the div from all constraints.
1223 static __isl_give isl_basic_map *eliminate_unit_divs(
1224 __isl_take isl_basic_map *bmap, int *progress)
1226 int i, j;
1227 isl_ctx *ctx;
1228 unsigned total;
1230 if (!bmap)
1231 return NULL;
1233 ctx = isl_basic_map_get_ctx(bmap);
1234 total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1236 for (i = 0; i < bmap->n_div; ++i) {
1237 if (isl_int_is_zero(bmap->div[i][0]))
1238 continue;
1239 if (isl_int_is_one(bmap->div[i][0]))
1240 continue;
1241 for (j = 0; j < bmap->n_ineq; ++j) {
1242 int s;
1244 if (!isl_int_is_one(bmap->ineq[j][total + i]) &&
1245 !isl_int_is_negone(bmap->ineq[j][total + i]))
1246 continue;
1248 *progress = 1;
1250 s = isl_int_sgn(bmap->ineq[j][total + i]);
1251 isl_int_set_si(bmap->ineq[j][total + i], 0);
1252 if (s < 0)
1253 isl_seq_combine(bmap->ineq[j],
1254 ctx->negone, bmap->div[i] + 1,
1255 bmap->div[i][0], bmap->ineq[j],
1256 total + bmap->n_div);
1257 else
1258 isl_seq_combine(bmap->ineq[j],
1259 ctx->one, bmap->div[i] + 1,
1260 bmap->div[i][0], bmap->ineq[j],
1261 total + bmap->n_div);
1262 if (s < 0) {
1263 isl_int_add(bmap->ineq[j][0],
1264 bmap->ineq[j][0], bmap->div[i][0]);
1265 isl_int_sub_ui(bmap->ineq[j][0],
1266 bmap->ineq[j][0], 1);
1269 bmap = isl_basic_map_extend_constraints(bmap, 0, 1);
1270 if (isl_basic_map_add_div_constraint(bmap, i, s) < 0)
1271 return isl_basic_map_free(bmap);
1275 return bmap;
1278 struct isl_basic_map *isl_basic_map_simplify(struct isl_basic_map *bmap)
1280 int progress = 1;
1281 if (!bmap)
1282 return NULL;
1283 while (progress) {
1284 progress = 0;
1285 if (!bmap)
1286 break;
1287 if (isl_basic_map_plain_is_empty(bmap))
1288 break;
1289 bmap = isl_basic_map_normalize_constraints(bmap);
1290 bmap = normalize_div_expressions(bmap);
1291 bmap = remove_duplicate_divs(bmap, &progress);
1292 bmap = eliminate_unit_divs(bmap, &progress);
1293 bmap = eliminate_divs_eq(bmap, &progress);
1294 bmap = eliminate_divs_ineq(bmap, &progress);
1295 bmap = isl_basic_map_gauss(bmap, &progress);
1296 /* requires equalities in normal form */
1297 bmap = normalize_divs(bmap, &progress);
1298 bmap = remove_duplicate_constraints(bmap, &progress, 1);
1300 return bmap;
1303 struct isl_basic_set *isl_basic_set_simplify(struct isl_basic_set *bset)
1305 return (struct isl_basic_set *)
1306 isl_basic_map_simplify((struct isl_basic_map *)bset);
1310 int isl_basic_map_is_div_constraint(__isl_keep isl_basic_map *bmap,
1311 isl_int *constraint, unsigned div)
1313 unsigned pos;
1315 if (!bmap)
1316 return -1;
1318 pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
1320 if (isl_int_eq(constraint[pos], bmap->div[div][0])) {
1321 int neg;
1322 isl_int_sub(bmap->div[div][1],
1323 bmap->div[div][1], bmap->div[div][0]);
1324 isl_int_add_ui(bmap->div[div][1], bmap->div[div][1], 1);
1325 neg = isl_seq_is_neg(constraint, bmap->div[div]+1, pos);
1326 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1327 isl_int_add(bmap->div[div][1],
1328 bmap->div[div][1], bmap->div[div][0]);
1329 if (!neg)
1330 return 0;
1331 if (isl_seq_first_non_zero(constraint+pos+1,
1332 bmap->n_div-div-1) != -1)
1333 return 0;
1334 } else if (isl_int_abs_eq(constraint[pos], bmap->div[div][0])) {
1335 if (!isl_seq_eq(constraint, bmap->div[div]+1, pos))
1336 return 0;
1337 if (isl_seq_first_non_zero(constraint+pos+1,
1338 bmap->n_div-div-1) != -1)
1339 return 0;
1340 } else
1341 return 0;
1343 return 1;
1346 int isl_basic_set_is_div_constraint(__isl_keep isl_basic_set *bset,
1347 isl_int *constraint, unsigned div)
1349 return isl_basic_map_is_div_constraint(bset, constraint, div);
1353 /* If the only constraints a div d=floor(f/m)
1354 * appears in are its two defining constraints
1356 * f - m d >=0
1357 * -(f - (m - 1)) + m d >= 0
1359 * then it can safely be removed.
1361 static int div_is_redundant(struct isl_basic_map *bmap, int div)
1363 int i;
1364 unsigned pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
1366 for (i = 0; i < bmap->n_eq; ++i)
1367 if (!isl_int_is_zero(bmap->eq[i][pos]))
1368 return 0;
1370 for (i = 0; i < bmap->n_ineq; ++i) {
1371 if (isl_int_is_zero(bmap->ineq[i][pos]))
1372 continue;
1373 if (!isl_basic_map_is_div_constraint(bmap, bmap->ineq[i], div))
1374 return 0;
1377 for (i = 0; i < bmap->n_div; ++i) {
1378 if (isl_int_is_zero(bmap->div[i][0]))
1379 continue;
1380 if (!isl_int_is_zero(bmap->div[i][1+pos]))
1381 return 0;
1384 return 1;
1388 * Remove divs that don't occur in any of the constraints or other divs.
1389 * These can arise when dropping some of the variables in a quast
1390 * returned by piplib.
1392 static struct isl_basic_map *remove_redundant_divs(struct isl_basic_map *bmap)
1394 int i;
1396 if (!bmap)
1397 return NULL;
1399 for (i = bmap->n_div-1; i >= 0; --i) {
1400 if (!div_is_redundant(bmap, i))
1401 continue;
1402 bmap = isl_basic_map_drop_div(bmap, i);
1404 return bmap;
1407 struct isl_basic_map *isl_basic_map_finalize(struct isl_basic_map *bmap)
1409 bmap = remove_redundant_divs(bmap);
1410 if (!bmap)
1411 return NULL;
1412 ISL_F_SET(bmap, ISL_BASIC_SET_FINAL);
1413 return bmap;
1416 struct isl_basic_set *isl_basic_set_finalize(struct isl_basic_set *bset)
1418 return (struct isl_basic_set *)
1419 isl_basic_map_finalize((struct isl_basic_map *)bset);
1422 struct isl_set *isl_set_finalize(struct isl_set *set)
1424 int i;
1426 if (!set)
1427 return NULL;
1428 for (i = 0; i < set->n; ++i) {
1429 set->p[i] = isl_basic_set_finalize(set->p[i]);
1430 if (!set->p[i])
1431 goto error;
1433 return set;
1434 error:
1435 isl_set_free(set);
1436 return NULL;
1439 struct isl_map *isl_map_finalize(struct isl_map *map)
1441 int i;
1443 if (!map)
1444 return NULL;
1445 for (i = 0; i < map->n; ++i) {
1446 map->p[i] = isl_basic_map_finalize(map->p[i]);
1447 if (!map->p[i])
1448 goto error;
1450 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
1451 return map;
1452 error:
1453 isl_map_free(map);
1454 return NULL;
1458 /* Remove definition of any div that is defined in terms of the given variable.
1459 * The div itself is not removed. Functions such as
1460 * eliminate_divs_ineq depend on the other divs remaining in place.
1462 static struct isl_basic_map *remove_dependent_vars(struct isl_basic_map *bmap,
1463 int pos)
1465 int i;
1467 if (!bmap)
1468 return NULL;
1470 for (i = 0; i < bmap->n_div; ++i) {
1471 if (isl_int_is_zero(bmap->div[i][0]))
1472 continue;
1473 if (isl_int_is_zero(bmap->div[i][1+1+pos]))
1474 continue;
1475 isl_int_set_si(bmap->div[i][0], 0);
1477 return bmap;
1480 /* Eliminate the specified variables from the constraints using
1481 * Fourier-Motzkin. The variables themselves are not removed.
1483 struct isl_basic_map *isl_basic_map_eliminate_vars(
1484 struct isl_basic_map *bmap, unsigned pos, unsigned n)
1486 int d;
1487 int i, j, k;
1488 unsigned total;
1489 int need_gauss = 0;
1491 if (n == 0)
1492 return bmap;
1493 if (!bmap)
1494 return NULL;
1495 total = isl_basic_map_total_dim(bmap);
1497 bmap = isl_basic_map_cow(bmap);
1498 for (d = pos + n - 1; d >= 0 && d >= pos; --d)
1499 bmap = remove_dependent_vars(bmap, d);
1500 if (!bmap)
1501 return NULL;
1503 for (d = pos + n - 1;
1504 d >= 0 && d >= total - bmap->n_div && d >= pos; --d)
1505 isl_seq_clr(bmap->div[d-(total-bmap->n_div)], 2+total);
1506 for (d = pos + n - 1; d >= 0 && d >= pos; --d) {
1507 int n_lower, n_upper;
1508 if (!bmap)
1509 return NULL;
1510 for (i = 0; i < bmap->n_eq; ++i) {
1511 if (isl_int_is_zero(bmap->eq[i][1+d]))
1512 continue;
1513 eliminate_var_using_equality(bmap, d, bmap->eq[i], 0, NULL);
1514 isl_basic_map_drop_equality(bmap, i);
1515 need_gauss = 1;
1516 break;
1518 if (i < bmap->n_eq)
1519 continue;
1520 n_lower = 0;
1521 n_upper = 0;
1522 for (i = 0; i < bmap->n_ineq; ++i) {
1523 if (isl_int_is_pos(bmap->ineq[i][1+d]))
1524 n_lower++;
1525 else if (isl_int_is_neg(bmap->ineq[i][1+d]))
1526 n_upper++;
1528 bmap = isl_basic_map_extend_constraints(bmap,
1529 0, n_lower * n_upper);
1530 if (!bmap)
1531 goto error;
1532 for (i = bmap->n_ineq - 1; i >= 0; --i) {
1533 int last;
1534 if (isl_int_is_zero(bmap->ineq[i][1+d]))
1535 continue;
1536 last = -1;
1537 for (j = 0; j < i; ++j) {
1538 if (isl_int_is_zero(bmap->ineq[j][1+d]))
1539 continue;
1540 last = j;
1541 if (isl_int_sgn(bmap->ineq[i][1+d]) ==
1542 isl_int_sgn(bmap->ineq[j][1+d]))
1543 continue;
1544 k = isl_basic_map_alloc_inequality(bmap);
1545 if (k < 0)
1546 goto error;
1547 isl_seq_cpy(bmap->ineq[k], bmap->ineq[i],
1548 1+total);
1549 isl_seq_elim(bmap->ineq[k], bmap->ineq[j],
1550 1+d, 1+total, NULL);
1552 isl_basic_map_drop_inequality(bmap, i);
1553 i = last + 1;
1555 if (n_lower > 0 && n_upper > 0) {
1556 bmap = isl_basic_map_normalize_constraints(bmap);
1557 bmap = remove_duplicate_constraints(bmap, NULL, 0);
1558 bmap = isl_basic_map_gauss(bmap, NULL);
1559 bmap = isl_basic_map_remove_redundancies(bmap);
1560 need_gauss = 0;
1561 if (!bmap)
1562 goto error;
1563 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
1564 break;
1567 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
1568 if (need_gauss)
1569 bmap = isl_basic_map_gauss(bmap, NULL);
1570 return bmap;
1571 error:
1572 isl_basic_map_free(bmap);
1573 return NULL;
1576 struct isl_basic_set *isl_basic_set_eliminate_vars(
1577 struct isl_basic_set *bset, unsigned pos, unsigned n)
1579 return (struct isl_basic_set *)isl_basic_map_eliminate_vars(
1580 (struct isl_basic_map *)bset, pos, n);
1583 /* Eliminate the specified n dimensions starting at first from the
1584 * constraints, without removing the dimensions from the space.
1585 * If the set is rational, the dimensions are eliminated using Fourier-Motzkin.
1586 * Otherwise, they are projected out and the original space is restored.
1588 __isl_give isl_basic_map *isl_basic_map_eliminate(
1589 __isl_take isl_basic_map *bmap,
1590 enum isl_dim_type type, unsigned first, unsigned n)
1592 isl_space *space;
1594 if (!bmap)
1595 return NULL;
1596 if (n == 0)
1597 return bmap;
1599 if (first + n > isl_basic_map_dim(bmap, type) || first + n < first)
1600 isl_die(bmap->ctx, isl_error_invalid,
1601 "index out of bounds", goto error);
1603 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) {
1604 first += isl_basic_map_offset(bmap, type) - 1;
1605 bmap = isl_basic_map_eliminate_vars(bmap, first, n);
1606 return isl_basic_map_finalize(bmap);
1609 space = isl_basic_map_get_space(bmap);
1610 bmap = isl_basic_map_project_out(bmap, type, first, n);
1611 bmap = isl_basic_map_insert_dims(bmap, type, first, n);
1612 bmap = isl_basic_map_reset_space(bmap, space);
1613 return bmap;
1614 error:
1615 isl_basic_map_free(bmap);
1616 return NULL;
1619 __isl_give isl_basic_set *isl_basic_set_eliminate(
1620 __isl_take isl_basic_set *bset,
1621 enum isl_dim_type type, unsigned first, unsigned n)
1623 return isl_basic_map_eliminate(bset, type, first, n);
1626 /* Don't assume equalities are in order, because align_divs
1627 * may have changed the order of the divs.
1629 static void compute_elimination_index(struct isl_basic_map *bmap, int *elim)
1631 int d, i;
1632 unsigned total;
1634 total = isl_space_dim(bmap->dim, isl_dim_all);
1635 for (d = 0; d < total; ++d)
1636 elim[d] = -1;
1637 for (i = 0; i < bmap->n_eq; ++i) {
1638 for (d = total - 1; d >= 0; --d) {
1639 if (isl_int_is_zero(bmap->eq[i][1+d]))
1640 continue;
1641 elim[d] = i;
1642 break;
1647 static void set_compute_elimination_index(struct isl_basic_set *bset, int *elim)
1649 compute_elimination_index((struct isl_basic_map *)bset, elim);
1652 static int reduced_using_equalities(isl_int *dst, isl_int *src,
1653 struct isl_basic_map *bmap, int *elim)
1655 int d;
1656 int copied = 0;
1657 unsigned total;
1659 total = isl_space_dim(bmap->dim, isl_dim_all);
1660 for (d = total - 1; d >= 0; --d) {
1661 if (isl_int_is_zero(src[1+d]))
1662 continue;
1663 if (elim[d] == -1)
1664 continue;
1665 if (!copied) {
1666 isl_seq_cpy(dst, src, 1 + total);
1667 copied = 1;
1669 isl_seq_elim(dst, bmap->eq[elim[d]], 1 + d, 1 + total, NULL);
1671 return copied;
1674 static int set_reduced_using_equalities(isl_int *dst, isl_int *src,
1675 struct isl_basic_set *bset, int *elim)
1677 return reduced_using_equalities(dst, src,
1678 (struct isl_basic_map *)bset, elim);
1681 static struct isl_basic_set *isl_basic_set_reduce_using_equalities(
1682 struct isl_basic_set *bset, struct isl_basic_set *context)
1684 int i;
1685 int *elim;
1687 if (!bset || !context)
1688 goto error;
1690 if (context->n_eq == 0) {
1691 isl_basic_set_free(context);
1692 return bset;
1695 bset = isl_basic_set_cow(bset);
1696 if (!bset)
1697 goto error;
1699 elim = isl_alloc_array(bset->ctx, int, isl_basic_set_n_dim(bset));
1700 if (!elim)
1701 goto error;
1702 set_compute_elimination_index(context, elim);
1703 for (i = 0; i < bset->n_eq; ++i)
1704 set_reduced_using_equalities(bset->eq[i], bset->eq[i],
1705 context, elim);
1706 for (i = 0; i < bset->n_ineq; ++i)
1707 set_reduced_using_equalities(bset->ineq[i], bset->ineq[i],
1708 context, elim);
1709 isl_basic_set_free(context);
1710 free(elim);
1711 bset = isl_basic_set_simplify(bset);
1712 bset = isl_basic_set_finalize(bset);
1713 return bset;
1714 error:
1715 isl_basic_set_free(bset);
1716 isl_basic_set_free(context);
1717 return NULL;
1720 static struct isl_basic_set *remove_shifted_constraints(
1721 struct isl_basic_set *bset, struct isl_basic_set *context)
1723 unsigned int size;
1724 isl_int ***index;
1725 int bits;
1726 int k, h, l;
1727 isl_ctx *ctx;
1729 if (!bset)
1730 return NULL;
1732 size = round_up(4 * (context->n_ineq+1) / 3 - 1);
1733 bits = ffs(size) - 1;
1734 ctx = isl_basic_set_get_ctx(bset);
1735 index = isl_calloc_array(ctx, isl_int **, size);
1736 if (!index)
1737 return bset;
1739 for (k = 0; k < context->n_ineq; ++k) {
1740 h = set_hash_index(index, size, bits, context, k);
1741 index[h] = &context->ineq[k];
1743 for (k = 0; k < bset->n_ineq; ++k) {
1744 h = set_hash_index(index, size, bits, bset, k);
1745 if (!index[h])
1746 continue;
1747 l = index[h] - &context->ineq[0];
1748 if (isl_int_lt(bset->ineq[k][0], context->ineq[l][0]))
1749 continue;
1750 bset = isl_basic_set_cow(bset);
1751 if (!bset)
1752 goto error;
1753 isl_basic_set_drop_inequality(bset, k);
1754 --k;
1756 free(index);
1757 return bset;
1758 error:
1759 free(index);
1760 return bset;
1763 /* Does the (linear part of a) constraint "c" involve any of the "len"
1764 * "relevant" dimensions?
1766 static int is_related(isl_int *c, int len, int *relevant)
1768 int i;
1770 for (i = 0; i < len; ++i) {
1771 if (!relevant[i])
1772 continue;
1773 if (!isl_int_is_zero(c[i]))
1774 return 1;
1777 return 0;
1780 /* Drop constraints from "bset" that do not involve any of
1781 * the dimensions marked "relevant".
1783 static __isl_give isl_basic_set *drop_unrelated_constraints(
1784 __isl_take isl_basic_set *bset, int *relevant)
1786 int i, dim;
1788 dim = isl_basic_set_dim(bset, isl_dim_set);
1789 for (i = 0; i < dim; ++i)
1790 if (!relevant[i])
1791 break;
1792 if (i >= dim)
1793 return bset;
1795 for (i = bset->n_eq - 1; i >= 0; --i)
1796 if (!is_related(bset->eq[i] + 1, dim, relevant))
1797 isl_basic_set_drop_equality(bset, i);
1799 for (i = bset->n_ineq - 1; i >= 0; --i)
1800 if (!is_related(bset->ineq[i] + 1, dim, relevant))
1801 isl_basic_set_drop_inequality(bset, i);
1803 return bset;
1806 /* Update the groups in "group" based on the (linear part of a) constraint "c".
1808 * In particular, for any variable involved in the constraint,
1809 * find the actual group id from before and replace the group
1810 * of the corresponding variable by the minimal group of all
1811 * the variables involved in the constraint considered so far
1812 * (if this minimum is smaller) or replace the minimum by this group
1813 * (if the minimum is larger).
1815 * At the end, all the variables in "c" will (indirectly) point
1816 * to the minimal of the groups that they referred to originally.
1818 static void update_groups(int dim, int *group, isl_int *c)
1820 int j;
1821 int min = dim;
1823 for (j = 0; j < dim; ++j) {
1824 if (isl_int_is_zero(c[j]))
1825 continue;
1826 while (group[j] >= 0 && group[group[j]] != group[j])
1827 group[j] = group[group[j]];
1828 if (group[j] == min)
1829 continue;
1830 if (group[j] < min) {
1831 if (min >= 0 && min < dim)
1832 group[min] = group[j];
1833 min = group[j];
1834 } else
1835 group[group[j]] = min;
1839 /* Drop constraints from "context" that are irrelevant for computing
1840 * the gist of "bset".
1842 * In particular, drop constraints in variables that are not related
1843 * to any of the variables involved in the constraints of "bset"
1844 * in the sense that there is no sequence of constraints that connects them.
1846 * We construct groups of variables that collect variables that
1847 * (indirectly) appear in some common constraint of "context".
1848 * Each group is identified by the first variable in the group,
1849 * except for the special group of variables that appear in "bset"
1850 * (or are related to those variables), which is identified by -1.
1851 * If group[i] is equal to i (or -1), then the group of i is i (or -1),
1852 * otherwise the group of i is the group of group[i].
1854 * We first initialize the -1 group with the variables that appear in "bset".
1855 * Then we initialize groups for the remaining variables.
1856 * Then we iterate over the constraints of "context" and update the
1857 * group of the variables in the constraint by the smallest group.
1858 * Finally, we resolve indirect references to groups by running over
1859 * the variables.
1861 * After computing the groups, we drop constraints that do not involve
1862 * any variables in the -1 group.
1864 static __isl_give isl_basic_set *drop_irrelevant_constraints(
1865 __isl_take isl_basic_set *context, __isl_keep isl_basic_set *bset)
1867 isl_ctx *ctx;
1868 int *group;
1869 int dim;
1870 int i, j;
1871 int last;
1873 if (!context || !bset)
1874 return isl_basic_set_free(context);
1876 dim = isl_basic_set_dim(bset, isl_dim_set);
1877 ctx = isl_basic_set_get_ctx(bset);
1878 group = isl_calloc_array(ctx, int, dim);
1880 if (!group)
1881 goto error;
1883 for (i = 0; i < dim; ++i) {
1884 for (j = 0; j < bset->n_eq; ++j)
1885 if (!isl_int_is_zero(bset->eq[j][1 + i]))
1886 break;
1887 if (j < bset->n_eq) {
1888 group[i] = -1;
1889 continue;
1891 for (j = 0; j < bset->n_ineq; ++j)
1892 if (!isl_int_is_zero(bset->ineq[j][1 + i]))
1893 break;
1894 if (j < bset->n_ineq)
1895 group[i] = -1;
1898 last = -1;
1899 for (i = 0; i < dim; ++i)
1900 if (group[i] >= 0)
1901 last = group[i] = i;
1902 if (last < 0) {
1903 free(group);
1904 return context;
1907 for (i = 0; i < context->n_eq; ++i)
1908 update_groups(dim, group, context->eq[i] + 1);
1909 for (i = 0; i < context->n_ineq; ++i)
1910 update_groups(dim, group, context->ineq[i] + 1);
1912 for (i = 0; i < dim; ++i)
1913 if (group[i] >= 0)
1914 group[i] = group[group[i]];
1916 for (i = 0; i < dim; ++i)
1917 group[i] = group[i] == -1;
1919 context = drop_unrelated_constraints(context, group);
1921 free(group);
1922 return context;
1923 error:
1924 free(group);
1925 return isl_basic_set_free(context);
1928 /* Remove all information from bset that is redundant in the context
1929 * of context. Both bset and context are assumed to be full-dimensional.
1931 * We first remove the inequalities from "bset"
1932 * that are obviously redundant with respect to some inequality in "context".
1933 * Then we remove those constraints from "context" that have become
1934 * irrelevant for computing the gist of "bset".
1935 * Note that this removal of constraints cannot be replaced by
1936 * a factorization because factors in "bset" may still be connected
1937 * to each other through constraints in "context".
1939 * If there are any inequalities left, we construct a tableau for
1940 * the context and then add the inequalities of "bset".
1941 * Before adding these inequalities, we freeze all constraints such that
1942 * they won't be considered redundant in terms of the constraints of "bset".
1943 * Then we detect all redundant constraints (among the
1944 * constraints that weren't frozen), first by checking for redundancy in the
1945 * the tableau and then by checking if replacing a constraint by its negation
1946 * would lead to an empty set. This last step is fairly expensive
1947 * and could be optimized by more reuse of the tableau.
1948 * Finally, we update bset according to the results.
1950 static __isl_give isl_basic_set *uset_gist_full(__isl_take isl_basic_set *bset,
1951 __isl_take isl_basic_set *context)
1953 int i, k;
1954 isl_basic_set *combined = NULL;
1955 struct isl_tab *tab = NULL;
1956 unsigned context_ineq;
1957 unsigned total;
1959 if (!bset || !context)
1960 goto error;
1962 if (isl_basic_set_is_universe(bset)) {
1963 isl_basic_set_free(context);
1964 return bset;
1967 if (isl_basic_set_is_universe(context)) {
1968 isl_basic_set_free(context);
1969 return bset;
1972 bset = remove_shifted_constraints(bset, context);
1973 if (!bset)
1974 goto error;
1975 if (bset->n_ineq == 0)
1976 goto done;
1978 context = drop_irrelevant_constraints(context, bset);
1979 if (!context)
1980 goto error;
1981 if (isl_basic_set_is_universe(context)) {
1982 isl_basic_set_free(context);
1983 return bset;
1986 context_ineq = context->n_ineq;
1987 combined = isl_basic_set_cow(isl_basic_set_copy(context));
1988 combined = isl_basic_set_extend_constraints(combined, 0, bset->n_ineq);
1989 tab = isl_tab_from_basic_set(combined, 0);
1990 for (i = 0; i < context_ineq; ++i)
1991 if (isl_tab_freeze_constraint(tab, i) < 0)
1992 goto error;
1993 tab = isl_tab_extend(tab, bset->n_ineq);
1994 for (i = 0; i < bset->n_ineq; ++i)
1995 if (isl_tab_add_ineq(tab, bset->ineq[i]) < 0)
1996 goto error;
1997 bset = isl_basic_set_add_constraints(combined, bset, 0);
1998 combined = NULL;
1999 if (!bset)
2000 goto error;
2001 if (isl_tab_detect_redundant(tab) < 0)
2002 goto error;
2003 total = isl_basic_set_total_dim(bset);
2004 for (i = context_ineq; i < bset->n_ineq; ++i) {
2005 int is_empty;
2006 if (tab->con[i].is_redundant)
2007 continue;
2008 tab->con[i].is_redundant = 1;
2009 combined = isl_basic_set_dup(bset);
2010 combined = isl_basic_set_update_from_tab(combined, tab);
2011 combined = isl_basic_set_extend_constraints(combined, 0, 1);
2012 k = isl_basic_set_alloc_inequality(combined);
2013 if (k < 0)
2014 goto error;
2015 isl_seq_neg(combined->ineq[k], bset->ineq[i], 1 + total);
2016 isl_int_sub_ui(combined->ineq[k][0], combined->ineq[k][0], 1);
2017 is_empty = isl_basic_set_is_empty(combined);
2018 if (is_empty < 0)
2019 goto error;
2020 isl_basic_set_free(combined);
2021 combined = NULL;
2022 if (!is_empty)
2023 tab->con[i].is_redundant = 0;
2025 for (i = 0; i < context_ineq; ++i)
2026 tab->con[i].is_redundant = 1;
2027 bset = isl_basic_set_update_from_tab(bset, tab);
2028 if (bset) {
2029 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
2030 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
2033 isl_tab_free(tab);
2034 done:
2035 bset = isl_basic_set_simplify(bset);
2036 bset = isl_basic_set_finalize(bset);
2037 isl_basic_set_free(context);
2038 return bset;
2039 error:
2040 isl_tab_free(tab);
2041 isl_basic_set_free(combined);
2042 isl_basic_set_free(context);
2043 isl_basic_set_free(bset);
2044 return NULL;
2047 /* Remove all information from bset that is redundant in the context
2048 * of context. In particular, equalities that are linear combinations
2049 * of those in context are removed. Then the inequalities that are
2050 * redundant in the context of the equalities and inequalities of
2051 * context are removed.
2053 * First of all, we drop those constraints from "context"
2054 * that are irrelevant for computing the gist of "bset".
2055 * Alternatively, we could factorize the intersection of "context" and "bset".
2057 * We first compute the integer affine hull of the intersection,
2058 * compute the gist inside this affine hull and then add back
2059 * those equalities that are not implied by the context.
2061 * If two constraints are mutually redundant, then uset_gist_full
2062 * will remove the second of those constraints. We therefore first
2063 * sort the constraints so that constraints not involving existentially
2064 * quantified variables are given precedence over those that do.
2065 * We have to perform this sorting before the variable compression,
2066 * because that may effect the order of the variables.
2068 static __isl_give isl_basic_set *uset_gist(__isl_take isl_basic_set *bset,
2069 __isl_take isl_basic_set *context)
2071 isl_mat *eq;
2072 isl_mat *T, *T2;
2073 isl_basic_set *aff;
2074 isl_basic_set *aff_context;
2075 unsigned total;
2077 if (!bset || !context)
2078 goto error;
2080 context = drop_irrelevant_constraints(context, bset);
2082 bset = isl_basic_set_intersect(bset, isl_basic_set_copy(context));
2083 if (isl_basic_set_plain_is_empty(bset)) {
2084 isl_basic_set_free(context);
2085 return bset;
2087 bset = isl_basic_set_sort_constraints(bset);
2088 aff = isl_basic_set_affine_hull(isl_basic_set_copy(bset));
2089 if (!aff)
2090 goto error;
2091 if (isl_basic_set_plain_is_empty(aff)) {
2092 isl_basic_set_free(aff);
2093 isl_basic_set_free(context);
2094 return bset;
2096 if (aff->n_eq == 0) {
2097 isl_basic_set_free(aff);
2098 return uset_gist_full(bset, context);
2100 total = isl_basic_set_total_dim(bset);
2101 eq = isl_mat_sub_alloc6(bset->ctx, aff->eq, 0, aff->n_eq, 0, 1 + total);
2102 eq = isl_mat_cow(eq);
2103 T = isl_mat_variable_compression(eq, &T2);
2104 if (T && T->n_col == 0) {
2105 isl_mat_free(T);
2106 isl_mat_free(T2);
2107 isl_basic_set_free(context);
2108 isl_basic_set_free(aff);
2109 return isl_basic_set_set_to_empty(bset);
2112 aff_context = isl_basic_set_affine_hull(isl_basic_set_copy(context));
2114 bset = isl_basic_set_preimage(bset, isl_mat_copy(T));
2115 context = isl_basic_set_preimage(context, T);
2117 bset = uset_gist_full(bset, context);
2118 bset = isl_basic_set_preimage(bset, T2);
2119 bset = isl_basic_set_intersect(bset, aff);
2120 bset = isl_basic_set_reduce_using_equalities(bset, aff_context);
2122 if (bset) {
2123 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
2124 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
2127 return bset;
2128 error:
2129 isl_basic_set_free(bset);
2130 isl_basic_set_free(context);
2131 return NULL;
2134 /* Normalize the divs in "bmap" in the context of the equalities in "context".
2135 * We simply add the equalities in context to bmap and then do a regular
2136 * div normalizations. Better results can be obtained by normalizing
2137 * only the divs in bmap than do not also appear in context.
2138 * We need to be careful to reduce the divs using the equalities
2139 * so that later calls to isl_basic_map_overlying_set wouldn't introduce
2140 * spurious constraints.
2142 static struct isl_basic_map *normalize_divs_in_context(
2143 struct isl_basic_map *bmap, struct isl_basic_map *context)
2145 int i;
2146 unsigned total_context;
2147 int div_eq;
2149 div_eq = n_pure_div_eq(bmap);
2150 if (div_eq == 0)
2151 return bmap;
2153 if (context->n_div > 0)
2154 bmap = isl_basic_map_align_divs(bmap, context);
2156 total_context = isl_basic_map_total_dim(context);
2157 bmap = isl_basic_map_extend_constraints(bmap, context->n_eq, 0);
2158 for (i = 0; i < context->n_eq; ++i) {
2159 int k;
2160 k = isl_basic_map_alloc_equality(bmap);
2161 if (k < 0)
2162 return isl_basic_map_free(bmap);
2163 isl_seq_cpy(bmap->eq[k], context->eq[i], 1 + total_context);
2164 isl_seq_clr(bmap->eq[k] + 1 + total_context,
2165 isl_basic_map_total_dim(bmap) - total_context);
2167 bmap = isl_basic_map_gauss(bmap, NULL);
2168 bmap = normalize_divs(bmap, NULL);
2169 bmap = isl_basic_map_gauss(bmap, NULL);
2170 return bmap;
2173 struct isl_basic_map *isl_basic_map_gist(struct isl_basic_map *bmap,
2174 struct isl_basic_map *context)
2176 struct isl_basic_set *bset;
2178 if (!bmap || !context)
2179 goto error;
2181 if (isl_basic_map_is_universe(bmap)) {
2182 isl_basic_map_free(context);
2183 return bmap;
2185 if (isl_basic_map_plain_is_empty(context)) {
2186 isl_basic_map_free(bmap);
2187 return context;
2189 if (isl_basic_map_plain_is_empty(bmap)) {
2190 isl_basic_map_free(context);
2191 return bmap;
2194 bmap = isl_basic_map_remove_redundancies(bmap);
2195 context = isl_basic_map_remove_redundancies(context);
2196 if (!context)
2197 goto error;
2199 if (context->n_eq)
2200 bmap = normalize_divs_in_context(bmap, context);
2202 context = isl_basic_map_align_divs(context, bmap);
2203 bmap = isl_basic_map_align_divs(bmap, context);
2205 bset = uset_gist(isl_basic_map_underlying_set(isl_basic_map_copy(bmap)),
2206 isl_basic_map_underlying_set(context));
2208 return isl_basic_map_overlying_set(bset, bmap);
2209 error:
2210 isl_basic_map_free(bmap);
2211 isl_basic_map_free(context);
2212 return NULL;
2216 * Assumes context has no implicit divs.
2218 __isl_give isl_map *isl_map_gist_basic_map(__isl_take isl_map *map,
2219 __isl_take isl_basic_map *context)
2221 int i;
2223 if (!map || !context)
2224 goto error;;
2226 if (isl_basic_map_plain_is_empty(context)) {
2227 isl_map_free(map);
2228 return isl_map_from_basic_map(context);
2231 context = isl_basic_map_remove_redundancies(context);
2232 map = isl_map_cow(map);
2233 if (!map || !context)
2234 goto error;;
2235 isl_assert(map->ctx, isl_space_is_equal(map->dim, context->dim), goto error);
2236 map = isl_map_compute_divs(map);
2237 if (!map)
2238 goto error;
2239 for (i = map->n - 1; i >= 0; --i) {
2240 map->p[i] = isl_basic_map_gist(map->p[i],
2241 isl_basic_map_copy(context));
2242 if (!map->p[i])
2243 goto error;
2244 if (isl_basic_map_plain_is_empty(map->p[i])) {
2245 isl_basic_map_free(map->p[i]);
2246 if (i != map->n - 1)
2247 map->p[i] = map->p[map->n - 1];
2248 map->n--;
2251 isl_basic_map_free(context);
2252 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
2253 return map;
2254 error:
2255 isl_map_free(map);
2256 isl_basic_map_free(context);
2257 return NULL;
2260 /* Return a map that has the same intersection with "context" as "map"
2261 * and that as "simple" as possible.
2263 * If "map" is already the universe, then we cannot make it any simpler.
2264 * Similarly, if "context" is the universe, then we cannot exploit it
2265 * to simplify "map"
2266 * If "map" and "context" are identical to each other, then we can
2267 * return the corresponding universe.
2269 * If none of these cases apply, we have to work a bit harder.
2271 static __isl_give isl_map *map_gist(__isl_take isl_map *map,
2272 __isl_take isl_map *context)
2274 int equal;
2275 int is_universe;
2277 is_universe = isl_map_plain_is_universe(map);
2278 if (is_universe >= 0 && !is_universe)
2279 is_universe = isl_map_plain_is_universe(context);
2280 if (is_universe < 0)
2281 goto error;
2282 if (is_universe) {
2283 isl_map_free(context);
2284 return map;
2287 equal = isl_map_plain_is_equal(map, context);
2288 if (equal < 0)
2289 goto error;
2290 if (equal) {
2291 isl_map *res = isl_map_universe(isl_map_get_space(map));
2292 isl_map_free(map);
2293 isl_map_free(context);
2294 return res;
2297 context = isl_map_compute_divs(context);
2298 return isl_map_gist_basic_map(map, isl_map_simple_hull(context));
2299 error:
2300 isl_map_free(map);
2301 isl_map_free(context);
2302 return NULL;
2305 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
2306 __isl_take isl_map *context)
2308 return isl_map_align_params_map_map_and(map, context, &map_gist);
2311 struct isl_basic_set *isl_basic_set_gist(struct isl_basic_set *bset,
2312 struct isl_basic_set *context)
2314 return (struct isl_basic_set *)isl_basic_map_gist(
2315 (struct isl_basic_map *)bset, (struct isl_basic_map *)context);
2318 __isl_give isl_set *isl_set_gist_basic_set(__isl_take isl_set *set,
2319 __isl_take isl_basic_set *context)
2321 return (struct isl_set *)isl_map_gist_basic_map((struct isl_map *)set,
2322 (struct isl_basic_map *)context);
2325 __isl_give isl_set *isl_set_gist_params_basic_set(__isl_take isl_set *set,
2326 __isl_take isl_basic_set *context)
2328 isl_space *space = isl_set_get_space(set);
2329 isl_basic_set *dom_context = isl_basic_set_universe(space);
2330 dom_context = isl_basic_set_intersect_params(dom_context, context);
2331 return isl_set_gist_basic_set(set, dom_context);
2334 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
2335 __isl_take isl_set *context)
2337 return (struct isl_set *)isl_map_gist((struct isl_map *)set,
2338 (struct isl_map *)context);
2341 __isl_give isl_map *isl_map_gist_domain(__isl_take isl_map *map,
2342 __isl_take isl_set *context)
2344 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
2345 map_context = isl_map_intersect_domain(map_context, context);
2346 return isl_map_gist(map, map_context);
2349 __isl_give isl_map *isl_map_gist_range(__isl_take isl_map *map,
2350 __isl_take isl_set *context)
2352 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
2353 map_context = isl_map_intersect_range(map_context, context);
2354 return isl_map_gist(map, map_context);
2357 __isl_give isl_map *isl_map_gist_params(__isl_take isl_map *map,
2358 __isl_take isl_set *context)
2360 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
2361 map_context = isl_map_intersect_params(map_context, context);
2362 return isl_map_gist(map, map_context);
2365 __isl_give isl_set *isl_set_gist_params(__isl_take isl_set *set,
2366 __isl_take isl_set *context)
2368 return isl_map_gist_params(set, context);
2371 /* Quick check to see if two basic maps are disjoint.
2372 * In particular, we reduce the equalities and inequalities of
2373 * one basic map in the context of the equalities of the other
2374 * basic map and check if we get a contradiction.
2376 int isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map *bmap1,
2377 __isl_keep isl_basic_map *bmap2)
2379 struct isl_vec *v = NULL;
2380 int *elim = NULL;
2381 unsigned total;
2382 int i;
2384 if (!bmap1 || !bmap2)
2385 return -1;
2386 isl_assert(bmap1->ctx, isl_space_is_equal(bmap1->dim, bmap2->dim),
2387 return -1);
2388 if (bmap1->n_div || bmap2->n_div)
2389 return 0;
2390 if (!bmap1->n_eq && !bmap2->n_eq)
2391 return 0;
2393 total = isl_space_dim(bmap1->dim, isl_dim_all);
2394 if (total == 0)
2395 return 0;
2396 v = isl_vec_alloc(bmap1->ctx, 1 + total);
2397 if (!v)
2398 goto error;
2399 elim = isl_alloc_array(bmap1->ctx, int, total);
2400 if (!elim)
2401 goto error;
2402 compute_elimination_index(bmap1, elim);
2403 for (i = 0; i < bmap2->n_eq; ++i) {
2404 int reduced;
2405 reduced = reduced_using_equalities(v->block.data, bmap2->eq[i],
2406 bmap1, elim);
2407 if (reduced && !isl_int_is_zero(v->block.data[0]) &&
2408 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
2409 goto disjoint;
2411 for (i = 0; i < bmap2->n_ineq; ++i) {
2412 int reduced;
2413 reduced = reduced_using_equalities(v->block.data,
2414 bmap2->ineq[i], bmap1, elim);
2415 if (reduced && isl_int_is_neg(v->block.data[0]) &&
2416 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
2417 goto disjoint;
2419 compute_elimination_index(bmap2, elim);
2420 for (i = 0; i < bmap1->n_ineq; ++i) {
2421 int reduced;
2422 reduced = reduced_using_equalities(v->block.data,
2423 bmap1->ineq[i], bmap2, elim);
2424 if (reduced && isl_int_is_neg(v->block.data[0]) &&
2425 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
2426 goto disjoint;
2428 isl_vec_free(v);
2429 free(elim);
2430 return 0;
2431 disjoint:
2432 isl_vec_free(v);
2433 free(elim);
2434 return 1;
2435 error:
2436 isl_vec_free(v);
2437 free(elim);
2438 return -1;
2441 int isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set *bset1,
2442 __isl_keep isl_basic_set *bset2)
2444 return isl_basic_map_plain_is_disjoint((struct isl_basic_map *)bset1,
2445 (struct isl_basic_map *)bset2);
2448 /* Are "map1" and "map2" obviously disjoint?
2450 * If they have different parameters, then we skip any further tests.
2451 * In particular, the outcome of the subsequent calls to
2452 * isl_space_tuple_match may be affected by the different parameters
2453 * in nested spaces.
2455 * If one of them is empty or if they live in different spaces (assuming
2456 * they have the same parameters), then they are clearly disjoint.
2458 * If they are obviously equal, but not obviously empty, then we will
2459 * not be able to detect if they are disjoint.
2461 * Otherwise we check if each basic map in "map1" is obviously disjoint
2462 * from each basic map in "map2".
2464 int isl_map_plain_is_disjoint(__isl_keep isl_map *map1,
2465 __isl_keep isl_map *map2)
2467 int i, j;
2468 int disjoint;
2469 int intersect;
2470 int match;
2472 if (!map1 || !map2)
2473 return -1;
2475 disjoint = isl_map_plain_is_empty(map1);
2476 if (disjoint < 0 || disjoint)
2477 return disjoint;
2479 disjoint = isl_map_plain_is_empty(map2);
2480 if (disjoint < 0 || disjoint)
2481 return disjoint;
2483 match = isl_space_match(map1->dim, isl_dim_param,
2484 map2->dim, isl_dim_param);
2485 if (match < 0 || !match)
2486 return match < 0 ? -1 : 0;
2488 match = isl_space_tuple_match(map1->dim, isl_dim_in,
2489 map2->dim, isl_dim_in);
2490 if (match < 0 || !match)
2491 return match < 0 ? -1 : 1;
2493 match = isl_space_tuple_match(map1->dim, isl_dim_out,
2494 map2->dim, isl_dim_out);
2495 if (match < 0 || !match)
2496 return match < 0 ? -1 : 1;
2498 intersect = isl_map_plain_is_equal(map1, map2);
2499 if (intersect < 0 || intersect)
2500 return intersect < 0 ? -1 : 0;
2502 for (i = 0; i < map1->n; ++i) {
2503 for (j = 0; j < map2->n; ++j) {
2504 int d = isl_basic_map_plain_is_disjoint(map1->p[i],
2505 map2->p[j]);
2506 if (d != 1)
2507 return d;
2510 return 1;
2513 /* Are "map1" and "map2" disjoint?
2515 * They are disjoint if they are "obviously disjoint" or if one of them
2516 * is empty. Otherwise, they are not disjoint if one of them is universal.
2517 * If none of these cases apply, we compute the intersection and see if
2518 * the result is empty.
2520 int isl_map_is_disjoint(__isl_keep isl_map *map1, __isl_keep isl_map *map2)
2522 int disjoint;
2523 int intersect;
2524 isl_map *test;
2526 disjoint = isl_map_plain_is_disjoint(map1, map2);
2527 if (disjoint < 0 || disjoint)
2528 return disjoint;
2530 disjoint = isl_map_is_empty(map1);
2531 if (disjoint < 0 || disjoint)
2532 return disjoint;
2534 disjoint = isl_map_is_empty(map2);
2535 if (disjoint < 0 || disjoint)
2536 return disjoint;
2538 intersect = isl_map_plain_is_universe(map1);
2539 if (intersect < 0 || intersect)
2540 return intersect < 0 ? -1 : 0;
2542 intersect = isl_map_plain_is_universe(map2);
2543 if (intersect < 0 || intersect)
2544 return intersect < 0 ? -1 : 0;
2546 test = isl_map_intersect(isl_map_copy(map1), isl_map_copy(map2));
2547 disjoint = isl_map_is_empty(test);
2548 isl_map_free(test);
2550 return disjoint;
2553 /* Are "bmap1" and "bmap2" disjoint?
2555 * They are disjoint if they are "obviously disjoint" or if one of them
2556 * is empty. Otherwise, they are not disjoint if one of them is universal.
2557 * If none of these cases apply, we compute the intersection and see if
2558 * the result is empty.
2560 int isl_basic_map_is_disjoint(__isl_keep isl_basic_map *bmap1,
2561 __isl_keep isl_basic_map *bmap2)
2563 int disjoint;
2564 int intersect;
2565 isl_basic_map *test;
2567 disjoint = isl_basic_map_plain_is_disjoint(bmap1, bmap2);
2568 if (disjoint < 0 || disjoint)
2569 return disjoint;
2571 disjoint = isl_basic_map_is_empty(bmap1);
2572 if (disjoint < 0 || disjoint)
2573 return disjoint;
2575 disjoint = isl_basic_map_is_empty(bmap2);
2576 if (disjoint < 0 || disjoint)
2577 return disjoint;
2579 intersect = isl_basic_map_is_universe(bmap1);
2580 if (intersect < 0 || intersect)
2581 return intersect < 0 ? -1 : 0;
2583 intersect = isl_basic_map_is_universe(bmap2);
2584 if (intersect < 0 || intersect)
2585 return intersect < 0 ? -1 : 0;
2587 test = isl_basic_map_intersect(isl_basic_map_copy(bmap1),
2588 isl_basic_map_copy(bmap2));
2589 disjoint = isl_basic_map_is_empty(test);
2590 isl_basic_map_free(test);
2592 return disjoint;
2595 /* Are "bset1" and "bset2" disjoint?
2597 int isl_basic_set_is_disjoint(__isl_keep isl_basic_set *bset1,
2598 __isl_keep isl_basic_set *bset2)
2600 return isl_basic_map_is_disjoint(bset1, bset2);
2603 int isl_set_plain_is_disjoint(__isl_keep isl_set *set1,
2604 __isl_keep isl_set *set2)
2606 return isl_map_plain_is_disjoint((struct isl_map *)set1,
2607 (struct isl_map *)set2);
2610 /* Are "set1" and "set2" disjoint?
2612 int isl_set_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
2614 return isl_map_is_disjoint(set1, set2);
2617 int isl_set_fast_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
2619 return isl_set_plain_is_disjoint(set1, set2);
2622 /* Check if we can combine a given div with lower bound l and upper
2623 * bound u with some other div and if so return that other div.
2624 * Otherwise return -1.
2626 * We first check that
2627 * - the bounds are opposites of each other (except for the constant
2628 * term)
2629 * - the bounds do not reference any other div
2630 * - no div is defined in terms of this div
2632 * Let m be the size of the range allowed on the div by the bounds.
2633 * That is, the bounds are of the form
2635 * e <= a <= e + m - 1
2637 * with e some expression in the other variables.
2638 * We look for another div b such that no third div is defined in terms
2639 * of this second div b and such that in any constraint that contains
2640 * a (except for the given lower and upper bound), also contains b
2641 * with a coefficient that is m times that of b.
2642 * That is, all constraints (execpt for the lower and upper bound)
2643 * are of the form
2645 * e + f (a + m b) >= 0
2647 * If so, we return b so that "a + m b" can be replaced by
2648 * a single div "c = a + m b".
2650 static int div_find_coalesce(struct isl_basic_map *bmap, int *pairs,
2651 unsigned div, unsigned l, unsigned u)
2653 int i, j;
2654 unsigned dim;
2655 int coalesce = -1;
2657 if (bmap->n_div <= 1)
2658 return -1;
2659 dim = isl_space_dim(bmap->dim, isl_dim_all);
2660 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim, div) != -1)
2661 return -1;
2662 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim + div + 1,
2663 bmap->n_div - div - 1) != -1)
2664 return -1;
2665 if (!isl_seq_is_neg(bmap->ineq[l] + 1, bmap->ineq[u] + 1,
2666 dim + bmap->n_div))
2667 return -1;
2669 for (i = 0; i < bmap->n_div; ++i) {
2670 if (isl_int_is_zero(bmap->div[i][0]))
2671 continue;
2672 if (!isl_int_is_zero(bmap->div[i][1 + 1 + dim + div]))
2673 return -1;
2676 isl_int_add(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
2677 if (isl_int_is_neg(bmap->ineq[l][0])) {
2678 isl_int_sub(bmap->ineq[l][0],
2679 bmap->ineq[l][0], bmap->ineq[u][0]);
2680 bmap = isl_basic_map_copy(bmap);
2681 bmap = isl_basic_map_set_to_empty(bmap);
2682 isl_basic_map_free(bmap);
2683 return -1;
2685 isl_int_add_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
2686 for (i = 0; i < bmap->n_div; ++i) {
2687 if (i == div)
2688 continue;
2689 if (!pairs[i])
2690 continue;
2691 for (j = 0; j < bmap->n_div; ++j) {
2692 if (isl_int_is_zero(bmap->div[j][0]))
2693 continue;
2694 if (!isl_int_is_zero(bmap->div[j][1 + 1 + dim + i]))
2695 break;
2697 if (j < bmap->n_div)
2698 continue;
2699 for (j = 0; j < bmap->n_ineq; ++j) {
2700 int valid;
2701 if (j == l || j == u)
2702 continue;
2703 if (isl_int_is_zero(bmap->ineq[j][1 + dim + div]))
2704 continue;
2705 if (isl_int_is_zero(bmap->ineq[j][1 + dim + i]))
2706 break;
2707 isl_int_mul(bmap->ineq[j][1 + dim + div],
2708 bmap->ineq[j][1 + dim + div],
2709 bmap->ineq[l][0]);
2710 valid = isl_int_eq(bmap->ineq[j][1 + dim + div],
2711 bmap->ineq[j][1 + dim + i]);
2712 isl_int_divexact(bmap->ineq[j][1 + dim + div],
2713 bmap->ineq[j][1 + dim + div],
2714 bmap->ineq[l][0]);
2715 if (!valid)
2716 break;
2718 if (j < bmap->n_ineq)
2719 continue;
2720 coalesce = i;
2721 break;
2723 isl_int_sub_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
2724 isl_int_sub(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
2725 return coalesce;
2728 /* Given a lower and an upper bound on div i, construct an inequality
2729 * that when nonnegative ensures that this pair of bounds always allows
2730 * for an integer value of the given div.
2731 * The lower bound is inequality l, while the upper bound is inequality u.
2732 * The constructed inequality is stored in ineq.
2733 * g, fl, fu are temporary scalars.
2735 * Let the upper bound be
2737 * -n_u a + e_u >= 0
2739 * and the lower bound
2741 * n_l a + e_l >= 0
2743 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
2744 * We have
2746 * - f_u e_l <= f_u f_l g a <= f_l e_u
2748 * Since all variables are integer valued, this is equivalent to
2750 * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
2752 * If this interval is at least f_u f_l g, then it contains at least
2753 * one integer value for a.
2754 * That is, the test constraint is
2756 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
2758 static void construct_test_ineq(struct isl_basic_map *bmap, int i,
2759 int l, int u, isl_int *ineq, isl_int g, isl_int fl, isl_int fu)
2761 unsigned dim;
2762 dim = isl_space_dim(bmap->dim, isl_dim_all);
2764 isl_int_gcd(g, bmap->ineq[l][1 + dim + i], bmap->ineq[u][1 + dim + i]);
2765 isl_int_divexact(fl, bmap->ineq[l][1 + dim + i], g);
2766 isl_int_divexact(fu, bmap->ineq[u][1 + dim + i], g);
2767 isl_int_neg(fu, fu);
2768 isl_seq_combine(ineq, fl, bmap->ineq[u], fu, bmap->ineq[l],
2769 1 + dim + bmap->n_div);
2770 isl_int_add(ineq[0], ineq[0], fl);
2771 isl_int_add(ineq[0], ineq[0], fu);
2772 isl_int_sub_ui(ineq[0], ineq[0], 1);
2773 isl_int_mul(g, g, fl);
2774 isl_int_mul(g, g, fu);
2775 isl_int_sub(ineq[0], ineq[0], g);
2778 /* Remove more kinds of divs that are not strictly needed.
2779 * In particular, if all pairs of lower and upper bounds on a div
2780 * are such that they allow at least one integer value of the div,
2781 * the we can eliminate the div using Fourier-Motzkin without
2782 * introducing any spurious solutions.
2784 static struct isl_basic_map *drop_more_redundant_divs(
2785 struct isl_basic_map *bmap, int *pairs, int n)
2787 struct isl_tab *tab = NULL;
2788 struct isl_vec *vec = NULL;
2789 unsigned dim;
2790 int remove = -1;
2791 isl_int g, fl, fu;
2793 isl_int_init(g);
2794 isl_int_init(fl);
2795 isl_int_init(fu);
2797 if (!bmap)
2798 goto error;
2800 dim = isl_space_dim(bmap->dim, isl_dim_all);
2801 vec = isl_vec_alloc(bmap->ctx, 1 + dim + bmap->n_div);
2802 if (!vec)
2803 goto error;
2805 tab = isl_tab_from_basic_map(bmap, 0);
2807 while (n > 0) {
2808 int i, l, u;
2809 int best = -1;
2810 enum isl_lp_result res;
2812 for (i = 0; i < bmap->n_div; ++i) {
2813 if (!pairs[i])
2814 continue;
2815 if (best >= 0 && pairs[best] <= pairs[i])
2816 continue;
2817 best = i;
2820 i = best;
2821 for (l = 0; l < bmap->n_ineq; ++l) {
2822 if (!isl_int_is_pos(bmap->ineq[l][1 + dim + i]))
2823 continue;
2824 for (u = 0; u < bmap->n_ineq; ++u) {
2825 if (!isl_int_is_neg(bmap->ineq[u][1 + dim + i]))
2826 continue;
2827 construct_test_ineq(bmap, i, l, u,
2828 vec->el, g, fl, fu);
2829 res = isl_tab_min(tab, vec->el,
2830 bmap->ctx->one, &g, NULL, 0);
2831 if (res == isl_lp_error)
2832 goto error;
2833 if (res == isl_lp_empty) {
2834 bmap = isl_basic_map_set_to_empty(bmap);
2835 break;
2837 if (res != isl_lp_ok || isl_int_is_neg(g))
2838 break;
2840 if (u < bmap->n_ineq)
2841 break;
2843 if (l == bmap->n_ineq) {
2844 remove = i;
2845 break;
2847 pairs[i] = 0;
2848 --n;
2851 isl_tab_free(tab);
2852 isl_vec_free(vec);
2854 isl_int_clear(g);
2855 isl_int_clear(fl);
2856 isl_int_clear(fu);
2858 free(pairs);
2860 if (remove < 0)
2861 return bmap;
2863 bmap = isl_basic_map_remove_dims(bmap, isl_dim_div, remove, 1);
2864 return isl_basic_map_drop_redundant_divs(bmap);
2865 error:
2866 free(pairs);
2867 isl_basic_map_free(bmap);
2868 isl_tab_free(tab);
2869 isl_vec_free(vec);
2870 isl_int_clear(g);
2871 isl_int_clear(fl);
2872 isl_int_clear(fu);
2873 return NULL;
2876 /* Given a pair of divs div1 and div2 such that, expect for the lower bound l
2877 * and the upper bound u, div1 always occurs together with div2 in the form
2878 * (div1 + m div2), where m is the constant range on the variable div1
2879 * allowed by l and u, replace the pair div1 and div2 by a single
2880 * div that is equal to div1 + m div2.
2882 * The new div will appear in the location that contains div2.
2883 * We need to modify all constraints that contain
2884 * div2 = (div - div1) / m
2885 * (If a constraint does not contain div2, it will also not contain div1.)
2886 * If the constraint also contains div1, then we know they appear
2887 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
2888 * i.e., the coefficient of div is f.
2890 * Otherwise, we first need to introduce div1 into the constraint.
2891 * Let the l be
2893 * div1 + f >=0
2895 * and u
2897 * -div1 + f' >= 0
2899 * A lower bound on div2
2901 * n div2 + t >= 0
2903 * can be replaced by
2905 * (n * (m div 2 + div1) + m t + n f)/g >= 0
2907 * with g = gcd(m,n).
2908 * An upper bound
2910 * -n div2 + t >= 0
2912 * can be replaced by
2914 * (-n * (m div2 + div1) + m t + n f')/g >= 0
2916 * These constraint are those that we would obtain from eliminating
2917 * div1 using Fourier-Motzkin.
2919 * After all constraints have been modified, we drop the lower and upper
2920 * bound and then drop div1.
2922 static struct isl_basic_map *coalesce_divs(struct isl_basic_map *bmap,
2923 unsigned div1, unsigned div2, unsigned l, unsigned u)
2925 isl_int a;
2926 isl_int b;
2927 isl_int m;
2928 unsigned dim, total;
2929 int i;
2931 dim = isl_space_dim(bmap->dim, isl_dim_all);
2932 total = 1 + dim + bmap->n_div;
2934 isl_int_init(a);
2935 isl_int_init(b);
2936 isl_int_init(m);
2937 isl_int_add(m, bmap->ineq[l][0], bmap->ineq[u][0]);
2938 isl_int_add_ui(m, m, 1);
2940 for (i = 0; i < bmap->n_ineq; ++i) {
2941 if (i == l || i == u)
2942 continue;
2943 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div2]))
2944 continue;
2945 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div1])) {
2946 isl_int_gcd(b, m, bmap->ineq[i][1 + dim + div2]);
2947 isl_int_divexact(a, m, b);
2948 isl_int_divexact(b, bmap->ineq[i][1 + dim + div2], b);
2949 if (isl_int_is_pos(b)) {
2950 isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
2951 b, bmap->ineq[l], total);
2952 } else {
2953 isl_int_neg(b, b);
2954 isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
2955 b, bmap->ineq[u], total);
2958 isl_int_set(bmap->ineq[i][1 + dim + div2],
2959 bmap->ineq[i][1 + dim + div1]);
2960 isl_int_set_si(bmap->ineq[i][1 + dim + div1], 0);
2963 isl_int_clear(a);
2964 isl_int_clear(b);
2965 isl_int_clear(m);
2966 if (l > u) {
2967 isl_basic_map_drop_inequality(bmap, l);
2968 isl_basic_map_drop_inequality(bmap, u);
2969 } else {
2970 isl_basic_map_drop_inequality(bmap, u);
2971 isl_basic_map_drop_inequality(bmap, l);
2973 bmap = isl_basic_map_drop_div(bmap, div1);
2974 return bmap;
2977 /* First check if we can coalesce any pair of divs and
2978 * then continue with dropping more redundant divs.
2980 * We loop over all pairs of lower and upper bounds on a div
2981 * with coefficient 1 and -1, respectively, check if there
2982 * is any other div "c" with which we can coalesce the div
2983 * and if so, perform the coalescing.
2985 static struct isl_basic_map *coalesce_or_drop_more_redundant_divs(
2986 struct isl_basic_map *bmap, int *pairs, int n)
2988 int i, l, u;
2989 unsigned dim;
2991 dim = isl_space_dim(bmap->dim, isl_dim_all);
2993 for (i = 0; i < bmap->n_div; ++i) {
2994 if (!pairs[i])
2995 continue;
2996 for (l = 0; l < bmap->n_ineq; ++l) {
2997 if (!isl_int_is_one(bmap->ineq[l][1 + dim + i]))
2998 continue;
2999 for (u = 0; u < bmap->n_ineq; ++u) {
3000 int c;
3002 if (!isl_int_is_negone(bmap->ineq[u][1+dim+i]))
3003 continue;
3004 c = div_find_coalesce(bmap, pairs, i, l, u);
3005 if (c < 0)
3006 continue;
3007 free(pairs);
3008 bmap = coalesce_divs(bmap, i, c, l, u);
3009 return isl_basic_map_drop_redundant_divs(bmap);
3014 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
3015 return bmap;
3017 return drop_more_redundant_divs(bmap, pairs, n);
3020 /* Remove divs that are not strictly needed.
3021 * In particular, if a div only occurs positively (or negatively)
3022 * in constraints, then it can simply be dropped.
3023 * Also, if a div occurs in only two constraints and if moreover
3024 * those two constraints are opposite to each other, except for the constant
3025 * term and if the sum of the constant terms is such that for any value
3026 * of the other values, there is always at least one integer value of the
3027 * div, i.e., if one plus this sum is greater than or equal to
3028 * the (absolute value) of the coefficent of the div in the constraints,
3029 * then we can also simply drop the div.
3031 * We skip divs that appear in equalities or in the definition of other divs.
3032 * Divs that appear in the definition of other divs usually occur in at least
3033 * 4 constraints, but the constraints may have been simplified.
3035 * If any divs are left after these simple checks then we move on
3036 * to more complicated cases in drop_more_redundant_divs.
3038 struct isl_basic_map *isl_basic_map_drop_redundant_divs(
3039 struct isl_basic_map *bmap)
3041 int i, j;
3042 unsigned off;
3043 int *pairs = NULL;
3044 int n = 0;
3046 if (!bmap)
3047 goto error;
3048 if (bmap->n_div == 0)
3049 return bmap;
3051 off = isl_space_dim(bmap->dim, isl_dim_all);
3052 pairs = isl_calloc_array(bmap->ctx, int, bmap->n_div);
3053 if (!pairs)
3054 goto error;
3056 for (i = 0; i < bmap->n_div; ++i) {
3057 int pos, neg;
3058 int last_pos, last_neg;
3059 int redundant;
3060 int defined;
3062 defined = !isl_int_is_zero(bmap->div[i][0]);
3063 for (j = i; j < bmap->n_div; ++j)
3064 if (!isl_int_is_zero(bmap->div[j][1 + 1 + off + i]))
3065 break;
3066 if (j < bmap->n_div)
3067 continue;
3068 for (j = 0; j < bmap->n_eq; ++j)
3069 if (!isl_int_is_zero(bmap->eq[j][1 + off + i]))
3070 break;
3071 if (j < bmap->n_eq)
3072 continue;
3073 ++n;
3074 pos = neg = 0;
3075 for (j = 0; j < bmap->n_ineq; ++j) {
3076 if (isl_int_is_pos(bmap->ineq[j][1 + off + i])) {
3077 last_pos = j;
3078 ++pos;
3080 if (isl_int_is_neg(bmap->ineq[j][1 + off + i])) {
3081 last_neg = j;
3082 ++neg;
3085 pairs[i] = pos * neg;
3086 if (pairs[i] == 0) {
3087 for (j = bmap->n_ineq - 1; j >= 0; --j)
3088 if (!isl_int_is_zero(bmap->ineq[j][1+off+i]))
3089 isl_basic_map_drop_inequality(bmap, j);
3090 bmap = isl_basic_map_drop_div(bmap, i);
3091 free(pairs);
3092 return isl_basic_map_drop_redundant_divs(bmap);
3094 if (pairs[i] != 1)
3095 continue;
3096 if (!isl_seq_is_neg(bmap->ineq[last_pos] + 1,
3097 bmap->ineq[last_neg] + 1,
3098 off + bmap->n_div))
3099 continue;
3101 isl_int_add(bmap->ineq[last_pos][0],
3102 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
3103 isl_int_add_ui(bmap->ineq[last_pos][0],
3104 bmap->ineq[last_pos][0], 1);
3105 redundant = isl_int_ge(bmap->ineq[last_pos][0],
3106 bmap->ineq[last_pos][1+off+i]);
3107 isl_int_sub_ui(bmap->ineq[last_pos][0],
3108 bmap->ineq[last_pos][0], 1);
3109 isl_int_sub(bmap->ineq[last_pos][0],
3110 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
3111 if (!redundant) {
3112 if (defined ||
3113 !ok_to_set_div_from_bound(bmap, i, last_pos)) {
3114 pairs[i] = 0;
3115 --n;
3116 continue;
3118 bmap = set_div_from_lower_bound(bmap, i, last_pos);
3119 bmap = isl_basic_map_simplify(bmap);
3120 free(pairs);
3121 return isl_basic_map_drop_redundant_divs(bmap);
3123 if (last_pos > last_neg) {
3124 isl_basic_map_drop_inequality(bmap, last_pos);
3125 isl_basic_map_drop_inequality(bmap, last_neg);
3126 } else {
3127 isl_basic_map_drop_inequality(bmap, last_neg);
3128 isl_basic_map_drop_inequality(bmap, last_pos);
3130 bmap = isl_basic_map_drop_div(bmap, i);
3131 free(pairs);
3132 return isl_basic_map_drop_redundant_divs(bmap);
3135 if (n > 0)
3136 return coalesce_or_drop_more_redundant_divs(bmap, pairs, n);
3138 free(pairs);
3139 return bmap;
3140 error:
3141 free(pairs);
3142 isl_basic_map_free(bmap);
3143 return NULL;
3146 struct isl_basic_set *isl_basic_set_drop_redundant_divs(
3147 struct isl_basic_set *bset)
3149 return (struct isl_basic_set *)
3150 isl_basic_map_drop_redundant_divs((struct isl_basic_map *)bset);
3153 struct isl_map *isl_map_drop_redundant_divs(struct isl_map *map)
3155 int i;
3157 if (!map)
3158 return NULL;
3159 for (i = 0; i < map->n; ++i) {
3160 map->p[i] = isl_basic_map_drop_redundant_divs(map->p[i]);
3161 if (!map->p[i])
3162 goto error;
3164 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
3165 return map;
3166 error:
3167 isl_map_free(map);
3168 return NULL;
3171 struct isl_set *isl_set_drop_redundant_divs(struct isl_set *set)
3173 return (struct isl_set *)
3174 isl_map_drop_redundant_divs((struct isl_map *)set);