1 #include "isl_map_private.h"
4 #define STATUS_ERROR -1
5 #define STATUS_REDUNDANT 1
7 #define STATUS_SEPARATE 3
9 #define STATUS_ADJ_EQ 5
10 #define STATUS_ADJ_INEQ 6
12 static int status_in(isl_int
*ineq
, struct isl_tab
*tab
)
14 enum isl_ineq_type type
= isl_tab_ineq_type(tab
, ineq
);
16 case isl_ineq_error
: return STATUS_ERROR
;
17 case isl_ineq_redundant
: return STATUS_VALID
;
18 case isl_ineq_separate
: return STATUS_SEPARATE
;
19 case isl_ineq_cut
: return STATUS_CUT
;
20 case isl_ineq_adj_eq
: return STATUS_ADJ_EQ
;
21 case isl_ineq_adj_ineq
: return STATUS_ADJ_INEQ
;
25 /* Compute the position of the equalities of basic map "i"
26 * with respect to basic map "j".
27 * The resulting array has twice as many entries as the number
28 * of equalities corresponding to the two inequalties to which
29 * each equality corresponds.
31 static int *eq_status_in(struct isl_map
*map
, int i
, int j
,
32 struct isl_tab
**tabs
)
35 int *eq
= isl_calloc_array(map
->ctx
, int, 2 * map
->p
[i
]->n_eq
);
38 dim
= isl_basic_map_total_dim(map
->p
[i
]);
39 for (k
= 0; k
< map
->p
[i
]->n_eq
; ++k
) {
40 for (l
= 0; l
< 2; ++l
) {
41 isl_seq_neg(map
->p
[i
]->eq
[k
], map
->p
[i
]->eq
[k
], 1+dim
);
42 eq
[2 * k
+ l
] = status_in(map
->p
[i
]->eq
[k
], tabs
[j
]);
43 if (eq
[2 * k
+ l
] == STATUS_ERROR
)
46 if (eq
[2 * k
] == STATUS_SEPARATE
||
47 eq
[2 * k
+ 1] == STATUS_SEPARATE
)
57 /* Compute the position of the inequalities of basic map "i"
58 * with respect to basic map "j".
60 static int *ineq_status_in(struct isl_map
*map
, int i
, int j
,
61 struct isl_tab
**tabs
)
64 unsigned n_eq
= map
->p
[i
]->n_eq
;
65 int *ineq
= isl_calloc_array(map
->ctx
, int, map
->p
[i
]->n_ineq
);
67 for (k
= 0; k
< map
->p
[i
]->n_ineq
; ++k
) {
68 if (isl_tab_is_redundant(tabs
[i
], n_eq
+ k
)) {
69 ineq
[k
] = STATUS_REDUNDANT
;
72 ineq
[k
] = status_in(map
->p
[i
]->ineq
[k
], tabs
[j
]);
73 if (ineq
[k
] == STATUS_ERROR
)
75 if (ineq
[k
] == STATUS_SEPARATE
)
85 static int any(int *con
, unsigned len
, int status
)
89 for (i
= 0; i
< len
; ++i
)
95 static int count(int *con
, unsigned len
, int status
)
100 for (i
= 0; i
< len
; ++i
)
101 if (con
[i
] == status
)
106 static int all(int *con
, unsigned len
, int status
)
110 for (i
= 0; i
< len
; ++i
) {
111 if (con
[i
] == STATUS_REDUNDANT
)
113 if (con
[i
] != status
)
119 static void drop(struct isl_map
*map
, int i
, struct isl_tab
**tabs
)
121 isl_basic_map_free(map
->p
[i
]);
122 isl_tab_free(tabs
[i
]);
124 if (i
!= map
->n
- 1) {
125 map
->p
[i
] = map
->p
[map
->n
- 1];
126 tabs
[i
] = tabs
[map
->n
- 1];
128 tabs
[map
->n
- 1] = NULL
;
132 /* Replace the pair of basic maps i and j but the basic map bounded
133 * by the valid constraints in both basic maps.
135 static int fuse(struct isl_map
*map
, int i
, int j
, struct isl_tab
**tabs
,
136 int *ineq_i
, int *ineq_j
)
139 struct isl_basic_map
*fused
= NULL
;
140 struct isl_tab
*fused_tab
= NULL
;
141 unsigned total
= isl_basic_map_total_dim(map
->p
[i
]);
143 fused
= isl_basic_map_alloc_dim(isl_dim_copy(map
->p
[i
]->dim
),
145 map
->p
[i
]->n_eq
+ map
->p
[j
]->n_eq
,
146 map
->p
[i
]->n_ineq
+ map
->p
[j
]->n_ineq
);
150 for (k
= 0; k
< map
->p
[i
]->n_eq
; ++k
) {
151 int l
= isl_basic_map_alloc_equality(fused
);
152 isl_seq_cpy(fused
->eq
[l
], map
->p
[i
]->eq
[k
], 1 + total
);
155 for (k
= 0; k
< map
->p
[j
]->n_eq
; ++k
) {
156 int l
= isl_basic_map_alloc_equality(fused
);
157 isl_seq_cpy(fused
->eq
[l
], map
->p
[j
]->eq
[k
], 1 + total
);
160 for (k
= 0; k
< map
->p
[i
]->n_ineq
; ++k
) {
161 if (ineq_i
[k
] != STATUS_VALID
)
163 l
= isl_basic_map_alloc_inequality(fused
);
164 isl_seq_cpy(fused
->ineq
[l
], map
->p
[i
]->ineq
[k
], 1 + total
);
167 for (k
= 0; k
< map
->p
[j
]->n_ineq
; ++k
) {
168 if (ineq_j
[k
] != STATUS_VALID
)
170 l
= isl_basic_map_alloc_inequality(fused
);
171 isl_seq_cpy(fused
->ineq
[l
], map
->p
[j
]->ineq
[k
], 1 + total
);
174 for (k
= 0; k
< map
->p
[i
]->n_div
; ++k
) {
175 int l
= isl_basic_map_alloc_div(fused
);
176 isl_seq_cpy(fused
->div
[l
], map
->p
[i
]->div
[k
], 1 + 1 + total
);
179 fused
= isl_basic_map_gauss(fused
, NULL
);
180 ISL_F_SET(fused
, ISL_BASIC_MAP_FINAL
);
181 if (ISL_F_ISSET(map
->p
[i
], ISL_BASIC_MAP_RATIONAL
) &&
182 ISL_F_ISSET(map
->p
[j
], ISL_BASIC_MAP_RATIONAL
))
183 ISL_F_SET(fused
, ISL_BASIC_MAP_RATIONAL
);
185 fused_tab
= isl_tab_from_basic_map(fused
);
186 fused_tab
= isl_tab_detect_redundant(fused_tab
);
190 isl_basic_map_free(map
->p
[i
]);
192 isl_tab_free(tabs
[i
]);
198 isl_basic_map_free(fused
);
202 /* Given a pair of basic maps i and j such that all constraints are either
203 * "valid" or "cut", check if the facets corresponding to the "cut"
204 * constraints of i lie entirely within basic map j.
205 * If so, replace the pair by the basic map consisting of the valid
206 * constraints in both basic maps.
208 * To see that we are not introducing any extra points, call the
209 * two basic maps A and B and the resulting map U and let x
210 * be an element of U \setminus ( A \cup B ).
211 * Then there is a pair of cut constraints c_1 and c_2 in A and B such that x
212 * violates them. Let X be the intersection of U with the opposites
213 * of these constraints. Then x \in X.
214 * The facet corresponding to c_1 contains the corresponding facet of A.
215 * This facet is entirely contained in B, so c_2 is valid on the facet.
216 * However, since it is also (part of) a facet of X, -c_2 is also valid
217 * on the facet. This means c_2 is saturated on the facet, so c_1 and
218 * c_2 must be opposites of each other, but then x could not violate
221 static int check_facets(struct isl_map
*map
, int i
, int j
,
222 struct isl_tab
**tabs
, int *ineq_i
, int *ineq_j
)
225 struct isl_tab_undo
*snap
;
226 unsigned n_eq
= map
->p
[i
]->n_eq
;
228 snap
= isl_tab_snap(tabs
[i
]);
230 for (k
= 0; k
< map
->p
[i
]->n_ineq
; ++k
) {
231 if (ineq_i
[k
] != STATUS_CUT
)
233 tabs
[i
] = isl_tab_select_facet(tabs
[i
], n_eq
+ k
);
234 for (l
= 0; l
< map
->p
[j
]->n_ineq
; ++l
) {
236 if (ineq_j
[l
] != STATUS_CUT
)
238 stat
= status_in(map
->p
[j
]->ineq
[l
], tabs
[i
]);
239 if (stat
!= STATUS_VALID
)
242 isl_tab_rollback(tabs
[i
], snap
);
243 if (l
< map
->p
[j
]->n_ineq
)
247 if (k
< map
->p
[i
]->n_ineq
)
250 return fuse(map
, i
, j
, tabs
, ineq_i
, ineq_j
);
253 /* Both basic maps have at least one inequality with and adjacent
254 * (but opposite) inequality in the other basic map.
255 * Check that there are no cut constraints and that there is only
256 * a single pair of adjacent inequalities.
257 * If so, we can replace the pair by a single basic map described
258 * by all but the pair of adjacent inequalities.
259 * Any additional points introduced lie strictly between the two
260 * adjacent hyperplanes and can therefore be integral.
269 * The test for a single pair of adjancent inequalities is important
270 * for avoiding the combination of two basic maps like the following
280 static int check_adj_ineq(struct isl_map
*map
, int i
, int j
,
281 struct isl_tab
**tabs
, int *ineq_i
, int *ineq_j
)
285 if (any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_CUT
) ||
286 any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_CUT
))
289 else if (count(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_ADJ_INEQ
) == 1 &&
290 count(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_ADJ_INEQ
) == 1)
291 changed
= fuse(map
, i
, j
, tabs
, ineq_i
, ineq_j
);
292 /* else ADJ INEQ TOO MANY */
297 /* Check if basic map "i" contains the basic map represented
298 * by the tableau "tab".
300 static int contains(struct isl_map
*map
, int i
, int *ineq_i
,
306 dim
= isl_basic_map_total_dim(map
->p
[i
]);
307 for (k
= 0; k
< map
->p
[i
]->n_eq
; ++k
) {
308 for (l
= 0; l
< 2; ++l
) {
310 isl_seq_neg(map
->p
[i
]->eq
[k
], map
->p
[i
]->eq
[k
], 1+dim
);
311 stat
= status_in(map
->p
[i
]->eq
[k
], tab
);
312 if (stat
!= STATUS_VALID
)
317 for (k
= 0; k
< map
->p
[i
]->n_ineq
; ++k
) {
319 if (ineq_i
[k
] == STATUS_REDUNDANT
)
321 stat
= status_in(map
->p
[i
]->ineq
[k
], tab
);
322 if (stat
!= STATUS_VALID
)
328 /* At least one of the basic maps has an equality that is adjacent
329 * to inequality. Make sure that only one of the basic maps has
330 * such an equality and that the other basic map has exactly one
331 * inequality adjacent to an equality.
332 * We call the basic map that has the inequality "i" and the basic
333 * map that has the equality "j".
334 * If "i" has any "cut" inequality, then relaxing the inequality
335 * by one would not result in a basic map that contains the other
337 * Otherwise, we relax the constraint, compute the corresponding
338 * facet and check whether it is included in the other basic map.
339 * If so, we know that relaxing the constraint extend the basic
340 * map with exactly the other basic map (we already know that this
341 * other basic map is included in the extension, because there
342 * were no "cut" inequalities in "i") and we can replace the
343 * two basic maps by thie extension.
351 static int check_adj_eq(struct isl_map
*map
, int i
, int j
,
352 struct isl_tab
**tabs
, int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
357 struct isl_tab_undo
*snap
, *snap2
;
358 unsigned n_eq
= map
->p
[i
]->n_eq
;
360 if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_ADJ_INEQ
) &&
361 any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_ADJ_INEQ
))
362 /* ADJ EQ TOO MANY */
365 if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_ADJ_INEQ
))
366 return check_adj_eq(map
, j
, i
, tabs
,
367 eq_j
, ineq_j
, eq_i
, ineq_i
);
369 /* j has an equality adjacent to an inequality in i */
371 if (any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_CUT
))
374 if (count(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_ADJ_INEQ
) != 1 ||
375 count(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_ADJ_EQ
) != 1 ||
376 any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_ADJ_EQ
) ||
377 any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_ADJ_INEQ
) ||
378 any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_ADJ_INEQ
))
379 /* ADJ EQ TOO MANY */
382 for (k
= 0; k
< map
->p
[i
]->n_ineq
; ++k
)
383 if (ineq_i
[k
] == STATUS_ADJ_EQ
)
386 snap
= isl_tab_snap(tabs
[i
]);
387 tabs
[i
] = isl_tab_relax(tabs
[i
], n_eq
+ k
);
388 snap2
= isl_tab_snap(tabs
[i
]);
389 tabs
[i
] = isl_tab_select_facet(tabs
[i
], n_eq
+ k
);
390 super
= contains(map
, j
, ineq_j
, tabs
[i
]);
392 isl_tab_rollback(tabs
[i
], snap2
);
393 map
->p
[i
] = isl_basic_map_cow(map
->p
[i
]);
396 isl_int_add_ui(map
->p
[i
]->ineq
[k
][0], map
->p
[i
]->ineq
[k
][0], 1);
397 ISL_F_SET(map
->p
[i
], ISL_BASIC_MAP_FINAL
);
401 isl_tab_rollback(tabs
[i
], snap
);
406 /* Check if the union of the given pair of basic maps
407 * can be represented by a single basic map.
408 * If so, replace the pair by the single basic map and return 1.
409 * Otherwise, return 0;
411 * We first check the effect of each constraint of one basic map
412 * on the other basic map.
413 * The constraint may be
414 * redundant the constraint is redundant in its own
415 * basic map and should be ignore and removed
417 * valid all (integer) points of the other basic map
418 * satisfy the constraint
419 * separate no (integer) point of the other basic map
420 * satisfies the constraint
421 * cut some but not all points of the other basic map
422 * satisfy the constraint
423 * adj_eq the given constraint is adjacent (on the outside)
424 * to an equality of the other basic map
425 * adj_ineq the given constraint is adjacent (on the outside)
426 * to an inequality of the other basic map
428 * We consider four cases in which we can replace the pair by a single
429 * basic map. We ignore all "redundant" constraints.
431 * 1. all constraints of one basic map are valid
432 * => the other basic map is a subset and can be removed
434 * 2. all constraints of both basic maps are either "valid" or "cut"
435 * and the facets corresponding to the "cut" constraints
436 * of one of the basic maps lies entirely inside the other basic map
437 * => the pair can be replaced by a basic map consisting
438 * of the valid constraints in both basic maps
440 * 3. there is a single pair of adjacent inequalities
441 * (all other constraints are "valid")
442 * => the pair can be replaced by a basic map consisting
443 * of the valid constraints in both basic maps
445 * 4. there is a single adjacent pair of an inequality and an equality,
446 * the other constraints of the basic map containing the inequality are
447 * "valid". Moreover, if the inequality the basic map is relaxed
448 * and then turned into an equality, then resulting facet lies
449 * entirely inside the other basic map
450 * => the pair can be replaced by the basic map containing
451 * the inequality, with the inequality relaxed.
453 * Throughout the computation, we maintain a collection of tableaus
454 * corresponding to the basic maps. When the basic maps are dropped
455 * or combined, the tableaus are modified accordingly.
457 static int coalesce_pair(struct isl_map
*map
, int i
, int j
,
458 struct isl_tab
**tabs
)
466 eq_i
= eq_status_in(map
, i
, j
, tabs
);
467 if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_ERROR
))
469 if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_SEPARATE
))
472 eq_j
= eq_status_in(map
, j
, i
, tabs
);
473 if (any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_ERROR
))
475 if (any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_SEPARATE
))
478 ineq_i
= ineq_status_in(map
, i
, j
, tabs
);
479 if (any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_ERROR
))
481 if (any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_SEPARATE
))
484 ineq_j
= ineq_status_in(map
, j
, i
, tabs
);
485 if (any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_ERROR
))
487 if (any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_SEPARATE
))
490 if (all(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_VALID
) &&
491 all(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_VALID
)) {
494 } else if (all(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_VALID
) &&
495 all(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_VALID
)) {
498 } else if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_CUT
) ||
499 any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_CUT
)) {
501 } else if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_ADJ_EQ
) ||
502 any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_ADJ_EQ
)) {
504 } else if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_ADJ_INEQ
) ||
505 any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_ADJ_INEQ
)) {
506 changed
= check_adj_eq(map
, i
, j
, tabs
,
507 eq_i
, ineq_i
, eq_j
, ineq_j
);
508 } else if (any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_ADJ_EQ
) ||
509 any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_ADJ_EQ
)) {
512 } else if (any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_ADJ_INEQ
) ||
513 any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_ADJ_INEQ
)) {
514 changed
= check_adj_ineq(map
, i
, j
, tabs
, ineq_i
, ineq_j
);
516 changed
= check_facets(map
, i
, j
, tabs
, ineq_i
, ineq_j
);
532 static struct isl_map
*coalesce(struct isl_map
*map
, struct isl_tab
**tabs
)
536 for (i
= 0; i
< map
->n
- 1; ++i
)
537 for (j
= i
+ 1; j
< map
->n
; ++j
) {
539 changed
= coalesce_pair(map
, i
, j
, tabs
);
543 return coalesce(map
, tabs
);
551 /* For each pair of basic maps in the map, check if the union of the two
552 * can be represented by a single basic map.
553 * If so, replace the pair by the single basic map and start over.
555 struct isl_map
*isl_map_coalesce(struct isl_map
*map
)
559 struct isl_tab
**tabs
= NULL
;
567 map
= isl_map_align_divs(map
);
569 tabs
= isl_calloc_array(map
->ctx
, struct isl_tab
*, map
->n
);
574 for (i
= 0; i
< map
->n
; ++i
) {
575 tabs
[i
] = isl_tab_from_basic_map(map
->p
[i
]);
578 if (!ISL_F_ISSET(map
->p
[i
], ISL_BASIC_MAP_NO_IMPLICIT
))
579 tabs
[i
] = isl_tab_detect_equalities(tabs
[i
]);
580 if (!ISL_F_ISSET(map
->p
[i
], ISL_BASIC_MAP_NO_REDUNDANT
))
581 tabs
[i
] = isl_tab_detect_redundant(tabs
[i
]);
583 for (i
= map
->n
- 1; i
>= 0; --i
)
587 map
= coalesce(map
, tabs
);
590 for (i
= 0; i
< map
->n
; ++i
) {
591 map
->p
[i
] = isl_basic_map_update_from_tab(map
->p
[i
],
593 map
->p
[i
] = isl_basic_map_finalize(map
->p
[i
]);
596 ISL_F_SET(map
->p
[i
], ISL_BASIC_MAP_NO_IMPLICIT
);
597 ISL_F_SET(map
->p
[i
], ISL_BASIC_MAP_NO_REDUNDANT
);
600 for (i
= 0; i
< n
; ++i
)
601 isl_tab_free(tabs
[i
]);
608 for (i
= 0; i
< n
; ++i
)
609 isl_tab_free(tabs
[i
]);
614 /* For each pair of basic sets in the set, check if the union of the two
615 * can be represented by a single basic set.
616 * If so, replace the pair by the single basic set and start over.
618 struct isl_set
*isl_set_coalesce(struct isl_set
*set
)
620 (struct isl_set
*)isl_map_coalesce((struct isl_map
*)set
);