2 * Copyright 2012-2014 Ecole Normale Superieure
3 * Copyright 2014 INRIA Rocquencourt
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege,
8 * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
9 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
10 * B.P. 105 - 78153 Le Chesnay, France
16 #include <isl/space.h>
18 #include <isl/constraint.h>
21 #include <isl/union_set.h>
22 #include <isl/union_map.h>
23 #include <isl/schedule_node.h>
24 #include <isl/options.h>
26 #include <isl_tarjan.h>
27 #include <isl_ast_private.h>
28 #include <isl_ast_build_expr.h>
29 #include <isl_ast_build_private.h>
30 #include <isl_ast_graft_private.h>
32 /* Try and reduce the number of disjuncts in the representation of "set",
33 * without dropping explicit representations of local variables.
35 static __isl_give isl_set
*isl_set_coalesce_preserve(__isl_take isl_set
*set
)
43 ctx
= isl_set_get_ctx(set
);
44 save_preserve
= isl_options_get_coalesce_preserve_locals(ctx
);
45 isl_options_set_coalesce_preserve_locals(ctx
, 1);
46 set
= isl_set_coalesce(set
);
47 isl_options_set_coalesce_preserve_locals(ctx
, save_preserve
);
51 /* Data used in generate_domain.
53 * "build" is the input build.
54 * "list" collects the results.
56 struct isl_generate_domain_data
{
59 isl_ast_graft_list
*list
;
62 static __isl_give isl_ast_graft_list
*generate_next_level(
63 __isl_take isl_union_map
*executed
,
64 __isl_take isl_ast_build
*build
);
65 static __isl_give isl_ast_graft_list
*generate_code(
66 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
,
69 /* Generate an AST for a single domain based on
70 * the (non single valued) inverse schedule "executed".
72 * We extend the schedule with the iteration domain
73 * and continue generating through a call to generate_code.
75 * In particular, if executed has the form
79 * then we continue generating code on
83 * The extended inverse schedule is clearly single valued
84 * ensuring that the nested generate_code will not reach this function,
85 * but will instead create calls to all elements of D that need
86 * to be executed from the current schedule domain.
88 static isl_stat
generate_non_single_valued(__isl_take isl_map
*executed
,
89 struct isl_generate_domain_data
*data
)
93 isl_ast_graft_list
*list
;
95 build
= isl_ast_build_copy(data
->build
);
97 identity
= isl_set_identity(isl_map_range(isl_map_copy(executed
)));
98 executed
= isl_map_domain_product(executed
, identity
);
99 build
= isl_ast_build_set_single_valued(build
, 1);
101 list
= generate_code(isl_union_map_from_map(executed
), build
, 1);
103 data
->list
= isl_ast_graft_list_concat(data
->list
, list
);
108 /* Call the at_each_domain callback, if requested by the user,
109 * after recording the current inverse schedule in the build.
111 static __isl_give isl_ast_graft
*at_each_domain(__isl_take isl_ast_graft
*graft
,
112 __isl_keep isl_map
*executed
, __isl_keep isl_ast_build
*build
)
114 if (!graft
|| !build
)
115 return isl_ast_graft_free(graft
);
116 if (!build
->at_each_domain
)
119 build
= isl_ast_build_copy(build
);
120 build
= isl_ast_build_set_executed(build
,
121 isl_union_map_from_map(isl_map_copy(executed
)));
123 return isl_ast_graft_free(graft
);
125 graft
->node
= build
->at_each_domain(graft
->node
,
126 build
, build
->at_each_domain_user
);
127 isl_ast_build_free(build
);
130 graft
= isl_ast_graft_free(graft
);
135 /* Generate a call expression for the single executed
136 * domain element "map" and put a guard around it based its (simplified)
137 * domain. "executed" is the original inverse schedule from which "map"
138 * has been derived. In particular, "map" is either identical to "executed"
139 * or it is the result of gisting "executed" with respect to the build domain.
140 * "executed" is only used if there is an at_each_domain callback.
142 * At this stage, any pending constraints in the build can no longer
143 * be simplified with respect to any enforced constraints since
144 * the call node does not have any enforced constraints.
145 * Since all pending constraints not covered by any enforced constraints
146 * will be added as a guard to the graft in create_node_scaled,
147 * even in the eliminated case, the pending constraints
148 * can be considered to have been generated by outer constructs.
150 * If the user has set an at_each_domain callback, it is called
151 * on the constructed call expression node.
153 static isl_stat
add_domain(__isl_take isl_map
*executed
,
154 __isl_take isl_map
*map
, struct isl_generate_domain_data
*data
)
156 isl_ast_build
*build
;
157 isl_ast_graft
*graft
;
158 isl_ast_graft_list
*list
;
159 isl_set
*guard
, *pending
;
161 build
= isl_ast_build_copy(data
->build
);
162 pending
= isl_ast_build_get_pending(build
);
163 build
= isl_ast_build_replace_pending_by_guard(build
, pending
);
165 guard
= isl_map_domain(isl_map_copy(map
));
166 guard
= isl_set_compute_divs(guard
);
167 guard
= isl_set_coalesce_preserve(guard
);
168 guard
= isl_set_gist(guard
, isl_ast_build_get_generated(build
));
169 guard
= isl_ast_build_specialize(build
, guard
);
171 graft
= isl_ast_graft_alloc_domain(map
, build
);
172 graft
= at_each_domain(graft
, executed
, build
);
173 isl_ast_build_free(build
);
174 isl_map_free(executed
);
175 graft
= isl_ast_graft_add_guard(graft
, guard
, data
->build
);
177 list
= isl_ast_graft_list_from_ast_graft(graft
);
178 data
->list
= isl_ast_graft_list_concat(data
->list
, list
);
183 /* Generate an AST for a single domain based on
184 * the inverse schedule "executed" and add it to data->list.
186 * If there is more than one domain element associated to the current
187 * schedule "time", then we need to continue the generation process
188 * in generate_non_single_valued.
189 * Note that the inverse schedule being single-valued may depend
190 * on constraints that are only available in the original context
191 * domain specified by the user. We therefore first introduce
192 * some of the constraints of data->build->domain. In particular,
193 * we intersect with a single-disjunct approximation of this set.
194 * We perform this approximation to avoid further splitting up
195 * the executed relation, possibly introducing a disjunctive guard
198 * On the other hand, we only perform the test after having taken the gist
199 * of the domain as the resulting map is the one from which the call
200 * expression is constructed. Using this map to construct the call
201 * expression usually yields simpler results in cases where the original
202 * map is not obviously single-valued.
203 * If the original map is obviously single-valued, then the gist
204 * operation is skipped.
206 * Because we perform the single-valuedness test on the gisted map,
207 * we may in rare cases fail to recognize that the inverse schedule
208 * is single-valued. This becomes problematic if this happens
209 * from the recursive call through generate_non_single_valued
210 * as we would then end up in an infinite recursion.
211 * We therefore check if we are inside a call to generate_non_single_valued
212 * and revert to the ungisted map if the gisted map turns out not to be
215 * Otherwise, call add_domain to generate a call expression (with guard) and
216 * to call the at_each_domain callback, if any.
218 static isl_stat
generate_domain(__isl_take isl_map
*executed
, void *user
)
220 struct isl_generate_domain_data
*data
= user
;
225 domain
= isl_ast_build_get_domain(data
->build
);
226 domain
= isl_set_from_basic_set(isl_set_simple_hull(domain
));
227 executed
= isl_map_intersect_domain(executed
, domain
);
228 empty
= isl_map_is_empty(executed
);
232 isl_map_free(executed
);
236 sv
= isl_map_plain_is_single_valued(executed
);
240 return add_domain(executed
, isl_map_copy(executed
), data
);
242 executed
= isl_map_coalesce(executed
);
243 map
= isl_map_copy(executed
);
244 map
= isl_ast_build_compute_gist_map_domain(data
->build
, map
);
245 sv
= isl_map_is_single_valued(map
);
250 if (data
->build
->single_valued
)
251 map
= isl_map_copy(executed
);
253 return generate_non_single_valued(executed
, data
);
256 return add_domain(executed
, map
, data
);
259 isl_map_free(executed
);
260 return isl_stat_error
;
263 /* Call build->create_leaf to a create "leaf" node in the AST,
264 * encapsulate the result in an isl_ast_graft and return the result
265 * as a 1-element list.
267 * Note that the node returned by the user may be an entire tree.
269 * Since the node itself cannot enforce any constraints, we turn
270 * all pending constraints into guards and add them to the resulting
271 * graft to ensure that they will be generated.
273 * Before we pass control to the user, we first clear some information
274 * from the build that is (presumbably) only meaningful
275 * for the current code generation.
276 * This includes the create_leaf callback itself, so we make a copy
277 * of the build first.
279 static __isl_give isl_ast_graft_list
*call_create_leaf(
280 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
284 isl_ast_graft
*graft
;
285 isl_ast_build
*user_build
;
287 guard
= isl_ast_build_get_pending(build
);
288 user_build
= isl_ast_build_copy(build
);
289 user_build
= isl_ast_build_replace_pending_by_guard(user_build
,
290 isl_set_copy(guard
));
291 user_build
= isl_ast_build_set_executed(user_build
, executed
);
292 user_build
= isl_ast_build_clear_local_info(user_build
);
296 node
= build
->create_leaf(user_build
, build
->create_leaf_user
);
297 graft
= isl_ast_graft_alloc(node
, build
);
298 graft
= isl_ast_graft_add_guard(graft
, guard
, build
);
299 isl_ast_build_free(build
);
300 return isl_ast_graft_list_from_ast_graft(graft
);
303 static __isl_give isl_ast_graft_list
*build_ast_from_child(
304 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
305 __isl_take isl_union_map
*executed
);
307 /* Generate an AST after having handled the complete schedule
308 * of this call to the code generator or the complete band
309 * if we are generating an AST from a schedule tree.
311 * If we are inside a band node, then move on to the child of the band.
313 * If the user has specified a create_leaf callback, control
314 * is passed to the user in call_create_leaf.
316 * Otherwise, we generate one or more calls for each individual
317 * domain in generate_domain.
319 static __isl_give isl_ast_graft_list
*generate_inner_level(
320 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
323 struct isl_generate_domain_data data
= { build
};
325 if (!build
|| !executed
)
328 if (isl_ast_build_has_schedule_node(build
)) {
329 isl_schedule_node
*node
;
330 node
= isl_ast_build_get_schedule_node(build
);
331 build
= isl_ast_build_reset_schedule_node(build
);
332 return build_ast_from_child(build
, node
, executed
);
335 if (build
->create_leaf
)
336 return call_create_leaf(executed
, build
);
338 ctx
= isl_union_map_get_ctx(executed
);
339 data
.list
= isl_ast_graft_list_alloc(ctx
, 0);
340 if (isl_union_map_foreach_map(executed
, &generate_domain
, &data
) < 0)
341 data
.list
= isl_ast_graft_list_free(data
.list
);
344 error
: data
.list
= NULL
;
345 isl_ast_build_free(build
);
346 isl_union_map_free(executed
);
350 /* Call the before_each_for callback, if requested by the user.
352 static __isl_give isl_ast_node
*before_each_for(__isl_take isl_ast_node
*node
,
353 __isl_keep isl_ast_build
*build
)
358 return isl_ast_node_free(node
);
359 if (!build
->before_each_for
)
361 id
= build
->before_each_for(build
, build
->before_each_for_user
);
362 node
= isl_ast_node_set_annotation(node
, id
);
366 /* Call the after_each_for callback, if requested by the user.
368 static __isl_give isl_ast_graft
*after_each_for(__isl_take isl_ast_graft
*graft
,
369 __isl_keep isl_ast_build
*build
)
371 if (!graft
|| !build
)
372 return isl_ast_graft_free(graft
);
373 if (!build
->after_each_for
)
375 graft
->node
= build
->after_each_for(graft
->node
, build
,
376 build
->after_each_for_user
);
378 return isl_ast_graft_free(graft
);
382 /* Plug in all the know values of the current and outer dimensions
383 * in the domain of "executed". In principle, we only need to plug
384 * in the known value of the current dimension since the values of
385 * outer dimensions have been plugged in already.
386 * However, it turns out to be easier to just plug in all known values.
388 static __isl_give isl_union_map
*plug_in_values(
389 __isl_take isl_union_map
*executed
, __isl_keep isl_ast_build
*build
)
391 return isl_ast_build_substitute_values_union_map_domain(build
,
395 /* Check if the constraint "c" is a lower bound on dimension "pos",
396 * an upper bound, or independent of dimension "pos".
398 static int constraint_type(isl_constraint
*c
, int pos
)
400 if (isl_constraint_is_lower_bound(c
, isl_dim_set
, pos
))
402 if (isl_constraint_is_upper_bound(c
, isl_dim_set
, pos
))
407 /* Compare the types of the constraints "a" and "b",
408 * resulting in constraints that are independent of "depth"
409 * to be sorted before the lower bounds on "depth", which in
410 * turn are sorted before the upper bounds on "depth".
412 static int cmp_constraint(__isl_keep isl_constraint
*a
,
413 __isl_keep isl_constraint
*b
, void *user
)
416 int t1
= constraint_type(a
, *depth
);
417 int t2
= constraint_type(b
, *depth
);
422 /* Extract a lower bound on dimension "pos" from constraint "c".
424 * If the constraint is of the form
428 * then we essentially return
430 * l = ceil(-f(...)/a)
432 * However, if the current dimension is strided, then we need to make
433 * sure that the lower bound we construct is of the form
437 * with f the offset and s the stride.
438 * We therefore compute
440 * f + s * ceil((l - f)/s)
442 static __isl_give isl_aff
*lower_bound(__isl_keep isl_constraint
*c
,
443 int pos
, __isl_keep isl_ast_build
*build
)
447 aff
= isl_constraint_get_bound(c
, isl_dim_set
, pos
);
448 aff
= isl_aff_ceil(aff
);
450 if (isl_ast_build_has_stride(build
, pos
)) {
454 offset
= isl_ast_build_get_offset(build
, pos
);
455 stride
= isl_ast_build_get_stride(build
, pos
);
457 aff
= isl_aff_sub(aff
, isl_aff_copy(offset
));
458 aff
= isl_aff_scale_down_val(aff
, isl_val_copy(stride
));
459 aff
= isl_aff_ceil(aff
);
460 aff
= isl_aff_scale_val(aff
, stride
);
461 aff
= isl_aff_add(aff
, offset
);
464 aff
= isl_ast_build_compute_gist_aff(build
, aff
);
469 /* Return the exact lower bound (or upper bound if "upper" is set)
470 * of "domain" as a piecewise affine expression.
472 * If we are computing a lower bound (of a strided dimension), then
473 * we need to make sure it is of the form
477 * where f is the offset and s is the stride.
478 * We therefore need to include the stride constraint before computing
481 static __isl_give isl_pw_aff
*exact_bound(__isl_keep isl_set
*domain
,
482 __isl_keep isl_ast_build
*build
, int upper
)
487 isl_pw_multi_aff
*pma
;
489 domain
= isl_set_copy(domain
);
491 stride
= isl_ast_build_get_stride_constraint(build
);
492 domain
= isl_set_intersect(domain
, stride
);
494 it_map
= isl_ast_build_map_to_iterator(build
, domain
);
496 pma
= isl_map_lexmax_pw_multi_aff(it_map
);
498 pma
= isl_map_lexmin_pw_multi_aff(it_map
);
499 pa
= isl_pw_multi_aff_get_pw_aff(pma
, 0);
500 isl_pw_multi_aff_free(pma
);
501 pa
= isl_ast_build_compute_gist_pw_aff(build
, pa
);
502 pa
= isl_pw_aff_coalesce(pa
);
507 /* Callback for sorting the isl_pw_aff_list passed to reduce_list and
508 * remove_redundant_lower_bounds.
510 static int reduce_list_cmp(__isl_keep isl_pw_aff
*a
, __isl_keep isl_pw_aff
*b
,
513 return isl_pw_aff_plain_cmp(a
, b
);
516 /* Given a list of lower bounds "list", remove those that are redundant
517 * with respect to the other bounds in "list" and the domain of "build".
519 * We first sort the bounds in the same way as they would be sorted
520 * by set_for_node_expressions so that we can try and remove the last
523 * For a lower bound to be effective, there needs to be at least
524 * one domain element for which it is larger than all other lower bounds.
525 * For each lower bound we therefore intersect the domain with
526 * the conditions that it is larger than all other bounds and
527 * check whether the result is empty. If so, the bound can be removed.
529 static __isl_give isl_pw_aff_list
*remove_redundant_lower_bounds(
530 __isl_take isl_pw_aff_list
*list
, __isl_keep isl_ast_build
*build
)
536 list
= isl_pw_aff_list_sort(list
, &reduce_list_cmp
, NULL
);
538 n
= isl_pw_aff_list_n_pw_aff(list
);
540 return isl_pw_aff_list_free(list
);
544 domain
= isl_ast_build_get_domain(build
);
546 for (i
= n
- 1; i
>= 0; --i
) {
551 domain_i
= isl_set_copy(domain
);
552 pa_i
= isl_pw_aff_list_get_pw_aff(list
, i
);
554 for (j
= 0; j
< n
; ++j
) {
561 pa_j
= isl_pw_aff_list_get_pw_aff(list
, j
);
562 better
= isl_pw_aff_gt_set(isl_pw_aff_copy(pa_i
), pa_j
);
563 domain_i
= isl_set_intersect(domain_i
, better
);
566 empty
= isl_set_is_empty(domain_i
);
568 isl_set_free(domain_i
);
569 isl_pw_aff_free(pa_i
);
575 list
= isl_pw_aff_list_drop(list
, i
, 1);
579 isl_set_free(domain
);
583 isl_set_free(domain
);
584 return isl_pw_aff_list_free(list
);
587 /* Extract a lower bound on dimension "pos" from each constraint
588 * in "constraints" and return the list of lower bounds.
589 * If "constraints" has zero elements, then we extract a lower bound
590 * from "domain" instead.
592 * If the current dimension is strided, then the lower bound
593 * is adjusted by lower_bound to match the stride information.
594 * This modification may make one or more lower bounds redundant
595 * with respect to the other lower bounds. We therefore check
596 * for this condition and remove the redundant lower bounds.
598 static __isl_give isl_pw_aff_list
*lower_bounds(
599 __isl_keep isl_constraint_list
*constraints
, int pos
,
600 __isl_keep isl_set
*domain
, __isl_keep isl_ast_build
*build
)
603 isl_pw_aff_list
*list
;
610 n
= isl_constraint_list_n_constraint(constraints
);
615 pa
= exact_bound(domain
, build
, 0);
616 return isl_pw_aff_list_from_pw_aff(pa
);
619 ctx
= isl_ast_build_get_ctx(build
);
620 list
= isl_pw_aff_list_alloc(ctx
,n
);
622 for (i
= 0; i
< n
; ++i
) {
626 c
= isl_constraint_list_get_constraint(constraints
, i
);
627 aff
= lower_bound(c
, pos
, build
);
628 isl_constraint_free(c
);
629 list
= isl_pw_aff_list_add(list
, isl_pw_aff_from_aff(aff
));
632 if (isl_ast_build_has_stride(build
, pos
))
633 list
= remove_redundant_lower_bounds(list
, build
);
638 /* Extract an upper bound on dimension "pos" from each constraint
639 * in "constraints" and return the list of upper bounds.
640 * If "constraints" has zero elements, then we extract an upper bound
641 * from "domain" instead.
643 static __isl_give isl_pw_aff_list
*upper_bounds(
644 __isl_keep isl_constraint_list
*constraints
, int pos
,
645 __isl_keep isl_set
*domain
, __isl_keep isl_ast_build
*build
)
648 isl_pw_aff_list
*list
;
652 n
= isl_constraint_list_n_constraint(constraints
);
657 pa
= exact_bound(domain
, build
, 1);
658 return isl_pw_aff_list_from_pw_aff(pa
);
661 ctx
= isl_ast_build_get_ctx(build
);
662 list
= isl_pw_aff_list_alloc(ctx
,n
);
664 for (i
= 0; i
< n
; ++i
) {
668 c
= isl_constraint_list_get_constraint(constraints
, i
);
669 aff
= isl_constraint_get_bound(c
, isl_dim_set
, pos
);
670 isl_constraint_free(c
);
671 aff
= isl_aff_floor(aff
);
672 list
= isl_pw_aff_list_add(list
, isl_pw_aff_from_aff(aff
));
678 /* Return an isl_ast_expr that performs the reduction of type "type"
679 * on AST expressions corresponding to the elements in "list".
681 * The list is assumed to contain at least one element.
682 * If the list contains exactly one element, then the returned isl_ast_expr
683 * simply computes that affine expression.
684 * If the list contains more than one element, then we sort it
685 * using a fairly arbitrary but hopefully reasonably stable order.
687 static __isl_give isl_ast_expr
*reduce_list(enum isl_ast_expr_op_type type
,
688 __isl_keep isl_pw_aff_list
*list
, __isl_keep isl_ast_build
*build
)
695 n
= isl_pw_aff_list_n_pw_aff(list
);
700 return isl_ast_build_expr_from_pw_aff_internal(build
,
701 isl_pw_aff_list_get_pw_aff(list
, 0));
703 ctx
= isl_pw_aff_list_get_ctx(list
);
704 expr
= isl_ast_expr_alloc_op(ctx
, type
, n
);
708 list
= isl_pw_aff_list_copy(list
);
709 list
= isl_pw_aff_list_sort(list
, &reduce_list_cmp
, NULL
);
711 return isl_ast_expr_free(expr
);
713 for (i
= 0; i
< n
; ++i
) {
714 isl_ast_expr
*expr_i
;
716 expr_i
= isl_ast_build_expr_from_pw_aff_internal(build
,
717 isl_pw_aff_list_get_pw_aff(list
, i
));
720 expr
->u
.op
.args
[i
] = expr_i
;
723 isl_pw_aff_list_free(list
);
726 isl_pw_aff_list_free(list
);
727 isl_ast_expr_free(expr
);
731 /* Add guards implied by the "generated constraints",
732 * but not (necessarily) enforced by the generated AST to "guard".
733 * In particular, if there is any stride constraints,
734 * then add the guard implied by those constraints.
735 * If we have generated a degenerate loop, then add the guard
736 * implied by "bounds" on the outer dimensions, i.e., the guard
737 * that ensures that the single value actually exists.
738 * Since there may also be guards implied by a combination
739 * of these constraints, we first combine them before
740 * deriving the implied constraints.
742 static __isl_give isl_set
*add_implied_guards(__isl_take isl_set
*guard
,
743 int degenerate
, __isl_keep isl_basic_set
*bounds
,
744 __isl_keep isl_ast_build
*build
)
751 depth
= isl_ast_build_get_depth(build
);
752 has_stride
= isl_ast_build_has_stride(build
, depth
);
753 if (depth
< 0 || has_stride
< 0)
754 return isl_set_free(guard
);
755 if (!has_stride
&& !degenerate
)
758 space
= isl_basic_set_get_space(bounds
);
759 dom
= isl_set_universe(space
);
762 bounds
= isl_basic_set_copy(bounds
);
763 bounds
= isl_basic_set_drop_constraints_not_involving_dims(
764 bounds
, isl_dim_set
, depth
, 1);
765 set
= isl_set_from_basic_set(bounds
);
766 dom
= isl_set_intersect(dom
, set
);
770 set
= isl_ast_build_get_stride_constraint(build
);
771 dom
= isl_set_intersect(dom
, set
);
774 dom
= isl_set_eliminate(dom
, isl_dim_set
, depth
, 1);
775 dom
= isl_ast_build_compute_gist(build
, dom
);
776 guard
= isl_set_intersect(guard
, dom
);
781 /* Update "graft" based on "sub_build" for the degenerate case.
783 * "build" is the build in which graft->node was created
784 * "sub_build" contains information about the current level itself,
785 * including the single value attained.
787 * We set the initialization part of the for loop to the single
788 * value attained by the current dimension.
789 * The increment and condition are not strictly needed as they are known
790 * to be "1" and "iterator <= value" respectively.
792 static __isl_give isl_ast_graft
*refine_degenerate(
793 __isl_take isl_ast_graft
*graft
, __isl_keep isl_ast_build
*build
,
794 __isl_keep isl_ast_build
*sub_build
)
798 if (!graft
|| !sub_build
)
799 return isl_ast_graft_free(graft
);
801 value
= isl_pw_aff_copy(sub_build
->value
);
803 graft
->node
->u
.f
.init
= isl_ast_build_expr_from_pw_aff_internal(build
,
805 if (!graft
->node
->u
.f
.init
)
806 return isl_ast_graft_free(graft
);
811 /* Return the intersection of constraints in "list" as a set.
813 static __isl_give isl_set
*intersect_constraints(
814 __isl_keep isl_constraint_list
*list
)
820 n
= isl_constraint_list_n_constraint(list
);
824 isl_die(isl_constraint_list_get_ctx(list
), isl_error_internal
,
825 "expecting at least one constraint", return NULL
);
827 bset
= isl_basic_set_from_constraint(
828 isl_constraint_list_get_constraint(list
, 0));
829 for (i
= 1; i
< n
; ++i
) {
830 isl_basic_set
*bset_i
;
832 bset_i
= isl_basic_set_from_constraint(
833 isl_constraint_list_get_constraint(list
, i
));
834 bset
= isl_basic_set_intersect(bset
, bset_i
);
837 return isl_set_from_basic_set(bset
);
840 /* Compute the constraints on the outer dimensions enforced by
841 * graft->node and add those constraints to graft->enforced,
842 * in case the upper bound is expressed as a set "upper".
844 * In particular, if l(...) is a lower bound in "lower", and
846 * -a i + f(...) >= 0 or a i <= f(...)
848 * is an upper bound ocnstraint on the current dimension i,
849 * then the for loop enforces the constraint
851 * -a l(...) + f(...) >= 0 or a l(...) <= f(...)
853 * We therefore simply take each lower bound in turn, plug it into
854 * the upper bounds and compute the intersection over all lower bounds.
856 * If a lower bound is a rational expression, then
857 * isl_basic_set_preimage_multi_aff will force this rational
858 * expression to have only integer values. However, the loop
859 * itself does not enforce this integrality constraint. We therefore
860 * use the ceil of the lower bounds instead of the lower bounds themselves.
861 * Other constraints will make sure that the for loop is only executed
862 * when each of the lower bounds attains an integral value.
863 * In particular, potentially rational values only occur in
864 * lower_bound if the offset is a (seemingly) rational expression,
865 * but then outer conditions will make sure that this rational expression
866 * only attains integer values.
868 static __isl_give isl_ast_graft
*set_enforced_from_set(
869 __isl_take isl_ast_graft
*graft
,
870 __isl_keep isl_pw_aff_list
*lower
, int pos
, __isl_keep isl_set
*upper
)
873 isl_basic_set
*enforced
;
874 isl_pw_multi_aff
*pma
;
878 n
= isl_pw_aff_list_n_pw_aff(lower
);
880 return isl_ast_graft_free(graft
);
882 space
= isl_set_get_space(upper
);
883 enforced
= isl_basic_set_universe(isl_space_copy(space
));
885 space
= isl_space_map_from_set(space
);
886 pma
= isl_pw_multi_aff_identity(space
);
888 for (i
= 0; i
< n
; ++i
) {
892 isl_pw_multi_aff
*pma_i
;
894 pa
= isl_pw_aff_list_get_pw_aff(lower
, i
);
895 pa
= isl_pw_aff_ceil(pa
);
896 pma_i
= isl_pw_multi_aff_copy(pma
);
897 pma_i
= isl_pw_multi_aff_set_pw_aff(pma_i
, pos
, pa
);
898 enforced_i
= isl_set_copy(upper
);
899 enforced_i
= isl_set_preimage_pw_multi_aff(enforced_i
, pma_i
);
900 hull
= isl_set_simple_hull(enforced_i
);
901 enforced
= isl_basic_set_intersect(enforced
, hull
);
904 isl_pw_multi_aff_free(pma
);
906 graft
= isl_ast_graft_enforce(graft
, enforced
);
911 /* Compute the constraints on the outer dimensions enforced by
912 * graft->node and add those constraints to graft->enforced,
913 * in case the upper bound is expressed as
914 * a list of affine expressions "upper".
916 * The enforced condition is that each lower bound expression is less
917 * than or equal to each upper bound expression.
919 static __isl_give isl_ast_graft
*set_enforced_from_list(
920 __isl_take isl_ast_graft
*graft
,
921 __isl_keep isl_pw_aff_list
*lower
, __isl_keep isl_pw_aff_list
*upper
)
924 isl_basic_set
*enforced
;
926 lower
= isl_pw_aff_list_copy(lower
);
927 upper
= isl_pw_aff_list_copy(upper
);
928 cond
= isl_pw_aff_list_le_set(lower
, upper
);
929 enforced
= isl_set_simple_hull(cond
);
930 graft
= isl_ast_graft_enforce(graft
, enforced
);
935 /* Does "aff" have a negative constant term?
937 static isl_bool
aff_constant_is_negative(__isl_keep isl_set
*set
,
938 __isl_keep isl_aff
*aff
, void *user
)
943 v
= isl_aff_get_constant_val(aff
);
944 is_neg
= isl_val_is_neg(v
);
950 /* Does "pa" have a negative constant term over its entire domain?
952 static isl_bool
pw_aff_constant_is_negative(__isl_keep isl_pw_aff
*pa
,
955 return isl_pw_aff_every_piece(pa
, &aff_constant_is_negative
, NULL
);
958 /* Does each element in "list" have a negative constant term?
960 static int list_constant_is_negative(__isl_keep isl_pw_aff_list
*list
)
962 return isl_pw_aff_list_every(list
, &pw_aff_constant_is_negative
, NULL
);
965 /* Add 1 to each of the elements in "list", where each of these elements
966 * is defined over the internal schedule space of "build".
968 static __isl_give isl_pw_aff_list
*list_add_one(
969 __isl_take isl_pw_aff_list
*list
, __isl_keep isl_ast_build
*build
)
977 n
= isl_pw_aff_list_n_pw_aff(list
);
979 return isl_pw_aff_list_free(list
);
981 space
= isl_ast_build_get_space(build
, 1);
982 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(space
));
983 aff
= isl_aff_add_constant_si(aff
, 1);
984 one
= isl_pw_aff_from_aff(aff
);
986 for (i
= 0; i
< n
; ++i
) {
988 pa
= isl_pw_aff_list_get_pw_aff(list
, i
);
989 pa
= isl_pw_aff_add(pa
, isl_pw_aff_copy(one
));
990 list
= isl_pw_aff_list_set_pw_aff(list
, i
, pa
);
993 isl_pw_aff_free(one
);
998 /* Set the condition part of the for node graft->node in case
999 * the upper bound is represented as a list of piecewise affine expressions.
1001 * In particular, set the condition to
1003 * iterator <= min(list of upper bounds)
1005 * If each of the upper bounds has a negative constant term, then
1006 * set the condition to
1008 * iterator < min(list of (upper bound + 1)s)
1011 static __isl_give isl_ast_graft
*set_for_cond_from_list(
1012 __isl_take isl_ast_graft
*graft
, __isl_keep isl_pw_aff_list
*list
,
1013 __isl_keep isl_ast_build
*build
)
1016 isl_ast_expr
*bound
, *iterator
, *cond
;
1017 enum isl_ast_expr_op_type type
= isl_ast_expr_op_le
;
1019 if (!graft
|| !list
)
1020 return isl_ast_graft_free(graft
);
1022 neg
= list_constant_is_negative(list
);
1024 return isl_ast_graft_free(graft
);
1025 list
= isl_pw_aff_list_copy(list
);
1027 list
= list_add_one(list
, build
);
1028 type
= isl_ast_expr_op_lt
;
1031 bound
= reduce_list(isl_ast_expr_op_min
, list
, build
);
1032 iterator
= isl_ast_expr_copy(graft
->node
->u
.f
.iterator
);
1033 cond
= isl_ast_expr_alloc_binary(type
, iterator
, bound
);
1034 graft
->node
->u
.f
.cond
= cond
;
1036 isl_pw_aff_list_free(list
);
1037 if (!graft
->node
->u
.f
.cond
)
1038 return isl_ast_graft_free(graft
);
1042 /* Set the condition part of the for node graft->node in case
1043 * the upper bound is represented as a set.
1045 static __isl_give isl_ast_graft
*set_for_cond_from_set(
1046 __isl_take isl_ast_graft
*graft
, __isl_keep isl_set
*set
,
1047 __isl_keep isl_ast_build
*build
)
1054 cond
= isl_ast_build_expr_from_set_internal(build
, isl_set_copy(set
));
1055 graft
->node
->u
.f
.cond
= cond
;
1056 if (!graft
->node
->u
.f
.cond
)
1057 return isl_ast_graft_free(graft
);
1061 /* Construct an isl_ast_expr for the increment (i.e., stride) of
1062 * the current dimension.
1064 static __isl_give isl_ast_expr
*for_inc(__isl_keep isl_ast_build
*build
)
1070 depth
= isl_ast_build_get_depth(build
);
1073 ctx
= isl_ast_build_get_ctx(build
);
1075 if (!isl_ast_build_has_stride(build
, depth
))
1076 return isl_ast_expr_alloc_int_si(ctx
, 1);
1078 v
= isl_ast_build_get_stride(build
, depth
);
1079 return isl_ast_expr_from_val(v
);
1082 /* Should we express the loop condition as
1084 * iterator <= min(list of upper bounds)
1086 * or as a conjunction of constraints?
1088 * The first is constructed from a list of upper bounds.
1089 * The second is constructed from a set.
1091 * If there are no upper bounds in "constraints", then this could mean
1092 * that "domain" simply doesn't have an upper bound or that we didn't
1093 * pick any upper bound. In the first case, we want to generate the
1094 * loop condition as a(n empty) conjunction of constraints
1095 * In the second case, we will compute
1096 * a single upper bound from "domain" and so we use the list form.
1098 * If there are upper bounds in "constraints",
1099 * then we use the list form iff the atomic_upper_bound option is set.
1101 static int use_upper_bound_list(isl_ctx
*ctx
, int n_upper
,
1102 __isl_keep isl_set
*domain
, int depth
)
1105 return isl_options_get_ast_build_atomic_upper_bound(ctx
);
1107 return isl_set_dim_has_upper_bound(domain
, isl_dim_set
, depth
);
1110 /* Fill in the expressions of the for node in graft->node.
1113 * - set the initialization part of the loop to the maximum of the lower bounds
1114 * - extract the increment from the stride of the current dimension
1115 * - construct the for condition either based on a list of upper bounds
1116 * or on a set of upper bound constraints.
1118 static __isl_give isl_ast_graft
*set_for_node_expressions(
1119 __isl_take isl_ast_graft
*graft
, __isl_keep isl_pw_aff_list
*lower
,
1120 int use_list
, __isl_keep isl_pw_aff_list
*upper_list
,
1121 __isl_keep isl_set
*upper_set
, __isl_keep isl_ast_build
*build
)
1128 build
= isl_ast_build_copy(build
);
1131 node
->u
.f
.init
= reduce_list(isl_ast_expr_op_max
, lower
, build
);
1132 node
->u
.f
.inc
= for_inc(build
);
1134 if (!node
->u
.f
.init
|| !node
->u
.f
.inc
)
1135 graft
= isl_ast_graft_free(graft
);
1138 graft
= set_for_cond_from_list(graft
, upper_list
, build
);
1140 graft
= set_for_cond_from_set(graft
, upper_set
, build
);
1142 isl_ast_build_free(build
);
1147 /* Update "graft" based on "bounds" and "domain" for the generic,
1148 * non-degenerate, case.
1150 * "c_lower" and "c_upper" contain the lower and upper bounds
1151 * that the loop node should express.
1152 * "domain" is the subset of the intersection of the constraints
1153 * for which some code is executed.
1155 * There may be zero lower bounds or zero upper bounds in "constraints"
1156 * in case the list of constraints was created
1157 * based on the atomic option or based on separation with explicit bounds.
1158 * In that case, we use "domain" to derive lower and/or upper bounds.
1160 * We first compute a list of one or more lower bounds.
1162 * Then we decide if we want to express the condition as
1164 * iterator <= min(list of upper bounds)
1166 * or as a conjunction of constraints.
1168 * The set of enforced constraints is then computed either based on
1169 * a list of upper bounds or on a set of upper bound constraints.
1170 * We do not compute any enforced constraints if we were forced
1171 * to compute a lower or upper bound using exact_bound. The domains
1172 * of the resulting expressions may imply some bounds on outer dimensions
1173 * that we do not want to appear in the enforced constraints since
1174 * they are not actually enforced by the corresponding code.
1176 * Finally, we fill in the expressions of the for node.
1178 static __isl_give isl_ast_graft
*refine_generic_bounds(
1179 __isl_take isl_ast_graft
*graft
,
1180 __isl_take isl_constraint_list
*c_lower
,
1181 __isl_take isl_constraint_list
*c_upper
,
1182 __isl_keep isl_set
*domain
, __isl_keep isl_ast_build
*build
)
1186 isl_pw_aff_list
*lower
;
1188 isl_set
*upper_set
= NULL
;
1189 isl_pw_aff_list
*upper_list
= NULL
;
1190 isl_size n_lower
, n_upper
;
1192 depth
= isl_ast_build_get_depth(build
);
1193 if (!graft
|| !c_lower
|| !c_upper
|| depth
< 0)
1196 ctx
= isl_ast_graft_get_ctx(graft
);
1198 n_lower
= isl_constraint_list_n_constraint(c_lower
);
1199 n_upper
= isl_constraint_list_n_constraint(c_upper
);
1200 if (n_lower
< 0 || n_upper
< 0)
1203 use_list
= use_upper_bound_list(ctx
, n_upper
, domain
, depth
);
1205 lower
= lower_bounds(c_lower
, depth
, domain
, build
);
1208 upper_list
= upper_bounds(c_upper
, depth
, domain
, build
);
1209 else if (n_upper
> 0)
1210 upper_set
= intersect_constraints(c_upper
);
1212 upper_set
= isl_set_universe(isl_set_get_space(domain
));
1214 if (n_lower
== 0 || n_upper
== 0)
1217 graft
= set_enforced_from_list(graft
, lower
, upper_list
);
1219 graft
= set_enforced_from_set(graft
, lower
, depth
, upper_set
);
1221 graft
= set_for_node_expressions(graft
, lower
, use_list
, upper_list
,
1224 isl_pw_aff_list_free(lower
);
1225 isl_pw_aff_list_free(upper_list
);
1226 isl_set_free(upper_set
);
1227 isl_constraint_list_free(c_lower
);
1228 isl_constraint_list_free(c_upper
);
1232 isl_constraint_list_free(c_lower
);
1233 isl_constraint_list_free(c_upper
);
1234 return isl_ast_graft_free(graft
);
1237 /* Internal data structure used inside count_constraints to keep
1238 * track of the number of constraints that are independent of dimension "pos",
1239 * the lower bounds in "pos" and the upper bounds in "pos".
1241 struct isl_ast_count_constraints_data
{
1249 /* Increment data->n_indep, data->lower or data->upper depending
1250 * on whether "c" is independent of dimensions data->pos,
1251 * a lower bound or an upper bound.
1253 static isl_stat
count_constraints(__isl_take isl_constraint
*c
, void *user
)
1255 struct isl_ast_count_constraints_data
*data
= user
;
1257 if (isl_constraint_is_lower_bound(c
, isl_dim_set
, data
->pos
))
1259 else if (isl_constraint_is_upper_bound(c
, isl_dim_set
, data
->pos
))
1264 isl_constraint_free(c
);
1269 /* Update "graft" based on "bounds" and "domain" for the generic,
1270 * non-degenerate, case.
1272 * "list" respresent the list of bounds that need to be encoded by
1273 * the for loop. Only the constraints that involve the iterator
1274 * are relevant here. The other constraints are taken care of by
1275 * the caller and are included in the generated constraints of "build".
1276 * "domain" is the subset of the intersection of the constraints
1277 * for which some code is executed.
1278 * "build" is the build in which graft->node was created.
1280 * We separate lower bounds, upper bounds and constraints that
1281 * are independent of the loop iterator.
1283 * The actual for loop bounds are generated in refine_generic_bounds.
1285 static __isl_give isl_ast_graft
*refine_generic_split(
1286 __isl_take isl_ast_graft
*graft
, __isl_take isl_constraint_list
*list
,
1287 __isl_keep isl_set
*domain
, __isl_keep isl_ast_build
*build
)
1289 struct isl_ast_count_constraints_data data
;
1291 isl_constraint_list
*lower
;
1292 isl_constraint_list
*upper
;
1294 depth
= isl_ast_build_get_depth(build
);
1296 list
= isl_constraint_list_free(list
);
1298 return isl_ast_graft_free(graft
);
1302 list
= isl_constraint_list_sort(list
, &cmp_constraint
, &data
.pos
);
1304 return isl_ast_graft_free(graft
);
1306 data
.n_indep
= data
.n_lower
= data
.n_upper
= 0;
1307 if (isl_constraint_list_foreach(list
, &count_constraints
, &data
) < 0) {
1308 isl_constraint_list_free(list
);
1309 return isl_ast_graft_free(graft
);
1312 lower
= isl_constraint_list_drop(list
, 0, data
.n_indep
);
1313 upper
= isl_constraint_list_copy(lower
);
1314 lower
= isl_constraint_list_drop(lower
, data
.n_lower
, data
.n_upper
);
1315 upper
= isl_constraint_list_drop(upper
, 0, data
.n_lower
);
1317 return refine_generic_bounds(graft
, lower
, upper
, domain
, build
);
1320 /* Update "graft" based on "bounds" and "domain" for the generic,
1321 * non-degenerate, case.
1323 * "bounds" respresent the bounds that need to be encoded by
1324 * the for loop (or a guard around the for loop).
1325 * "domain" is the subset of "bounds" for which some code is executed.
1326 * "build" is the build in which graft->node was created.
1328 * We break up "bounds" into a list of constraints and continue with
1329 * refine_generic_split.
1331 static __isl_give isl_ast_graft
*refine_generic(
1332 __isl_take isl_ast_graft
*graft
,
1333 __isl_keep isl_basic_set
*bounds
, __isl_keep isl_set
*domain
,
1334 __isl_keep isl_ast_build
*build
)
1336 isl_constraint_list
*list
;
1338 if (!build
|| !graft
)
1339 return isl_ast_graft_free(graft
);
1341 list
= isl_basic_set_get_constraint_list(bounds
);
1343 graft
= refine_generic_split(graft
, list
, domain
, build
);
1348 /* Create a for node for the current level.
1350 * Mark the for node degenerate if "degenerate" is set.
1352 static __isl_give isl_ast_node
*create_for(__isl_keep isl_ast_build
*build
,
1359 depth
= isl_ast_build_get_depth(build
);
1363 id
= isl_ast_build_get_iterator_id(build
, depth
);
1364 node
= isl_ast_node_alloc_for(id
);
1366 node
= isl_ast_node_for_mark_degenerate(node
);
1371 /* If the ast_build_exploit_nested_bounds option is set, then return
1372 * the constraints enforced by all elements in "list".
1373 * Otherwise, return the universe.
1375 static __isl_give isl_basic_set
*extract_shared_enforced(
1376 __isl_keep isl_ast_graft_list
*list
, __isl_keep isl_ast_build
*build
)
1384 ctx
= isl_ast_graft_list_get_ctx(list
);
1385 if (isl_options_get_ast_build_exploit_nested_bounds(ctx
))
1386 return isl_ast_graft_list_extract_shared_enforced(list
, build
);
1388 space
= isl_ast_build_get_space(build
, 1);
1389 return isl_basic_set_universe(space
);
1392 /* Return the pending constraints of "build" that are not already taken
1393 * care of (by a combination of "enforced" and the generated constraints
1396 static __isl_give isl_set
*extract_pending(__isl_keep isl_ast_build
*build
,
1397 __isl_keep isl_basic_set
*enforced
)
1399 isl_set
*guard
, *context
;
1401 guard
= isl_ast_build_get_pending(build
);
1402 context
= isl_set_from_basic_set(isl_basic_set_copy(enforced
));
1403 context
= isl_set_intersect(context
,
1404 isl_ast_build_get_generated(build
));
1405 return isl_set_gist(guard
, context
);
1408 /* Create an AST node for the current dimension based on
1409 * the schedule domain "bounds" and return the node encapsulated
1410 * in an isl_ast_graft.
1412 * "executed" is the current inverse schedule, taking into account
1413 * the bounds in "bounds"
1414 * "domain" is the domain of "executed", with inner dimensions projected out.
1415 * It may be a strict subset of "bounds" in case "bounds" was created
1416 * based on the atomic option or based on separation with explicit bounds.
1418 * "domain" may satisfy additional equalities that result
1419 * from intersecting "executed" with "bounds" in add_node.
1420 * It may also satisfy some global constraints that were dropped out because
1421 * we performed separation with explicit bounds.
1422 * The very first step is then to copy these constraints to "bounds".
1424 * Since we may be calling before_each_for and after_each_for
1425 * callbacks, we record the current inverse schedule in the build.
1427 * We consider three builds,
1428 * "build" is the one in which the current level is created,
1429 * "body_build" is the build in which the next level is created,
1430 * "sub_build" is essentially the same as "body_build", except that
1431 * the depth has not been increased yet.
1433 * "build" already contains information (in strides and offsets)
1434 * about the strides at the current level, but this information is not
1435 * reflected in the build->domain.
1436 * We first add this information and the "bounds" to the sub_build->domain.
1437 * isl_ast_build_set_loop_bounds adds the stride information and
1438 * checks whether the current dimension attains
1439 * only a single value and whether this single value can be represented using
1440 * a single affine expression.
1441 * In the first case, the current level is considered "degenerate".
1442 * In the second, sub-case, the current level is considered "eliminated".
1443 * Eliminated levels don't need to be reflected in the AST since we can
1444 * simply plug in the affine expression. For degenerate, but non-eliminated,
1445 * levels, we do introduce a for node, but mark is as degenerate so that
1446 * it can be printed as an assignment of the single value to the loop
1449 * If the current level is eliminated, we explicitly plug in the value
1450 * for the current level found by isl_ast_build_set_loop_bounds in the
1451 * inverse schedule. This ensures that if we are working on a slice
1452 * of the domain based on information available in the inverse schedule
1453 * and the build domain, that then this information is also reflected
1454 * in the inverse schedule. This operation also eliminates the current
1455 * dimension from the inverse schedule making sure no inner dimensions depend
1456 * on the current dimension. Otherwise, we create a for node, marking
1457 * it degenerate if appropriate. The initial for node is still incomplete
1458 * and will be completed in either refine_degenerate or refine_generic.
1460 * We then generate a sequence of grafts for the next level,
1461 * create a surrounding graft for the current level and insert
1462 * the for node we created (if the current level is not eliminated).
1463 * Before creating a graft for the current level, we first extract
1464 * hoistable constraints from the child guards and combine them
1465 * with the pending constraints in the build. These constraints
1466 * are used to simplify the child guards and then added to the guard
1467 * of the current graft to ensure that they will be generated.
1468 * If the hoisted guard is a disjunction, then we use it directly
1469 * to gist the guards on the children before intersect it with the
1470 * pending constraints. We do so because this disjunction is typically
1471 * identical to the guards on the children such that these guards
1472 * can be effectively removed completely. After the intersection,
1473 * the gist operation would have a harder time figuring this out.
1475 * Finally, we set the bounds of the for loop in either
1476 * refine_degenerate or refine_generic.
1477 * We do so in a context where the pending constraints of the build
1478 * have been replaced by the guard of the current graft.
1480 static __isl_give isl_ast_graft
*create_node_scaled(
1481 __isl_take isl_union_map
*executed
,
1482 __isl_take isl_basic_set
*bounds
, __isl_take isl_set
*domain
,
1483 __isl_take isl_ast_build
*build
)
1487 isl_bool eliminated
;
1489 isl_basic_set
*hull
;
1490 isl_basic_set
*enforced
;
1491 isl_set
*guard
, *hoisted
;
1492 isl_ast_node
*node
= NULL
;
1493 isl_ast_graft
*graft
;
1494 isl_ast_graft_list
*children
;
1495 isl_ast_build
*sub_build
;
1496 isl_ast_build
*body_build
;
1498 domain
= isl_ast_build_eliminate_divs(build
, domain
);
1499 domain
= isl_set_detect_equalities(domain
);
1500 hull
= isl_set_unshifted_simple_hull(isl_set_copy(domain
));
1501 bounds
= isl_basic_set_intersect(bounds
, hull
);
1502 build
= isl_ast_build_set_executed(build
, isl_union_map_copy(executed
));
1504 depth
= isl_ast_build_get_depth(build
);
1506 build
= isl_ast_build_free(build
);
1507 sub_build
= isl_ast_build_copy(build
);
1508 bounds
= isl_basic_set_remove_redundancies(bounds
);
1509 bounds
= isl_ast_build_specialize_basic_set(sub_build
, bounds
);
1510 sub_build
= isl_ast_build_set_loop_bounds(sub_build
,
1511 isl_basic_set_copy(bounds
));
1512 degenerate
= isl_ast_build_has_value(sub_build
);
1513 eliminated
= isl_ast_build_has_affine_value(sub_build
, depth
);
1514 if (degenerate
< 0 || eliminated
< 0)
1515 executed
= isl_union_map_free(executed
);
1517 bounds
= isl_ast_build_compute_gist_basic_set(build
, bounds
);
1518 sub_build
= isl_ast_build_set_pending_generated(sub_build
,
1519 isl_basic_set_copy(bounds
));
1521 executed
= plug_in_values(executed
, sub_build
);
1523 node
= create_for(build
, degenerate
);
1525 body_build
= isl_ast_build_copy(sub_build
);
1526 body_build
= isl_ast_build_increase_depth(body_build
);
1528 node
= before_each_for(node
, body_build
);
1529 children
= generate_next_level(executed
,
1530 isl_ast_build_copy(body_build
));
1532 enforced
= extract_shared_enforced(children
, build
);
1533 guard
= extract_pending(sub_build
, enforced
);
1534 hoisted
= isl_ast_graft_list_extract_hoistable_guard(children
, build
);
1535 n
= isl_set_n_basic_set(hoisted
);
1537 children
= isl_ast_graft_list_free(children
);
1539 children
= isl_ast_graft_list_gist_guards(children
,
1540 isl_set_copy(hoisted
));
1541 guard
= isl_set_intersect(guard
, hoisted
);
1543 guard
= add_implied_guards(guard
, degenerate
, bounds
, build
);
1545 graft
= isl_ast_graft_alloc_from_children(children
,
1546 isl_set_copy(guard
), enforced
, build
, sub_build
);
1549 isl_ast_build
*for_build
;
1551 graft
= isl_ast_graft_insert_for(graft
, node
);
1552 for_build
= isl_ast_build_copy(build
);
1553 for_build
= isl_ast_build_replace_pending_by_guard(for_build
,
1554 isl_set_copy(guard
));
1556 graft
= refine_degenerate(graft
, for_build
, sub_build
);
1558 graft
= refine_generic(graft
, bounds
,
1560 isl_ast_build_free(for_build
);
1562 isl_set_free(guard
);
1564 graft
= after_each_for(graft
, body_build
);
1566 isl_ast_build_free(body_build
);
1567 isl_ast_build_free(sub_build
);
1568 isl_ast_build_free(build
);
1569 isl_basic_set_free(bounds
);
1570 isl_set_free(domain
);
1575 /* Internal data structure for checking if all constraints involving
1576 * the input dimension "depth" are such that the other coefficients
1577 * are multiples of "m", reducing "m" if they are not.
1578 * If "m" is reduced all the way down to "1", then the check has failed
1579 * and we break out of the iteration.
1581 struct isl_check_scaled_data
{
1586 /* If constraint "c" involves the input dimension data->depth,
1587 * then make sure that all the other coefficients are multiples of data->m,
1588 * reducing data->m if needed.
1589 * Break out of the iteration if data->m has become equal to "1".
1591 static isl_stat
constraint_check_scaled(__isl_take isl_constraint
*c
,
1594 struct isl_check_scaled_data
*data
= user
;
1597 enum isl_dim_type t
[] = { isl_dim_param
, isl_dim_in
, isl_dim_out
,
1600 if (!isl_constraint_involves_dims(c
, isl_dim_in
, data
->depth
, 1)) {
1601 isl_constraint_free(c
);
1605 for (i
= 0; i
< 4; ++i
) {
1606 n
= isl_constraint_dim(c
, t
[i
]);
1609 for (j
= 0; j
< n
; ++j
) {
1612 if (t
[i
] == isl_dim_in
&& j
== data
->depth
)
1614 if (!isl_constraint_involves_dims(c
, t
[i
], j
, 1))
1616 d
= isl_constraint_get_coefficient_val(c
, t
[i
], j
);
1617 data
->m
= isl_val_gcd(data
->m
, d
);
1618 if (isl_val_is_one(data
->m
))
1625 isl_constraint_free(c
);
1627 return i
< 4 ? isl_stat_error
: isl_stat_ok
;
1630 /* For each constraint of "bmap" that involves the input dimension data->depth,
1631 * make sure that all the other coefficients are multiples of data->m,
1632 * reducing data->m if needed.
1633 * Break out of the iteration if data->m has become equal to "1".
1635 static isl_stat
basic_map_check_scaled(__isl_take isl_basic_map
*bmap
,
1640 r
= isl_basic_map_foreach_constraint(bmap
,
1641 &constraint_check_scaled
, user
);
1642 isl_basic_map_free(bmap
);
1647 /* For each constraint of "map" that involves the input dimension data->depth,
1648 * make sure that all the other coefficients are multiples of data->m,
1649 * reducing data->m if needed.
1650 * Break out of the iteration if data->m has become equal to "1".
1652 static isl_stat
map_check_scaled(__isl_take isl_map
*map
, void *user
)
1656 r
= isl_map_foreach_basic_map(map
, &basic_map_check_scaled
, user
);
1662 /* Create an AST node for the current dimension based on
1663 * the schedule domain "bounds" and return the node encapsulated
1664 * in an isl_ast_graft.
1666 * "executed" is the current inverse schedule, taking into account
1667 * the bounds in "bounds"
1668 * "domain" is the domain of "executed", with inner dimensions projected out.
1671 * Before moving on to the actual AST node construction in create_node_scaled,
1672 * we first check if the current dimension is strided and if we can scale
1673 * down this stride. Note that we only do this if the ast_build_scale_strides
1676 * In particular, let the current dimension take on values
1680 * with a an integer. We check if we can find an integer m that (obviously)
1681 * divides both f and s.
1683 * If so, we check if the current dimension only appears in constraints
1684 * where the coefficients of the other variables are multiples of m.
1685 * We perform this extra check to avoid the risk of introducing
1686 * divisions by scaling down the current dimension.
1688 * If so, we scale the current dimension down by a factor of m.
1689 * That is, we plug in
1693 * Note that in principle we could always scale down strided loops
1698 * but this may result in i' taking on larger values than the original i,
1699 * due to the shift by "f".
1700 * By constrast, the scaling in (1) can only reduce the (absolute) value "i".
1702 static __isl_give isl_ast_graft
*create_node(__isl_take isl_union_map
*executed
,
1703 __isl_take isl_basic_set
*bounds
, __isl_take isl_set
*domain
,
1704 __isl_take isl_ast_build
*build
)
1706 struct isl_check_scaled_data data
;
1712 ctx
= isl_ast_build_get_ctx(build
);
1713 if (!isl_options_get_ast_build_scale_strides(ctx
))
1714 return create_node_scaled(executed
, bounds
, domain
, build
);
1716 depth
= isl_ast_build_get_depth(build
);
1718 build
= isl_ast_build_free(build
);
1720 if (!isl_ast_build_has_stride(build
, data
.depth
))
1721 return create_node_scaled(executed
, bounds
, domain
, build
);
1723 offset
= isl_ast_build_get_offset(build
, data
.depth
);
1724 data
.m
= isl_ast_build_get_stride(build
, data
.depth
);
1726 offset
= isl_aff_free(offset
);
1727 offset
= isl_aff_scale_down_val(offset
, isl_val_copy(data
.m
));
1728 d
= isl_aff_get_denominator_val(offset
);
1730 executed
= isl_union_map_free(executed
);
1732 if (executed
&& isl_val_is_divisible_by(data
.m
, d
))
1733 data
.m
= isl_val_div(data
.m
, d
);
1735 data
.m
= isl_val_set_si(data
.m
, 1);
1739 if (!isl_val_is_one(data
.m
)) {
1740 if (isl_union_map_foreach_map(executed
, &map_check_scaled
,
1742 !isl_val_is_one(data
.m
))
1743 executed
= isl_union_map_free(executed
);
1746 if (!isl_val_is_one(data
.m
)) {
1751 isl_union_map
*umap
;
1753 space
= isl_ast_build_get_space(build
, 1);
1754 space
= isl_space_map_from_set(space
);
1755 ma
= isl_multi_aff_identity(space
);
1756 aff
= isl_multi_aff_get_aff(ma
, data
.depth
);
1757 aff
= isl_aff_scale_val(aff
, isl_val_copy(data
.m
));
1758 ma
= isl_multi_aff_set_aff(ma
, data
.depth
, aff
);
1760 bounds
= isl_basic_set_preimage_multi_aff(bounds
,
1761 isl_multi_aff_copy(ma
));
1762 domain
= isl_set_preimage_multi_aff(domain
,
1763 isl_multi_aff_copy(ma
));
1764 map
= isl_map_reverse(isl_map_from_multi_aff(ma
));
1765 umap
= isl_union_map_from_map(map
);
1766 executed
= isl_union_map_apply_domain(executed
,
1767 isl_union_map_copy(umap
));
1768 build
= isl_ast_build_scale_down(build
, isl_val_copy(data
.m
),
1771 isl_aff_free(offset
);
1772 isl_val_free(data
.m
);
1774 return create_node_scaled(executed
, bounds
, domain
, build
);
1777 /* Add the basic set to the list that "user" points to.
1779 static isl_stat
collect_basic_set(__isl_take isl_basic_set
*bset
, void *user
)
1781 isl_basic_set_list
**list
= user
;
1783 *list
= isl_basic_set_list_add(*list
, bset
);
1788 /* Extract the basic sets of "set" and collect them in an isl_basic_set_list.
1790 static __isl_give isl_basic_set_list
*isl_basic_set_list_from_set(
1791 __isl_take isl_set
*set
)
1795 isl_basic_set_list
*list
;
1797 n
= isl_set_n_basic_set(set
);
1799 set
= isl_set_free(set
);
1803 ctx
= isl_set_get_ctx(set
);
1805 list
= isl_basic_set_list_alloc(ctx
, n
);
1806 if (isl_set_foreach_basic_set(set
, &collect_basic_set
, &list
) < 0)
1807 list
= isl_basic_set_list_free(list
);
1813 /* Generate code for the schedule domain "bounds"
1814 * and add the result to "list".
1816 * We mainly detect strides here and check if the bounds do not
1817 * conflict with the current build domain
1818 * and then pass over control to create_node.
1820 * "bounds" reflects the bounds on the current dimension and possibly
1821 * some extra conditions on outer dimensions.
1822 * It does not, however, include any divs involving the current dimension,
1823 * so it does not capture any stride constraints.
1824 * We therefore need to compute that part of the schedule domain that
1825 * intersects with "bounds" and derive the strides from the result.
1827 static __isl_give isl_ast_graft_list
*add_node(
1828 __isl_take isl_ast_graft_list
*list
, __isl_take isl_union_map
*executed
,
1829 __isl_take isl_basic_set
*bounds
, __isl_take isl_ast_build
*build
)
1831 isl_ast_graft
*graft
;
1832 isl_set
*domain
= NULL
;
1833 isl_union_set
*uset
;
1834 int empty
, disjoint
;
1836 uset
= isl_union_set_from_basic_set(isl_basic_set_copy(bounds
));
1837 executed
= isl_union_map_intersect_domain(executed
, uset
);
1838 empty
= isl_union_map_is_empty(executed
);
1844 uset
= isl_union_map_domain(isl_union_map_copy(executed
));
1845 domain
= isl_set_from_union_set(uset
);
1846 domain
= isl_ast_build_specialize(build
, domain
);
1848 domain
= isl_set_compute_divs(domain
);
1849 domain
= isl_ast_build_eliminate_inner(build
, domain
);
1850 disjoint
= isl_set_is_disjoint(domain
, build
->domain
);
1856 build
= isl_ast_build_detect_strides(build
, isl_set_copy(domain
));
1858 graft
= create_node(executed
, bounds
, domain
,
1859 isl_ast_build_copy(build
));
1860 list
= isl_ast_graft_list_add(list
, graft
);
1861 isl_ast_build_free(build
);
1864 list
= isl_ast_graft_list_free(list
);
1866 isl_set_free(domain
);
1867 isl_basic_set_free(bounds
);
1868 isl_union_map_free(executed
);
1869 isl_ast_build_free(build
);
1873 /* Does any element of i follow or coincide with any element of j
1874 * at the current depth for equal values of the outer dimensions?
1876 static isl_bool
domain_follows_at_depth(__isl_keep isl_basic_set
*i
,
1877 __isl_keep isl_basic_set
*j
, void *user
)
1879 int depth
= *(int *) user
;
1880 isl_basic_map
*test
;
1884 test
= isl_basic_map_from_domain_and_range(isl_basic_set_copy(i
),
1885 isl_basic_set_copy(j
));
1886 for (l
= 0; l
< depth
; ++l
)
1887 test
= isl_basic_map_equate(test
, isl_dim_in
, l
,
1889 test
= isl_basic_map_order_ge(test
, isl_dim_in
, depth
,
1890 isl_dim_out
, depth
);
1891 empty
= isl_basic_map_is_empty(test
);
1892 isl_basic_map_free(test
);
1894 return isl_bool_not(empty
);
1897 /* Split up each element of "list" into a part that is related to "bset"
1898 * according to "gt" and a part that is not.
1899 * Return a list that consist of "bset" and all the pieces.
1901 static __isl_give isl_basic_set_list
*add_split_on(
1902 __isl_take isl_basic_set_list
*list
, __isl_take isl_basic_set
*bset
,
1903 __isl_keep isl_basic_map
*gt
)
1907 isl_basic_set_list
*res
;
1909 n
= isl_basic_set_list_n_basic_set(list
);
1911 bset
= isl_basic_set_free(bset
);
1913 gt
= isl_basic_map_copy(gt
);
1914 gt
= isl_basic_map_intersect_domain(gt
, isl_basic_set_copy(bset
));
1915 res
= isl_basic_set_list_from_basic_set(bset
);
1916 for (i
= 0; res
&& i
< n
; ++i
) {
1917 isl_basic_set
*bset
;
1918 isl_set
*set1
, *set2
;
1919 isl_basic_map
*bmap
;
1922 bset
= isl_basic_set_list_get_basic_set(list
, i
);
1923 bmap
= isl_basic_map_copy(gt
);
1924 bmap
= isl_basic_map_intersect_range(bmap
, bset
);
1925 bset
= isl_basic_map_range(bmap
);
1926 empty
= isl_basic_set_is_empty(bset
);
1928 res
= isl_basic_set_list_free(res
);
1930 isl_basic_set_free(bset
);
1931 bset
= isl_basic_set_list_get_basic_set(list
, i
);
1932 res
= isl_basic_set_list_add(res
, bset
);
1936 res
= isl_basic_set_list_add(res
, isl_basic_set_copy(bset
));
1937 set1
= isl_set_from_basic_set(bset
);
1938 bset
= isl_basic_set_list_get_basic_set(list
, i
);
1939 set2
= isl_set_from_basic_set(bset
);
1940 set1
= isl_set_subtract(set2
, set1
);
1941 set1
= isl_set_make_disjoint(set1
);
1943 res
= isl_basic_set_list_concat(res
,
1944 isl_basic_set_list_from_set(set1
));
1946 isl_basic_map_free(gt
);
1947 isl_basic_set_list_free(list
);
1951 static __isl_give isl_ast_graft_list
*generate_sorted_domains(
1952 __isl_keep isl_basic_set_list
*domain_list
,
1953 __isl_keep isl_union_map
*executed
,
1954 __isl_keep isl_ast_build
*build
);
1956 /* Internal data structure for add_nodes.
1958 * "executed" and "build" are extra arguments to be passed to add_node.
1959 * "list" collects the results.
1961 struct isl_add_nodes_data
{
1962 isl_union_map
*executed
;
1963 isl_ast_build
*build
;
1965 isl_ast_graft_list
*list
;
1968 /* Generate code for the schedule domains in "scc"
1969 * and add the results to "list".
1971 * The domains in "scc" form a strongly connected component in the ordering.
1972 * If the number of domains in "scc" is larger than 1, then this means
1973 * that we cannot determine a valid ordering for the domains in the component.
1974 * This should be fairly rare because the individual domains
1975 * have been made disjoint first.
1976 * The problem is that the domains may be integrally disjoint but not
1977 * rationally disjoint. For example, we may have domains
1979 * { [i,i] : 0 <= i <= 1 } and { [i,1-i] : 0 <= i <= 1 }
1981 * These two domains have an empty intersection, but their rational
1982 * relaxations do intersect. It is impossible to order these domains
1983 * in the second dimension because the first should be ordered before
1984 * the second for outer dimension equal to 0, while it should be ordered
1985 * after for outer dimension equal to 1.
1987 * This may happen in particular in case of unrolling since the domain
1988 * of each slice is replaced by its simple hull.
1990 * For each basic set i in "scc" and for each of the following basic sets j,
1991 * we split off that part of the basic set i that shares the outer dimensions
1992 * with j and lies before j in the current dimension.
1993 * We collect all the pieces in a new list that replaces "scc".
1995 * While the elements in "scc" should be disjoint, we double-check
1996 * this property to avoid running into an infinite recursion in case
1997 * they intersect due to some internal error.
1999 static isl_stat
add_nodes(__isl_take isl_basic_set_list
*scc
, void *user
)
2001 struct isl_add_nodes_data
*data
= user
;
2005 isl_basic_set
*bset
, *first
;
2006 isl_basic_set_list
*list
;
2010 n
= isl_basic_set_list_n_basic_set(scc
);
2013 bset
= isl_basic_set_list_get_basic_set(scc
, 0);
2015 isl_basic_set_list_free(scc
);
2016 data
->list
= add_node(data
->list
,
2017 isl_union_map_copy(data
->executed
), bset
,
2018 isl_ast_build_copy(data
->build
));
2019 return data
->list
? isl_stat_ok
: isl_stat_error
;
2022 depth
= isl_ast_build_get_depth(data
->build
);
2024 bset
= isl_basic_set_free(bset
);
2025 space
= isl_basic_set_get_space(bset
);
2026 space
= isl_space_map_from_set(space
);
2027 gt
= isl_basic_map_universe(space
);
2028 for (i
= 0; i
< depth
; ++i
)
2029 gt
= isl_basic_map_equate(gt
, isl_dim_in
, i
, isl_dim_out
, i
);
2030 gt
= isl_basic_map_order_gt(gt
, isl_dim_in
, depth
, isl_dim_out
, depth
);
2032 first
= isl_basic_set_copy(bset
);
2033 list
= isl_basic_set_list_from_basic_set(bset
);
2034 for (i
= 1; i
< n
; ++i
) {
2037 bset
= isl_basic_set_list_get_basic_set(scc
, i
);
2039 disjoint
= isl_basic_set_is_disjoint(bset
, first
);
2041 list
= isl_basic_set_list_free(list
);
2043 isl_die(isl_basic_set_list_get_ctx(scc
),
2045 "basic sets in scc are assumed to be disjoint",
2046 list
= isl_basic_set_list_free(list
));
2048 list
= add_split_on(list
, bset
, gt
);
2050 isl_basic_set_free(first
);
2051 isl_basic_map_free(gt
);
2052 isl_basic_set_list_free(scc
);
2054 data
->list
= isl_ast_graft_list_concat(data
->list
,
2055 generate_sorted_domains(scc
, data
->executed
, data
->build
));
2056 isl_basic_set_list_free(scc
);
2058 return data
->list
? isl_stat_ok
: isl_stat_error
;
2060 isl_basic_set_list_free(scc
);
2061 return isl_stat_error
;
2064 /* Sort the domains in "domain_list" according to the execution order
2065 * at the current depth (for equal values of the outer dimensions),
2066 * generate code for each of them, collecting the results in a list.
2067 * If no code is generated (because the intersection of the inverse schedule
2068 * with the domains turns out to be empty), then an empty list is returned.
2070 * The caller is responsible for ensuring that the basic sets in "domain_list"
2071 * are pair-wise disjoint. It can, however, in principle happen that
2072 * two basic sets should be ordered one way for one value of the outer
2073 * dimensions and the other way for some other value of the outer dimensions.
2074 * We therefore play safe and look for strongly connected components.
2075 * The function add_nodes takes care of handling non-trivial components.
2077 static __isl_give isl_ast_graft_list
*generate_sorted_domains(
2078 __isl_keep isl_basic_set_list
*domain_list
,
2079 __isl_keep isl_union_map
*executed
, __isl_keep isl_ast_build
*build
)
2082 struct isl_add_nodes_data data
;
2086 n
= isl_basic_set_list_n_basic_set(domain_list
);
2090 ctx
= isl_basic_set_list_get_ctx(domain_list
);
2091 data
.list
= isl_ast_graft_list_alloc(ctx
, n
);
2095 return add_node(data
.list
, isl_union_map_copy(executed
),
2096 isl_basic_set_list_get_basic_set(domain_list
, 0),
2097 isl_ast_build_copy(build
));
2099 depth
= isl_ast_build_get_depth(build
);
2100 data
.executed
= executed
;
2102 if (depth
< 0 || isl_basic_set_list_foreach_scc(domain_list
,
2103 &domain_follows_at_depth
, &depth
,
2104 &add_nodes
, &data
) < 0)
2105 data
.list
= isl_ast_graft_list_free(data
.list
);
2110 /* Do i and j share any values for the outer dimensions?
2112 static isl_bool
shared_outer(__isl_keep isl_basic_set
*i
,
2113 __isl_keep isl_basic_set
*j
, void *user
)
2115 int depth
= *(int *) user
;
2116 isl_basic_map
*test
;
2120 test
= isl_basic_map_from_domain_and_range(isl_basic_set_copy(i
),
2121 isl_basic_set_copy(j
));
2122 for (l
= 0; l
< depth
; ++l
)
2123 test
= isl_basic_map_equate(test
, isl_dim_in
, l
,
2125 empty
= isl_basic_map_is_empty(test
);
2126 isl_basic_map_free(test
);
2128 return isl_bool_not(empty
);
2131 /* Internal data structure for generate_sorted_domains_wrap.
2133 * "n" is the total number of basic sets
2134 * "executed" and "build" are extra arguments to be passed
2135 * to generate_sorted_domains.
2137 * "single" is set to 1 by generate_sorted_domains_wrap if there
2138 * is only a single component.
2139 * "list" collects the results.
2141 struct isl_ast_generate_parallel_domains_data
{
2143 isl_union_map
*executed
;
2144 isl_ast_build
*build
;
2147 isl_ast_graft_list
*list
;
2150 /* Call generate_sorted_domains on "scc", fuse the result into a list
2151 * with either zero or one graft and collect the these single element
2152 * lists into data->list.
2154 * If there is only one component, i.e., if the number of basic sets
2155 * in the current component is equal to the total number of basic sets,
2156 * then data->single is set to 1 and the result of generate_sorted_domains
2159 static isl_stat
generate_sorted_domains_wrap(__isl_take isl_basic_set_list
*scc
,
2162 struct isl_ast_generate_parallel_domains_data
*data
= user
;
2163 isl_ast_graft_list
*list
;
2166 n
= isl_basic_set_list_n_basic_set(scc
);
2168 scc
= isl_basic_set_list_free(scc
);
2169 list
= generate_sorted_domains(scc
, data
->executed
, data
->build
);
2170 data
->single
= n
== data
->n
;
2172 list
= isl_ast_graft_list_fuse(list
, data
->build
);
2176 data
->list
= isl_ast_graft_list_concat(data
->list
, list
);
2178 isl_basic_set_list_free(scc
);
2180 return isl_stat_error
;
2185 /* Look for any (weakly connected) components in the "domain_list"
2186 * of domains that share some values of the outer dimensions.
2187 * That is, domains in different components do not share any values
2188 * of the outer dimensions. This means that these components
2189 * can be freely reordered.
2190 * Within each of the components, we sort the domains according
2191 * to the execution order at the current depth.
2193 * If there is more than one component, then generate_sorted_domains_wrap
2194 * fuses the result of each call to generate_sorted_domains
2195 * into a list with either zero or one graft and collects these (at most)
2196 * single element lists into a bigger list. This means that the elements of the
2197 * final list can be freely reordered. In particular, we sort them
2198 * according to an arbitrary but fixed ordering to ease merging of
2199 * graft lists from different components.
2201 static __isl_give isl_ast_graft_list
*generate_parallel_domains(
2202 __isl_keep isl_basic_set_list
*domain_list
,
2203 __isl_keep isl_union_map
*executed
, __isl_keep isl_ast_build
*build
)
2206 struct isl_ast_generate_parallel_domains_data data
;
2208 data
.n
= isl_basic_set_list_n_basic_set(domain_list
);
2213 return generate_sorted_domains(domain_list
, executed
, build
);
2215 depth
= isl_ast_build_get_depth(build
);
2219 data
.executed
= executed
;
2222 if (isl_basic_set_list_foreach_scc(domain_list
, &shared_outer
, &depth
,
2223 &generate_sorted_domains_wrap
,
2225 data
.list
= isl_ast_graft_list_free(data
.list
);
2228 data
.list
= isl_ast_graft_list_sort_guard(data
.list
);
2233 /* Internal data for separate_domain.
2235 * "explicit" is set if we only want to use explicit bounds.
2237 * "domain" collects the separated domains.
2239 struct isl_separate_domain_data
{
2240 isl_ast_build
*build
;
2245 /* Extract implicit bounds on the current dimension for the executed "map".
2247 * The domain of "map" may involve inner dimensions, so we
2248 * need to eliminate them.
2250 static __isl_give isl_set
*implicit_bounds(__isl_take isl_map
*map
,
2251 __isl_keep isl_ast_build
*build
)
2255 domain
= isl_map_domain(map
);
2256 domain
= isl_ast_build_eliminate(build
, domain
);
2261 /* Extract explicit bounds on the current dimension for the executed "map".
2263 * Rather than eliminating the inner dimensions as in implicit_bounds,
2264 * we simply drop any constraints involving those inner dimensions.
2265 * The idea is that most bounds that are implied by constraints on the
2266 * inner dimensions will be enforced by for loops and not by explicit guards.
2267 * There is then no need to separate along those bounds.
2269 static __isl_give isl_set
*explicit_bounds(__isl_take isl_map
*map
,
2270 __isl_keep isl_ast_build
*build
)
2276 depth
= isl_ast_build_get_depth(build
);
2277 dim
= isl_map_dim(map
, isl_dim_out
);
2278 if (depth
< 0 || dim
< 0)
2279 return isl_map_domain(isl_map_free(map
));
2280 map
= isl_map_drop_constraints_involving_dims(map
, isl_dim_out
, 0, dim
);
2282 domain
= isl_map_domain(map
);
2283 dim
= isl_set_dim(domain
, isl_dim_set
);
2284 domain
= isl_set_detect_equalities(domain
);
2285 domain
= isl_set_drop_constraints_involving_dims(domain
,
2286 isl_dim_set
, depth
+ 1, dim
- (depth
+ 1));
2287 domain
= isl_set_remove_divs_involving_dims(domain
,
2288 isl_dim_set
, depth
, 1);
2289 domain
= isl_set_remove_unknown_divs(domain
);
2294 /* Split data->domain into pieces that intersect with the range of "map"
2295 * and pieces that do not intersect with the range of "map"
2296 * and then add that part of the range of "map" that does not intersect
2297 * with data->domain.
2299 static isl_stat
separate_domain(__isl_take isl_map
*map
, void *user
)
2301 struct isl_separate_domain_data
*data
= user
;
2306 domain
= explicit_bounds(map
, data
->build
);
2308 domain
= implicit_bounds(map
, data
->build
);
2310 domain
= isl_set_coalesce(domain
);
2311 domain
= isl_set_make_disjoint(domain
);
2312 d1
= isl_set_subtract(isl_set_copy(domain
), isl_set_copy(data
->domain
));
2313 d2
= isl_set_subtract(isl_set_copy(data
->domain
), isl_set_copy(domain
));
2314 data
->domain
= isl_set_intersect(data
->domain
, domain
);
2315 data
->domain
= isl_set_union(data
->domain
, d1
);
2316 data
->domain
= isl_set_union(data
->domain
, d2
);
2321 /* Separate the schedule domains of "executed".
2323 * That is, break up the domain of "executed" into basic sets,
2324 * such that for each basic set S, every element in S is associated with
2325 * the same domain spaces.
2327 * "space" is the (single) domain space of "executed".
2329 static __isl_give isl_set
*separate_schedule_domains(
2330 __isl_take isl_space
*space
, __isl_take isl_union_map
*executed
,
2331 __isl_keep isl_ast_build
*build
)
2333 struct isl_separate_domain_data data
= { build
};
2336 ctx
= isl_ast_build_get_ctx(build
);
2337 data
.explicit = isl_options_get_ast_build_separation_bounds(ctx
) ==
2338 ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT
;
2339 data
.domain
= isl_set_empty(space
);
2340 if (isl_union_map_foreach_map(executed
, &separate_domain
, &data
) < 0)
2341 data
.domain
= isl_set_free(data
.domain
);
2343 isl_union_map_free(executed
);
2347 /* Temporary data used during the search for a lower bound for unrolling.
2349 * "build" is the build in which the unrolling will be performed
2350 * "domain" is the original set for which to find a lower bound
2351 * "depth" is the dimension for which to find a lower boudn
2352 * "expansion" is the expansion that needs to be applied to "domain"
2353 * in the unrolling that will be performed
2355 * "lower" is the best lower bound found so far. It is NULL if we have not
2357 * "n" is the corresponding size. If lower is NULL, then the value of n
2359 * "n_div" is the maximal number of integer divisions in the first
2360 * unrolled iteration (after expansion). It is set to -1 if it hasn't
2361 * been computed yet.
2363 struct isl_find_unroll_data
{
2364 isl_ast_build
*build
;
2367 isl_basic_map
*expansion
;
2374 /* Return the constraint
2376 * i_"depth" = aff + offset
2378 static __isl_give isl_constraint
*at_offset(int depth
, __isl_keep isl_aff
*aff
,
2381 aff
= isl_aff_copy(aff
);
2382 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, depth
, -1);
2383 aff
= isl_aff_add_constant_si(aff
, offset
);
2384 return isl_equality_from_aff(aff
);
2387 /* Update *user to the number of integer divisions in the first element
2388 * of "ma", if it is larger than the current value.
2390 static isl_stat
update_n_div(__isl_take isl_set
*set
,
2391 __isl_take isl_multi_aff
*ma
, void *user
)
2397 aff
= isl_multi_aff_get_aff(ma
, 0);
2398 n_div
= isl_aff_dim(aff
, isl_dim_div
);
2400 isl_multi_aff_free(ma
);
2406 return n_div
>= 0 ? isl_stat_ok
: isl_stat_error
;
2409 /* Get the number of integer divisions in the expression for the iterator
2410 * value at the first slice in the unrolling based on lower bound "lower",
2411 * taking into account the expansion that needs to be performed on this slice.
2413 static int get_expanded_n_div(struct isl_find_unroll_data
*data
,
2414 __isl_keep isl_aff
*lower
)
2418 isl_map
*it_map
, *expansion
;
2419 isl_pw_multi_aff
*pma
;
2422 c
= at_offset(data
->depth
, lower
, 0);
2423 set
= isl_set_copy(data
->domain
);
2424 set
= isl_set_add_constraint(set
, c
);
2425 expansion
= isl_map_from_basic_map(isl_basic_map_copy(data
->expansion
));
2426 set
= isl_set_apply(set
, expansion
);
2427 it_map
= isl_ast_build_map_to_iterator(data
->build
, set
);
2428 pma
= isl_pw_multi_aff_from_map(it_map
);
2430 if (isl_pw_multi_aff_foreach_piece(pma
, &update_n_div
, &n
) < 0)
2432 isl_pw_multi_aff_free(pma
);
2437 /* Is the lower bound "lower" with corresponding iteration count "n"
2438 * better than the one stored in "data"?
2439 * If there is no upper bound on the iteration count ("n" is infinity) or
2440 * if the count is too large, then we cannot use this lower bound.
2441 * Otherwise, if there was no previous lower bound or
2442 * if the iteration count of the new lower bound is smaller than
2443 * the iteration count of the previous lower bound, then we consider
2444 * the new lower bound to be better.
2445 * If the iteration count is the same, then compare the number
2446 * of integer divisions that would be needed to express
2447 * the iterator value at the first slice in the unrolling
2448 * according to the lower bound. If we end up computing this
2449 * number, then store the lowest value in data->n_div.
2451 static int is_better_lower_bound(struct isl_find_unroll_data
*data
,
2452 __isl_keep isl_aff
*lower
, __isl_keep isl_val
*n
)
2459 if (isl_val_is_infty(n
))
2461 if (isl_val_cmp_si(n
, INT_MAX
) > 0)
2465 cmp
= isl_val_cmp_si(n
, *data
->n
);
2470 if (data
->n_div
< 0)
2471 data
->n_div
= get_expanded_n_div(data
, data
->lower
);
2472 if (data
->n_div
< 0)
2474 if (data
->n_div
== 0)
2476 n_div
= get_expanded_n_div(data
, lower
);
2479 if (n_div
>= data
->n_div
)
2481 data
->n_div
= n_div
;
2486 /* Check if we can use "c" as a lower bound and if it is better than
2487 * any previously found lower bound.
2489 * If "c" does not involve the dimension at the current depth,
2490 * then we cannot use it.
2491 * Otherwise, let "c" be of the form
2495 * We compute the maximal value of
2497 * -ceil(f(j)/a)) + i + 1
2499 * over the domain. If there is such a value "n", then we know
2501 * -ceil(f(j)/a)) + i + 1 <= n
2505 * i < ceil(f(j)/a)) + n
2507 * meaning that we can use ceil(f(j)/a)) as a lower bound for unrolling.
2508 * We just need to check if we have found any lower bound before and
2509 * if the new lower bound is better (smaller n or fewer integer divisions)
2510 * than the previously found lower bounds.
2512 static isl_stat
update_unrolling_lower_bound(struct isl_find_unroll_data
*data
,
2513 __isl_keep isl_constraint
*c
)
2515 isl_aff
*aff
, *lower
;
2519 if (!isl_constraint_is_lower_bound(c
, isl_dim_set
, data
->depth
))
2522 lower
= isl_constraint_get_bound(c
, isl_dim_set
, data
->depth
);
2523 lower
= isl_aff_ceil(lower
);
2524 aff
= isl_aff_copy(lower
);
2525 aff
= isl_aff_neg(aff
);
2526 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, data
->depth
, 1);
2527 aff
= isl_aff_add_constant_si(aff
, 1);
2528 max
= isl_set_max_val(data
->domain
, aff
);
2531 better
= is_better_lower_bound(data
, lower
, max
);
2532 if (better
< 0 || !better
) {
2534 isl_aff_free(lower
);
2535 return better
< 0 ? isl_stat_error
: isl_stat_ok
;
2538 isl_aff_free(data
->lower
);
2539 data
->lower
= lower
;
2540 *data
->n
= isl_val_get_num_si(max
);
2546 /* Check if we can use "c" as a lower bound and if it is better than
2547 * any previously found lower bound.
2549 static isl_stat
constraint_find_unroll(__isl_take isl_constraint
*c
, void *user
)
2551 struct isl_find_unroll_data
*data
;
2554 data
= (struct isl_find_unroll_data
*) user
;
2555 r
= update_unrolling_lower_bound(data
, c
);
2556 isl_constraint_free(c
);
2561 /* Look for a lower bound l(i) on the dimension at "depth"
2562 * and a size n such that "domain" is a subset of
2564 * { [i] : l(i) <= i_d < l(i) + n }
2566 * where d is "depth" and l(i) depends only on earlier dimensions.
2567 * Furthermore, try and find a lower bound such that n is as small as possible.
2568 * In particular, "n" needs to be finite.
2569 * "build" is the build in which the unrolling will be performed.
2570 * "expansion" is the expansion that needs to be applied to "domain"
2571 * in the unrolling that will be performed.
2573 * Inner dimensions have been eliminated from "domain" by the caller.
2575 * We first construct a collection of lower bounds on the input set
2576 * by computing its simple hull. We then iterate through them,
2577 * discarding those that we cannot use (either because they do not
2578 * involve the dimension at "depth" or because they have no corresponding
2579 * upper bound, meaning that "n" would be unbounded) and pick out the
2580 * best from the remaining ones.
2582 * If we cannot find a suitable lower bound, then we consider that
2585 static __isl_give isl_aff
*find_unroll_lower_bound(
2586 __isl_keep isl_ast_build
*build
, __isl_keep isl_set
*domain
,
2587 int depth
, __isl_keep isl_basic_map
*expansion
, int *n
)
2589 struct isl_find_unroll_data data
=
2590 { build
, domain
, depth
, expansion
, NULL
, n
, -1 };
2591 isl_basic_set
*hull
;
2593 hull
= isl_set_simple_hull(isl_set_copy(domain
));
2595 if (isl_basic_set_foreach_constraint(hull
,
2596 &constraint_find_unroll
, &data
) < 0)
2599 isl_basic_set_free(hull
);
2602 isl_die(isl_set_get_ctx(domain
), isl_error_invalid
,
2603 "cannot find lower bound for unrolling", return NULL
);
2607 isl_basic_set_free(hull
);
2608 return isl_aff_free(data
.lower
);
2611 /* Call "fn" on each iteration of the current dimension of "domain".
2612 * If "init" is not NULL, then it is called with the number of
2613 * iterations before any call to "fn".
2614 * Return -1 on failure.
2616 * Since we are going to be iterating over the individual values,
2617 * we first check if there are any strides on the current dimension.
2618 * If there is, we rewrite the current dimension i as
2620 * i = stride i' + offset
2622 * and then iterate over individual values of i' instead.
2624 * We then look for a lower bound on i' and a size such that the domain
2627 * { [j,i'] : l(j) <= i' < l(j) + n }
2629 * and then take slices of the domain at values of i'
2630 * between l(j) and l(j) + n - 1.
2632 * We compute the unshifted simple hull of each slice to ensure that
2633 * we have a single basic set per offset. The slicing constraint
2634 * may get simplified away before the unshifted simple hull is taken
2635 * and may therefore in some rare cases disappear from the result.
2636 * We therefore explicitly add the constraint back after computing
2637 * the unshifted simple hull to ensure that the basic sets
2638 * remain disjoint. The constraints that are dropped by taking the hull
2639 * will be taken into account at the next level, as in the case of the
2642 * Finally, we map i' back to i and call "fn".
2644 static int foreach_iteration(__isl_take isl_set
*domain
,
2645 __isl_keep isl_ast_build
*build
, int (*init
)(int n
, void *user
),
2646 int (*fn
)(__isl_take isl_basic_set
*bset
, void *user
), void *user
)
2651 isl_multi_aff
*expansion
;
2652 isl_basic_map
*bmap
;
2653 isl_aff
*lower
= NULL
;
2654 isl_ast_build
*stride_build
;
2656 depth
= isl_ast_build_get_depth(build
);
2658 domain
= isl_set_free(domain
);
2660 domain
= isl_ast_build_eliminate_inner(build
, domain
);
2661 domain
= isl_set_intersect(domain
, isl_ast_build_get_domain(build
));
2662 stride_build
= isl_ast_build_copy(build
);
2663 stride_build
= isl_ast_build_detect_strides(stride_build
,
2664 isl_set_copy(domain
));
2665 expansion
= isl_ast_build_get_stride_expansion(stride_build
);
2667 domain
= isl_set_preimage_multi_aff(domain
,
2668 isl_multi_aff_copy(expansion
));
2669 domain
= isl_ast_build_eliminate_divs(stride_build
, domain
);
2670 isl_ast_build_free(stride_build
);
2672 bmap
= isl_basic_map_from_multi_aff(expansion
);
2674 empty
= isl_set_is_empty(domain
);
2680 lower
= find_unroll_lower_bound(build
, domain
, depth
, bmap
, &n
);
2684 if (n
>= 0 && init
&& init(n
, user
) < 0)
2686 for (i
= 0; i
< n
; ++i
) {
2688 isl_basic_set
*bset
;
2689 isl_constraint
*slice
;
2691 slice
= at_offset(depth
, lower
, i
);
2692 set
= isl_set_copy(domain
);
2693 set
= isl_set_add_constraint(set
, isl_constraint_copy(slice
));
2694 bset
= isl_set_unshifted_simple_hull(set
);
2695 bset
= isl_basic_set_add_constraint(bset
, slice
);
2696 bset
= isl_basic_set_apply(bset
, isl_basic_map_copy(bmap
));
2698 if (fn(bset
, user
) < 0)
2702 isl_aff_free(lower
);
2703 isl_set_free(domain
);
2704 isl_basic_map_free(bmap
);
2706 return n
< 0 || i
< n
? -1 : 0;
2709 /* Data structure for storing the results and the intermediate objects
2710 * of compute_domains.
2712 * "list" is the main result of the function and contains a list
2713 * of disjoint basic sets for which code should be generated.
2715 * "executed" and "build" are inputs to compute_domains.
2716 * "schedule_domain" is the domain of "executed".
2718 * "option" contains the domains at the current depth that should by
2719 * atomic, separated or unrolled. These domains are as specified by
2720 * the user, except that inner dimensions have been eliminated and
2721 * that they have been made pair-wise disjoint.
2723 * "sep_class" contains the user-specified split into separation classes
2724 * specialized to the current depth.
2725 * "done" contains the union of the separation domains that have already
2728 struct isl_codegen_domains
{
2729 isl_basic_set_list
*list
;
2731 isl_union_map
*executed
;
2732 isl_ast_build
*build
;
2733 isl_set
*schedule_domain
;
2741 /* Internal data structure for do_unroll.
2743 * "domains" stores the results of compute_domains.
2744 * "class_domain" is the original class domain passed to do_unroll.
2745 * "unroll_domain" collects the unrolled iterations.
2747 struct isl_ast_unroll_data
{
2748 struct isl_codegen_domains
*domains
;
2749 isl_set
*class_domain
;
2750 isl_set
*unroll_domain
;
2753 /* Given an iteration of an unrolled domain represented by "bset",
2754 * add it to data->domains->list.
2755 * Since we may have dropped some constraints, we intersect with
2756 * the class domain again to ensure that each element in the list
2757 * is disjoint from the other class domains.
2759 static int do_unroll_iteration(__isl_take isl_basic_set
*bset
, void *user
)
2761 struct isl_ast_unroll_data
*data
= user
;
2763 isl_basic_set_list
*list
;
2765 set
= isl_set_from_basic_set(bset
);
2766 data
->unroll_domain
= isl_set_union(data
->unroll_domain
,
2768 set
= isl_set_intersect(set
, isl_set_copy(data
->class_domain
));
2769 set
= isl_set_make_disjoint(set
);
2770 list
= isl_basic_set_list_from_set(set
);
2771 data
->domains
->list
= isl_basic_set_list_concat(data
->domains
->list
,
2777 /* Extend domains->list with a list of basic sets, one for each value
2778 * of the current dimension in "domain" and remove the corresponding
2779 * sets from the class domain. Return the updated class domain.
2780 * The divs that involve the current dimension have not been projected out
2783 * We call foreach_iteration to iterate over the individual values and
2784 * in do_unroll_iteration we collect the individual basic sets in
2785 * domains->list and their union in data->unroll_domain, which is then
2786 * used to update the class domain.
2788 static __isl_give isl_set
*do_unroll(struct isl_codegen_domains
*domains
,
2789 __isl_take isl_set
*domain
, __isl_take isl_set
*class_domain
)
2791 struct isl_ast_unroll_data data
;
2794 return isl_set_free(class_domain
);
2796 return isl_set_free(domain
);
2798 data
.domains
= domains
;
2799 data
.class_domain
= class_domain
;
2800 data
.unroll_domain
= isl_set_empty(isl_set_get_space(domain
));
2802 if (foreach_iteration(domain
, domains
->build
, NULL
,
2803 &do_unroll_iteration
, &data
) < 0)
2804 data
.unroll_domain
= isl_set_free(data
.unroll_domain
);
2806 class_domain
= isl_set_subtract(class_domain
, data
.unroll_domain
);
2808 return class_domain
;
2811 /* Add domains to domains->list for each individual value of the current
2812 * dimension, for that part of the schedule domain that lies in the
2813 * intersection of the option domain and the class domain.
2814 * Remove the corresponding sets from the class domain and
2815 * return the updated class domain.
2817 * We first break up the unroll option domain into individual pieces
2818 * and then handle each of them separately. The unroll option domain
2819 * has been made disjoint in compute_domains_init_options,
2821 * Note that we actively want to combine different pieces of the
2822 * schedule domain that have the same value at the current dimension.
2823 * We therefore need to break up the unroll option domain before
2824 * intersecting with class and schedule domain, hoping that the
2825 * unroll option domain specified by the user is relatively simple.
2827 static __isl_give isl_set
*compute_unroll_domains(
2828 struct isl_codegen_domains
*domains
, __isl_take isl_set
*class_domain
)
2830 isl_set
*unroll_domain
;
2831 isl_basic_set_list
*unroll_list
;
2836 empty
= isl_set_is_empty(domains
->option
[isl_ast_loop_unroll
]);
2838 return isl_set_free(class_domain
);
2840 return class_domain
;
2842 unroll_domain
= isl_set_copy(domains
->option
[isl_ast_loop_unroll
]);
2843 unroll_list
= isl_basic_set_list_from_set(unroll_domain
);
2845 n
= isl_basic_set_list_n_basic_set(unroll_list
);
2847 class_domain
= isl_set_free(class_domain
);
2848 for (i
= 0; i
< n
; ++i
) {
2849 isl_basic_set
*bset
;
2851 bset
= isl_basic_set_list_get_basic_set(unroll_list
, i
);
2852 unroll_domain
= isl_set_from_basic_set(bset
);
2853 unroll_domain
= isl_set_intersect(unroll_domain
,
2854 isl_set_copy(class_domain
));
2855 unroll_domain
= isl_set_intersect(unroll_domain
,
2856 isl_set_copy(domains
->schedule_domain
));
2858 empty
= isl_set_is_empty(unroll_domain
);
2859 if (empty
>= 0 && empty
) {
2860 isl_set_free(unroll_domain
);
2864 class_domain
= do_unroll(domains
, unroll_domain
, class_domain
);
2867 isl_basic_set_list_free(unroll_list
);
2869 return class_domain
;
2872 /* Try and construct a single basic set that includes the intersection of
2873 * the schedule domain, the atomic option domain and the class domain.
2874 * Add the resulting basic set(s) to domains->list and remove them
2875 * from class_domain. Return the updated class domain.
2877 * We construct a single domain rather than trying to combine
2878 * the schedule domains of individual domains because we are working
2879 * within a single component so that non-overlapping schedule domains
2880 * should already have been separated.
2881 * We do however need to make sure that this single domains is a subset
2882 * of the class domain so that it would not intersect with any other
2883 * class domains. This means that we may end up splitting up the atomic
2884 * domain in case separation classes are being used.
2886 * "domain" is the intersection of the schedule domain and the class domain,
2887 * with inner dimensions projected out.
2889 static __isl_give isl_set
*compute_atomic_domain(
2890 struct isl_codegen_domains
*domains
, __isl_take isl_set
*class_domain
)
2892 isl_basic_set
*bset
;
2893 isl_basic_set_list
*list
;
2894 isl_set
*domain
, *atomic_domain
;
2897 domain
= isl_set_copy(domains
->option
[isl_ast_loop_atomic
]);
2898 domain
= isl_set_intersect(domain
, isl_set_copy(class_domain
));
2899 domain
= isl_set_intersect(domain
,
2900 isl_set_copy(domains
->schedule_domain
));
2901 empty
= isl_set_is_empty(domain
);
2903 class_domain
= isl_set_free(class_domain
);
2905 isl_set_free(domain
);
2906 return class_domain
;
2909 domain
= isl_ast_build_eliminate(domains
->build
, domain
);
2910 domain
= isl_set_coalesce_preserve(domain
);
2911 bset
= isl_set_unshifted_simple_hull(domain
);
2912 domain
= isl_set_from_basic_set(bset
);
2913 atomic_domain
= isl_set_copy(domain
);
2914 domain
= isl_set_intersect(domain
, isl_set_copy(class_domain
));
2915 class_domain
= isl_set_subtract(class_domain
, atomic_domain
);
2916 domain
= isl_set_make_disjoint(domain
);
2917 list
= isl_basic_set_list_from_set(domain
);
2918 domains
->list
= isl_basic_set_list_concat(domains
->list
, list
);
2920 return class_domain
;
2923 /* Split up the schedule domain into uniform basic sets,
2924 * in the sense that each element in a basic set is associated to
2925 * elements of the same domains, and add the result to domains->list.
2926 * Do this for that part of the schedule domain that lies in the
2927 * intersection of "class_domain" and the separate option domain.
2929 * "class_domain" may or may not include the constraints
2930 * of the schedule domain, but this does not make a difference
2931 * since we are going to intersect it with the domain of the inverse schedule.
2932 * If it includes schedule domain constraints, then they may involve
2933 * inner dimensions, but we will eliminate them in separation_domain.
2935 static int compute_separate_domain(struct isl_codegen_domains
*domains
,
2936 __isl_keep isl_set
*class_domain
)
2940 isl_union_map
*executed
;
2941 isl_basic_set_list
*list
;
2944 domain
= isl_set_copy(domains
->option
[isl_ast_loop_separate
]);
2945 domain
= isl_set_intersect(domain
, isl_set_copy(class_domain
));
2946 executed
= isl_union_map_copy(domains
->executed
);
2947 executed
= isl_union_map_intersect_domain(executed
,
2948 isl_union_set_from_set(domain
));
2949 empty
= isl_union_map_is_empty(executed
);
2950 if (empty
< 0 || empty
) {
2951 isl_union_map_free(executed
);
2952 return empty
< 0 ? -1 : 0;
2955 space
= isl_set_get_space(class_domain
);
2956 domain
= separate_schedule_domains(space
, executed
, domains
->build
);
2958 list
= isl_basic_set_list_from_set(domain
);
2959 domains
->list
= isl_basic_set_list_concat(domains
->list
, list
);
2964 /* Split up the domain at the current depth into disjoint
2965 * basic sets for which code should be generated separately
2966 * for the given separation class domain.
2968 * If any separation classes have been defined, then "class_domain"
2969 * is the domain of the current class and does not refer to inner dimensions.
2970 * Otherwise, "class_domain" is the universe domain.
2972 * We first make sure that the class domain is disjoint from
2973 * previously considered class domains.
2975 * The separate domains can be computed directly from the "class_domain".
2977 * The unroll, atomic and remainder domains need the constraints
2978 * from the schedule domain.
2980 * For unrolling, the actual schedule domain is needed (with divs that
2981 * may refer to the current dimension) so that stride detection can be
2984 * For atomic and remainder domains, inner dimensions and divs involving
2985 * the current dimensions should be eliminated.
2986 * In case we are working within a separation class, we need to intersect
2987 * the result with the current "class_domain" to ensure that the domains
2988 * are disjoint from those generated from other class domains.
2990 * The domain that has been made atomic may be larger than specified
2991 * by the user since it needs to be representable as a single basic set.
2992 * This possibly larger domain is removed from class_domain by
2993 * compute_atomic_domain. It is computed first so that the extended domain
2994 * would not overlap with any domains computed before.
2995 * Similary, the unrolled domains may have some constraints removed and
2996 * may therefore also be larger than specified by the user.
2998 * If anything is left after handling separate, unroll and atomic,
2999 * we split it up into basic sets and append the basic sets to domains->list.
3001 static isl_stat
compute_partial_domains(struct isl_codegen_domains
*domains
,
3002 __isl_take isl_set
*class_domain
)
3004 isl_basic_set_list
*list
;
3007 class_domain
= isl_set_subtract(class_domain
,
3008 isl_set_copy(domains
->done
));
3009 domains
->done
= isl_set_union(domains
->done
,
3010 isl_set_copy(class_domain
));
3012 class_domain
= compute_atomic_domain(domains
, class_domain
);
3013 class_domain
= compute_unroll_domains(domains
, class_domain
);
3015 domain
= isl_set_copy(class_domain
);
3017 if (compute_separate_domain(domains
, domain
) < 0)
3019 domain
= isl_set_subtract(domain
,
3020 isl_set_copy(domains
->option
[isl_ast_loop_separate
]));
3022 domain
= isl_set_intersect(domain
,
3023 isl_set_copy(domains
->schedule_domain
));
3025 domain
= isl_ast_build_eliminate(domains
->build
, domain
);
3026 domain
= isl_set_intersect(domain
, isl_set_copy(class_domain
));
3028 domain
= isl_set_coalesce_preserve(domain
);
3029 domain
= isl_set_make_disjoint(domain
);
3031 list
= isl_basic_set_list_from_set(domain
);
3032 domains
->list
= isl_basic_set_list_concat(domains
->list
, list
);
3034 isl_set_free(class_domain
);
3038 isl_set_free(domain
);
3039 isl_set_free(class_domain
);
3040 return isl_stat_error
;
3043 /* Split up the domain at the current depth into disjoint
3044 * basic sets for which code should be generated separately
3045 * for the separation class identified by "pnt".
3047 * We extract the corresponding class domain from domains->sep_class,
3048 * eliminate inner dimensions and pass control to compute_partial_domains.
3050 static isl_stat
compute_class_domains(__isl_take isl_point
*pnt
, void *user
)
3052 struct isl_codegen_domains
*domains
= user
;
3057 class_set
= isl_set_from_point(pnt
);
3058 domain
= isl_map_domain(isl_map_intersect_range(
3059 isl_map_copy(domains
->sep_class
), class_set
));
3060 domain
= isl_ast_build_compute_gist(domains
->build
, domain
);
3061 domain
= isl_ast_build_eliminate(domains
->build
, domain
);
3063 disjoint
= isl_set_plain_is_disjoint(domain
, domains
->schedule_domain
);
3065 return isl_stat_error
;
3067 isl_set_free(domain
);
3071 return compute_partial_domains(domains
, domain
);
3074 /* Extract the domains at the current depth that should be atomic,
3075 * separated or unrolled and store them in option.
3077 * The domains specified by the user might overlap, so we make
3078 * them disjoint by subtracting earlier domains from later domains.
3080 static void compute_domains_init_options(isl_set
*option
[4],
3081 __isl_keep isl_ast_build
*build
)
3083 enum isl_ast_loop_type type
, type2
;
3086 for (type
= isl_ast_loop_atomic
;
3087 type
<= isl_ast_loop_separate
; ++type
) {
3088 option
[type
] = isl_ast_build_get_option_domain(build
, type
);
3089 for (type2
= isl_ast_loop_atomic
; type2
< type
; ++type2
)
3090 option
[type
] = isl_set_subtract(option
[type
],
3091 isl_set_copy(option
[type2
]));
3094 unroll
= option
[isl_ast_loop_unroll
];
3095 unroll
= isl_set_coalesce(unroll
);
3096 unroll
= isl_set_make_disjoint(unroll
);
3097 option
[isl_ast_loop_unroll
] = unroll
;
3100 /* Split up the domain at the current depth into disjoint
3101 * basic sets for which code should be generated separately,
3102 * based on the user-specified options.
3103 * Return the list of disjoint basic sets.
3105 * There are three kinds of domains that we need to keep track of.
3106 * - the "schedule domain" is the domain of "executed"
3107 * - the "class domain" is the domain corresponding to the currrent
3109 * - the "option domain" is the domain corresponding to one of the options
3110 * atomic, unroll or separate
3112 * We first consider the individial values of the separation classes
3113 * and split up the domain for each of them separately.
3114 * Finally, we consider the remainder. If no separation classes were
3115 * specified, then we call compute_partial_domains with the universe
3116 * "class_domain". Otherwise, we take the "schedule_domain" as "class_domain",
3117 * with inner dimensions removed. We do this because we want to
3118 * avoid computing the complement of the class domains (i.e., the difference
3119 * between the universe and domains->done).
3121 static __isl_give isl_basic_set_list
*compute_domains(
3122 __isl_keep isl_union_map
*executed
, __isl_keep isl_ast_build
*build
)
3124 struct isl_codegen_domains domains
;
3127 isl_union_set
*schedule_domain
;
3131 enum isl_ast_loop_type type
;
3137 ctx
= isl_union_map_get_ctx(executed
);
3138 domains
.list
= isl_basic_set_list_alloc(ctx
, 0);
3140 schedule_domain
= isl_union_map_domain(isl_union_map_copy(executed
));
3141 domain
= isl_set_from_union_set(schedule_domain
);
3143 compute_domains_init_options(domains
.option
, build
);
3145 domains
.sep_class
= isl_ast_build_get_separation_class(build
);
3146 classes
= isl_map_range(isl_map_copy(domains
.sep_class
));
3147 n_param
= isl_set_dim(classes
, isl_dim_param
);
3149 classes
= isl_set_free(classes
);
3150 classes
= isl_set_project_out(classes
, isl_dim_param
, 0, n_param
);
3152 space
= isl_set_get_space(domain
);
3153 domains
.build
= build
;
3154 domains
.schedule_domain
= isl_set_copy(domain
);
3155 domains
.executed
= executed
;
3156 domains
.done
= isl_set_empty(space
);
3158 if (isl_set_foreach_point(classes
, &compute_class_domains
, &domains
) < 0)
3159 domains
.list
= isl_basic_set_list_free(domains
.list
);
3160 isl_set_free(classes
);
3162 empty
= isl_set_is_empty(domains
.done
);
3164 domains
.list
= isl_basic_set_list_free(domains
.list
);
3165 domain
= isl_set_free(domain
);
3167 isl_set_free(domain
);
3168 domain
= isl_set_universe(isl_set_get_space(domains
.done
));
3170 domain
= isl_ast_build_eliminate(build
, domain
);
3172 if (compute_partial_domains(&domains
, domain
) < 0)
3173 domains
.list
= isl_basic_set_list_free(domains
.list
);
3175 isl_set_free(domains
.schedule_domain
);
3176 isl_set_free(domains
.done
);
3177 isl_map_free(domains
.sep_class
);
3178 for (type
= isl_ast_loop_atomic
; type
<= isl_ast_loop_separate
; ++type
)
3179 isl_set_free(domains
.option
[type
]);
3181 return domains
.list
;
3184 /* Generate code for a single component, after shifting (if any)
3185 * has been applied, in case the schedule was specified as a union map.
3187 * We first split up the domain at the current depth into disjoint
3188 * basic sets based on the user-specified options.
3189 * Then we generated code for each of them and concatenate the results.
3191 static __isl_give isl_ast_graft_list
*generate_shifted_component_flat(
3192 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
3194 isl_basic_set_list
*domain_list
;
3195 isl_ast_graft_list
*list
= NULL
;
3197 domain_list
= compute_domains(executed
, build
);
3198 list
= generate_parallel_domains(domain_list
, executed
, build
);
3200 isl_basic_set_list_free(domain_list
);
3201 isl_union_map_free(executed
);
3202 isl_ast_build_free(build
);
3207 /* Generate code for a single component, after shifting (if any)
3208 * has been applied, in case the schedule was specified as a schedule tree
3209 * and the separate option was specified.
3211 * We perform separation on the domain of "executed" and then generate
3212 * an AST for each of the resulting disjoint basic sets.
3214 static __isl_give isl_ast_graft_list
*generate_shifted_component_tree_separate(
3215 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
3219 isl_basic_set_list
*domain_list
;
3220 isl_ast_graft_list
*list
;
3222 space
= isl_ast_build_get_space(build
, 1);
3223 domain
= separate_schedule_domains(space
,
3224 isl_union_map_copy(executed
), build
);
3225 domain_list
= isl_basic_set_list_from_set(domain
);
3227 list
= generate_parallel_domains(domain_list
, executed
, build
);
3229 isl_basic_set_list_free(domain_list
);
3230 isl_union_map_free(executed
);
3231 isl_ast_build_free(build
);
3236 /* Internal data structure for generate_shifted_component_tree_unroll.
3238 * "executed" and "build" are inputs to generate_shifted_component_tree_unroll.
3239 * "list" collects the constructs grafts.
3241 struct isl_ast_unroll_tree_data
{
3242 isl_union_map
*executed
;
3243 isl_ast_build
*build
;
3244 isl_ast_graft_list
*list
;
3247 /* Initialize data->list to a list of "n" elements.
3249 static int init_unroll_tree(int n
, void *user
)
3251 struct isl_ast_unroll_tree_data
*data
= user
;
3254 ctx
= isl_ast_build_get_ctx(data
->build
);
3255 data
->list
= isl_ast_graft_list_alloc(ctx
, n
);
3260 /* Given an iteration of an unrolled domain represented by "bset",
3261 * generate the corresponding AST and add the result to data->list.
3263 static int do_unroll_tree_iteration(__isl_take isl_basic_set
*bset
, void *user
)
3265 struct isl_ast_unroll_tree_data
*data
= user
;
3267 data
->list
= add_node(data
->list
, isl_union_map_copy(data
->executed
),
3268 bset
, isl_ast_build_copy(data
->build
));
3273 /* Generate code for a single component, after shifting (if any)
3274 * has been applied, in case the schedule was specified as a schedule tree
3275 * and the unroll option was specified.
3277 * We call foreach_iteration to iterate over the individual values and
3278 * construct and collect the corresponding grafts in do_unroll_tree_iteration.
3280 static __isl_give isl_ast_graft_list
*generate_shifted_component_tree_unroll(
3281 __isl_take isl_union_map
*executed
, __isl_take isl_set
*domain
,
3282 __isl_take isl_ast_build
*build
)
3284 struct isl_ast_unroll_tree_data data
= { executed
, build
, NULL
};
3286 if (foreach_iteration(domain
, build
, &init_unroll_tree
,
3287 &do_unroll_tree_iteration
, &data
) < 0)
3288 data
.list
= isl_ast_graft_list_free(data
.list
);
3290 isl_union_map_free(executed
);
3291 isl_ast_build_free(build
);
3296 /* Does "domain" involve a disjunction that is purely based on
3297 * constraints involving only outer dimension?
3299 * In particular, is there a disjunction such that the constraints
3300 * involving the current and later dimensions are the same over
3301 * all the disjuncts?
3303 static isl_bool
has_pure_outer_disjunction(__isl_keep isl_set
*domain
,
3304 __isl_keep isl_ast_build
*build
)
3306 isl_basic_set
*hull
;
3307 isl_set
*shared
, *inner
;
3313 n
= isl_set_n_basic_set(domain
);
3315 return isl_bool_error
;
3317 return isl_bool_false
;
3318 dim
= isl_set_dim(domain
, isl_dim_set
);
3319 depth
= isl_ast_build_get_depth(build
);
3320 if (dim
< 0 || depth
< 0)
3321 return isl_bool_error
;
3323 inner
= isl_set_copy(domain
);
3324 inner
= isl_set_drop_constraints_not_involving_dims(inner
,
3325 isl_dim_set
, depth
, dim
- depth
);
3326 hull
= isl_set_plain_unshifted_simple_hull(isl_set_copy(inner
));
3327 shared
= isl_set_from_basic_set(hull
);
3328 equal
= isl_set_plain_is_equal(inner
, shared
);
3329 isl_set_free(inner
);
3330 isl_set_free(shared
);
3335 /* Generate code for a single component, after shifting (if any)
3336 * has been applied, in case the schedule was specified as a schedule tree.
3337 * In particular, handle the base case where there is either no isolated
3338 * set or we are within the isolated set (in which case "isolated" is set)
3339 * or the iterations that precede or follow the isolated set.
3341 * The schedule domain is broken up or combined into basic sets
3342 * according to the AST generation option specified in the current
3343 * schedule node, which may be either atomic, separate, unroll or
3344 * unspecified. If the option is unspecified, then we currently simply
3345 * split the schedule domain into disjoint basic sets.
3347 * In case the separate option is specified, the AST generation is
3348 * handled by generate_shifted_component_tree_separate.
3349 * In the other cases, we need the global schedule domain.
3350 * In the unroll case, the AST generation is then handled by
3351 * generate_shifted_component_tree_unroll which needs the actual
3352 * schedule domain (with divs that may refer to the current dimension)
3353 * so that stride detection can be performed.
3354 * In the atomic or unspecified case, inner dimensions and divs involving
3355 * the current dimensions should be eliminated.
3356 * The result is then either combined into a single basic set or
3357 * split up into disjoint basic sets.
3358 * Finally an AST is generated for each basic set and the results are
3361 * If the schedule domain involves a disjunction that is purely based on
3362 * constraints involving only outer dimension, then it is treated as
3363 * if atomic was specified. This ensures that only a single loop
3364 * is generated instead of a sequence of identical loops with
3367 static __isl_give isl_ast_graft_list
*generate_shifted_component_tree_base(
3368 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
,
3371 isl_bool outer_disjunction
;
3372 isl_union_set
*schedule_domain
;
3374 isl_basic_set_list
*domain_list
;
3375 isl_ast_graft_list
*list
;
3376 enum isl_ast_loop_type type
;
3378 type
= isl_ast_build_get_loop_type(build
, isolated
);
3382 if (type
== isl_ast_loop_separate
)
3383 return generate_shifted_component_tree_separate(executed
,
3386 schedule_domain
= isl_union_map_domain(isl_union_map_copy(executed
));
3387 domain
= isl_set_from_union_set(schedule_domain
);
3389 if (type
== isl_ast_loop_unroll
)
3390 return generate_shifted_component_tree_unroll(executed
, domain
,
3393 domain
= isl_ast_build_eliminate(build
, domain
);
3394 domain
= isl_set_coalesce_preserve(domain
);
3396 outer_disjunction
= has_pure_outer_disjunction(domain
, build
);
3397 if (outer_disjunction
< 0)
3398 domain
= isl_set_free(domain
);
3400 if (outer_disjunction
|| type
== isl_ast_loop_atomic
) {
3401 isl_basic_set
*hull
;
3402 hull
= isl_set_unshifted_simple_hull(domain
);
3403 domain_list
= isl_basic_set_list_from_basic_set(hull
);
3405 domain
= isl_set_make_disjoint(domain
);
3406 domain_list
= isl_basic_set_list_from_set(domain
);
3409 list
= generate_parallel_domains(domain_list
, executed
, build
);
3411 isl_basic_set_list_free(domain_list
);
3412 isl_union_map_free(executed
);
3413 isl_ast_build_free(build
);
3417 isl_union_map_free(executed
);
3418 isl_ast_build_free(build
);
3422 /* Extract out the disjunction imposed by "domain" on the outer
3423 * schedule dimensions.
3425 * In particular, remove all inner dimensions from "domain" (including
3426 * the current dimension) and then remove the constraints that are shared
3427 * by all disjuncts in the result.
3429 static __isl_give isl_set
*extract_disjunction(__isl_take isl_set
*domain
,
3430 __isl_keep isl_ast_build
*build
)
3436 domain
= isl_ast_build_specialize(build
, domain
);
3437 depth
= isl_ast_build_get_depth(build
);
3438 dim
= isl_set_dim(domain
, isl_dim_set
);
3439 if (depth
< 0 || dim
< 0)
3440 return isl_set_free(domain
);
3441 domain
= isl_set_eliminate(domain
, isl_dim_set
, depth
, dim
- depth
);
3442 domain
= isl_set_remove_unknown_divs(domain
);
3443 hull
= isl_set_copy(domain
);
3444 hull
= isl_set_from_basic_set(isl_set_unshifted_simple_hull(hull
));
3445 domain
= isl_set_gist(domain
, hull
);
3450 /* Add "guard" to the grafts in "list".
3451 * "build" is the outer AST build, while "sub_build" includes "guard"
3452 * in its generated domain.
3454 * First combine the grafts into a single graft and then add the guard.
3455 * If the list is empty, or if some error occurred, then simply return
3458 static __isl_give isl_ast_graft_list
*list_add_guard(
3459 __isl_take isl_ast_graft_list
*list
, __isl_keep isl_set
*guard
,
3460 __isl_keep isl_ast_build
*build
, __isl_keep isl_ast_build
*sub_build
)
3462 isl_ast_graft
*graft
;
3465 list
= isl_ast_graft_list_fuse(list
, sub_build
);
3467 n
= isl_ast_graft_list_n_ast_graft(list
);
3469 return isl_ast_graft_list_free(list
);
3473 graft
= isl_ast_graft_list_get_ast_graft(list
, 0);
3474 graft
= isl_ast_graft_add_guard(graft
, isl_set_copy(guard
), build
);
3475 list
= isl_ast_graft_list_set_ast_graft(list
, 0, graft
);
3480 /* Generate code for a single component, after shifting (if any)
3481 * has been applied, in case the schedule was specified as a schedule tree.
3482 * In particular, do so for the specified subset of the schedule domain.
3484 * If we are outside of the isolated part, then "domain" may include
3485 * a disjunction. Explicitly generate this disjunction at this point
3486 * instead of relying on the disjunction getting hoisted back up
3489 static __isl_give isl_ast_graft_list
*generate_shifted_component_tree_part(
3490 __isl_keep isl_union_map
*executed
, __isl_take isl_set
*domain
,
3491 __isl_keep isl_ast_build
*build
, int isolated
)
3493 isl_union_set
*uset
;
3494 isl_ast_graft_list
*list
;
3495 isl_ast_build
*sub_build
;
3498 uset
= isl_union_set_from_set(isl_set_copy(domain
));
3499 executed
= isl_union_map_copy(executed
);
3500 executed
= isl_union_map_intersect_domain(executed
, uset
);
3501 empty
= isl_union_map_is_empty(executed
);
3506 isl_union_map_free(executed
);
3507 isl_set_free(domain
);
3508 ctx
= isl_ast_build_get_ctx(build
);
3509 return isl_ast_graft_list_alloc(ctx
, 0);
3512 sub_build
= isl_ast_build_copy(build
);
3514 domain
= extract_disjunction(domain
, build
);
3515 sub_build
= isl_ast_build_restrict_generated(sub_build
,
3516 isl_set_copy(domain
));
3518 list
= generate_shifted_component_tree_base(executed
,
3519 isl_ast_build_copy(sub_build
), isolated
);
3521 list
= list_add_guard(list
, domain
, build
, sub_build
);
3522 isl_ast_build_free(sub_build
);
3523 isl_set_free(domain
);
3526 isl_union_map_free(executed
);
3527 isl_set_free(domain
);
3531 /* Generate code for a single component, after shifting (if any)
3532 * has been applied, in case the schedule was specified as a schedule tree.
3533 * In particular, do so for the specified sequence of subsets
3534 * of the schedule domain, "before", "isolated", "after" and "other",
3535 * where only the "isolated" part is considered to be isolated.
3537 static __isl_give isl_ast_graft_list
*generate_shifted_component_parts(
3538 __isl_take isl_union_map
*executed
, __isl_take isl_set
*before
,
3539 __isl_take isl_set
*isolated
, __isl_take isl_set
*after
,
3540 __isl_take isl_set
*other
, __isl_take isl_ast_build
*build
)
3542 isl_ast_graft_list
*list
, *res
;
3544 res
= generate_shifted_component_tree_part(executed
, before
, build
, 0);
3545 list
= generate_shifted_component_tree_part(executed
, isolated
,
3547 res
= isl_ast_graft_list_concat(res
, list
);
3548 list
= generate_shifted_component_tree_part(executed
, after
, build
, 0);
3549 res
= isl_ast_graft_list_concat(res
, list
);
3550 list
= generate_shifted_component_tree_part(executed
, other
, build
, 0);
3551 res
= isl_ast_graft_list_concat(res
, list
);
3553 isl_union_map_free(executed
);
3554 isl_ast_build_free(build
);
3559 /* Does "set" intersect "first", but not "second"?
3561 static isl_bool
only_intersects_first(__isl_keep isl_set
*set
,
3562 __isl_keep isl_set
*first
, __isl_keep isl_set
*second
)
3566 disjoint
= isl_set_is_disjoint(set
, first
);
3568 return isl_bool_error
;
3570 return isl_bool_false
;
3572 return isl_set_is_disjoint(set
, second
);
3575 /* Generate code for a single component, after shifting (if any)
3576 * has been applied, in case the schedule was specified as a schedule tree.
3577 * In particular, do so in case of isolation where there is
3578 * only an "isolated" part and an "after" part.
3579 * "dead1" and "dead2" are freed by this function in order to simplify
3582 * The "before" and "other" parts are set to empty sets.
3584 static __isl_give isl_ast_graft_list
*generate_shifted_component_only_after(
3585 __isl_take isl_union_map
*executed
, __isl_take isl_set
*isolated
,
3586 __isl_take isl_set
*after
, __isl_take isl_ast_build
*build
,
3587 __isl_take isl_set
*dead1
, __isl_take isl_set
*dead2
)
3591 empty
= isl_set_empty(isl_set_get_space(after
));
3592 isl_set_free(dead1
);
3593 isl_set_free(dead2
);
3594 return generate_shifted_component_parts(executed
, isl_set_copy(empty
),
3595 isolated
, after
, empty
, build
);
3598 /* Generate code for a single component, after shifting (if any)
3599 * has been applied, in case the schedule was specified as a schedule tree.
3601 * We first check if the user has specified an isolated schedule domain
3602 * and that we are not already outside of this isolated schedule domain.
3603 * If so, we break up the schedule domain into iterations that
3604 * precede the isolated domain, the isolated domain itself,
3605 * the iterations that follow the isolated domain and
3606 * the remaining iterations (those that are incomparable
3607 * to the isolated domain).
3608 * We generate an AST for each piece and concatenate the results.
3610 * If the isolated domain is not convex, then it is replaced
3611 * by a convex superset to ensure that the sets of preceding and
3612 * following iterations are properly defined and, in particular,
3613 * that there are no intermediate iterations that do not belong
3614 * to the isolated domain.
3616 * In the special case where at least one element of the schedule
3617 * domain that does not belong to the isolated domain needs
3618 * to be scheduled after this isolated domain, but none of those
3619 * elements need to be scheduled before, break up the schedule domain
3620 * in only two parts, the isolated domain, and a part that will be
3621 * scheduled after the isolated domain.
3623 * If no isolated set has been specified, then we generate an
3624 * AST for the entire inverse schedule.
3626 static __isl_give isl_ast_graft_list
*generate_shifted_component_tree(
3627 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
3631 int empty
, has_isolate
;
3633 isl_union_set
*schedule_domain
;
3635 isl_basic_set
*hull
;
3636 isl_set
*isolated
, *before
, *after
, *test
;
3640 build
= isl_ast_build_extract_isolated(build
);
3641 has_isolate
= isl_ast_build_has_isolated(build
);
3642 if (has_isolate
< 0)
3643 executed
= isl_union_map_free(executed
);
3644 else if (!has_isolate
)
3645 return generate_shifted_component_tree_base(executed
, build
, 0);
3647 schedule_domain
= isl_union_map_domain(isl_union_map_copy(executed
));
3648 domain
= isl_set_from_union_set(schedule_domain
);
3650 isolated
= isl_ast_build_get_isolated(build
);
3651 isolated
= isl_set_intersect(isolated
, isl_set_copy(domain
));
3652 test
= isl_ast_build_specialize(build
, isl_set_copy(isolated
));
3653 empty
= isl_set_is_empty(test
);
3658 isl_set_free(isolated
);
3659 isl_set_free(domain
);
3660 return generate_shifted_component_tree_base(executed
, build
, 0);
3662 depth
= isl_ast_build_get_depth(build
);
3666 isolated
= isl_ast_build_eliminate(build
, isolated
);
3667 hull
= isl_set_unshifted_simple_hull(isolated
);
3668 isolated
= isl_set_from_basic_set(hull
);
3670 space
= isl_space_map_from_set(isl_set_get_space(isolated
));
3671 gt
= isl_map_universe(space
);
3672 for (i
= 0; i
< depth
; ++i
)
3673 gt
= isl_map_equate(gt
, isl_dim_in
, i
, isl_dim_out
, i
);
3674 gt
= isl_map_order_gt(gt
, isl_dim_in
, depth
, isl_dim_out
, depth
);
3675 lt
= isl_map_reverse(isl_map_copy(gt
));
3676 before
= isl_set_apply(isl_set_copy(isolated
), gt
);
3677 after
= isl_set_apply(isl_set_copy(isolated
), lt
);
3679 domain
= isl_set_subtract(domain
, isl_set_copy(isolated
));
3680 pure
= only_intersects_first(domain
, after
, before
);
3682 executed
= isl_union_map_free(executed
);
3684 return generate_shifted_component_only_after(executed
, isolated
,
3685 domain
, build
, before
, after
);
3686 domain
= isl_set_subtract(domain
, isl_set_copy(before
));
3687 domain
= isl_set_subtract(domain
, isl_set_copy(after
));
3688 after
= isl_set_subtract(after
, isl_set_copy(isolated
));
3689 after
= isl_set_subtract(after
, isl_set_copy(before
));
3690 before
= isl_set_subtract(before
, isl_set_copy(isolated
));
3692 return generate_shifted_component_parts(executed
, before
, isolated
,
3693 after
, domain
, build
);
3695 isl_set_free(domain
);
3696 isl_set_free(isolated
);
3697 isl_union_map_free(executed
);
3698 isl_ast_build_free(build
);
3702 /* Generate code for a single component, after shifting (if any)
3705 * Call generate_shifted_component_tree or generate_shifted_component_flat
3706 * depending on whether the schedule was specified as a schedule tree.
3708 static __isl_give isl_ast_graft_list
*generate_shifted_component(
3709 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
3711 if (isl_ast_build_has_schedule_node(build
))
3712 return generate_shifted_component_tree(executed
, build
);
3714 return generate_shifted_component_flat(executed
, build
);
3717 struct isl_set_map_pair
{
3722 /* Given an array "domain" of isl_set_map_pairs and an array "order"
3723 * of indices into the "domain" array,
3724 * return the union of the "map" fields of the elements
3725 * indexed by the first "n" elements of "order".
3727 static __isl_give isl_union_map
*construct_component_executed(
3728 struct isl_set_map_pair
*domain
, int *order
, int n
)
3732 isl_union_map
*executed
;
3734 map
= isl_map_copy(domain
[order
[0]].map
);
3735 executed
= isl_union_map_from_map(map
);
3736 for (i
= 1; i
< n
; ++i
) {
3737 map
= isl_map_copy(domain
[order
[i
]].map
);
3738 executed
= isl_union_map_add_map(executed
, map
);
3744 /* Generate code for a single component, after shifting (if any)
3747 * The component inverse schedule is specified as the "map" fields
3748 * of the elements of "domain" indexed by the first "n" elements of "order".
3750 static __isl_give isl_ast_graft_list
*generate_shifted_component_from_list(
3751 struct isl_set_map_pair
*domain
, int *order
, int n
,
3752 __isl_take isl_ast_build
*build
)
3754 isl_union_map
*executed
;
3756 executed
= construct_component_executed(domain
, order
, n
);
3757 return generate_shifted_component(executed
, build
);
3760 /* Does set dimension "pos" of "set" have an obviously fixed value?
3762 static int dim_is_fixed(__isl_keep isl_set
*set
, int pos
)
3767 v
= isl_set_plain_get_val_if_fixed(set
, isl_dim_set
, pos
);
3770 fixed
= !isl_val_is_nan(v
);
3776 /* Given an array "domain" of isl_set_map_pairs and an array "order"
3777 * of indices into the "domain" array,
3778 * do all (except for at most one) of the "set" field of the elements
3779 * indexed by the first "n" elements of "order" have a fixed value
3780 * at position "depth"?
3782 static int at_most_one_non_fixed(struct isl_set_map_pair
*domain
,
3783 int *order
, int n
, int depth
)
3788 for (i
= 0; i
< n
; ++i
) {
3791 f
= dim_is_fixed(domain
[order
[i
]].set
, depth
);
3804 /* Given an array "domain" of isl_set_map_pairs and an array "order"
3805 * of indices into the "domain" array,
3806 * eliminate the inner dimensions from the "set" field of the elements
3807 * indexed by the first "n" elements of "order", provided the current
3808 * dimension does not have a fixed value.
3810 * Return the index of the first element in "order" with a corresponding
3811 * "set" field that does not have an (obviously) fixed value.
3813 static int eliminate_non_fixed(struct isl_set_map_pair
*domain
,
3814 int *order
, int n
, int depth
, __isl_keep isl_ast_build
*build
)
3819 for (i
= n
- 1; i
>= 0; --i
) {
3821 f
= dim_is_fixed(domain
[order
[i
]].set
, depth
);
3826 domain
[order
[i
]].set
= isl_ast_build_eliminate_inner(build
,
3827 domain
[order
[i
]].set
);
3834 /* Given an array "domain" of isl_set_map_pairs and an array "order"
3835 * of indices into the "domain" array,
3836 * find the element of "domain" (amongst those indexed by the first "n"
3837 * elements of "order") with the "set" field that has the smallest
3838 * value for the current iterator.
3840 * Note that the domain with the smallest value may depend on the parameters
3841 * and/or outer loop dimension. Since the result of this function is only
3842 * used as heuristic, we only make a reasonable attempt at finding the best
3843 * domain, one that should work in case a single domain provides the smallest
3844 * value for the current dimension over all values of the parameters
3845 * and outer dimensions.
3847 * In particular, we compute the smallest value of the first domain
3848 * and replace it by that of any later domain if that later domain
3849 * has a smallest value that is smaller for at least some value
3850 * of the parameters and outer dimensions.
3852 static int first_offset(struct isl_set_map_pair
*domain
, int *order
, int n
,
3853 __isl_keep isl_ast_build
*build
)
3859 min_first
= isl_ast_build_map_to_iterator(build
,
3860 isl_set_copy(domain
[order
[0]].set
));
3861 min_first
= isl_map_lexmin(min_first
);
3863 for (i
= 1; i
< n
; ++i
) {
3864 isl_map
*min
, *test
;
3867 min
= isl_ast_build_map_to_iterator(build
,
3868 isl_set_copy(domain
[order
[i
]].set
));
3869 min
= isl_map_lexmin(min
);
3870 test
= isl_map_copy(min
);
3871 test
= isl_map_apply_domain(isl_map_copy(min_first
), test
);
3872 test
= isl_map_order_lt(test
, isl_dim_in
, 0, isl_dim_out
, 0);
3873 empty
= isl_map_is_empty(test
);
3875 if (empty
>= 0 && !empty
) {
3876 isl_map_free(min_first
);
3886 isl_map_free(min_first
);
3888 return i
< n
? -1 : first
;
3891 /* Construct a shifted inverse schedule based on the original inverse schedule,
3892 * the stride and the offset.
3894 * The original inverse schedule is specified as the "map" fields
3895 * of the elements of "domain" indexed by the first "n" elements of "order".
3897 * "stride" and "offset" are such that the difference
3898 * between the values of the current dimension of domain "i"
3899 * and the values of the current dimension for some reference domain are
3902 * stride * integer + offset[i]
3904 * Moreover, 0 <= offset[i] < stride.
3906 * For each domain, we create a map
3908 * { [..., j, ...] -> [..., j - offset[i], offset[i], ....] }
3910 * where j refers to the current dimension and the other dimensions are
3911 * unchanged, and apply this map to the original schedule domain.
3913 * For example, for the original schedule
3915 * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
3917 * and assuming the offset is 0 for the A domain and 1 for the B domain,
3918 * we apply the mapping
3922 * to the schedule of the "A" domain and the mapping
3924 * { [j - 1] -> [j, 1] }
3926 * to the schedule of the "B" domain.
3929 * Note that after the transformation, the differences between pairs
3930 * of values of the current dimension over all domains are multiples
3931 * of stride and that we have therefore exposed the stride.
3934 * To see that the mapping preserves the lexicographic order,
3935 * first note that each of the individual maps above preserves the order.
3936 * If the value of the current iterator is j1 in one domain and j2 in another,
3937 * then if j1 = j2, we know that the same map is applied to both domains
3938 * and the order is preserved.
3939 * Otherwise, let us assume, without loss of generality, that j1 < j2.
3940 * If c1 >= c2 (with c1 and c2 the corresponding offsets), then
3944 * and the order is preserved.
3945 * If c1 < c2, then we know
3951 * j2 - j1 = n * s + r
3953 * with n >= 0 and 0 <= r < s.
3954 * In other words, r = c2 - c1.
3965 * (j1 - c1, c1) << (j2 - c2, c2)
3967 * with "<<" the lexicographic order, proving that the order is preserved
3970 static __isl_give isl_union_map
*construct_shifted_executed(
3971 struct isl_set_map_pair
*domain
, int *order
, int n
,
3972 __isl_keep isl_val
*stride
, __isl_keep isl_multi_val
*offset
,
3973 __isl_keep isl_ast_build
*build
)
3976 isl_union_map
*executed
;
3982 depth
= isl_ast_build_get_depth(build
);
3985 space
= isl_ast_build_get_space(build
, 1);
3986 executed
= isl_union_map_empty(isl_space_copy(space
));
3987 space
= isl_space_map_from_set(space
);
3988 map
= isl_map_identity(isl_space_copy(space
));
3989 map
= isl_map_eliminate(map
, isl_dim_out
, depth
, 1);
3990 map
= isl_map_insert_dims(map
, isl_dim_out
, depth
+ 1, 1);
3991 space
= isl_space_insert_dims(space
, isl_dim_out
, depth
+ 1, 1);
3993 c
= isl_constraint_alloc_equality(isl_local_space_from_space(space
));
3994 c
= isl_constraint_set_coefficient_si(c
, isl_dim_in
, depth
, 1);
3995 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, depth
, -1);
3997 for (i
= 0; i
< n
; ++i
) {
4001 v
= isl_multi_val_get_val(offset
, i
);
4004 map_i
= isl_map_copy(map
);
4005 map_i
= isl_map_fix_val(map_i
, isl_dim_out
, depth
+ 1,
4008 c
= isl_constraint_set_constant_val(c
, v
);
4009 map_i
= isl_map_add_constraint(map_i
, isl_constraint_copy(c
));
4011 map_i
= isl_map_apply_domain(isl_map_copy(domain
[order
[i
]].map
),
4013 executed
= isl_union_map_add_map(executed
, map_i
);
4016 isl_constraint_free(c
);
4020 executed
= isl_union_map_free(executed
);
4025 /* Generate code for a single component, after exposing the stride,
4026 * given that the schedule domain is "shifted strided".
4028 * The component inverse schedule is specified as the "map" fields
4029 * of the elements of "domain" indexed by the first "n" elements of "order".
4031 * The schedule domain being "shifted strided" means that the differences
4032 * between the values of the current dimension of domain "i"
4033 * and the values of the current dimension for some reference domain are
4036 * stride * integer + offset[i]
4038 * We first look for the domain with the "smallest" value for the current
4039 * dimension and adjust the offsets such that the offset of the "smallest"
4040 * domain is equal to zero. The other offsets are reduced modulo stride.
4042 * Based on this information, we construct a new inverse schedule in
4043 * construct_shifted_executed that exposes the stride.
4044 * Since this involves the introduction of a new schedule dimension,
4045 * the build needs to be changed accordingly.
4046 * After computing the AST, the newly introduced dimension needs
4047 * to be removed again from the list of grafts. We do this by plugging
4048 * in a mapping that represents the new schedule domain in terms of the
4049 * old schedule domain.
4051 static __isl_give isl_ast_graft_list
*generate_shift_component(
4052 struct isl_set_map_pair
*domain
, int *order
, int n
,
4053 __isl_keep isl_val
*stride
, __isl_keep isl_multi_val
*offset
,
4054 __isl_take isl_ast_build
*build
)
4056 isl_ast_graft_list
*list
;
4062 isl_multi_aff
*ma
, *zero
;
4063 isl_union_map
*executed
;
4065 depth
= isl_ast_build_get_depth(build
);
4067 first
= first_offset(domain
, order
, n
, build
);
4068 if (depth
< 0 || first
< 0)
4071 mv
= isl_multi_val_copy(offset
);
4072 val
= isl_multi_val_get_val(offset
, first
);
4073 val
= isl_val_neg(val
);
4074 mv
= isl_multi_val_add_val(mv
, val
);
4075 mv
= isl_multi_val_mod_val(mv
, isl_val_copy(stride
));
4077 executed
= construct_shifted_executed(domain
, order
, n
, stride
, mv
,
4079 space
= isl_ast_build_get_space(build
, 1);
4080 space
= isl_space_map_from_set(space
);
4081 ma
= isl_multi_aff_identity(isl_space_copy(space
));
4082 space
= isl_space_from_domain(isl_space_domain(space
));
4083 space
= isl_space_add_dims(space
, isl_dim_out
, 1);
4084 zero
= isl_multi_aff_zero(space
);
4085 ma
= isl_multi_aff_range_splice(ma
, depth
+ 1, zero
);
4086 build
= isl_ast_build_insert_dim(build
, depth
+ 1);
4087 list
= generate_shifted_component(executed
, build
);
4089 list
= isl_ast_graft_list_preimage_multi_aff(list
, ma
);
4091 isl_multi_val_free(mv
);
4095 isl_ast_build_free(build
);
4099 /* Does any node in the schedule tree rooted at the current schedule node
4100 * of "build" depend on outer schedule nodes?
4102 static int has_anchored_subtree(__isl_keep isl_ast_build
*build
)
4104 isl_schedule_node
*node
;
4107 node
= isl_ast_build_get_schedule_node(build
);
4108 dependent
= isl_schedule_node_is_subtree_anchored(node
);
4109 isl_schedule_node_free(node
);
4114 /* Generate code for a single component.
4116 * The component inverse schedule is specified as the "map" fields
4117 * of the elements of "domain" indexed by the first "n" elements of "order".
4119 * This function may modify the "set" fields of "domain".
4121 * Before proceeding with the actual code generation for the component,
4122 * we first check if there are any "shifted" strides, meaning that
4123 * the schedule domains of the individual domains are all strided,
4124 * but that they have different offsets, resulting in the union
4125 * of schedule domains not being strided anymore.
4127 * The simplest example is the schedule
4129 * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
4131 * Both schedule domains are strided, but their union is not.
4132 * This function detects such cases and then rewrites the schedule to
4134 * { A[i] -> [2i, 0]: 0 <= i < 10; B[i] -> [2i, 1] : 0 <= i < 10 }
4136 * In the new schedule, the schedule domains have the same offset (modulo
4137 * the stride), ensuring that the union of schedule domains is also strided.
4140 * If there is only a single domain in the component, then there is
4141 * nothing to do. Similarly, if the current schedule dimension has
4142 * a fixed value for almost all domains then there is nothing to be done.
4143 * In particular, we need at least two domains where the current schedule
4144 * dimension does not have a fixed value.
4145 * Finally, in case of a schedule map input,
4146 * if any of the options refer to the current schedule dimension,
4147 * then we bail out as well. It would be possible to reformulate the options
4148 * in terms of the new schedule domain, but that would introduce constraints
4149 * that separate the domains in the options and that is something we would
4151 * In the case of a schedule tree input, we bail out if any of
4152 * the descendants of the current schedule node refer to outer
4153 * schedule nodes in any way.
4156 * To see if there is any shifted stride, we look at the differences
4157 * between the values of the current dimension in pairs of domains
4158 * for equal values of outer dimensions. These differences should be
4163 * with "m" the stride and "r" a constant. Note that we cannot perform
4164 * this analysis on individual domains as the lower bound in each domain
4165 * may depend on parameters or outer dimensions and so the current dimension
4166 * itself may not have a fixed remainder on division by the stride.
4168 * In particular, we compare the first domain that does not have an
4169 * obviously fixed value for the current dimension to itself and all
4170 * other domains and collect the offsets and the gcd of the strides.
4171 * If the gcd becomes one, then we failed to find shifted strides.
4172 * If the gcd is zero, then the differences were all fixed, meaning
4173 * that some domains had non-obviously fixed values for the current dimension.
4174 * If all the offsets are the same (for those domains that do not have
4175 * an obviously fixed value for the current dimension), then we do not
4176 * apply the transformation.
4177 * If none of the domains were skipped, then there is nothing to do.
4178 * If some of them were skipped, then if we apply separation, the schedule
4179 * domain should get split in pieces with a (non-shifted) stride.
4181 * Otherwise, we apply a shift to expose the stride in
4182 * generate_shift_component.
4184 static __isl_give isl_ast_graft_list
*generate_component(
4185 struct isl_set_map_pair
*domain
, int *order
, int n
,
4186 __isl_take isl_ast_build
*build
)
4193 isl_val
*gcd
= NULL
;
4197 isl_ast_graft_list
*list
;
4200 depth
= isl_ast_build_get_depth(build
);
4205 if (skip
>= 0 && !skip
)
4206 skip
= at_most_one_non_fixed(domain
, order
, n
, depth
);
4207 if (skip
>= 0 && !skip
) {
4208 if (isl_ast_build_has_schedule_node(build
))
4209 skip
= has_anchored_subtree(build
);
4211 skip
= isl_ast_build_options_involve_depth(build
);
4216 return generate_shifted_component_from_list(domain
,
4219 base
= eliminate_non_fixed(domain
, order
, n
, depth
, build
);
4223 ctx
= isl_ast_build_get_ctx(build
);
4225 mv
= isl_multi_val_zero(isl_space_set_alloc(ctx
, 0, n
));
4228 for (i
= 0; i
< n
; ++i
) {
4231 map
= isl_map_from_domain_and_range(
4232 isl_set_copy(domain
[order
[base
]].set
),
4233 isl_set_copy(domain
[order
[i
]].set
));
4234 for (d
= 0; d
< depth
; ++d
)
4235 map
= isl_map_equate(map
, isl_dim_in
, d
,
4237 deltas
= isl_map_deltas(map
);
4238 res
= isl_set_dim_residue_class_val(deltas
, depth
, &m
, &r
);
4239 isl_set_free(deltas
);
4246 gcd
= isl_val_gcd(gcd
, m
);
4247 if (isl_val_is_one(gcd
)) {
4251 mv
= isl_multi_val_set_val(mv
, i
, r
);
4253 res
= dim_is_fixed(domain
[order
[i
]].set
, depth
);
4259 if (fixed
&& i
> base
) {
4261 a
= isl_multi_val_get_val(mv
, i
);
4262 b
= isl_multi_val_get_val(mv
, base
);
4263 if (isl_val_ne(a
, b
))
4270 if (res
< 0 || !gcd
) {
4271 isl_ast_build_free(build
);
4273 } else if (i
< n
|| fixed
|| isl_val_is_zero(gcd
)) {
4274 list
= generate_shifted_component_from_list(domain
,
4277 list
= generate_shift_component(domain
, order
, n
, gcd
, mv
,
4282 isl_multi_val_free(mv
);
4286 isl_ast_build_free(build
);
4290 /* Store both "map" itself and its domain in the
4291 * structure pointed to by *next and advance to the next array element.
4293 static isl_stat
extract_domain(__isl_take isl_map
*map
, void *user
)
4295 struct isl_set_map_pair
**next
= user
;
4297 (*next
)->map
= isl_map_copy(map
);
4298 (*next
)->set
= isl_map_domain(map
);
4304 static isl_bool
after_in_tree(__isl_keep isl_union_map
*umap
,
4305 __isl_keep isl_schedule_node
*node
);
4307 /* Is any domain element of "umap" scheduled after any of
4308 * the corresponding image elements by the tree rooted at
4309 * the child of "node"?
4311 static isl_bool
after_in_child(__isl_keep isl_union_map
*umap
,
4312 __isl_keep isl_schedule_node
*node
)
4314 isl_schedule_node
*child
;
4317 child
= isl_schedule_node_get_child(node
, 0);
4318 after
= after_in_tree(umap
, child
);
4319 isl_schedule_node_free(child
);
4324 /* Is any domain element of "umap" scheduled after any of
4325 * the corresponding image elements by the tree rooted at
4326 * the band node "node"?
4328 * We first check if any domain element is scheduled after any
4329 * of the corresponding image elements by the band node itself.
4330 * If not, we restrict "map" to those pairs of element that
4331 * are scheduled together by the band node and continue with
4332 * the child of the band node.
4333 * If there are no such pairs then the map passed to after_in_child
4334 * will be empty causing it to return 0.
4336 static isl_bool
after_in_band(__isl_keep isl_union_map
*umap
,
4337 __isl_keep isl_schedule_node
*node
)
4339 isl_multi_union_pw_aff
*mupa
;
4340 isl_union_map
*partial
, *test
, *gt
, *universe
, *umap1
, *umap2
;
4341 isl_union_set
*domain
, *range
;
4347 n
= isl_schedule_node_band_n_member(node
);
4349 return isl_bool_error
;
4351 return after_in_child(umap
, node
);
4353 mupa
= isl_schedule_node_band_get_partial_schedule(node
);
4354 space
= isl_multi_union_pw_aff_get_space(mupa
);
4355 partial
= isl_union_map_from_multi_union_pw_aff(mupa
);
4356 test
= isl_union_map_copy(umap
);
4357 test
= isl_union_map_apply_domain(test
, isl_union_map_copy(partial
));
4358 test
= isl_union_map_apply_range(test
, isl_union_map_copy(partial
));
4359 gt
= isl_union_map_from_map(isl_map_lex_gt(space
));
4360 test
= isl_union_map_intersect(test
, gt
);
4361 empty
= isl_union_map_is_empty(test
);
4362 isl_union_map_free(test
);
4364 if (empty
< 0 || !empty
) {
4365 isl_union_map_free(partial
);
4366 return isl_bool_not(empty
);
4369 universe
= isl_union_map_universe(isl_union_map_copy(umap
));
4370 domain
= isl_union_map_domain(isl_union_map_copy(universe
));
4371 range
= isl_union_map_range(universe
);
4372 umap1
= isl_union_map_copy(partial
);
4373 umap1
= isl_union_map_intersect_domain(umap1
, domain
);
4374 umap2
= isl_union_map_intersect_domain(partial
, range
);
4375 test
= isl_union_map_apply_range(umap1
, isl_union_map_reverse(umap2
));
4376 test
= isl_union_map_intersect(test
, isl_union_map_copy(umap
));
4377 after
= after_in_child(test
, node
);
4378 isl_union_map_free(test
);
4382 /* Is any domain element of "umap" scheduled after any of
4383 * the corresponding image elements by the tree rooted at
4384 * the context node "node"?
4386 * The context constraints apply to the schedule domain,
4387 * so we cannot apply them directly to "umap", which contains
4388 * pairs of statement instances. Instead, we add them
4389 * to the range of the prefix schedule for both domain and
4392 static isl_bool
after_in_context(__isl_keep isl_union_map
*umap
,
4393 __isl_keep isl_schedule_node
*node
)
4395 isl_union_map
*prefix
, *universe
, *umap1
, *umap2
;
4396 isl_union_set
*domain
, *range
;
4400 umap
= isl_union_map_copy(umap
);
4401 context
= isl_schedule_node_context_get_context(node
);
4402 prefix
= isl_schedule_node_get_prefix_schedule_union_map(node
);
4403 universe
= isl_union_map_universe(isl_union_map_copy(umap
));
4404 domain
= isl_union_map_domain(isl_union_map_copy(universe
));
4405 range
= isl_union_map_range(universe
);
4406 umap1
= isl_union_map_copy(prefix
);
4407 umap1
= isl_union_map_intersect_domain(umap1
, domain
);
4408 umap2
= isl_union_map_intersect_domain(prefix
, range
);
4409 umap1
= isl_union_map_intersect_range(umap1
,
4410 isl_union_set_from_set(context
));
4411 umap1
= isl_union_map_apply_range(umap1
, isl_union_map_reverse(umap2
));
4412 umap
= isl_union_map_intersect(umap
, umap1
);
4414 after
= after_in_child(umap
, node
);
4416 isl_union_map_free(umap
);
4421 /* Is any domain element of "umap" scheduled after any of
4422 * the corresponding image elements by the tree rooted at
4423 * the expansion node "node"?
4425 * We apply the expansion to domain and range of "umap" and
4426 * continue with its child.
4428 static isl_bool
after_in_expansion(__isl_keep isl_union_map
*umap
,
4429 __isl_keep isl_schedule_node
*node
)
4431 isl_union_map
*expansion
;
4434 expansion
= isl_schedule_node_expansion_get_expansion(node
);
4435 umap
= isl_union_map_copy(umap
);
4436 umap
= isl_union_map_apply_domain(umap
, isl_union_map_copy(expansion
));
4437 umap
= isl_union_map_apply_range(umap
, expansion
);
4439 after
= after_in_child(umap
, node
);
4441 isl_union_map_free(umap
);
4446 /* Is any domain element of "umap" scheduled after any of
4447 * the corresponding image elements by the tree rooted at
4448 * the extension node "node"?
4450 * Since the extension node may add statement instances before or
4451 * after the pairs of statement instances in "umap", we return isl_bool_true
4452 * to ensure that these pairs are not broken up.
4454 static isl_bool
after_in_extension(__isl_keep isl_union_map
*umap
,
4455 __isl_keep isl_schedule_node
*node
)
4457 return isl_bool_true
;
4460 /* Is any domain element of "umap" scheduled after any of
4461 * the corresponding image elements by the tree rooted at
4462 * the filter node "node"?
4464 * We intersect domain and range of "umap" with the filter and
4465 * continue with its child.
4467 static isl_bool
after_in_filter(__isl_keep isl_union_map
*umap
,
4468 __isl_keep isl_schedule_node
*node
)
4470 isl_union_set
*filter
;
4473 umap
= isl_union_map_copy(umap
);
4474 filter
= isl_schedule_node_filter_get_filter(node
);
4475 umap
= isl_union_map_intersect_domain(umap
, isl_union_set_copy(filter
));
4476 umap
= isl_union_map_intersect_range(umap
, filter
);
4478 after
= after_in_child(umap
, node
);
4480 isl_union_map_free(umap
);
4485 /* Is any domain element of "umap" scheduled after any of
4486 * the corresponding image elements by the tree rooted at
4487 * the set node "node"?
4489 * This is only the case if this condition holds in any
4490 * of the (filter) children of the set node.
4491 * In particular, if the domain and the range of "umap"
4492 * are contained in different children, then the condition
4495 static isl_bool
after_in_set(__isl_keep isl_union_map
*umap
,
4496 __isl_keep isl_schedule_node
*node
)
4501 n
= isl_schedule_node_n_children(node
);
4503 return isl_bool_error
;
4504 for (i
= 0; i
< n
; ++i
) {
4505 isl_schedule_node
*child
;
4508 child
= isl_schedule_node_get_child(node
, i
);
4509 after
= after_in_tree(umap
, child
);
4510 isl_schedule_node_free(child
);
4512 if (after
< 0 || after
)
4516 return isl_bool_false
;
4519 /* Return the filter of child "i" of "node".
4521 static __isl_give isl_union_set
*child_filter(
4522 __isl_keep isl_schedule_node
*node
, int i
)
4524 isl_schedule_node
*child
;
4525 isl_union_set
*filter
;
4527 child
= isl_schedule_node_get_child(node
, i
);
4528 filter
= isl_schedule_node_filter_get_filter(child
);
4529 isl_schedule_node_free(child
);
4534 /* Is any domain element of "umap" scheduled after any of
4535 * the corresponding image elements by the tree rooted at
4536 * the sequence node "node"?
4538 * This happens in particular if any domain element is
4539 * contained in a later child than one containing a range element or
4540 * if the condition holds within a given child in the sequence.
4541 * The later part of the condition is checked by after_in_set.
4543 static isl_bool
after_in_sequence(__isl_keep isl_union_map
*umap
,
4544 __isl_keep isl_schedule_node
*node
)
4548 isl_union_map
*umap_i
;
4550 isl_bool after
= isl_bool_false
;
4552 n
= isl_schedule_node_n_children(node
);
4554 return isl_bool_error
;
4555 for (i
= 1; i
< n
; ++i
) {
4556 isl_union_set
*filter_i
;
4558 umap_i
= isl_union_map_copy(umap
);
4559 filter_i
= child_filter(node
, i
);
4560 umap_i
= isl_union_map_intersect_domain(umap_i
, filter_i
);
4561 empty
= isl_union_map_is_empty(umap_i
);
4565 isl_union_map_free(umap_i
);
4569 for (j
= 0; j
< i
; ++j
) {
4570 isl_union_set
*filter_j
;
4571 isl_union_map
*umap_ij
;
4573 umap_ij
= isl_union_map_copy(umap_i
);
4574 filter_j
= child_filter(node
, j
);
4575 umap_ij
= isl_union_map_intersect_range(umap_ij
,
4577 empty
= isl_union_map_is_empty(umap_ij
);
4578 isl_union_map_free(umap_ij
);
4583 after
= isl_bool_true
;
4588 isl_union_map_free(umap_i
);
4593 if (after
< 0 || after
)
4596 return after_in_set(umap
, node
);
4598 isl_union_map_free(umap_i
);
4599 return isl_bool_error
;
4602 /* Is any domain element of "umap" scheduled after any of
4603 * the corresponding image elements by the tree rooted at "node"?
4605 * If "umap" is empty, then clearly there is no such element.
4606 * Otherwise, consider the different types of nodes separately.
4608 static isl_bool
after_in_tree(__isl_keep isl_union_map
*umap
,
4609 __isl_keep isl_schedule_node
*node
)
4612 enum isl_schedule_node_type type
;
4614 empty
= isl_union_map_is_empty(umap
);
4616 return isl_bool_error
;
4618 return isl_bool_false
;
4620 return isl_bool_error
;
4622 type
= isl_schedule_node_get_type(node
);
4624 case isl_schedule_node_error
:
4625 return isl_bool_error
;
4626 case isl_schedule_node_leaf
:
4627 return isl_bool_false
;
4628 case isl_schedule_node_band
:
4629 return after_in_band(umap
, node
);
4630 case isl_schedule_node_domain
:
4631 isl_die(isl_schedule_node_get_ctx(node
), isl_error_internal
,
4632 "unexpected internal domain node",
4633 return isl_bool_error
);
4634 case isl_schedule_node_context
:
4635 return after_in_context(umap
, node
);
4636 case isl_schedule_node_expansion
:
4637 return after_in_expansion(umap
, node
);
4638 case isl_schedule_node_extension
:
4639 return after_in_extension(umap
, node
);
4640 case isl_schedule_node_filter
:
4641 return after_in_filter(umap
, node
);
4642 case isl_schedule_node_guard
:
4643 case isl_schedule_node_mark
:
4644 return after_in_child(umap
, node
);
4645 case isl_schedule_node_set
:
4646 return after_in_set(umap
, node
);
4647 case isl_schedule_node_sequence
:
4648 return after_in_sequence(umap
, node
);
4651 return isl_bool_true
;
4654 /* Is any domain element of "map1" scheduled after any domain
4655 * element of "map2" by the subtree underneath the current band node,
4656 * while at the same time being scheduled together by the current
4657 * band node, i.e., by "map1" and "map2?
4659 * If the child of the current band node is a leaf, then
4660 * no element can be scheduled after any other element.
4662 * Otherwise, we construct a relation between domain elements
4663 * of "map1" and domain elements of "map2" that are scheduled
4664 * together and then check if the subtree underneath the current
4665 * band node determines their relative order.
4667 static isl_bool
after_in_subtree(__isl_keep isl_ast_build
*build
,
4668 __isl_keep isl_map
*map1
, __isl_keep isl_map
*map2
)
4670 isl_schedule_node
*node
;
4672 isl_union_map
*umap
;
4675 node
= isl_ast_build_get_schedule_node(build
);
4677 return isl_bool_error
;
4678 node
= isl_schedule_node_child(node
, 0);
4679 if (isl_schedule_node_get_type(node
) == isl_schedule_node_leaf
) {
4680 isl_schedule_node_free(node
);
4681 return isl_bool_false
;
4683 map
= isl_map_copy(map2
);
4684 map
= isl_map_apply_domain(map
, isl_map_copy(map1
));
4685 umap
= isl_union_map_from_map(map
);
4686 after
= after_in_tree(umap
, node
);
4687 isl_union_map_free(umap
);
4688 isl_schedule_node_free(node
);
4692 /* Internal data for any_scheduled_after.
4694 * "build" is the build in which the AST is constructed.
4695 * "depth" is the number of loops that have already been generated
4696 * "group_coscheduled" is a local copy of options->ast_build_group_coscheduled
4697 * "domain" is an array of set-map pairs corresponding to the different
4698 * iteration domains. The set is the schedule domain, i.e., the domain
4699 * of the inverse schedule, while the map is the inverse schedule itself.
4701 struct isl_any_scheduled_after_data
{
4702 isl_ast_build
*build
;
4704 int group_coscheduled
;
4705 struct isl_set_map_pair
*domain
;
4708 /* Is any element of domain "i" scheduled after any element of domain "j"
4709 * (for a common iteration of the first data->depth loops)?
4711 * data->domain[i].set contains the domain of the inverse schedule
4712 * for domain "i", i.e., elements in the schedule domain.
4714 * If we are inside a band of a schedule tree and there is a pair
4715 * of elements in the two domains that is schedule together by
4716 * the current band, then we check if any element of "i" may be schedule
4717 * after element of "j" by the descendants of the band node.
4719 * If data->group_coscheduled is set, then we also return 1 if there
4720 * is any pair of elements in the two domains that are scheduled together.
4722 static isl_bool
any_scheduled_after(int i
, int j
, void *user
)
4724 struct isl_any_scheduled_after_data
*data
= user
;
4725 isl_size dim
= isl_set_dim(data
->domain
[i
].set
, isl_dim_set
);
4729 return isl_bool_error
;
4731 for (pos
= data
->depth
; pos
< dim
; ++pos
) {
4734 follows
= isl_set_follows_at(data
->domain
[i
].set
,
4735 data
->domain
[j
].set
, pos
);
4738 return isl_bool_error
;
4740 return isl_bool_true
;
4742 return isl_bool_false
;
4745 if (isl_ast_build_has_schedule_node(data
->build
)) {
4748 after
= after_in_subtree(data
->build
, data
->domain
[i
].map
,
4749 data
->domain
[j
].map
);
4750 if (after
< 0 || after
)
4754 return isl_bool_ok(data
->group_coscheduled
);
4757 /* Look for independent components at the current depth and generate code
4758 * for each component separately. The resulting lists of grafts are
4759 * merged in an attempt to combine grafts with identical guards.
4761 * Code for two domains can be generated separately if all the elements
4762 * of one domain are scheduled before (or together with) all the elements
4763 * of the other domain. We therefore consider the graph with as nodes
4764 * the domains and an edge between two nodes if any element of the first
4765 * node is scheduled after any element of the second node.
4766 * If the ast_build_group_coscheduled is set, then we also add an edge if
4767 * there is any pair of elements in the two domains that are scheduled
4769 * Code is then generated (by generate_component)
4770 * for each of the strongly connected components in this graph
4771 * in their topological order.
4773 * Since the test is performed on the domain of the inverse schedules of
4774 * the different domains, we precompute these domains and store
4775 * them in data.domain.
4777 static __isl_give isl_ast_graft_list
*generate_components(
4778 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
4781 isl_ctx
*ctx
= isl_ast_build_get_ctx(build
);
4782 isl_size n
= isl_union_map_n_map(executed
);
4784 struct isl_any_scheduled_after_data data
;
4785 struct isl_set_map_pair
*next
;
4786 struct isl_tarjan_graph
*g
= NULL
;
4787 isl_ast_graft_list
*list
= NULL
;
4793 data
.domain
= isl_calloc_array(ctx
, struct isl_set_map_pair
, n
);
4799 if (isl_union_map_foreach_map(executed
, &extract_domain
, &next
) < 0)
4802 depth
= isl_ast_build_get_depth(build
);
4807 data
.group_coscheduled
= isl_options_get_ast_build_group_coscheduled(ctx
);
4808 g
= isl_tarjan_graph_init(ctx
, n
, &any_scheduled_after
, &data
);
4812 list
= isl_ast_graft_list_alloc(ctx
, 0);
4816 isl_ast_graft_list
*list_c
;
4819 if (g
->order
[i
] == -1)
4820 isl_die(ctx
, isl_error_internal
, "cannot happen",
4823 while (g
->order
[i
] != -1) {
4827 list_c
= generate_component(data
.domain
,
4828 g
->order
+ first
, i
- first
,
4829 isl_ast_build_copy(build
));
4830 list
= isl_ast_graft_list_merge(list
, list_c
, build
);
4836 error
: list
= isl_ast_graft_list_free(list
);
4837 isl_tarjan_graph_free(g
);
4838 for (i
= 0; i
< n_domain
; ++i
) {
4839 isl_map_free(data
.domain
[i
].map
);
4840 isl_set_free(data
.domain
[i
].set
);
4843 isl_union_map_free(executed
);
4844 isl_ast_build_free(build
);
4849 /* Generate code for the next level (and all inner levels).
4851 * If "executed" is empty, i.e., no code needs to be generated,
4852 * then we return an empty list.
4854 * If we have already generated code for all loop levels, then we pass
4855 * control to generate_inner_level.
4857 * If "executed" lives in a single space, i.e., if code needs to be
4858 * generated for a single domain, then there can only be a single
4859 * component and we go directly to generate_shifted_component.
4860 * Otherwise, we call generate_components to detect the components
4861 * and to call generate_component on each of them separately.
4863 static __isl_give isl_ast_graft_list
*generate_next_level(
4864 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
4870 if (!build
|| !executed
)
4873 if (isl_union_map_is_empty(executed
)) {
4874 isl_ctx
*ctx
= isl_ast_build_get_ctx(build
);
4875 isl_union_map_free(executed
);
4876 isl_ast_build_free(build
);
4877 return isl_ast_graft_list_alloc(ctx
, 0);
4880 depth
= isl_ast_build_get_depth(build
);
4881 dim
= isl_ast_build_dim(build
, isl_dim_set
);
4882 if (depth
< 0 || dim
< 0)
4885 return generate_inner_level(executed
, build
);
4887 n
= isl_union_map_n_map(executed
);
4891 return generate_shifted_component(executed
, build
);
4893 return generate_components(executed
, build
);
4895 isl_union_map_free(executed
);
4896 isl_ast_build_free(build
);
4900 /* Internal data structure used by isl_ast_build_node_from_schedule_map.
4901 * internal, executed and build are the inputs to generate_code.
4902 * list collects the output.
4904 struct isl_generate_code_data
{
4906 isl_union_map
*executed
;
4907 isl_ast_build
*build
;
4909 isl_ast_graft_list
*list
;
4912 /* Given an inverse schedule in terms of the external build schedule, i.e.,
4916 * with E the external build schedule and S the additional schedule "space",
4917 * reformulate the inverse schedule in terms of the internal schedule domain,
4922 * We first obtain a mapping
4926 * take the inverse and the product with S -> S, resulting in
4928 * [I -> S] -> [E -> S]
4930 * Applying the map to the input produces the desired result.
4932 static __isl_give isl_union_map
*internal_executed(
4933 __isl_take isl_union_map
*executed
, __isl_keep isl_space
*space
,
4934 __isl_keep isl_ast_build
*build
)
4938 proj
= isl_ast_build_get_schedule_map(build
);
4939 proj
= isl_map_reverse(proj
);
4940 space
= isl_space_map_from_set(isl_space_copy(space
));
4941 id
= isl_map_identity(space
);
4942 proj
= isl_map_product(proj
, id
);
4943 executed
= isl_union_map_apply_domain(executed
,
4944 isl_union_map_from_map(proj
));
4948 /* Generate an AST that visits the elements in the range of data->executed
4949 * in the relative order specified by the corresponding domain element(s)
4950 * for those domain elements that belong to "set".
4951 * Add the result to data->list.
4953 * The caller ensures that "set" is a universe domain.
4954 * "space" is the space of the additional part of the schedule.
4955 * It is equal to the space of "set" if build->domain is parametric.
4956 * Otherwise, it is equal to the range of the wrapped space of "set".
4958 * If the build space is not parametric and
4959 * if isl_ast_build_node_from_schedule_map
4960 * was called from an outside user (data->internal not set), then
4961 * the (inverse) schedule refers to the external build domain and needs to
4962 * be transformed to refer to the internal build domain.
4964 * If the build space is parametric, then we add some of the parameter
4965 * constraints to the executed relation. Adding these constraints
4966 * allows for an earlier detection of conflicts in some cases.
4967 * However, we do not want to divide the executed relation into
4968 * more disjuncts than necessary. We therefore approximate
4969 * the constraints on the parameters by a single disjunct set.
4971 * The build is extended to include the additional part of the schedule.
4972 * If the original build space was not parametric, then the options
4973 * in data->build refer only to the additional part of the schedule
4974 * and they need to be adjusted to refer to the complete AST build
4977 * After having adjusted inverse schedule and build, we start generating
4978 * code with the outer loop of the current code generation
4979 * in generate_next_level.
4981 * If the original build space was not parametric, we undo the embedding
4982 * on the resulting isl_ast_node_list so that it can be used within
4983 * the outer AST build.
4985 static isl_stat
generate_code_in_space(struct isl_generate_code_data
*data
,
4986 __isl_take isl_set
*set
, __isl_take isl_space
*space
)
4988 isl_union_map
*executed
;
4989 isl_ast_build
*build
;
4990 isl_ast_graft_list
*list
;
4993 executed
= isl_union_map_copy(data
->executed
);
4994 executed
= isl_union_map_intersect_domain(executed
,
4995 isl_union_set_from_set(set
));
4997 embed
= !isl_set_is_params(data
->build
->domain
);
4998 if (embed
&& !data
->internal
)
4999 executed
= internal_executed(executed
, space
, data
->build
);
5002 domain
= isl_ast_build_get_domain(data
->build
);
5003 domain
= isl_set_from_basic_set(isl_set_simple_hull(domain
));
5004 executed
= isl_union_map_intersect_params(executed
, domain
);
5007 build
= isl_ast_build_copy(data
->build
);
5008 build
= isl_ast_build_product(build
, space
);
5010 list
= generate_next_level(executed
, build
);
5012 list
= isl_ast_graft_list_unembed(list
, embed
);
5014 data
->list
= isl_ast_graft_list_concat(data
->list
, list
);
5019 /* Generate an AST that visits the elements in the range of data->executed
5020 * in the relative order specified by the corresponding domain element(s)
5021 * for those domain elements that belong to "set".
5022 * Add the result to data->list.
5024 * The caller ensures that "set" is a universe domain.
5026 * If the build space S is not parametric, then the space of "set"
5027 * need to be a wrapped relation with S as domain. That is, it needs
5032 * Check this property and pass control to generate_code_in_space
5034 * If the build space is not parametric, then T is the space of "set".
5036 static isl_stat
generate_code_set(__isl_take isl_set
*set
, void *user
)
5038 struct isl_generate_code_data
*data
= user
;
5039 isl_space
*space
, *build_space
;
5042 space
= isl_set_get_space(set
);
5044 if (isl_set_is_params(data
->build
->domain
))
5045 return generate_code_in_space(data
, set
, space
);
5047 build_space
= isl_ast_build_get_space(data
->build
, data
->internal
);
5048 space
= isl_space_unwrap(space
);
5049 is_domain
= isl_space_is_domain(build_space
, space
);
5050 isl_space_free(build_space
);
5051 space
= isl_space_range(space
);
5056 isl_die(isl_set_get_ctx(set
), isl_error_invalid
,
5057 "invalid nested schedule space", goto error
);
5059 return generate_code_in_space(data
, set
, space
);
5062 isl_space_free(space
);
5063 return isl_stat_error
;
5066 /* Generate an AST that visits the elements in the range of "executed"
5067 * in the relative order specified by the corresponding domain element(s).
5069 * "build" is an isl_ast_build that has either been constructed by
5070 * isl_ast_build_from_context or passed to a callback set by
5071 * isl_ast_build_set_create_leaf.
5072 * In the first case, the space of the isl_ast_build is typically
5073 * a parametric space, although this is currently not enforced.
5074 * In the second case, the space is never a parametric space.
5075 * If the space S is not parametric, then the domain space(s) of "executed"
5076 * need to be wrapped relations with S as domain.
5078 * If the domain of "executed" consists of several spaces, then an AST
5079 * is generated for each of them (in arbitrary order) and the results
5082 * If "internal" is set, then the domain "S" above refers to the internal
5083 * schedule domain representation. Otherwise, it refers to the external
5084 * representation, as returned by isl_ast_build_get_schedule_space.
5086 * We essentially run over all the spaces in the domain of "executed"
5087 * and call generate_code_set on each of them.
5089 static __isl_give isl_ast_graft_list
*generate_code(
5090 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
,
5094 struct isl_generate_code_data data
= { 0 };
5096 isl_union_set
*schedule_domain
;
5097 isl_union_map
*universe
;
5101 space
= isl_ast_build_get_space(build
, 1);
5102 space
= isl_space_align_params(space
,
5103 isl_union_map_get_space(executed
));
5104 space
= isl_space_align_params(space
,
5105 isl_union_map_get_space(build
->options
));
5106 build
= isl_ast_build_align_params(build
, isl_space_copy(space
));
5107 executed
= isl_union_map_align_params(executed
, space
);
5108 if (!executed
|| !build
)
5111 ctx
= isl_ast_build_get_ctx(build
);
5113 data
.internal
= internal
;
5114 data
.executed
= executed
;
5116 data
.list
= isl_ast_graft_list_alloc(ctx
, 0);
5118 universe
= isl_union_map_universe(isl_union_map_copy(executed
));
5119 schedule_domain
= isl_union_map_domain(universe
);
5120 if (isl_union_set_foreach_set(schedule_domain
, &generate_code_set
,
5122 data
.list
= isl_ast_graft_list_free(data
.list
);
5124 isl_union_set_free(schedule_domain
);
5125 isl_union_map_free(executed
);
5127 isl_ast_build_free(build
);
5130 isl_union_map_free(executed
);
5131 isl_ast_build_free(build
);
5135 /* Generate an AST that visits the elements in the domain of "schedule"
5136 * in the relative order specified by the corresponding image element(s).
5138 * "build" is an isl_ast_build that has either been constructed by
5139 * isl_ast_build_from_context or passed to a callback set by
5140 * isl_ast_build_set_create_leaf.
5141 * In the first case, the space of the isl_ast_build is typically
5142 * a parametric space, although this is currently not enforced.
5143 * In the second case, the space is never a parametric space.
5144 * If the space S is not parametric, then the range space(s) of "schedule"
5145 * need to be wrapped relations with S as domain.
5147 * If the range of "schedule" consists of several spaces, then an AST
5148 * is generated for each of them (in arbitrary order) and the results
5151 * We first initialize the local copies of the relevant options.
5152 * We do this here rather than when the isl_ast_build is created
5153 * because the options may have changed between the construction
5154 * of the isl_ast_build and the call to isl_generate_code.
5156 * The main computation is performed on an inverse schedule (with
5157 * the schedule domain in the domain and the elements to be executed
5158 * in the range) called "executed".
5160 __isl_give isl_ast_node
*isl_ast_build_node_from_schedule_map(
5161 __isl_keep isl_ast_build
*build
, __isl_take isl_union_map
*schedule
)
5163 isl_ast_graft_list
*list
;
5165 isl_union_map
*executed
;
5167 build
= isl_ast_build_copy(build
);
5168 build
= isl_ast_build_set_single_valued(build
, 0);
5169 schedule
= isl_union_map_coalesce(schedule
);
5170 schedule
= isl_union_map_remove_redundancies(schedule
);
5171 executed
= isl_union_map_reverse(schedule
);
5172 list
= generate_code(executed
, isl_ast_build_copy(build
), 0);
5173 node
= isl_ast_node_from_graft_list(list
, build
);
5174 isl_ast_build_free(build
);
5179 /* The old name for isl_ast_build_node_from_schedule_map.
5180 * It is being kept for backward compatibility, but
5181 * it will be removed in the future.
5183 __isl_give isl_ast_node
*isl_ast_build_ast_from_schedule(
5184 __isl_keep isl_ast_build
*build
, __isl_take isl_union_map
*schedule
)
5186 return isl_ast_build_node_from_schedule_map(build
, schedule
);
5189 /* Generate an AST that visits the elements in the domain of "executed"
5190 * in the relative order specified by the leaf node "node".
5192 * The relation "executed" maps the outer generated loop iterators
5193 * to the domain elements executed by those iterations.
5195 * Simply pass control to generate_inner_level.
5196 * Note that the current build does not refer to any band node, so
5197 * that generate_inner_level will not try to visit the child of
5200 * If multiple statement instances reach a leaf,
5201 * then they can be executed in any order.
5202 * Group the list of grafts based on shared guards
5203 * such that identical guards are only generated once
5204 * when the list is eventually passed on to isl_ast_graft_list_fuse.
5206 static __isl_give isl_ast_graft_list
*build_ast_from_leaf(
5207 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5208 __isl_take isl_union_map
*executed
)
5210 isl_ast_graft_list
*list
;
5212 isl_schedule_node_free(node
);
5213 list
= generate_inner_level(executed
, isl_ast_build_copy(build
));
5214 list
= isl_ast_graft_list_group_on_guard(list
, build
);
5215 isl_ast_build_free(build
);
5220 /* Check that the band partial schedule "partial" does not filter out
5221 * any statement instances, as specified by the range of "executed".
5223 static isl_stat
check_band_schedule_total_on_instances(
5224 __isl_keep isl_multi_union_pw_aff
*partial
,
5225 __isl_keep isl_union_map
*executed
)
5228 isl_union_set
*domain
, *instances
;
5230 instances
= isl_union_map_range(isl_union_map_copy(executed
));
5231 partial
= isl_multi_union_pw_aff_copy(partial
);
5232 domain
= isl_multi_union_pw_aff_domain(partial
);
5233 subset
= isl_union_set_is_subset(instances
, domain
);
5234 isl_union_set_free(domain
);
5235 isl_union_set_free(instances
);
5238 return isl_stat_error
;
5240 isl_die(isl_union_map_get_ctx(executed
), isl_error_invalid
,
5241 "band node is not allowed to drop statement instances",
5242 return isl_stat_error
);
5246 /* Generate an AST that visits the elements in the domain of "executed"
5247 * in the relative order specified by the band node "node" and its descendants.
5249 * The relation "executed" maps the outer generated loop iterators
5250 * to the domain elements executed by those iterations.
5252 * If the band is empty, we continue with its descendants.
5253 * Otherwise, we extend the build and the inverse schedule with
5254 * the additional space/partial schedule and continue generating
5255 * an AST in generate_next_level.
5256 * As soon as we have extended the inverse schedule with the additional
5257 * partial schedule, we look for equalities that may exists between
5258 * the old and the new part.
5260 static __isl_give isl_ast_graft_list
*build_ast_from_band(
5261 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5262 __isl_take isl_union_map
*executed
)
5265 isl_multi_union_pw_aff
*extra
;
5266 isl_union_map
*extra_umap
;
5267 isl_ast_graft_list
*list
;
5271 n
= isl_schedule_node_band_n_member(node
);
5272 if (!build
|| n
< 0 || !executed
)
5276 return build_ast_from_child(build
, node
, executed
);
5278 extra
= isl_schedule_node_band_get_partial_schedule(node
);
5279 extra
= isl_multi_union_pw_aff_align_params(extra
,
5280 isl_ast_build_get_space(build
, 1));
5281 space
= isl_multi_union_pw_aff_get_space(extra
);
5283 if (check_band_schedule_total_on_instances(extra
, executed
) < 0)
5284 executed
= isl_union_map_free(executed
);
5286 extra_umap
= isl_union_map_from_multi_union_pw_aff(extra
);
5287 extra_umap
= isl_union_map_reverse(extra_umap
);
5289 executed
= isl_union_map_domain_product(executed
, extra_umap
);
5290 executed
= isl_union_map_detect_equalities(executed
);
5292 n1
= isl_ast_build_dim(build
, isl_dim_param
);
5293 build
= isl_ast_build_product(build
, space
);
5294 n2
= isl_ast_build_dim(build
, isl_dim_param
);
5295 if (n1
< 0 || n2
< 0)
5296 build
= isl_ast_build_free(build
);
5298 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
5299 "band node is not allowed to introduce new parameters",
5300 build
= isl_ast_build_free(build
));
5301 build
= isl_ast_build_set_schedule_node(build
, node
);
5303 list
= generate_next_level(executed
, build
);
5305 list
= isl_ast_graft_list_unembed(list
, 1);
5309 isl_schedule_node_free(node
);
5310 isl_union_map_free(executed
);
5311 isl_ast_build_free(build
);
5315 /* Hoist a list of grafts (in practice containing a single graft)
5316 * from "sub_build" (which includes extra context information)
5319 * In particular, project out all additional parameters introduced
5320 * by the context node from the enforced constraints and the guard
5321 * of the single graft.
5323 static __isl_give isl_ast_graft_list
*hoist_out_of_context(
5324 __isl_take isl_ast_graft_list
*list
, __isl_keep isl_ast_build
*build
,
5325 __isl_keep isl_ast_build
*sub_build
)
5327 isl_ast_graft
*graft
;
5328 isl_basic_set
*enforced
;
5330 isl_size n_param
, extra_param
;
5332 n_param
= isl_ast_build_dim(build
, isl_dim_param
);
5333 extra_param
= isl_ast_build_dim(sub_build
, isl_dim_param
);
5334 if (n_param
< 0 || extra_param
< 0)
5335 return isl_ast_graft_list_free(list
);
5337 if (extra_param
== n_param
)
5340 extra_param
-= n_param
;
5341 enforced
= isl_ast_graft_list_extract_shared_enforced(list
, sub_build
);
5342 enforced
= isl_basic_set_project_out(enforced
, isl_dim_param
,
5343 n_param
, extra_param
);
5344 enforced
= isl_basic_set_remove_unknown_divs(enforced
);
5345 guard
= isl_ast_graft_list_extract_hoistable_guard(list
, sub_build
);
5346 guard
= isl_set_remove_divs_involving_dims(guard
, isl_dim_param
,
5347 n_param
, extra_param
);
5348 guard
= isl_set_project_out(guard
, isl_dim_param
, n_param
, extra_param
);
5349 guard
= isl_set_compute_divs(guard
);
5350 graft
= isl_ast_graft_alloc_from_children(list
, guard
, enforced
,
5352 list
= isl_ast_graft_list_from_ast_graft(graft
);
5357 /* Generate an AST that visits the elements in the domain of "executed"
5358 * in the relative order specified by the context node "node"
5359 * and its descendants.
5361 * The relation "executed" maps the outer generated loop iterators
5362 * to the domain elements executed by those iterations.
5364 * The context node may introduce additional parameters as well as
5365 * constraints on the outer schedule dimensions or original parameters.
5367 * We add the extra parameters to a new build and the context
5368 * constraints to both the build and (as a single disjunct)
5369 * to the domain of "executed". Since the context constraints
5370 * are specified in terms of the input schedule, we first need
5371 * to map them to the internal schedule domain.
5373 * After constructing the AST from the descendants of "node",
5374 * we combine the list of grafts into a single graft within
5375 * the new build, in order to be able to exploit the additional
5376 * context constraints during this combination.
5378 * Additionally, if the current node is the outermost node in
5379 * the schedule tree (apart from the root domain node), we generate
5380 * all pending guards, again to be able to exploit the additional
5381 * context constraints. We currently do not do this for internal
5382 * context nodes since we may still want to hoist conditions
5383 * to outer AST nodes.
5385 * If the context node introduced any new parameters, then they
5386 * are removed from the set of enforced constraints and guard
5387 * in hoist_out_of_context.
5389 static __isl_give isl_ast_graft_list
*build_ast_from_context(
5390 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5391 __isl_take isl_union_map
*executed
)
5395 isl_multi_aff
*internal2input
;
5396 isl_ast_build
*sub_build
;
5397 isl_ast_graft_list
*list
;
5401 depth
= isl_schedule_node_get_tree_depth(node
);
5403 build
= isl_ast_build_free(build
);
5404 space
= isl_ast_build_get_space(build
, 1);
5405 context
= isl_schedule_node_context_get_context(node
);
5406 context
= isl_set_align_params(context
, space
);
5407 sub_build
= isl_ast_build_copy(build
);
5408 space
= isl_set_get_space(context
);
5409 sub_build
= isl_ast_build_align_params(sub_build
, space
);
5410 internal2input
= isl_ast_build_get_internal2input(sub_build
);
5411 context
= isl_set_preimage_multi_aff(context
, internal2input
);
5412 sub_build
= isl_ast_build_restrict_generated(sub_build
,
5413 isl_set_copy(context
));
5414 context
= isl_set_from_basic_set(isl_set_simple_hull(context
));
5415 executed
= isl_union_map_intersect_domain(executed
,
5416 isl_union_set_from_set(context
));
5418 list
= build_ast_from_child(isl_ast_build_copy(sub_build
),
5420 n
= isl_ast_graft_list_n_ast_graft(list
);
5422 list
= isl_ast_graft_list_free(list
);
5424 list
= isl_ast_graft_list_fuse(list
, sub_build
);
5426 list
= isl_ast_graft_list_insert_pending_guard_nodes(list
,
5429 list
= hoist_out_of_context(list
, build
, sub_build
);
5431 isl_ast_build_free(build
);
5432 isl_ast_build_free(sub_build
);
5437 /* Generate an AST that visits the elements in the domain of "executed"
5438 * in the relative order specified by the expansion node "node" and
5441 * The relation "executed" maps the outer generated loop iterators
5442 * to the domain elements executed by those iterations.
5444 * We expand the domain elements by the expansion and
5445 * continue with the descendants of the node.
5447 static __isl_give isl_ast_graft_list
*build_ast_from_expansion(
5448 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5449 __isl_take isl_union_map
*executed
)
5451 isl_union_map
*expansion
;
5454 expansion
= isl_schedule_node_expansion_get_expansion(node
);
5455 expansion
= isl_union_map_align_params(expansion
,
5456 isl_union_map_get_space(executed
));
5458 n1
= isl_union_map_dim(executed
, isl_dim_param
);
5459 executed
= isl_union_map_apply_range(executed
, expansion
);
5460 n2
= isl_union_map_dim(executed
, isl_dim_param
);
5461 if (n1
< 0 || n2
< 0)
5464 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
5465 "expansion node is not allowed to introduce "
5466 "new parameters", goto error
);
5468 return build_ast_from_child(build
, node
, executed
);
5470 isl_ast_build_free(build
);
5471 isl_schedule_node_free(node
);
5472 isl_union_map_free(executed
);
5476 /* Generate an AST that visits the elements in the domain of "executed"
5477 * in the relative order specified by the extension node "node" and
5480 * The relation "executed" maps the outer generated loop iterators
5481 * to the domain elements executed by those iterations.
5483 * Extend the inverse schedule with the extension applied to current
5484 * set of generated constraints. Since the extension if formulated
5485 * in terms of the input schedule, it first needs to be transformed
5486 * to refer to the internal schedule.
5488 static __isl_give isl_ast_graft_list
*build_ast_from_extension(
5489 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5490 __isl_take isl_union_map
*executed
)
5492 isl_union_set
*schedule_domain
;
5493 isl_union_map
*extension
;
5496 set
= isl_ast_build_get_generated(build
);
5497 set
= isl_set_from_basic_set(isl_set_simple_hull(set
));
5498 schedule_domain
= isl_union_set_from_set(set
);
5500 extension
= isl_schedule_node_extension_get_extension(node
);
5502 extension
= isl_union_map_preimage_domain_multi_aff(extension
,
5503 isl_multi_aff_copy(build
->internal2input
));
5504 extension
= isl_union_map_intersect_domain(extension
, schedule_domain
);
5505 extension
= isl_ast_build_substitute_values_union_map_domain(build
,
5507 executed
= isl_union_map_union(executed
, extension
);
5509 return build_ast_from_child(build
, node
, executed
);
5512 /* Generate an AST that visits the elements in the domain of "executed"
5513 * in the relative order specified by the filter node "node" and
5516 * The relation "executed" maps the outer generated loop iterators
5517 * to the domain elements executed by those iterations.
5519 * We simply intersect the iteration domain (i.e., the range of "executed")
5520 * with the filter and continue with the descendants of the node,
5521 * unless the resulting inverse schedule is empty, in which
5522 * case we return an empty list.
5524 * If the result of the intersection is equal to the original "executed"
5525 * relation, then keep the original representation since the intersection
5526 * may have unnecessarily broken up the relation into a greater number
5529 static __isl_give isl_ast_graft_list
*build_ast_from_filter(
5530 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5531 __isl_take isl_union_map
*executed
)
5534 isl_union_set
*filter
;
5535 isl_union_map
*orig
;
5536 isl_ast_graft_list
*list
;
5541 orig
= isl_union_map_copy(executed
);
5542 if (!build
|| !node
|| !executed
)
5545 filter
= isl_schedule_node_filter_get_filter(node
);
5546 filter
= isl_union_set_align_params(filter
,
5547 isl_union_map_get_space(executed
));
5548 n1
= isl_union_map_dim(executed
, isl_dim_param
);
5549 executed
= isl_union_map_intersect_range(executed
, filter
);
5550 n2
= isl_union_map_dim(executed
, isl_dim_param
);
5551 if (n1
< 0 || n2
< 0)
5554 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
5555 "filter node is not allowed to introduce "
5556 "new parameters", goto error
);
5558 unchanged
= isl_union_map_is_subset(orig
, executed
);
5559 empty
= isl_union_map_is_empty(executed
);
5560 if (unchanged
< 0 || empty
< 0)
5563 isl_union_map_free(executed
);
5564 return build_ast_from_child(build
, node
, orig
);
5566 isl_union_map_free(orig
);
5568 return build_ast_from_child(build
, node
, executed
);
5570 ctx
= isl_ast_build_get_ctx(build
);
5571 list
= isl_ast_graft_list_alloc(ctx
, 0);
5572 isl_ast_build_free(build
);
5573 isl_schedule_node_free(node
);
5574 isl_union_map_free(executed
);
5577 isl_ast_build_free(build
);
5578 isl_schedule_node_free(node
);
5579 isl_union_map_free(executed
);
5580 isl_union_map_free(orig
);
5584 /* Generate an AST that visits the elements in the domain of "executed"
5585 * in the relative order specified by the guard node "node" and
5588 * The relation "executed" maps the outer generated loop iterators
5589 * to the domain elements executed by those iterations.
5591 * Ensure that the associated guard is enforced by the outer AST
5592 * constructs by adding it to the guard of the graft.
5593 * Since we know that we will enforce the guard, we can also include it
5594 * in the generated constraints used to construct an AST for
5595 * the descendant nodes.
5597 static __isl_give isl_ast_graft_list
*build_ast_from_guard(
5598 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5599 __isl_take isl_union_map
*executed
)
5602 isl_set
*guard
, *hoisted
;
5603 isl_basic_set
*enforced
;
5604 isl_ast_build
*sub_build
;
5605 isl_ast_graft
*graft
;
5606 isl_ast_graft_list
*list
;
5609 space
= isl_ast_build_get_space(build
, 1);
5610 guard
= isl_schedule_node_guard_get_guard(node
);
5611 n1
= isl_space_dim(space
, isl_dim_param
);
5612 guard
= isl_set_align_params(guard
, space
);
5613 n2
= isl_set_dim(guard
, isl_dim_param
);
5614 if (n1
< 0 || n2
< 0)
5615 guard
= isl_set_free(guard
);
5617 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
5618 "guard node is not allowed to introduce "
5619 "new parameters", guard
= isl_set_free(guard
));
5620 guard
= isl_set_preimage_multi_aff(guard
,
5621 isl_multi_aff_copy(build
->internal2input
));
5622 guard
= isl_ast_build_specialize(build
, guard
);
5623 guard
= isl_set_gist(guard
, isl_set_copy(build
->generated
));
5625 sub_build
= isl_ast_build_copy(build
);
5626 sub_build
= isl_ast_build_restrict_generated(sub_build
,
5627 isl_set_copy(guard
));
5629 list
= build_ast_from_child(isl_ast_build_copy(sub_build
),
5632 hoisted
= isl_ast_graft_list_extract_hoistable_guard(list
, sub_build
);
5633 n
= isl_set_n_basic_set(hoisted
);
5635 list
= isl_ast_graft_list_free(list
);
5637 list
= isl_ast_graft_list_gist_guards(list
,
5638 isl_set_copy(hoisted
));
5639 guard
= isl_set_intersect(guard
, hoisted
);
5640 enforced
= extract_shared_enforced(list
, build
);
5641 graft
= isl_ast_graft_alloc_from_children(list
, guard
, enforced
,
5644 isl_ast_build_free(sub_build
);
5645 isl_ast_build_free(build
);
5646 return isl_ast_graft_list_from_ast_graft(graft
);
5649 /* Call the before_each_mark callback, if requested by the user.
5651 * Return 0 on success and -1 on error.
5653 * The caller is responsible for recording the current inverse schedule
5656 static isl_stat
before_each_mark(__isl_keep isl_id
*mark
,
5657 __isl_keep isl_ast_build
*build
)
5660 return isl_stat_error
;
5661 if (!build
->before_each_mark
)
5663 return build
->before_each_mark(mark
, build
,
5664 build
->before_each_mark_user
);
5667 /* Call the after_each_mark callback, if requested by the user.
5669 * The caller is responsible for recording the current inverse schedule
5672 static __isl_give isl_ast_graft
*after_each_mark(
5673 __isl_take isl_ast_graft
*graft
, __isl_keep isl_ast_build
*build
)
5675 if (!graft
|| !build
)
5676 return isl_ast_graft_free(graft
);
5677 if (!build
->after_each_mark
)
5679 graft
->node
= build
->after_each_mark(graft
->node
, build
,
5680 build
->after_each_mark_user
);
5682 return isl_ast_graft_free(graft
);
5687 /* Generate an AST that visits the elements in the domain of "executed"
5688 * in the relative order specified by the mark node "node" and
5691 * The relation "executed" maps the outer generated loop iterators
5692 * to the domain elements executed by those iterations.
5694 * Since we may be calling before_each_mark and after_each_mark
5695 * callbacks, we record the current inverse schedule in the build.
5697 * We generate an AST for the child of the mark node, combine
5698 * the graft list into a single graft and then insert the mark
5699 * in the AST of that single graft.
5701 static __isl_give isl_ast_graft_list
*build_ast_from_mark(
5702 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5703 __isl_take isl_union_map
*executed
)
5706 isl_ast_graft
*graft
;
5707 isl_ast_graft_list
*list
;
5710 build
= isl_ast_build_set_executed(build
, isl_union_map_copy(executed
));
5712 mark
= isl_schedule_node_mark_get_id(node
);
5713 if (before_each_mark(mark
, build
) < 0)
5714 node
= isl_schedule_node_free(node
);
5716 list
= build_ast_from_child(isl_ast_build_copy(build
), node
, executed
);
5717 list
= isl_ast_graft_list_fuse(list
, build
);
5718 n
= isl_ast_graft_list_n_ast_graft(list
);
5720 list
= isl_ast_graft_list_free(list
);
5724 graft
= isl_ast_graft_list_get_ast_graft(list
, 0);
5725 graft
= isl_ast_graft_insert_mark(graft
, mark
);
5726 graft
= after_each_mark(graft
, build
);
5727 list
= isl_ast_graft_list_set_ast_graft(list
, 0, graft
);
5729 isl_ast_build_free(build
);
5734 static __isl_give isl_ast_graft_list
*build_ast_from_schedule_node(
5735 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5736 __isl_take isl_union_map
*executed
);
5738 /* Generate an AST that visits the elements in the domain of "executed"
5739 * in the relative order specified by the sequence (or set) node "node" and
5742 * The relation "executed" maps the outer generated loop iterators
5743 * to the domain elements executed by those iterations.
5745 * We simply generate an AST for each of the children and concatenate
5748 static __isl_give isl_ast_graft_list
*build_ast_from_sequence(
5749 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5750 __isl_take isl_union_map
*executed
)
5755 isl_ast_graft_list
*list
;
5757 ctx
= isl_ast_build_get_ctx(build
);
5758 list
= isl_ast_graft_list_alloc(ctx
, 0);
5760 n
= isl_schedule_node_n_children(node
);
5762 list
= isl_ast_graft_list_free(list
);
5763 for (i
= 0; i
< n
; ++i
) {
5764 isl_schedule_node
*child
;
5765 isl_ast_graft_list
*list_i
;
5767 child
= isl_schedule_node_get_child(node
, i
);
5768 list_i
= build_ast_from_schedule_node(isl_ast_build_copy(build
),
5769 child
, isl_union_map_copy(executed
));
5770 list
= isl_ast_graft_list_concat(list
, list_i
);
5772 isl_ast_build_free(build
);
5773 isl_schedule_node_free(node
);
5774 isl_union_map_free(executed
);
5779 /* Generate an AST that visits the elements in the domain of "executed"
5780 * in the relative order specified by the node "node" and its descendants.
5782 * The relation "executed" maps the outer generated loop iterators
5783 * to the domain elements executed by those iterations.
5785 * The node types are handled in separate functions.
5786 * Set nodes are currently treated in the same way as sequence nodes.
5787 * The children of a set node may be executed in any order,
5788 * including the order of the children.
5790 static __isl_give isl_ast_graft_list
*build_ast_from_schedule_node(
5791 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5792 __isl_take isl_union_map
*executed
)
5794 enum isl_schedule_node_type type
;
5796 type
= isl_schedule_node_get_type(node
);
5799 case isl_schedule_node_error
:
5801 case isl_schedule_node_leaf
:
5802 return build_ast_from_leaf(build
, node
, executed
);
5803 case isl_schedule_node_band
:
5804 return build_ast_from_band(build
, node
, executed
);
5805 case isl_schedule_node_context
:
5806 return build_ast_from_context(build
, node
, executed
);
5807 case isl_schedule_node_domain
:
5808 isl_die(isl_schedule_node_get_ctx(node
), isl_error_unsupported
,
5809 "unexpected internal domain node", goto error
);
5810 case isl_schedule_node_expansion
:
5811 return build_ast_from_expansion(build
, node
, executed
);
5812 case isl_schedule_node_extension
:
5813 return build_ast_from_extension(build
, node
, executed
);
5814 case isl_schedule_node_filter
:
5815 return build_ast_from_filter(build
, node
, executed
);
5816 case isl_schedule_node_guard
:
5817 return build_ast_from_guard(build
, node
, executed
);
5818 case isl_schedule_node_mark
:
5819 return build_ast_from_mark(build
, node
, executed
);
5820 case isl_schedule_node_sequence
:
5821 case isl_schedule_node_set
:
5822 return build_ast_from_sequence(build
, node
, executed
);
5825 isl_die(isl_ast_build_get_ctx(build
), isl_error_internal
,
5826 "unhandled type", goto error
);
5828 isl_union_map_free(executed
);
5829 isl_schedule_node_free(node
);
5830 isl_ast_build_free(build
);
5835 /* Generate an AST that visits the elements in the domain of "executed"
5836 * in the relative order specified by the (single) child of "node" and
5839 * The relation "executed" maps the outer generated loop iterators
5840 * to the domain elements executed by those iterations.
5842 * This function is never called on a leaf, set or sequence node,
5843 * so the node always has exactly one child.
5845 static __isl_give isl_ast_graft_list
*build_ast_from_child(
5846 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5847 __isl_take isl_union_map
*executed
)
5849 node
= isl_schedule_node_child(node
, 0);
5850 return build_ast_from_schedule_node(build
, node
, executed
);
5853 /* Generate an AST that visits the elements in the domain of the domain
5854 * node "node" in the relative order specified by its descendants.
5856 * An initial inverse schedule is created that maps a zero-dimensional
5857 * schedule space to the node domain.
5858 * The input "build" is assumed to have a parametric domain and
5859 * is replaced by the same zero-dimensional schedule space.
5861 * We also add some of the parameter constraints in the build domain
5862 * to the executed relation. Adding these constraints
5863 * allows for an earlier detection of conflicts in some cases.
5864 * However, we do not want to divide the executed relation into
5865 * more disjuncts than necessary. We therefore approximate
5866 * the constraints on the parameters by a single disjunct set.
5868 static __isl_give isl_ast_node
*build_ast_from_domain(
5869 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
)
5872 isl_union_set
*domain
, *schedule_domain
;
5873 isl_union_map
*executed
;
5876 isl_ast_graft_list
*list
;
5883 ctx
= isl_ast_build_get_ctx(build
);
5884 space
= isl_ast_build_get_space(build
, 1);
5885 is_params
= isl_space_is_params(space
);
5886 isl_space_free(space
);
5890 isl_die(ctx
, isl_error_unsupported
,
5891 "expecting parametric initial context", goto error
);
5893 domain
= isl_schedule_node_domain_get_domain(node
);
5894 domain
= isl_union_set_coalesce(domain
);
5896 space
= isl_union_set_get_space(domain
);
5897 space
= isl_space_set_from_params(space
);
5898 build
= isl_ast_build_product(build
, space
);
5900 set
= isl_ast_build_get_domain(build
);
5901 set
= isl_set_from_basic_set(isl_set_simple_hull(set
));
5902 schedule_domain
= isl_union_set_from_set(set
);
5904 executed
= isl_union_map_from_domain_and_range(schedule_domain
, domain
);
5905 list
= build_ast_from_child(isl_ast_build_copy(build
), node
, executed
);
5906 ast
= isl_ast_node_from_graft_list(list
, build
);
5907 isl_ast_build_free(build
);
5911 isl_schedule_node_free(node
);
5912 isl_ast_build_free(build
);
5916 /* Generate an AST that visits the elements in the domain of "schedule"
5917 * in the relative order specified by the schedule tree.
5919 * "build" is an isl_ast_build that has been created using
5920 * isl_ast_build_alloc or isl_ast_build_from_context based
5921 * on a parametric set.
5923 * The construction starts at the root node of the schedule,
5924 * which is assumed to be a domain node.
5926 __isl_give isl_ast_node
*isl_ast_build_node_from_schedule(
5927 __isl_keep isl_ast_build
*build
, __isl_take isl_schedule
*schedule
)
5930 isl_schedule_node
*node
;
5932 if (!build
|| !schedule
)
5935 ctx
= isl_ast_build_get_ctx(build
);
5937 node
= isl_schedule_get_root(schedule
);
5940 isl_schedule_free(schedule
);
5942 build
= isl_ast_build_copy(build
);
5943 build
= isl_ast_build_set_single_valued(build
, 0);
5944 if (isl_schedule_node_get_type(node
) != isl_schedule_node_domain
)
5945 isl_die(ctx
, isl_error_unsupported
,
5946 "expecting root domain node",
5947 build
= isl_ast_build_free(build
));
5948 return build_ast_from_domain(build
, node
);
5950 isl_schedule_free(schedule
);