isl_ast_build_expr.c: isl_ast_expr_from_constraint: extract out stride detection
[isl.git] / isl_ast_build_expr.c
blob63fd6d8404e8e34108a02d5242ee6847d7190bc2
1 /*
2 * Copyright 2012-2014 Ecole Normale Superieure
3 * Copyright 2014 INRIA Rocquencourt
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege,
8 * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
9 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
10 * B.P. 105 - 78153 Le Chesnay, France
13 #include <isl/id.h>
14 #include <isl/space.h>
15 #include <isl/constraint.h>
16 #include <isl/ilp.h>
17 #include <isl/val.h>
18 #include <isl_ast_build_expr.h>
19 #include <isl_ast_private.h>
20 #include <isl_ast_build_private.h>
21 #include <isl_sort.h>
23 /* Compute the "opposite" of the (numerator of the) argument of a div
24 * with denominator "d".
26 * In particular, compute
28 * -aff + (d - 1)
30 static __isl_give isl_aff *oppose_div_arg(__isl_take isl_aff *aff,
31 __isl_take isl_val *d)
33 aff = isl_aff_neg(aff);
34 aff = isl_aff_add_constant_val(aff, d);
35 aff = isl_aff_add_constant_si(aff, -1);
37 return aff;
40 /* Internal data structure used inside isl_ast_expr_add_term.
41 * The domain of "build" is used to simplify the expressions.
42 * "build" needs to be set by the caller of isl_ast_expr_add_term.
43 * "cst" is the constant term of the expression in which the added term
44 * appears. It may be modified by isl_ast_expr_add_term.
46 * "v" is the coefficient of the term that is being constructed and
47 * is set internally by isl_ast_expr_add_term.
49 struct isl_ast_add_term_data {
50 isl_ast_build *build;
51 isl_val *cst;
52 isl_val *v;
55 /* Given the numerator "aff" of the argument of an integer division
56 * with denominator "d", check if it can be made non-negative over
57 * data->build->domain by stealing part of the constant term of
58 * the expression in which the integer division appears.
60 * In particular, the outer expression is of the form
62 * v * floor(aff/d) + cst
64 * We already know that "aff" itself may attain negative values.
65 * Here we check if aff + d*floor(cst/v) is non-negative, such
66 * that we could rewrite the expression to
68 * v * floor((aff + d*floor(cst/v))/d) + cst - v*floor(cst/v)
70 * Note that aff + d*floor(cst/v) can only possibly be non-negative
71 * if data->cst and data->v have the same sign.
72 * Similarly, if floor(cst/v) is zero, then there is no point in
73 * checking again.
75 static isl_bool is_non_neg_after_stealing(__isl_keep isl_aff *aff,
76 __isl_keep isl_val *d, struct isl_ast_add_term_data *data)
78 isl_aff *shifted;
79 isl_val *shift;
80 isl_bool is_zero;
81 isl_bool non_neg;
83 if (isl_val_sgn(data->cst) != isl_val_sgn(data->v))
84 return isl_bool_false;
86 shift = isl_val_div(isl_val_copy(data->cst), isl_val_copy(data->v));
87 shift = isl_val_floor(shift);
88 is_zero = isl_val_is_zero(shift);
89 if (is_zero < 0 || is_zero) {
90 isl_val_free(shift);
91 return isl_bool_not(is_zero);
93 shift = isl_val_mul(shift, isl_val_copy(d));
94 shifted = isl_aff_copy(aff);
95 shifted = isl_aff_add_constant_val(shifted, shift);
96 non_neg = isl_ast_build_aff_is_nonneg(data->build, shifted);
97 isl_aff_free(shifted);
99 return non_neg;
102 /* Given the numerator "aff" of the argument of an integer division
103 * with denominator "d", steal part of the constant term of
104 * the expression in which the integer division appears to make it
105 * non-negative over data->build->domain.
107 * In particular, the outer expression is of the form
109 * v * floor(aff/d) + cst
111 * We know that "aff" itself may attain negative values,
112 * but that aff + d*floor(cst/v) is non-negative.
113 * Find the minimal positive value that we need to add to "aff"
114 * to make it positive and adjust data->cst accordingly.
115 * That is, compute the minimal value "m" of "aff" over
116 * data->build->domain and take
118 * s = ceil(-m/d)
120 * such that
122 * aff + d * s >= 0
124 * and rewrite the expression to
126 * v * floor((aff + s*d)/d) + (cst - v*s)
128 static __isl_give isl_aff *steal_from_cst(__isl_take isl_aff *aff,
129 __isl_keep isl_val *d, struct isl_ast_add_term_data *data)
131 isl_set *domain;
132 isl_val *shift, *t;
134 domain = isl_ast_build_get_domain(data->build);
135 shift = isl_set_min_val(domain, aff);
136 isl_set_free(domain);
138 shift = isl_val_neg(shift);
139 shift = isl_val_div(shift, isl_val_copy(d));
140 shift = isl_val_ceil(shift);
142 t = isl_val_copy(shift);
143 t = isl_val_mul(t, isl_val_copy(data->v));
144 data->cst = isl_val_sub(data->cst, t);
146 shift = isl_val_mul(shift, isl_val_copy(d));
147 return isl_aff_add_constant_val(aff, shift);
150 /* Construct an expression representing the binary operation "type"
151 * (some division or modulo) applied to the expressions
152 * constructed from "aff" and "v".
154 static __isl_give isl_ast_expr *div_mod(enum isl_ast_expr_op_type type,
155 __isl_take isl_aff *aff, __isl_take isl_val *v,
156 __isl_keep isl_ast_build *build)
158 isl_ast_expr *expr1, *expr2;
160 expr1 = isl_ast_expr_from_aff(aff, build);
161 expr2 = isl_ast_expr_from_val(v);
162 return isl_ast_expr_alloc_binary(type, expr1, expr2);
165 /* Create an isl_ast_expr evaluating the div at position "pos" in "ls".
166 * The result is simplified in terms of data->build->domain.
167 * This function may change (the sign of) data->v.
169 * "ls" is known to be non-NULL.
171 * Let the div be of the form floor(e/d).
172 * If the ast_build_prefer_pdiv option is set then we check if "e"
173 * is non-negative, so that we can generate
175 * (pdiv_q, expr(e), expr(d))
177 * instead of
179 * (fdiv_q, expr(e), expr(d))
181 * If the ast_build_prefer_pdiv option is set and
182 * if "e" is not non-negative, then we check if "-e + d - 1" is non-negative.
183 * If so, we can rewrite
185 * floor(e/d) = -ceil(-e/d) = -floor((-e + d - 1)/d)
187 * and still use pdiv_q, while changing the sign of data->v.
189 * Otherwise, we check if
191 * e + d*floor(cst/v)
193 * is non-negative and if so, replace floor(e/d) by
195 * floor((e + s*d)/d) - s
197 * with s the minimal shift that makes the argument non-negative.
199 static __isl_give isl_ast_expr *var_div(struct isl_ast_add_term_data *data,
200 __isl_keep isl_local_space *ls, int pos)
202 isl_ctx *ctx = isl_local_space_get_ctx(ls);
203 isl_aff *aff;
204 isl_val *d;
205 enum isl_ast_expr_op_type type;
207 aff = isl_local_space_get_div(ls, pos);
208 d = isl_aff_get_denominator_val(aff);
209 aff = isl_aff_scale_val(aff, isl_val_copy(d));
211 type = isl_ast_expr_op_fdiv_q;
212 if (isl_options_get_ast_build_prefer_pdiv(ctx)) {
213 isl_bool non_neg;
214 non_neg = isl_ast_build_aff_is_nonneg(data->build, aff);
215 if (non_neg >= 0 && !non_neg) {
216 isl_aff *opp = oppose_div_arg(isl_aff_copy(aff),
217 isl_val_copy(d));
218 non_neg = isl_ast_build_aff_is_nonneg(data->build, opp);
219 if (non_neg >= 0 && non_neg) {
220 data->v = isl_val_neg(data->v);
221 isl_aff_free(aff);
222 aff = opp;
223 } else
224 isl_aff_free(opp);
226 if (non_neg >= 0 && !non_neg) {
227 non_neg = is_non_neg_after_stealing(aff, d, data);
228 if (non_neg >= 0 && non_neg)
229 aff = steal_from_cst(aff, d, data);
231 if (non_neg < 0)
232 aff = isl_aff_free(aff);
233 else if (non_neg)
234 type = isl_ast_expr_op_pdiv_q;
237 return div_mod(type, aff, d, data->build);
240 /* Create an isl_ast_expr evaluating the specified dimension of "ls".
241 * The result is simplified in terms of data->build->domain.
242 * This function may change (the sign of) data->v.
244 * The isl_ast_expr is constructed based on the type of the dimension.
245 * - divs are constructed by var_div
246 * - set variables are constructed from the iterator isl_ids in data->build
247 * - parameters are constructed from the isl_ids in "ls"
249 static __isl_give isl_ast_expr *var(struct isl_ast_add_term_data *data,
250 __isl_keep isl_local_space *ls, enum isl_dim_type type, int pos)
252 isl_ctx *ctx = isl_local_space_get_ctx(ls);
253 isl_id *id;
255 if (type == isl_dim_div)
256 return var_div(data, ls, pos);
258 if (type == isl_dim_set) {
259 id = isl_ast_build_get_iterator_id(data->build, pos);
260 return isl_ast_expr_from_id(id);
263 if (!isl_local_space_has_dim_id(ls, type, pos))
264 isl_die(ctx, isl_error_internal, "unnamed dimension",
265 return NULL);
266 id = isl_local_space_get_dim_id(ls, type, pos);
267 return isl_ast_expr_from_id(id);
270 /* Does "expr" represent the zero integer?
272 static isl_bool ast_expr_is_zero(__isl_keep isl_ast_expr *expr)
274 if (!expr)
275 return isl_bool_error;
276 if (expr->type != isl_ast_expr_int)
277 return isl_bool_false;
278 return isl_val_is_zero(expr->u.v);
281 /* Create an expression representing the sum of "expr1" and "expr2",
282 * provided neither of the two expressions is identically zero.
284 static __isl_give isl_ast_expr *ast_expr_add(__isl_take isl_ast_expr *expr1,
285 __isl_take isl_ast_expr *expr2)
287 if (!expr1 || !expr2)
288 goto error;
290 if (ast_expr_is_zero(expr1)) {
291 isl_ast_expr_free(expr1);
292 return expr2;
295 if (ast_expr_is_zero(expr2)) {
296 isl_ast_expr_free(expr2);
297 return expr1;
300 return isl_ast_expr_add(expr1, expr2);
301 error:
302 isl_ast_expr_free(expr1);
303 isl_ast_expr_free(expr2);
304 return NULL;
307 /* Subtract expr2 from expr1.
309 * If expr2 is zero, we simply return expr1.
310 * If expr1 is zero, we return
312 * (isl_ast_expr_op_minus, expr2)
314 * Otherwise, we return
316 * (isl_ast_expr_op_sub, expr1, expr2)
318 static __isl_give isl_ast_expr *ast_expr_sub(__isl_take isl_ast_expr *expr1,
319 __isl_take isl_ast_expr *expr2)
321 if (!expr1 || !expr2)
322 goto error;
324 if (ast_expr_is_zero(expr2)) {
325 isl_ast_expr_free(expr2);
326 return expr1;
329 if (ast_expr_is_zero(expr1)) {
330 isl_ast_expr_free(expr1);
331 return isl_ast_expr_neg(expr2);
334 return isl_ast_expr_sub(expr1, expr2);
335 error:
336 isl_ast_expr_free(expr1);
337 isl_ast_expr_free(expr2);
338 return NULL;
341 /* Return an isl_ast_expr that represents
343 * v * (aff mod d)
345 * v is assumed to be non-negative.
346 * The result is simplified in terms of build->domain.
348 static __isl_give isl_ast_expr *isl_ast_expr_mod(__isl_keep isl_val *v,
349 __isl_keep isl_aff *aff, __isl_keep isl_val *d,
350 __isl_keep isl_ast_build *build)
352 isl_ast_expr *expr;
353 isl_ast_expr *c;
355 if (!aff)
356 return NULL;
358 expr = div_mod(isl_ast_expr_op_pdiv_r,
359 isl_aff_copy(aff), isl_val_copy(d), build);
361 if (!isl_val_is_one(v)) {
362 c = isl_ast_expr_from_val(isl_val_copy(v));
363 expr = isl_ast_expr_mul(c, expr);
366 return expr;
369 /* Create an isl_ast_expr that scales "expr" by "v".
371 * If v is 1, we simply return expr.
372 * If v is -1, we return
374 * (isl_ast_expr_op_minus, expr)
376 * Otherwise, we return
378 * (isl_ast_expr_op_mul, expr(v), expr)
380 static __isl_give isl_ast_expr *scale(__isl_take isl_ast_expr *expr,
381 __isl_take isl_val *v)
383 isl_ast_expr *c;
385 if (!expr || !v)
386 goto error;
387 if (isl_val_is_one(v)) {
388 isl_val_free(v);
389 return expr;
392 if (isl_val_is_negone(v)) {
393 isl_val_free(v);
394 expr = isl_ast_expr_neg(expr);
395 } else {
396 c = isl_ast_expr_from_val(v);
397 expr = isl_ast_expr_mul(c, expr);
400 return expr;
401 error:
402 isl_val_free(v);
403 isl_ast_expr_free(expr);
404 return NULL;
407 /* Add an expression for "*v" times the specified dimension of "ls"
408 * to expr.
409 * If the dimension is an integer division, then this function
410 * may modify data->cst in order to make the numerator non-negative.
411 * The result is simplified in terms of data->build->domain.
413 * Let e be the expression for the specified dimension,
414 * multiplied by the absolute value of "*v".
415 * If "*v" is negative, we create
417 * (isl_ast_expr_op_sub, expr, e)
419 * except when expr is trivially zero, in which case we create
421 * (isl_ast_expr_op_minus, e)
423 * instead.
425 * If "*v" is positive, we simply create
427 * (isl_ast_expr_op_add, expr, e)
430 static __isl_give isl_ast_expr *isl_ast_expr_add_term(
431 __isl_take isl_ast_expr *expr,
432 __isl_keep isl_local_space *ls, enum isl_dim_type type, int pos,
433 __isl_take isl_val *v, struct isl_ast_add_term_data *data)
435 isl_ast_expr *term;
437 if (!expr)
438 return NULL;
440 data->v = v;
441 term = var(data, ls, type, pos);
442 v = data->v;
444 if (isl_val_is_neg(v) && !ast_expr_is_zero(expr)) {
445 v = isl_val_neg(v);
446 term = scale(term, v);
447 return ast_expr_sub(expr, term);
448 } else {
449 term = scale(term, v);
450 return ast_expr_add(expr, term);
454 /* Add an expression for "v" to expr.
456 static __isl_give isl_ast_expr *isl_ast_expr_add_int(
457 __isl_take isl_ast_expr *expr, __isl_take isl_val *v)
459 isl_ast_expr *expr_int;
461 if (!expr || !v)
462 goto error;
464 if (isl_val_is_zero(v)) {
465 isl_val_free(v);
466 return expr;
469 if (isl_val_is_neg(v) && !ast_expr_is_zero(expr)) {
470 v = isl_val_neg(v);
471 expr_int = isl_ast_expr_from_val(v);
472 return ast_expr_sub(expr, expr_int);
473 } else {
474 expr_int = isl_ast_expr_from_val(v);
475 return ast_expr_add(expr, expr_int);
477 error:
478 isl_ast_expr_free(expr);
479 isl_val_free(v);
480 return NULL;
483 /* Internal data structure used inside extract_modulos.
485 * If any modulo expressions are detected in "aff", then the
486 * expression is removed from "aff" and added to either "pos" or "neg"
487 * depending on the sign of the coefficient of the modulo expression
488 * inside "aff".
490 * "add" is an expression that needs to be added to "aff" at the end of
491 * the computation. It is NULL as long as no modulos have been extracted.
493 * "i" is the position in "aff" of the div under investigation
494 * "v" is the coefficient in "aff" of the div
495 * "div" is the argument of the div, with the denominator removed
496 * "d" is the original denominator of the argument of the div
498 * "nonneg" is an affine expression that is non-negative over "build"
499 * and that can be used to extract a modulo expression from "div".
500 * In particular, if "sign" is 1, then the coefficients of "nonneg"
501 * are equal to those of "div" modulo "d". If "sign" is -1, then
502 * the coefficients of "nonneg" are opposite to those of "div" modulo "d".
503 * If "sign" is 0, then no such affine expression has been found (yet).
505 struct isl_extract_mod_data {
506 isl_ast_build *build;
507 isl_aff *aff;
509 isl_ast_expr *pos;
510 isl_ast_expr *neg;
512 isl_aff *add;
514 int i;
515 isl_val *v;
516 isl_val *d;
517 isl_aff *div;
519 isl_aff *nonneg;
520 int sign;
523 /* Does
525 * arg mod data->d
527 * represent (a special case of) a test for some linear expression
528 * being even?
530 * In particular, is it of the form
532 * (lin - 1) mod 2
536 static isl_bool is_even_test(struct isl_extract_mod_data *data,
537 __isl_keep isl_aff *arg)
539 isl_bool res;
540 isl_val *cst;
542 res = isl_val_eq_si(data->d, 2);
543 if (res < 0 || !res)
544 return res;
546 cst = isl_aff_get_constant_val(arg);
547 res = isl_val_eq_si(cst, -1);
548 isl_val_free(cst);
550 return res;
553 /* Given that data->v * div_i in data->aff is equal to
555 * f * (term - (arg mod d))
557 * with data->d * f = data->v and "arg" non-negative on data->build, add
559 * f * term
561 * to data->add and
563 * abs(f) * (arg mod d)
565 * to data->neg or data->pos depending on the sign of -f.
567 * In the special case that "arg mod d" is of the form "(lin - 1) mod 2",
568 * with "lin" some linear expression, first replace
570 * f * (term - ((lin - 1) mod 2))
572 * by
574 * -f * (1 - term - (lin mod 2))
576 * These two are equal because
578 * ((lin - 1) mod 2) + (lin mod 2) = 1
580 * Also, if "lin - 1" is non-negative, then "lin" is non-negative too.
582 static isl_stat extract_term_and_mod(struct isl_extract_mod_data *data,
583 __isl_take isl_aff *term, __isl_take isl_aff *arg)
585 isl_bool even;
586 isl_ast_expr *expr;
587 int s;
589 even = is_even_test(data, arg);
590 if (even < 0) {
591 arg = isl_aff_free(arg);
592 } else if (even) {
593 term = oppose_div_arg(term, isl_val_copy(data->d));
594 data->v = isl_val_neg(data->v);
595 arg = isl_aff_set_constant_si(arg, 0);
598 data->v = isl_val_div(data->v, isl_val_copy(data->d));
599 s = isl_val_sgn(data->v);
600 data->v = isl_val_abs(data->v);
601 expr = isl_ast_expr_mod(data->v, arg, data->d, data->build);
602 isl_aff_free(arg);
603 if (s > 0)
604 data->neg = ast_expr_add(data->neg, expr);
605 else
606 data->pos = ast_expr_add(data->pos, expr);
607 data->aff = isl_aff_set_coefficient_si(data->aff,
608 isl_dim_div, data->i, 0);
609 if (s < 0)
610 data->v = isl_val_neg(data->v);
611 term = isl_aff_scale_val(term, isl_val_copy(data->v));
613 if (!data->add)
614 data->add = term;
615 else
616 data->add = isl_aff_add(data->add, term);
617 if (!data->add)
618 return isl_stat_error;
620 return isl_stat_ok;
623 /* Given that data->v * div_i in data->aff is of the form
625 * f * d * floor(div/d)
627 * with div nonnegative on data->build, rewrite it as
629 * f * (div - (div mod d)) = f * div - f * (div mod d)
631 * and add
633 * f * div
635 * to data->add and
637 * abs(f) * (div mod d)
639 * to data->neg or data->pos depending on the sign of -f.
641 static isl_stat extract_mod(struct isl_extract_mod_data *data)
643 return extract_term_and_mod(data, isl_aff_copy(data->div),
644 isl_aff_copy(data->div));
647 /* Given that data->v * div_i in data->aff is of the form
649 * f * d * floor(div/d) (1)
651 * check if div is non-negative on data->build and, if so,
652 * extract the corresponding modulo from data->aff.
653 * If not, then check if
655 * -div + d - 1
657 * is non-negative on data->build. If so, replace (1) by
659 * -f * d * floor((-div + d - 1)/d)
661 * and extract the corresponding modulo from data->aff.
663 * This function may modify data->div.
665 static isl_stat extract_nonneg_mod(struct isl_extract_mod_data *data)
667 isl_bool mod;
669 mod = isl_ast_build_aff_is_nonneg(data->build, data->div);
670 if (mod < 0)
671 goto error;
672 if (mod)
673 return extract_mod(data);
675 data->div = oppose_div_arg(data->div, isl_val_copy(data->d));
676 mod = isl_ast_build_aff_is_nonneg(data->build, data->div);
677 if (mod < 0)
678 goto error;
679 if (mod) {
680 data->v = isl_val_neg(data->v);
681 return extract_mod(data);
684 return isl_stat_ok;
685 error:
686 data->aff = isl_aff_free(data->aff);
687 return isl_stat_error;
690 /* Is the affine expression of constraint "c" "simpler" than data->nonneg
691 * for use in extracting a modulo expression?
693 * We currently only consider the constant term of the affine expression.
694 * In particular, we prefer the affine expression with the smallest constant
695 * term.
696 * This means that if there are two constraints, say x >= 0 and -x + 10 >= 0,
697 * then we would pick x >= 0
699 * More detailed heuristics could be used if it turns out that there is a need.
701 static int mod_constraint_is_simpler(struct isl_extract_mod_data *data,
702 __isl_keep isl_constraint *c)
704 isl_val *v1, *v2;
705 int simpler;
707 if (!data->nonneg)
708 return 1;
710 v1 = isl_val_abs(isl_constraint_get_constant_val(c));
711 v2 = isl_val_abs(isl_aff_get_constant_val(data->nonneg));
712 simpler = isl_val_lt(v1, v2);
713 isl_val_free(v1);
714 isl_val_free(v2);
716 return simpler;
719 /* Check if the coefficients of "c" are either equal or opposite to those
720 * of data->div modulo data->d. If so, and if "c" is "simpler" than
721 * data->nonneg, then replace data->nonneg by the affine expression of "c"
722 * and set data->sign accordingly.
724 * Both "c" and data->div are assumed not to involve any integer divisions.
726 * Before we start the actual comparison, we first quickly check if
727 * "c" and data->div have the same non-zero coefficients.
728 * If not, then we assume that "c" is not of the desired form.
729 * Note that while the coefficients of data->div can be reasonably expected
730 * not to involve any coefficients that are multiples of d, "c" may
731 * very well involve such coefficients. This means that we may actually
732 * miss some cases.
734 * If the constant term is "too large", then the constraint is rejected,
735 * where "too large" is fairly arbitrarily set to 1 << 15.
736 * We do this to avoid picking up constraints that bound a variable
737 * by a very large number, say the largest or smallest possible
738 * variable in the representation of some integer type.
740 static isl_stat check_parallel_or_opposite(__isl_take isl_constraint *c,
741 void *user)
743 struct isl_extract_mod_data *data = user;
744 enum isl_dim_type c_type[2] = { isl_dim_param, isl_dim_set };
745 enum isl_dim_type a_type[2] = { isl_dim_param, isl_dim_in };
746 int i, t;
747 isl_size n[2];
748 isl_bool parallel = isl_bool_true, opposite = isl_bool_true;
750 for (t = 0; t < 2; ++t) {
751 n[t] = isl_constraint_dim(c, c_type[t]);
752 if (n[t] < 0)
753 goto error;
754 for (i = 0; i < n[t]; ++i) {
755 isl_bool a, b;
757 a = isl_constraint_involves_dims(c, c_type[t], i, 1);
758 b = isl_aff_involves_dims(data->div, a_type[t], i, 1);
759 if (a < 0 || b < 0)
760 goto error;
761 if (a != b)
762 parallel = opposite = isl_bool_false;
766 if (parallel || opposite) {
767 isl_val *v;
769 v = isl_val_abs(isl_constraint_get_constant_val(c));
770 if (isl_val_cmp_si(v, 1 << 15) > 0)
771 parallel = opposite = isl_bool_false;
772 isl_val_free(v);
775 for (t = 0; t < 2; ++t) {
776 for (i = 0; i < n[t]; ++i) {
777 isl_val *v1, *v2;
779 if (!parallel && !opposite)
780 break;
781 v1 = isl_constraint_get_coefficient_val(c,
782 c_type[t], i);
783 v2 = isl_aff_get_coefficient_val(data->div,
784 a_type[t], i);
785 if (parallel) {
786 v1 = isl_val_sub(v1, isl_val_copy(v2));
787 parallel = isl_val_is_divisible_by(v1, data->d);
788 v1 = isl_val_add(v1, isl_val_copy(v2));
790 if (opposite) {
791 v1 = isl_val_add(v1, isl_val_copy(v2));
792 opposite = isl_val_is_divisible_by(v1, data->d);
794 isl_val_free(v1);
795 isl_val_free(v2);
796 if (parallel < 0 || opposite < 0)
797 goto error;
801 if ((parallel || opposite) && mod_constraint_is_simpler(data, c)) {
802 isl_aff_free(data->nonneg);
803 data->nonneg = isl_constraint_get_aff(c);
804 data->sign = parallel ? 1 : -1;
807 isl_constraint_free(c);
809 if (data->sign != 0 && data->nonneg == NULL)
810 return isl_stat_error;
812 return isl_stat_ok;
813 error:
814 isl_constraint_free(c);
815 return isl_stat_error;
818 /* Given that data->v * div_i in data->aff is of the form
820 * f * d * floor(div/d) (1)
822 * see if we can find an expression div' that is non-negative over data->build
823 * and that is related to div through
825 * div' = div + d * e
827 * or
829 * div' = -div + d - 1 + d * e
831 * with e some affine expression.
832 * If so, we write (1) as
834 * f * div + f * (div' mod d)
836 * or
838 * -f * (-div + d - 1) - f * (div' mod d)
840 * exploiting (in the second case) the fact that
842 * f * d * floor(div/d) = -f * d * floor((-div + d - 1)/d)
845 * We first try to find an appropriate expression for div'
846 * from the constraints of data->build->domain (which is therefore
847 * guaranteed to be non-negative on data->build), where we remove
848 * any integer divisions from the constraints and skip this step
849 * if "div" itself involves any integer divisions.
850 * If we cannot find an appropriate expression this way, then
851 * we pass control to extract_nonneg_mod where check
852 * if div or "-div + d -1" themselves happen to be
853 * non-negative on data->build.
855 * While looking for an appropriate constraint in data->build->domain,
856 * we ignore the constant term, so after finding such a constraint,
857 * we still need to fix up the constant term.
858 * In particular, if a is the constant term of "div"
859 * (or d - 1 - the constant term of "div" if data->sign < 0)
860 * and b is the constant term of the constraint, then we need to find
861 * a non-negative constant c such that
863 * b + c \equiv a mod d
865 * We therefore take
867 * c = (a - b) mod d
869 * and add it to b to obtain the constant term of div'.
870 * If this constant term is "too negative", then we add an appropriate
871 * multiple of d to make it positive.
874 * Note that the above is only a very simple heuristic for finding an
875 * appropriate expression. We could try a bit harder by also considering
876 * sums of constraints that involve disjoint sets of variables or
877 * we could consider arbitrary linear combinations of constraints,
878 * although that could potentially be much more expensive as it involves
879 * the solution of an LP problem.
881 * In particular, if v_i is a column vector representing constraint i,
882 * w represents div and e_i is the i-th unit vector, then we are looking
883 * for a solution of the constraints
885 * \sum_i lambda_i v_i = w + \sum_i alpha_i d e_i
887 * with \lambda_i >= 0 and alpha_i of unrestricted sign.
888 * If we are not just interested in a non-negative expression, but
889 * also in one with a minimal range, then we don't just want
890 * c = \sum_i lambda_i v_i to be non-negative over the domain,
891 * but also beta - c = \sum_i mu_i v_i, where beta is a scalar
892 * that we want to minimize and we now also have to take into account
893 * the constant terms of the constraints.
894 * Alternatively, we could first compute the dual of the domain
895 * and plug in the constraints on the coefficients.
897 static isl_stat try_extract_mod(struct isl_extract_mod_data *data)
899 isl_basic_set *hull;
900 isl_val *v1, *v2;
901 isl_stat r;
902 isl_size n;
904 if (!data->build)
905 goto error;
907 n = isl_aff_dim(data->div, isl_dim_div);
908 if (n < 0)
909 goto error;
911 if (isl_aff_involves_dims(data->div, isl_dim_div, 0, n))
912 return extract_nonneg_mod(data);
914 hull = isl_set_simple_hull(isl_set_copy(data->build->domain));
915 hull = isl_basic_set_remove_divs(hull);
916 data->sign = 0;
917 data->nonneg = NULL;
918 r = isl_basic_set_foreach_constraint(hull, &check_parallel_or_opposite,
919 data);
920 isl_basic_set_free(hull);
922 if (!data->sign || r < 0) {
923 isl_aff_free(data->nonneg);
924 if (r < 0)
925 goto error;
926 return extract_nonneg_mod(data);
929 v1 = isl_aff_get_constant_val(data->div);
930 v2 = isl_aff_get_constant_val(data->nonneg);
931 if (data->sign < 0) {
932 v1 = isl_val_neg(v1);
933 v1 = isl_val_add(v1, isl_val_copy(data->d));
934 v1 = isl_val_sub_ui(v1, 1);
936 v1 = isl_val_sub(v1, isl_val_copy(v2));
937 v1 = isl_val_mod(v1, isl_val_copy(data->d));
938 v1 = isl_val_add(v1, v2);
939 v2 = isl_val_div(isl_val_copy(v1), isl_val_copy(data->d));
940 v2 = isl_val_ceil(v2);
941 if (isl_val_is_neg(v2)) {
942 v2 = isl_val_mul(v2, isl_val_copy(data->d));
943 v1 = isl_val_sub(v1, isl_val_copy(v2));
945 data->nonneg = isl_aff_set_constant_val(data->nonneg, v1);
946 isl_val_free(v2);
948 if (data->sign < 0) {
949 data->div = oppose_div_arg(data->div, isl_val_copy(data->d));
950 data->v = isl_val_neg(data->v);
953 return extract_term_and_mod(data,
954 isl_aff_copy(data->div), data->nonneg);
955 error:
956 data->aff = isl_aff_free(data->aff);
957 return isl_stat_error;
960 /* Check if "data->aff" involves any (implicit) modulo computations based
961 * on div "data->i".
962 * If so, remove them from aff and add expressions corresponding
963 * to those modulo computations to data->pos and/or data->neg.
965 * "aff" is assumed to be an integer affine expression.
967 * In particular, check if (v * div_j) is of the form
969 * f * m * floor(a / m)
971 * and, if so, rewrite it as
973 * f * (a - (a mod m)) = f * a - f * (a mod m)
975 * and extract out -f * (a mod m).
976 * In particular, if f > 0, we add (f * (a mod m)) to *neg.
977 * If f < 0, we add ((-f) * (a mod m)) to *pos.
979 * Note that in order to represent "a mod m" as
981 * (isl_ast_expr_op_pdiv_r, a, m)
983 * we need to make sure that a is non-negative.
984 * If not, we check if "-a + m - 1" is non-negative.
985 * If so, we can rewrite
987 * floor(a/m) = -ceil(-a/m) = -floor((-a + m - 1)/m)
989 * and still extract a modulo.
991 static int extract_modulo(struct isl_extract_mod_data *data)
993 data->div = isl_aff_get_div(data->aff, data->i);
994 data->d = isl_aff_get_denominator_val(data->div);
995 if (isl_val_is_divisible_by(data->v, data->d)) {
996 data->div = isl_aff_scale_val(data->div, isl_val_copy(data->d));
997 if (try_extract_mod(data) < 0)
998 data->aff = isl_aff_free(data->aff);
1000 isl_aff_free(data->div);
1001 isl_val_free(data->d);
1002 return 0;
1005 /* Check if "aff" involves any (implicit) modulo computations.
1006 * If so, remove them from aff and add expressions corresponding
1007 * to those modulo computations to *pos and/or *neg.
1008 * We only do this if the option ast_build_prefer_pdiv is set.
1010 * "aff" is assumed to be an integer affine expression.
1012 * A modulo expression is of the form
1014 * a mod m = a - m * floor(a / m)
1016 * To detect them in aff, we look for terms of the form
1018 * f * m * floor(a / m)
1020 * rewrite them as
1022 * f * (a - (a mod m)) = f * a - f * (a mod m)
1024 * and extract out -f * (a mod m).
1025 * In particular, if f > 0, we add (f * (a mod m)) to *neg.
1026 * If f < 0, we add ((-f) * (a mod m)) to *pos.
1028 static __isl_give isl_aff *extract_modulos(__isl_take isl_aff *aff,
1029 __isl_keep isl_ast_expr **pos, __isl_keep isl_ast_expr **neg,
1030 __isl_keep isl_ast_build *build)
1032 struct isl_extract_mod_data data = { build, aff, *pos, *neg };
1033 isl_ctx *ctx;
1034 isl_size n;
1036 if (!aff)
1037 return NULL;
1039 ctx = isl_aff_get_ctx(aff);
1040 if (!isl_options_get_ast_build_prefer_pdiv(ctx))
1041 return aff;
1043 n = isl_aff_dim(data.aff, isl_dim_div);
1044 if (n < 0)
1045 return isl_aff_free(aff);
1046 for (data.i = 0; data.i < n; ++data.i) {
1047 data.v = isl_aff_get_coefficient_val(data.aff,
1048 isl_dim_div, data.i);
1049 if (!data.v)
1050 return isl_aff_free(aff);
1051 if (isl_val_is_zero(data.v) ||
1052 isl_val_is_one(data.v) || isl_val_is_negone(data.v)) {
1053 isl_val_free(data.v);
1054 continue;
1056 if (extract_modulo(&data) < 0)
1057 data.aff = isl_aff_free(data.aff);
1058 isl_val_free(data.v);
1059 if (!data.aff)
1060 break;
1063 if (data.add)
1064 data.aff = isl_aff_add(data.aff, data.add);
1066 *pos = data.pos;
1067 *neg = data.neg;
1068 return data.aff;
1071 /* Check if aff involves any non-integer coefficients.
1072 * If so, split aff into
1074 * aff = aff1 + (aff2 / d)
1076 * with both aff1 and aff2 having only integer coefficients.
1077 * Return aff1 and add (aff2 / d) to *expr.
1079 static __isl_give isl_aff *extract_rational(__isl_take isl_aff *aff,
1080 __isl_keep isl_ast_expr **expr, __isl_keep isl_ast_build *build)
1082 int i, j;
1083 isl_size n;
1084 isl_aff *rat = NULL;
1085 isl_local_space *ls = NULL;
1086 isl_ast_expr *rat_expr;
1087 isl_val *v, *d;
1088 enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_div };
1089 enum isl_dim_type l[] = { isl_dim_param, isl_dim_set, isl_dim_div };
1091 if (!aff)
1092 return NULL;
1093 d = isl_aff_get_denominator_val(aff);
1094 if (!d)
1095 goto error;
1096 if (isl_val_is_one(d)) {
1097 isl_val_free(d);
1098 return aff;
1101 aff = isl_aff_scale_val(aff, isl_val_copy(d));
1103 ls = isl_aff_get_domain_local_space(aff);
1104 rat = isl_aff_zero_on_domain(isl_local_space_copy(ls));
1106 for (i = 0; i < 3; ++i) {
1107 n = isl_aff_dim(aff, t[i]);
1108 if (n < 0)
1109 goto error;
1110 for (j = 0; j < n; ++j) {
1111 isl_aff *rat_j;
1113 v = isl_aff_get_coefficient_val(aff, t[i], j);
1114 if (!v)
1115 goto error;
1116 if (isl_val_is_divisible_by(v, d)) {
1117 isl_val_free(v);
1118 continue;
1120 rat_j = isl_aff_var_on_domain(isl_local_space_copy(ls),
1121 l[i], j);
1122 rat_j = isl_aff_scale_val(rat_j, v);
1123 rat = isl_aff_add(rat, rat_j);
1127 v = isl_aff_get_constant_val(aff);
1128 if (isl_val_is_divisible_by(v, d)) {
1129 isl_val_free(v);
1130 } else {
1131 isl_aff *rat_0;
1133 rat_0 = isl_aff_val_on_domain(isl_local_space_copy(ls), v);
1134 rat = isl_aff_add(rat, rat_0);
1137 isl_local_space_free(ls);
1139 aff = isl_aff_sub(aff, isl_aff_copy(rat));
1140 aff = isl_aff_scale_down_val(aff, isl_val_copy(d));
1142 rat_expr = div_mod(isl_ast_expr_op_div, rat, d, build);
1143 *expr = ast_expr_add(*expr, rat_expr);
1145 return aff;
1146 error:
1147 isl_aff_free(rat);
1148 isl_local_space_free(ls);
1149 isl_aff_free(aff);
1150 isl_val_free(d);
1151 return NULL;
1154 /* Construct an isl_ast_expr that evaluates the affine expression "aff".
1155 * The result is simplified in terms of build->domain.
1157 * We first extract hidden modulo computations from the affine expression
1158 * and then add terms for each variable with a non-zero coefficient.
1159 * Finally, if the affine expression has a non-trivial denominator,
1160 * we divide the resulting isl_ast_expr by this denominator.
1162 __isl_give isl_ast_expr *isl_ast_expr_from_aff(__isl_take isl_aff *aff,
1163 __isl_keep isl_ast_build *build)
1165 int i, j;
1166 isl_size n;
1167 isl_val *v;
1168 isl_ctx *ctx = isl_aff_get_ctx(aff);
1169 isl_ast_expr *expr, *expr_neg;
1170 enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_div };
1171 enum isl_dim_type l[] = { isl_dim_param, isl_dim_set, isl_dim_div };
1172 isl_local_space *ls;
1173 struct isl_ast_add_term_data data;
1175 if (!aff)
1176 return NULL;
1178 expr = isl_ast_expr_alloc_int_si(ctx, 0);
1179 expr_neg = isl_ast_expr_alloc_int_si(ctx, 0);
1181 aff = extract_rational(aff, &expr, build);
1183 aff = extract_modulos(aff, &expr, &expr_neg, build);
1184 expr = ast_expr_sub(expr, expr_neg);
1186 ls = isl_aff_get_domain_local_space(aff);
1188 data.build = build;
1189 data.cst = isl_aff_get_constant_val(aff);
1190 for (i = 0; i < 3; ++i) {
1191 n = isl_aff_dim(aff, t[i]);
1192 if (n < 0)
1193 expr = isl_ast_expr_free(expr);
1194 for (j = 0; j < n; ++j) {
1195 v = isl_aff_get_coefficient_val(aff, t[i], j);
1196 if (!v)
1197 expr = isl_ast_expr_free(expr);
1198 if (isl_val_is_zero(v)) {
1199 isl_val_free(v);
1200 continue;
1202 expr = isl_ast_expr_add_term(expr,
1203 ls, l[i], j, v, &data);
1207 expr = isl_ast_expr_add_int(expr, data.cst);
1209 isl_local_space_free(ls);
1210 isl_aff_free(aff);
1211 return expr;
1214 /* Add terms to "expr" for each variable in "aff" with a coefficient
1215 * with sign equal to "sign".
1216 * The result is simplified in terms of data->build->domain.
1218 static __isl_give isl_ast_expr *add_signed_terms(__isl_take isl_ast_expr *expr,
1219 __isl_keep isl_aff *aff, int sign, struct isl_ast_add_term_data *data)
1221 int i, j;
1222 isl_val *v;
1223 enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_div };
1224 enum isl_dim_type l[] = { isl_dim_param, isl_dim_set, isl_dim_div };
1225 isl_local_space *ls;
1227 ls = isl_aff_get_domain_local_space(aff);
1229 for (i = 0; i < 3; ++i) {
1230 isl_size n = isl_aff_dim(aff, t[i]);
1231 if (n < 0)
1232 expr = isl_ast_expr_free(expr);
1233 for (j = 0; j < n; ++j) {
1234 v = isl_aff_get_coefficient_val(aff, t[i], j);
1235 if (sign * isl_val_sgn(v) <= 0) {
1236 isl_val_free(v);
1237 continue;
1239 v = isl_val_abs(v);
1240 expr = isl_ast_expr_add_term(expr,
1241 ls, l[i], j, v, data);
1245 isl_local_space_free(ls);
1247 return expr;
1250 /* Should the constant term "v" be considered positive?
1252 * A positive constant will be added to "pos" by the caller,
1253 * while a negative constant will be added to "neg".
1254 * If either "pos" or "neg" is exactly zero, then we prefer
1255 * to add the constant "v" to that side, irrespective of the sign of "v".
1256 * This results in slightly shorter expressions and may reduce the risk
1257 * of overflows.
1259 static isl_bool constant_is_considered_positive(__isl_keep isl_val *v,
1260 __isl_keep isl_ast_expr *pos, __isl_keep isl_ast_expr *neg)
1262 isl_bool zero;
1264 zero = ast_expr_is_zero(pos);
1265 if (zero < 0 || zero)
1266 return zero;
1267 zero = ast_expr_is_zero(neg);
1268 if (zero < 0 || zero)
1269 return isl_bool_not(zero);
1270 return isl_val_is_pos(v);
1273 /* Check if the equality
1275 * aff = 0
1277 * represents a stride constraint on the integer division "pos".
1279 * In particular, if the integer division "pos" is equal to
1281 * floor(e/d)
1283 * then check if aff is equal to
1285 * e - d floor(e/d)
1287 * or its opposite.
1289 * If so, the equality is exactly
1291 * e mod d = 0
1293 * Note that in principle we could also accept
1295 * e - d floor(e'/d)
1297 * where e and e' differ by a constant.
1299 static isl_bool is_stride_constraint(__isl_keep isl_aff *aff, int pos)
1301 isl_aff *div;
1302 isl_val *c, *d;
1303 isl_bool eq;
1305 div = isl_aff_get_div(aff, pos);
1306 c = isl_aff_get_coefficient_val(aff, isl_dim_div, pos);
1307 d = isl_aff_get_denominator_val(div);
1308 eq = isl_val_abs_eq(c, d);
1309 if (eq >= 0 && eq) {
1310 aff = isl_aff_copy(aff);
1311 aff = isl_aff_set_coefficient_si(aff, isl_dim_div, pos, 0);
1312 div = isl_aff_scale_val(div, d);
1313 if (isl_val_is_pos(c))
1314 div = isl_aff_neg(div);
1315 eq = isl_aff_plain_is_equal(div, aff);
1316 isl_aff_free(aff);
1317 } else
1318 isl_val_free(d);
1319 isl_val_free(c);
1320 isl_aff_free(div);
1322 return eq;
1325 /* Are all coefficients of "aff" (zero or) negative?
1327 static isl_bool all_negative_coefficients(__isl_keep isl_aff *aff)
1329 int i;
1330 isl_size n;
1332 n = isl_aff_dim(aff, isl_dim_param);
1333 if (n < 0)
1334 return isl_bool_error;
1335 for (i = 0; i < n; ++i)
1336 if (isl_aff_coefficient_sgn(aff, isl_dim_param, i) > 0)
1337 return isl_bool_false;
1339 n = isl_aff_dim(aff, isl_dim_in);
1340 if (n < 0)
1341 return isl_bool_error;
1342 for (i = 0; i < n; ++i)
1343 if (isl_aff_coefficient_sgn(aff, isl_dim_in, i) > 0)
1344 return isl_bool_false;
1346 return isl_bool_true;
1349 /* Give an equality of the form
1351 * aff = e - d floor(e/d) = 0
1353 * or
1355 * aff = -e + d floor(e/d) = 0
1357 * with the integer division "pos" equal to floor(e/d),
1358 * construct the AST expression
1360 * (isl_ast_expr_op_eq,
1361 * (isl_ast_expr_op_zdiv_r, expr(e), expr(d)), expr(0))
1363 * If e only has negative coefficients, then construct
1365 * (isl_ast_expr_op_eq,
1366 * (isl_ast_expr_op_zdiv_r, expr(-e), expr(d)), expr(0))
1368 * instead.
1370 static __isl_give isl_ast_expr *extract_stride_constraint(
1371 __isl_take isl_aff *aff, int pos, __isl_keep isl_ast_build *build)
1373 isl_bool all_neg;
1374 isl_ctx *ctx;
1375 isl_val *c;
1376 isl_ast_expr *expr, *cst;
1378 if (!aff)
1379 return NULL;
1381 ctx = isl_aff_get_ctx(aff);
1383 c = isl_aff_get_coefficient_val(aff, isl_dim_div, pos);
1384 aff = isl_aff_set_coefficient_si(aff, isl_dim_div, pos, 0);
1386 all_neg = all_negative_coefficients(aff);
1387 if (all_neg < 0)
1388 aff = isl_aff_free(aff);
1389 else if (all_neg)
1390 aff = isl_aff_neg(aff);
1392 cst = isl_ast_expr_from_val(isl_val_abs(c));
1393 expr = isl_ast_expr_from_aff(aff, build);
1395 expr = isl_ast_expr_alloc_binary(isl_ast_expr_op_zdiv_r, expr, cst);
1396 cst = isl_ast_expr_alloc_int_si(ctx, 0);
1397 expr = isl_ast_expr_alloc_binary(isl_ast_expr_op_eq, expr, cst);
1399 return expr;
1402 /* Construct an isl_ast_expr evaluating
1404 * "expr_pos" == "expr_neg", if "eq" is set, or
1405 * "expr_pos" >= "expr_neg", if "eq" is not set
1407 * However, if "expr_pos" is an integer constant (and "expr_neg" is not),
1408 * then the two expressions are interchanged. This ensures that,
1409 * e.g., "i <= 5" is constructed rather than "5 >= i".
1411 static __isl_give isl_ast_expr *construct_constraint_expr(int eq,
1412 __isl_take isl_ast_expr *expr_pos, __isl_take isl_ast_expr *expr_neg)
1414 isl_ast_expr *expr;
1415 enum isl_ast_expr_op_type type;
1416 int pos_is_cst, neg_is_cst;
1418 pos_is_cst = isl_ast_expr_get_type(expr_pos) == isl_ast_expr_int;
1419 neg_is_cst = isl_ast_expr_get_type(expr_neg) == isl_ast_expr_int;
1420 if (pos_is_cst && !neg_is_cst) {
1421 type = eq ? isl_ast_expr_op_eq : isl_ast_expr_op_le;
1422 expr = isl_ast_expr_alloc_binary(type, expr_neg, expr_pos);
1423 } else {
1424 type = eq ? isl_ast_expr_op_eq : isl_ast_expr_op_ge;
1425 expr = isl_ast_expr_alloc_binary(type, expr_pos, expr_neg);
1428 return expr;
1431 /* Construct an isl_ast_expr that evaluates the condition "aff" == 0
1432 * (if "eq" is set) or "aff" >= 0 (otherwise).
1433 * The result is simplified in terms of build->domain.
1435 * We first extract hidden modulo computations from "aff"
1436 * and then collect all the terms with a positive coefficient in cons_pos
1437 * and the terms with a negative coefficient in cons_neg.
1439 * The result is then essentially of the form
1441 * (isl_ast_expr_op_ge, expr(pos), expr(-neg)))
1443 * or
1445 * (isl_ast_expr_op_eq, expr(pos), expr(-neg)))
1447 * However, if there are no terms with positive coefficients (or no terms
1448 * with negative coefficients), then the constant term is added to "pos"
1449 * (or "neg"), ignoring the sign of the constant term.
1451 static __isl_give isl_ast_expr *isl_ast_expr_from_constraint_no_stride(
1452 int eq, __isl_take isl_aff *aff, __isl_keep isl_ast_build *build)
1454 isl_bool cst_is_pos;
1455 isl_ctx *ctx;
1456 isl_ast_expr *expr_pos;
1457 isl_ast_expr *expr_neg;
1458 struct isl_ast_add_term_data data;
1460 ctx = isl_aff_get_ctx(aff);
1461 expr_pos = isl_ast_expr_alloc_int_si(ctx, 0);
1462 expr_neg = isl_ast_expr_alloc_int_si(ctx, 0);
1464 aff = extract_modulos(aff, &expr_pos, &expr_neg, build);
1466 data.build = build;
1467 data.cst = isl_aff_get_constant_val(aff);
1468 expr_pos = add_signed_terms(expr_pos, aff, 1, &data);
1469 data.cst = isl_val_neg(data.cst);
1470 expr_neg = add_signed_terms(expr_neg, aff, -1, &data);
1471 data.cst = isl_val_neg(data.cst);
1473 cst_is_pos =
1474 constant_is_considered_positive(data.cst, expr_pos, expr_neg);
1475 if (cst_is_pos < 0)
1476 expr_pos = isl_ast_expr_free(expr_pos);
1478 if (cst_is_pos) {
1479 expr_pos = isl_ast_expr_add_int(expr_pos, data.cst);
1480 } else {
1481 data.cst = isl_val_neg(data.cst);
1482 expr_neg = isl_ast_expr_add_int(expr_neg, data.cst);
1485 isl_aff_free(aff);
1486 return construct_constraint_expr(eq, expr_pos, expr_neg);
1489 /* Construct an isl_ast_expr that evaluates the condition "constraint".
1490 * The result is simplified in terms of build->domain.
1492 * We first check if the constraint is an equality of the form
1494 * e - d floor(e/d) = 0
1496 * i.e.,
1498 * e mod d = 0
1500 * If so, we convert it to
1502 * (isl_ast_expr_op_eq,
1503 * (isl_ast_expr_op_zdiv_r, expr(e), expr(d)), expr(0))
1505 static __isl_give isl_ast_expr *isl_ast_expr_from_constraint(
1506 __isl_take isl_constraint *constraint, __isl_keep isl_ast_build *build)
1508 int i;
1509 isl_size n;
1510 isl_aff *aff;
1511 isl_bool eq;
1513 aff = isl_constraint_get_aff(constraint);
1514 eq = isl_constraint_is_equality(constraint);
1515 isl_constraint_free(constraint);
1516 if (eq < 0)
1517 goto error;
1519 n = isl_aff_dim(aff, isl_dim_div);
1520 if (n < 0)
1521 aff = isl_aff_free(aff);
1522 if (eq && n > 0)
1523 for (i = 0; i < n; ++i) {
1524 isl_bool is_stride;
1525 is_stride = is_stride_constraint(aff, i);
1526 if (is_stride < 0)
1527 goto error;
1528 if (is_stride)
1529 return extract_stride_constraint(aff, i, build);
1532 return isl_ast_expr_from_constraint_no_stride(eq, aff, build);
1533 error:
1534 isl_aff_free(aff);
1535 return NULL;
1538 /* Wrapper around isl_constraint_cmp_last_non_zero for use
1539 * as a callback to isl_constraint_list_sort.
1540 * If isl_constraint_cmp_last_non_zero cannot tell the constraints
1541 * apart, then use isl_constraint_plain_cmp instead.
1543 static int cmp_constraint(__isl_keep isl_constraint *a,
1544 __isl_keep isl_constraint *b, void *user)
1546 int cmp;
1548 cmp = isl_constraint_cmp_last_non_zero(a, b);
1549 if (cmp != 0)
1550 return cmp;
1551 return isl_constraint_plain_cmp(a, b);
1554 /* Construct an isl_ast_expr that evaluates the conditions defining "bset".
1555 * The result is simplified in terms of build->domain.
1557 * If "bset" is not bounded by any constraint, then we construct
1558 * the expression "1", i.e., "true".
1560 * Otherwise, we sort the constraints, putting constraints that involve
1561 * integer divisions after those that do not, and construct an "and"
1562 * of the ast expressions of the individual constraints.
1564 * Each constraint is added to the generated constraints of the build
1565 * after it has been converted to an AST expression so that it can be used
1566 * to simplify the following constraints. This may change the truth value
1567 * of subsequent constraints that do not satisfy the earlier constraints,
1568 * but this does not affect the outcome of the conjunction as it is
1569 * only true if all the conjuncts are true (no matter in what order
1570 * they are evaluated). In particular, the constraints that do not
1571 * involve integer divisions may serve to simplify some constraints
1572 * that do involve integer divisions.
1574 __isl_give isl_ast_expr *isl_ast_build_expr_from_basic_set(
1575 __isl_keep isl_ast_build *build, __isl_take isl_basic_set *bset)
1577 int i;
1578 isl_size n;
1579 isl_constraint *c;
1580 isl_constraint_list *list;
1581 isl_ast_expr *res;
1582 isl_set *set;
1584 list = isl_basic_set_get_constraint_list(bset);
1585 isl_basic_set_free(bset);
1586 list = isl_constraint_list_sort(list, &cmp_constraint, NULL);
1587 n = isl_constraint_list_n_constraint(list);
1588 if (n < 0)
1589 build = NULL;
1590 if (n == 0) {
1591 isl_ctx *ctx = isl_constraint_list_get_ctx(list);
1592 isl_constraint_list_free(list);
1593 return isl_ast_expr_alloc_int_si(ctx, 1);
1596 build = isl_ast_build_copy(build);
1598 c = isl_constraint_list_get_constraint(list, 0);
1599 bset = isl_basic_set_from_constraint(isl_constraint_copy(c));
1600 set = isl_set_from_basic_set(bset);
1601 res = isl_ast_expr_from_constraint(c, build);
1602 build = isl_ast_build_restrict_generated(build, set);
1604 for (i = 1; i < n; ++i) {
1605 isl_ast_expr *expr;
1607 c = isl_constraint_list_get_constraint(list, i);
1608 bset = isl_basic_set_from_constraint(isl_constraint_copy(c));
1609 set = isl_set_from_basic_set(bset);
1610 expr = isl_ast_expr_from_constraint(c, build);
1611 build = isl_ast_build_restrict_generated(build, set);
1612 res = isl_ast_expr_and(res, expr);
1615 isl_constraint_list_free(list);
1616 isl_ast_build_free(build);
1617 return res;
1620 /* Construct an isl_ast_expr that evaluates the conditions defining "set".
1621 * The result is simplified in terms of build->domain.
1623 * If "set" is an (obviously) empty set, then return the expression "0".
1625 * If there are multiple disjuncts in the description of the set,
1626 * then subsequent disjuncts are simplified in a context where
1627 * the previous disjuncts have been removed from build->domain.
1628 * In particular, constraints that ensure that there is no overlap
1629 * with these previous disjuncts, can be removed.
1630 * This is mostly useful for disjuncts that are only defined by
1631 * a single constraint (relative to the build domain) as the opposite
1632 * of that single constraint can then be removed from the other disjuncts.
1633 * In order not to increase the number of disjuncts in the build domain
1634 * after subtracting the previous disjuncts of "set", the simple hull
1635 * is computed after taking the difference with each of these disjuncts.
1636 * This means that constraints that prevent overlap with a union
1637 * of multiple previous disjuncts are not removed.
1639 * "set" lives in the internal schedule space.
1641 __isl_give isl_ast_expr *isl_ast_build_expr_from_set_internal(
1642 __isl_keep isl_ast_build *build, __isl_take isl_set *set)
1644 int i;
1645 isl_size n;
1646 isl_basic_set *bset;
1647 isl_basic_set_list *list;
1648 isl_set *domain;
1649 isl_ast_expr *res;
1651 list = isl_set_get_basic_set_list(set);
1652 isl_set_free(set);
1654 n = isl_basic_set_list_n_basic_set(list);
1655 if (n < 0)
1656 build = NULL;
1657 if (n == 0) {
1658 isl_ctx *ctx = isl_ast_build_get_ctx(build);
1659 isl_basic_set_list_free(list);
1660 return isl_ast_expr_from_val(isl_val_zero(ctx));
1663 domain = isl_ast_build_get_domain(build);
1665 bset = isl_basic_set_list_get_basic_set(list, 0);
1666 set = isl_set_from_basic_set(isl_basic_set_copy(bset));
1667 res = isl_ast_build_expr_from_basic_set(build, bset);
1669 for (i = 1; i < n; ++i) {
1670 isl_ast_expr *expr;
1671 isl_set *rest;
1673 rest = isl_set_subtract(isl_set_copy(domain), set);
1674 rest = isl_set_from_basic_set(isl_set_simple_hull(rest));
1675 domain = isl_set_intersect(domain, rest);
1676 bset = isl_basic_set_list_get_basic_set(list, i);
1677 set = isl_set_from_basic_set(isl_basic_set_copy(bset));
1678 bset = isl_basic_set_gist(bset,
1679 isl_set_simple_hull(isl_set_copy(domain)));
1680 expr = isl_ast_build_expr_from_basic_set(build, bset);
1681 res = isl_ast_expr_or(res, expr);
1684 isl_set_free(domain);
1685 isl_set_free(set);
1686 isl_basic_set_list_free(list);
1687 return res;
1690 /* Construct an isl_ast_expr that evaluates the conditions defining "set".
1691 * The result is simplified in terms of build->domain.
1693 * If "set" is an (obviously) empty set, then return the expression "0".
1695 * "set" lives in the external schedule space.
1697 * The internal AST expression generation assumes that there are
1698 * no unknown divs, so make sure an explicit representation is available.
1699 * Since the set comes from the outside, it may have constraints that
1700 * are redundant with respect to the build domain. Remove them first.
1702 __isl_give isl_ast_expr *isl_ast_build_expr_from_set(
1703 __isl_keep isl_ast_build *build, __isl_take isl_set *set)
1705 isl_bool needs_map;
1707 needs_map = isl_ast_build_need_schedule_map(build);
1708 if (needs_map < 0) {
1709 set = isl_set_free(set);
1710 } else if (needs_map) {
1711 isl_multi_aff *ma;
1712 ma = isl_ast_build_get_schedule_map_multi_aff(build);
1713 set = isl_set_preimage_multi_aff(set, ma);
1716 set = isl_set_compute_divs(set);
1717 set = isl_ast_build_compute_gist(build, set);
1718 return isl_ast_build_expr_from_set_internal(build, set);
1721 /* State of data about previous pieces in
1722 * isl_ast_build_expr_from_pw_aff_internal.
1724 * isl_state_none: no data about previous pieces
1725 * isl_state_single: data about a single previous piece
1726 * isl_state_min: data represents minimum of several pieces
1727 * isl_state_max: data represents maximum of several pieces
1729 enum isl_from_pw_aff_state {
1730 isl_state_none,
1731 isl_state_single,
1732 isl_state_min,
1733 isl_state_max
1736 /* Internal date structure representing a single piece in the input of
1737 * isl_ast_build_expr_from_pw_aff_internal.
1739 * If "state" is isl_state_none, then "set_list" and "aff_list" are not used.
1740 * If "state" is isl_state_single, then "set_list" and "aff_list" contain the
1741 * single previous subpiece.
1742 * If "state" is isl_state_min, then "set_list" and "aff_list" contain
1743 * a sequence of several previous subpieces that are equal to the minimum
1744 * of the entries in "aff_list" over the union of "set_list"
1745 * If "state" is isl_state_max, then "set_list" and "aff_list" contain
1746 * a sequence of several previous subpieces that are equal to the maximum
1747 * of the entries in "aff_list" over the union of "set_list"
1749 * During the construction of the pieces, "set" is NULL.
1750 * After the construction, "set" is set to the union of the elements
1751 * in "set_list", at which point "set_list" is set to NULL.
1753 struct isl_from_pw_aff_piece {
1754 enum isl_from_pw_aff_state state;
1755 isl_set *set;
1756 isl_set_list *set_list;
1757 isl_aff_list *aff_list;
1760 /* Internal data structure for isl_ast_build_expr_from_pw_aff_internal.
1762 * "build" specifies the domain against which the result is simplified.
1763 * "dom" is the domain of the entire isl_pw_aff.
1765 * "n" is the number of pieces constructed already.
1766 * In particular, during the construction of the pieces, "n" points to
1767 * the piece that is being constructed. After the construction of the
1768 * pieces, "n" is set to the total number of pieces.
1769 * "max" is the total number of allocated entries.
1770 * "p" contains the individual pieces.
1772 struct isl_from_pw_aff_data {
1773 isl_ast_build *build;
1774 isl_set *dom;
1776 int n;
1777 int max;
1778 struct isl_from_pw_aff_piece *p;
1781 /* Initialize "data" based on "build" and "pa".
1783 static isl_stat isl_from_pw_aff_data_init(struct isl_from_pw_aff_data *data,
1784 __isl_keep isl_ast_build *build, __isl_keep isl_pw_aff *pa)
1786 isl_size n;
1787 isl_ctx *ctx;
1789 ctx = isl_pw_aff_get_ctx(pa);
1790 n = isl_pw_aff_n_piece(pa);
1791 if (n < 0)
1792 return isl_stat_error;
1793 if (n == 0)
1794 isl_die(ctx, isl_error_invalid,
1795 "cannot handle void expression", return isl_stat_error);
1796 data->max = n;
1797 data->p = isl_calloc_array(ctx, struct isl_from_pw_aff_piece, n);
1798 if (!data->p)
1799 return isl_stat_error;
1800 data->build = build;
1801 data->dom = isl_pw_aff_domain(isl_pw_aff_copy(pa));
1802 data->n = 0;
1804 return isl_stat_ok;
1807 /* Free all memory allocated for "data".
1809 static void isl_from_pw_aff_data_clear(struct isl_from_pw_aff_data *data)
1811 int i;
1813 isl_set_free(data->dom);
1814 if (!data->p)
1815 return;
1817 for (i = 0; i < data->max; ++i) {
1818 isl_set_free(data->p[i].set);
1819 isl_set_list_free(data->p[i].set_list);
1820 isl_aff_list_free(data->p[i].aff_list);
1822 free(data->p);
1825 /* Initialize the current entry of "data" to an unused piece.
1827 static void set_none(struct isl_from_pw_aff_data *data)
1829 data->p[data->n].state = isl_state_none;
1830 data->p[data->n].set_list = NULL;
1831 data->p[data->n].aff_list = NULL;
1834 /* Store "set" and "aff" in the current entry of "data" as a single subpiece.
1836 static void set_single(struct isl_from_pw_aff_data *data,
1837 __isl_take isl_set *set, __isl_take isl_aff *aff)
1839 data->p[data->n].state = isl_state_single;
1840 data->p[data->n].set_list = isl_set_list_from_set(set);
1841 data->p[data->n].aff_list = isl_aff_list_from_aff(aff);
1844 /* Extend the current entry of "data" with "set" and "aff"
1845 * as a minimum expression.
1847 static isl_stat extend_min(struct isl_from_pw_aff_data *data,
1848 __isl_take isl_set *set, __isl_take isl_aff *aff)
1850 int n = data->n;
1851 data->p[n].state = isl_state_min;
1852 data->p[n].set_list = isl_set_list_add(data->p[n].set_list, set);
1853 data->p[n].aff_list = isl_aff_list_add(data->p[n].aff_list, aff);
1855 if (!data->p[n].set_list || !data->p[n].aff_list)
1856 return isl_stat_error;
1857 return isl_stat_ok;
1860 /* Extend the current entry of "data" with "set" and "aff"
1861 * as a maximum expression.
1863 static isl_stat extend_max(struct isl_from_pw_aff_data *data,
1864 __isl_take isl_set *set, __isl_take isl_aff *aff)
1866 int n = data->n;
1867 data->p[n].state = isl_state_max;
1868 data->p[n].set_list = isl_set_list_add(data->p[n].set_list, set);
1869 data->p[n].aff_list = isl_aff_list_add(data->p[n].aff_list, aff);
1871 if (!data->p[n].set_list || !data->p[n].aff_list)
1872 return isl_stat_error;
1873 return isl_stat_ok;
1876 /* Extend the domain of the current entry of "data", which is assumed
1877 * to contain a single subpiece, with "set". If "replace" is set,
1878 * then also replace the affine function by "aff". Otherwise,
1879 * simply free "aff".
1881 static isl_stat extend_domain(struct isl_from_pw_aff_data *data,
1882 __isl_take isl_set *set, __isl_take isl_aff *aff, int replace)
1884 int n = data->n;
1885 isl_set *set_n;
1887 set_n = isl_set_list_get_set(data->p[n].set_list, 0);
1888 set_n = isl_set_union(set_n, set);
1889 data->p[n].set_list =
1890 isl_set_list_set_set(data->p[n].set_list, 0, set_n);
1892 if (replace)
1893 data->p[n].aff_list =
1894 isl_aff_list_set_aff(data->p[n].aff_list, 0, aff);
1895 else
1896 isl_aff_free(aff);
1898 if (!data->p[n].set_list || !data->p[n].aff_list)
1899 return isl_stat_error;
1900 return isl_stat_ok;
1903 /* Construct an isl_ast_expr from "list" within "build".
1904 * If "state" is isl_state_single, then "list" contains a single entry and
1905 * an isl_ast_expr is constructed for that entry.
1906 * Otherwise a min or max expression is constructed from "list"
1907 * depending on "state".
1909 static __isl_give isl_ast_expr *ast_expr_from_aff_list(
1910 __isl_take isl_aff_list *list, enum isl_from_pw_aff_state state,
1911 __isl_keep isl_ast_build *build)
1913 int i;
1914 isl_size n;
1915 isl_aff *aff;
1916 isl_ast_expr *expr = NULL;
1917 enum isl_ast_expr_op_type op_type;
1919 if (state == isl_state_single) {
1920 aff = isl_aff_list_get_aff(list, 0);
1921 isl_aff_list_free(list);
1922 return isl_ast_expr_from_aff(aff, build);
1924 n = isl_aff_list_n_aff(list);
1925 if (n < 0)
1926 goto error;
1927 op_type = state == isl_state_min ? isl_ast_expr_op_min
1928 : isl_ast_expr_op_max;
1929 expr = isl_ast_expr_alloc_op(isl_ast_build_get_ctx(build), op_type, n);
1930 if (!expr)
1931 goto error;
1933 for (i = 0; i < n; ++i) {
1934 isl_ast_expr *expr_i;
1936 aff = isl_aff_list_get_aff(list, i);
1937 expr_i = isl_ast_expr_from_aff(aff, build);
1938 if (!expr_i)
1939 goto error;
1940 expr->u.op.args[i] = expr_i;
1943 isl_aff_list_free(list);
1944 return expr;
1945 error:
1946 isl_aff_list_free(list);
1947 isl_ast_expr_free(expr);
1948 return NULL;
1951 /* Extend the expression in "next" to take into account
1952 * the piece at position "pos" in "data", allowing for a further extension
1953 * for the next piece(s).
1954 * In particular, "next" is set to a select operation that selects
1955 * an isl_ast_expr corresponding to data->aff_list on data->set and
1956 * to an expression that will be filled in by later calls.
1957 * Return a pointer to this location.
1958 * Afterwards, the state of "data" is set to isl_state_none.
1960 * The constraints of data->set are added to the generated
1961 * constraints of the build such that they can be exploited to simplify
1962 * the AST expression constructed from data->aff_list.
1964 static isl_ast_expr **add_intermediate_piece(struct isl_from_pw_aff_data *data,
1965 int pos, isl_ast_expr **next)
1967 isl_ctx *ctx;
1968 isl_ast_build *build;
1969 isl_ast_expr *ternary, *arg;
1970 isl_set *set, *gist;
1972 set = data->p[pos].set;
1973 data->p[pos].set = NULL;
1974 ctx = isl_ast_build_get_ctx(data->build);
1975 ternary = isl_ast_expr_alloc_op(ctx, isl_ast_expr_op_select, 3);
1976 gist = isl_set_gist(isl_set_copy(set), isl_set_copy(data->dom));
1977 arg = isl_ast_build_expr_from_set_internal(data->build, gist);
1978 ternary = isl_ast_expr_set_op_arg(ternary, 0, arg);
1979 build = isl_ast_build_copy(data->build);
1980 build = isl_ast_build_restrict_generated(build, set);
1981 arg = ast_expr_from_aff_list(data->p[pos].aff_list,
1982 data->p[pos].state, build);
1983 data->p[pos].aff_list = NULL;
1984 isl_ast_build_free(build);
1985 ternary = isl_ast_expr_set_op_arg(ternary, 1, arg);
1986 data->p[pos].state = isl_state_none;
1987 if (!ternary)
1988 return NULL;
1990 *next = ternary;
1991 return &ternary->u.op.args[2];
1994 /* Extend the expression in "next" to take into account
1995 * the final piece, located at position "pos" in "data".
1996 * In particular, "next" is set to evaluate data->aff_list
1997 * and the domain is ignored.
1998 * Return isl_stat_ok on success and isl_stat_error on failure.
2000 * The constraints of data->set are however added to the generated
2001 * constraints of the build such that they can be exploited to simplify
2002 * the AST expression constructed from data->aff_list.
2004 static isl_stat add_last_piece(struct isl_from_pw_aff_data *data,
2005 int pos, isl_ast_expr **next)
2007 isl_ast_build *build;
2009 if (data->p[pos].state == isl_state_none)
2010 isl_die(isl_ast_build_get_ctx(data->build), isl_error_invalid,
2011 "cannot handle void expression", return isl_stat_error);
2013 build = isl_ast_build_copy(data->build);
2014 build = isl_ast_build_restrict_generated(build, data->p[pos].set);
2015 data->p[pos].set = NULL;
2016 *next = ast_expr_from_aff_list(data->p[pos].aff_list,
2017 data->p[pos].state, build);
2018 data->p[pos].aff_list = NULL;
2019 isl_ast_build_free(build);
2020 data->p[pos].state = isl_state_none;
2021 if (!*next)
2022 return isl_stat_error;
2024 return isl_stat_ok;
2027 /* Return -1 if the piece "p1" should be sorted before "p2"
2028 * and 1 if it should be sorted after "p2".
2029 * Return 0 if they do not need to be sorted in a specific order.
2031 * Pieces are sorted according to the number of disjuncts
2032 * in their domains.
2034 static int sort_pieces_cmp(const void *p1, const void *p2, void *arg)
2036 const struct isl_from_pw_aff_piece *piece1 = p1;
2037 const struct isl_from_pw_aff_piece *piece2 = p2;
2038 isl_size n1, n2;
2040 n1 = isl_set_n_basic_set(piece1->set);
2041 n2 = isl_set_n_basic_set(piece2->set);
2043 return n1 - n2;
2046 /* Construct an isl_ast_expr from the pieces in "data".
2047 * Return the result or NULL on failure.
2049 * When this function is called, data->n points to the current piece.
2050 * If this is an effective piece, then first increment data->n such
2051 * that data->n contains the number of pieces.
2052 * The "set_list" fields are subsequently replaced by the corresponding
2053 * "set" fields, after which the pieces are sorted according to
2054 * the number of disjuncts in these "set" fields.
2056 * Construct intermediate AST expressions for the initial pieces and
2057 * finish off with the final pieces.
2059 static isl_ast_expr *build_pieces(struct isl_from_pw_aff_data *data)
2061 int i;
2062 isl_ast_expr *res = NULL;
2063 isl_ast_expr **next = &res;
2065 if (data->p[data->n].state != isl_state_none)
2066 data->n++;
2067 if (data->n == 0)
2068 isl_die(isl_ast_build_get_ctx(data->build), isl_error_invalid,
2069 "cannot handle void expression", return NULL);
2071 for (i = 0; i < data->n; ++i) {
2072 data->p[i].set = isl_set_list_union(data->p[i].set_list);
2073 if (data->p[i].state != isl_state_single)
2074 data->p[i].set = isl_set_coalesce(data->p[i].set);
2075 data->p[i].set_list = NULL;
2078 if (isl_sort(data->p, data->n, sizeof(data->p[0]),
2079 &sort_pieces_cmp, NULL) < 0)
2080 return isl_ast_expr_free(res);
2082 for (i = 0; i + 1 < data->n; ++i) {
2083 next = add_intermediate_piece(data, i, next);
2084 if (!next)
2085 return isl_ast_expr_free(res);
2088 if (add_last_piece(data, data->n - 1, next) < 0)
2089 return isl_ast_expr_free(res);
2091 return res;
2094 /* Is the domain of the current entry of "data", which is assumed
2095 * to contain a single subpiece, a subset of "set"?
2097 static isl_bool single_is_subset(struct isl_from_pw_aff_data *data,
2098 __isl_keep isl_set *set)
2100 isl_bool subset;
2101 isl_set *set_n;
2103 set_n = isl_set_list_get_set(data->p[data->n].set_list, 0);
2104 subset = isl_set_is_subset(set_n, set);
2105 isl_set_free(set_n);
2107 return subset;
2110 /* Is "aff" a rational expression, i.e., does it have a denominator
2111 * different from one?
2113 static isl_bool aff_is_rational(__isl_keep isl_aff *aff)
2115 isl_bool rational;
2116 isl_val *den;
2118 den = isl_aff_get_denominator_val(aff);
2119 rational = isl_bool_not(isl_val_is_one(den));
2120 isl_val_free(den);
2122 return rational;
2125 /* Does "list" consist of a single rational affine expression?
2127 static isl_bool is_single_rational_aff(__isl_keep isl_aff_list *list)
2129 isl_size n;
2130 isl_bool rational;
2131 isl_aff *aff;
2133 n = isl_aff_list_n_aff(list);
2134 if (n < 0)
2135 return isl_bool_error;
2136 if (n != 1)
2137 return isl_bool_false;
2138 aff = isl_aff_list_get_aff(list, 0);
2139 rational = aff_is_rational(aff);
2140 isl_aff_free(aff);
2142 return rational;
2145 /* Can the list of subpieces in the last piece of "data" be extended with
2146 * "set" and "aff" based on "test"?
2147 * In particular, is it the case for each entry (set_i, aff_i) that
2149 * test(aff, aff_i) holds on set_i, and
2150 * test(aff_i, aff) holds on set?
2152 * "test" returns the set of elements where the tests holds, meaning
2153 * that test(aff_i, aff) holds on set if set is a subset of test(aff_i, aff).
2155 * This function is used to detect min/max expressions.
2156 * If the ast_build_detect_min_max option is turned off, then
2157 * do not even try and perform any detection and return false instead.
2159 * Rational affine expressions are not considered for min/max expressions
2160 * since the combined expression will be defined on the union of the domains,
2161 * while a rational expression may only yield integer values
2162 * on its own definition domain.
2164 static isl_bool extends(struct isl_from_pw_aff_data *data,
2165 __isl_keep isl_set *set, __isl_keep isl_aff *aff,
2166 __isl_give isl_basic_set *(*test)(__isl_take isl_aff *aff1,
2167 __isl_take isl_aff *aff2))
2169 int i;
2170 isl_size n;
2171 isl_bool is_rational;
2172 isl_ctx *ctx;
2173 isl_set *dom;
2175 is_rational = aff_is_rational(aff);
2176 if (is_rational >= 0 && !is_rational)
2177 is_rational = is_single_rational_aff(data->p[data->n].aff_list);
2178 if (is_rational < 0 || is_rational)
2179 return isl_bool_not(is_rational);
2181 ctx = isl_ast_build_get_ctx(data->build);
2182 if (!isl_options_get_ast_build_detect_min_max(ctx))
2183 return isl_bool_false;
2185 n = isl_set_list_n_set(data->p[data->n].set_list);
2186 if (n < 0)
2187 return isl_bool_error;
2189 dom = isl_ast_build_get_domain(data->build);
2190 set = isl_set_intersect(dom, isl_set_copy(set));
2192 for (i = 0; i < n ; ++i) {
2193 isl_aff *aff_i;
2194 isl_set *valid;
2195 isl_set *dom, *required;
2196 isl_bool is_valid;
2198 aff_i = isl_aff_list_get_aff(data->p[data->n].aff_list, i);
2199 valid = isl_set_from_basic_set(test(isl_aff_copy(aff), aff_i));
2200 required = isl_set_list_get_set(data->p[data->n].set_list, i);
2201 dom = isl_ast_build_get_domain(data->build);
2202 required = isl_set_intersect(dom, required);
2203 is_valid = isl_set_is_subset(required, valid);
2204 isl_set_free(required);
2205 isl_set_free(valid);
2206 if (is_valid < 0 || !is_valid) {
2207 isl_set_free(set);
2208 return is_valid;
2211 aff_i = isl_aff_list_get_aff(data->p[data->n].aff_list, i);
2212 valid = isl_set_from_basic_set(test(aff_i, isl_aff_copy(aff)));
2213 is_valid = isl_set_is_subset(set, valid);
2214 isl_set_free(valid);
2215 if (is_valid < 0 || !is_valid) {
2216 isl_set_free(set);
2217 return is_valid;
2221 isl_set_free(set);
2222 return isl_bool_true;
2225 /* Can the list of pieces in "data" be extended with "set" and "aff"
2226 * to form/preserve a minimum expression?
2227 * In particular, is it the case for each entry (set_i, aff_i) that
2229 * aff >= aff_i on set_i, and
2230 * aff_i >= aff on set?
2232 static isl_bool extends_min(struct isl_from_pw_aff_data *data,
2233 __isl_keep isl_set *set, __isl_keep isl_aff *aff)
2235 return extends(data, set, aff, &isl_aff_ge_basic_set);
2238 /* Can the list of pieces in "data" be extended with "set" and "aff"
2239 * to form/preserve a maximum expression?
2240 * In particular, is it the case for each entry (set_i, aff_i) that
2242 * aff <= aff_i on set_i, and
2243 * aff_i <= aff on set?
2245 static isl_bool extends_max(struct isl_from_pw_aff_data *data,
2246 __isl_keep isl_set *set, __isl_keep isl_aff *aff)
2248 return extends(data, set, aff, &isl_aff_le_basic_set);
2251 /* This function is called during the construction of an isl_ast_expr
2252 * that evaluates an isl_pw_aff.
2253 * If the last piece of "data" contains a single subpiece and
2254 * if its affine function is equal to "aff" on a part of the domain
2255 * that includes either "set" or the domain of that single subpiece,
2256 * then extend the domain of that single subpiece with "set".
2257 * If it was the original domain of the single subpiece where
2258 * the two affine functions are equal, then also replace
2259 * the affine function of the single subpiece by "aff".
2260 * If the last piece of "data" contains either a single subpiece
2261 * or a minimum, then check if this minimum expression can be extended
2262 * with (set, aff).
2263 * If so, extend the sequence and return.
2264 * Perform the same operation for maximum expressions.
2265 * If no such extension can be performed, then move to the next piece
2266 * in "data" (if the current piece contains any data), and then store
2267 * the current subpiece in the current piece of "data" for later handling.
2269 static isl_stat ast_expr_from_pw_aff(__isl_take isl_set *set,
2270 __isl_take isl_aff *aff, void *user)
2272 struct isl_from_pw_aff_data *data = user;
2273 isl_bool test;
2274 enum isl_from_pw_aff_state state;
2276 state = data->p[data->n].state;
2277 if (state == isl_state_single) {
2278 isl_aff *aff0;
2279 isl_set *eq;
2280 isl_bool subset1, subset2 = isl_bool_false;
2281 aff0 = isl_aff_list_get_aff(data->p[data->n].aff_list, 0);
2282 eq = isl_aff_eq_set(isl_aff_copy(aff), aff0);
2283 subset1 = isl_set_is_subset(set, eq);
2284 if (subset1 >= 0 && !subset1)
2285 subset2 = single_is_subset(data, eq);
2286 isl_set_free(eq);
2287 if (subset1 < 0 || subset2 < 0)
2288 goto error;
2289 if (subset1)
2290 return extend_domain(data, set, aff, 0);
2291 if (subset2)
2292 return extend_domain(data, set, aff, 1);
2294 if (state == isl_state_single || state == isl_state_min) {
2295 test = extends_min(data, set, aff);
2296 if (test < 0)
2297 goto error;
2298 if (test)
2299 return extend_min(data, set, aff);
2301 if (state == isl_state_single || state == isl_state_max) {
2302 test = extends_max(data, set, aff);
2303 if (test < 0)
2304 goto error;
2305 if (test)
2306 return extend_max(data, set, aff);
2308 if (state != isl_state_none)
2309 data->n++;
2310 set_single(data, set, aff);
2312 return isl_stat_ok;
2313 error:
2314 isl_set_free(set);
2315 isl_aff_free(aff);
2316 return isl_stat_error;
2319 /* Construct an isl_ast_expr that evaluates "pa".
2320 * The result is simplified in terms of build->domain.
2322 * The domain of "pa" lives in the internal schedule space.
2324 __isl_give isl_ast_expr *isl_ast_build_expr_from_pw_aff_internal(
2325 __isl_keep isl_ast_build *build, __isl_take isl_pw_aff *pa)
2327 struct isl_from_pw_aff_data data = { NULL };
2328 isl_ast_expr *res = NULL;
2330 pa = isl_ast_build_compute_gist_pw_aff(build, pa);
2331 pa = isl_pw_aff_coalesce(pa);
2332 if (!pa)
2333 return NULL;
2335 if (isl_from_pw_aff_data_init(&data, build, pa) < 0)
2336 goto error;
2337 set_none(&data);
2339 if (isl_pw_aff_foreach_piece(pa, &ast_expr_from_pw_aff, &data) >= 0)
2340 res = build_pieces(&data);
2342 isl_pw_aff_free(pa);
2343 isl_from_pw_aff_data_clear(&data);
2344 return res;
2345 error:
2346 isl_pw_aff_free(pa);
2347 isl_from_pw_aff_data_clear(&data);
2348 return NULL;
2351 /* Construct an isl_ast_expr that evaluates "pa".
2352 * The result is simplified in terms of build->domain.
2354 * The domain of "pa" lives in the external schedule space.
2356 __isl_give isl_ast_expr *isl_ast_build_expr_from_pw_aff(
2357 __isl_keep isl_ast_build *build, __isl_take isl_pw_aff *pa)
2359 isl_ast_expr *expr;
2360 isl_bool needs_map;
2362 needs_map = isl_ast_build_need_schedule_map(build);
2363 if (needs_map < 0) {
2364 pa = isl_pw_aff_free(pa);
2365 } else if (needs_map) {
2366 isl_multi_aff *ma;
2367 ma = isl_ast_build_get_schedule_map_multi_aff(build);
2368 pa = isl_pw_aff_pullback_multi_aff(pa, ma);
2370 expr = isl_ast_build_expr_from_pw_aff_internal(build, pa);
2371 return expr;
2374 /* Set the ids of the input dimensions of "mpa" to the iterator ids
2375 * of "build".
2377 * The domain of "mpa" is assumed to live in the internal schedule domain.
2379 static __isl_give isl_multi_pw_aff *set_iterator_names(
2380 __isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa)
2382 int i;
2383 isl_size n;
2385 n = isl_multi_pw_aff_dim(mpa, isl_dim_in);
2386 if (n < 0)
2387 return isl_multi_pw_aff_free(mpa);
2388 for (i = 0; i < n; ++i) {
2389 isl_id *id;
2391 id = isl_ast_build_get_iterator_id(build, i);
2392 mpa = isl_multi_pw_aff_set_dim_id(mpa, isl_dim_in, i, id);
2395 return mpa;
2398 /* Construct an isl_ast_expr of type "type" with as first argument "arg0" and
2399 * the remaining arguments derived from "mpa".
2400 * That is, construct a call or access expression that calls/accesses "arg0"
2401 * with arguments/indices specified by "mpa".
2403 static __isl_give isl_ast_expr *isl_ast_build_with_arguments(
2404 __isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type,
2405 __isl_take isl_ast_expr *arg0, __isl_take isl_multi_pw_aff *mpa)
2407 int i;
2408 isl_size n;
2409 isl_ctx *ctx;
2410 isl_ast_expr *expr;
2412 ctx = isl_ast_build_get_ctx(build);
2414 n = isl_multi_pw_aff_dim(mpa, isl_dim_out);
2415 expr = n >= 0 ? isl_ast_expr_alloc_op(ctx, type, 1 + n) : NULL;
2416 expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
2417 for (i = 0; i < n; ++i) {
2418 isl_pw_aff *pa;
2419 isl_ast_expr *arg;
2421 pa = isl_multi_pw_aff_get_pw_aff(mpa, i);
2422 arg = isl_ast_build_expr_from_pw_aff_internal(build, pa);
2423 expr = isl_ast_expr_set_op_arg(expr, 1 + i, arg);
2426 isl_multi_pw_aff_free(mpa);
2427 return expr;
2430 static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff_internal(
2431 __isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type,
2432 __isl_take isl_multi_pw_aff *mpa);
2434 /* Construct an isl_ast_expr that accesses the member specified by "mpa".
2435 * The range of "mpa" is assumed to be wrapped relation.
2436 * The domain of this wrapped relation specifies the structure being
2437 * accessed, while the range of this wrapped relation spacifies the
2438 * member of the structure being accessed.
2440 * The domain of "mpa" is assumed to live in the internal schedule domain.
2442 static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff_member(
2443 __isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa)
2445 isl_id *id;
2446 isl_multi_pw_aff *domain;
2447 isl_ast_expr *domain_expr, *expr;
2448 enum isl_ast_expr_op_type type = isl_ast_expr_op_access;
2450 domain = isl_multi_pw_aff_copy(mpa);
2451 domain = isl_multi_pw_aff_range_factor_domain(domain);
2452 domain_expr = isl_ast_build_from_multi_pw_aff_internal(build,
2453 type, domain);
2454 mpa = isl_multi_pw_aff_range_factor_range(mpa);
2455 if (!isl_multi_pw_aff_has_tuple_id(mpa, isl_dim_out))
2456 isl_die(isl_ast_build_get_ctx(build), isl_error_invalid,
2457 "missing field name", goto error);
2458 id = isl_multi_pw_aff_get_tuple_id(mpa, isl_dim_out);
2459 expr = isl_ast_expr_from_id(id);
2460 expr = isl_ast_expr_alloc_binary(isl_ast_expr_op_member,
2461 domain_expr, expr);
2462 return isl_ast_build_with_arguments(build, type, expr, mpa);
2463 error:
2464 isl_multi_pw_aff_free(mpa);
2465 return NULL;
2468 /* Construct an isl_ast_expr of type "type" that calls or accesses
2469 * the element specified by "mpa".
2470 * The first argument is obtained from the output tuple name.
2471 * The remaining arguments are given by the piecewise affine expressions.
2473 * If the range of "mpa" is a mapped relation, then we assume it
2474 * represents an access to a member of a structure.
2476 * The domain of "mpa" is assumed to live in the internal schedule domain.
2478 static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff_internal(
2479 __isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type,
2480 __isl_take isl_multi_pw_aff *mpa)
2482 isl_ctx *ctx;
2483 isl_id *id;
2484 isl_ast_expr *expr;
2486 if (!mpa)
2487 goto error;
2489 if (type == isl_ast_expr_op_access &&
2490 isl_multi_pw_aff_range_is_wrapping(mpa))
2491 return isl_ast_build_from_multi_pw_aff_member(build, mpa);
2493 mpa = set_iterator_names(build, mpa);
2494 if (!build || !mpa)
2495 goto error;
2497 ctx = isl_ast_build_get_ctx(build);
2499 if (isl_multi_pw_aff_has_tuple_id(mpa, isl_dim_out))
2500 id = isl_multi_pw_aff_get_tuple_id(mpa, isl_dim_out);
2501 else
2502 id = isl_id_alloc(ctx, "", NULL);
2504 expr = isl_ast_expr_from_id(id);
2505 return isl_ast_build_with_arguments(build, type, expr, mpa);
2506 error:
2507 isl_multi_pw_aff_free(mpa);
2508 return NULL;
2511 /* Construct an isl_ast_expr of type "type" that calls or accesses
2512 * the element specified by "pma".
2513 * The first argument is obtained from the output tuple name.
2514 * The remaining arguments are given by the piecewise affine expressions.
2516 * The domain of "pma" is assumed to live in the internal schedule domain.
2518 static __isl_give isl_ast_expr *isl_ast_build_from_pw_multi_aff_internal(
2519 __isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type,
2520 __isl_take isl_pw_multi_aff *pma)
2522 isl_multi_pw_aff *mpa;
2524 mpa = isl_multi_pw_aff_from_pw_multi_aff(pma);
2525 return isl_ast_build_from_multi_pw_aff_internal(build, type, mpa);
2528 /* Construct an isl_ast_expr of type "type" that calls or accesses
2529 * the element specified by "mpa".
2530 * The first argument is obtained from the output tuple name.
2531 * The remaining arguments are given by the piecewise affine expressions.
2533 * The domain of "mpa" is assumed to live in the external schedule domain.
2535 static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff(
2536 __isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type,
2537 __isl_take isl_multi_pw_aff *mpa)
2539 isl_bool is_domain;
2540 isl_bool needs_map;
2541 isl_ast_expr *expr;
2542 isl_space *space_build, *space_mpa;
2544 space_build = isl_ast_build_get_space(build, 0);
2545 space_mpa = isl_multi_pw_aff_get_space(mpa);
2546 is_domain = isl_space_tuple_is_equal(space_build, isl_dim_set,
2547 space_mpa, isl_dim_in);
2548 isl_space_free(space_build);
2549 isl_space_free(space_mpa);
2550 if (is_domain < 0)
2551 goto error;
2552 if (!is_domain)
2553 isl_die(isl_ast_build_get_ctx(build), isl_error_invalid,
2554 "spaces don't match", goto error);
2556 needs_map = isl_ast_build_need_schedule_map(build);
2557 if (needs_map < 0)
2558 goto error;
2559 if (needs_map) {
2560 isl_multi_aff *ma;
2561 ma = isl_ast_build_get_schedule_map_multi_aff(build);
2562 mpa = isl_multi_pw_aff_pullback_multi_aff(mpa, ma);
2565 expr = isl_ast_build_from_multi_pw_aff_internal(build, type, mpa);
2566 return expr;
2567 error:
2568 isl_multi_pw_aff_free(mpa);
2569 return NULL;
2572 /* Construct an isl_ast_expr that calls the domain element specified by "mpa".
2573 * The name of the function is obtained from the output tuple name.
2574 * The arguments are given by the piecewise affine expressions.
2576 * The domain of "mpa" is assumed to live in the external schedule domain.
2578 __isl_give isl_ast_expr *isl_ast_build_call_from_multi_pw_aff(
2579 __isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa)
2581 return isl_ast_build_from_multi_pw_aff(build,
2582 isl_ast_expr_op_call, mpa);
2585 /* Construct an isl_ast_expr that accesses the array element specified by "mpa".
2586 * The name of the array is obtained from the output tuple name.
2587 * The index expressions are given by the piecewise affine expressions.
2589 * The domain of "mpa" is assumed to live in the external schedule domain.
2591 __isl_give isl_ast_expr *isl_ast_build_access_from_multi_pw_aff(
2592 __isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa)
2594 return isl_ast_build_from_multi_pw_aff(build,
2595 isl_ast_expr_op_access, mpa);
2598 /* Construct an isl_ast_expr of type "type" that calls or accesses
2599 * the element specified by "pma".
2600 * The first argument is obtained from the output tuple name.
2601 * The remaining arguments are given by the piecewise affine expressions.
2603 * The domain of "pma" is assumed to live in the external schedule domain.
2605 static __isl_give isl_ast_expr *isl_ast_build_from_pw_multi_aff(
2606 __isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type,
2607 __isl_take isl_pw_multi_aff *pma)
2609 isl_multi_pw_aff *mpa;
2611 mpa = isl_multi_pw_aff_from_pw_multi_aff(pma);
2612 return isl_ast_build_from_multi_pw_aff(build, type, mpa);
2615 /* Construct an isl_ast_expr that calls the domain element specified by "pma".
2616 * The name of the function is obtained from the output tuple name.
2617 * The arguments are given by the piecewise affine expressions.
2619 * The domain of "pma" is assumed to live in the external schedule domain.
2621 __isl_give isl_ast_expr *isl_ast_build_call_from_pw_multi_aff(
2622 __isl_keep isl_ast_build *build, __isl_take isl_pw_multi_aff *pma)
2624 return isl_ast_build_from_pw_multi_aff(build,
2625 isl_ast_expr_op_call, pma);
2628 /* Construct an isl_ast_expr that accesses the array element specified by "pma".
2629 * The name of the array is obtained from the output tuple name.
2630 * The index expressions are given by the piecewise affine expressions.
2632 * The domain of "pma" is assumed to live in the external schedule domain.
2634 __isl_give isl_ast_expr *isl_ast_build_access_from_pw_multi_aff(
2635 __isl_keep isl_ast_build *build, __isl_take isl_pw_multi_aff *pma)
2637 return isl_ast_build_from_pw_multi_aff(build,
2638 isl_ast_expr_op_access, pma);
2641 /* Construct an isl_ast_expr that calls the domain element
2642 * specified by "executed".
2644 * "executed" is assumed to be single-valued, with a domain that lives
2645 * in the internal schedule space.
2647 __isl_give isl_ast_node *isl_ast_build_call_from_executed(
2648 __isl_keep isl_ast_build *build, __isl_take isl_map *executed)
2650 isl_pw_multi_aff *iteration;
2651 isl_ast_expr *expr;
2653 iteration = isl_pw_multi_aff_from_map(executed);
2654 iteration = isl_ast_build_compute_gist_pw_multi_aff(build, iteration);
2655 iteration = isl_pw_multi_aff_intersect_domain(iteration,
2656 isl_ast_build_get_domain(build));
2657 expr = isl_ast_build_from_pw_multi_aff_internal(build,
2658 isl_ast_expr_op_call, iteration);
2659 return isl_ast_node_alloc_user(expr);