isl_coalesce.c: set_from_updated_bmap: update underlying set
[isl.git] / isl_flow.c
blob36ba0ed51f656782041ec445769cb4a2dd511f72
1 /*
2 * Copyright 2005-2007 Universiteit Leiden
3 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Copyright 2010 INRIA Saclay
5 * Copyright 2012 Universiteit Leiden
7 * Use of this software is governed by the MIT license
9 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
10 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
11 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
12 * B-3001 Leuven, Belgium
13 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
14 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
17 #include <isl/set.h>
18 #include <isl/map.h>
19 #include <isl/flow.h>
20 #include <isl_sort.h>
22 enum isl_restriction_type {
23 isl_restriction_type_empty,
24 isl_restriction_type_none,
25 isl_restriction_type_input,
26 isl_restriction_type_output
29 struct isl_restriction {
30 enum isl_restriction_type type;
32 isl_set *source;
33 isl_set *sink;
36 /* Create a restriction of the given type.
38 static __isl_give isl_restriction *isl_restriction_alloc(
39 __isl_take isl_map *source_map, enum isl_restriction_type type)
41 isl_ctx *ctx;
42 isl_restriction *restr;
44 if (!source_map)
45 return NULL;
47 ctx = isl_map_get_ctx(source_map);
48 restr = isl_calloc_type(ctx, struct isl_restriction);
49 if (!restr)
50 goto error;
52 restr->type = type;
54 isl_map_free(source_map);
55 return restr;
56 error:
57 isl_map_free(source_map);
58 return NULL;
61 /* Create a restriction that doesn't restrict anything.
63 __isl_give isl_restriction *isl_restriction_none(__isl_take isl_map *source_map)
65 return isl_restriction_alloc(source_map, isl_restriction_type_none);
68 /* Create a restriction that removes everything.
70 __isl_give isl_restriction *isl_restriction_empty(
71 __isl_take isl_map *source_map)
73 return isl_restriction_alloc(source_map, isl_restriction_type_empty);
76 /* Create a restriction on the input of the maximization problem
77 * based on the given source and sink restrictions.
79 __isl_give isl_restriction *isl_restriction_input(
80 __isl_take isl_set *source_restr, __isl_take isl_set *sink_restr)
82 isl_ctx *ctx;
83 isl_restriction *restr;
85 if (!source_restr || !sink_restr)
86 goto error;
88 ctx = isl_set_get_ctx(source_restr);
89 restr = isl_calloc_type(ctx, struct isl_restriction);
90 if (!restr)
91 goto error;
93 restr->type = isl_restriction_type_input;
94 restr->source = source_restr;
95 restr->sink = sink_restr;
97 return restr;
98 error:
99 isl_set_free(source_restr);
100 isl_set_free(sink_restr);
101 return NULL;
104 /* Create a restriction on the output of the maximization problem
105 * based on the given source restriction.
107 __isl_give isl_restriction *isl_restriction_output(
108 __isl_take isl_set *source_restr)
110 isl_ctx *ctx;
111 isl_restriction *restr;
113 if (!source_restr)
114 return NULL;
116 ctx = isl_set_get_ctx(source_restr);
117 restr = isl_calloc_type(ctx, struct isl_restriction);
118 if (!restr)
119 goto error;
121 restr->type = isl_restriction_type_output;
122 restr->source = source_restr;
124 return restr;
125 error:
126 isl_set_free(source_restr);
127 return NULL;
130 __isl_null isl_restriction *isl_restriction_free(
131 __isl_take isl_restriction *restr)
133 if (!restr)
134 return NULL;
136 isl_set_free(restr->source);
137 isl_set_free(restr->sink);
138 free(restr);
139 return NULL;
142 isl_ctx *isl_restriction_get_ctx(__isl_keep isl_restriction *restr)
144 return restr ? isl_set_get_ctx(restr->source) : NULL;
147 /* A private structure to keep track of a mapping together with
148 * a user-specified identifier and a boolean indicating whether
149 * the map represents a must or may access/dependence.
151 struct isl_labeled_map {
152 struct isl_map *map;
153 void *data;
154 int must;
157 /* A structure containing the input for dependence analysis:
158 * - a sink
159 * - n_must + n_may (<= max_source) sources
160 * - a function for determining the relative order of sources and sink
161 * The must sources are placed before the may sources.
163 * domain_map is an auxiliary map that maps the sink access relation
164 * to the domain of this access relation.
166 * restrict_fn is a callback that (if not NULL) will be called
167 * right before any lexicographical maximization.
169 struct isl_access_info {
170 isl_map *domain_map;
171 struct isl_labeled_map sink;
172 isl_access_level_before level_before;
174 isl_access_restrict restrict_fn;
175 void *restrict_user;
177 int max_source;
178 int n_must;
179 int n_may;
180 struct isl_labeled_map source[1];
183 /* A structure containing the output of dependence analysis:
184 * - n_source dependences
185 * - a wrapped subset of the sink for which definitely no source could be found
186 * - a wrapped subset of the sink for which possibly no source could be found
188 struct isl_flow {
189 isl_set *must_no_source;
190 isl_set *may_no_source;
191 int n_source;
192 struct isl_labeled_map *dep;
195 /* Construct an isl_access_info structure and fill it up with
196 * the given data. The number of sources is set to 0.
198 __isl_give isl_access_info *isl_access_info_alloc(__isl_take isl_map *sink,
199 void *sink_user, isl_access_level_before fn, int max_source)
201 isl_ctx *ctx;
202 struct isl_access_info *acc;
204 if (!sink)
205 return NULL;
207 ctx = isl_map_get_ctx(sink);
208 isl_assert(ctx, max_source >= 0, goto error);
210 acc = isl_calloc(ctx, struct isl_access_info,
211 sizeof(struct isl_access_info) +
212 (max_source - 1) * sizeof(struct isl_labeled_map));
213 if (!acc)
214 goto error;
216 acc->sink.map = sink;
217 acc->sink.data = sink_user;
218 acc->level_before = fn;
219 acc->max_source = max_source;
220 acc->n_must = 0;
221 acc->n_may = 0;
223 return acc;
224 error:
225 isl_map_free(sink);
226 return NULL;
229 /* Free the given isl_access_info structure.
231 __isl_null isl_access_info *isl_access_info_free(
232 __isl_take isl_access_info *acc)
234 int i;
236 if (!acc)
237 return NULL;
238 isl_map_free(acc->domain_map);
239 isl_map_free(acc->sink.map);
240 for (i = 0; i < acc->n_must + acc->n_may; ++i)
241 isl_map_free(acc->source[i].map);
242 free(acc);
243 return NULL;
246 isl_ctx *isl_access_info_get_ctx(__isl_keep isl_access_info *acc)
248 return acc ? isl_map_get_ctx(acc->sink.map) : NULL;
251 __isl_give isl_access_info *isl_access_info_set_restrict(
252 __isl_take isl_access_info *acc, isl_access_restrict fn, void *user)
254 if (!acc)
255 return NULL;
256 acc->restrict_fn = fn;
257 acc->restrict_user = user;
258 return acc;
261 /* Add another source to an isl_access_info structure, making
262 * sure the "must" sources are placed before the "may" sources.
263 * This function may be called at most max_source times on a
264 * given isl_access_info structure, with max_source as specified
265 * in the call to isl_access_info_alloc that constructed the structure.
267 __isl_give isl_access_info *isl_access_info_add_source(
268 __isl_take isl_access_info *acc, __isl_take isl_map *source,
269 int must, void *source_user)
271 isl_ctx *ctx;
273 if (!acc)
274 goto error;
275 ctx = isl_map_get_ctx(acc->sink.map);
276 isl_assert(ctx, acc->n_must + acc->n_may < acc->max_source, goto error);
278 if (must) {
279 if (acc->n_may)
280 acc->source[acc->n_must + acc->n_may] =
281 acc->source[acc->n_must];
282 acc->source[acc->n_must].map = source;
283 acc->source[acc->n_must].data = source_user;
284 acc->source[acc->n_must].must = 1;
285 acc->n_must++;
286 } else {
287 acc->source[acc->n_must + acc->n_may].map = source;
288 acc->source[acc->n_must + acc->n_may].data = source_user;
289 acc->source[acc->n_must + acc->n_may].must = 0;
290 acc->n_may++;
293 return acc;
294 error:
295 isl_map_free(source);
296 isl_access_info_free(acc);
297 return NULL;
300 /* Return -n, 0 or n (with n a positive value), depending on whether
301 * the source access identified by p1 should be sorted before, together
302 * or after that identified by p2.
304 * If p1 appears before p2, then it should be sorted first.
305 * For more generic initial schedules, it is possible that neither
306 * p1 nor p2 appears before the other, or at least not in any obvious way.
307 * We therefore also check if p2 appears before p1, in which case p2
308 * should be sorted first.
309 * If not, we try to order the two statements based on the description
310 * of the iteration domains. This results in an arbitrary, but fairly
311 * stable ordering.
313 static int access_sort_cmp(const void *p1, const void *p2, void *user)
315 isl_access_info *acc = user;
316 const struct isl_labeled_map *i1, *i2;
317 int level1, level2;
318 uint32_t h1, h2;
319 i1 = (const struct isl_labeled_map *) p1;
320 i2 = (const struct isl_labeled_map *) p2;
322 level1 = acc->level_before(i1->data, i2->data);
323 if (level1 % 2)
324 return -1;
326 level2 = acc->level_before(i2->data, i1->data);
327 if (level2 % 2)
328 return 1;
330 h1 = isl_map_get_hash(i1->map);
331 h2 = isl_map_get_hash(i2->map);
332 return h1 > h2 ? 1 : h1 < h2 ? -1 : 0;
335 /* Sort the must source accesses in their textual order.
337 static __isl_give isl_access_info *isl_access_info_sort_sources(
338 __isl_take isl_access_info *acc)
340 if (!acc)
341 return NULL;
342 if (acc->n_must <= 1)
343 return acc;
345 if (isl_sort(acc->source, acc->n_must, sizeof(struct isl_labeled_map),
346 access_sort_cmp, acc) < 0)
347 return isl_access_info_free(acc);
349 return acc;
352 /* Align the parameters of the two spaces if needed and then call
353 * isl_space_join.
355 static __isl_give isl_space *space_align_and_join(__isl_take isl_space *left,
356 __isl_take isl_space *right)
358 if (isl_space_match(left, isl_dim_param, right, isl_dim_param))
359 return isl_space_join(left, right);
361 left = isl_space_align_params(left, isl_space_copy(right));
362 right = isl_space_align_params(right, isl_space_copy(left));
363 return isl_space_join(left, right);
366 /* Initialize an empty isl_flow structure corresponding to a given
367 * isl_access_info structure.
368 * For each must access, two dependences are created (initialized
369 * to the empty relation), one for the resulting must dependences
370 * and one for the resulting may dependences. May accesses can
371 * only lead to may dependences, so only one dependence is created
372 * for each of them.
373 * This function is private as isl_flow structures are only supposed
374 * to be created by isl_access_info_compute_flow.
376 static __isl_give isl_flow *isl_flow_alloc(__isl_keep isl_access_info *acc)
378 int i, n;
379 struct isl_ctx *ctx;
380 struct isl_flow *dep;
382 if (!acc)
383 return NULL;
385 ctx = isl_map_get_ctx(acc->sink.map);
386 dep = isl_calloc_type(ctx, struct isl_flow);
387 if (!dep)
388 return NULL;
390 n = 2 * acc->n_must + acc->n_may;
391 dep->dep = isl_calloc_array(ctx, struct isl_labeled_map, n);
392 if (n && !dep->dep)
393 goto error;
395 dep->n_source = n;
396 for (i = 0; i < acc->n_must; ++i) {
397 isl_space *dim;
398 dim = space_align_and_join(
399 isl_map_get_space(acc->source[i].map),
400 isl_space_reverse(isl_map_get_space(acc->sink.map)));
401 dep->dep[2 * i].map = isl_map_empty(dim);
402 dep->dep[2 * i + 1].map = isl_map_copy(dep->dep[2 * i].map);
403 dep->dep[2 * i].data = acc->source[i].data;
404 dep->dep[2 * i + 1].data = acc->source[i].data;
405 dep->dep[2 * i].must = 1;
406 dep->dep[2 * i + 1].must = 0;
407 if (!dep->dep[2 * i].map || !dep->dep[2 * i + 1].map)
408 goto error;
410 for (i = acc->n_must; i < acc->n_must + acc->n_may; ++i) {
411 isl_space *dim;
412 dim = space_align_and_join(
413 isl_map_get_space(acc->source[i].map),
414 isl_space_reverse(isl_map_get_space(acc->sink.map)));
415 dep->dep[acc->n_must + i].map = isl_map_empty(dim);
416 dep->dep[acc->n_must + i].data = acc->source[i].data;
417 dep->dep[acc->n_must + i].must = 0;
418 if (!dep->dep[acc->n_must + i].map)
419 goto error;
422 return dep;
423 error:
424 isl_flow_free(dep);
425 return NULL;
428 /* Iterate over all sources and for each resulting flow dependence
429 * that is not empty, call the user specfied function.
430 * The second argument in this function call identifies the source,
431 * while the third argument correspond to the final argument of
432 * the isl_flow_foreach call.
434 int isl_flow_foreach(__isl_keep isl_flow *deps,
435 int (*fn)(__isl_take isl_map *dep, int must, void *dep_user, void *user),
436 void *user)
438 int i;
440 if (!deps)
441 return -1;
443 for (i = 0; i < deps->n_source; ++i) {
444 if (isl_map_plain_is_empty(deps->dep[i].map))
445 continue;
446 if (fn(isl_map_copy(deps->dep[i].map), deps->dep[i].must,
447 deps->dep[i].data, user) < 0)
448 return -1;
451 return 0;
454 /* Return a copy of the subset of the sink for which no source could be found.
456 __isl_give isl_map *isl_flow_get_no_source(__isl_keep isl_flow *deps, int must)
458 if (!deps)
459 return NULL;
461 if (must)
462 return isl_set_unwrap(isl_set_copy(deps->must_no_source));
463 else
464 return isl_set_unwrap(isl_set_copy(deps->may_no_source));
467 void isl_flow_free(__isl_take isl_flow *deps)
469 int i;
471 if (!deps)
472 return;
473 isl_set_free(deps->must_no_source);
474 isl_set_free(deps->may_no_source);
475 if (deps->dep) {
476 for (i = 0; i < deps->n_source; ++i)
477 isl_map_free(deps->dep[i].map);
478 free(deps->dep);
480 free(deps);
483 isl_ctx *isl_flow_get_ctx(__isl_keep isl_flow *deps)
485 return deps ? isl_set_get_ctx(deps->must_no_source) : NULL;
488 /* Return a map that enforces that the domain iteration occurs after
489 * the range iteration at the given level.
490 * If level is odd, then the domain iteration should occur after
491 * the target iteration in their shared level/2 outermost loops.
492 * In this case we simply need to enforce that these outermost
493 * loop iterations are the same.
494 * If level is even, then the loop iterator of the domain should
495 * be greater than the loop iterator of the range at the last
496 * of the level/2 shared loops, i.e., loop level/2 - 1.
498 static __isl_give isl_map *after_at_level(__isl_take isl_space *dim, int level)
500 struct isl_basic_map *bmap;
502 if (level % 2)
503 bmap = isl_basic_map_equal(dim, level/2);
504 else
505 bmap = isl_basic_map_more_at(dim, level/2 - 1);
507 return isl_map_from_basic_map(bmap);
510 /* Compute the partial lexicographic maximum of "dep" on domain "sink",
511 * but first check if the user has set acc->restrict_fn and if so
512 * update either the input or the output of the maximization problem
513 * with respect to the resulting restriction.
515 * Since the user expects a mapping from sink iterations to source iterations,
516 * whereas the domain of "dep" is a wrapped map, mapping sink iterations
517 * to accessed array elements, we first need to project out the accessed
518 * sink array elements by applying acc->domain_map.
519 * Similarly, the sink restriction specified by the user needs to be
520 * converted back to the wrapped map.
522 static __isl_give isl_map *restricted_partial_lexmax(
523 __isl_keep isl_access_info *acc, __isl_take isl_map *dep,
524 int source, __isl_take isl_set *sink, __isl_give isl_set **empty)
526 isl_map *source_map;
527 isl_restriction *restr;
528 isl_set *sink_domain;
529 isl_set *sink_restr;
530 isl_map *res;
532 if (!acc->restrict_fn)
533 return isl_map_partial_lexmax(dep, sink, empty);
535 source_map = isl_map_copy(dep);
536 source_map = isl_map_apply_domain(source_map,
537 isl_map_copy(acc->domain_map));
538 sink_domain = isl_set_copy(sink);
539 sink_domain = isl_set_apply(sink_domain, isl_map_copy(acc->domain_map));
540 restr = acc->restrict_fn(source_map, sink_domain,
541 acc->source[source].data, acc->restrict_user);
542 isl_set_free(sink_domain);
543 isl_map_free(source_map);
545 if (!restr)
546 goto error;
547 if (restr->type == isl_restriction_type_input) {
548 dep = isl_map_intersect_range(dep, isl_set_copy(restr->source));
549 sink_restr = isl_set_copy(restr->sink);
550 sink_restr = isl_set_apply(sink_restr,
551 isl_map_reverse(isl_map_copy(acc->domain_map)));
552 sink = isl_set_intersect(sink, sink_restr);
553 } else if (restr->type == isl_restriction_type_empty) {
554 isl_space *space = isl_map_get_space(dep);
555 isl_map_free(dep);
556 dep = isl_map_empty(space);
559 res = isl_map_partial_lexmax(dep, sink, empty);
561 if (restr->type == isl_restriction_type_output)
562 res = isl_map_intersect_range(res, isl_set_copy(restr->source));
564 isl_restriction_free(restr);
565 return res;
566 error:
567 isl_map_free(dep);
568 isl_set_free(sink);
569 *empty = NULL;
570 return NULL;
573 /* Compute the last iteration of must source j that precedes the sink
574 * at the given level for sink iterations in set_C.
575 * The subset of set_C for which no such iteration can be found is returned
576 * in *empty.
578 static struct isl_map *last_source(struct isl_access_info *acc,
579 struct isl_set *set_C,
580 int j, int level, struct isl_set **empty)
582 struct isl_map *read_map;
583 struct isl_map *write_map;
584 struct isl_map *dep_map;
585 struct isl_map *after;
586 struct isl_map *result;
588 read_map = isl_map_copy(acc->sink.map);
589 write_map = isl_map_copy(acc->source[j].map);
590 write_map = isl_map_reverse(write_map);
591 dep_map = isl_map_apply_range(read_map, write_map);
592 after = after_at_level(isl_map_get_space(dep_map), level);
593 dep_map = isl_map_intersect(dep_map, after);
594 result = restricted_partial_lexmax(acc, dep_map, j, set_C, empty);
595 result = isl_map_reverse(result);
597 return result;
600 /* For a given mapping between iterations of must source j and iterations
601 * of the sink, compute the last iteration of must source k preceding
602 * the sink at level before_level for any of the sink iterations,
603 * but following the corresponding iteration of must source j at level
604 * after_level.
606 static struct isl_map *last_later_source(struct isl_access_info *acc,
607 struct isl_map *old_map,
608 int j, int before_level,
609 int k, int after_level,
610 struct isl_set **empty)
612 isl_space *dim;
613 struct isl_set *set_C;
614 struct isl_map *read_map;
615 struct isl_map *write_map;
616 struct isl_map *dep_map;
617 struct isl_map *after_write;
618 struct isl_map *before_read;
619 struct isl_map *result;
621 set_C = isl_map_range(isl_map_copy(old_map));
622 read_map = isl_map_copy(acc->sink.map);
623 write_map = isl_map_copy(acc->source[k].map);
625 write_map = isl_map_reverse(write_map);
626 dep_map = isl_map_apply_range(read_map, write_map);
627 dim = space_align_and_join(isl_map_get_space(acc->source[k].map),
628 isl_space_reverse(isl_map_get_space(acc->source[j].map)));
629 after_write = after_at_level(dim, after_level);
630 after_write = isl_map_apply_range(after_write, old_map);
631 after_write = isl_map_reverse(after_write);
632 dep_map = isl_map_intersect(dep_map, after_write);
633 before_read = after_at_level(isl_map_get_space(dep_map), before_level);
634 dep_map = isl_map_intersect(dep_map, before_read);
635 result = restricted_partial_lexmax(acc, dep_map, k, set_C, empty);
636 result = isl_map_reverse(result);
638 return result;
641 /* Given a shared_level between two accesses, return 1 if the
642 * the first can precede the second at the requested target_level.
643 * If the target level is odd, i.e., refers to a statement level
644 * dimension, then first needs to precede second at the requested
645 * level, i.e., shared_level must be equal to target_level.
646 * If the target level is odd, then the two loops should share
647 * at least the requested number of outer loops.
649 static int can_precede_at_level(int shared_level, int target_level)
651 if (shared_level < target_level)
652 return 0;
653 if ((target_level % 2) && shared_level > target_level)
654 return 0;
655 return 1;
658 /* Given a possible flow dependence temp_rel[j] between source j and the sink
659 * at level sink_level, remove those elements for which
660 * there is an iteration of another source k < j that is closer to the sink.
661 * The flow dependences temp_rel[k] are updated with the improved sources.
662 * Any improved source needs to precede the sink at the same level
663 * and needs to follow source j at the same or a deeper level.
664 * The lower this level, the later the execution date of source k.
665 * We therefore consider lower levels first.
667 * If temp_rel[j] is empty, then there can be no improvement and
668 * we return immediately.
670 static int intermediate_sources(__isl_keep isl_access_info *acc,
671 struct isl_map **temp_rel, int j, int sink_level)
673 int k, level;
674 int depth = 2 * isl_map_dim(acc->source[j].map, isl_dim_in) + 1;
676 if (isl_map_plain_is_empty(temp_rel[j]))
677 return 0;
679 for (k = j - 1; k >= 0; --k) {
680 int plevel, plevel2;
681 plevel = acc->level_before(acc->source[k].data, acc->sink.data);
682 if (!can_precede_at_level(plevel, sink_level))
683 continue;
685 plevel2 = acc->level_before(acc->source[j].data,
686 acc->source[k].data);
688 for (level = sink_level; level <= depth; ++level) {
689 struct isl_map *T;
690 struct isl_set *trest;
691 struct isl_map *copy;
693 if (!can_precede_at_level(plevel2, level))
694 continue;
696 copy = isl_map_copy(temp_rel[j]);
697 T = last_later_source(acc, copy, j, sink_level, k,
698 level, &trest);
699 if (isl_map_plain_is_empty(T)) {
700 isl_set_free(trest);
701 isl_map_free(T);
702 continue;
704 temp_rel[j] = isl_map_intersect_range(temp_rel[j], trest);
705 temp_rel[k] = isl_map_union_disjoint(temp_rel[k], T);
709 return 0;
712 /* Compute all iterations of may source j that precedes the sink at the given
713 * level for sink iterations in set_C.
715 static __isl_give isl_map *all_sources(__isl_keep isl_access_info *acc,
716 __isl_take isl_set *set_C, int j, int level)
718 isl_map *read_map;
719 isl_map *write_map;
720 isl_map *dep_map;
721 isl_map *after;
723 read_map = isl_map_copy(acc->sink.map);
724 read_map = isl_map_intersect_domain(read_map, set_C);
725 write_map = isl_map_copy(acc->source[acc->n_must + j].map);
726 write_map = isl_map_reverse(write_map);
727 dep_map = isl_map_apply_range(read_map, write_map);
728 after = after_at_level(isl_map_get_space(dep_map), level);
729 dep_map = isl_map_intersect(dep_map, after);
731 return isl_map_reverse(dep_map);
734 /* For a given mapping between iterations of must source k and iterations
735 * of the sink, compute the all iteration of may source j preceding
736 * the sink at level before_level for any of the sink iterations,
737 * but following the corresponding iteration of must source k at level
738 * after_level.
740 static __isl_give isl_map *all_later_sources(__isl_keep isl_access_info *acc,
741 __isl_take isl_map *old_map,
742 int j, int before_level, int k, int after_level)
744 isl_space *dim;
745 isl_set *set_C;
746 isl_map *read_map;
747 isl_map *write_map;
748 isl_map *dep_map;
749 isl_map *after_write;
750 isl_map *before_read;
752 set_C = isl_map_range(isl_map_copy(old_map));
753 read_map = isl_map_copy(acc->sink.map);
754 read_map = isl_map_intersect_domain(read_map, set_C);
755 write_map = isl_map_copy(acc->source[acc->n_must + j].map);
757 write_map = isl_map_reverse(write_map);
758 dep_map = isl_map_apply_range(read_map, write_map);
759 dim = isl_space_join(isl_map_get_space(acc->source[acc->n_must + j].map),
760 isl_space_reverse(isl_map_get_space(acc->source[k].map)));
761 after_write = after_at_level(dim, after_level);
762 after_write = isl_map_apply_range(after_write, old_map);
763 after_write = isl_map_reverse(after_write);
764 dep_map = isl_map_intersect(dep_map, after_write);
765 before_read = after_at_level(isl_map_get_space(dep_map), before_level);
766 dep_map = isl_map_intersect(dep_map, before_read);
767 return isl_map_reverse(dep_map);
770 /* Given the must and may dependence relations for the must accesses
771 * for level sink_level, check if there are any accesses of may access j
772 * that occur in between and return their union.
773 * If some of these accesses are intermediate with respect to
774 * (previously thought to be) must dependences, then these
775 * must dependences are turned into may dependences.
777 static __isl_give isl_map *all_intermediate_sources(
778 __isl_keep isl_access_info *acc, __isl_take isl_map *map,
779 struct isl_map **must_rel, struct isl_map **may_rel,
780 int j, int sink_level)
782 int k, level;
783 int depth = 2 * isl_map_dim(acc->source[acc->n_must + j].map,
784 isl_dim_in) + 1;
786 for (k = 0; k < acc->n_must; ++k) {
787 int plevel;
789 if (isl_map_plain_is_empty(may_rel[k]) &&
790 isl_map_plain_is_empty(must_rel[k]))
791 continue;
793 plevel = acc->level_before(acc->source[k].data,
794 acc->source[acc->n_must + j].data);
796 for (level = sink_level; level <= depth; ++level) {
797 isl_map *T;
798 isl_map *copy;
799 isl_set *ran;
801 if (!can_precede_at_level(plevel, level))
802 continue;
804 copy = isl_map_copy(may_rel[k]);
805 T = all_later_sources(acc, copy, j, sink_level, k, level);
806 map = isl_map_union(map, T);
808 copy = isl_map_copy(must_rel[k]);
809 T = all_later_sources(acc, copy, j, sink_level, k, level);
810 ran = isl_map_range(isl_map_copy(T));
811 map = isl_map_union(map, T);
812 may_rel[k] = isl_map_union_disjoint(may_rel[k],
813 isl_map_intersect_range(isl_map_copy(must_rel[k]),
814 isl_set_copy(ran)));
815 T = isl_map_from_domain_and_range(
816 isl_set_universe(
817 isl_space_domain(isl_map_get_space(must_rel[k]))),
818 ran);
819 must_rel[k] = isl_map_subtract(must_rel[k], T);
823 return map;
826 /* Compute dependences for the case where all accesses are "may"
827 * accesses, which boils down to computing memory based dependences.
828 * The generic algorithm would also work in this case, but it would
829 * be overkill to use it.
831 static __isl_give isl_flow *compute_mem_based_dependences(
832 __isl_keep isl_access_info *acc)
834 int i;
835 isl_set *mustdo;
836 isl_set *maydo;
837 isl_flow *res;
839 res = isl_flow_alloc(acc);
840 if (!res)
841 return NULL;
843 mustdo = isl_map_domain(isl_map_copy(acc->sink.map));
844 maydo = isl_set_copy(mustdo);
846 for (i = 0; i < acc->n_may; ++i) {
847 int plevel;
848 int is_before;
849 isl_space *dim;
850 isl_map *before;
851 isl_map *dep;
853 plevel = acc->level_before(acc->source[i].data, acc->sink.data);
854 is_before = plevel & 1;
855 plevel >>= 1;
857 dim = isl_map_get_space(res->dep[i].map);
858 if (is_before)
859 before = isl_map_lex_le_first(dim, plevel);
860 else
861 before = isl_map_lex_lt_first(dim, plevel);
862 dep = isl_map_apply_range(isl_map_copy(acc->source[i].map),
863 isl_map_reverse(isl_map_copy(acc->sink.map)));
864 dep = isl_map_intersect(dep, before);
865 mustdo = isl_set_subtract(mustdo,
866 isl_map_range(isl_map_copy(dep)));
867 res->dep[i].map = isl_map_union(res->dep[i].map, dep);
870 res->may_no_source = isl_set_subtract(maydo, isl_set_copy(mustdo));
871 res->must_no_source = mustdo;
873 return res;
876 /* Compute dependences for the case where there is at least one
877 * "must" access.
879 * The core algorithm considers all levels in which a source may precede
880 * the sink, where a level may either be a statement level or a loop level.
881 * The outermost statement level is 1, the first loop level is 2, etc...
882 * The algorithm basically does the following:
883 * for all levels l of the read access from innermost to outermost
884 * for all sources w that may precede the sink access at that level
885 * compute the last iteration of the source that precedes the sink access
886 * at that level
887 * add result to possible last accesses at level l of source w
888 * for all sources w2 that we haven't considered yet at this level that may
889 * also precede the sink access
890 * for all levels l2 of w from l to innermost
891 * for all possible last accesses dep of w at l
892 * compute last iteration of w2 between the source and sink
893 * of dep
894 * add result to possible last accesses at level l of write w2
895 * and replace possible last accesses dep by the remainder
898 * The above algorithm is applied to the must access. During the course
899 * of the algorithm, we keep track of sink iterations that still
900 * need to be considered. These iterations are split into those that
901 * haven't been matched to any source access (mustdo) and those that have only
902 * been matched to may accesses (maydo).
903 * At the end of each level, we also consider the may accesses.
904 * In particular, we consider may accesses that precede the remaining
905 * sink iterations, moving elements from mustdo to maydo when appropriate,
906 * and may accesses that occur between a must source and a sink of any
907 * dependences found at the current level, turning must dependences into
908 * may dependences when appropriate.
911 static __isl_give isl_flow *compute_val_based_dependences(
912 __isl_keep isl_access_info *acc)
914 isl_ctx *ctx;
915 isl_flow *res;
916 isl_set *mustdo = NULL;
917 isl_set *maydo = NULL;
918 int level, j;
919 int depth;
920 isl_map **must_rel = NULL;
921 isl_map **may_rel = NULL;
923 if (!acc)
924 return NULL;
926 res = isl_flow_alloc(acc);
927 if (!res)
928 goto error;
929 ctx = isl_map_get_ctx(acc->sink.map);
931 depth = 2 * isl_map_dim(acc->sink.map, isl_dim_in) + 1;
932 mustdo = isl_map_domain(isl_map_copy(acc->sink.map));
933 maydo = isl_set_empty_like(mustdo);
934 if (!mustdo || !maydo)
935 goto error;
936 if (isl_set_plain_is_empty(mustdo))
937 goto done;
939 must_rel = isl_alloc_array(ctx, struct isl_map *, acc->n_must);
940 may_rel = isl_alloc_array(ctx, struct isl_map *, acc->n_must);
941 if (!must_rel || !may_rel)
942 goto error;
944 for (level = depth; level >= 1; --level) {
945 for (j = acc->n_must-1; j >=0; --j) {
946 must_rel[j] = isl_map_empty_like(res->dep[2 * j].map);
947 may_rel[j] = isl_map_copy(must_rel[j]);
950 for (j = acc->n_must - 1; j >= 0; --j) {
951 struct isl_map *T;
952 struct isl_set *rest;
953 int plevel;
955 plevel = acc->level_before(acc->source[j].data,
956 acc->sink.data);
957 if (!can_precede_at_level(plevel, level))
958 continue;
960 T = last_source(acc, mustdo, j, level, &rest);
961 must_rel[j] = isl_map_union_disjoint(must_rel[j], T);
962 mustdo = rest;
964 intermediate_sources(acc, must_rel, j, level);
966 T = last_source(acc, maydo, j, level, &rest);
967 may_rel[j] = isl_map_union_disjoint(may_rel[j], T);
968 maydo = rest;
970 intermediate_sources(acc, may_rel, j, level);
972 if (isl_set_plain_is_empty(mustdo) &&
973 isl_set_plain_is_empty(maydo))
974 break;
976 for (j = j - 1; j >= 0; --j) {
977 int plevel;
979 plevel = acc->level_before(acc->source[j].data,
980 acc->sink.data);
981 if (!can_precede_at_level(plevel, level))
982 continue;
984 intermediate_sources(acc, must_rel, j, level);
985 intermediate_sources(acc, may_rel, j, level);
988 for (j = 0; j < acc->n_may; ++j) {
989 int plevel;
990 isl_map *T;
991 isl_set *ran;
993 plevel = acc->level_before(acc->source[acc->n_must + j].data,
994 acc->sink.data);
995 if (!can_precede_at_level(plevel, level))
996 continue;
998 T = all_sources(acc, isl_set_copy(maydo), j, level);
999 res->dep[2 * acc->n_must + j].map =
1000 isl_map_union(res->dep[2 * acc->n_must + j].map, T);
1001 T = all_sources(acc, isl_set_copy(mustdo), j, level);
1002 ran = isl_map_range(isl_map_copy(T));
1003 res->dep[2 * acc->n_must + j].map =
1004 isl_map_union(res->dep[2 * acc->n_must + j].map, T);
1005 mustdo = isl_set_subtract(mustdo, isl_set_copy(ran));
1006 maydo = isl_set_union_disjoint(maydo, ran);
1008 T = res->dep[2 * acc->n_must + j].map;
1009 T = all_intermediate_sources(acc, T, must_rel, may_rel,
1010 j, level);
1011 res->dep[2 * acc->n_must + j].map = T;
1014 for (j = acc->n_must - 1; j >= 0; --j) {
1015 res->dep[2 * j].map =
1016 isl_map_union_disjoint(res->dep[2 * j].map,
1017 must_rel[j]);
1018 res->dep[2 * j + 1].map =
1019 isl_map_union_disjoint(res->dep[2 * j + 1].map,
1020 may_rel[j]);
1023 if (isl_set_plain_is_empty(mustdo) &&
1024 isl_set_plain_is_empty(maydo))
1025 break;
1028 free(must_rel);
1029 free(may_rel);
1030 done:
1031 res->must_no_source = mustdo;
1032 res->may_no_source = maydo;
1033 return res;
1034 error:
1035 isl_flow_free(res);
1036 isl_set_free(mustdo);
1037 isl_set_free(maydo);
1038 free(must_rel);
1039 free(may_rel);
1040 return NULL;
1043 /* Given a "sink" access, a list of n "source" accesses,
1044 * compute for each iteration of the sink access
1045 * and for each element accessed by that iteration,
1046 * the source access in the list that last accessed the
1047 * element accessed by the sink access before this sink access.
1048 * Each access is given as a map from the loop iterators
1049 * to the array indices.
1050 * The result is a list of n relations between source and sink
1051 * iterations and a subset of the domain of the sink access,
1052 * corresponding to those iterations that access an element
1053 * not previously accessed.
1055 * To deal with multi-valued sink access relations, the sink iteration
1056 * domain is first extended with dimensions that correspond to the data
1057 * space. After the computation is finished, these extra dimensions are
1058 * projected out again.
1060 __isl_give isl_flow *isl_access_info_compute_flow(__isl_take isl_access_info *acc)
1062 int j;
1063 struct isl_flow *res = NULL;
1065 if (!acc)
1066 return NULL;
1068 acc->domain_map = isl_map_domain_map(isl_map_copy(acc->sink.map));
1069 acc->sink.map = isl_map_range_map(acc->sink.map);
1070 if (!acc->sink.map)
1071 goto error;
1073 if (acc->n_must == 0)
1074 res = compute_mem_based_dependences(acc);
1075 else {
1076 acc = isl_access_info_sort_sources(acc);
1077 res = compute_val_based_dependences(acc);
1079 if (!res)
1080 goto error;
1082 for (j = 0; j < res->n_source; ++j) {
1083 res->dep[j].map = isl_map_apply_range(res->dep[j].map,
1084 isl_map_copy(acc->domain_map));
1085 if (!res->dep[j].map)
1086 goto error;
1088 if (!res->must_no_source || !res->may_no_source)
1089 goto error;
1091 isl_access_info_free(acc);
1092 return res;
1093 error:
1094 isl_access_info_free(acc);
1095 isl_flow_free(res);
1096 return NULL;
1100 /* Keep track of some information about a schedule for a given
1101 * access. In particular, keep track of which dimensions
1102 * have a constant value and of the actual constant values.
1104 struct isl_sched_info {
1105 int *is_cst;
1106 isl_vec *cst;
1109 static void sched_info_free(__isl_take struct isl_sched_info *info)
1111 if (!info)
1112 return;
1113 isl_vec_free(info->cst);
1114 free(info->is_cst);
1115 free(info);
1118 /* Extract information on the constant dimensions of the schedule
1119 * for a given access. The "map" is of the form
1121 * [S -> D] -> A
1123 * with S the schedule domain, D the iteration domain and A the data domain.
1125 static __isl_give struct isl_sched_info *sched_info_alloc(
1126 __isl_keep isl_map *map)
1128 isl_ctx *ctx;
1129 isl_space *dim;
1130 struct isl_sched_info *info;
1131 int i, n;
1133 if (!map)
1134 return NULL;
1136 dim = isl_space_unwrap(isl_space_domain(isl_map_get_space(map)));
1137 if (!dim)
1138 return NULL;
1139 n = isl_space_dim(dim, isl_dim_in);
1140 isl_space_free(dim);
1142 ctx = isl_map_get_ctx(map);
1143 info = isl_alloc_type(ctx, struct isl_sched_info);
1144 if (!info)
1145 return NULL;
1146 info->is_cst = isl_alloc_array(ctx, int, n);
1147 info->cst = isl_vec_alloc(ctx, n);
1148 if (n && (!info->is_cst || !info->cst))
1149 goto error;
1151 for (i = 0; i < n; ++i) {
1152 isl_val *v;
1154 v = isl_map_plain_get_val_if_fixed(map, isl_dim_in, i);
1155 if (!v)
1156 goto error;
1157 info->is_cst[i] = !isl_val_is_nan(v);
1158 if (info->is_cst[i])
1159 info->cst = isl_vec_set_element_val(info->cst, i, v);
1160 else
1161 isl_val_free(v);
1164 return info;
1165 error:
1166 sched_info_free(info);
1167 return NULL;
1170 struct isl_compute_flow_data {
1171 isl_union_map *must_source;
1172 isl_union_map *may_source;
1173 isl_union_map *must_dep;
1174 isl_union_map *may_dep;
1175 isl_union_map *must_no_source;
1176 isl_union_map *may_no_source;
1178 int count;
1179 int must;
1180 isl_space *dim;
1181 struct isl_sched_info *sink_info;
1182 struct isl_sched_info **source_info;
1183 isl_access_info *accesses;
1186 static int count_matching_array(__isl_take isl_map *map, void *user)
1188 int eq;
1189 isl_space *dim;
1190 struct isl_compute_flow_data *data;
1192 data = (struct isl_compute_flow_data *)user;
1194 dim = isl_space_range(isl_map_get_space(map));
1196 eq = isl_space_is_equal(dim, data->dim);
1198 isl_space_free(dim);
1199 isl_map_free(map);
1201 if (eq < 0)
1202 return -1;
1203 if (eq)
1204 data->count++;
1206 return 0;
1209 static int collect_matching_array(__isl_take isl_map *map, void *user)
1211 int eq;
1212 isl_space *dim;
1213 struct isl_sched_info *info;
1214 struct isl_compute_flow_data *data;
1216 data = (struct isl_compute_flow_data *)user;
1218 dim = isl_space_range(isl_map_get_space(map));
1220 eq = isl_space_is_equal(dim, data->dim);
1222 isl_space_free(dim);
1224 if (eq < 0)
1225 goto error;
1226 if (!eq) {
1227 isl_map_free(map);
1228 return 0;
1231 info = sched_info_alloc(map);
1232 data->source_info[data->count] = info;
1234 data->accesses = isl_access_info_add_source(data->accesses,
1235 map, data->must, info);
1237 data->count++;
1239 return 0;
1240 error:
1241 isl_map_free(map);
1242 return -1;
1245 /* Determine the shared nesting level and the "textual order" of
1246 * the given accesses.
1248 * We first determine the minimal schedule dimension for both accesses.
1250 * If among those dimensions, we can find one where both have a fixed
1251 * value and if moreover those values are different, then the previous
1252 * dimension is the last shared nesting level and the textual order
1253 * is determined based on the order of the fixed values.
1254 * If no such fixed values can be found, then we set the shared
1255 * nesting level to the minimal schedule dimension, with no textual ordering.
1257 static int before(void *first, void *second)
1259 struct isl_sched_info *info1 = first;
1260 struct isl_sched_info *info2 = second;
1261 int n1, n2;
1262 int i;
1264 n1 = isl_vec_size(info1->cst);
1265 n2 = isl_vec_size(info2->cst);
1267 if (n2 < n1)
1268 n1 = n2;
1270 for (i = 0; i < n1; ++i) {
1271 int r;
1272 int cmp;
1274 if (!info1->is_cst[i])
1275 continue;
1276 if (!info2->is_cst[i])
1277 continue;
1278 cmp = isl_vec_cmp_element(info1->cst, info2->cst, i);
1279 if (cmp == 0)
1280 continue;
1282 r = 2 * i + (cmp < 0);
1284 return r;
1287 return 2 * n1;
1290 /* Given a sink access, look for all the source accesses that access
1291 * the same array and perform dataflow analysis on them using
1292 * isl_access_info_compute_flow.
1294 static int compute_flow(__isl_take isl_map *map, void *user)
1296 int i;
1297 isl_ctx *ctx;
1298 struct isl_compute_flow_data *data;
1299 isl_flow *flow;
1301 data = (struct isl_compute_flow_data *)user;
1303 ctx = isl_map_get_ctx(map);
1305 data->accesses = NULL;
1306 data->sink_info = NULL;
1307 data->source_info = NULL;
1308 data->count = 0;
1309 data->dim = isl_space_range(isl_map_get_space(map));
1311 if (isl_union_map_foreach_map(data->must_source,
1312 &count_matching_array, data) < 0)
1313 goto error;
1314 if (isl_union_map_foreach_map(data->may_source,
1315 &count_matching_array, data) < 0)
1316 goto error;
1318 data->sink_info = sched_info_alloc(map);
1319 data->source_info = isl_calloc_array(ctx, struct isl_sched_info *,
1320 data->count);
1322 data->accesses = isl_access_info_alloc(isl_map_copy(map),
1323 data->sink_info, &before, data->count);
1324 if (!data->sink_info || (data->count && !data->source_info) ||
1325 !data->accesses)
1326 goto error;
1327 data->count = 0;
1328 data->must = 1;
1329 if (isl_union_map_foreach_map(data->must_source,
1330 &collect_matching_array, data) < 0)
1331 goto error;
1332 data->must = 0;
1333 if (isl_union_map_foreach_map(data->may_source,
1334 &collect_matching_array, data) < 0)
1335 goto error;
1337 flow = isl_access_info_compute_flow(data->accesses);
1338 data->accesses = NULL;
1340 if (!flow)
1341 goto error;
1343 data->must_no_source = isl_union_map_union(data->must_no_source,
1344 isl_union_map_from_map(isl_flow_get_no_source(flow, 1)));
1345 data->may_no_source = isl_union_map_union(data->may_no_source,
1346 isl_union_map_from_map(isl_flow_get_no_source(flow, 0)));
1348 for (i = 0; i < flow->n_source; ++i) {
1349 isl_union_map *dep;
1350 dep = isl_union_map_from_map(isl_map_copy(flow->dep[i].map));
1351 if (flow->dep[i].must)
1352 data->must_dep = isl_union_map_union(data->must_dep, dep);
1353 else
1354 data->may_dep = isl_union_map_union(data->may_dep, dep);
1357 isl_flow_free(flow);
1359 sched_info_free(data->sink_info);
1360 if (data->source_info) {
1361 for (i = 0; i < data->count; ++i)
1362 sched_info_free(data->source_info[i]);
1363 free(data->source_info);
1365 isl_space_free(data->dim);
1366 isl_map_free(map);
1368 return 0;
1369 error:
1370 isl_access_info_free(data->accesses);
1371 sched_info_free(data->sink_info);
1372 if (data->source_info) {
1373 for (i = 0; i < data->count; ++i)
1374 sched_info_free(data->source_info[i]);
1375 free(data->source_info);
1377 isl_space_free(data->dim);
1378 isl_map_free(map);
1380 return -1;
1383 /* Given a collection of "sink" and "source" accesses,
1384 * compute for each iteration of a sink access
1385 * and for each element accessed by that iteration,
1386 * the source access in the list that last accessed the
1387 * element accessed by the sink access before this sink access.
1388 * Each access is given as a map from the loop iterators
1389 * to the array indices.
1390 * The result is a relations between source and sink
1391 * iterations and a subset of the domain of the sink accesses,
1392 * corresponding to those iterations that access an element
1393 * not previously accessed.
1395 * We first prepend the schedule dimensions to the domain
1396 * of the accesses so that we can easily compare their relative order.
1397 * Then we consider each sink access individually in compute_flow.
1399 int isl_union_map_compute_flow(__isl_take isl_union_map *sink,
1400 __isl_take isl_union_map *must_source,
1401 __isl_take isl_union_map *may_source,
1402 __isl_take isl_union_map *schedule,
1403 __isl_give isl_union_map **must_dep, __isl_give isl_union_map **may_dep,
1404 __isl_give isl_union_map **must_no_source,
1405 __isl_give isl_union_map **may_no_source)
1407 isl_space *dim;
1408 isl_union_map *range_map = NULL;
1409 struct isl_compute_flow_data data;
1411 sink = isl_union_map_align_params(sink,
1412 isl_union_map_get_space(must_source));
1413 sink = isl_union_map_align_params(sink,
1414 isl_union_map_get_space(may_source));
1415 sink = isl_union_map_align_params(sink,
1416 isl_union_map_get_space(schedule));
1417 dim = isl_union_map_get_space(sink);
1418 must_source = isl_union_map_align_params(must_source, isl_space_copy(dim));
1419 may_source = isl_union_map_align_params(may_source, isl_space_copy(dim));
1420 schedule = isl_union_map_align_params(schedule, isl_space_copy(dim));
1422 schedule = isl_union_map_reverse(schedule);
1423 range_map = isl_union_map_range_map(schedule);
1424 schedule = isl_union_map_reverse(isl_union_map_copy(range_map));
1425 sink = isl_union_map_apply_domain(sink, isl_union_map_copy(schedule));
1426 must_source = isl_union_map_apply_domain(must_source,
1427 isl_union_map_copy(schedule));
1428 may_source = isl_union_map_apply_domain(may_source, schedule);
1430 data.must_source = must_source;
1431 data.may_source = may_source;
1432 data.must_dep = must_dep ?
1433 isl_union_map_empty(isl_space_copy(dim)) : NULL;
1434 data.may_dep = may_dep ? isl_union_map_empty(isl_space_copy(dim)) : NULL;
1435 data.must_no_source = must_no_source ?
1436 isl_union_map_empty(isl_space_copy(dim)) : NULL;
1437 data.may_no_source = may_no_source ?
1438 isl_union_map_empty(isl_space_copy(dim)) : NULL;
1440 isl_space_free(dim);
1442 if (isl_union_map_foreach_map(sink, &compute_flow, &data) < 0)
1443 goto error;
1445 isl_union_map_free(sink);
1446 isl_union_map_free(must_source);
1447 isl_union_map_free(may_source);
1449 if (must_dep) {
1450 data.must_dep = isl_union_map_apply_domain(data.must_dep,
1451 isl_union_map_copy(range_map));
1452 data.must_dep = isl_union_map_apply_range(data.must_dep,
1453 isl_union_map_copy(range_map));
1454 *must_dep = data.must_dep;
1456 if (may_dep) {
1457 data.may_dep = isl_union_map_apply_domain(data.may_dep,
1458 isl_union_map_copy(range_map));
1459 data.may_dep = isl_union_map_apply_range(data.may_dep,
1460 isl_union_map_copy(range_map));
1461 *may_dep = data.may_dep;
1463 if (must_no_source) {
1464 data.must_no_source = isl_union_map_apply_domain(
1465 data.must_no_source, isl_union_map_copy(range_map));
1466 *must_no_source = data.must_no_source;
1468 if (may_no_source) {
1469 data.may_no_source = isl_union_map_apply_domain(
1470 data.may_no_source, isl_union_map_copy(range_map));
1471 *may_no_source = data.may_no_source;
1474 isl_union_map_free(range_map);
1476 return 0;
1477 error:
1478 isl_union_map_free(range_map);
1479 isl_union_map_free(sink);
1480 isl_union_map_free(must_source);
1481 isl_union_map_free(may_source);
1482 isl_union_map_free(data.must_dep);
1483 isl_union_map_free(data.may_dep);
1484 isl_union_map_free(data.must_no_source);
1485 isl_union_map_free(data.may_no_source);
1487 if (must_dep)
1488 *must_dep = NULL;
1489 if (may_dep)
1490 *may_dep = NULL;
1491 if (must_no_source)
1492 *must_no_source = NULL;
1493 if (may_no_source)
1494 *may_no_source = NULL;
1495 return -1;